Commit d9e64f83ebb8f563810b10536b23516d3bd30e80

Authored by rajan.aggarwal85@gmail.com
Committed by David S. Miller
1 parent 6b59e3191d

net/can/af_can.c: Change del_timer to del_timer_sync

This is important for SMP platform to check if timer function is
executing on other CPU with deleting the timer.

Signed-off-by: Rajan Aggarwal <Rajan Aggarwal rajan.aggarwal85@gmail.com>
Acked-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: David S. Miller <davem@davemloft.net>

Showing 1 changed file with 1 additions and 1 deletions Inline Diff

1 /* 1 /*
2 * af_can.c - Protocol family CAN core module 2 * af_can.c - Protocol family CAN core module
3 * (used by different CAN protocol modules) 3 * (used by different CAN protocol modules)
4 * 4 *
5 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research 5 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6 * All rights reserved. 6 * All rights reserved.
7 * 7 *
8 * Redistribution and use in source and binary forms, with or without 8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions 9 * modification, are permitted provided that the following conditions
10 * are met: 10 * are met:
11 * 1. Redistributions of source code must retain the above copyright 11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer. 12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of Volkswagen nor the names of its contributors 16 * 3. Neither the name of Volkswagen nor the names of its contributors
17 * may be used to endorse or promote products derived from this software 17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission. 18 * without specific prior written permission.
19 * 19 *
20 * Alternatively, provided that this notice is retained in full, this 20 * Alternatively, provided that this notice is retained in full, this
21 * software may be distributed under the terms of the GNU General 21 * software may be distributed under the terms of the GNU General
22 * Public License ("GPL") version 2, in which case the provisions of the 22 * Public License ("GPL") version 2, in which case the provisions of the
23 * GPL apply INSTEAD OF those given above. 23 * GPL apply INSTEAD OF those given above.
24 * 24 *
25 * The provided data structures and external interfaces from this code 25 * The provided data structures and external interfaces from this code
26 * are not restricted to be used by modules with a GPL compatible license. 26 * are not restricted to be used by modules with a GPL compatible license.
27 * 27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE. 39 * DAMAGE.
40 * 40 *
41 * Send feedback to <socketcan-users@lists.berlios.de> 41 * Send feedback to <socketcan-users@lists.berlios.de>
42 * 42 *
43 */ 43 */
44 44
45 #include <linux/module.h> 45 #include <linux/module.h>
46 #include <linux/init.h> 46 #include <linux/init.h>
47 #include <linux/kmod.h> 47 #include <linux/kmod.h>
48 #include <linux/slab.h> 48 #include <linux/slab.h>
49 #include <linux/list.h> 49 #include <linux/list.h>
50 #include <linux/spinlock.h> 50 #include <linux/spinlock.h>
51 #include <linux/rcupdate.h> 51 #include <linux/rcupdate.h>
52 #include <linux/uaccess.h> 52 #include <linux/uaccess.h>
53 #include <linux/net.h> 53 #include <linux/net.h>
54 #include <linux/netdevice.h> 54 #include <linux/netdevice.h>
55 #include <linux/socket.h> 55 #include <linux/socket.h>
56 #include <linux/if_ether.h> 56 #include <linux/if_ether.h>
57 #include <linux/if_arp.h> 57 #include <linux/if_arp.h>
58 #include <linux/skbuff.h> 58 #include <linux/skbuff.h>
59 #include <linux/can.h> 59 #include <linux/can.h>
60 #include <linux/can/core.h> 60 #include <linux/can/core.h>
61 #include <linux/ratelimit.h> 61 #include <linux/ratelimit.h>
62 #include <net/net_namespace.h> 62 #include <net/net_namespace.h>
63 #include <net/sock.h> 63 #include <net/sock.h>
64 64
65 #include "af_can.h" 65 #include "af_can.h"
66 66
67 static __initdata const char banner[] = KERN_INFO 67 static __initdata const char banner[] = KERN_INFO
68 "can: controller area network core (" CAN_VERSION_STRING ")\n"; 68 "can: controller area network core (" CAN_VERSION_STRING ")\n";
69 69
70 MODULE_DESCRIPTION("Controller Area Network PF_CAN core"); 70 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
71 MODULE_LICENSE("Dual BSD/GPL"); 71 MODULE_LICENSE("Dual BSD/GPL");
72 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, " 72 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
73 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>"); 73 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
74 74
75 MODULE_ALIAS_NETPROTO(PF_CAN); 75 MODULE_ALIAS_NETPROTO(PF_CAN);
76 76
77 static int stats_timer __read_mostly = 1; 77 static int stats_timer __read_mostly = 1;
78 module_param(stats_timer, int, S_IRUGO); 78 module_param(stats_timer, int, S_IRUGO);
79 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)"); 79 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
80 80
81 /* receive filters subscribed for 'all' CAN devices */ 81 /* receive filters subscribed for 'all' CAN devices */
82 struct dev_rcv_lists can_rx_alldev_list; 82 struct dev_rcv_lists can_rx_alldev_list;
83 static DEFINE_SPINLOCK(can_rcvlists_lock); 83 static DEFINE_SPINLOCK(can_rcvlists_lock);
84 84
85 static struct kmem_cache *rcv_cache __read_mostly; 85 static struct kmem_cache *rcv_cache __read_mostly;
86 86
87 /* table of registered CAN protocols */ 87 /* table of registered CAN protocols */
88 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly; 88 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
89 static DEFINE_MUTEX(proto_tab_lock); 89 static DEFINE_MUTEX(proto_tab_lock);
90 90
91 struct timer_list can_stattimer; /* timer for statistics update */ 91 struct timer_list can_stattimer; /* timer for statistics update */
