Commit e1f8450854d69f0291882804406ea1bab3ca44b4
1 parent
3f2aa307c4
Exists in
master
and in
7 other branches
sched: Fix sched::sched_stat_wait tracepoint field
This weird perf trace output: cc1-9943 [001] 2802.059479616: sched_stat_wait: task: as:9944 wait: 2801938766276 [ns] Is caused by setting one component field of the delta to zero a bit too early. Move it to later. ( Note, this does not affect the NEW_FAIR_SLEEPERS interactivity bug, it's just a reporting bug in essence. ) Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Nikos Chantziaras <realnc@arcor.de> Cc: Jens Axboe <jens.axboe@oracle.com> Cc: Mike Galbraith <efault@gmx.de> LKML-Reference: <4AA93D34.8040500@arcor.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>
Showing 1 changed file with 1 additions and 2 deletions Inline Diff
kernel/sched_fair.c
1 | /* | 1 | /* |
2 | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) | 2 | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) |
3 | * | 3 | * |
4 | * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | 4 | * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> |
5 | * | 5 | * |
6 | * Interactivity improvements by Mike Galbraith | 6 | * Interactivity improvements by Mike Galbraith |
7 | * (C) 2007 Mike Galbraith <efault@gmx.de> | 7 | * (C) 2007 Mike Galbraith <efault@gmx.de> |
8 | * | 8 | * |
9 | * Various enhancements by Dmitry Adamushko. | 9 | * Various enhancements by Dmitry Adamushko. |
10 | * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | 10 | * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> |
11 | * | 11 | * |
12 | * Group scheduling enhancements by Srivatsa Vaddagiri | 12 | * Group scheduling enhancements by Srivatsa Vaddagiri |
13 | * Copyright IBM Corporation, 2007 | 13 | * Copyright IBM Corporation, 2007 |
14 | * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | 14 | * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> |
15 | * | 15 | * |
16 | * Scaled math optimizations by Thomas Gleixner | 16 | * Scaled math optimizations by Thomas Gleixner |
17 | * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | 17 | * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> |
18 | * | 18 | * |
19 | * Adaptive scheduling granularity, math enhancements by Peter Zijlstra | 19 | * Adaptive scheduling granularity, math enhancements by Peter Zijlstra |
20 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | 20 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> |
21 | */ | 21 | */ |
22 | 22 | ||
23 | #include <linux/latencytop.h> | 23 | #include <linux/latencytop.h> |
24 | 24 | ||
25 | /* | 25 | /* |
26 | * Targeted preemption latency for CPU-bound tasks: | 26 | * Targeted preemption latency for CPU-bound tasks: |
27 | * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds) | 27 | * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds) |
28 | * | 28 | * |
29 | * NOTE: this latency value is not the same as the concept of | 29 | * NOTE: this latency value is not the same as the concept of |
30 | * 'timeslice length' - timeslices in CFS are of variable length | 30 | * 'timeslice length' - timeslices in CFS are of variable length |
31 | * and have no persistent notion like in traditional, time-slice | 31 | * and have no persistent notion like in traditional, time-slice |
32 | * based scheduling concepts. | 32 | * based scheduling concepts. |
33 | * | 33 | * |
34 | * (to see the precise effective timeslice length of your workload, | 34 | * (to see the precise effective timeslice length of your workload, |
35 | * run vmstat and monitor the context-switches (cs) field) | 35 | * run vmstat and monitor the context-switches (cs) field) |
36 | */ | 36 | */ |
37 | unsigned int sysctl_sched_latency = 5000000ULL; | 37 | unsigned int sysctl_sched_latency = 5000000ULL; |
38 | 38 | ||
39 | /* | 39 | /* |
40 | * Minimal preemption granularity for CPU-bound tasks: | 40 | * Minimal preemption granularity for CPU-bound tasks: |
41 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) | 41 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) |
42 | */ | 42 | */ |
43 | unsigned int sysctl_sched_min_granularity = 1000000ULL; | 43 | unsigned int sysctl_sched_min_granularity = 1000000ULL; |
44 | 44 | ||
45 | /* | 45 | /* |
46 | * is kept at sysctl_sched_latency / sysctl_sched_min_granularity | 46 | * is kept at sysctl_sched_latency / sysctl_sched_min_granularity |
47 | */ | 47 | */ |
48 | static unsigned int sched_nr_latency = 5; | 48 | static unsigned int sched_nr_latency = 5; |
49 | 49 | ||
50 | /* | 50 | /* |
51 | * After fork, child runs first. If set to 0 (default) then | 51 | * After fork, child runs first. If set to 0 (default) then |
