Commit db023ea595015058270be6a62fe60a7b6b5c50d7

Authored by Oleg Nesterov
1 parent 1b08e90721

uprobes: Move clear_thread_flag(TIF_UPROBE) to uprobe_notify_resume()

Move clear_thread_flag(TIF_UPROBE) from do_notify_resume() to
uprobe_notify_resume() for !CONFIG_UPROBES case.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>

Showing 2 changed files with 3 additions and 3 deletions Inline Diff

arch/x86/kernel/signal.c
1 /* 1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds 2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
4 * 4 *
5 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson 5 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson
6 * 2000-06-20 Pentium III FXSR, SSE support by Gareth Hughes 6 * 2000-06-20 Pentium III FXSR, SSE support by Gareth Hughes
7 * 2000-2002 x86-64 support by Andi Kleen 7 * 2000-2002 x86-64 support by Andi Kleen
8 */ 8 */
9 9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 11
12 #include <linux/sched.h> 12 #include <linux/sched.h>
13 #include <linux/mm.h> 13 #include <linux/mm.h>
14 #include <linux/smp.h> 14 #include <linux/smp.h>
15 #include <linux/kernel.h> 15 #include <linux/kernel.h>
16 #include <linux/errno.h> 16 #include <linux/errno.h>
17 #include <linux/wait.h> 17 #include <linux/wait.h>
18 #include <linux/tracehook.h> 18 #include <linux/tracehook.h>
19 #include <linux/unistd.h> 19 #include <linux/unistd.h>
20 #include <linux/stddef.h> 20 #include <linux/stddef.h>
21 #include <linux/personality.h> 21 #include <linux/personality.h>
22 #include <linux/uaccess.h> 22 #include <linux/uaccess.h>
23 #include <linux/user-return-notifier.h> 23 #include <linux/user-return-notifier.h>
24 #include <linux/uprobes.h> 24 #include <linux/uprobes.h>
25 25
26 #include <asm/processor.h> 26 #include <asm/processor.h>
27 #include <asm/ucontext.h> 27 #include <asm/ucontext.h>
28 #include <asm/i387.h> 28 #include <asm/i387.h>
29 #include <asm/fpu-internal.h> 29 #include <asm/fpu-internal.h>
30 #include <asm/vdso.h> 30 #include <asm/vdso.h>
31 #include <asm/mce.h> 31 #include <asm/mce.h>
32 #include <asm/sighandling.h> 32 #include <asm/sighandling.h>
33 33
34 #ifdef CONFIG_X86_64 34 #ifdef CONFIG_X86_64
35 #include <asm/proto.h> 35 #include <asm/proto.h>
36 #include <asm/ia32_unistd.h> 36 #include <asm/ia32_unistd.h>
37 #include <asm/sys_ia32.h> 37 #include <asm/sys_ia32.h>
38 #endif /* CONFIG_X86_64 */ 38 #endif /* CONFIG_X86_64 */
39 39
40 #include <asm/syscall.h> 40 #include <asm/syscall.h>
41 #include <asm/syscalls.h> 41 #include <asm/syscalls.h>
42 42
43 #include <asm/sigframe.h> 43 #include <asm/sigframe.h>
44 44
45 #ifdef CONFIG_X86_32 45 #ifdef CONFIG_X86_32
46 # define FIX_EFLAGS (__FIX_EFLAGS | X86_EFLAGS_RF) 46 # define FIX_EFLAGS (__FIX_EFLAGS | X86_EFLAGS_RF)
47 #else 47 #else
48 # define FIX_EFLAGS __FIX_EFLAGS 48 # define FIX_EFLAGS __FIX_EFLAGS
49 #endif 49 #endif
50 50
51 #define COPY(x) do { \ 51 #define COPY(x) do { \
52 get_user_ex(regs->x, &sc->x); \ 52 get_user_ex(regs->x, &sc->x); \
53 } while (0) 53 } while (0)
54 54
55 #define GET_SEG(seg) ({ \ 55 #define GET_SEG(seg) ({ \
56 unsigned short tmp; \ 56 unsigned short tmp; \
57 get_user_ex(tmp, &sc->seg); \ 57 get_user_ex(tmp, &sc->seg); \
58 tmp; \ 58 tmp; \
59 }) 59 })
60 60
61 #define COPY_SEG(seg) do { \ 61 #define COPY_SEG(seg) do { \
62 regs->seg = GET_SEG(seg); \ 62 regs->seg = GET_SEG(seg); \
63 } while (0) 63 } while (0)
64 64
65 #define COPY_SEG_CPL3(seg) do { \ 65 #define COPY_SEG_CPL3(seg) do { \
66 regs->seg = GET_SEG(seg) | 3; \ 66 regs->seg = GET_SEG(seg) | 3; \
67 } while (0) 67 } while (0)
68 68
69 int restore_sigcontext(struct pt_regs *regs, struct sigcontext __user *sc, 69 int restore_sigcontext(struct pt_regs *regs, struct sigcontext __user *sc,
70 unsigned long *pax) 70 unsigned long *pax)
71 { 71 {
72 void __user *buf; 72 void __user *buf;
73 unsigned int tmpflags; 73 unsigned int tmpflags;
74 unsigned int err = 0; 74 unsigned int err = 0;
75 75
76 /* Always make any pending restarted system calls return -EINTR */ 76 /* Always make any pending restarted system calls return -EINTR */
77 current_thread_info()->restart_block.fn = do_no_restart_syscall; 77 current_thread_info()->restart_block.fn = do_no_restart_syscall;
78 78
79 get_user_try { 79 get_user_try {
80 80
81 #ifdef CONFIG_X86_32 81 #ifdef CONFIG_X86_32
82 set_user_gs(regs, GET_SEG(gs)); 82 set_user_gs(regs, GET_SEG(gs));
83 COPY_SEG(fs); 83 COPY_SEG(fs);
84 COPY_SEG(es); 84 COPY_SEG(es);
85 COPY_SEG(ds); 85 COPY_SEG(ds);
86 #endif /* CONFIG_X86_32 */ 86 #endif /* CONFIG_X86_32 */
87 87
88 COPY(di); COPY(si); COPY(bp); COPY(sp); COPY(bx); 88 COPY(di); COPY(si); COPY(bp); COPY(sp); COPY(bx);
89 COPY(dx); COPY(cx); COPY(ip); 89 COPY(dx); COPY(cx); COPY(ip);
90 90
91 #ifdef CONFIG_X86_64 91 #ifdef CONFIG_X86_64
92 COPY(r8); 92 COPY(r8);
93 COPY(r9); 93 COPY(r9);
94 COPY(r10); 94 COPY(r10);
95 COPY(r11); 95 COPY(r11);
96 COPY(r12); 96 COPY(r12);
97 COPY(r13); 97 COPY(r13);
98 COPY(r14); 98 COPY(r14);
99 COPY(r15); 99 COPY(r15);
100 #endif /* CONFIG_X86_64 */ 100 #endif /* CONFIG_X86_64 */
101 101
102 #ifdef CONFIG_X86_32 102 #ifdef CONFIG_X86_32
103 COPY_SEG_CPL3(cs); 103 COPY_SEG_CPL3(cs);
104 COPY_SEG_CPL3(ss); 104 COPY_SEG_CPL3(ss);
105 #else /* !CONFIG_X86_32 */ 105 #else /* !CONFIG_X86_32 */
106 /* Kernel saves and restores only the CS segment register on signals, 106 /* Kernel saves and restores only the CS segment register on signals,
107 * which is the bare minimum needed to allow mixed 32/64-bit code. 107 * which is the bare minimum needed to allow mixed 32/64-bit code.
108 * App's signal handler can save/restore other segments if needed. */ 108 * App's signal handler can save/restore other segments if needed. */
109 COPY_SEG_CPL3(cs); 109 COPY_SEG_CPL3(cs);
110 #endif /* CONFIG_X86_32 */ 110 #endif /* CONFIG_X86_32 */
111 111
112 get_user_ex(tmpflags, &sc->flags); 112 get_user_ex(tmpflags, &sc->flags);
113 regs->flags = (regs->flags & ~FIX_EFLAGS) | (tmpflags & FIX_EFLAGS); 113 regs->flags = (regs->flags & ~FIX_EFLAGS) | (tmpflags & FIX_EFLAGS);
114 regs->orig_ax = -1; /* disable syscall checks */ 114 regs->orig_ax = -1; /* disable syscall checks */
115 115
116 get_user_ex(buf, &sc->fpstate); 116 get_user_ex(buf, &sc->fpstate);
117 err |= restore_i387_xstate(buf); 117 err |= restore_i387_xstate(buf);
118 118
119 get_user_ex(*pax, &sc->ax); 119 get_user_ex(*pax, &sc->ax);
120 } get_user_catch(err); 120 } get_user_catch(err);
121 121
122 return err; 122 return err;
123 } 123 }
124 124
125 int setup_sigcontext(struct sigcontext __user *sc, void __user *fpstate, 125 int setup_sigcontext(struct sigcontext __user *sc, void __user *fpstate,
126 struct pt_regs *regs, unsigned long mask) 126 struct pt_regs *regs, unsigned long mask)
127 { 127 {
128 int err = 0; 128 int err = 0;
129 129
130 put_user_try { 130 put_user_try {
131 131
132 #ifdef CONFIG_X86_32 132 #ifdef CONFIG_X86_32
133 put_user_ex(get_user_gs(regs), (unsigned int __user *)&sc->gs); 133 put_user_ex(get_user_gs(regs), (unsigned int __user *)&sc->gs);
134 put_user_ex(regs->fs, (unsigned int __user *)&sc->fs); 134 put_user_ex(regs->fs, (unsigned int __user *)&sc->fs);
135 put_user_ex(regs->es, (unsigned int __user *)&sc->es); 135 put_user_ex(regs->es, (unsigned int __user *)&sc->es);
136 put_user_ex(regs->ds, (unsigned int __user *)&sc->ds); 136 put_user_ex(regs->ds, (unsigned int __user *)&sc->ds);
137 #endif /* CONFIG_X86_32 */ 137 #endif /* CONFIG_X86_32 */
138 138
139 put_user_ex(regs->di, &sc->di); 139 put_user_ex(regs->di, &sc->di);
140 put_user_ex(regs->si, &sc->si); 140 put_user_ex(regs->si, &sc->si);
141 put_user_ex(regs->bp, &sc->bp); 141 put_user_ex(regs->bp, &sc->bp);
142 put_user_ex(regs->sp, &sc->sp); 142 put_user_ex(regs->sp, &sc->sp);
143 put_user_ex(regs->bx, &sc->bx); 143 put_user_ex(regs->bx, &sc->bx);
144 put_user_ex(regs->dx, &sc->dx); 144 put_user_ex(regs->dx, &sc->dx);
145 put_user_ex(regs->cx, &sc->cx); 145 put_user_ex(regs->cx, &sc->cx);
146 put_user_ex(regs->ax, &sc->ax); 146 put_user_ex(regs->ax, &sc->ax);
147 #ifdef CONFIG_X86_64 147 #ifdef CONFIG_X86_64
148 put_user_ex(regs->r8, &sc->r8); 148 put_user_ex(regs->r8, &sc->r8);
149 put_user_ex(regs->r9, &sc->r9); 149 put_user_ex(regs->r9, &sc->r9);
150 put_user_ex(regs->r10, &sc->r10); 150 put_user_ex(regs->r10, &sc->r10);
151 put_user_ex(regs->r11, &sc->r11); 151 put_user_ex(regs->r11, &sc->r11);
152 put_user_ex(regs->r12, &sc->r12); 152 put_user_ex(regs->r12, &sc->r12);
153 put_user_ex(regs->r13, &sc->r13); 153 put_user_ex(regs->r13, &sc->r13);
154 put_user_ex(regs->r14, &sc->r14); 154 put_user_ex(regs->r14, &sc->r14);
155 put_user_ex(regs->r15, &sc->r15); 155 put_user_ex(regs->r15, &sc->r15);
156 #endif /* CONFIG_X86_64 */ 156 #endif /* CONFIG_X86_64 */
157 157
158 put_user_ex(current->thread.trap_nr, &sc->trapno); 158 put_user_ex(current->thread.trap_nr, &sc->trapno);
159 put_user_ex(current->thread.error_code, &sc->err); 159 put_user_ex(current->thread.error_code, &sc->err);
160 put_user_ex(regs->ip, &sc->ip); 160 put_user_ex(regs->ip, &sc->ip);
161 #ifdef CONFIG_X86_32 161 #ifdef CONFIG_X86_32
162 put_user_ex(regs->cs, (unsigned int __user *)&sc->cs); 162 put_user_ex(regs->cs, (unsigned int __user *)&sc->cs);
163 put_user_ex(regs->flags, &sc->flags); 163 put_user_ex(regs->flags, &sc->flags);
164 put_user_ex(regs->sp, &sc->sp_at_signal); 164 put_user_ex(regs->sp, &sc->sp_at_signal);
165 put_user_ex(regs->ss, (unsigned int __user *)&sc->ss); 165 put_user_ex(regs->ss, (unsigned int __user *)&sc->ss);
166 #else /* !CONFIG_X86_32 */ 166 #else /* !CONFIG_X86_32 */
167 put_user_ex(regs->flags, &sc->flags); 167 put_user_ex(regs->flags, &sc->flags);
168 put_user_ex(regs->cs, &sc->cs); 168 put_user_ex(regs->cs, &sc->cs);
169 put_user_ex(0, &sc->gs); 169 put_user_ex(0, &sc->gs);
170 put_user_ex(0, &sc->fs); 170 put_user_ex(0, &sc->fs);
171 #endif /* CONFIG_X86_32 */ 171 #endif /* CONFIG_X86_32 */
172 172
173 put_user_ex(fpstate, &sc->fpstate); 173 put_user_ex(fpstate, &sc->fpstate);
174 174
175 /* non-iBCS2 extensions.. */ 175 /* non-iBCS2 extensions.. */
176 put_user_ex(mask, &sc->oldmask); 176 put_user_ex(mask, &sc->oldmask);
177 put_user_ex(current->thread.cr2, &sc->cr2); 177 put_user_ex(current->thread.cr2, &sc->cr2);
178 } put_user_catch(err); 178 } put_user_catch(err);
179 179
180 return err; 180 return err;
181 } 181 }
182 182
183 /* 183 /*
184 * Set up a signal frame. 184 * Set up a signal frame.
185 */ 185 */
186 186
187 /* 187 /*
188 * Determine which stack to use.. 188 * Determine which stack to use..
189 */ 189 */
190 static unsigned long align_sigframe(unsigned long sp) 190 static unsigned long align_sigframe(unsigned long sp)
191 { 191 {
192 #ifdef CONFIG_X86_32 192 #ifdef CONFIG_X86_32
193 /* 193 /*
194 * Align the stack pointer according to the i386 ABI, 194 * Align the stack pointer according to the i386 ABI,
195 * i.e. so that on function entry ((sp + 4) & 15) == 0. 195 * i.e. so that on function entry ((sp + 4) & 15) == 0.
196 */ 196 */
197 sp = ((sp + 4) & -16ul) - 4; 197 sp = ((sp + 4) & -16ul) - 4;
198 #else /* !CONFIG_X86_32 */ 198 #else /* !CONFIG_X86_32 */
199 sp = round_down(sp, 16) - 8; 199 sp = round_down(sp, 16) - 8;
200 #endif 200 #endif
201 return sp; 201 return sp;
202 } 202 }
203 203
204 static inline void __user * 204 static inline void __user *
205 get_sigframe(struct k_sigaction *ka, struct pt_regs *regs, size_t frame_size, 205 get_sigframe(struct k_sigaction *ka, struct pt_regs *regs, size_t frame_size,
206 void __user **fpstate) 206 void __user **fpstate)
207 { 207 {
208 /* Default to using normal stack */ 208 /* Default to using normal stack */
209 unsigned long sp = regs->sp; 209 unsigned long sp = regs->sp;
210 int onsigstack = on_sig_stack(sp); 210 int onsigstack = on_sig_stack(sp);
211 211
212 #ifdef CONFIG_X86_64 212 #ifdef CONFIG_X86_64
213 /* redzone */ 213 /* redzone */
214 sp -= 128; 214 sp -= 128;
215 #endif /* CONFIG_X86_64 */ 215 #endif /* CONFIG_X86_64 */
216 216
217 if (!onsigstack) { 217 if (!onsigstack) {
218 /* This is the X/Open sanctioned signal stack switching. */ 218 /* This is the X/Open sanctioned signal stack switching. */
219 if (ka->sa.sa_flags & SA_ONSTACK) { 219 if (ka->sa.sa_flags & SA_ONSTACK) {
220 if (current->sas_ss_size) 220 if (current->sas_ss_size)
221 sp = current->sas_ss_sp + current->sas_ss_size; 221 sp = current->sas_ss_sp + current->sas_ss_size;
222 } else { 222 } else {
223 #ifdef CONFIG_X86_32 223 #ifdef CONFIG_X86_32
224 /* This is the legacy signal stack switching. */ 224 /* This is the legacy signal stack switching. */
225 if ((regs->ss & 0xffff) != __USER_DS && 225 if ((regs->ss & 0xffff) != __USER_DS &&
226 !(ka->sa.sa_flags & SA_RESTORER) && 226 !(ka->sa.sa_flags & SA_RESTORER) &&
227 ka->sa.sa_restorer) 227 ka->sa.sa_restorer)
228 sp = (unsigned long) ka->sa.sa_restorer; 228 sp = (unsigned long) ka->sa.sa_restorer;
229 #endif /* CONFIG_X86_32 */ 229 #endif /* CONFIG_X86_32 */
230 } 230 }
231 } 231 }
232 232
233 if (used_math()) { 233 if (used_math()) {
234 sp -= sig_xstate_size; 234 sp -= sig_xstate_size;
235 #ifdef CONFIG_X86_64 235 #ifdef CONFIG_X86_64
236 sp = round_down(sp, 64); 236 sp = round_down(sp, 64);
237 #endif /* CONFIG_X86_64 */ 237 #endif /* CONFIG_X86_64 */
238 *fpstate = (void __user *)sp; 238 *fpstate = (void __user *)sp;
239 } 239 }
240 240
241 sp = align_sigframe(sp - frame_size); 241 sp = align_sigframe(sp - frame_size);
242 242
243 /* 243 /*
244 * If we are on the alternate signal stack and would overflow it, don't. 244 * If we are on the alternate signal stack and would overflow it, don't.
245 * Return an always-bogus address instead so we will die with SIGSEGV. 245 * Return an always-bogus address instead so we will die with SIGSEGV.