92 struct s_stats can_stats; /* packet statistics */ 92 struct s_stats can_stats; /* packet statistics */
93 struct s_pstats can_pstats; /* receive list statistics */ 93 struct s_pstats can_pstats; /* receive list statistics */
94 94
95 /* 95 /*
96 * af_can socket functions 96 * af_can socket functions
97 */ 97 */
98 98
99 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 99 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
100 { 100 {
101 struct sock *sk = sock->sk; 101 struct sock *sk = sock->sk;
102 102
103 switch (cmd) { 103 switch (cmd) {
104 104
105 case SIOCGSTAMP: 105 case SIOCGSTAMP:
106 return sock_get_timestamp(sk, (struct timeval __user *)arg); 106 return sock_get_timestamp(sk, (struct timeval __user *)arg);
107 107
108 default: 108 default:
109 return -ENOIOCTLCMD; 109 return -ENOIOCTLCMD;
110 } 110 }
111 } 111 }
112 EXPORT_SYMBOL(can_ioctl); 112 EXPORT_SYMBOL(can_ioctl);
113 113
114 static void can_sock_destruct(struct sock *sk) 114 static void can_sock_destruct(struct sock *sk)
115 { 115 {
116 skb_queue_purge(&sk->sk_receive_queue); 116 skb_queue_purge(&sk->sk_receive_queue);
117 } 117 }
118 118
119 static const struct can_proto *can_get_proto(int protocol) 119 static const struct can_proto *can_get_proto(int protocol)
120 { 120 {
121 const struct can_proto *cp; 121 const struct can_proto *cp;
122 122
123 rcu_read_lock(); 123 rcu_read_lock();
124 cp = rcu_dereference(proto_tab[protocol]); 124 cp = rcu_dereference(proto_tab[protocol]);
125 if (cp && !try_module_get(cp->prot->owner)) 125 if (cp && !try_module_get(cp->prot->owner))
126 cp = NULL; 126 cp = NULL;
127 rcu_read_unlock(); 127 rcu_read_unlock();
128 128
129 return cp; 129 return cp;
130 } 130 }
131 131
132 static inline void can_put_proto(const struct can_proto *cp) 132 static inline void can_put_proto(const struct can_proto *cp)
133 { 133 {
134 module_put(cp->prot->owner); 134 module_put(cp->prot->owner);
135 } 135 }
136 136
137 static int can_create(struct net *net, struct socket *sock, int protocol, 137 static int can_create(struct net *net, struct socket *sock, int protocol,
138 int kern) 138 int kern)
139 { 139 {
140 struct sock *sk; 140 struct sock *sk;
141 const struct can_proto *cp; 141 const struct can_proto *cp;
142 int err = 0; 142 int err = 0;
143 143
144 sock->state = SS_UNCONNECTED; 144 sock->state = SS_UNCONNECTED;
145 145
146 if (protocol < 0 || protocol >= CAN_NPROTO) 146 if (protocol < 0 || protocol >= CAN_NPROTO)
147 return -EINVAL; 147 return -EINVAL;
148 148
149 if (!net_eq(net, &init_net)) 149 if (!net_eq(net, &init_net))
150 return -EAFNOSUPPORT; 150 return -EAFNOSUPPORT;
151 151
152 cp = can_get_proto(protocol); 152 cp = can_get_proto(protocol);
153 153
154 #ifdef CONFIG_MODULES 154 #ifdef CONFIG_MODULES
155 if (!cp) { 155 if (!cp) {
156 /* try to load protocol module if kernel is modular */ 156 /* try to load protocol module if kernel is modular */
157 157
158 err = request_module("can-proto-%d", protocol); 158 err = request_module("can-proto-%d", protocol);
159 159
160 /* 160 /*
161 * In case of error we only print a message but don't 161 * In case of error we only print a message but don't
162 * return the error code immediately. Below we will 162 * return the error code immediately. Below we will
163 * return -EPROTONOSUPPORT 163 * return -EPROTONOSUPPORT
164 */ 164 */
165 if (err) 165 if (err)
166 printk_ratelimited(KERN_ERR "can: request_module " 166 printk_ratelimited(KERN_ERR "can: request_module "
167 "(can-proto-%d) failed.\n", protocol); 167 "(can-proto-%d) failed.\n", protocol);
168 168
169 cp = can_get_proto(protocol); 169 cp = can_get_proto(protocol);
170 } 170 }
171 #endif 171 #endif
172 172
173 /* check for available protocol and correct usage */ 173 /* check for available protocol and correct usage */
174 174
175 if (!cp) 175 if (!cp)
176 return -EPROTONOSUPPORT; 176 return -EPROTONOSUPPORT;
177 177
178 if (cp->type != sock->type) { 178 if (cp->type != sock->type) {
179 err = -EPROTOTYPE; 179 err = -EPROTOTYPE;
180 goto errout; 180 goto errout;
181 } 181 }
182 182
183 sock->ops = cp->ops; 183 sock->ops = cp->ops;
184 184
185 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot); 185 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
186 if (!sk) { 186 if (!sk) {
187 err = -ENOMEM; 187 err = -ENOMEM;
188 goto errout; 188 goto errout;
189 } 189 }
190 190
191 sock_init_data(sock, sk); 191 sock_init_data(sock, sk);
192 sk->sk_destruct = can_sock_destruct; 192 sk->sk_destruct = can_sock_destruct;
193 193
194 if (sk->sk_prot->init) 194 if (sk->sk_prot->init)
195 err = sk->sk_prot->init(sk); 195 err = sk->sk_prot->init(sk);
196 196
197 if (err) { 197 if (err) {
198 /* release sk on errors */ 198 /* release sk on errors */
199 sock_orphan(sk); 199 sock_orphan(sk);
200 sock_put(sk); 200 sock_put(sk);
201 } 201 }
202 202
203 errout: 203 errout:
204 can_put_proto(cp); 204 can_put_proto(cp);
205 return err; 205 return err;
206 } 206 }
207 207
208 /* 208 /*
209 * af_can tx path 209 * af_can tx path
210 */ 210 */
211 211
212 /** 212 /**
213 * can_send - transmit a CAN frame (optional with local loopback) 213 * can_send - transmit a CAN frame (optional with local loopback)
214 * @skb: pointer to socket buffer with CAN frame in data section 214 * @skb: pointer to socket buffer with CAN frame in data section
215 * @loop: loopback for listeners on local CAN sockets (recommended default!) 215 * @loop: loopback for listeners on local CAN sockets (recommended default!)
216 * 216 *
217 * Due to the loopback this routine must not be called from hardirq context. 217 * Due to the loopback this routine must not be called from hardirq context.
