Commit d4905ce38c73964b868037e49a5945e1cf47a7f2

Authored by Paul Mundt
1 parent db7eba292e

Revert "clocksource: sh_tmu: Runtime PM support"

This reverts commit 1b842e91fea9447eff5eb687e28ad61c02f5033e.

There is a fundamental ordering race between the early and late probe
paths and the runtime PM tie-in that results in __pm_runtime_resume()
attempting to take a lock that hasn't been initialized yet (which by
proxy also suggests that pm_runtime_init() hasn't yet been run on the
device either, making the entire thing unsafe) -- resulting in instant
death on SMP or on UP with spinlock debugging enabled:

	 sh_tmu.0: used for clock events
	 sh_tmu.0: used for periodic clock events
	BUG: spinlock trylock failure on UP on CPU#0, swapper/0
	 lock: 804db198, .magic: 00000000, .owner: <none>/-1, .owner_cpu: 0
	...

Revert it for now until the ordering issues can be resolved, or we can get
some more help from the runtime PM framework to make this possible.

Signed-off-by: Paul Mundt <lethal@linux-sh.org>

Showing 1 changed file with 2 additions and 10 deletions Inline Diff

drivers/clocksource/sh_tmu.c
1 /* 1 /*
2 * SuperH Timer Support - TMU 2 * SuperH Timer Support - TMU
3 * 3 *
4 * Copyright (C) 2009 Magnus Damm 4 * Copyright (C) 2009 Magnus Damm
5 * 5 *
6 * This program is free software; you can redistribute it and/or modify 6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by 7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License 8 * the Free Software Foundation; either version 2 of the License
9 * 9 *
10 * This program is distributed in the hope that it will be useful, 10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details. 13 * GNU General Public License for more details.
14 * 14 *
15 * You should have received a copy of the GNU General Public License 15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software 16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */ 18 */
19 19
20 #include <linux/init.h> 20 #include <linux/init.h>
21 #include <linux/platform_device.h> 21 #include <linux/platform_device.h>
22 #include <linux/spinlock.h> 22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h> 23 #include <linux/interrupt.h>
24 #include <linux/ioport.h> 24 #include <linux/ioport.h>
25 #include <linux/delay.h> 25 #include <linux/delay.h>
26 #include <linux/io.h> 26 #include <linux/io.h>
27 #include <linux/clk.h> 27 #include <linux/clk.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/irq.h> 28 #include <linux/irq.h>
30 #include <linux/err.h> 29 #include <linux/err.h>
31 #include <linux/clocksource.h> 30 #include <linux/clocksource.h>
32 #include <linux/clockchips.h> 31 #include <linux/clockchips.h>
33 #include <linux/sh_timer.h> 32 #include <linux/sh_timer.h>
34 #include <linux/slab.h> 33 #include <linux/slab.h>
35 34
36 struct sh_tmu_priv { 35 struct sh_tmu_priv {
37 void __iomem *mapbase; 36 void __iomem *mapbase;
38 struct clk *clk; 37 struct clk *clk;
39 struct irqaction irqaction; 38 struct irqaction irqaction;
40 struct platform_device *pdev; 39 struct platform_device *pdev;
41 unsigned long rate; 40 unsigned long rate;