246 */ 246 */
247 if (onsigstack && !likely(on_sig_stack(sp))) 247 if (onsigstack && !likely(on_sig_stack(sp)))
248 return (void __user *)-1L; 248 return (void __user *)-1L;
249 249
250 /* save i387 state */ 250 /* save i387 state */
251 if (used_math() && save_i387_xstate(*fpstate) < 0) 251 if (used_math() && save_i387_xstate(*fpstate) < 0)
252 return (void __user *)-1L; 252 return (void __user *)-1L;
253 253
254 return (void __user *)sp; 254 return (void __user *)sp;
255 } 255 }
256 256
257 #ifdef CONFIG_X86_32 257 #ifdef CONFIG_X86_32
258 static const struct { 258 static const struct {
259 u16 poplmovl; 259 u16 poplmovl;
260 u32 val; 260 u32 val;
261 u16 int80; 261 u16 int80;
262 } __attribute__((packed)) retcode = { 262 } __attribute__((packed)) retcode = {
263 0xb858, /* popl %eax; movl $..., %eax */ 263 0xb858, /* popl %eax; movl $..., %eax */
264 __NR_sigreturn, 264 __NR_sigreturn,
265 0x80cd, /* int $0x80 */ 265 0x80cd, /* int $0x80 */
266 }; 266 };
267 267
268 static const struct { 268 static const struct {
269 u8 movl; 269 u8 movl;
270 u32 val; 270 u32 val;
271 u16 int80; 271 u16 int80;
272 u8 pad; 272 u8 pad;
273 } __attribute__((packed)) rt_retcode = { 273 } __attribute__((packed)) rt_retcode = {
274 0xb8, /* movl $..., %eax */ 274 0xb8, /* movl $..., %eax */
275 __NR_rt_sigreturn, 275 __NR_rt_sigreturn,
276 0x80cd, /* int $0x80 */ 276 0x80cd, /* int $0x80 */
277 0 277 0
278 }; 278 };
279 279
280 static int 280 static int
281 __setup_frame(int sig, struct k_sigaction *ka, sigset_t *set, 281 __setup_frame(int sig, struct k_sigaction *ka, sigset_t *set,
282 struct pt_regs *regs) 282 struct pt_regs *regs)
283 { 283 {
284 struct sigframe __user *frame; 284 struct sigframe __user *frame;
285 void __user *restorer; 285 void __user *restorer;
286 int err = 0; 286 int err = 0;
287 void __user *fpstate = NULL; 287 void __user *fpstate = NULL;
288 288
289 frame = get_sigframe(ka, regs, sizeof(*frame), &fpstate); 289 frame = get_sigframe(ka, regs, sizeof(*frame), &fpstate);
290 290
291 if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame))) 291 if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
292 return -EFAULT; 292 return -EFAULT;
293 293
294 if (__put_user(sig, &frame->sig)) 294 if (__put_user(sig, &frame->sig))
295 return -EFAULT; 295 return -EFAULT;
296 296
297 if (setup_sigcontext(&frame->sc, fpstate, regs, set->sig[0])) 297 if (setup_sigcontext(&frame->sc, fpstate, regs, set->sig[0]))
298 return -EFAULT; 298 return -EFAULT;
299 299
300 if (_NSIG_WORDS > 1) { 300 if (_NSIG_WORDS > 1) {
301 if (__copy_to_user(&frame->extramask, &set->sig[1], 301 if (__copy_to_user(&frame->extramask, &set->sig[1],
302 sizeof(frame->extramask))) 302 sizeof(frame->extramask)))
303 return -EFAULT; 303 return -EFAULT;
304 } 304 }
305 305
306 if (current->mm->context.vdso) 306 if (current->mm->context.vdso)
307 restorer = VDSO32_SYMBOL(current->mm->context.vdso, sigreturn); 307 restorer = VDSO32_SYMBOL(current->mm->context.vdso, sigreturn);
308 else 308 else
309 restorer = &frame->retcode; 309 restorer = &frame->retcode;
310 if (ka->sa.sa_flags & SA_RESTORER) 310 if (ka->sa.sa_flags & SA_RESTORER)
311 restorer = ka->sa.sa_restorer; 311 restorer = ka->sa.sa_restorer;
312 312
313 /* Set up to return from userspace. */ 313 /* Set up to return from userspace. */
314 err |= __put_user(restorer, &frame->pretcode); 314 err |= __put_user(restorer, &frame->pretcode);
315 315
316 /* 316 /*
317 * This is popl %eax ; movl $__NR_sigreturn, %eax ; int $0x80 317 * This is popl %eax ; movl $__NR_sigreturn, %eax ; int $0x80
318 * 318 *
319 * WE DO NOT USE IT ANY MORE! It's only left here for historical 319 * WE DO NOT USE IT ANY MORE! It's only left here for historical
320 * reasons and because gdb uses it as a signature to notice 320 * reasons and because gdb uses it as a signature to notice
321 * signal handler stack frames. 321 * signal handler stack frames.
322 */ 322 */
323 err |= __put_user(*((u64 *)&retcode), (u64 *)frame->retcode); 323 err |= __put_user(*((u64 *)&retcode), (u64 *)frame->retcode);
324 324
325 if (err) 325 if (err)
326 return -EFAULT; 326 return -EFAULT;
327 327
328 /* Set up registers for signal handler */ 328 /* Set up registers for signal handler */
329 regs->sp = (unsigned long)frame; 329 regs->sp = (unsigned long)frame;
330 regs->ip = (unsigned long)ka->sa.sa_handler; 330 regs->ip = (unsigned long)ka->sa.sa_handler;
331 regs->ax = (unsigned long)sig; 331 regs->ax = (unsigned long)sig;
332 regs->dx = 0; 332 regs->dx = 0;
333 regs->cx = 0; 333 regs->cx = 0;
334 334
335 regs->ds = __USER_DS; 335 regs->ds = __USER_DS;
336 regs->es = __USER_DS; 336 regs->es = __USER_DS;
337 regs->ss = __USER_DS; 337 regs->ss = __USER_DS;
338 regs->cs = __USER_CS; 338 regs->cs = __USER_CS;
339 339
340 return 0; 340 return 0;
341 } 341 }
342 342
343 static int __setup_rt_frame(int sig, struct k_sigaction *ka, siginfo_t *info, 343 static int __setup_rt_frame(int sig, struct k_sigaction *ka, siginfo_t *info,
344 sigset_t *set, struct pt_regs *regs) 344 sigset_t *set, struct pt_regs *regs)
345 { 345 {
346 struct rt_sigframe __user *frame; 346 struct rt_sigframe __user *frame;
347 void __user *restorer; 347 void __user *restorer;
348 int err = 0; 348 int err = 0;
349 void __user *fpstate = NULL; 349 void __user *fpstate = NULL;
350 350
351 frame = get_sigframe(ka, regs, sizeof(*frame), &fpstate); 351 frame = get_sigframe(ka, regs, sizeof(*frame), &fpstate);
352 352
353 if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame))) 353 if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
354 return -EFAULT; 354 return -EFAULT;
355 355
356 put_user_try { 356 put_user_try {
357 put_user_ex(sig, &frame->sig); 357 put_user_ex(sig, &frame->sig);
358 put_user_ex(&frame->info, &frame->pinfo); 358 put_user_ex(&frame->info, &frame->pinfo);
359 put_user_ex(&frame->uc, &frame->puc); 359 put_user_ex(&frame->uc, &frame->puc);
360 err |= copy_siginfo_to_user(&frame->info, info); 360 err |= copy_siginfo_to_user(&frame->info, info);
361 361
362 /* Create the ucontext. */ 362 /* Create the ucontext. */
363 if (cpu_has_xsave) 363 if (cpu_has_xsave)
364 put_user_ex(UC_FP_XSTATE, &frame->uc.uc_flags); 364 put_user_ex(UC_FP_XSTATE, &frame->uc.uc_flags);
365 else 365 else
366 put_user_ex(0, &frame->uc.uc_flags); 366 put_user_ex(0, &frame->uc.uc_flags);
367 put_user_ex(0, &frame->uc.uc_link); 367 put_user_ex(0, &frame->uc.uc_link);
368 put_user_ex(current->sas_ss_sp, &frame->uc.uc_stack.ss_sp); 368 put_user_ex(current->sas_ss_sp, &frame->uc.uc_stack.ss_sp);
369 put_user_ex(sas_ss_flags(regs->sp), 369 put_user_ex(sas_ss_flags(regs->sp),
370 &frame->uc.uc_stack.ss_flags); 370 &frame->uc.uc_stack.ss_flags);
371 put_user_ex(current->sas_ss_size, &frame->uc.uc_stack.ss_size); 371 put_user_ex(current->sas_ss_size, &frame->uc.uc_stack.ss_size);
372 err |= setup_sigcontext(&frame->uc.uc_mcontext, fpstate, 372 err |= setup_sigcontext(&frame->uc.uc_mcontext, fpstate,
373 regs, set->sig[0]); 373 regs, set->sig[0]);
374 err |= __copy_to_user(&frame->uc.uc_sigmask, set, sizeof(*set)); 374 err |= __copy_to_user(&frame->uc.uc_sigmask, set, sizeof(*set));
375 375
376 /* Set up to return from userspace. */ 376 /* Set up to return from userspace. */
377 restorer = VDSO32_SYMBOL(current->mm->context.vdso, rt_sigreturn); 377 restorer = VDSO32_SYMBOL(current->mm->context.vdso, rt_sigreturn);
378 if (ka->sa.sa_flags & SA_RESTORER) 378 if (ka->sa.sa_flags & SA_RESTORER)
379 restorer = ka->sa.sa_restorer; 379 restorer = ka->sa.sa_restorer;
380 put_user_ex(restorer, &frame->pretcode); 380 put_user_ex(restorer, &frame->pretcode);
381 381
382 /* 382 /*
383 * This is movl $__NR_rt_sigreturn, %ax ; int $0x80 383 * This is movl $__NR_rt_sigreturn, %ax ; int $0x80
384 * 384 *
385 * WE DO NOT USE IT ANY MORE! It's only left here for historical 385 * WE DO NOT USE IT ANY MORE! It's only left here for historical
386 * reasons and because gdb uses it as a signature to notice 386 * reasons and because gdb uses it as a signature to notice
387 * signal handler stack frames. 387 * signal handler stack frames.
388 */ 388 */
389 put_user_ex(*((u64 *)&rt_retcode), (u64 *)frame->retcode); 389 put_user_ex(*((u64 *)&rt_retcode), (u64 *)frame->retcode);
390 } put_user_catch(err); 390 } put_user_catch(err);
391 391
392 if (err) 392 if (err)
393 return -EFAULT; 393 return -EFAULT;
394 394
395 /* Set up registers for signal handler */ 395 /* Set up registers for signal handler */
396 regs->sp = (unsigned long)frame; 396 regs->sp = (unsigned long)frame;
397 regs->ip = (unsigned long)ka->sa.sa_handler; 397 regs->ip = (unsigned long)ka->sa.sa_handler;
398 regs->ax = (unsigned long)sig; 398 regs->ax = (unsigned long)sig;
399 regs->dx = (unsigned long)&frame->info; 399 regs->dx = (unsigned long)&frame->info;
400 regs->cx = (unsigned long)&frame->uc; 400 regs->cx = (unsigned long)&frame->uc;
401 401
402 regs->ds = __USER_DS; 402 regs->ds = __USER_DS;
403 regs->es = __USER_DS; 403 regs->es = __USER_DS;
404 regs->ss = __USER_DS; 404 regs->ss = __USER_DS;
405 regs->cs = __USER_CS; 405 regs->cs = __USER_CS;
406 406
407 return 0; 407 return 0;
408 } 408 }
409 #else /* !CONFIG_X86_32 */ 409 #else /* !CONFIG_X86_32 */
410 static int __setup_rt_frame(int sig, struct k_sigaction *ka, siginfo_t *info, 410 static int __setup_rt_frame(int sig, struct k_sigaction *ka, siginfo_t *info,
411 sigset_t *set, struct pt_regs *regs) 411 sigset_t *set, struct pt_regs *regs)
412 { 412 {
413 struct rt_sigframe __user *frame; 413 struct rt_sigframe __user *frame;
414 void __user *fp = NULL; 414 void __user *fp = NULL;
415 int err = 0; 415 int err = 0;
416 struct task_struct *me = current; 416 struct task_struct *me = current;
417 417
418 frame = get_sigframe(ka, regs, sizeof(struct rt_sigframe), &fp); 418 frame = get_sigframe(ka, regs, sizeof(struct rt_sigframe), &fp);
419 419
420 if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame))) 420 if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
421 return -EFAULT; 421 return -EFAULT;
422 422
423 if (ka->sa.sa_flags & SA_SIGINFO) { 423 if (ka->sa.sa_flags & SA_SIGINFO) {
424 if (copy_siginfo_to_user(&frame->info, info)) 424 if (copy_siginfo_to_user(&frame->info, info))
425 return -EFAULT; 425 return -EFAULT;
426 } 426 }
427 427
428 put_user_try { 428 put_user_try {
429 /* Create the ucontext. */ 429 /* Create the ucontext. */
430 if (cpu_has_xsave) 430 if (cpu_has_xsave)
431 put_user_ex(UC_FP_XSTATE, &frame->uc.uc_flags); 431 put_user_ex(UC_FP_XSTATE, &frame->uc.uc_flags);
432 else 432 else
433 put_user_ex(0, &frame->uc.uc_flags); 433 put_user_ex(0, &frame->uc.uc_flags);
434 put_user_ex(0, &frame->uc.uc_link); 434 put_user_ex(0, &frame->uc.uc_link);
435 put_user_ex(me->sas_ss_sp, &frame->uc.uc_stack.ss_sp); 435 put_user_ex(me->sas_ss_sp, &frame->uc.uc_stack.ss_sp);
436 put_user_ex(sas_ss_flags(regs->sp), 436 put_user_ex(sas_ss_flags(regs->sp),
437 &frame->uc.uc_stack.ss_flags); 437 &frame->uc.uc_stack.ss_flags);
438 put_user_ex(me->sas_ss_size, &frame->uc.uc_stack.ss_size); 438 put_user_ex(me->sas_ss_size, &frame->uc.uc_stack.ss_size);
439 err |= setup_sigcontext(&frame->uc.uc_mcontext, fp, regs, set->sig[0]); 439 err |= setup_sigcontext(&frame->uc.uc_mcontext, fp, regs, set->sig[0]);
440 err |= __copy_to_user(&frame->uc.uc_sigmask, set, sizeof(*set)); 440 err |= __copy_to_user(&frame->uc.uc_sigmask, set, sizeof(*set));
441 441
442 /* Set up to return from userspace. If provided, use a stub 442 /* Set up to return from userspace. If provided, use a stub
443 already in userspace. */ 443 already in userspace. */
444 /* x86-64 should always use SA_RESTORER. */ 444 /* x86-64 should always use SA_RESTORER. */
445 if (ka->sa.sa_flags & SA_RESTORER) { 445 if (ka->sa.sa_flags & SA_RESTORER) {
446 put_user_ex(ka->sa.sa_restorer, &frame->pretcode); 446 put_user_ex(ka->sa.sa_restorer, &frame->pretcode);
447 } else { 447 } else {
448 /* could use a vstub here */ 448 /* could use a vstub here */
449 err |= -EFAULT; 449 err |= -EFAULT;
450 } 450 }
451 } put_user_catch(err); 451 } put_user_catch(err);
452 452
453 if (err) 453 if (err)
454 return -EFAULT; 454 return -EFAULT;
455 455
456 /* Set up registers for signal handler */ 456 /* Set up registers for signal handler */
457 regs->di = sig; 457 regs->di = sig;
458 /* In case the signal handler was declared without prototypes */ 458 /* In case the signal handler was declared without prototypes */
459 regs->ax = 0; 459 regs->ax = 0;
460 460
461 /* This also works for non SA_SIGINFO handlers because they expect the 461 /* This also works for non SA_SIGINFO handlers because they expect the
462 next argument after the signal number on the stack. */ 462 next argument after the signal number on the stack. */
463 regs->si = (unsigned long)&frame->info; 463 regs->si = (unsigned long)&frame->info;
464 regs->dx = (unsigned long)&frame->uc; 464 regs->dx = (unsigned long)&frame->uc;
465 regs->ip = (unsigned long) ka->sa.sa_handler; 465 regs->ip = (unsigned long) ka->sa.sa_handler;
466 466
467 regs->sp = (unsigned long)frame; 467 regs->sp = (unsigned long)frame;
468 468
469 /* Set up the CS register to run signal handlers in 64-bit mode, 469 /* Set up the CS register to run signal handlers in 64-bit mode,
470 even if the handler happens to be interrupting 32-bit code. */ 470 even if the handler happens to be interrupting 32-bit code. */
471 regs->cs = __USER_CS; 471 regs->cs = __USER_CS;
472 472
473 return 0; 473 return 0;
474 } 474 }
475 #endif /* CONFIG_X86_32 */ 475 #endif /* CONFIG_X86_32 */
476 476
477 #ifdef CONFIG_X86_32 477 #ifdef CONFIG_X86_32
478 /* 478 /*
479 * Atomically swap in the new signal mask, and wait for a signal. 479 * Atomically swap in the new signal mask, and wait for a signal.
480 */ 480 */
481 asmlinkage int 481 asmlinkage int
482 sys_sigsuspend(int history0, int history1, old_sigset_t mask) 482 sys_sigsuspend(int history0, int history1, old_sigset_t mask)
483 { 483 {
484 sigset_t blocked; 484 sigset_t blocked;
485 siginitset(&blocked, mask); 485 siginitset(&blocked, mask);
486 return sigsuspend(&blocked); 486 return sigsuspend(&blocked);
487 } 487 }
488 488
489 asmlinkage int 489 asmlinkage int
490 sys_sigaction(int sig, const struct old_sigaction __user *act, 490 sys_sigaction(int sig, const struct old_sigaction __user *act,
491 struct old_sigaction __user *oact) 491 struct old_sigaction __user *oact)
492 { 492 {
493 struct k_sigaction new_ka, old_ka; 493 struct k_sigaction new_ka, old_ka;
494 int ret = 0; 494 int ret = 0;
495 495
496 if (act) { 496 if (act) {
497 old_sigset_t mask; 497 old_sigset_t mask;
498 498
499 if (!access_ok(VERIFY_READ, act, sizeof(*act))) 499 if (!access_ok(VERIFY_READ, act, sizeof(*act)))
500 return -EFAULT; 500 return -EFAULT;
501 501
502 get_user_try { 502 get_user_try {
503 get_user_ex(new_ka.sa.sa_handler, &act->sa_handler); 503 get_user_ex(new_ka.sa.sa_handler, &act->sa_handler);
504 get_user_ex(new_ka.sa.sa_flags, &act->sa_flags); 504 get_user_ex(new_ka.sa.sa_flags, &act->sa_flags);
505 get_user_ex(mask, &act->sa_mask); 505 get_user_ex(mask, &act->sa_mask);
506 get_user_ex(new_ka.sa.sa_restorer, &act->sa_restorer); 506 get_user_ex(new_ka.sa.sa_restorer, &act->sa_restorer);
507 } get_user_catch(ret); 507 } get_user_catch(ret);
508 508
509 if (ret) 509 if (ret)
510 return -EFAULT; 510 return -EFAULT;
511 siginitset(&new_ka.sa.sa_mask, mask); 511 siginitset(&new_ka.sa.sa_mask, mask);
512 } 512 }
513 513
514 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 514 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
515 515
516 if (!ret && oact) { 516 if (!ret && oact) {
517 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact))) 517 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)))
518 return -EFAULT; 518 return -EFAULT;
519 519
520 put_user_try { 520 put_user_try {
521 put_user_ex(old_ka.sa.sa_handler, &oact->sa_handler); 521 put_user_ex(old_ka.sa.sa_handler, &oact->sa_handler);
522 put_user_ex(old_ka.sa.sa_flags, &oact->sa_flags); 522 put_user_ex(old_ka.sa.sa_flags, &oact->sa_flags);
523 put_user_ex(old_ka.sa.sa_mask.sig[0], &oact->sa_mask); 523 put_user_ex(old_ka.sa.sa_mask.sig[0], &oact->sa_mask);
524 put_user_ex(old_ka.sa.sa_restorer, &oact->sa_restorer); 524 put_user_ex(old_ka.sa.sa_restorer, &oact->sa_restorer);
525 } put_user_catch(ret); 525 } put_user_catch(ret);
526 526
527 if (ret) 527 if (ret)
528 return -EFAULT; 528 return -EFAULT;
529 } 529 }
530 530
531 return ret; 531 return ret;
532 } 532 }
533 #endif /* CONFIG_X86_32 */ 533 #endif /* CONFIG_X86_32 */
534 534
535 long 535 long
536 sys_sigaltstack(const stack_t __user *uss, stack_t __user *uoss, 536 sys_sigaltstack(const stack_t __user *uss, stack_t __user *uoss,
537 struct pt_regs *regs) 537 struct pt_regs *regs)
538 { 538 {
539 return do_sigaltstack(uss, uoss, regs->sp); 539 return do_sigaltstack(uss, uoss, regs->sp);
540 } 540 }
541 541
542 /* 542 /*
543 * Do a signal return; undo the signal stack. 543 * Do a signal return; undo the signal stack.