218 * 218 *
219 * Return: 219 * Return:
220 * 0 on success 220 * 0 on success
221 * -ENETDOWN when the selected interface is down 221 * -ENETDOWN when the selected interface is down
222 * -ENOBUFS on full driver queue (see net_xmit_errno()) 222 * -ENOBUFS on full driver queue (see net_xmit_errno())
223 * -ENOMEM when local loopback failed at calling skb_clone() 223 * -ENOMEM when local loopback failed at calling skb_clone()
224 * -EPERM when trying to send on a non-CAN interface 224 * -EPERM when trying to send on a non-CAN interface
225 * -EINVAL when the skb->data does not contain a valid CAN frame 225 * -EINVAL when the skb->data does not contain a valid CAN frame
226 */ 226 */
227 int can_send(struct sk_buff *skb, int loop) 227 int can_send(struct sk_buff *skb, int loop)
228 { 228 {
229 struct sk_buff *newskb = NULL; 229 struct sk_buff *newskb = NULL;
230 struct can_frame *cf = (struct can_frame *)skb->data; 230 struct can_frame *cf = (struct can_frame *)skb->data;
231 int err; 231 int err;
232 232
233 if (skb->len != sizeof(struct can_frame) || cf->can_dlc > 8) { 233 if (skb->len != sizeof(struct can_frame) || cf->can_dlc > 8) {
234 kfree_skb(skb); 234 kfree_skb(skb);
235 return -EINVAL; 235 return -EINVAL;
236 } 236 }
237 237
238 if (skb->dev->type != ARPHRD_CAN) { 238 if (skb->dev->type != ARPHRD_CAN) {
239 kfree_skb(skb); 239 kfree_skb(skb);
240 return -EPERM; 240 return -EPERM;
241 } 241 }
242 242
243 if (!(skb->dev->flags & IFF_UP)) { 243 if (!(skb->dev->flags & IFF_UP)) {
244 kfree_skb(skb); 244 kfree_skb(skb);
245 return -ENETDOWN; 245 return -ENETDOWN;
246 } 246 }
247 247
248 skb->protocol = htons(ETH_P_CAN); 248 skb->protocol = htons(ETH_P_CAN);
249 skb_reset_network_header(skb); 249 skb_reset_network_header(skb);
250 skb_reset_transport_header(skb); 250 skb_reset_transport_header(skb);
251 251
252 if (loop) { 252 if (loop) {
253 /* local loopback of sent CAN frames */ 253 /* local loopback of sent CAN frames */
254 254
255 /* indication for the CAN driver: do loopback */ 255 /* indication for the CAN driver: do loopback */
256 skb->pkt_type = PACKET_LOOPBACK; 256 skb->pkt_type = PACKET_LOOPBACK;
257 257
258 /* 258 /*
259 * The reference to the originating sock may be required 259 * The reference to the originating sock may be required
260 * by the receiving socket to check whether the frame is 260 * by the receiving socket to check whether the frame is
261 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS 261 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
262 * Therefore we have to ensure that skb->sk remains the 262 * Therefore we have to ensure that skb->sk remains the
263 * reference to the originating sock by restoring skb->sk 263 * reference to the originating sock by restoring skb->sk
264 * after each skb_clone() or skb_orphan() usage. 264 * after each skb_clone() or skb_orphan() usage.
265 */ 265 */
266 266
267 if (!(skb->dev->flags & IFF_ECHO)) { 267 if (!(skb->dev->flags & IFF_ECHO)) {
268 /* 268 /*
269 * If the interface is not capable to do loopback 269 * If the interface is not capable to do loopback
270 * itself, we do it here. 270 * itself, we do it here.
271 */ 271 */
272 newskb = skb_clone(skb, GFP_ATOMIC); 272 newskb = skb_clone(skb, GFP_ATOMIC);
273 if (!newskb) { 273 if (!newskb) {
274 kfree_skb(skb); 274 kfree_skb(skb);
275 return -ENOMEM; 275 return -ENOMEM;
276 } 276 }
277 277
278 newskb->sk = skb->sk; 278 newskb->sk = skb->sk;
279 newskb->ip_summed = CHECKSUM_UNNECESSARY; 279 newskb->ip_summed = CHECKSUM_UNNECESSARY;
280 newskb->pkt_type = PACKET_BROADCAST; 280 newskb->pkt_type = PACKET_BROADCAST;
281 } 281 }
282 } else { 282 } else {
283 /* indication for the CAN driver: no loopback required */ 283 /* indication for the CAN driver: no loopback required */
284 skb->pkt_type = PACKET_HOST; 284 skb->pkt_type = PACKET_HOST;
285 } 285 }
286 286
287 /* send to netdevice */ 287 /* send to netdevice */
288 err = dev_queue_xmit(skb); 288 err = dev_queue_xmit(skb);
289 if (err > 0) 289 if (err > 0)
290 err = net_xmit_errno(err); 290 err = net_xmit_errno(err);
291 291
292 if (err) { 292 if (err) {
293 kfree_skb(newskb); 293 kfree_skb(newskb);
294 return err; 294 return err;
295 } 295 }
296 296
297 if (newskb) 297 if (newskb)
298 netif_rx_ni(newskb); 298 netif_rx_ni(newskb);
299 299
300 /* update statistics */ 300 /* update statistics */
301 can_stats.tx_frames++; 301 can_stats.tx_frames++;
302 can_stats.tx_frames_delta++; 302 can_stats.tx_frames_delta++;
303 303
304 return 0; 304 return 0;
305 } 305 }
306 EXPORT_SYMBOL(can_send); 306 EXPORT_SYMBOL(can_send);
307 307
308 /* 308 /*
309 * af_can rx path 309 * af_can rx path
310 */ 310 */
311 311
312 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev) 312 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
313 { 313 {
314 if (!dev) 314 if (!dev)
315 return &can_rx_alldev_list; 315 return &can_rx_alldev_list;
316 else 316 else
317 return (struct dev_rcv_lists *)dev->ml_priv; 317 return (struct dev_rcv_lists *)dev->ml_priv;
318 } 318 }
319 319
320 /** 320 /**
321 * find_rcv_list - determine optimal filterlist inside device filter struct 321 * find_rcv_list - determine optimal filterlist inside device filter struct
322 * @can_id: pointer to CAN identifier of a given can_filter 322 * @can_id: pointer to CAN identifier of a given can_filter
323 * @mask: pointer to CAN mask of a given can_filter 323 * @mask: pointer to CAN mask of a given can_filter
324 * @d: pointer to the device filter struct 324 * @d: pointer to the device filter struct
325 * 325 *
326 * Description: 326 * Description:
327 * Returns the optimal filterlist to reduce the filter handling in the 327 * Returns the optimal filterlist to reduce the filter handling in the
328 * receive path. This function is called by service functions that need 328 * receive path. This function is called by service functions that need
329 * to register or unregister a can_filter in the filter lists. 329 * to register or unregister a can_filter in the filter lists.
330 * 330 *
331 * A filter matches in general, when 331 * A filter matches in general, when
332 * 332 *
333 * <received_can_id> & mask == can_id & mask 333 * <received_can_id> & mask == can_id & mask
334 * 334 *
335 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe 335 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
336 * relevant bits for the filter. 336 * relevant bits for the filter.