52 | * parent will (try to) run first. | 52 | * parent will (try to) run first. |
53 | */ | 53 | */ |
54 | unsigned int sysctl_sched_child_runs_first __read_mostly; | 54 | unsigned int sysctl_sched_child_runs_first __read_mostly; |
55 | 55 | ||
56 | /* | 56 | /* |
57 | * sys_sched_yield() compat mode | 57 | * sys_sched_yield() compat mode |
58 | * | 58 | * |
59 | * This option switches the agressive yield implementation of the | 59 | * This option switches the agressive yield implementation of the |
60 | * old scheduler back on. | 60 | * old scheduler back on. |
61 | */ | 61 | */ |
62 | unsigned int __read_mostly sysctl_sched_compat_yield; | 62 | unsigned int __read_mostly sysctl_sched_compat_yield; |
63 | 63 | ||
64 | /* | 64 | /* |
65 | * SCHED_OTHER wake-up granularity. | 65 | * SCHED_OTHER wake-up granularity. |
66 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) | 66 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) |
67 | * | 67 | * |
68 | * This option delays the preemption effects of decoupled workloads | 68 | * This option delays the preemption effects of decoupled workloads |
69 | * and reduces their over-scheduling. Synchronous workloads will still | 69 | * and reduces their over-scheduling. Synchronous workloads will still |
70 | * have immediate wakeup/sleep latencies. | 70 | * have immediate wakeup/sleep latencies. |
71 | */ | 71 | */ |
72 | unsigned int sysctl_sched_wakeup_granularity = 1000000UL; | 72 | unsigned int sysctl_sched_wakeup_granularity = 1000000UL; |
73 | 73 | ||
74 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; | 74 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; |
75 | 75 | ||
76 | static const struct sched_class fair_sched_class; | 76 | static const struct sched_class fair_sched_class; |
77 | 77 | ||
78 | /************************************************************** | 78 | /************************************************************** |
79 | * CFS operations on generic schedulable entities: | 79 | * CFS operations on generic schedulable entities: |
80 | */ | 80 | */ |
81 | 81 | ||
82 | #ifdef CONFIG_FAIR_GROUP_SCHED | 82 | #ifdef CONFIG_FAIR_GROUP_SCHED |
83 | 83 | ||
84 | /* cpu runqueue to which this cfs_rq is attached */ | 84 | /* cpu runqueue to which this cfs_rq is attached */ |
85 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | 85 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) |
86 | { | 86 | { |
87 | return cfs_rq->rq; | 87 | return cfs_rq->rq; |
88 | } | 88 | } |
89 | 89 | ||
90 | /* An entity is a task if it doesn't "own" a runqueue */ | 90 | /* An entity is a task if it doesn't "own" a runqueue */ |
91 | #define entity_is_task(se) (!se->my_q) | 91 | #define entity_is_task(se) (!se->my_q) |
92 | 92 | ||
93 | static inline struct task_struct *task_of(struct sched_entity *se) | 93 | static inline struct task_struct *task_of(struct sched_entity *se) |
94 | { | 94 | { |
95 | #ifdef CONFIG_SCHED_DEBUG | 95 | #ifdef CONFIG_SCHED_DEBUG |
96 | WARN_ON_ONCE(!entity_is_task(se)); | 96 | WARN_ON_ONCE(!entity_is_task(se)); |
97 | #endif | 97 | #endif |
98 | return container_of(se, struct task_struct, se); | 98 | return container_of(se, struct task_struct, se); |
99 | } | 99 | } |
100 | 100 | ||
101 | /* Walk up scheduling entities hierarchy */ | 101 | /* Walk up scheduling entities hierarchy */ |
102 | #define for_each_sched_entity(se) \ | 102 | #define for_each_sched_entity(se) \ |
103 | for (; se; se = se->parent) | 103 | for (; se; se = se->parent) |
104 | 104 | ||
105 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | 105 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) |
106 | { | 106 | { |
107 | return p->se.cfs_rq; | 107 | return p->se.cfs_rq; |
108 | } | 108 | } |
109 | 109 | ||
110 | /* runqueue on which this entity is (to be) queued */ | 110 | /* runqueue on which this entity is (to be) queued */ |
111 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | 111 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) |
112 | { | 112 | { |
113 | return se->cfs_rq; | 113 | return se->cfs_rq; |
114 | } | 114 | } |
115 | 115 | ||
116 | /* runqueue "owned" by this group */ | 116 | /* runqueue "owned" by this group */ |
117 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | 117 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) |
118 | { | 118 | { |
119 | return grp->my_q; | 119 | return grp->my_q; |
120 | } | 120 | } |
121 | 121 | ||
122 | /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on | 122 | /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on |
123 | * another cpu ('this_cpu') | 123 | * another cpu ('this_cpu') |
124 | */ | 124 | */ |