544 */ 544 */
545 #ifdef CONFIG_X86_32 545 #ifdef CONFIG_X86_32
546 unsigned long sys_sigreturn(struct pt_regs *regs) 546 unsigned long sys_sigreturn(struct pt_regs *regs)
547 { 547 {
548 struct sigframe __user *frame; 548 struct sigframe __user *frame;
549 unsigned long ax; 549 unsigned long ax;
550 sigset_t set; 550 sigset_t set;
551 551
552 frame = (struct sigframe __user *)(regs->sp - 8); 552 frame = (struct sigframe __user *)(regs->sp - 8);
553 553
554 if (!access_ok(VERIFY_READ, frame, sizeof(*frame))) 554 if (!access_ok(VERIFY_READ, frame, sizeof(*frame)))
555 goto badframe; 555 goto badframe;
556 if (__get_user(set.sig[0], &frame->sc.oldmask) || (_NSIG_WORDS > 1 556 if (__get_user(set.sig[0], &frame->sc.oldmask) || (_NSIG_WORDS > 1
557 && __copy_from_user(&set.sig[1], &frame->extramask, 557 && __copy_from_user(&set.sig[1], &frame->extramask,
558 sizeof(frame->extramask)))) 558 sizeof(frame->extramask))))
559 goto badframe; 559 goto badframe;
560 560
561 set_current_blocked(&set); 561 set_current_blocked(&set);
562 562
563 if (restore_sigcontext(regs, &frame->sc, &ax)) 563 if (restore_sigcontext(regs, &frame->sc, &ax))
564 goto badframe; 564 goto badframe;
565 return ax; 565 return ax;
566 566
567 badframe: 567 badframe:
568 signal_fault(regs, frame, "sigreturn"); 568 signal_fault(regs, frame, "sigreturn");
569 569
570 return 0; 570 return 0;
571 } 571 }
572 #endif /* CONFIG_X86_32 */ 572 #endif /* CONFIG_X86_32 */
573 573
574 long sys_rt_sigreturn(struct pt_regs *regs) 574 long sys_rt_sigreturn(struct pt_regs *regs)
575 { 575 {
576 struct rt_sigframe __user *frame; 576 struct rt_sigframe __user *frame;
577 unsigned long ax; 577 unsigned long ax;
578 sigset_t set; 578 sigset_t set;
579 579
580 frame = (struct rt_sigframe __user *)(regs->sp - sizeof(long)); 580 frame = (struct rt_sigframe __user *)(regs->sp - sizeof(long));
581 if (!access_ok(VERIFY_READ, frame, sizeof(*frame))) 581 if (!access_ok(VERIFY_READ, frame, sizeof(*frame)))
582 goto badframe; 582 goto badframe;
583 if (__copy_from_user(&set, &frame->uc.uc_sigmask, sizeof(set))) 583 if (__copy_from_user(&set, &frame->uc.uc_sigmask, sizeof(set)))
584 goto badframe; 584 goto badframe;
585 585
586 set_current_blocked(&set); 586 set_current_blocked(&set);
587 587
588 if (restore_sigcontext(regs, &frame->uc.uc_mcontext, &ax)) 588 if (restore_sigcontext(regs, &frame->uc.uc_mcontext, &ax))
589 goto badframe; 589 goto badframe;
590 590
591 if (do_sigaltstack(&frame->uc.uc_stack, NULL, regs->sp) == -EFAULT) 591 if (do_sigaltstack(&frame->uc.uc_stack, NULL, regs->sp) == -EFAULT)
592 goto badframe; 592 goto badframe;
593 593
594 return ax; 594 return ax;
595 595
596 badframe: 596 badframe:
597 signal_fault(regs, frame, "rt_sigreturn"); 597 signal_fault(regs, frame, "rt_sigreturn");
598 return 0; 598 return 0;
599 } 599 }
600 600
601 /* 601 /*
602 * OK, we're invoking a handler: 602 * OK, we're invoking a handler:
603 */ 603 */
604 static int signr_convert(int sig) 604 static int signr_convert(int sig)
605 { 605 {
606 #ifdef CONFIG_X86_32 606 #ifdef CONFIG_X86_32
607 struct thread_info *info = current_thread_info(); 607 struct thread_info *info = current_thread_info();
608 608
609 if (info->exec_domain && info->exec_domain->signal_invmap && sig < 32) 609 if (info->exec_domain && info->exec_domain->signal_invmap && sig < 32)
610 return info->exec_domain->signal_invmap[sig]; 610 return info->exec_domain->signal_invmap[sig];
611 #endif /* CONFIG_X86_32 */ 611 #endif /* CONFIG_X86_32 */
612 return sig; 612 return sig;
613 } 613 }
614 614
615 #ifdef CONFIG_X86_32 615 #ifdef CONFIG_X86_32
616 616
617 #define is_ia32 1 617 #define is_ia32 1
618 #define ia32_setup_frame __setup_frame 618 #define ia32_setup_frame __setup_frame
619 #define ia32_setup_rt_frame __setup_rt_frame 619 #define ia32_setup_rt_frame __setup_rt_frame
620 620
621 #else /* !CONFIG_X86_32 */ 621 #else /* !CONFIG_X86_32 */
622 622
623 #ifdef CONFIG_IA32_EMULATION 623 #ifdef CONFIG_IA32_EMULATION
624 #define is_ia32 test_thread_flag(TIF_IA32) 624 #define is_ia32 test_thread_flag(TIF_IA32)
625 #else /* !CONFIG_IA32_EMULATION */ 625 #else /* !CONFIG_IA32_EMULATION */
626 #define is_ia32 0 626 #define is_ia32 0
627 #endif /* CONFIG_IA32_EMULATION */ 627 #endif /* CONFIG_IA32_EMULATION */
628 628
629 #ifdef CONFIG_X86_X32_ABI 629 #ifdef CONFIG_X86_X32_ABI
630 #define is_x32 test_thread_flag(TIF_X32) 630 #define is_x32 test_thread_flag(TIF_X32)
631 631
632 static int x32_setup_rt_frame(int sig, struct k_sigaction *ka, 632 static int x32_setup_rt_frame(int sig, struct k_sigaction *ka,
633 siginfo_t *info, compat_sigset_t *set, 633 siginfo_t *info, compat_sigset_t *set,
634 struct pt_regs *regs); 634 struct pt_regs *regs);
635 #else /* !CONFIG_X86_X32_ABI */ 635 #else /* !CONFIG_X86_X32_ABI */
636 #define is_x32 0 636 #define is_x32 0
637 #endif /* CONFIG_X86_X32_ABI */ 637 #endif /* CONFIG_X86_X32_ABI */
638 638
639 int ia32_setup_rt_frame(int sig, struct k_sigaction *ka, siginfo_t *info, 639 int ia32_setup_rt_frame(int sig, struct k_sigaction *ka, siginfo_t *info,
640 sigset_t *set, struct pt_regs *regs); 640 sigset_t *set, struct pt_regs *regs);
641 int ia32_setup_frame(int sig, struct k_sigaction *ka, 641 int ia32_setup_frame(int sig, struct k_sigaction *ka,
642 sigset_t *set, struct pt_regs *regs); 642 sigset_t *set, struct pt_regs *regs);
643 643
644 #endif /* CONFIG_X86_32 */ 644 #endif /* CONFIG_X86_32 */
645 645
646 static int 646 static int
647 setup_rt_frame(int sig, struct k_sigaction *ka, siginfo_t *info, 647 setup_rt_frame(int sig, struct k_sigaction *ka, siginfo_t *info,
648 struct pt_regs *regs) 648 struct pt_regs *regs)
649 { 649 {
650 int usig = signr_convert(sig); 650 int usig = signr_convert(sig);
651 sigset_t *set = sigmask_to_save(); 651 sigset_t *set = sigmask_to_save();
652 652
653 /* Set up the stack frame */ 653 /* Set up the stack frame */
654 if (is_ia32) { 654 if (is_ia32) {
655 if (ka->sa.sa_flags & SA_SIGINFO) 655 if (ka->sa.sa_flags & SA_SIGINFO)
656 return ia32_setup_rt_frame(usig, ka, info, set, regs); 656 return ia32_setup_rt_frame(usig, ka, info, set, regs);
657 else 657 else
658 return ia32_setup_frame(usig, ka, set, regs); 658 return ia32_setup_frame(usig, ka, set, regs);
659 #ifdef CONFIG_X86_X32_ABI 659 #ifdef CONFIG_X86_X32_ABI
660 } else if (is_x32) { 660 } else if (is_x32) {
661 return x32_setup_rt_frame(usig, ka, info, 661 return x32_setup_rt_frame(usig, ka, info,
662 (compat_sigset_t *)set, regs); 662 (compat_sigset_t *)set, regs);
663 #endif 663 #endif
664 } else { 664 } else {
665 return __setup_rt_frame(sig, ka, info, set, regs); 665 return __setup_rt_frame(sig, ka, info, set, regs);
666 } 666 }
667 } 667 }
668 668
669 static void 669 static void
670 handle_signal(unsigned long sig, siginfo_t *info, struct k_sigaction *ka, 670 handle_signal(unsigned long sig, siginfo_t *info, struct k_sigaction *ka,
671 struct pt_regs *regs) 671 struct pt_regs *regs)
672 { 672 {
673 /* Are we from a system call? */ 673 /* Are we from a system call? */
674 if (syscall_get_nr(current, regs) >= 0) { 674 if (syscall_get_nr(current, regs) >= 0) {
675 /* If so, check system call restarting.. */ 675 /* If so, check system call restarting.. */
676 switch (syscall_get_error(current, regs)) { 676 switch (syscall_get_error(current, regs)) {
677 case -ERESTART_RESTARTBLOCK: 677 case -ERESTART_RESTARTBLOCK:
678 case -ERESTARTNOHAND: 678 case -ERESTARTNOHAND:
679 regs->ax = -EINTR; 679 regs->ax = -EINTR;
680 break; 680 break;
681 681
682 case -ERESTARTSYS: 682 case -ERESTARTSYS:
683 if (!(ka->sa.sa_flags & SA_RESTART)) { 683 if (!(ka->sa.sa_flags & SA_RESTART)) {
684 regs->ax = -EINTR; 684 regs->ax = -EINTR;
685 break; 685 break;
686 } 686 }
687 /* fallthrough */ 687 /* fallthrough */
688 case -ERESTARTNOINTR: 688 case -ERESTARTNOINTR:
689 regs->ax = regs->orig_ax; 689 regs->ax = regs->orig_ax;
690 regs->ip -= 2; 690 regs->ip -= 2;
691 break; 691 break;
692 } 692 }
693 } 693 }
694 694
695 /* 695 /*
696 * If TF is set due to a debugger (TIF_FORCED_TF), clear the TF 696 * If TF is set due to a debugger (TIF_FORCED_TF), clear the TF
697 * flag so that register information in the sigcontext is correct. 697 * flag so that register information in the sigcontext is correct.
698 */ 698 */
699 if (unlikely(regs->flags & X86_EFLAGS_TF) && 699 if (unlikely(regs->flags & X86_EFLAGS_TF) &&
700 likely(test_and_clear_thread_flag(TIF_FORCED_TF))) 700 likely(test_and_clear_thread_flag(TIF_FORCED_TF)))
701 regs->flags &= ~X86_EFLAGS_TF; 701 regs->flags &= ~X86_EFLAGS_TF;
702 702
703 if (setup_rt_frame(sig, ka, info, regs) < 0) { 703 if (setup_rt_frame(sig, ka, info, regs) < 0) {
704 force_sigsegv(sig, current); 704 force_sigsegv(sig, current);
705 return; 705 return;
706 } 706 }
707 707
708 /* 708 /*
709 * Clear the direction flag as per the ABI for function entry. 709 * Clear the direction flag as per the ABI for function entry.
710 */ 710 */
711 regs->flags &= ~X86_EFLAGS_DF; 711 regs->flags &= ~X86_EFLAGS_DF;
712 712
713 /* 713 /*
714 * Clear TF when entering the signal handler, but 714 * Clear TF when entering the signal handler, but
715 * notify any tracer that was single-stepping it. 715 * notify any tracer that was single-stepping it.
716 * The tracer may want to single-step inside the 716 * The tracer may want to single-step inside the
717 * handler too. 717 * handler too.
718 */ 718 */
719 regs->flags &= ~X86_EFLAGS_TF; 719 regs->flags &= ~X86_EFLAGS_TF;
720 720
721 signal_delivered(sig, info, ka, regs, 721 signal_delivered(sig, info, ka, regs,
722 test_thread_flag(TIF_SINGLESTEP)); 722 test_thread_flag(TIF_SINGLESTEP));
723 } 723 }
724 724
725 #ifdef CONFIG_X86_32 725 #ifdef CONFIG_X86_32
726 #define NR_restart_syscall __NR_restart_syscall 726 #define NR_restart_syscall __NR_restart_syscall
727 #else /* !CONFIG_X86_32 */ 727 #else /* !CONFIG_X86_32 */
728 #define NR_restart_syscall \ 728 #define NR_restart_syscall \
729 test_thread_flag(TIF_IA32) ? __NR_ia32_restart_syscall : __NR_restart_syscall 729 test_thread_flag(TIF_IA32) ? __NR_ia32_restart_syscall : __NR_restart_syscall
730 #endif /* CONFIG_X86_32 */ 730 #endif /* CONFIG_X86_32 */
731 731
732 /* 732 /*
733 * Note that 'init' is a special process: it doesn't get signals it doesn't 733 * Note that 'init' is a special process: it doesn't get signals it doesn't
734 * want to handle. Thus you cannot kill init even with a SIGKILL even by 734 * want to handle. Thus you cannot kill init even with a SIGKILL even by
735 * mistake. 735 * mistake.
736 */ 736 */
737 static void do_signal(struct pt_regs *regs) 737 static void do_signal(struct pt_regs *regs)
738 { 738 {
739 struct k_sigaction ka; 739 struct k_sigaction ka;
740 siginfo_t info; 740 siginfo_t info;
741 int signr; 741 int signr;
742 742
743 signr = get_signal_to_deliver(&info, &ka, regs, NULL); 743 signr = get_signal_to_deliver(&info, &ka, regs, NULL);
744 if (signr > 0) { 744 if (signr > 0) {
745 /* Whee! Actually deliver the signal. */ 745 /* Whee! Actually deliver the signal. */
746 handle_signal(signr, &info, &ka, regs); 746 handle_signal(signr, &info, &ka, regs);
747 return; 747 return;
748 } 748 }
749 749
750 /* Did we come from a system call? */ 750 /* Did we come from a system call? */
751 if (syscall_get_nr(current, regs) >= 0) { 751 if (syscall_get_nr(current, regs) >= 0) {
752 /* Restart the system call - no handlers present */ 752 /* Restart the system call - no handlers present */
753 switch (syscall_get_error(current, regs)) { 753 switch (syscall_get_error(current, regs)) {
754 case -ERESTARTNOHAND: 754 case -ERESTARTNOHAND:
755 case -ERESTARTSYS: 755 case -ERESTARTSYS:
756 case -ERESTARTNOINTR: 756 case -ERESTARTNOINTR:
757 regs->ax = regs->orig_ax; 757 regs->ax = regs->orig_ax;
758 regs->ip -= 2; 758 regs->ip -= 2;
759 break; 759 break;
760 760
761 case -ERESTART_RESTARTBLOCK: 761 case -ERESTART_RESTARTBLOCK:
762 regs->ax = NR_restart_syscall; 762 regs->ax = NR_restart_syscall;
763 regs->ip -= 2; 763 regs->ip -= 2;
764 break; 764 break;
765 } 765 }
766 } 766 }
767 767
768 /* 768 /*
769 * If there's no signal to deliver, we just put the saved sigmask 769 * If there's no signal to deliver, we just put the saved sigmask
770 * back. 770 * back.