42 unsigned long periodic; 41 unsigned long periodic;
43 struct clock_event_device ced; 42 struct clock_event_device ced;
44 struct clocksource cs; 43 struct clocksource cs;
45 }; 44 };
46 45
47 static DEFINE_SPINLOCK(sh_tmu_lock); 46 static DEFINE_SPINLOCK(sh_tmu_lock);
48 47
49 #define TSTR -1 /* shared register */ 48 #define TSTR -1 /* shared register */
50 #define TCOR 0 /* channel register */ 49 #define TCOR 0 /* channel register */
51 #define TCNT 1 /* channel register */ 50 #define TCNT 1 /* channel register */
52 #define TCR 2 /* channel register */ 51 #define TCR 2 /* channel register */
53 52
54 static inline unsigned long sh_tmu_read(struct sh_tmu_priv *p, int reg_nr) 53 static inline unsigned long sh_tmu_read(struct sh_tmu_priv *p, int reg_nr)
55 { 54 {
56 struct sh_timer_config *cfg = p->pdev->dev.platform_data; 55 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
57 void __iomem *base = p->mapbase; 56 void __iomem *base = p->mapbase;
58 unsigned long offs; 57 unsigned long offs;
59 58
60 if (reg_nr == TSTR) 59 if (reg_nr == TSTR)
61 return ioread8(base - cfg->channel_offset); 60 return ioread8(base - cfg->channel_offset);
62 61
63 offs = reg_nr << 2; 62 offs = reg_nr << 2;
64 63
65 if (reg_nr == TCR) 64 if (reg_nr == TCR)
66 return ioread16(base + offs); 65 return ioread16(base + offs);
67 else 66 else
68 return ioread32(base + offs); 67 return ioread32(base + offs);
69 } 68 }
70 69
71 static inline void sh_tmu_write(struct sh_tmu_priv *p, int reg_nr, 70 static inline void sh_tmu_write(struct sh_tmu_priv *p, int reg_nr,
72 unsigned long value) 71 unsigned long value)
73 { 72 {
74 struct sh_timer_config *cfg = p->pdev->dev.platform_data; 73 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
75 void __iomem *base = p->mapbase; 74 void __iomem *base = p->mapbase;
76 unsigned long offs; 75 unsigned long offs;
77 76
78 if (reg_nr == TSTR) { 77 if (reg_nr == TSTR) {
79 iowrite8(value, base - cfg->channel_offset); 78 iowrite8(value, base - cfg->channel_offset);
80 return; 79 return;
81 } 80 }
82 81
83 offs = reg_nr << 2; 82 offs = reg_nr << 2;
84 83
85 if (reg_nr == TCR) 84 if (reg_nr == TCR)
86 iowrite16(value, base + offs); 85 iowrite16(value, base + offs);
87 else 86 else
88 iowrite32(value, base + offs); 87 iowrite32(value, base + offs);
89 } 88 }
90 89
91 static void sh_tmu_start_stop_ch(struct sh_tmu_priv *p, int start) 90 static void sh_tmu_start_stop_ch(struct sh_tmu_priv *p, int start)
92 { 91 {
93 struct sh_timer_config *cfg = p->pdev->dev.platform_data; 92 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
94 unsigned long flags, value; 93 unsigned long flags, value;
95 94
96 /* start stop register shared by multiple timer channels */ 95 /* start stop register shared by multiple timer channels */
97 spin_lock_irqsave(&sh_tmu_lock, flags); 96 spin_lock_irqsave(&sh_tmu_lock, flags);
98 value = sh_tmu_read(p, TSTR); 97 value = sh_tmu_read(p, TSTR);
99 98
100 if (start) 99 if (start)
101 value |= 1 << cfg->timer_bit; 100 value |= 1 << cfg->timer_bit;
102 else 101 else
103 value &= ~(1 << cfg->timer_bit); 102 value &= ~(1 << cfg->timer_bit);