125 | static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) | 125 | static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) |
126 | { | 126 | { |
127 | return cfs_rq->tg->cfs_rq[this_cpu]; | 127 | return cfs_rq->tg->cfs_rq[this_cpu]; |
128 | } | 128 | } |
129 | 129 | ||
130 | /* Iterate thr' all leaf cfs_rq's on a runqueue */ | 130 | /* Iterate thr' all leaf cfs_rq's on a runqueue */ |
131 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | 131 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ |
132 | list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) | 132 | list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) |
133 | 133 | ||
134 | /* Do the two (enqueued) entities belong to the same group ? */ | 134 | /* Do the two (enqueued) entities belong to the same group ? */ |
135 | static inline int | 135 | static inline int |
136 | is_same_group(struct sched_entity *se, struct sched_entity *pse) | 136 | is_same_group(struct sched_entity *se, struct sched_entity *pse) |
137 | { | 137 | { |
138 | if (se->cfs_rq == pse->cfs_rq) | 138 | if (se->cfs_rq == pse->cfs_rq) |
139 | return 1; | 139 | return 1; |
140 | 140 | ||
141 | return 0; | 141 | return 0; |
142 | } | 142 | } |
143 | 143 | ||
144 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | 144 | static inline struct sched_entity *parent_entity(struct sched_entity *se) |
145 | { | 145 | { |
146 | return se->parent; | 146 | return se->parent; |
147 | } | 147 | } |
148 | 148 | ||
149 | /* return depth at which a sched entity is present in the hierarchy */ | 149 | /* return depth at which a sched entity is present in the hierarchy */ |
150 | static inline int depth_se(struct sched_entity *se) | 150 | static inline int depth_se(struct sched_entity *se) |
151 | { | 151 | { |
152 | int depth = 0; | 152 | int depth = 0; |
153 | 153 | ||
154 | for_each_sched_entity(se) | 154 | for_each_sched_entity(se) |
155 | depth++; | 155 | depth++; |
156 | 156 | ||
157 | return depth; | 157 | return depth; |
158 | } | 158 | } |
159 | 159 | ||
160 | static void | 160 | static void |
161 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | 161 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) |
162 | { | 162 | { |
163 | int se_depth, pse_depth; | 163 | int se_depth, pse_depth; |
164 | 164 | ||
165 | /* | 165 | /* |
166 | * preemption test can be made between sibling entities who are in the | 166 | * preemption test can be made between sibling entities who are in the |
167 | * same cfs_rq i.e who have a common parent. Walk up the hierarchy of | 167 | * same cfs_rq i.e who have a common parent. Walk up the hierarchy of |
168 | * both tasks until we find their ancestors who are siblings of common | 168 | * both tasks until we find their ancestors who are siblings of common |
169 | * parent. | 169 | * parent. |
170 | */ | 170 | */ |
171 | 171 | ||
172 | /* First walk up until both entities are at same depth */ | 172 | /* First walk up until both entities are at same depth */ |
173 | se_depth = depth_se(*se); | 173 | se_depth = depth_se(*se); |
174 | pse_depth = depth_se(*pse); | 174 | pse_depth = depth_se(*pse); |
175 | 175 | ||
176 | while (se_depth > pse_depth) { | 176 | while (se_depth > pse_depth) { |
177 | se_depth--; | 177 | se_depth--; |
178 | *se = parent_entity(*se); | 178 | *se = parent_entity(*se); |
179 | } | 179 | } |
180 | 180 | ||
181 | while (pse_depth > se_depth) { | 181 | while (pse_depth > se_depth) { |
182 | pse_depth--; | 182 | pse_depth--; |
183 | *pse = parent_entity(*pse); | 183 | *pse = parent_entity(*pse); |
184 | } | 184 | } |
185 | 185 | ||
186 | while (!is_same_group(*se, *pse)) { | 186 | while (!is_same_group(*se, *pse)) { |
187 | *se = parent_entity(*se); | 187 | *se = parent_entity(*se); |
188 | *pse = parent_entity(*pse); | 188 | *pse = parent_entity(*pse); |
189 | } | 189 | } |
190 | } | 190 | } |
191 | 191 | ||
192 | #else /* !CONFIG_FAIR_GROUP_SCHED */ | 192 | #else /* !CONFIG_FAIR_GROUP_SCHED */ |
193 | 193 | ||
194 | static inline struct task_struct *task_of(struct sched_entity *se) | 194 | static inline struct task_struct *task_of(struct sched_entity *se) |
195 | { | 195 | { |
196 | return container_of(se, struct task_struct, se); | 196 | return container_of(se, struct task_struct, se); |
197 | } | 197 | } |
198 | 198 | ||
199 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) | 199 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) |
200 | { | 200 | { |
201 | return container_of(cfs_rq, struct rq, cfs); | 201 | return container_of(cfs_rq, struct rq, cfs); |
202 | } | 202 | } |
203 | 203 | ||
204 | #define entity_is_task(se) 1 | 204 | #define entity_is_task(se) 1 |