337 * 337 *
338 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can 338 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
339 * filter for error frames (CAN_ERR_FLAG bit set in mask). For error frames 339 * filter for error frames (CAN_ERR_FLAG bit set in mask). For error frames
340 * there is a special filterlist and a special rx path filter handling. 340 * there is a special filterlist and a special rx path filter handling.
341 * 341 *
342 * Return: 342 * Return:
343 * Pointer to optimal filterlist for the given can_id/mask pair. 343 * Pointer to optimal filterlist for the given can_id/mask pair.
344 * Constistency checked mask. 344 * Constistency checked mask.
345 * Reduced can_id to have a preprocessed filter compare value. 345 * Reduced can_id to have a preprocessed filter compare value.
346 */ 346 */
347 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask, 347 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
348 struct dev_rcv_lists *d) 348 struct dev_rcv_lists *d)
349 { 349 {
350 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */ 350 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
351 351
352 /* filter for error frames in extra filterlist */ 352 /* filter for error frames in extra filterlist */
353 if (*mask & CAN_ERR_FLAG) { 353 if (*mask & CAN_ERR_FLAG) {
354 /* clear CAN_ERR_FLAG in filter entry */ 354 /* clear CAN_ERR_FLAG in filter entry */
355 *mask &= CAN_ERR_MASK; 355 *mask &= CAN_ERR_MASK;
356 return &d->rx[RX_ERR]; 356 return &d->rx[RX_ERR];
357 } 357 }
358 358
359 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */ 359 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
360 360
361 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG) 361 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
362 362
363 /* ensure valid values in can_mask for 'SFF only' frame filtering */ 363 /* ensure valid values in can_mask for 'SFF only' frame filtering */
364 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG)) 364 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
365 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS); 365 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
366 366
367 /* reduce condition testing at receive time */ 367 /* reduce condition testing at receive time */
368 *can_id &= *mask; 368 *can_id &= *mask;
369 369
370 /* inverse can_id/can_mask filter */ 370 /* inverse can_id/can_mask filter */
371 if (inv) 371 if (inv)
372 return &d->rx[RX_INV]; 372 return &d->rx[RX_INV];
373 373
374 /* mask == 0 => no condition testing at receive time */ 374 /* mask == 0 => no condition testing at receive time */
375 if (!(*mask)) 375 if (!(*mask))
376 return &d->rx[RX_ALL]; 376 return &d->rx[RX_ALL];
377 377
378 /* extra filterlists for the subscription of a single non-RTR can_id */ 378 /* extra filterlists for the subscription of a single non-RTR can_id */
379 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) && 379 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
380 !(*can_id & CAN_RTR_FLAG)) { 380 !(*can_id & CAN_RTR_FLAG)) {
381 381
382 if (*can_id & CAN_EFF_FLAG) { 382 if (*can_id & CAN_EFF_FLAG) {
383 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) { 383 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) {
384 /* RFC: a future use-case for hash-tables? */ 384 /* RFC: a future use-case for hash-tables? */
385 return &d->rx[RX_EFF]; 385 return &d->rx[RX_EFF];
386 } 386 }
387 } else { 387 } else {
388 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS)) 388 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
389 return &d->rx_sff[*can_id]; 389 return &d->rx_sff[*can_id];
390 } 390 }
391 } 391 }
392 392
393 /* default: filter via can_id/can_mask */ 393 /* default: filter via can_id/can_mask */
394 return &d->rx[RX_FIL]; 394 return &d->rx[RX_FIL];
395 } 395 }
396 396
397 /** 397 /**
398 * can_rx_register - subscribe CAN frames from a specific interface 398 * can_rx_register - subscribe CAN frames from a specific interface
399 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list) 399 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
400 * @can_id: CAN identifier (see description) 400 * @can_id: CAN identifier (see description)
401 * @mask: CAN mask (see description) 401 * @mask: CAN mask (see description)
402 * @func: callback function on filter match 402 * @func: callback function on filter match
403 * @data: returned parameter for callback function 403 * @data: returned parameter for callback function
404 * @ident: string for calling module indentification 404 * @ident: string for calling module indentification
405 * 405 *
406 * Description: 406 * Description:
407 * Invokes the callback function with the received sk_buff and the given 407 * Invokes the callback function with the received sk_buff and the given
408 * parameter 'data' on a matching receive filter. A filter matches, when 408 * parameter 'data' on a matching receive filter. A filter matches, when
409 * 409 *
410 * <received_can_id> & mask == can_id & mask 410 * <received_can_id> & mask == can_id & mask
411 * 411 *
412 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can 412 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
413 * filter for error frames (CAN_ERR_FLAG bit set in mask). 413 * filter for error frames (CAN_ERR_FLAG bit set in mask).
414 * 414 *
415 * The provided pointer to the sk_buff is guaranteed to be valid as long as 415 * The provided pointer to the sk_buff is guaranteed to be valid as long as
416 * the callback function is running. The callback function must *not* free 416 * the callback function is running. The callback function must *not* free
417 * the given sk_buff while processing it's task. When the given sk_buff is 417 * the given sk_buff while processing it's task. When the given sk_buff is
418 * needed after the end of the callback function it must be cloned inside 418 * needed after the end of the callback function it must be cloned inside
419 * the callback function with skb_clone(). 419 * the callback function with skb_clone().