104 103
105 sh_tmu_write(p, TSTR, value); 104 sh_tmu_write(p, TSTR, value);
106 spin_unlock_irqrestore(&sh_tmu_lock, flags); 105 spin_unlock_irqrestore(&sh_tmu_lock, flags);
107 } 106 }
108 107
109 static int sh_tmu_enable(struct sh_tmu_priv *p) 108 static int sh_tmu_enable(struct sh_tmu_priv *p)
110 { 109 {
111 int ret; 110 int ret;
112 111
113 /* wake up device and enable clock */ 112 /* enable clock */
114 pm_runtime_get_sync(&p->pdev->dev);
115 ret = clk_enable(p->clk); 113 ret = clk_enable(p->clk);
116 if (ret) { 114 if (ret) {
117 dev_err(&p->pdev->dev, "cannot enable clock\n"); 115 dev_err(&p->pdev->dev, "cannot enable clock\n");
118 pm_runtime_put_sync(&p->pdev->dev);
119 return ret; 116 return ret;
120 } 117 }
121 118
122 /* make sure channel is disabled */ 119 /* make sure channel is disabled */
123 sh_tmu_start_stop_ch(p, 0); 120 sh_tmu_start_stop_ch(p, 0);
124 121
125 /* maximum timeout */ 122 /* maximum timeout */
126 sh_tmu_write(p, TCOR, 0xffffffff); 123 sh_tmu_write(p, TCOR, 0xffffffff);
127 sh_tmu_write(p, TCNT, 0xffffffff); 124 sh_tmu_write(p, TCNT, 0xffffffff);
128 125
129 /* configure channel to parent clock / 4, irq off */ 126 /* configure channel to parent clock / 4, irq off */
130 p->rate = clk_get_rate(p->clk) / 4; 127 p->rate = clk_get_rate(p->clk) / 4;
131 sh_tmu_write(p, TCR, 0x0000); 128 sh_tmu_write(p, TCR, 0x0000);
132 129
133 /* enable channel */ 130 /* enable channel */
134 sh_tmu_start_stop_ch(p, 1); 131 sh_tmu_start_stop_ch(p, 1);
135 132
136 return 0; 133 return 0;
137 } 134 }
138 135
139 static void sh_tmu_disable(struct sh_tmu_priv *p) 136 static void sh_tmu_disable(struct sh_tmu_priv *p)
140 { 137 {
141 /* disable channel */ 138 /* disable channel */
142 sh_tmu_start_stop_ch(p, 0); 139 sh_tmu_start_stop_ch(p, 0);
143 140
144 /* disable interrupts in TMU block */ 141 /* disable interrupts in TMU block */
145 sh_tmu_write(p, TCR, 0x0000); 142 sh_tmu_write(p, TCR, 0x0000);
146 143
147 /* stop clock and mark device as idle */ 144 /* stop clock */
148 clk_disable(p->clk); 145 clk_disable(p->clk);
149 pm_runtime_put_sync(&p->pdev->dev);
150 } 146 }
151 147
152 static void sh_tmu_set_next(struct sh_tmu_priv *p, unsigned long delta, 148 static void sh_tmu_set_next(struct sh_tmu_priv *p, unsigned long delta,
153 int periodic) 149 int periodic)
154 { 150 {
155 /* stop timer */ 151 /* stop timer */
156 sh_tmu_start_stop_ch(p, 0); 152 sh_tmu_start_stop_ch(p, 0);
157 153
158 /* acknowledge interrupt */ 154 /* acknowledge interrupt */
159 sh_tmu_read(p, TCR); 155 sh_tmu_read(p, TCR);
160 156
161 /* enable interrupt */ 157 /* enable interrupt */
162 sh_tmu_write(p, TCR, 0x0020); 158 sh_tmu_write(p, TCR, 0x0020);
163 159
164 /* reload delta value in case of periodic timer */ 160 /* reload delta value in case of periodic timer */
165 if (periodic) 161 if (periodic)
166 sh_tmu_write(p, TCOR, delta); 162 sh_tmu_write(p, TCOR, delta);
167 else 163 else
168 sh_tmu_write(p, TCOR, 0xffffffff); 164 sh_tmu_write(p, TCOR, 0xffffffff);
169 165
170 sh_tmu_write(p, TCNT, delta); 166 sh_tmu_write(p, TCNT, delta);
171 167