205 | 205 | ||
206 | #define for_each_sched_entity(se) \ | 206 | #define for_each_sched_entity(se) \ |
207 | for (; se; se = NULL) | 207 | for (; se; se = NULL) |
208 | 208 | ||
209 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) | 209 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) |
210 | { | 210 | { |
211 | return &task_rq(p)->cfs; | 211 | return &task_rq(p)->cfs; |
212 | } | 212 | } |
213 | 213 | ||
214 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) | 214 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) |
215 | { | 215 | { |
216 | struct task_struct *p = task_of(se); | 216 | struct task_struct *p = task_of(se); |
217 | struct rq *rq = task_rq(p); | 217 | struct rq *rq = task_rq(p); |
218 | 218 | ||
219 | return &rq->cfs; | 219 | return &rq->cfs; |
220 | } | 220 | } |
221 | 221 | ||
222 | /* runqueue "owned" by this group */ | 222 | /* runqueue "owned" by this group */ |
223 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) | 223 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) |
224 | { | 224 | { |
225 | return NULL; | 225 | return NULL; |
226 | } | 226 | } |
227 | 227 | ||
228 | static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) | 228 | static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) |
229 | { | 229 | { |
230 | return &cpu_rq(this_cpu)->cfs; | 230 | return &cpu_rq(this_cpu)->cfs; |
231 | } | 231 | } |
232 | 232 | ||
233 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ | 233 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ |
234 | for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) | 234 | for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) |
235 | 235 | ||
236 | static inline int | 236 | static inline int |
237 | is_same_group(struct sched_entity *se, struct sched_entity *pse) | 237 | is_same_group(struct sched_entity *se, struct sched_entity *pse) |
238 | { | 238 | { |
239 | return 1; | 239 | return 1; |
240 | } | 240 | } |
241 | 241 | ||
242 | static inline struct sched_entity *parent_entity(struct sched_entity *se) | 242 | static inline struct sched_entity *parent_entity(struct sched_entity *se) |
243 | { | 243 | { |
244 | return NULL; | 244 | return NULL; |
245 | } | 245 | } |
246 | 246 | ||
247 | static inline void | 247 | static inline void |
248 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) | 248 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) |
249 | { | 249 | { |
250 | } | 250 | } |
251 | 251 | ||
252 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 252 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
253 | 253 | ||
254 | 254 | ||
255 | /************************************************************** | 255 | /************************************************************** |
256 | * Scheduling class tree data structure manipulation methods: | 256 | * Scheduling class tree data structure manipulation methods: |
257 | */ | 257 | */ |
258 | 258 | ||
259 | static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime) | 259 | static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime) |
260 | { | 260 | { |
261 | s64 delta = (s64)(vruntime - min_vruntime); | 261 | s64 delta = (s64)(vruntime - min_vruntime); |
262 | if (delta > 0) | 262 | if (delta > 0) |
263 | min_vruntime = vruntime; | 263 | min_vruntime = vruntime; |
264 | 264 | ||
265 | return min_vruntime; | 265 | return min_vruntime; |
266 | } | 266 | } |
267 | 267 | ||
268 | static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) | 268 | static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) |
269 | { | 269 | { |
270 | s64 delta = (s64)(vruntime - min_vruntime); | 270 | s64 delta = (s64)(vruntime - min_vruntime); |
271 | if (delta < 0) | 271 | if (delta < 0) |
272 | min_vruntime = vruntime; | 272 | min_vruntime = vruntime; |
273 | 273 | ||
274 | return min_vruntime; | 274 | return min_vruntime; |
275 | } | 275 | } |
276 | 276 | ||
277 | static inline int entity_before(struct sched_entity *a, | 277 | static inline int entity_before(struct sched_entity *a, |
278 | struct sched_entity *b) | 278 | struct sched_entity *b) |
279 | { | 279 | { |
280 | return (s64)(a->vruntime - b->vruntime) < 0; | 280 | return (s64)(a->vruntime - b->vruntime) < 0; |
281 | } | 281 | } |
282 | 282 | ||
283 | static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) | 283 | static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) |
284 | { | 284 | { |
285 | return se->vruntime - cfs_rq->min_vruntime; | 285 | return se->vruntime - cfs_rq->min_vruntime; |
286 | } | 286 | } |
287 | 287 | ||
288 | static void update_min_vruntime(struct cfs_rq *cfs_rq) | 288 | static void update_min_vruntime(struct cfs_rq *cfs_rq) |