420 * 420 *
421 * Return: 421 * Return:
422 * 0 on success 422 * 0 on success
423 * -ENOMEM on missing cache mem to create subscription entry 423 * -ENOMEM on missing cache mem to create subscription entry
424 * -ENODEV unknown device 424 * -ENODEV unknown device
425 */ 425 */
426 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask, 426 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
427 void (*func)(struct sk_buff *, void *), void *data, 427 void (*func)(struct sk_buff *, void *), void *data,
428 char *ident) 428 char *ident)
429 { 429 {
430 struct receiver *r; 430 struct receiver *r;
431 struct hlist_head *rl; 431 struct hlist_head *rl;
432 struct dev_rcv_lists *d; 432 struct dev_rcv_lists *d;
433 int err = 0; 433 int err = 0;
434 434
435 /* insert new receiver (dev,canid,mask) -> (func,data) */ 435 /* insert new receiver (dev,canid,mask) -> (func,data) */
436 436
437 if (dev && dev->type != ARPHRD_CAN) 437 if (dev && dev->type != ARPHRD_CAN)
438 return -ENODEV; 438 return -ENODEV;
439 439
440 r = kmem_cache_alloc(rcv_cache, GFP_KERNEL); 440 r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
441 if (!r) 441 if (!r)
442 return -ENOMEM; 442 return -ENOMEM;
443 443
444 spin_lock(&can_rcvlists_lock); 444 spin_lock(&can_rcvlists_lock);
445 445
446 d = find_dev_rcv_lists(dev); 446 d = find_dev_rcv_lists(dev);
447 if (d) { 447 if (d) {
448 rl = find_rcv_list(&can_id, &mask, d); 448 rl = find_rcv_list(&can_id, &mask, d);
449 449
450 r->can_id = can_id; 450 r->can_id = can_id;
451 r->mask = mask; 451 r->mask = mask;
452 r->matches = 0; 452 r->matches = 0;
453 r->func = func; 453 r->func = func;
454 r->data = data; 454 r->data = data;
455 r->ident = ident; 455 r->ident = ident;
456 456
457 hlist_add_head_rcu(&r->list, rl); 457 hlist_add_head_rcu(&r->list, rl);
458 d->entries++; 458 d->entries++;
459 459
460 can_pstats.rcv_entries++; 460 can_pstats.rcv_entries++;
461 if (can_pstats.rcv_entries_max < can_pstats.rcv_entries) 461 if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
462 can_pstats.rcv_entries_max = can_pstats.rcv_entries; 462 can_pstats.rcv_entries_max = can_pstats.rcv_entries;
463 } else { 463 } else {
464 kmem_cache_free(rcv_cache, r); 464 kmem_cache_free(rcv_cache, r);
465 err = -ENODEV; 465 err = -ENODEV;
466 } 466 }
467 467
468 spin_unlock(&can_rcvlists_lock); 468 spin_unlock(&can_rcvlists_lock);
469 469
470 return err; 470 return err;
471 } 471 }
472 EXPORT_SYMBOL(can_rx_register); 472 EXPORT_SYMBOL(can_rx_register);
473 473
474 /* 474 /*
475 * can_rx_delete_receiver - rcu callback for single receiver entry removal 475 * can_rx_delete_receiver - rcu callback for single receiver entry removal
476 */ 476 */
477 static void can_rx_delete_receiver(struct rcu_head *rp) 477 static void can_rx_delete_receiver(struct rcu_head *rp)
478 { 478 {
479 struct receiver *r = container_of(rp, struct receiver, rcu); 479 struct receiver *r = container_of(rp, struct receiver, rcu);
480 480
481 kmem_cache_free(rcv_cache, r); 481 kmem_cache_free(rcv_cache, r);
482 } 482 }
483 483
484 /** 484 /**
485 * can_rx_unregister - unsubscribe CAN frames from a specific interface 485 * can_rx_unregister - unsubscribe CAN frames from a specific interface
486 * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list) 486 * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
487 * @can_id: CAN identifier 487 * @can_id: CAN identifier
488 * @mask: CAN mask 488 * @mask: CAN mask
489 * @func: callback function on filter match 489 * @func: callback function on filter match
490 * @data: returned parameter for callback function 490 * @data: returned parameter for callback function
491 * 491 *
492 * Description: 492 * Description:
493 * Removes subscription entry depending on given (subscription) values. 493 * Removes subscription entry depending on given (subscription) values.
494 */ 494 */
495 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask, 495 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
496 void (*func)(struct sk_buff *, void *), void *data) 496 void (*func)(struct sk_buff *, void *), void *data)
497 { 497 {
498 struct receiver *r = NULL; 498 struct receiver *r = NULL;
499 struct hlist_head *rl; 499 struct hlist_head *rl;
500 struct hlist_node *next; 500 struct hlist_node *next;
501 struct dev_rcv_lists *d; 501 struct dev_rcv_lists *d;
502 502
503 if (dev && dev->type != ARPHRD_CAN) 503 if (dev && dev->type != ARPHRD_CAN)
504 return; 504 return;
505 505
506 spin_lock(&can_rcvlists_lock); 506 spin_lock(&can_rcvlists_lock);
507 507
508 d = find_dev_rcv_lists(dev); 508 d = find_dev_rcv_lists(dev);
509 if (!d) { 509 if (!d) {
510 printk(KERN_ERR "BUG: receive list not found for " 510 printk(KERN_ERR "BUG: receive list not found for "
511 "dev %s, id %03X, mask %03X\n", 511 "dev %s, id %03X, mask %03X\n",
512 DNAME(dev), can_id, mask); 512 DNAME(dev), can_id, mask);
513 goto out; 513 goto out;
514 } 514 }
515 515
516 rl = find_rcv_list(&can_id, &mask, d); 516 rl = find_rcv_list(&can_id, &mask, d);
517 517
518 /* 518 /*
519 * Search the receiver list for the item to delete. This should 519 * Search the receiver list for the item to delete. This should
520 * exist, since no receiver may be unregistered that hasn't 520 * exist, since no receiver may be unregistered that hasn't
521 * been registered before. 521 * been registered before.
522 */ 522 */
523 523
524 hlist_for_each_entry_rcu(r, next, rl, list) { 524 hlist_for_each_entry_rcu(r, next, rl, list) {
525 if (r->can_id == can_id && r->mask == mask && 525 if (r->can_id == can_id && r->mask == mask &&
526 r->func == func && r->data == data) 526 r->func == func && r->data == data)
527 break; 527 break;
528 } 528 }
529 529
530 /* 530 /*
531 * Check for bugs in CAN protocol implementations: 531 * Check for bugs in CAN protocol implementations:
532 * If no matching list item was found, the list cursor variable next 532 * If no matching list item was found, the list cursor variable next
533 * will be NULL, while r will point to the last item of the list. 533 * will be NULL, while r will point to the last item of the list.