172 /* start timer */ 168 /* start timer */
173 sh_tmu_start_stop_ch(p, 1); 169 sh_tmu_start_stop_ch(p, 1);
174 } 170 }
175 171
176 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id) 172 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
177 { 173 {
178 struct sh_tmu_priv *p = dev_id; 174 struct sh_tmu_priv *p = dev_id;
179 175
180 /* disable or acknowledge interrupt */ 176 /* disable or acknowledge interrupt */
181 if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) 177 if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT)
182 sh_tmu_write(p, TCR, 0x0000); 178 sh_tmu_write(p, TCR, 0x0000);
183 else 179 else
184 sh_tmu_write(p, TCR, 0x0020); 180 sh_tmu_write(p, TCR, 0x0020);
185 181
186 /* notify clockevent layer */ 182 /* notify clockevent layer */
187 p->ced.event_handler(&p->ced); 183 p->ced.event_handler(&p->ced);
188 return IRQ_HANDLED; 184 return IRQ_HANDLED;
189 } 185 }
190 186
191 static struct sh_tmu_priv *cs_to_sh_tmu(struct clocksource *cs) 187 static struct sh_tmu_priv *cs_to_sh_tmu(struct clocksource *cs)
192 { 188 {
193 return container_of(cs, struct sh_tmu_priv, cs); 189 return container_of(cs, struct sh_tmu_priv, cs);
194 } 190 }
195 191
196 static cycle_t sh_tmu_clocksource_read(struct clocksource *cs) 192 static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
197 { 193 {
198 struct sh_tmu_priv *p = cs_to_sh_tmu(cs); 194 struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
199 195
200 return sh_tmu_read(p, TCNT) ^ 0xffffffff; 196 return sh_tmu_read(p, TCNT) ^ 0xffffffff;
201 } 197 }
202 198
203 static int sh_tmu_clocksource_enable(struct clocksource *cs) 199 static int sh_tmu_clocksource_enable(struct clocksource *cs)
204 { 200 {
205 struct sh_tmu_priv *p = cs_to_sh_tmu(cs); 201 struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
206 int ret; 202 int ret;
207 203
208 ret = sh_tmu_enable(p); 204 ret = sh_tmu_enable(p);
209 if (!ret) 205 if (!ret)
210 __clocksource_updatefreq_hz(cs, p->rate); 206 __clocksource_updatefreq_hz(cs, p->rate);
211 return ret; 207 return ret;
212 } 208 }
213 209
214 static void sh_tmu_clocksource_disable(struct clocksource *cs) 210 static void sh_tmu_clocksource_disable(struct clocksource *cs)
215 { 211 {
216 sh_tmu_disable(cs_to_sh_tmu(cs)); 212 sh_tmu_disable(cs_to_sh_tmu(cs));
217 } 213 }
218 214
219 static int sh_tmu_register_clocksource(struct sh_tmu_priv *p, 215 static int sh_tmu_register_clocksource(struct sh_tmu_priv *p,
220 char *name, unsigned long rating) 216 char *name, unsigned long rating)
221 { 217 {
222 struct clocksource *cs = &p->cs; 218 struct clocksource *cs = &p->cs;
223 219
224 cs->name = name; 220 cs->name = name;
225 cs->rating = rating; 221 cs->rating = rating;
226 cs->read = sh_tmu_clocksource_read; 222 cs->read = sh_tmu_clocksource_read;
227 cs->enable = sh_tmu_clocksource_enable; 223 cs->enable = sh_tmu_clocksource_enable;
228 cs->disable = sh_tmu_clocksource_disable; 224 cs->disable = sh_tmu_clocksource_disable;
229 cs->mask = CLOCKSOURCE_MASK(32); 225 cs->mask = CLOCKSOURCE_MASK(32);
230 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS; 226 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