289 | { | 289 | { |
290 | u64 vruntime = cfs_rq->min_vruntime; | 290 | u64 vruntime = cfs_rq->min_vruntime; |
291 | 291 | ||
292 | if (cfs_rq->curr) | 292 | if (cfs_rq->curr) |
293 | vruntime = cfs_rq->curr->vruntime; | 293 | vruntime = cfs_rq->curr->vruntime; |
294 | 294 | ||
295 | if (cfs_rq->rb_leftmost) { | 295 | if (cfs_rq->rb_leftmost) { |
296 | struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, | 296 | struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, |
297 | struct sched_entity, | 297 | struct sched_entity, |
298 | run_node); | 298 | run_node); |
299 | 299 | ||
300 | if (!cfs_rq->curr) | 300 | if (!cfs_rq->curr) |
301 | vruntime = se->vruntime; | 301 | vruntime = se->vruntime; |
302 | else | 302 | else |
303 | vruntime = min_vruntime(vruntime, se->vruntime); | 303 | vruntime = min_vruntime(vruntime, se->vruntime); |
304 | } | 304 | } |
305 | 305 | ||
306 | cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); | 306 | cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); |
307 | } | 307 | } |
308 | 308 | ||
309 | /* | 309 | /* |
310 | * Enqueue an entity into the rb-tree: | 310 | * Enqueue an entity into the rb-tree: |
311 | */ | 311 | */ |
312 | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 312 | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
313 | { | 313 | { |
314 | struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; | 314 | struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; |
315 | struct rb_node *parent = NULL; | 315 | struct rb_node *parent = NULL; |
316 | struct sched_entity *entry; | 316 | struct sched_entity *entry; |
317 | s64 key = entity_key(cfs_rq, se); | 317 | s64 key = entity_key(cfs_rq, se); |
318 | int leftmost = 1; | 318 | int leftmost = 1; |
319 | 319 | ||
320 | /* | 320 | /* |
321 | * Find the right place in the rbtree: | 321 | * Find the right place in the rbtree: |
322 | */ | 322 | */ |
323 | while (*link) { | 323 | while (*link) { |
324 | parent = *link; | 324 | parent = *link; |
325 | entry = rb_entry(parent, struct sched_entity, run_node); | 325 | entry = rb_entry(parent, struct sched_entity, run_node); |
326 | /* | 326 | /* |
327 | * We dont care about collisions. Nodes with | 327 | * We dont care about collisions. Nodes with |
328 | * the same key stay together. | 328 | * the same key stay together. |
329 | */ | 329 | */ |
330 | if (key < entity_key(cfs_rq, entry)) { | 330 | if (key < entity_key(cfs_rq, entry)) { |
331 | link = &parent->rb_left; | 331 | link = &parent->rb_left; |
332 | } else { | 332 | } else { |
333 | link = &parent->rb_right; | 333 | link = &parent->rb_right; |
334 | leftmost = 0; | 334 | leftmost = 0; |
335 | } | 335 | } |
336 | } | 336 | } |
337 | 337 | ||
338 | /* | 338 | /* |
339 | * Maintain a cache of leftmost tree entries (it is frequently | 339 | * Maintain a cache of leftmost tree entries (it is frequently |
340 | * used): | 340 | * used): |
341 | */ | 341 | */ |
342 | if (leftmost) | 342 | if (leftmost) |
343 | cfs_rq->rb_leftmost = &se->run_node; | 343 | cfs_rq->rb_leftmost = &se->run_node; |
344 | 344 | ||
345 | rb_link_node(&se->run_node, parent, link); | 345 | rb_link_node(&se->run_node, parent, link); |
346 | rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); | 346 | rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); |
347 | } | 347 | } |
348 | 348 | ||
349 | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 349 | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
350 | { | 350 | { |
351 | if (cfs_rq->rb_leftmost == &se->run_node) { | 351 | if (cfs_rq->rb_leftmost == &se->run_node) { |
352 | struct rb_node *next_node; | 352 | struct rb_node *next_node; |
353 | 353 | ||
354 | next_node = rb_next(&se->run_node); | 354 | next_node = rb_next(&se->run_node); |
355 | cfs_rq->rb_leftmost = next_node; | 355 | cfs_rq->rb_leftmost = next_node; |
356 | } | 356 | } |
357 | 357 | ||
358 | rb_erase(&se->run_node, &cfs_rq->tasks_timeline); | 358 | rb_erase(&se->run_node, &cfs_rq->tasks_timeline); |
359 | } | 359 | } |
360 | 360 | ||
361 | static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq) | 361 | static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq) |
362 | { | 362 | { |
363 | struct rb_node *left = cfs_rq->rb_leftmost; | 363 | struct rb_node *left = cfs_rq->rb_leftmost; |
364 | 364 | ||
365 | if (!left) | 365 | if (!left) |
366 | return NULL; | 366 | return NULL; |
367 | 367 | ||
368 | return rb_entry(left, struct sched_entity, run_node); | 368 | return rb_entry(left, struct sched_entity, run_node); |
369 | } | 369 | } |
370 | 370 | ||
371 | static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) | 371 | static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) |