534 */ 534 */
535 535
536 if (!next) { 536 if (!next) {
537 printk(KERN_ERR "BUG: receive list entry not found for " 537 printk(KERN_ERR "BUG: receive list entry not found for "
538 "dev %s, id %03X, mask %03X\n", 538 "dev %s, id %03X, mask %03X\n",
539 DNAME(dev), can_id, mask); 539 DNAME(dev), can_id, mask);
540 r = NULL; 540 r = NULL;
541 goto out; 541 goto out;
542 } 542 }
543 543
544 hlist_del_rcu(&r->list); 544 hlist_del_rcu(&r->list);
545 d->entries--; 545 d->entries--;
546 546
547 if (can_pstats.rcv_entries > 0) 547 if (can_pstats.rcv_entries > 0)
548 can_pstats.rcv_entries--; 548 can_pstats.rcv_entries--;
549 549
550 /* remove device structure requested by NETDEV_UNREGISTER */ 550 /* remove device structure requested by NETDEV_UNREGISTER */
551 if (d->remove_on_zero_entries && !d->entries) { 551 if (d->remove_on_zero_entries && !d->entries) {
552 kfree(d); 552 kfree(d);
553 dev->ml_priv = NULL; 553 dev->ml_priv = NULL;
554 } 554 }
555 555
556 out: 556 out:
557 spin_unlock(&can_rcvlists_lock); 557 spin_unlock(&can_rcvlists_lock);
558 558
559 /* schedule the receiver item for deletion */ 559 /* schedule the receiver item for deletion */
560 if (r) 560 if (r)
561 call_rcu(&r->rcu, can_rx_delete_receiver); 561 call_rcu(&r->rcu, can_rx_delete_receiver);
562 } 562 }
563 EXPORT_SYMBOL(can_rx_unregister); 563 EXPORT_SYMBOL(can_rx_unregister);
564 564
565 static inline void deliver(struct sk_buff *skb, struct receiver *r) 565 static inline void deliver(struct sk_buff *skb, struct receiver *r)
566 { 566 {
567 r->func(skb, r->data); 567 r->func(skb, r->data);
568 r->matches++; 568 r->matches++;
569 } 569 }
570 570
571 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb) 571 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
572 { 572 {
573 struct receiver *r; 573 struct receiver *r;
574 struct hlist_node *n; 574 struct hlist_node *n;
575 int matches = 0; 575 int matches = 0;
576 struct can_frame *cf = (struct can_frame *)skb->data; 576 struct can_frame *cf = (struct can_frame *)skb->data;
577 canid_t can_id = cf->can_id; 577 canid_t can_id = cf->can_id;
578 578
579 if (d->entries == 0) 579 if (d->entries == 0)
580 return 0; 580 return 0;
581 581
582 if (can_id & CAN_ERR_FLAG) { 582 if (can_id & CAN_ERR_FLAG) {
583 /* check for error frame entries only */ 583 /* check for error frame entries only */
584 hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) { 584 hlist_for_each_entry_rcu(r, n, &d->rx[RX_ERR], list) {
585 if (can_id & r->mask) { 585 if (can_id & r->mask) {
586 deliver(skb, r); 586 deliver(skb, r);
587 matches++; 587 matches++;
588 } 588 }
589 } 589 }
590 return matches; 590 return matches;
591 } 591 }
592 592
593 /* check for unfiltered entries */ 593 /* check for unfiltered entries */
594 hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) { 594 hlist_for_each_entry_rcu(r, n, &d->rx[RX_ALL], list) {
595 deliver(skb, r); 595 deliver(skb, r);
596 matches++; 596 matches++;
597 } 597 }
598 598
599 /* check for can_id/mask entries */ 599 /* check for can_id/mask entries */
600 hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) { 600 hlist_for_each_entry_rcu(r, n, &d->rx[RX_FIL], list) {
601 if ((can_id & r->mask) == r->can_id) { 601 if ((can_id & r->mask) == r->can_id) {
602 deliver(skb, r); 602 deliver(skb, r);
603 matches++; 603 matches++;
604 } 604 }
605 } 605 }
606 606
607 /* check for inverted can_id/mask entries */ 607 /* check for inverted can_id/mask entries */
608 hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) { 608 hlist_for_each_entry_rcu(r, n, &d->rx[RX_INV], list) {
609 if ((can_id & r->mask) != r->can_id) { 609 if ((can_id & r->mask) != r->can_id) {
610 deliver(skb, r); 610 deliver(skb, r);
611 matches++; 611 matches++;
612 } 612 }
613 } 613 }
614 614
615 /* check filterlists for single non-RTR can_ids */ 615 /* check filterlists for single non-RTR can_ids */
616 if (can_id & CAN_RTR_FLAG) 616 if (can_id & CAN_RTR_FLAG)
617 return matches; 617 return matches;
618 618
619 if (can_id & CAN_EFF_FLAG) { 619 if (can_id & CAN_EFF_FLAG) {
620 hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) { 620 hlist_for_each_entry_rcu(r, n, &d->rx[RX_EFF], list) {
621 if (r->can_id == can_id) { 621 if (r->can_id == can_id) {
622 deliver(skb, r); 622 deliver(skb, r);
623 matches++; 623 matches++;
624 } 624 }
625 } 625 }
626 } else { 626 } else {
627 can_id &= CAN_SFF_MASK; 627 can_id &= CAN_SFF_MASK;
628 hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) { 628 hlist_for_each_entry_rcu(r, n, &d->rx_sff[can_id], list) {
629 deliver(skb, r); 629 deliver(skb, r);
630 matches++; 630 matches++;
631 } 631 }
632 } 632 }
633 633
634 return matches; 634 return matches;
635 } 635 }
636 636
637 static int can_rcv(struct sk_buff *skb, struct net_device *dev, 637 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
638 struct packet_type *pt, struct net_device *orig_dev) 638 struct packet_type *pt, struct net_device *orig_dev)
639 { 639 {
640 struct dev_rcv_lists *d; 640 struct dev_rcv_lists *d;
641 struct can_frame *cf = (struct can_frame *)skb->data; 641 struct can_frame *cf = (struct can_frame *)skb->data;
642 int matches; 642 int matches;
643 643
644 if (!net_eq(dev_net(dev), &init_net)) 644 if (!net_eq(dev_net(dev), &init_net))
645 goto drop; 645 goto drop;
646 646
647 if (WARN_ONCE(dev->type != ARPHRD_CAN || 647 if (WARN_ONCE(dev->type != ARPHRD_CAN ||
648 skb->len != sizeof(struct can_frame) || 648 skb->len != sizeof(struct can_frame) ||
649 cf->can_dlc > 8, 649 cf->can_dlc > 8,