231 227
232 dev_info(&p->pdev->dev, "used as clock source\n"); 228 dev_info(&p->pdev->dev, "used as clock source\n");
233 229
234 /* Register with dummy 1 Hz value, gets updated in ->enable() */ 230 /* Register with dummy 1 Hz value, gets updated in ->enable() */
235 clocksource_register_hz(cs, 1); 231 clocksource_register_hz(cs, 1);
236 return 0; 232 return 0;
237 } 233 }
238 234
239 static struct sh_tmu_priv *ced_to_sh_tmu(struct clock_event_device *ced) 235 static struct sh_tmu_priv *ced_to_sh_tmu(struct clock_event_device *ced)
240 { 236 {
241 return container_of(ced, struct sh_tmu_priv, ced); 237 return container_of(ced, struct sh_tmu_priv, ced);
242 } 238 }
243 239
244 static void sh_tmu_clock_event_start(struct sh_tmu_priv *p, int periodic) 240 static void sh_tmu_clock_event_start(struct sh_tmu_priv *p, int periodic)
245 { 241 {
246 struct clock_event_device *ced = &p->ced; 242 struct clock_event_device *ced = &p->ced;
247 243
248 sh_tmu_enable(p); 244 sh_tmu_enable(p);
249 245
250 /* TODO: calculate good shift from rate and counter bit width */ 246 /* TODO: calculate good shift from rate and counter bit width */
251 247
252 ced->shift = 32; 248 ced->shift = 32;
253 ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift); 249 ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
254 ced->max_delta_ns = clockevent_delta2ns(0xffffffff, ced); 250 ced->max_delta_ns = clockevent_delta2ns(0xffffffff, ced);
255 ced->min_delta_ns = 5000; 251 ced->min_delta_ns = 5000;
256 252
257 if (periodic) { 253 if (periodic) {
258 p->periodic = (p->rate + HZ/2) / HZ; 254 p->periodic = (p->rate + HZ/2) / HZ;
259 sh_tmu_set_next(p, p->periodic, 1); 255 sh_tmu_set_next(p, p->periodic, 1);
260 } 256 }
261 } 257 }
262 258
263 static void sh_tmu_clock_event_mode(enum clock_event_mode mode, 259 static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
264 struct clock_event_device *ced) 260 struct clock_event_device *ced)
265 { 261 {
266 struct sh_tmu_priv *p = ced_to_sh_tmu(ced); 262 struct sh_tmu_priv *p = ced_to_sh_tmu(ced);
267 int disabled = 0; 263 int disabled = 0;
268 264
269 /* deal with old setting first */ 265 /* deal with old setting first */
270 switch (ced->mode) { 266 switch (ced->mode) {
271 case CLOCK_EVT_MODE_PERIODIC: 267 case CLOCK_EVT_MODE_PERIODIC:
272 case CLOCK_EVT_MODE_ONESHOT: 268 case CLOCK_EVT_MODE_ONESHOT:
273 sh_tmu_disable(p); 269 sh_tmu_disable(p);
274 disabled = 1; 270 disabled = 1;
275 break; 271 break;
276 default: 272 default:
277 break; 273 break;
278 } 274 }
279 275
280 switch (mode) { 276 switch (mode) {
281 case CLOCK_EVT_MODE_PERIODIC: 277 case CLOCK_EVT_MODE_PERIODIC:
282 dev_info(&p->pdev->dev, "used for periodic clock events\n"); 278 dev_info(&p->pdev->dev, "used for periodic clock events\n");
283 sh_tmu_clock_event_start(p, 1); 279 sh_tmu_clock_event_start(p, 1);
284 break; 280 break;
285 case CLOCK_EVT_MODE_ONESHOT: 281 case CLOCK_EVT_MODE_ONESHOT:
286 dev_info(&p->pdev->dev, "used for oneshot clock events\n"); 282 dev_info(&p->pdev->dev, "used for oneshot clock events\n");