771 */ 771 */
772 restore_saved_sigmask(); 772 restore_saved_sigmask();
773 } 773 }
774 774
775 /* 775 /*
776 * notification of userspace execution resumption 776 * notification of userspace execution resumption
777 * - triggered by the TIF_WORK_MASK flags 777 * - triggered by the TIF_WORK_MASK flags
778 */ 778 */
779 void 779 void
780 do_notify_resume(struct pt_regs *regs, void *unused, __u32 thread_info_flags) 780 do_notify_resume(struct pt_regs *regs, void *unused, __u32 thread_info_flags)
781 { 781 {
782 #ifdef CONFIG_X86_MCE 782 #ifdef CONFIG_X86_MCE
783 /* notify userspace of pending MCEs */ 783 /* notify userspace of pending MCEs */
784 if (thread_info_flags & _TIF_MCE_NOTIFY) 784 if (thread_info_flags & _TIF_MCE_NOTIFY)
785 mce_notify_process(); 785 mce_notify_process();
786 #endif /* CONFIG_X86_64 && CONFIG_X86_MCE */ 786 #endif /* CONFIG_X86_64 && CONFIG_X86_MCE */
787 787
788 if (thread_info_flags & _TIF_UPROBE) { 788 if (thread_info_flags & _TIF_UPROBE)
789 clear_thread_flag(TIF_UPROBE);
790 uprobe_notify_resume(regs); 789 uprobe_notify_resume(regs);
791 }
792 790
793 /* deal with pending signal delivery */ 791 /* deal with pending signal delivery */
794 if (thread_info_flags & _TIF_SIGPENDING) 792 if (thread_info_flags & _TIF_SIGPENDING)
795 do_signal(regs); 793 do_signal(regs);
796 794
797 if (thread_info_flags & _TIF_NOTIFY_RESUME) { 795 if (thread_info_flags & _TIF_NOTIFY_RESUME) {
798 clear_thread_flag(TIF_NOTIFY_RESUME); 796 clear_thread_flag(TIF_NOTIFY_RESUME);
799 tracehook_notify_resume(regs); 797 tracehook_notify_resume(regs);
800 } 798 }
801 if (thread_info_flags & _TIF_USER_RETURN_NOTIFY) 799 if (thread_info_flags & _TIF_USER_RETURN_NOTIFY)
802 fire_user_return_notifiers(); 800 fire_user_return_notifiers();
803 801
804 #ifdef CONFIG_X86_32 802 #ifdef CONFIG_X86_32
805 clear_thread_flag(TIF_IRET); 803 clear_thread_flag(TIF_IRET);
806 #endif /* CONFIG_X86_32 */ 804 #endif /* CONFIG_X86_32 */
807 } 805 }
808 806
809 void signal_fault(struct pt_regs *regs, void __user *frame, char *where) 807 void signal_fault(struct pt_regs *regs, void __user *frame, char *where)
810 { 808 {
811 struct task_struct *me = current; 809 struct task_struct *me = current;
812 810
813 if (show_unhandled_signals && printk_ratelimit()) { 811 if (show_unhandled_signals && printk_ratelimit()) {
814 printk("%s" 812 printk("%s"
815 "%s[%d] bad frame in %s frame:%p ip:%lx sp:%lx orax:%lx", 813 "%s[%d] bad frame in %s frame:%p ip:%lx sp:%lx orax:%lx",
816 task_pid_nr(current) > 1 ? KERN_INFO : KERN_EMERG, 814 task_pid_nr(current) > 1 ? KERN_INFO : KERN_EMERG,
817 me->comm, me->pid, where, frame, 815 me->comm, me->pid, where, frame,
818 regs->ip, regs->sp, regs->orig_ax); 816 regs->ip, regs->sp, regs->orig_ax);
819 print_vma_addr(" in ", regs->ip); 817 print_vma_addr(" in ", regs->ip);
820 pr_cont("\n"); 818 pr_cont("\n");
821 } 819 }
822 820
823 force_sig(SIGSEGV, me); 821 force_sig(SIGSEGV, me);
824 } 822 }
825 823
826 #ifdef CONFIG_X86_X32_ABI 824 #ifdef CONFIG_X86_X32_ABI
827 static int x32_setup_rt_frame(int sig, struct k_sigaction *ka, 825 static int x32_setup_rt_frame(int sig, struct k_sigaction *ka,
828 siginfo_t *info, compat_sigset_t *set, 826 siginfo_t *info, compat_sigset_t *set,
829 struct pt_regs *regs) 827 struct pt_regs *regs)
830 { 828 {
831 struct rt_sigframe_x32 __user *frame; 829 struct rt_sigframe_x32 __user *frame;
832 void __user *restorer; 830 void __user *restorer;
833 int err = 0; 831 int err = 0;
834 void __user *fpstate = NULL; 832 void __user *fpstate = NULL;
835 833
836 frame = get_sigframe(ka, regs, sizeof(*frame), &fpstate); 834 frame = get_sigframe(ka, regs, sizeof(*frame), &fpstate);
837 835
838 if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame))) 836 if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
839 return -EFAULT; 837 return -EFAULT;
840 838
841 if (ka->sa.sa_flags & SA_SIGINFO) { 839 if (ka->sa.sa_flags & SA_SIGINFO) {
842 if (copy_siginfo_to_user32(&frame->info, info)) 840 if (copy_siginfo_to_user32(&frame->info, info))
843 return -EFAULT; 841 return -EFAULT;
844 } 842 }
845 843
846 put_user_try { 844 put_user_try {
847 /* Create the ucontext. */ 845 /* Create the ucontext. */
848 if (cpu_has_xsave) 846 if (cpu_has_xsave)
849 put_user_ex(UC_FP_XSTATE, &frame->uc.uc_flags); 847 put_user_ex(UC_FP_XSTATE, &frame->uc.uc_flags);
850 else 848 else
851 put_user_ex(0, &frame->uc.uc_flags); 849 put_user_ex(0, &frame->uc.uc_flags);
852 put_user_ex(0, &frame->uc.uc_link); 850 put_user_ex(0, &frame->uc.uc_link);
853 put_user_ex(current->sas_ss_sp, &frame->uc.uc_stack.ss_sp); 851 put_user_ex(current->sas_ss_sp, &frame->uc.uc_stack.ss_sp);
854 put_user_ex(sas_ss_flags(regs->sp), 852 put_user_ex(sas_ss_flags(regs->sp),
855 &frame->uc.uc_stack.ss_flags); 853 &frame->uc.uc_stack.ss_flags);
856 put_user_ex(current->sas_ss_size, &frame->uc.uc_stack.ss_size); 854 put_user_ex(current->sas_ss_size, &frame->uc.uc_stack.ss_size);
857 put_user_ex(0, &frame->uc.uc__pad0); 855 put_user_ex(0, &frame->uc.uc__pad0);
858 err |= setup_sigcontext(&frame->uc.uc_mcontext, fpstate, 856 err |= setup_sigcontext(&frame->uc.uc_mcontext, fpstate,
859 regs, set->sig[0]); 857 regs, set->sig[0]);
860 err |= __copy_to_user(&frame->uc.uc_sigmask, set, sizeof(*set)); 858 err |= __copy_to_user(&frame->uc.uc_sigmask, set, sizeof(*set));
861 859
862 if (ka->sa.sa_flags & SA_RESTORER) { 860 if (ka->sa.sa_flags & SA_RESTORER) {
863 restorer = ka->sa.sa_restorer; 861 restorer = ka->sa.sa_restorer;
864 } else { 862 } else {
865 /* could use a vstub here */ 863 /* could use a vstub here */
866 restorer = NULL; 864 restorer = NULL;
867 err |= -EFAULT; 865 err |= -EFAULT;
868 } 866 }
869 put_user_ex(restorer, &frame->pretcode); 867 put_user_ex(restorer, &frame->pretcode);
870 } put_user_catch(err); 868 } put_user_catch(err);
871 869
872 if (err) 870 if (err)
873 return -EFAULT; 871 return -EFAULT;
874 872
875 /* Set up registers for signal handler */ 873 /* Set up registers for signal handler */
876 regs->sp = (unsigned long) frame; 874 regs->sp = (unsigned long) frame;
877 regs->ip = (unsigned long) ka->sa.sa_handler; 875 regs->ip = (unsigned long) ka->sa.sa_handler;
878 876
879 /* We use the x32 calling convention here... */ 877 /* We use the x32 calling convention here... */
880 regs->di = sig; 878 regs->di = sig;
881 regs->si = (unsigned long) &frame->info; 879 regs->si = (unsigned long) &frame->info;
882 regs->dx = (unsigned long) &frame->uc; 880 regs->dx = (unsigned long) &frame->uc;
883 881
884 loadsegment(ds, __USER_DS); 882 loadsegment(ds, __USER_DS);
885 loadsegment(es, __USER_DS); 883 loadsegment(es, __USER_DS);
886 884
887 regs->cs = __USER_CS; 885 regs->cs = __USER_CS;
888 regs->ss = __USER_DS; 886 regs->ss = __USER_DS;
889 887
890 return 0; 888 return 0;
891 } 889 }
892 890
893 asmlinkage long sys32_x32_rt_sigreturn(struct pt_regs *regs) 891 asmlinkage long sys32_x32_rt_sigreturn(struct pt_regs *regs)
894 { 892 {
895 struct rt_sigframe_x32 __user *frame; 893 struct rt_sigframe_x32 __user *frame;
896 sigset_t set; 894 sigset_t set;
897 unsigned long ax; 895 unsigned long ax;
898 struct pt_regs tregs; 896 struct pt_regs tregs;
899 897
900 frame = (struct rt_sigframe_x32 __user *)(regs->sp - 8); 898 frame = (struct rt_sigframe_x32 __user *)(regs->sp - 8);
901 899
902 if (!access_ok(VERIFY_READ, frame, sizeof(*frame))) 900 if (!access_ok(VERIFY_READ, frame, sizeof(*frame)))
903 goto badframe; 901 goto badframe;
904 if (__copy_from_user(&set, &frame->uc.uc_sigmask, sizeof(set))) 902 if (__copy_from_user(&set, &frame->uc.uc_sigmask, sizeof(set)))
905 goto badframe; 903 goto badframe;
906 904
907 set_current_blocked(&set); 905 set_current_blocked(&set);
908 906
909 if (restore_sigcontext(regs, &frame->uc.uc_mcontext, &ax)) 907 if (restore_sigcontext(regs, &frame->uc.uc_mcontext, &ax))
910 goto badframe; 908 goto badframe;
911 909
912 tregs = *regs; 910 tregs = *regs;
913 if (sys32_sigaltstack(&frame->uc.uc_stack, NULL, &tregs) == -EFAULT) 911 if (sys32_sigaltstack(&frame->uc.uc_stack, NULL, &tregs) == -EFAULT)
914 goto badframe; 912 goto badframe;
915 913
916 return ax; 914 return ax;
917 915
918 badframe: 916 badframe:
919 signal_fault(regs, frame, "x32 rt_sigreturn"); 917 signal_fault(regs, frame, "x32 rt_sigreturn");
920 return 0; 918 return 0;
921 } 919 }
922 #endif 920 #endif
923 921
kernel/events/uprobes.c
1 /* 1 /*
2 * User-space Probes (UProbes) 2 * User-space Probes (UProbes)
3 * 3 *
4 * This program is free software; you can redistribute it and/or modify 4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by 5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or 6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version. 7 * (at your option) any later version.
8 * 8 *
9 * This program is distributed in the hope that it will be useful, 9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details. 12 * GNU General Public License for more details.
13 * 13 *
14 * You should have received a copy of the GNU General Public License 14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software 15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 * 17 *
18 * Copyright (C) IBM Corporation, 2008-2012 18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors: 19 * Authors:
20 * Srikar Dronamraju 20 * Srikar Dronamraju
21 * Jim Keniston 21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 */ 23 */
24 24
25 #include <linux/kernel.h> 25 #include <linux/kernel.h>
26 #include <linux/highmem.h> 26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */ 27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h> 28 #include <linux/slab.h>
29 #include <linux/sched.h> 29 #include <linux/sched.h>
30 #include <linux/rmap.h> /* anon_vma_prepare */ 30 #include <linux/rmap.h> /* anon_vma_prepare */
31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
32 #include <linux/swap.h> /* try_to_free_swap */ 32 #include <linux/swap.h> /* try_to_free_swap */
33 #include <linux/ptrace.h> /* user_enable_single_step */ 33 #include <linux/ptrace.h> /* user_enable_single_step */
34 #include <linux/kdebug.h> /* notifier mechanism */ 34 #include <linux/kdebug.h> /* notifier mechanism */
35 #include "../../mm/internal.h" /* munlock_vma_page */ 35 #include "../../mm/internal.h" /* munlock_vma_page */
36 36
37 #include <linux/uprobes.h> 37 #include <linux/uprobes.h>
38 38
39 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 39 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
40 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 40 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
41 41
42 static struct rb_root uprobes_tree = RB_ROOT; 42 static struct rb_root uprobes_tree = RB_ROOT;
43 43
44 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 44 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
45 45
46 #define UPROBES_HASH_SZ 13 46 #define UPROBES_HASH_SZ 13
47 47
48 /* 48 /*
49 * We need separate register/unregister and mmap/munmap lock hashes because 49 * We need separate register/unregister and mmap/munmap lock hashes because
50 * of mmap_sem nesting. 50 * of mmap_sem nesting.
51 * 51 *
52 * uprobe_register() needs to install probes on (potentially) all processes 52 * uprobe_register() needs to install probes on (potentially) all processes
53 * and thus needs to acquire multiple mmap_sems (consequtively, not 53 * and thus needs to acquire multiple mmap_sems (consequtively, not
54 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem 54 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
55 * for the particular process doing the mmap. 55 * for the particular process doing the mmap.
56 * 56 *
57 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem 57 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
58 * because of lock order against i_mmap_mutex. This means there's a hole in 58 * because of lock order against i_mmap_mutex. This means there's a hole in
59 * the register vma iteration where a mmap() can happen. 59 * the register vma iteration where a mmap() can happen.
60 * 60 *
61 * Thus uprobe_register() can race with uprobe_mmap() and we can try and 61 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
62 * install a probe where one is already installed. 62 * install a probe where one is already installed.
63 */ 63 */
64 64
65 /* serialize (un)register */ 65 /* serialize (un)register */
66 static struct mutex uprobes_mutex[UPROBES_HASH_SZ]; 66 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
67 67
68 #define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 68 #define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
69 69
70 /* serialize uprobe->pending_list */ 70 /* serialize uprobe->pending_list */
71 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 71 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
72 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 72 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
73 73
74 /* 74 /*
75 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe 75 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
76 * events active at this time. Probably a fine grained per inode count is 76 * events active at this time. Probably a fine grained per inode count is
77 * better? 77 * better?
78 */ 78 */
79 static atomic_t uprobe_events = ATOMIC_INIT(0); 79 static atomic_t uprobe_events = ATOMIC_INIT(0);
80 80
81 struct uprobe { 81 struct uprobe {
82 struct rb_node rb_node; /* node in the rb tree */ 82 struct rb_node rb_node; /* node in the rb tree */
83 atomic_t ref; 83 atomic_t ref;
84 struct rw_semaphore consumer_rwsem; 84 struct rw_semaphore consumer_rwsem;
85 struct list_head pending_list; 85 struct list_head pending_list;
86 struct uprobe_consumer *consumers; 86 struct uprobe_consumer *consumers;
87 struct inode *inode; /* Also hold a ref to inode */ 87 struct inode *inode; /* Also hold a ref to inode */
88 loff_t offset; 88 loff_t offset;
89 int flags; 89 int flags;
90 struct arch_uprobe arch; 90 struct arch_uprobe arch;
91 }; 91 };
92 92
93 /* 93 /*
94 * valid_vma: Verify if the specified vma is an executable vma 94 * valid_vma: Verify if the specified vma is an executable vma
95 * Relax restrictions while unregistering: vm_flags might have 95 * Relax restrictions while unregistering: vm_flags might have
96 * changed after breakpoint was inserted. 96 * changed after breakpoint was inserted.
97 * - is_register: indicates if we are in register context. 97 * - is_register: indicates if we are in register context.
98 * - Return 1 if the specified virtual address is in an 98 * - Return 1 if the specified virtual address is in an
99 * executable vma. 99 * executable vma.
100 */ 100 */
101 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 101 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
102 { 102 {
103 if (!vma->vm_file) 103 if (!vma->vm_file)
104 return false; 104 return false;
105 105
106 if (!is_register) 106 if (!is_register)
107 return true; 107 return true;
108 108
109 if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)) 109 if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
110 == (VM_READ|VM_EXEC)) 110 == (VM_READ|VM_EXEC))
111 return true; 111 return true;
112 112
113 return false; 113 return false;
114 } 114 }
115 115
116 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 116 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
117 { 117 {
118 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 118 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
119 } 119 }
120 120
121 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 121 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
122 { 122 {
123 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 123 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
124 } 124 }
125 125
126 /** 126 /**
127 * __replace_page - replace page in vma by new page. 127 * __replace_page - replace page in vma by new page.
128 * based on replace_page in mm/ksm.c 128 * based on replace_page in mm/ksm.c
129 * 129 *
130 * @vma: vma that holds the pte pointing to page 130 * @vma: vma that holds the pte pointing to page
131 * @addr: address the old @page is mapped at 131 * @addr: address the old @page is mapped at
132 * @page: the cowed page we are replacing by kpage 132 * @page: the cowed page we are replacing by kpage
133 * @kpage: the modified page we replace page by 133 * @kpage: the modified page we replace page by
134 * 134 *
135 * Returns 0 on success, -EFAULT on failure. 135 * Returns 0 on success, -EFAULT on failure.
136 */ 136 */
137 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 137 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
138 struct page *page, struct page *kpage) 138 struct page *page, struct page *kpage)
139 { 139 {
140 struct mm_struct *mm = vma->vm_mm; 140 struct mm_struct *mm = vma->vm_mm;
141 spinlock_t *ptl; 141 spinlock_t *ptl;
142 pte_t *ptep; 142 pte_t *ptep;
143 int err; 143 int err;
144 144
145 /* For try_to_free_swap() and munlock_vma_page() below */ 145 /* For try_to_free_swap() and munlock_vma_page() below */
146 lock_page(page); 146 lock_page(page);
147 147
148 err = -EAGAIN; 148 err = -EAGAIN;
149 ptep = page_check_address(page, mm, addr, &ptl, 0); 149 ptep = page_check_address(page, mm, addr, &ptl, 0);
150 if (!ptep) 150 if (!ptep)
151 goto unlock; 151 goto unlock;
152 152
153 get_page(kpage); 153 get_page(kpage);
154 page_add_new_anon_rmap(kpage, vma, addr); 154 page_add_new_anon_rmap(kpage, vma, addr);
155 155
156 if (!PageAnon(page)) { 156 if (!PageAnon(page)) {
157 dec_mm_counter(mm, MM_FILEPAGES); 157 dec_mm_counter(mm, MM_FILEPAGES);
158 inc_mm_counter(mm, MM_ANONPAGES); 158 inc_mm_counter(mm, MM_ANONPAGES);
159 } 159 }
160 160
161 flush_cache_page(vma, addr, pte_pfn(*ptep)); 161 flush_cache_page(vma, addr, pte_pfn(*ptep));
162 ptep_clear_flush(vma, addr, ptep); 162 ptep_clear_flush(vma, addr, ptep);
163 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); 163 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
164 164
165 page_remove_rmap(page); 165 page_remove_rmap(page);
166 if (!page_mapped(page)) 166 if (!page_mapped(page))
167 try_to_free_swap(page); 167 try_to_free_swap(page);
168 pte_unmap_unlock(ptep, ptl); 168 pte_unmap_unlock(ptep, ptl);
169 169
170 if (vma->vm_flags & VM_LOCKED) 170 if (vma->vm_flags & VM_LOCKED)
171 munlock_vma_page(page); 171 munlock_vma_page(page);
172 put_page(page); 172 put_page(page);
173 173
174 err = 0; 174 err = 0;
175 unlock: 175 unlock:
176 unlock_page(page); 176 unlock_page(page);
177 return err; 177 return err;
178 } 178 }
179 179
180 /** 180 /**
181 * is_swbp_insn - check if instruction is breakpoint instruction. 181 * is_swbp_insn - check if instruction is breakpoint instruction.
182 * @insn: instruction to be checked. 182 * @insn: instruction to be checked.
183 * Default implementation of is_swbp_insn 183 * Default implementation of is_swbp_insn
184 * Returns true if @insn is a breakpoint instruction. 184 * Returns true if @insn is a breakpoint instruction.
185 */ 185 */
186 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 186 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
187 { 187 {
188 return *insn == UPROBE_SWBP_INSN; 188 return *insn == UPROBE_SWBP_INSN;
189 } 189 }
190 190
191 /* 191 /*
192 * NOTE: 192 * NOTE:
193 * Expect the breakpoint instruction to be the smallest size instruction for 193 * Expect the breakpoint instruction to be the smallest size instruction for
194 * the architecture. If an arch has variable length instruction and the 194 * the architecture. If an arch has variable length instruction and the
195 * breakpoint instruction is not of the smallest length instruction 195 * breakpoint instruction is not of the smallest length instruction
196 * supported by that architecture then we need to modify read_opcode / 196 * supported by that architecture then we need to modify read_opcode /
197 * write_opcode accordingly. This would never be a problem for archs that 197 * write_opcode accordingly. This would never be a problem for archs that
198 * have fixed length instructions. 198 * have fixed length instructions.