650 "PF_CAN: dropped non conform skbuf: " 650 "PF_CAN: dropped non conform skbuf: "
651 "dev type %d, len %d, can_dlc %d\n", 651 "dev type %d, len %d, can_dlc %d\n",
652 dev->type, skb->len, cf->can_dlc)) 652 dev->type, skb->len, cf->can_dlc))
653 goto drop; 653 goto drop;
654 654
655 /* update statistics */ 655 /* update statistics */
656 can_stats.rx_frames++; 656 can_stats.rx_frames++;
657 can_stats.rx_frames_delta++; 657 can_stats.rx_frames_delta++;
658 658
659 rcu_read_lock(); 659 rcu_read_lock();
660 660
661 /* deliver the packet to sockets listening on all devices */ 661 /* deliver the packet to sockets listening on all devices */
662 matches = can_rcv_filter(&can_rx_alldev_list, skb); 662 matches = can_rcv_filter(&can_rx_alldev_list, skb);
663 663
664 /* find receive list for this device */ 664 /* find receive list for this device */
665 d = find_dev_rcv_lists(dev); 665 d = find_dev_rcv_lists(dev);
666 if (d) 666 if (d)
667 matches += can_rcv_filter(d, skb); 667 matches += can_rcv_filter(d, skb);
668 668
669 rcu_read_unlock(); 669 rcu_read_unlock();
670 670
671 /* consume the skbuff allocated by the netdevice driver */ 671 /* consume the skbuff allocated by the netdevice driver */
672 consume_skb(skb); 672 consume_skb(skb);
673 673
674 if (matches > 0) { 674 if (matches > 0) {
675 can_stats.matches++; 675 can_stats.matches++;
676 can_stats.matches_delta++; 676 can_stats.matches_delta++;
677 } 677 }
678 678
679 return NET_RX_SUCCESS; 679 return NET_RX_SUCCESS;
680 680
681 drop: 681 drop:
682 kfree_skb(skb); 682 kfree_skb(skb);
683 return NET_RX_DROP; 683 return NET_RX_DROP;
684 } 684 }
685 685
686 /* 686 /*
687 * af_can protocol functions 687 * af_can protocol functions
688 */ 688 */
689 689
690 /** 690 /**
691 * can_proto_register - register CAN transport protocol 691 * can_proto_register - register CAN transport protocol
692 * @cp: pointer to CAN protocol structure 692 * @cp: pointer to CAN protocol structure
693 * 693 *
694 * Return: 694 * Return:
695 * 0 on success 695 * 0 on success
696 * -EINVAL invalid (out of range) protocol number 696 * -EINVAL invalid (out of range) protocol number
697 * -EBUSY protocol already in use 697 * -EBUSY protocol already in use
698 * -ENOBUF if proto_register() fails 698 * -ENOBUF if proto_register() fails
699 */ 699 */
700 int can_proto_register(const struct can_proto *cp) 700 int can_proto_register(const struct can_proto *cp)
701 { 701 {
702 int proto = cp->protocol; 702 int proto = cp->protocol;
703 int err = 0; 703 int err = 0;
704 704
705 if (proto < 0 || proto >= CAN_NPROTO) { 705 if (proto < 0 || proto >= CAN_NPROTO) {
706 printk(KERN_ERR "can: protocol number %d out of range\n", 706 printk(KERN_ERR "can: protocol number %d out of range\n",
707 proto); 707 proto);
708 return -EINVAL; 708 return -EINVAL;
709 } 709 }
710 710
711 err = proto_register(cp->prot, 0); 711 err = proto_register(cp->prot, 0);
712 if (err < 0) 712 if (err < 0)
713 return err; 713 return err;
714 714
715 mutex_lock(&proto_tab_lock); 715 mutex_lock(&proto_tab_lock);
716 716
717 if (proto_tab[proto]) { 717 if (proto_tab[proto]) {
718 printk(KERN_ERR "can: protocol %d already registered\n", 718 printk(KERN_ERR "can: protocol %d already registered\n",
719 proto); 719 proto);
720 err = -EBUSY; 720 err = -EBUSY;
721 } else 721 } else
722 rcu_assign_pointer(proto_tab[proto], cp); 722 rcu_assign_pointer(proto_tab[proto], cp);
723 723
724 mutex_unlock(&proto_tab_lock); 724 mutex_unlock(&proto_tab_lock);
725 725
726 if (err < 0) 726 if (err < 0)
727 proto_unregister(cp->prot); 727 proto_unregister(cp->prot);
728 728
729 return err; 729 return err;
730 } 730 }
731 EXPORT_SYMBOL(can_proto_register); 731 EXPORT_SYMBOL(can_proto_register);
732 732
733 /** 733 /**
734 * can_proto_unregister - unregister CAN transport protocol 734 * can_proto_unregister - unregister CAN transport protocol
735 * @cp: pointer to CAN protocol structure 735 * @cp: pointer to CAN protocol structure
736 */ 736 */
737 void can_proto_unregister(const struct can_proto *cp) 737 void can_proto_unregister(const struct can_proto *cp)
738 { 738 {
739 int proto = cp->protocol; 739 int proto = cp->protocol;
740 740
741 mutex_lock(&proto_tab_lock); 741 mutex_lock(&proto_tab_lock);
742 BUG_ON(proto_tab[proto] != cp); 742 BUG_ON(proto_tab[proto] != cp);
743 rcu_assign_pointer(proto_tab[proto], NULL); 743 rcu_assign_pointer(proto_tab[proto], NULL);
744 mutex_unlock(&proto_tab_lock); 744 mutex_unlock(&proto_tab_lock);
745 745
746 synchronize_rcu(); 746 synchronize_rcu();
747 747
748 proto_unregister(cp->prot); 748 proto_unregister(cp->prot);
749 } 749 }
750 EXPORT_SYMBOL(can_proto_unregister); 750 EXPORT_SYMBOL(can_proto_unregister);
751 751
752 /* 752 /*
753 * af_can notifier to create/remove CAN netdevice specific structs 753 * af_can notifier to create/remove CAN netdevice specific structs
754 */ 754 */
755 static int can_notifier(struct notifier_block *nb, unsigned long msg, 755 static int can_notifier(struct notifier_block *nb, unsigned long msg,
756 void *data) 756 void *data)
757 { 757 {
758 struct net_device *dev = (struct net_device *)data; 758 struct net_device *dev = (struct net_device *)data;
759 struct dev_rcv_lists *d; 759 struct dev_rcv_lists *d;
760 760
761 if (!net_eq(dev_net(dev), &init_net)) 761 if (!net_eq(dev_net(dev), &init_net))
762 return NOTIFY_DONE; 762 return NOTIFY_DONE;
763 763
764 if (dev->type != ARPHRD_CAN) 764 if (dev->type != ARPHRD_CAN)
765 return NOTIFY_DONE; 765 return NOTIFY_DONE;
766 766
767 switch (msg) { 767 switch (msg) {
768 768