372 | { | 372 | { |
373 | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); | 373 | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); |
374 | 374 | ||
375 | if (!last) | 375 | if (!last) |
376 | return NULL; | 376 | return NULL; |
377 | 377 | ||
378 | return rb_entry(last, struct sched_entity, run_node); | 378 | return rb_entry(last, struct sched_entity, run_node); |
379 | } | 379 | } |
380 | 380 | ||
381 | /************************************************************** | 381 | /************************************************************** |
382 | * Scheduling class statistics methods: | 382 | * Scheduling class statistics methods: |
383 | */ | 383 | */ |
384 | 384 | ||
385 | #ifdef CONFIG_SCHED_DEBUG | 385 | #ifdef CONFIG_SCHED_DEBUG |
386 | int sched_nr_latency_handler(struct ctl_table *table, int write, | 386 | int sched_nr_latency_handler(struct ctl_table *table, int write, |
387 | struct file *filp, void __user *buffer, size_t *lenp, | 387 | struct file *filp, void __user *buffer, size_t *lenp, |
388 | loff_t *ppos) | 388 | loff_t *ppos) |
389 | { | 389 | { |
390 | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 390 | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); |
391 | 391 | ||
392 | if (ret || !write) | 392 | if (ret || !write) |
393 | return ret; | 393 | return ret; |
394 | 394 | ||
395 | sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, | 395 | sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, |
396 | sysctl_sched_min_granularity); | 396 | sysctl_sched_min_granularity); |
397 | 397 | ||
398 | return 0; | 398 | return 0; |
399 | } | 399 | } |
400 | #endif | 400 | #endif |
401 | 401 | ||
402 | /* | 402 | /* |
403 | * delta /= w | 403 | * delta /= w |
404 | */ | 404 | */ |
405 | static inline unsigned long | 405 | static inline unsigned long |
406 | calc_delta_fair(unsigned long delta, struct sched_entity *se) | 406 | calc_delta_fair(unsigned long delta, struct sched_entity *se) |
407 | { | 407 | { |
408 | if (unlikely(se->load.weight != NICE_0_LOAD)) | 408 | if (unlikely(se->load.weight != NICE_0_LOAD)) |
409 | delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); | 409 | delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); |
410 | 410 | ||
411 | return delta; | 411 | return delta; |
412 | } | 412 | } |
413 | 413 | ||
414 | /* | 414 | /* |
415 | * The idea is to set a period in which each task runs once. | 415 | * The idea is to set a period in which each task runs once. |
416 | * | 416 | * |
417 | * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch | 417 | * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch |
418 | * this period because otherwise the slices get too small. | 418 | * this period because otherwise the slices get too small. |
419 | * | 419 | * |
420 | * p = (nr <= nl) ? l : l*nr/nl | 420 | * p = (nr <= nl) ? l : l*nr/nl |
421 | */ | 421 | */ |
422 | static u64 __sched_period(unsigned long nr_running) | 422 | static u64 __sched_period(unsigned long nr_running) |
423 | { | 423 | { |
424 | u64 period = sysctl_sched_latency; | 424 | u64 period = sysctl_sched_latency; |
425 | unsigned long nr_latency = sched_nr_latency; | 425 | unsigned long nr_latency = sched_nr_latency; |
426 | 426 | ||
427 | if (unlikely(nr_running > nr_latency)) { | 427 | if (unlikely(nr_running > nr_latency)) { |
428 | period = sysctl_sched_min_granularity; | 428 | period = sysctl_sched_min_granularity; |
429 | period *= nr_running; | 429 | period *= nr_running; |
430 | } | 430 | } |
431 | 431 | ||
432 | return period; | 432 | return period; |
433 | } | 433 | } |
434 | 434 | ||
435 | /* | 435 | /* |
436 | * We calculate the wall-time slice from the period by taking a part | 436 | * We calculate the wall-time slice from the period by taking a part |
437 | * proportional to the weight. | 437 | * proportional to the weight. |
438 | * | 438 | * |
439 | * s = p*P[w/rw] | 439 | * s = p*P[w/rw] |
440 | */ | 440 | */ |
441 | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) | 441 | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) |
442 | { | 442 | { |
443 | u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); | 443 | u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); |
444 | 444 | ||
445 | for_each_sched_entity(se) { | 445 | for_each_sched_entity(se) { |
446 | struct load_weight *load; | 446 | struct load_weight *load; |
447 | struct load_weight lw; | 447 | struct load_weight lw; |
448 | 448 | ||
449 | cfs_rq = cfs_rq_of(se); | 449 | cfs_rq = cfs_rq_of(se); |
450 | load = &cfs_rq->load; | 450 | load = &cfs_rq->load; |
451 | 451 | ||