199 */ 199 */
200 200
201 /* 201 /*
202 * write_opcode - write the opcode at a given virtual address. 202 * write_opcode - write the opcode at a given virtual address.
203 * @auprobe: arch breakpointing information. 203 * @auprobe: arch breakpointing information.
204 * @mm: the probed process address space. 204 * @mm: the probed process address space.
205 * @vaddr: the virtual address to store the opcode. 205 * @vaddr: the virtual address to store the opcode.
206 * @opcode: opcode to be written at @vaddr. 206 * @opcode: opcode to be written at @vaddr.
207 * 207 *
208 * Called with mm->mmap_sem held (for read and with a reference to 208 * Called with mm->mmap_sem held (for read and with a reference to
209 * mm). 209 * mm).
210 * 210 *
211 * For mm @mm, write the opcode at @vaddr. 211 * For mm @mm, write the opcode at @vaddr.
212 * Return 0 (success) or a negative errno. 212 * Return 0 (success) or a negative errno.
213 */ 213 */
214 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 214 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
215 unsigned long vaddr, uprobe_opcode_t opcode) 215 unsigned long vaddr, uprobe_opcode_t opcode)
216 { 216 {
217 struct page *old_page, *new_page; 217 struct page *old_page, *new_page;
218 void *vaddr_old, *vaddr_new; 218 void *vaddr_old, *vaddr_new;
219 struct vm_area_struct *vma; 219 struct vm_area_struct *vma;
220 int ret; 220 int ret;
221 221
222 retry: 222 retry:
223 /* Read the page with vaddr into memory */ 223 /* Read the page with vaddr into memory */
224 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma); 224 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
225 if (ret <= 0) 225 if (ret <= 0)
226 return ret; 226 return ret;
227 227
228 ret = -ENOMEM; 228 ret = -ENOMEM;
229 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 229 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
230 if (!new_page) 230 if (!new_page)
231 goto put_old; 231 goto put_old;
232 232
233 __SetPageUptodate(new_page); 233 __SetPageUptodate(new_page);
234 234
235 /* copy the page now that we've got it stable */ 235 /* copy the page now that we've got it stable */
236 vaddr_old = kmap_atomic(old_page); 236 vaddr_old = kmap_atomic(old_page);
237 vaddr_new = kmap_atomic(new_page); 237 vaddr_new = kmap_atomic(new_page);
238 238
239 memcpy(vaddr_new, vaddr_old, PAGE_SIZE); 239 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
240 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE); 240 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
241 241
242 kunmap_atomic(vaddr_new); 242 kunmap_atomic(vaddr_new);
243 kunmap_atomic(vaddr_old); 243 kunmap_atomic(vaddr_old);
244 244
245 ret = anon_vma_prepare(vma); 245 ret = anon_vma_prepare(vma);
246 if (ret) 246 if (ret)
247 goto put_new; 247 goto put_new;
248 248
249 ret = __replace_page(vma, vaddr, old_page, new_page); 249 ret = __replace_page(vma, vaddr, old_page, new_page);
250 250
251 put_new: 251 put_new:
252 page_cache_release(new_page); 252 page_cache_release(new_page);
253 put_old: 253 put_old:
254 put_page(old_page); 254 put_page(old_page);
255 255
256 if (unlikely(ret == -EAGAIN)) 256 if (unlikely(ret == -EAGAIN))
257 goto retry; 257 goto retry;
258 return ret; 258 return ret;
259 } 259 }
260 260
261 /** 261 /**
262 * read_opcode - read the opcode at a given virtual address. 262 * read_opcode - read the opcode at a given virtual address.
263 * @mm: the probed process address space. 263 * @mm: the probed process address space.
264 * @vaddr: the virtual address to read the opcode. 264 * @vaddr: the virtual address to read the opcode.
265 * @opcode: location to store the read opcode. 265 * @opcode: location to store the read opcode.
266 * 266 *
267 * Called with mm->mmap_sem held (for read and with a reference to 267 * Called with mm->mmap_sem held (for read and with a reference to
268 * mm. 268 * mm.
269 * 269 *
270 * For mm @mm, read the opcode at @vaddr and store it in @opcode. 270 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
271 * Return 0 (success) or a negative errno. 271 * Return 0 (success) or a negative errno.
272 */ 272 */
273 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode) 273 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
274 { 274 {
275 struct page *page; 275 struct page *page;
276 void *vaddr_new; 276 void *vaddr_new;
277 int ret; 277 int ret;
278 278
279 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL); 279 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
280 if (ret <= 0) 280 if (ret <= 0)
281 return ret; 281 return ret;
282 282
283 vaddr_new = kmap_atomic(page); 283 vaddr_new = kmap_atomic(page);
284 vaddr &= ~PAGE_MASK; 284 vaddr &= ~PAGE_MASK;
285 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE); 285 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
286 kunmap_atomic(vaddr_new); 286 kunmap_atomic(vaddr_new);
287 287
288 put_page(page); 288 put_page(page);
289 289
290 return 0; 290 return 0;
291 } 291 }
292 292
293 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr) 293 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
294 { 294 {
295 uprobe_opcode_t opcode; 295 uprobe_opcode_t opcode;
296 int result; 296 int result;
297 297
298 if (current->mm == mm) { 298 if (current->mm == mm) {
299 pagefault_disable(); 299 pagefault_disable();
300 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr, 300 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
301 sizeof(opcode)); 301 sizeof(opcode));
302 pagefault_enable(); 302 pagefault_enable();
303 303
304 if (likely(result == 0)) 304 if (likely(result == 0))
305 goto out; 305 goto out;
306 } 306 }
307 307
308 result = read_opcode(mm, vaddr, &opcode); 308 result = read_opcode(mm, vaddr, &opcode);
309 if (result) 309 if (result)
310 return result; 310 return result;
311 out: 311 out:
312 if (is_swbp_insn(&opcode)) 312 if (is_swbp_insn(&opcode))
313 return 1; 313 return 1;
314 314
315 return 0; 315 return 0;
316 } 316 }
317 317
318 /** 318 /**
319 * set_swbp - store breakpoint at a given address. 319 * set_swbp - store breakpoint at a given address.
320 * @auprobe: arch specific probepoint information. 320 * @auprobe: arch specific probepoint information.
321 * @mm: the probed process address space. 321 * @mm: the probed process address space.
322 * @vaddr: the virtual address to insert the opcode. 322 * @vaddr: the virtual address to insert the opcode.
323 * 323 *
324 * For mm @mm, store the breakpoint instruction at @vaddr. 324 * For mm @mm, store the breakpoint instruction at @vaddr.
325 * Return 0 (success) or a negative errno. 325 * Return 0 (success) or a negative errno.
326 */ 326 */
327 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 327 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
328 { 328 {
329 int result; 329 int result;
330 /* 330 /*
331 * See the comment near uprobes_hash(). 331 * See the comment near uprobes_hash().
332 */ 332 */
333 result = is_swbp_at_addr(mm, vaddr); 333 result = is_swbp_at_addr(mm, vaddr);
334 if (result == 1) 334 if (result == 1)
335 return 0; 335 return 0;
336 336
337 if (result) 337 if (result)
338 return result; 338 return result;
339 339
340 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 340 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
341 } 341 }
342 342
343 /** 343 /**
344 * set_orig_insn - Restore the original instruction. 344 * set_orig_insn - Restore the original instruction.
345 * @mm: the probed process address space. 345 * @mm: the probed process address space.
346 * @auprobe: arch specific probepoint information. 346 * @auprobe: arch specific probepoint information.
347 * @vaddr: the virtual address to insert the opcode. 347 * @vaddr: the virtual address to insert the opcode.
348 * 348 *
349 * For mm @mm, restore the original opcode (opcode) at @vaddr. 349 * For mm @mm, restore the original opcode (opcode) at @vaddr.
350 * Return 0 (success) or a negative errno. 350 * Return 0 (success) or a negative errno.
351 */ 351 */
352 int __weak 352 int __weak
353 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 353 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
354 { 354 {
355 int result; 355 int result;
356 356
357 result = is_swbp_at_addr(mm, vaddr); 357 result = is_swbp_at_addr(mm, vaddr);
358 if (!result) 358 if (!result)
359 return -EINVAL; 359 return -EINVAL;
360 360
361 if (result != 1) 361 if (result != 1)
362 return result; 362 return result;
363 363
364 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn); 364 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
365 } 365 }
366 366
367 static int match_uprobe(struct uprobe *l, struct uprobe *r) 367 static int match_uprobe(struct uprobe *l, struct uprobe *r)
368 { 368 {
369 if (l->inode < r->inode) 369 if (l->inode < r->inode)
370 return -1; 370 return -1;
371 371
372 if (l->inode > r->inode) 372 if (l->inode > r->inode)
373 return 1; 373 return 1;
374 374
375 if (l->offset < r->offset) 375 if (l->offset < r->offset)
376 return -1; 376 return -1;
377 377
378 if (l->offset > r->offset) 378 if (l->offset > r->offset)
379 return 1; 379 return 1;
380 380
381 return 0; 381 return 0;
382 } 382 }
383 383
384 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 384 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
385 { 385 {
386 struct uprobe u = { .inode = inode, .offset = offset }; 386 struct uprobe u = { .inode = inode, .offset = offset };
387 struct rb_node *n = uprobes_tree.rb_node; 387 struct rb_node *n = uprobes_tree.rb_node;
388 struct uprobe *uprobe; 388 struct uprobe *uprobe;
389 int match; 389 int match;
390 390
391 while (n) { 391 while (n) {
392 uprobe = rb_entry(n, struct uprobe, rb_node); 392 uprobe = rb_entry(n, struct uprobe, rb_node);
393 match = match_uprobe(&u, uprobe); 393 match = match_uprobe(&u, uprobe);
394 if (!match) { 394 if (!match) {
395 atomic_inc(&uprobe->ref); 395 atomic_inc(&uprobe->ref);
396 return uprobe; 396 return uprobe;
397 } 397 }
398 398
399 if (match < 0) 399 if (match < 0)
400 n = n->rb_left; 400 n = n->rb_left;
401 else 401 else
402 n = n->rb_right; 402 n = n->rb_right;
403 } 403 }
404 return NULL; 404 return NULL;
405 } 405 }
406 406
407 /* 407 /*
408 * Find a uprobe corresponding to a given inode:offset 408 * Find a uprobe corresponding to a given inode:offset
409 * Acquires uprobes_treelock 409 * Acquires uprobes_treelock
410 */ 410 */
411 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) 411 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
412 { 412 {
413 struct uprobe *uprobe; 413 struct uprobe *uprobe;
414 414
415 spin_lock(&uprobes_treelock); 415 spin_lock(&uprobes_treelock);
416 uprobe = __find_uprobe(inode, offset); 416 uprobe = __find_uprobe(inode, offset);
417 spin_unlock(&uprobes_treelock); 417 spin_unlock(&uprobes_treelock);
418 418
419 return uprobe; 419 return uprobe;
420 } 420 }
421 421
422 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 422 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
423 { 423 {
424 struct rb_node **p = &uprobes_tree.rb_node; 424 struct rb_node **p = &uprobes_tree.rb_node;
425 struct rb_node *parent = NULL; 425 struct rb_node *parent = NULL;
426 struct uprobe *u; 426 struct uprobe *u;
427 int match; 427 int match;
428 428
429 while (*p) { 429 while (*p) {
430 parent = *p; 430 parent = *p;
431 u = rb_entry(parent, struct uprobe, rb_node); 431 u = rb_entry(parent, struct uprobe, rb_node);
432 match = match_uprobe(uprobe, u); 432 match = match_uprobe(uprobe, u);
433 if (!match) { 433 if (!match) {
434 atomic_inc(&u->ref); 434 atomic_inc(&u->ref);
435 return u; 435 return u;
436 } 436 }
437 437
438 if (match < 0) 438 if (match < 0)
439 p = &parent->rb_left; 439 p = &parent->rb_left;
440 else 440 else
441 p = &parent->rb_right; 441 p = &parent->rb_right;
442 442
443 } 443 }
444 444
445 u = NULL; 445 u = NULL;
446 rb_link_node(&uprobe->rb_node, parent, p); 446 rb_link_node(&uprobe->rb_node, parent, p);
447 rb_insert_color(&uprobe->rb_node, &uprobes_tree); 447 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
448 /* get access + creation ref */ 448 /* get access + creation ref */
449 atomic_set(&uprobe->ref, 2); 449 atomic_set(&uprobe->ref, 2);
450 450
451 return u; 451 return u;
452 } 452 }
453 453
454 /* 454 /*
455 * Acquire uprobes_treelock. 455 * Acquire uprobes_treelock.
456 * Matching uprobe already exists in rbtree; 456 * Matching uprobe already exists in rbtree;
457 * increment (access refcount) and return the matching uprobe. 457 * increment (access refcount) and return the matching uprobe.
458 * 458 *
459 * No matching uprobe; insert the uprobe in rb_tree; 459 * No matching uprobe; insert the uprobe in rb_tree;
460 * get a double refcount (access + creation) and return NULL. 460 * get a double refcount (access + creation) and return NULL.
461 */ 461 */
462 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 462 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
463 { 463 {
464 struct uprobe *u; 464 struct uprobe *u;
465 465
466 spin_lock(&uprobes_treelock); 466 spin_lock(&uprobes_treelock);
467 u = __insert_uprobe(uprobe); 467 u = __insert_uprobe(uprobe);
468 spin_unlock(&uprobes_treelock); 468 spin_unlock(&uprobes_treelock);
469 469
470 /* For now assume that the instruction need not be single-stepped */ 470 /* For now assume that the instruction need not be single-stepped */
471 uprobe->flags |= UPROBE_SKIP_SSTEP; 471 uprobe->flags |= UPROBE_SKIP_SSTEP;
472 472
473 return u; 473 return u;
474 } 474 }
475 475
476 static void put_uprobe(struct uprobe *uprobe) 476 static void put_uprobe(struct uprobe *uprobe)
477 { 477 {
478 if (atomic_dec_and_test(&uprobe->ref)) 478 if (atomic_dec_and_test(&uprobe->ref))
479 kfree(uprobe); 479 kfree(uprobe);
480 } 480 }
481 481
482 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset) 482 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
483 { 483 {
484 struct uprobe *uprobe, *cur_uprobe; 484 struct uprobe *uprobe, *cur_uprobe;
485 485
486 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 486 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
487 if (!uprobe) 487 if (!uprobe)
488 return NULL; 488 return NULL;
489 489
490 uprobe->inode = igrab(inode); 490 uprobe->inode = igrab(inode);
491 uprobe->offset = offset; 491 uprobe->offset = offset;
492 init_rwsem(&uprobe->consumer_rwsem); 492 init_rwsem(&uprobe->consumer_rwsem);
493 493
494 /* add to uprobes_tree, sorted on inode:offset */ 494 /* add to uprobes_tree, sorted on inode:offset */
495 cur_uprobe = insert_uprobe(uprobe); 495 cur_uprobe = insert_uprobe(uprobe);
496 496
497 /* a uprobe exists for this inode:offset combination */ 497 /* a uprobe exists for this inode:offset combination */
498 if (cur_uprobe) { 498 if (cur_uprobe) {
499 kfree(uprobe); 499 kfree(uprobe);
500 uprobe = cur_uprobe; 500 uprobe = cur_uprobe;
501 iput(inode); 501 iput(inode);
502 } else { 502 } else {
503 atomic_inc(&uprobe_events); 503 atomic_inc(&uprobe_events);
504 } 504 }
505 505
506 return uprobe; 506 return uprobe;
507 } 507 }
508 508
509 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 509 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
510 { 510 {
511 struct uprobe_consumer *uc; 511 struct uprobe_consumer *uc;
512 512
513 if (!(uprobe->flags & UPROBE_RUN_HANDLER)) 513 if (!(uprobe->flags & UPROBE_RUN_HANDLER))
514 return; 514 return;
515 515
516 down_read(&uprobe->consumer_rwsem); 516 down_read(&uprobe->consumer_rwsem);
517 for (uc = uprobe->consumers; uc; uc = uc->next) { 517 for (uc = uprobe->consumers; uc; uc = uc->next) {
518 if (!uc->filter || uc->filter(uc, current)) 518 if (!uc->filter || uc->filter(uc, current))
519 uc->handler(uc, regs); 519 uc->handler(uc, regs);
520 } 520 }
521 up_read(&uprobe->consumer_rwsem); 521 up_read(&uprobe->consumer_rwsem);
522 } 522 }
523 523
524 /* Returns the previous consumer */ 524 /* Returns the previous consumer */
525 static struct uprobe_consumer * 525 static struct uprobe_consumer *
526 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 526 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
527 { 527 {
528 down_write(&uprobe->consumer_rwsem); 528 down_write(&uprobe->consumer_rwsem);
529 uc->next = uprobe->consumers; 529 uc->next = uprobe->consumers;
530 uprobe->consumers = uc; 530 uprobe->consumers = uc;
531 up_write(&uprobe->consumer_rwsem); 531 up_write(&uprobe->consumer_rwsem);
532 532
533 return uc->next; 533 return uc->next;
534 } 534 }
535 535
536 /* 536 /*
537 * For uprobe @uprobe, delete the consumer @uc. 537 * For uprobe @uprobe, delete the consumer @uc.
538 * Return true if the @uc is deleted successfully 538 * Return true if the @uc is deleted successfully
539 * or return false. 539 * or return false.
540 */ 540 */
541 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 541 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
542 { 542 {
543 struct uprobe_consumer **con; 543 struct uprobe_consumer **con;
544 bool ret = false; 544 bool ret = false;
545 545
546 down_write(&uprobe->consumer_rwsem); 546 down_write(&uprobe->consumer_rwsem);
547 for (con = &uprobe->consumers; *con; con = &(*con)->next) { 547 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
548 if (*con == uc) { 548 if (*con == uc) {
549 *con = uc->next; 549 *con = uc->next;
550 ret = true; 550 ret = true;
551 break; 551 break;
552 } 552 }
553 } 553 }
554 up_write(&uprobe->consumer_rwsem); 554 up_write(&uprobe->consumer_rwsem);
555 555
556 return ret; 556 return ret;
557 } 557 }
558 558
559 static int 559 static int
560 __copy_insn(struct address_space *mapping, struct file *filp, char *insn, 560 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
561 unsigned long nbytes, loff_t offset) 561 unsigned long nbytes, loff_t offset)
562 { 562 {
563 struct page *page; 563 struct page *page;
564 void *vaddr; 564 void *vaddr;
565 unsigned long off; 565 unsigned long off;
566 pgoff_t idx; 566 pgoff_t idx;
567 567
568 if (!filp) 568 if (!filp)
569 return -EINVAL; 569 return -EINVAL;
570 570
571 if (!mapping->a_ops->readpage) 571 if (!mapping->a_ops->readpage)
572 return -EIO; 572 return -EIO;
573 573
574 idx = offset >> PAGE_CACHE_SHIFT; 574 idx = offset >> PAGE_CACHE_SHIFT;
575 off = offset & ~PAGE_MASK; 575 off = offset & ~PAGE_MASK;
576 576
577 /* 577 /*
578 * Ensure that the page that has the original instruction is 578 * Ensure that the page that has the original instruction is
579 * populated and in page-cache. 579 * populated and in page-cache.