769 case NETDEV_REGISTER: 769 case NETDEV_REGISTER:
770 770
771 /* create new dev_rcv_lists for this device */ 771 /* create new dev_rcv_lists for this device */
772 d = kzalloc(sizeof(*d), GFP_KERNEL); 772 d = kzalloc(sizeof(*d), GFP_KERNEL);
773 if (!d) { 773 if (!d) {
774 printk(KERN_ERR 774 printk(KERN_ERR
775 "can: allocation of receive list failed\n"); 775 "can: allocation of receive list failed\n");
776 return NOTIFY_DONE; 776 return NOTIFY_DONE;
777 } 777 }
778 BUG_ON(dev->ml_priv); 778 BUG_ON(dev->ml_priv);
779 dev->ml_priv = d; 779 dev->ml_priv = d;
780 780
781 break; 781 break;
782 782
783 case NETDEV_UNREGISTER: 783 case NETDEV_UNREGISTER:
784 spin_lock(&can_rcvlists_lock); 784 spin_lock(&can_rcvlists_lock);
785 785
786 d = dev->ml_priv; 786 d = dev->ml_priv;
787 if (d) { 787 if (d) {
788 if (d->entries) 788 if (d->entries)
789 d->remove_on_zero_entries = 1; 789 d->remove_on_zero_entries = 1;
790 else { 790 else {
791 kfree(d); 791 kfree(d);
792 dev->ml_priv = NULL; 792 dev->ml_priv = NULL;
793 } 793 }
794 } else 794 } else
795 printk(KERN_ERR "can: notifier: receive list not " 795 printk(KERN_ERR "can: notifier: receive list not "
796 "found for dev %s\n", dev->name); 796 "found for dev %s\n", dev->name);
797 797
798 spin_unlock(&can_rcvlists_lock); 798 spin_unlock(&can_rcvlists_lock);
799 799
800 break; 800 break;
801 } 801 }
802 802
803 return NOTIFY_DONE; 803 return NOTIFY_DONE;
804 } 804 }
805 805
806 /* 806 /*
807 * af_can module init/exit functions 807 * af_can module init/exit functions
808 */ 808 */
809 809
810 static struct packet_type can_packet __read_mostly = { 810 static struct packet_type can_packet __read_mostly = {
811 .type = cpu_to_be16(ETH_P_CAN), 811 .type = cpu_to_be16(ETH_P_CAN),
812 .dev = NULL, 812 .dev = NULL,
813 .func = can_rcv, 813 .func = can_rcv,
814 }; 814 };
815 815
816 static const struct net_proto_family can_family_ops = { 816 static const struct net_proto_family can_family_ops = {
817 .family = PF_CAN, 817 .family = PF_CAN,
818 .create = can_create, 818 .create = can_create,
819 .owner = THIS_MODULE, 819 .owner = THIS_MODULE,
820 }; 820 };
821 821
822 /* notifier block for netdevice event */ 822 /* notifier block for netdevice event */
823 static struct notifier_block can_netdev_notifier __read_mostly = { 823 static struct notifier_block can_netdev_notifier __read_mostly = {
824 .notifier_call = can_notifier, 824 .notifier_call = can_notifier,
825 }; 825 };
826 826
827 static __init int can_init(void) 827 static __init int can_init(void)
828 { 828 {
829 printk(banner); 829 printk(banner);
830 830
831 memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list)); 831 memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list));
832 832
833 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver), 833 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
834 0, 0, NULL); 834 0, 0, NULL);
835 if (!rcv_cache) 835 if (!rcv_cache)
836 return -ENOMEM; 836 return -ENOMEM;
837 837
838 if (stats_timer) { 838 if (stats_timer) {
839 /* the statistics are updated every second (timer triggered) */ 839 /* the statistics are updated every second (timer triggered) */
840 setup_timer(&can_stattimer, can_stat_update, 0); 840 setup_timer(&can_stattimer, can_stat_update, 0);
841 mod_timer(&can_stattimer, round_jiffies(jiffies + HZ)); 841 mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
842 } else 842 } else
843 can_stattimer.function = NULL; 843 can_stattimer.function = NULL;
844 844
845 can_init_proc(); 845 can_init_proc();
846 846
847 /* protocol register */ 847 /* protocol register */
848 sock_register(&can_family_ops); 848 sock_register(&can_family_ops);
849 register_netdevice_notifier(&can_netdev_notifier); 849 register_netdevice_notifier(&can_netdev_notifier);
850 dev_add_pack(&can_packet); 850 dev_add_pack(&can_packet);
851 851
852 return 0; 852 return 0;
853 } 853 }
854 854
855 static __exit void can_exit(void) 855 static __exit void can_exit(void)
856 { 856 {
857 struct net_device *dev; 857 struct net_device *dev;
858 858
859 if (stats_timer) 859 if (stats_timer)
860 del_timer(&can_stattimer); 860 del_timer_sync(&can_stattimer);
861 861
862 can_remove_proc(); 862 can_remove_proc();
863 863
864 /* protocol unregister */ 864 /* protocol unregister */
865 dev_remove_pack(&can_packet); 865 dev_remove_pack(&can_packet);
866 unregister_netdevice_notifier(&can_netdev_notifier); 866 unregister_netdevice_notifier(&can_netdev_notifier);
867 sock_unregister(PF_CAN); 867 sock_unregister(PF_CAN);
868 868
869 /* remove created dev_rcv_lists from still registered CAN devices */ 869 /* remove created dev_rcv_lists from still registered CAN devices */
870 rcu_read_lock(); 870 rcu_read_lock();
871 for_each_netdev_rcu(&init_net, dev) { 871 for_each_netdev_rcu(&init_net, dev) {
872 if (dev->type == ARPHRD_CAN && dev->ml_priv){ 872 if (dev->type == ARPHRD_CAN && dev->ml_priv){
873 873
874 struct dev_rcv_lists *d = dev->ml_priv; 874 struct dev_rcv_lists *d = dev->ml_priv;
875 875
876 BUG_ON(d->entries); 876 BUG_ON(d->entries);
877 kfree(d); 877 kfree(d);
878 dev->ml_priv = NULL; 878 dev->ml_priv = NULL;
879 } 879 }
880 } 880 }
881 rcu_read_unlock(); 881 rcu_read_unlock();
882 882
883 rcu_barrier(); /* Wait for completion of call_rcu()'s */ 883 rcu_barrier(); /* Wait for completion of call_rcu()'s */
884 884
885 kmem_cache_destroy(rcv_cache); 885 kmem_cache_destroy(rcv_cache);
886 } 886 }
887 887
888 module_init(can_init); 888 module_init(can_init);
889 module_exit(can_exit); 889 module_exit(can_exit);
890 890