452 | if (unlikely(!se->on_rq)) { | 452 | if (unlikely(!se->on_rq)) { |
453 | lw = cfs_rq->load; | 453 | lw = cfs_rq->load; |
454 | 454 | ||
455 | update_load_add(&lw, se->load.weight); | 455 | update_load_add(&lw, se->load.weight); |
456 | load = &lw; | 456 | load = &lw; |
457 | } | 457 | } |
458 | slice = calc_delta_mine(slice, se->load.weight, load); | 458 | slice = calc_delta_mine(slice, se->load.weight, load); |
459 | } | 459 | } |
460 | return slice; | 460 | return slice; |
461 | } | 461 | } |
462 | 462 | ||
463 | /* | 463 | /* |
464 | * We calculate the vruntime slice of a to be inserted task | 464 | * We calculate the vruntime slice of a to be inserted task |
465 | * | 465 | * |
466 | * vs = s/w | 466 | * vs = s/w |
467 | */ | 467 | */ |
468 | static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) | 468 | static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) |
469 | { | 469 | { |
470 | return calc_delta_fair(sched_slice(cfs_rq, se), se); | 470 | return calc_delta_fair(sched_slice(cfs_rq, se), se); |
471 | } | 471 | } |
472 | 472 | ||
473 | /* | 473 | /* |
474 | * Update the current task's runtime statistics. Skip current tasks that | 474 | * Update the current task's runtime statistics. Skip current tasks that |
475 | * are not in our scheduling class. | 475 | * are not in our scheduling class. |
476 | */ | 476 | */ |
477 | static inline void | 477 | static inline void |
478 | __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, | 478 | __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, |
479 | unsigned long delta_exec) | 479 | unsigned long delta_exec) |
480 | { | 480 | { |
481 | unsigned long delta_exec_weighted; | 481 | unsigned long delta_exec_weighted; |
482 | 482 | ||
483 | schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max)); | 483 | schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max)); |
484 | 484 | ||
485 | curr->sum_exec_runtime += delta_exec; | 485 | curr->sum_exec_runtime += delta_exec; |
486 | schedstat_add(cfs_rq, exec_clock, delta_exec); | 486 | schedstat_add(cfs_rq, exec_clock, delta_exec); |
487 | delta_exec_weighted = calc_delta_fair(delta_exec, curr); | 487 | delta_exec_weighted = calc_delta_fair(delta_exec, curr); |
488 | curr->vruntime += delta_exec_weighted; | 488 | curr->vruntime += delta_exec_weighted; |
489 | update_min_vruntime(cfs_rq); | 489 | update_min_vruntime(cfs_rq); |
490 | } | 490 | } |
491 | 491 | ||
492 | static void update_curr(struct cfs_rq *cfs_rq) | 492 | static void update_curr(struct cfs_rq *cfs_rq) |
493 | { | 493 | { |
494 | struct sched_entity *curr = cfs_rq->curr; | 494 | struct sched_entity *curr = cfs_rq->curr; |
495 | u64 now = rq_of(cfs_rq)->clock; | 495 | u64 now = rq_of(cfs_rq)->clock; |
496 | unsigned long delta_exec; | 496 | unsigned long delta_exec; |
497 | 497 | ||
498 | if (unlikely(!curr)) | 498 | if (unlikely(!curr)) |
499 | return; | 499 | return; |
500 | 500 | ||
501 | /* | 501 | /* |
502 | * Get the amount of time the current task was running | 502 | * Get the amount of time the current task was running |
503 | * since the last time we changed load (this cannot | 503 | * since the last time we changed load (this cannot |
504 | * overflow on 32 bits): | 504 | * overflow on 32 bits): |
505 | */ | 505 | */ |
506 | delta_exec = (unsigned long)(now - curr->exec_start); | 506 | delta_exec = (unsigned long)(now - curr->exec_start); |
507 | if (!delta_exec) | 507 | if (!delta_exec) |
508 | return; | 508 | return; |
509 | 509 | ||
510 | __update_curr(cfs_rq, curr, delta_exec); | 510 | __update_curr(cfs_rq, curr, delta_exec); |
511 | curr->exec_start = now; | 511 | curr->exec_start = now; |
512 | 512 | ||
513 | if (entity_is_task(curr)) { | 513 | if (entity_is_task(curr)) { |
514 | struct task_struct *curtask = task_of(curr); | 514 | struct task_struct *curtask = task_of(curr); |
515 | 515 | ||
516 | cpuacct_charge(curtask, delta_exec); | 516 | cpuacct_charge(curtask, delta_exec); |
517 | account_group_exec_runtime(curtask, delta_exec); | 517 | account_group_exec_runtime(curtask, delta_exec); |
518 | } | 518 | } |
519 | } | 519 | } |
520 | 520 | ||
521 | static inline void | 521 | static inline void |
522 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 522 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
523 | { | 523 | { |
524 | schedstat_set(se->wait_start, rq_of(cfs_rq)->clock); | 524 | schedstat_set(se->wait_start, rq_of(cfs_rq)->clock); |
525 | } | 525 | } |
526 | 526 | ||
527 | /* | 527 | /* |
528 | * Task is being enqueued - update stats: | 528 | * Task is being enqueued - update stats: |
529 | */ | 529 | */ |