580 */ 580 */
581 page = read_mapping_page(mapping, idx, filp); 581 page = read_mapping_page(mapping, idx, filp);
582 if (IS_ERR(page)) 582 if (IS_ERR(page))
583 return PTR_ERR(page); 583 return PTR_ERR(page);
584 584
585 vaddr = kmap_atomic(page); 585 vaddr = kmap_atomic(page);
586 memcpy(insn, vaddr + off, nbytes); 586 memcpy(insn, vaddr + off, nbytes);
587 kunmap_atomic(vaddr); 587 kunmap_atomic(vaddr);
588 page_cache_release(page); 588 page_cache_release(page);
589 589
590 return 0; 590 return 0;
591 } 591 }
592 592
593 static int copy_insn(struct uprobe *uprobe, struct file *filp) 593 static int copy_insn(struct uprobe *uprobe, struct file *filp)
594 { 594 {
595 struct address_space *mapping; 595 struct address_space *mapping;
596 unsigned long nbytes; 596 unsigned long nbytes;
597 int bytes; 597 int bytes;
598 598
599 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK); 599 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
600 mapping = uprobe->inode->i_mapping; 600 mapping = uprobe->inode->i_mapping;
601 601
602 /* Instruction at end of binary; copy only available bytes */ 602 /* Instruction at end of binary; copy only available bytes */
603 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size) 603 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
604 bytes = uprobe->inode->i_size - uprobe->offset; 604 bytes = uprobe->inode->i_size - uprobe->offset;
605 else 605 else
606 bytes = MAX_UINSN_BYTES; 606 bytes = MAX_UINSN_BYTES;
607 607
608 /* Instruction at the page-boundary; copy bytes in second page */ 608 /* Instruction at the page-boundary; copy bytes in second page */
609 if (nbytes < bytes) { 609 if (nbytes < bytes) {
610 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes, 610 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
611 bytes - nbytes, uprobe->offset + nbytes); 611 bytes - nbytes, uprobe->offset + nbytes);
612 if (err) 612 if (err)
613 return err; 613 return err;
614 bytes = nbytes; 614 bytes = nbytes;
615 } 615 }
616 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset); 616 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
617 } 617 }
618 618
619 /* 619 /*
620 * How mm->uprobes_state.count gets updated 620 * How mm->uprobes_state.count gets updated
621 * uprobe_mmap() increments the count if 621 * uprobe_mmap() increments the count if
622 * - it successfully adds a breakpoint. 622 * - it successfully adds a breakpoint.
623 * - it cannot add a breakpoint, but sees that there is a underlying 623 * - it cannot add a breakpoint, but sees that there is a underlying
624 * breakpoint (via a is_swbp_at_addr()). 624 * breakpoint (via a is_swbp_at_addr()).
625 * 625 *
626 * uprobe_munmap() decrements the count if 626 * uprobe_munmap() decrements the count if
627 * - it sees a underlying breakpoint, (via is_swbp_at_addr) 627 * - it sees a underlying breakpoint, (via is_swbp_at_addr)
628 * (Subsequent uprobe_unregister wouldnt find the breakpoint 628 * (Subsequent uprobe_unregister wouldnt find the breakpoint
629 * unless a uprobe_mmap kicks in, since the old vma would be 629 * unless a uprobe_mmap kicks in, since the old vma would be
630 * dropped just after uprobe_munmap.) 630 * dropped just after uprobe_munmap.)
631 * 631 *
632 * uprobe_register increments the count if: 632 * uprobe_register increments the count if:
633 * - it successfully adds a breakpoint. 633 * - it successfully adds a breakpoint.
634 * 634 *
635 * uprobe_unregister decrements the count if: 635 * uprobe_unregister decrements the count if:
636 * - it sees a underlying breakpoint and removes successfully. 636 * - it sees a underlying breakpoint and removes successfully.
637 * (via is_swbp_at_addr) 637 * (via is_swbp_at_addr)
638 * (Subsequent uprobe_munmap wouldnt find the breakpoint 638 * (Subsequent uprobe_munmap wouldnt find the breakpoint
639 * since there is no underlying breakpoint after the 639 * since there is no underlying breakpoint after the
640 * breakpoint removal.) 640 * breakpoint removal.)
641 */ 641 */
642 static int 642 static int
643 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 643 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
644 struct vm_area_struct *vma, unsigned long vaddr) 644 struct vm_area_struct *vma, unsigned long vaddr)
645 { 645 {
646 bool first_uprobe; 646 bool first_uprobe;
647 int ret; 647 int ret;
648 648
649 /* 649 /*
650 * If probe is being deleted, unregister thread could be done with 650 * If probe is being deleted, unregister thread could be done with
651 * the vma-rmap-walk through. Adding a probe now can be fatal since 651 * the vma-rmap-walk through. Adding a probe now can be fatal since
652 * nobody will be able to cleanup. Also we could be from fork or 652 * nobody will be able to cleanup. Also we could be from fork or
653 * mremap path, where the probe might have already been inserted. 653 * mremap path, where the probe might have already been inserted.
654 * Hence behave as if probe already existed. 654 * Hence behave as if probe already existed.
655 */ 655 */
656 if (!uprobe->consumers) 656 if (!uprobe->consumers)
657 return 0; 657 return 0;
658 658
659 if (!(uprobe->flags & UPROBE_COPY_INSN)) { 659 if (!(uprobe->flags & UPROBE_COPY_INSN)) {
660 ret = copy_insn(uprobe, vma->vm_file); 660 ret = copy_insn(uprobe, vma->vm_file);
661 if (ret) 661 if (ret)
662 return ret; 662 return ret;
663 663
664 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn)) 664 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
665 return -ENOTSUPP; 665 return -ENOTSUPP;
666 666
667 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 667 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
668 if (ret) 668 if (ret)
669 return ret; 669 return ret;
670 670
671 /* write_opcode() assumes we don't cross page boundary */ 671 /* write_opcode() assumes we don't cross page boundary */
672 BUG_ON((uprobe->offset & ~PAGE_MASK) + 672 BUG_ON((uprobe->offset & ~PAGE_MASK) +
673 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE); 673 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
674 674
675 uprobe->flags |= UPROBE_COPY_INSN; 675 uprobe->flags |= UPROBE_COPY_INSN;
676 } 676 }
677 677
678 /* 678 /*
679 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 679 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
680 * the task can hit this breakpoint right after __replace_page(). 680 * the task can hit this breakpoint right after __replace_page().
681 */ 681 */
682 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 682 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
683 if (first_uprobe) 683 if (first_uprobe)
684 set_bit(MMF_HAS_UPROBES, &mm->flags); 684 set_bit(MMF_HAS_UPROBES, &mm->flags);
685 685
686 ret = set_swbp(&uprobe->arch, mm, vaddr); 686 ret = set_swbp(&uprobe->arch, mm, vaddr);
687 if (!ret) 687 if (!ret)
688 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 688 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
689 else if (first_uprobe) 689 else if (first_uprobe)
690 clear_bit(MMF_HAS_UPROBES, &mm->flags); 690 clear_bit(MMF_HAS_UPROBES, &mm->flags);
691 691
692 return ret; 692 return ret;
693 } 693 }
694 694
695 static void 695 static void
696 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 696 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
697 { 697 {
698 /* can happen if uprobe_register() fails */ 698 /* can happen if uprobe_register() fails */
699 if (!test_bit(MMF_HAS_UPROBES, &mm->flags)) 699 if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
700 return; 700 return;
701 701
702 set_bit(MMF_RECALC_UPROBES, &mm->flags); 702 set_bit(MMF_RECALC_UPROBES, &mm->flags);
703 set_orig_insn(&uprobe->arch, mm, vaddr); 703 set_orig_insn(&uprobe->arch, mm, vaddr);
704 } 704 }
705 705
706 /* 706 /*
707 * There could be threads that have already hit the breakpoint. They 707 * There could be threads that have already hit the breakpoint. They
708 * will recheck the current insn and restart if find_uprobe() fails. 708 * will recheck the current insn and restart if find_uprobe() fails.
709 * See find_active_uprobe(). 709 * See find_active_uprobe().
710 */ 710 */
711 static void delete_uprobe(struct uprobe *uprobe) 711 static void delete_uprobe(struct uprobe *uprobe)
712 { 712 {
713 spin_lock(&uprobes_treelock); 713 spin_lock(&uprobes_treelock);
714 rb_erase(&uprobe->rb_node, &uprobes_tree); 714 rb_erase(&uprobe->rb_node, &uprobes_tree);
715 spin_unlock(&uprobes_treelock); 715 spin_unlock(&uprobes_treelock);
716 iput(uprobe->inode); 716 iput(uprobe->inode);
717 put_uprobe(uprobe); 717 put_uprobe(uprobe);
718 atomic_dec(&uprobe_events); 718 atomic_dec(&uprobe_events);
719 } 719 }
720 720
721 struct map_info { 721 struct map_info {
722 struct map_info *next; 722 struct map_info *next;
723 struct mm_struct *mm; 723 struct mm_struct *mm;
724 unsigned long vaddr; 724 unsigned long vaddr;
725 }; 725 };
726 726
727 static inline struct map_info *free_map_info(struct map_info *info) 727 static inline struct map_info *free_map_info(struct map_info *info)
728 { 728 {
729 struct map_info *next = info->next; 729 struct map_info *next = info->next;
730 kfree(info); 730 kfree(info);
731 return next; 731 return next;
732 } 732 }
733 733
734 static struct map_info * 734 static struct map_info *
735 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 735 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
736 { 736 {
737 unsigned long pgoff = offset >> PAGE_SHIFT; 737 unsigned long pgoff = offset >> PAGE_SHIFT;
738 struct prio_tree_iter iter; 738 struct prio_tree_iter iter;
739 struct vm_area_struct *vma; 739 struct vm_area_struct *vma;
740 struct map_info *curr = NULL; 740 struct map_info *curr = NULL;
741 struct map_info *prev = NULL; 741 struct map_info *prev = NULL;
742 struct map_info *info; 742 struct map_info *info;
743 int more = 0; 743 int more = 0;
744 744
745 again: 745 again:
746 mutex_lock(&mapping->i_mmap_mutex); 746 mutex_lock(&mapping->i_mmap_mutex);
747 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 747 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
748 if (!valid_vma(vma, is_register)) 748 if (!valid_vma(vma, is_register))
749 continue; 749 continue;
750 750
751 if (!prev && !more) { 751 if (!prev && !more) {
752 /* 752 /*
753 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through 753 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
754 * reclaim. This is optimistic, no harm done if it fails. 754 * reclaim. This is optimistic, no harm done if it fails.
755 */ 755 */
756 prev = kmalloc(sizeof(struct map_info), 756 prev = kmalloc(sizeof(struct map_info),
757 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 757 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
758 if (prev) 758 if (prev)
759 prev->next = NULL; 759 prev->next = NULL;
760 } 760 }
761 if (!prev) { 761 if (!prev) {
762 more++; 762 more++;
763 continue; 763 continue;
764 } 764 }
765 765
766 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users)) 766 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
767 continue; 767 continue;
768 768
769 info = prev; 769 info = prev;
770 prev = prev->next; 770 prev = prev->next;
771 info->next = curr; 771 info->next = curr;
772 curr = info; 772 curr = info;
773 773
774 info->mm = vma->vm_mm; 774 info->mm = vma->vm_mm;
775 info->vaddr = offset_to_vaddr(vma, offset); 775 info->vaddr = offset_to_vaddr(vma, offset);
776 } 776 }
777 mutex_unlock(&mapping->i_mmap_mutex); 777 mutex_unlock(&mapping->i_mmap_mutex);
778 778
779 if (!more) 779 if (!more)
780 goto out; 780 goto out;
781 781
782 prev = curr; 782 prev = curr;
783 while (curr) { 783 while (curr) {
784 mmput(curr->mm); 784 mmput(curr->mm);
785 curr = curr->next; 785 curr = curr->next;
786 } 786 }
787 787
788 do { 788 do {
789 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 789 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
790 if (!info) { 790 if (!info) {
791 curr = ERR_PTR(-ENOMEM); 791 curr = ERR_PTR(-ENOMEM);
792 goto out; 792 goto out;
793 } 793 }
794 info->next = prev; 794 info->next = prev;
795 prev = info; 795 prev = info;
796 } while (--more); 796 } while (--more);
797 797
798 goto again; 798 goto again;
799 out: 799 out:
800 while (prev) 800 while (prev)
801 prev = free_map_info(prev); 801 prev = free_map_info(prev);
802 return curr; 802 return curr;
803 } 803 }
804 804
805 static int register_for_each_vma(struct uprobe *uprobe, bool is_register) 805 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
806 { 806 {
807 struct map_info *info; 807 struct map_info *info;
808 int err = 0; 808 int err = 0;
809 809
810 info = build_map_info(uprobe->inode->i_mapping, 810 info = build_map_info(uprobe->inode->i_mapping,
811 uprobe->offset, is_register); 811 uprobe->offset, is_register);
812 if (IS_ERR(info)) 812 if (IS_ERR(info))
813 return PTR_ERR(info); 813 return PTR_ERR(info);
814 814
815 while (info) { 815 while (info) {
816 struct mm_struct *mm = info->mm; 816 struct mm_struct *mm = info->mm;
817 struct vm_area_struct *vma; 817 struct vm_area_struct *vma;
818 818
819 if (err) 819 if (err)
820 goto free; 820 goto free;
821 821
822 down_write(&mm->mmap_sem); 822 down_write(&mm->mmap_sem);
823 vma = find_vma(mm, info->vaddr); 823 vma = find_vma(mm, info->vaddr);
824 if (!vma || !valid_vma(vma, is_register) || 824 if (!vma || !valid_vma(vma, is_register) ||
825 vma->vm_file->f_mapping->host != uprobe->inode) 825 vma->vm_file->f_mapping->host != uprobe->inode)
826 goto unlock; 826 goto unlock;
827 827
828 if (vma->vm_start > info->vaddr || 828 if (vma->vm_start > info->vaddr ||
829 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 829 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
830 goto unlock; 830 goto unlock;
831 831
832 if (is_register) 832 if (is_register)
833 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 833 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
834 else 834 else
835 remove_breakpoint(uprobe, mm, info->vaddr); 835 remove_breakpoint(uprobe, mm, info->vaddr);
836 836
837 unlock: 837 unlock:
838 up_write(&mm->mmap_sem); 838 up_write(&mm->mmap_sem);
839 free: 839 free:
840 mmput(mm); 840 mmput(mm);
841 info = free_map_info(info); 841 info = free_map_info(info);
842 } 842 }
843 843
844 return err; 844 return err;
845 } 845 }
846 846
847 static int __uprobe_register(struct uprobe *uprobe) 847 static int __uprobe_register(struct uprobe *uprobe)
848 { 848 {
849 return register_for_each_vma(uprobe, true); 849 return register_for_each_vma(uprobe, true);
850 } 850 }
851 851
852 static void __uprobe_unregister(struct uprobe *uprobe) 852 static void __uprobe_unregister(struct uprobe *uprobe)
853 { 853 {
854 if (!register_for_each_vma(uprobe, false)) 854 if (!register_for_each_vma(uprobe, false))
855 delete_uprobe(uprobe); 855 delete_uprobe(uprobe);
856 856
857 /* TODO : cant unregister? schedule a worker thread */ 857 /* TODO : cant unregister? schedule a worker thread */
858 } 858 }
859 859
860 /* 860 /*
861 * uprobe_register - register a probe 861 * uprobe_register - register a probe
862 * @inode: the file in which the probe has to be placed. 862 * @inode: the file in which the probe has to be placed.
863 * @offset: offset from the start of the file. 863 * @offset: offset from the start of the file.
864 * @uc: information on howto handle the probe.. 864 * @uc: information on howto handle the probe..
865 * 865 *
866 * Apart from the access refcount, uprobe_register() takes a creation 866 * Apart from the access refcount, uprobe_register() takes a creation
867 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 867 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
868 * inserted into the rbtree (i.e first consumer for a @inode:@offset 868 * inserted into the rbtree (i.e first consumer for a @inode:@offset
869 * tuple). Creation refcount stops uprobe_unregister from freeing the 869 * tuple). Creation refcount stops uprobe_unregister from freeing the
870 * @uprobe even before the register operation is complete. Creation 870 * @uprobe even before the register operation is complete. Creation
871 * refcount is released when the last @uc for the @uprobe 871 * refcount is released when the last @uc for the @uprobe
872 * unregisters. 872 * unregisters.
873 * 873 *
874 * Return errno if it cannot successully install probes 874 * Return errno if it cannot successully install probes
875 * else return 0 (success) 875 * else return 0 (success)
876 */ 876 */
877 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 877 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
878 { 878 {
879 struct uprobe *uprobe; 879 struct uprobe *uprobe;
880 int ret; 880 int ret;
881 881
882 if (!inode || !uc || uc->next) 882 if (!inode || !uc || uc->next)
883 return -EINVAL; 883 return -EINVAL;
884 884
885 if (offset > i_size_read(inode)) 885 if (offset > i_size_read(inode))
886 return -EINVAL; 886 return -EINVAL;
887 887
888 ret = 0; 888 ret = 0;
889 mutex_lock(uprobes_hash(inode)); 889 mutex_lock(uprobes_hash(inode));
890 uprobe = alloc_uprobe(inode, offset); 890 uprobe = alloc_uprobe(inode, offset);
891 891
892 if (uprobe && !consumer_add(uprobe, uc)) { 892 if (uprobe && !consumer_add(uprobe, uc)) {
893 ret = __uprobe_register(uprobe); 893 ret = __uprobe_register(uprobe);
894 if (ret) { 894 if (ret) {
895 uprobe->consumers = NULL; 895 uprobe->consumers = NULL;
896 __uprobe_unregister(uprobe); 896 __uprobe_unregister(uprobe);
897 } else { 897 } else {
898 uprobe->flags |= UPROBE_RUN_HANDLER; 898 uprobe->flags |= UPROBE_RUN_HANDLER;
899 } 899 }
900 } 900 }
901 901
902 mutex_unlock(uprobes_hash(inode)); 902 mutex_unlock(uprobes_hash(inode));
903 if (uprobe) 903 if (uprobe)
904 put_uprobe(uprobe); 904 put_uprobe(uprobe);
905 905
906 return ret; 906 return ret;
907 } 907 }
908 908
909 /* 909 /*
910 * uprobe_unregister - unregister a already registered probe. 910 * uprobe_unregister - unregister a already registered probe.
911 * @inode: the file in which the probe has to be removed. 911 * @inode: the file in which the probe has to be removed.
912 * @offset: offset from the start of the file. 912 * @offset: offset from the start of the file.
913 * @uc: identify which probe if multiple probes are colocated. 913 * @uc: identify which probe if multiple probes are colocated.