287 sh_tmu_clock_event_start(p, 0); 283 sh_tmu_clock_event_start(p, 0);
288 break; 284 break;
289 case CLOCK_EVT_MODE_UNUSED: 285 case CLOCK_EVT_MODE_UNUSED:
290 if (!disabled) 286 if (!disabled)
291 sh_tmu_disable(p); 287 sh_tmu_disable(p);
292 break; 288 break;
293 case CLOCK_EVT_MODE_SHUTDOWN: 289 case CLOCK_EVT_MODE_SHUTDOWN:
294 default: 290 default:
295 break; 291 break;
296 } 292 }
297 } 293 }
298 294
299 static int sh_tmu_clock_event_next(unsigned long delta, 295 static int sh_tmu_clock_event_next(unsigned long delta,
300 struct clock_event_device *ced) 296 struct clock_event_device *ced)
301 { 297 {
302 struct sh_tmu_priv *p = ced_to_sh_tmu(ced); 298 struct sh_tmu_priv *p = ced_to_sh_tmu(ced);
303 299
304 BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT); 300 BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
305 301
306 /* program new delta value */ 302 /* program new delta value */
307 sh_tmu_set_next(p, delta, 0); 303 sh_tmu_set_next(p, delta, 0);
308 return 0; 304 return 0;
309 } 305 }
310 306
311 static void sh_tmu_register_clockevent(struct sh_tmu_priv *p, 307 static void sh_tmu_register_clockevent(struct sh_tmu_priv *p,
312 char *name, unsigned long rating) 308 char *name, unsigned long rating)
313 { 309 {
314 struct clock_event_device *ced = &p->ced; 310 struct clock_event_device *ced = &p->ced;
315 int ret; 311 int ret;
316 312
317 memset(ced, 0, sizeof(*ced)); 313 memset(ced, 0, sizeof(*ced));
318 314
319 ced->name = name; 315 ced->name = name;
320 ced->features = CLOCK_EVT_FEAT_PERIODIC; 316 ced->features = CLOCK_EVT_FEAT_PERIODIC;
321 ced->features |= CLOCK_EVT_FEAT_ONESHOT; 317 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
322 ced->rating = rating; 318 ced->rating = rating;
323 ced->cpumask = cpumask_of(0); 319 ced->cpumask = cpumask_of(0);
324 ced->set_next_event = sh_tmu_clock_event_next; 320 ced->set_next_event = sh_tmu_clock_event_next;
325 ced->set_mode = sh_tmu_clock_event_mode; 321 ced->set_mode = sh_tmu_clock_event_mode;
326 322
327 dev_info(&p->pdev->dev, "used for clock events\n"); 323 dev_info(&p->pdev->dev, "used for clock events\n");
328 clockevents_register_device(ced); 324 clockevents_register_device(ced);
329 325
330 ret = setup_irq(p->irqaction.irq, &p->irqaction); 326 ret = setup_irq(p->irqaction.irq, &p->irqaction);
331 if (ret) { 327 if (ret) {
332 dev_err(&p->pdev->dev, "failed to request irq %d\n", 328 dev_err(&p->pdev->dev, "failed to request irq %d\n",
333 p->irqaction.irq); 329 p->irqaction.irq);
334 return; 330 return;
335 } 331 }
336 } 332 }
337 333
338 static int sh_tmu_register(struct sh_tmu_priv *p, char *name, 334 static int sh_tmu_register(struct sh_tmu_priv *p, char *name,
339 unsigned long clockevent_rating, 335 unsigned long clockevent_rating,
340 unsigned long clocksource_rating) 336 unsigned long clocksource_rating)
341 { 337 {
342 if (clockevent_rating) 338 if (clockevent_rating)
343 sh_tmu_register_clockevent(p, name, clockevent_rating); 339 sh_tmu_register_clockevent(p, name, clockevent_rating);
344 else if (clocksource_rating) 340 else if (clocksource_rating)