914 */ 914 */
915 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 915 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
916 { 916 {
917 struct uprobe *uprobe; 917 struct uprobe *uprobe;
918 918
919 if (!inode || !uc) 919 if (!inode || !uc)
920 return; 920 return;
921 921
922 uprobe = find_uprobe(inode, offset); 922 uprobe = find_uprobe(inode, offset);
923 if (!uprobe) 923 if (!uprobe)
924 return; 924 return;
925 925
926 mutex_lock(uprobes_hash(inode)); 926 mutex_lock(uprobes_hash(inode));
927 927
928 if (consumer_del(uprobe, uc)) { 928 if (consumer_del(uprobe, uc)) {
929 if (!uprobe->consumers) { 929 if (!uprobe->consumers) {
930 __uprobe_unregister(uprobe); 930 __uprobe_unregister(uprobe);
931 uprobe->flags &= ~UPROBE_RUN_HANDLER; 931 uprobe->flags &= ~UPROBE_RUN_HANDLER;
932 } 932 }
933 } 933 }
934 934
935 mutex_unlock(uprobes_hash(inode)); 935 mutex_unlock(uprobes_hash(inode));
936 if (uprobe) 936 if (uprobe)
937 put_uprobe(uprobe); 937 put_uprobe(uprobe);
938 } 938 }
939 939
940 static struct rb_node * 940 static struct rb_node *
941 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 941 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
942 { 942 {
943 struct rb_node *n = uprobes_tree.rb_node; 943 struct rb_node *n = uprobes_tree.rb_node;
944 944
945 while (n) { 945 while (n) {
946 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 946 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
947 947
948 if (inode < u->inode) { 948 if (inode < u->inode) {
949 n = n->rb_left; 949 n = n->rb_left;
950 } else if (inode > u->inode) { 950 } else if (inode > u->inode) {
951 n = n->rb_right; 951 n = n->rb_right;
952 } else { 952 } else {
953 if (max < u->offset) 953 if (max < u->offset)
954 n = n->rb_left; 954 n = n->rb_left;
955 else if (min > u->offset) 955 else if (min > u->offset)
956 n = n->rb_right; 956 n = n->rb_right;
957 else 957 else
958 break; 958 break;
959 } 959 }
960 } 960 }
961 961
962 return n; 962 return n;
963 } 963 }
964 964
965 /* 965 /*
966 * For a given range in vma, build a list of probes that need to be inserted. 966 * For a given range in vma, build a list of probes that need to be inserted.
967 */ 967 */
968 static void build_probe_list(struct inode *inode, 968 static void build_probe_list(struct inode *inode,
969 struct vm_area_struct *vma, 969 struct vm_area_struct *vma,
970 unsigned long start, unsigned long end, 970 unsigned long start, unsigned long end,
971 struct list_head *head) 971 struct list_head *head)
972 { 972 {
973 loff_t min, max; 973 loff_t min, max;
974 struct rb_node *n, *t; 974 struct rb_node *n, *t;
975 struct uprobe *u; 975 struct uprobe *u;
976 976
977 INIT_LIST_HEAD(head); 977 INIT_LIST_HEAD(head);
978 min = vaddr_to_offset(vma, start); 978 min = vaddr_to_offset(vma, start);
979 max = min + (end - start) - 1; 979 max = min + (end - start) - 1;
980 980
981 spin_lock(&uprobes_treelock); 981 spin_lock(&uprobes_treelock);
982 n = find_node_in_range(inode, min, max); 982 n = find_node_in_range(inode, min, max);
983 if (n) { 983 if (n) {
984 for (t = n; t; t = rb_prev(t)) { 984 for (t = n; t; t = rb_prev(t)) {
985 u = rb_entry(t, struct uprobe, rb_node); 985 u = rb_entry(t, struct uprobe, rb_node);
986 if (u->inode != inode || u->offset < min) 986 if (u->inode != inode || u->offset < min)
987 break; 987 break;
988 list_add(&u->pending_list, head); 988 list_add(&u->pending_list, head);
989 atomic_inc(&u->ref); 989 atomic_inc(&u->ref);
990 } 990 }
991 for (t = n; (t = rb_next(t)); ) { 991 for (t = n; (t = rb_next(t)); ) {
992 u = rb_entry(t, struct uprobe, rb_node); 992 u = rb_entry(t, struct uprobe, rb_node);
993 if (u->inode != inode || u->offset > max) 993 if (u->inode != inode || u->offset > max)
994 break; 994 break;
995 list_add(&u->pending_list, head); 995 list_add(&u->pending_list, head);
996 atomic_inc(&u->ref); 996 atomic_inc(&u->ref);
997 } 997 }
998 } 998 }
999 spin_unlock(&uprobes_treelock); 999 spin_unlock(&uprobes_treelock);
1000 } 1000 }
1001 1001
1002 /* 1002 /*
1003 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired. 1003 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1004 * 1004 *
1005 * Currently we ignore all errors and always return 0, the callers 1005 * Currently we ignore all errors and always return 0, the callers
1006 * can't handle the failure anyway. 1006 * can't handle the failure anyway.
1007 */ 1007 */
1008 int uprobe_mmap(struct vm_area_struct *vma) 1008 int uprobe_mmap(struct vm_area_struct *vma)
1009 { 1009 {
1010 struct list_head tmp_list; 1010 struct list_head tmp_list;
1011 struct uprobe *uprobe, *u; 1011 struct uprobe *uprobe, *u;
1012 struct inode *inode; 1012 struct inode *inode;
1013 1013
1014 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true)) 1014 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1015 return 0; 1015 return 0;
1016 1016
1017 inode = vma->vm_file->f_mapping->host; 1017 inode = vma->vm_file->f_mapping->host;
1018 if (!inode) 1018 if (!inode)
1019 return 0; 1019 return 0;
1020 1020
1021 mutex_lock(uprobes_mmap_hash(inode)); 1021 mutex_lock(uprobes_mmap_hash(inode));
1022 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1022 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1023 1023
1024 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1024 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1025 if (!fatal_signal_pending(current)) { 1025 if (!fatal_signal_pending(current)) {
1026 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1026 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1027 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1027 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1028 } 1028 }
1029 put_uprobe(uprobe); 1029 put_uprobe(uprobe);
1030 } 1030 }
1031 mutex_unlock(uprobes_mmap_hash(inode)); 1031 mutex_unlock(uprobes_mmap_hash(inode));
1032 1032
1033 return 0; 1033 return 0;
1034 } 1034 }
1035 1035
1036 static bool 1036 static bool
1037 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1037 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1038 { 1038 {
1039 loff_t min, max; 1039 loff_t min, max;
1040 struct inode *inode; 1040 struct inode *inode;
1041 struct rb_node *n; 1041 struct rb_node *n;
1042 1042
1043 inode = vma->vm_file->f_mapping->host; 1043 inode = vma->vm_file->f_mapping->host;
1044 1044
1045 min = vaddr_to_offset(vma, start); 1045 min = vaddr_to_offset(vma, start);
1046 max = min + (end - start) - 1; 1046 max = min + (end - start) - 1;
1047 1047
1048 spin_lock(&uprobes_treelock); 1048 spin_lock(&uprobes_treelock);
1049 n = find_node_in_range(inode, min, max); 1049 n = find_node_in_range(inode, min, max);
1050 spin_unlock(&uprobes_treelock); 1050 spin_unlock(&uprobes_treelock);
1051 1051
1052 return !!n; 1052 return !!n;
1053 } 1053 }
1054 1054
1055 /* 1055 /*
1056 * Called in context of a munmap of a vma. 1056 * Called in context of a munmap of a vma.
1057 */ 1057 */
1058 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1058 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1059 { 1059 {
1060 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false)) 1060 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1061 return; 1061 return;
1062 1062
1063 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1063 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1064 return; 1064 return;
1065 1065
1066 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1066 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1067 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1067 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1068 return; 1068 return;
1069 1069
1070 if (vma_has_uprobes(vma, start, end)) 1070 if (vma_has_uprobes(vma, start, end))
1071 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1071 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1072 } 1072 }
1073 1073
1074 /* Slot allocation for XOL */ 1074 /* Slot allocation for XOL */
1075 static int xol_add_vma(struct xol_area *area) 1075 static int xol_add_vma(struct xol_area *area)
1076 { 1076 {
1077 struct mm_struct *mm; 1077 struct mm_struct *mm;
1078 int ret; 1078 int ret;
1079 1079
1080 area->page = alloc_page(GFP_HIGHUSER); 1080 area->page = alloc_page(GFP_HIGHUSER);
1081 if (!area->page) 1081 if (!area->page)
1082 return -ENOMEM; 1082 return -ENOMEM;
1083 1083
1084 ret = -EALREADY; 1084 ret = -EALREADY;
1085 mm = current->mm; 1085 mm = current->mm;
1086 1086
1087 down_write(&mm->mmap_sem); 1087 down_write(&mm->mmap_sem);
1088 if (mm->uprobes_state.xol_area) 1088 if (mm->uprobes_state.xol_area)
1089 goto fail; 1089 goto fail;
1090 1090
1091 ret = -ENOMEM; 1091 ret = -ENOMEM;
1092 1092
1093 /* Try to map as high as possible, this is only a hint. */ 1093 /* Try to map as high as possible, this is only a hint. */
1094 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0); 1094 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1095 if (area->vaddr & ~PAGE_MASK) { 1095 if (area->vaddr & ~PAGE_MASK) {
1096 ret = area->vaddr; 1096 ret = area->vaddr;
1097 goto fail; 1097 goto fail;
1098 } 1098 }
1099 1099
1100 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1100 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1101 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page); 1101 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1102 if (ret) 1102 if (ret)
1103 goto fail; 1103 goto fail;
1104 1104
1105 smp_wmb(); /* pairs with get_xol_area() */ 1105 smp_wmb(); /* pairs with get_xol_area() */
1106 mm->uprobes_state.xol_area = area; 1106 mm->uprobes_state.xol_area = area;
1107 ret = 0; 1107 ret = 0;
1108 1108
1109 fail: 1109 fail:
1110 up_write(&mm->mmap_sem); 1110 up_write(&mm->mmap_sem);
1111 if (ret) 1111 if (ret)
1112 __free_page(area->page); 1112 __free_page(area->page);
1113 1113
1114 return ret; 1114 return ret;
1115 } 1115 }
1116 1116
1117 static struct xol_area *get_xol_area(struct mm_struct *mm) 1117 static struct xol_area *get_xol_area(struct mm_struct *mm)
1118 { 1118 {
1119 struct xol_area *area; 1119 struct xol_area *area;
1120 1120
1121 area = mm->uprobes_state.xol_area; 1121 area = mm->uprobes_state.xol_area;
1122 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */ 1122 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1123 1123
1124 return area; 1124 return area;
1125 } 1125 }
1126 1126
1127 /* 1127 /*
1128 * xol_alloc_area - Allocate process's xol_area. 1128 * xol_alloc_area - Allocate process's xol_area.
1129 * This area will be used for storing instructions for execution out of 1129 * This area will be used for storing instructions for execution out of
1130 * line. 1130 * line.
1131 * 1131 *
1132 * Returns the allocated area or NULL. 1132 * Returns the allocated area or NULL.
1133 */ 1133 */
1134 static struct xol_area *xol_alloc_area(void) 1134 static struct xol_area *xol_alloc_area(void)
1135 { 1135 {
1136 struct xol_area *area; 1136 struct xol_area *area;
1137 1137
1138 area = kzalloc(sizeof(*area), GFP_KERNEL); 1138 area = kzalloc(sizeof(*area), GFP_KERNEL);
1139 if (unlikely(!area)) 1139 if (unlikely(!area))
1140 return NULL; 1140 return NULL;
1141 1141
1142 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL); 1142 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1143 1143
1144 if (!area->bitmap) 1144 if (!area->bitmap)
1145 goto fail; 1145 goto fail;
1146 1146
1147 init_waitqueue_head(&area->wq); 1147 init_waitqueue_head(&area->wq);
1148 if (!xol_add_vma(area)) 1148 if (!xol_add_vma(area))
1149 return area; 1149 return area;
1150 1150
1151 fail: 1151 fail:
1152 kfree(area->bitmap); 1152 kfree(area->bitmap);
1153 kfree(area); 1153 kfree(area);
1154 1154
1155 return get_xol_area(current->mm); 1155 return get_xol_area(current->mm);
1156 } 1156 }
1157 1157
1158 /* 1158 /*
1159 * uprobe_clear_state - Free the area allocated for slots. 1159 * uprobe_clear_state - Free the area allocated for slots.
1160 */ 1160 */
1161 void uprobe_clear_state(struct mm_struct *mm) 1161 void uprobe_clear_state(struct mm_struct *mm)
1162 { 1162 {
1163 struct xol_area *area = mm->uprobes_state.xol_area; 1163 struct xol_area *area = mm->uprobes_state.xol_area;
1164 1164
1165 if (!area) 1165 if (!area)
1166 return; 1166 return;
1167 1167
1168 put_page(area->page); 1168 put_page(area->page);
1169 kfree(area->bitmap); 1169 kfree(area->bitmap);
1170 kfree(area); 1170 kfree(area);
1171 } 1171 }
1172 1172
1173 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1173 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1174 { 1174 {
1175 newmm->uprobes_state.xol_area = NULL; 1175 newmm->uprobes_state.xol_area = NULL;
1176 1176
1177 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1177 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1178 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1178 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1179 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1179 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1180 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1180 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1181 } 1181 }
1182 } 1182 }
1183 1183
1184 /* 1184 /*
1185 * - search for a free slot. 1185 * - search for a free slot.
1186 */ 1186 */
1187 static unsigned long xol_take_insn_slot(struct xol_area *area) 1187 static unsigned long xol_take_insn_slot(struct xol_area *area)
1188 { 1188 {
1189 unsigned long slot_addr; 1189 unsigned long slot_addr;
1190 int slot_nr; 1190 int slot_nr;
1191 1191
1192 do { 1192 do {
1193 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1193 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1194 if (slot_nr < UINSNS_PER_PAGE) { 1194 if (slot_nr < UINSNS_PER_PAGE) {
1195 if (!test_and_set_bit(slot_nr, area->bitmap)) 1195 if (!test_and_set_bit(slot_nr, area->bitmap))
1196 break; 1196 break;
1197 1197
1198 slot_nr = UINSNS_PER_PAGE; 1198 slot_nr = UINSNS_PER_PAGE;
1199 continue; 1199 continue;
1200 } 1200 }
1201 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1201 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1202 } while (slot_nr >= UINSNS_PER_PAGE); 1202 } while (slot_nr >= UINSNS_PER_PAGE);
1203 1203
1204 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1204 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1205 atomic_inc(&area->slot_count); 1205 atomic_inc(&area->slot_count);
1206 1206
1207 return slot_addr; 1207 return slot_addr;
1208 } 1208 }
1209 1209
1210 /* 1210 /*
1211 * xol_get_insn_slot - If was not allocated a slot, then 1211 * xol_get_insn_slot - If was not allocated a slot, then
1212 * allocate a slot. 1212 * allocate a slot.
1213 * Returns the allocated slot address or 0. 1213 * Returns the allocated slot address or 0.
1214 */ 1214 */
1215 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr) 1215 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1216 { 1216 {
1217 struct xol_area *area; 1217 struct xol_area *area;
1218 unsigned long offset; 1218 unsigned long offset;
1219 void *vaddr; 1219 void *vaddr;
1220 1220
1221 area = get_xol_area(current->mm); 1221 area = get_xol_area(current->mm);
1222 if (!area) { 1222 if (!area) {
1223 area = xol_alloc_area(); 1223 area = xol_alloc_area();
1224 if (!area) 1224 if (!area)
1225 return 0; 1225 return 0;
1226 } 1226 }
1227 current->utask->xol_vaddr = xol_take_insn_slot(area); 1227 current->utask->xol_vaddr = xol_take_insn_slot(area);
1228 1228
1229 /* 1229 /*
1230 * Initialize the slot if xol_vaddr points to valid 1230 * Initialize the slot if xol_vaddr points to valid
1231 * instruction slot. 1231 * instruction slot.
1232 */ 1232 */
1233 if (unlikely(!current->utask->xol_vaddr)) 1233 if (unlikely(!current->utask->xol_vaddr))
1234 return 0; 1234 return 0;
1235 1235
1236 current->utask->vaddr = slot_addr; 1236 current->utask->vaddr = slot_addr;
1237 offset = current->utask->xol_vaddr & ~PAGE_MASK; 1237 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1238 vaddr = kmap_atomic(area->page); 1238 vaddr = kmap_atomic(area->page);
1239 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES); 1239 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1240 kunmap_atomic(vaddr); 1240 kunmap_atomic(vaddr);
1241 1241
1242 return current->utask->xol_vaddr; 1242 return current->utask->xol_vaddr;
1243 } 1243 }
1244 1244
1245 /* 1245 /*
1246 * xol_free_insn_slot - If slot was earlier allocated by 1246 * xol_free_insn_slot - If slot was earlier allocated by
1247 * @xol_get_insn_slot(), make the slot available for 1247 * @xol_get_insn_slot(), make the slot available for
1248 * subsequent requests. 1248 * subsequent requests.
1249 */ 1249 */
1250 static void xol_free_insn_slot(struct task_struct *tsk) 1250 static void xol_free_insn_slot(struct task_struct *tsk)
1251 { 1251 {
1252 struct xol_area *area; 1252 struct xol_area *area;
1253 unsigned long vma_end; 1253 unsigned long vma_end;
1254 unsigned long slot_addr; 1254 unsigned long slot_addr;
1255 1255
1256 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1256 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1257 return; 1257 return;
1258 1258
1259 slot_addr = tsk->utask->xol_vaddr; 1259 slot_addr = tsk->utask->xol_vaddr;
1260 1260
1261 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr))) 1261 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1262 return; 1262 return;
1263 1263
1264 area = tsk->mm->uprobes_state.xol_area; 1264 area = tsk->mm->uprobes_state.xol_area;
1265 vma_end = area->vaddr + PAGE_SIZE; 1265 vma_end = area->vaddr + PAGE_SIZE;
1266 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1266 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1267 unsigned long offset; 1267 unsigned long offset;
1268 int slot_nr; 1268 int slot_nr;
1269 1269
1270 offset = slot_addr - area->vaddr; 1270 offset = slot_addr - area->vaddr;
1271 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1271 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1272 if (slot_nr >= UINSNS_PER_PAGE) 1272 if (slot_nr >= UINSNS_PER_PAGE)
1273 return; 1273 return;
1274 1274
1275 clear_bit(slot_nr, area->bitmap); 1275 clear_bit(slot_nr, area->bitmap);
1276 atomic_dec(&area->slot_count); 1276 atomic_dec(&area->slot_count);
1277 if (waitqueue_active(&area->wq)) 1277 if (waitqueue_active(&area->wq))
1278 wake_up(&area->wq); 1278 wake_up(&area->wq);
1279 1279
1280 tsk->utask->xol_vaddr = 0; 1280 tsk->utask->xol_vaddr = 0;
1281 } 1281 }
1282 } 1282 }
1283 1283
1284 /** 1284 /**
1285 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1285 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1286 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1286 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1287 * instruction. 1287 * instruction.