345 sh_tmu_register_clocksource(p, name, clocksource_rating); 341 sh_tmu_register_clocksource(p, name, clocksource_rating);
346 342
347 return 0; 343 return 0;
348 } 344 }
349 345
350 static int sh_tmu_setup(struct sh_tmu_priv *p, struct platform_device *pdev) 346 static int sh_tmu_setup(struct sh_tmu_priv *p, struct platform_device *pdev)
351 { 347 {
352 struct sh_timer_config *cfg = pdev->dev.platform_data; 348 struct sh_timer_config *cfg = pdev->dev.platform_data;
353 struct resource *res; 349 struct resource *res;
354 int irq, ret; 350 int irq, ret;
355 ret = -ENXIO; 351 ret = -ENXIO;
356 352
357 memset(p, 0, sizeof(*p)); 353 memset(p, 0, sizeof(*p));
358 p->pdev = pdev; 354 p->pdev = pdev;
359 355
360 if (!cfg) { 356 if (!cfg) {
361 dev_err(&p->pdev->dev, "missing platform data\n"); 357 dev_err(&p->pdev->dev, "missing platform data\n");
362 goto err0; 358 goto err0;
363 } 359 }
364 360
365 platform_set_drvdata(pdev, p); 361 platform_set_drvdata(pdev, p);
366 362
367 res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0); 363 res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
368 if (!res) { 364 if (!res) {
369 dev_err(&p->pdev->dev, "failed to get I/O memory\n"); 365 dev_err(&p->pdev->dev, "failed to get I/O memory\n");
370 goto err0; 366 goto err0;
371 } 367 }
372 368
373 irq = platform_get_irq(p->pdev, 0); 369 irq = platform_get_irq(p->pdev, 0);
374 if (irq < 0) { 370 if (irq < 0) {
375 dev_err(&p->pdev->dev, "failed to get irq\n"); 371 dev_err(&p->pdev->dev, "failed to get irq\n");
376 goto err0; 372 goto err0;
377 } 373 }
378 374
379 /* map memory, let mapbase point to our channel */ 375 /* map memory, let mapbase point to our channel */
380 p->mapbase = ioremap_nocache(res->start, resource_size(res)); 376 p->mapbase = ioremap_nocache(res->start, resource_size(res));
381 if (p->mapbase == NULL) { 377 if (p->mapbase == NULL) {
382 dev_err(&p->pdev->dev, "failed to remap I/O memory\n"); 378 dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
383 goto err0; 379 goto err0;
384 } 380 }
385 381
386 /* setup data for setup_irq() (too early for request_irq()) */ 382 /* setup data for setup_irq() (too early for request_irq()) */
387 p->irqaction.name = dev_name(&p->pdev->dev); 383 p->irqaction.name = dev_name(&p->pdev->dev);
388 p->irqaction.handler = sh_tmu_interrupt; 384 p->irqaction.handler = sh_tmu_interrupt;
389 p->irqaction.dev_id = p; 385 p->irqaction.dev_id = p;
390 p->irqaction.irq = irq; 386 p->irqaction.irq = irq;
391 p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \ 387 p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \
392 IRQF_IRQPOLL | IRQF_NOBALANCING; 388 IRQF_IRQPOLL | IRQF_NOBALANCING;
393 389
394 /* get hold of clock */ 390 /* get hold of clock */
395 p->clk = clk_get(&p->pdev->dev, "tmu_fck"); 391 p->clk = clk_get(&p->pdev->dev, "tmu_fck");
396 if (IS_ERR(p->clk)) { 392 if (IS_ERR(p->clk)) {
397 dev_err(&p->pdev->dev, "cannot get clock\n"); 393 dev_err(&p->pdev->dev, "cannot get clock\n");
398 ret = PTR_ERR(p->clk); 394 ret = PTR_ERR(p->clk);
399 goto err1; 395 goto err1;
400 } 396 }
401 397