1288 * Return the address of the breakpoint instruction. 1288 * Return the address of the breakpoint instruction.
1289 */ 1289 */
1290 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1290 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1291 { 1291 {
1292 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1292 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1293 } 1293 }
1294 1294
1295 /* 1295 /*
1296 * Called with no locks held. 1296 * Called with no locks held.
1297 * Called in context of a exiting or a exec-ing thread. 1297 * Called in context of a exiting or a exec-ing thread.
1298 */ 1298 */
1299 void uprobe_free_utask(struct task_struct *t) 1299 void uprobe_free_utask(struct task_struct *t)
1300 { 1300 {
1301 struct uprobe_task *utask = t->utask; 1301 struct uprobe_task *utask = t->utask;
1302 1302
1303 if (!utask) 1303 if (!utask)
1304 return; 1304 return;
1305 1305
1306 if (utask->active_uprobe) 1306 if (utask->active_uprobe)
1307 put_uprobe(utask->active_uprobe); 1307 put_uprobe(utask->active_uprobe);
1308 1308
1309 xol_free_insn_slot(t); 1309 xol_free_insn_slot(t);
1310 kfree(utask); 1310 kfree(utask);
1311 t->utask = NULL; 1311 t->utask = NULL;
1312 } 1312 }
1313 1313
1314 /* 1314 /*
1315 * Called in context of a new clone/fork from copy_process. 1315 * Called in context of a new clone/fork from copy_process.
1316 */ 1316 */
1317 void uprobe_copy_process(struct task_struct *t) 1317 void uprobe_copy_process(struct task_struct *t)
1318 { 1318 {
1319 t->utask = NULL; 1319 t->utask = NULL;
1320 } 1320 }
1321 1321
1322 /* 1322 /*
1323 * Allocate a uprobe_task object for the task. 1323 * Allocate a uprobe_task object for the task.
1324 * Called when the thread hits a breakpoint for the first time. 1324 * Called when the thread hits a breakpoint for the first time.
1325 * 1325 *
1326 * Returns: 1326 * Returns:
1327 * - pointer to new uprobe_task on success 1327 * - pointer to new uprobe_task on success
1328 * - NULL otherwise 1328 * - NULL otherwise
1329 */ 1329 */
1330 static struct uprobe_task *add_utask(void) 1330 static struct uprobe_task *add_utask(void)
1331 { 1331 {
1332 struct uprobe_task *utask; 1332 struct uprobe_task *utask;
1333 1333
1334 utask = kzalloc(sizeof *utask, GFP_KERNEL); 1334 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1335 if (unlikely(!utask)) 1335 if (unlikely(!utask))
1336 return NULL; 1336 return NULL;
1337 1337
1338 current->utask = utask; 1338 current->utask = utask;
1339 return utask; 1339 return utask;
1340 } 1340 }
1341 1341
1342 /* Prepare to single-step probed instruction out of line. */ 1342 /* Prepare to single-step probed instruction out of line. */
1343 static int 1343 static int
1344 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr) 1344 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1345 { 1345 {
1346 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs)) 1346 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1347 return 0; 1347 return 0;
1348 1348
1349 return -EFAULT; 1349 return -EFAULT;
1350 } 1350 }
1351 1351
1352 /* 1352 /*
1353 * If we are singlestepping, then ensure this thread is not connected to 1353 * If we are singlestepping, then ensure this thread is not connected to
1354 * non-fatal signals until completion of singlestep. When xol insn itself 1354 * non-fatal signals until completion of singlestep. When xol insn itself
1355 * triggers the signal, restart the original insn even if the task is 1355 * triggers the signal, restart the original insn even if the task is
1356 * already SIGKILL'ed (since coredump should report the correct ip). This 1356 * already SIGKILL'ed (since coredump should report the correct ip). This
1357 * is even more important if the task has a handler for SIGSEGV/etc, The 1357 * is even more important if the task has a handler for SIGSEGV/etc, The
1358 * _same_ instruction should be repeated again after return from the signal 1358 * _same_ instruction should be repeated again after return from the signal
1359 * handler, and SSTEP can never finish in this case. 1359 * handler, and SSTEP can never finish in this case.
1360 */ 1360 */
1361 bool uprobe_deny_signal(void) 1361 bool uprobe_deny_signal(void)
1362 { 1362 {
1363 struct task_struct *t = current; 1363 struct task_struct *t = current;
1364 struct uprobe_task *utask = t->utask; 1364 struct uprobe_task *utask = t->utask;
1365 1365
1366 if (likely(!utask || !utask->active_uprobe)) 1366 if (likely(!utask || !utask->active_uprobe))
1367 return false; 1367 return false;
1368 1368
1369 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 1369 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1370 1370
1371 if (signal_pending(t)) { 1371 if (signal_pending(t)) {
1372 spin_lock_irq(&t->sighand->siglock); 1372 spin_lock_irq(&t->sighand->siglock);
1373 clear_tsk_thread_flag(t, TIF_SIGPENDING); 1373 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1374 spin_unlock_irq(&t->sighand->siglock); 1374 spin_unlock_irq(&t->sighand->siglock);
1375 1375
1376 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 1376 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1377 utask->state = UTASK_SSTEP_TRAPPED; 1377 utask->state = UTASK_SSTEP_TRAPPED;
1378 set_tsk_thread_flag(t, TIF_UPROBE); 1378 set_tsk_thread_flag(t, TIF_UPROBE);
1379 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1379 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1380 } 1380 }
1381 } 1381 }
1382 1382
1383 return true; 1383 return true;
1384 } 1384 }
1385 1385
1386 /* 1386 /*
1387 * Avoid singlestepping the original instruction if the original instruction 1387 * Avoid singlestepping the original instruction if the original instruction
1388 * is a NOP or can be emulated. 1388 * is a NOP or can be emulated.
1389 */ 1389 */
1390 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs) 1390 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1391 { 1391 {
1392 if (uprobe->flags & UPROBE_SKIP_SSTEP) { 1392 if (uprobe->flags & UPROBE_SKIP_SSTEP) {
1393 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 1393 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1394 return true; 1394 return true;
1395 uprobe->flags &= ~UPROBE_SKIP_SSTEP; 1395 uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1396 } 1396 }
1397 return false; 1397 return false;
1398 } 1398 }
1399 1399
1400 static void mmf_recalc_uprobes(struct mm_struct *mm) 1400 static void mmf_recalc_uprobes(struct mm_struct *mm)
1401 { 1401 {
1402 struct vm_area_struct *vma; 1402 struct vm_area_struct *vma;
1403 1403
1404 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1404 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1405 if (!valid_vma(vma, false)) 1405 if (!valid_vma(vma, false))
1406 continue; 1406 continue;
1407 /* 1407 /*
1408 * This is not strictly accurate, we can race with 1408 * This is not strictly accurate, we can race with
1409 * uprobe_unregister() and see the already removed 1409 * uprobe_unregister() and see the already removed
1410 * uprobe if delete_uprobe() was not yet called. 1410 * uprobe if delete_uprobe() was not yet called.
1411 */ 1411 */
1412 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 1412 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1413 return; 1413 return;
1414 } 1414 }
1415 1415
1416 clear_bit(MMF_HAS_UPROBES, &mm->flags); 1416 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1417 } 1417 }
1418 1418
1419 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 1419 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1420 { 1420 {
1421 struct mm_struct *mm = current->mm; 1421 struct mm_struct *mm = current->mm;
1422 struct uprobe *uprobe = NULL; 1422 struct uprobe *uprobe = NULL;
1423 struct vm_area_struct *vma; 1423 struct vm_area_struct *vma;
1424 1424
1425 down_read(&mm->mmap_sem); 1425 down_read(&mm->mmap_sem);
1426 vma = find_vma(mm, bp_vaddr); 1426 vma = find_vma(mm, bp_vaddr);
1427 if (vma && vma->vm_start <= bp_vaddr) { 1427 if (vma && vma->vm_start <= bp_vaddr) {
1428 if (valid_vma(vma, false)) { 1428 if (valid_vma(vma, false)) {
1429 struct inode *inode = vma->vm_file->f_mapping->host; 1429 struct inode *inode = vma->vm_file->f_mapping->host;
1430 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 1430 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1431 1431
1432 uprobe = find_uprobe(inode, offset); 1432 uprobe = find_uprobe(inode, offset);
1433 } 1433 }
1434 1434
1435 if (!uprobe) 1435 if (!uprobe)
1436 *is_swbp = is_swbp_at_addr(mm, bp_vaddr); 1436 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1437 } else { 1437 } else {
1438 *is_swbp = -EFAULT; 1438 *is_swbp = -EFAULT;
1439 } 1439 }
1440 1440
1441 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 1441 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1442 mmf_recalc_uprobes(mm); 1442 mmf_recalc_uprobes(mm);
1443 up_read(&mm->mmap_sem); 1443 up_read(&mm->mmap_sem);
1444 1444
1445 return uprobe; 1445 return uprobe;
1446 } 1446 }
1447 1447
1448 void __weak arch_uprobe_enable_step(struct arch_uprobe *arch) 1448 void __weak arch_uprobe_enable_step(struct arch_uprobe *arch)
1449 { 1449 {
1450 user_enable_single_step(current); 1450 user_enable_single_step(current);
1451 } 1451 }
1452 1452
1453 void __weak arch_uprobe_disable_step(struct arch_uprobe *arch) 1453 void __weak arch_uprobe_disable_step(struct arch_uprobe *arch)
1454 { 1454 {
1455 user_disable_single_step(current); 1455 user_disable_single_step(current);
1456 } 1456 }
1457 1457
1458 /* 1458 /*
1459 * Run handler and ask thread to singlestep. 1459 * Run handler and ask thread to singlestep.
1460 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 1460 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1461 */ 1461 */
1462 static void handle_swbp(struct pt_regs *regs) 1462 static void handle_swbp(struct pt_regs *regs)
1463 { 1463 {
1464 struct uprobe_task *utask; 1464 struct uprobe_task *utask;
1465 struct uprobe *uprobe; 1465 struct uprobe *uprobe;
1466 unsigned long bp_vaddr; 1466 unsigned long bp_vaddr;
1467 int uninitialized_var(is_swbp); 1467 int uninitialized_var(is_swbp);
1468 1468
1469 bp_vaddr = uprobe_get_swbp_addr(regs); 1469 bp_vaddr = uprobe_get_swbp_addr(regs);
1470 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 1470 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1471 1471
1472 if (!uprobe) { 1472 if (!uprobe) {
1473 if (is_swbp > 0) { 1473 if (is_swbp > 0) {
1474 /* No matching uprobe; signal SIGTRAP. */ 1474 /* No matching uprobe; signal SIGTRAP. */
1475 send_sig(SIGTRAP, current, 0); 1475 send_sig(SIGTRAP, current, 0);
1476 } else { 1476 } else {
1477 /* 1477 /*
1478 * Either we raced with uprobe_unregister() or we can't 1478 * Either we raced with uprobe_unregister() or we can't
1479 * access this memory. The latter is only possible if 1479 * access this memory. The latter is only possible if
1480 * another thread plays with our ->mm. In both cases 1480 * another thread plays with our ->mm. In both cases
1481 * we can simply restart. If this vma was unmapped we 1481 * we can simply restart. If this vma was unmapped we
1482 * can pretend this insn was not executed yet and get 1482 * can pretend this insn was not executed yet and get
1483 * the (correct) SIGSEGV after restart. 1483 * the (correct) SIGSEGV after restart.
1484 */ 1484 */
1485 instruction_pointer_set(regs, bp_vaddr); 1485 instruction_pointer_set(regs, bp_vaddr);
1486 } 1486 }
1487 return; 1487 return;
1488 } 1488 }
1489 1489
1490 utask = current->utask; 1490 utask = current->utask;
1491 if (!utask) { 1491 if (!utask) {
1492 utask = add_utask(); 1492 utask = add_utask();
1493 /* Cannot allocate; re-execute the instruction. */ 1493 /* Cannot allocate; re-execute the instruction. */
1494 if (!utask) 1494 if (!utask)
1495 goto restart; 1495 goto restart;
1496 } 1496 }
1497 1497
1498 handler_chain(uprobe, regs); 1498 handler_chain(uprobe, regs);
1499 if (can_skip_sstep(uprobe, regs)) 1499 if (can_skip_sstep(uprobe, regs))
1500 goto out; 1500 goto out;
1501 1501
1502 if (!pre_ssout(uprobe, regs, bp_vaddr)) { 1502 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1503 arch_uprobe_enable_step(&uprobe->arch); 1503 arch_uprobe_enable_step(&uprobe->arch);
1504 utask->active_uprobe = uprobe; 1504 utask->active_uprobe = uprobe;
1505 utask->state = UTASK_SSTEP; 1505 utask->state = UTASK_SSTEP;
1506 return; 1506 return;
1507 } 1507 }
1508 1508
1509 restart: 1509 restart:
1510 /* 1510 /*
1511 * cannot singlestep; cannot skip instruction; 1511 * cannot singlestep; cannot skip instruction;
1512 * re-execute the instruction. 1512 * re-execute the instruction.
1513 */ 1513 */
1514 instruction_pointer_set(regs, bp_vaddr); 1514 instruction_pointer_set(regs, bp_vaddr);
1515 out: 1515 out:
1516 put_uprobe(uprobe); 1516 put_uprobe(uprobe);
1517 } 1517 }
1518 1518
1519 /* 1519 /*
1520 * Perform required fix-ups and disable singlestep. 1520 * Perform required fix-ups and disable singlestep.
1521 * Allow pending signals to take effect. 1521 * Allow pending signals to take effect.
1522 */ 1522 */
1523 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 1523 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1524 { 1524 {
1525 struct uprobe *uprobe; 1525 struct uprobe *uprobe;
1526 1526
1527 uprobe = utask->active_uprobe; 1527 uprobe = utask->active_uprobe;
1528 if (utask->state == UTASK_SSTEP_ACK) 1528 if (utask->state == UTASK_SSTEP_ACK)
1529 arch_uprobe_post_xol(&uprobe->arch, regs); 1529 arch_uprobe_post_xol(&uprobe->arch, regs);
1530 else if (utask->state == UTASK_SSTEP_TRAPPED) 1530 else if (utask->state == UTASK_SSTEP_TRAPPED)
1531 arch_uprobe_abort_xol(&uprobe->arch, regs); 1531 arch_uprobe_abort_xol(&uprobe->arch, regs);
1532 else 1532 else
1533 WARN_ON_ONCE(1); 1533 WARN_ON_ONCE(1);
1534 1534
1535 arch_uprobe_disable_step(&uprobe->arch); 1535 arch_uprobe_disable_step(&uprobe->arch);
1536 put_uprobe(uprobe); 1536 put_uprobe(uprobe);
1537 utask->active_uprobe = NULL; 1537 utask->active_uprobe = NULL;
1538 utask->state = UTASK_RUNNING; 1538 utask->state = UTASK_RUNNING;
1539 xol_free_insn_slot(current); 1539 xol_free_insn_slot(current);
1540 1540
1541 spin_lock_irq(&current->sighand->siglock); 1541 spin_lock_irq(&current->sighand->siglock);
1542 recalc_sigpending(); /* see uprobe_deny_signal() */ 1542 recalc_sigpending(); /* see uprobe_deny_signal() */
1543 spin_unlock_irq(&current->sighand->siglock); 1543 spin_unlock_irq(&current->sighand->siglock);
1544 } 1544 }
1545 1545
1546 /* 1546 /*
1547 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 1547 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1548 * allows the thread to return from interrupt. After that handle_swbp() 1548 * allows the thread to return from interrupt. After that handle_swbp()
1549 * sets utask->active_uprobe. 1549 * sets utask->active_uprobe.
1550 * 1550 *
1551 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 1551 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1552 * and allows the thread to return from interrupt. 1552 * and allows the thread to return from interrupt.
1553 * 1553 *
1554 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 1554 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1555 * uprobe_notify_resume(). 1555 * uprobe_notify_resume().
1556 */ 1556 */
1557 void uprobe_notify_resume(struct pt_regs *regs) 1557 void uprobe_notify_resume(struct pt_regs *regs)
1558 { 1558 {
1559 struct uprobe_task *utask; 1559 struct uprobe_task *utask;
1560 1560
1561 clear_thread_flag(TIF_UPROBE);
1562
1561 utask = current->utask; 1563 utask = current->utask;
1562 if (utask && utask->active_uprobe) 1564 if (utask && utask->active_uprobe)
1563 handle_singlestep(utask, regs); 1565 handle_singlestep(utask, regs);
1564 else 1566 else
1565 handle_swbp(regs); 1567 handle_swbp(regs);
1566 } 1568 }
1567 1569
1568 /* 1570 /*
1569 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 1571 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1570 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 1572 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1571 */ 1573 */
1572 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 1574 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1573 { 1575 {
1574 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags)) 1576 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
1575 return 0; 1577 return 0;
1576 1578
1577 set_thread_flag(TIF_UPROBE); 1579 set_thread_flag(TIF_UPROBE);
1578 return 1; 1580 return 1;
1579 } 1581 }
1580 1582
1581 /* 1583 /*
1582 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 1584 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1583 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 1585 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1584 */ 1586 */
1585 int uprobe_post_sstep_notifier(struct pt_regs *regs) 1587 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1586 { 1588 {
1587 struct uprobe_task *utask = current->utask; 1589 struct uprobe_task *utask = current->utask;
1588 1590
1589 if (!current->mm || !utask || !utask->active_uprobe) 1591 if (!current->mm || !utask || !utask->active_uprobe)
1590 /* task is currently not uprobed */ 1592 /* task is currently not uprobed */
1591 return 0; 1593 return 0;
1592 1594
1593 utask->state = UTASK_SSTEP_ACK; 1595 utask->state = UTASK_SSTEP_ACK;
1594 set_thread_flag(TIF_UPROBE); 1596 set_thread_flag(TIF_UPROBE);
1595 return 1; 1597 return 1;
1596 } 1598 }
1597 1599
1598 static struct notifier_block uprobe_exception_nb = { 1600 static struct notifier_block uprobe_exception_nb = {
1599 .notifier_call = arch_uprobe_exception_notify, 1601 .notifier_call = arch_uprobe_exception_notify,
1600 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 1602 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1601 }; 1603 };
1602 1604
1603 static int __init init_uprobes(void) 1605 static int __init init_uprobes(void)
1604 { 1606 {
1605 int i; 1607 int i;
1606 1608
1607 for (i = 0; i < UPROBES_HASH_SZ; i++) { 1609 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1608 mutex_init(&uprobes_mutex[i]); 1610 mutex_init(&uprobes_mutex[i]);
1609 mutex_init(&uprobes_mmap_mutex[i]); 1611 mutex_init(&uprobes_mmap_mutex[i]);
1610 } 1612 }
1611 1613
1612 return register_die_notifier(&uprobe_exception_nb); 1614 return register_die_notifier(&uprobe_exception_nb);
1613 } 1615 }
1614 module_init(init_uprobes); 1616 module_init(init_uprobes);
1615 1617
1616 static void __exit exit_uprobes(void) 1618 static void __exit exit_uprobes(void)
1617 { 1619 {
1618 } 1620 }
1619 module_exit(exit_uprobes); 1621 module_exit(exit_uprobes);
1620 1622