402 return sh_tmu_register(p, (char *)dev_name(&p->pdev->dev), 398 return sh_tmu_register(p, (char *)dev_name(&p->pdev->dev),
403 cfg->clockevent_rating, 399 cfg->clockevent_rating,
404 cfg->clocksource_rating); 400 cfg->clocksource_rating);
405 err1: 401 err1:
406 iounmap(p->mapbase); 402 iounmap(p->mapbase);
407 err0: 403 err0:
408 return ret; 404 return ret;
409 } 405 }
410 406
411 static int __devinit sh_tmu_probe(struct platform_device *pdev) 407 static int __devinit sh_tmu_probe(struct platform_device *pdev)
412 { 408 {
413 struct sh_tmu_priv *p = platform_get_drvdata(pdev); 409 struct sh_tmu_priv *p = platform_get_drvdata(pdev);
414 int ret; 410 int ret;
415 411
416 if (p) { 412 if (p) {
417 dev_info(&pdev->dev, "kept as earlytimer\n"); 413 dev_info(&pdev->dev, "kept as earlytimer\n");
418 pm_runtime_enable(&pdev->dev);
419 return 0; 414 return 0;
420 } 415 }
421 416
422 p = kmalloc(sizeof(*p), GFP_KERNEL); 417 p = kmalloc(sizeof(*p), GFP_KERNEL);
423 if (p == NULL) { 418 if (p == NULL) {
424 dev_err(&pdev->dev, "failed to allocate driver data\n"); 419 dev_err(&pdev->dev, "failed to allocate driver data\n");
425 return -ENOMEM; 420 return -ENOMEM;
426 } 421 }
427 422
428 ret = sh_tmu_setup(p, pdev); 423 ret = sh_tmu_setup(p, pdev);
429 if (ret) { 424 if (ret) {
430 kfree(p); 425 kfree(p);
431 platform_set_drvdata(pdev, NULL); 426 platform_set_drvdata(pdev, NULL);
432 } 427 }
433
434 if (!is_early_platform_device(pdev))
435 pm_runtime_enable(&pdev->dev);
436 return ret; 428 return ret;
437 } 429 }
438 430
439 static int __devexit sh_tmu_remove(struct platform_device *pdev) 431 static int __devexit sh_tmu_remove(struct platform_device *pdev)
440 { 432 {
441 return -EBUSY; /* cannot unregister clockevent and clocksource */ 433 return -EBUSY; /* cannot unregister clockevent and clocksource */
442 } 434 }
443 435
444 static struct platform_driver sh_tmu_device_driver = { 436 static struct platform_driver sh_tmu_device_driver = {
445 .probe = sh_tmu_probe, 437 .probe = sh_tmu_probe,
446 .remove = __devexit_p(sh_tmu_remove), 438 .remove = __devexit_p(sh_tmu_remove),
447 .driver = { 439 .driver = {
448 .name = "sh_tmu", 440 .name = "sh_tmu",
449 } 441 }
450 }; 442 };
451 443
452 static int __init sh_tmu_init(void) 444 static int __init sh_tmu_init(void)
453 { 445 {
454 return platform_driver_register(&sh_tmu_device_driver); 446 return platform_driver_register(&sh_tmu_device_driver);
455 } 447 }
456 448
457 static void __exit sh_tmu_exit(void) 449 static void __exit sh_tmu_exit(void)
458 { 450 {
459 platform_driver_unregister(&sh_tmu_device_driver); 451 platform_driver_unregister(&sh_tmu_device_driver);
460 } 452 }
461 453
462 early_platform_init("earlytimer", &sh_tmu_device_driver); 454 early_platform_init("earlytimer", &sh_tmu_device_driver);
463 module_init(sh_tmu_init); 455 module_init(sh_tmu_init);
464 module_exit(sh_tmu_exit); 456 module_exit(sh_tmu_exit);
465 457
466 MODULE_AUTHOR("Magnus Damm"); 458 MODULE_AUTHOR("Magnus Damm");
467 MODULE_DESCRIPTION("SuperH TMU Timer Driver"); 459 MODULE_DESCRIPTION("SuperH TMU Timer Driver");
468 MODULE_LICENSE("GPL v2"); 460 MODULE_LICENSE("GPL v2");
469 461