530 | static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 530 | static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) |
531 | { | 531 | { |
532 | /* | 532 | /* |
533 | * Are we enqueueing a waiting task? (for current tasks | 533 | * Are we enqueueing a waiting task? (for current tasks |
534 | * a dequeue/enqueue event is a NOP) | 534 | * a dequeue/enqueue event is a NOP) |
535 | */ | 535 | */ |
536 | if (se != cfs_rq->curr) | 536 | if (se != cfs_rq->curr) |
537 | update_stats_wait_start(cfs_rq, se); | 537 | update_stats_wait_start(cfs_rq, se); |
538 | } | 538 | } |
539 | 539 | ||
540 | static void | 540 | static void |
541 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) | 541 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) |
542 | { | 542 | { |
543 | schedstat_set(se->wait_max, max(se->wait_max, | 543 | schedstat_set(se->wait_max, max(se->wait_max, |
544 | rq_of(cfs_rq)->clock - se->wait_start)); | 544 | rq_of(cfs_rq)->clock - se->wait_start)); |
545 | schedstat_set(se->wait_count, se->wait_count + 1); | 545 | schedstat_set(se->wait_count, se->wait_count + 1); |
546 | schedstat_set(se->wait_sum, se->wait_sum + | 546 | schedstat_set(se->wait_sum, se->wait_sum + |
547 | rq_of(cfs_rq)->clock - se->wait_start); | 547 | rq_of(cfs_rq)->clock - se->wait_start); |
548 | schedstat_set(se->wait_start, 0); | ||
549 | |||
550 | #ifdef CONFIG_SCHEDSTATS | 548 | #ifdef CONFIG_SCHEDSTATS |
551 | if (entity_is_task(se)) { | 549 | if (entity_is_task(se)) { |
552 | trace_sched_stat_wait(task_of(se), | 550 | trace_sched_stat_wait(task_of(se), |
553 | rq_of(cfs_rq)->clock - se->wait_start); | 551 | rq_of(cfs_rq)->clock - se->wait_start); |
554 | } | 552 | } |
555 | #endif | 553 | #endif |
554 | schedstat_set(se->wait_start, 0); | ||
556 | } | 555 | } |
557 | 556 | ||
558 | static inline void | 557 | static inline void |
559 | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 558 | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) |
560 | { | 559 | { |
561 | /* | 560 | /* |
562 | * Mark the end of the wait period if dequeueing a | 561 | * Mark the end of the wait period if dequeueing a |
563 | * waiting task: | 562 | * waiting task: |
564 | */ | 563 | */ |
565 | if (se != cfs_rq->curr) | 564 | if (se != cfs_rq->curr) |
566 | update_stats_wait_end(cfs_rq, se); | 565 | update_stats_wait_end(cfs_rq, se); |
567 | } | 566 | } |
568 | 567 | ||
569 | /* | 568 | /* |
570 | * We are picking a new current task - update its stats: | 569 | * We are picking a new current task - update its stats: |
571 | */ | 570 | */ |
572 | static inline void | 571 | static inline void |
573 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 572 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
574 | { | 573 | { |
575 | /* | 574 | /* |
576 | * We are starting a new run period: | 575 | * We are starting a new run period: |
577 | */ | 576 | */ |
578 | se->exec_start = rq_of(cfs_rq)->clock; | 577 | se->exec_start = rq_of(cfs_rq)->clock; |
579 | } | 578 | } |
580 | 579 | ||
581 | /************************************************** | 580 | /************************************************** |
582 | * Scheduling class queueing methods: | 581 | * Scheduling class queueing methods: |
583 | */ | 582 | */ |
584 | 583 | ||
585 | #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED | 584 | #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED |
586 | static void | 585 | static void |
587 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | 586 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) |
588 | { | 587 | { |
589 | cfs_rq->task_weight += weight; | 588 | cfs_rq->task_weight += weight; |
590 | } | 589 | } |
591 | #else | 590 | #else |
592 | static inline void | 591 | static inline void |
593 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) | 592 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) |
594 | { | 593 | { |
595 | } | 594 | } |
596 | #endif | 595 | #endif |
597 | 596 | ||
598 | static void | 597 | static void |
599 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 598 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) |
600 | { | 599 | { |
601 | update_load_add(&cfs_rq->load, se->load.weight); | 600 | update_load_add(&cfs_rq->load, se->load.weight); |
602 | if (!parent_entity(se)) | 601 | if (!parent_entity(se)) |
603 | inc_cpu_load(rq_of(cfs_rq), se->load.weight); | 602 | inc_cpu_load(rq_of(cfs_rq), se->load.weight); |
604 | if (entity_is_task(se)) { | 603 | if (entity_is_task(se)) { |
605 | add_cfs_task_weight(cfs_rq, se->load.weight); | 604 | add_cfs_task_weight(cfs_rq, se->load.weight); |
606 | list_add(&se->group_node, &cfs_rq->tasks); | 605 | list_add(&se->group_node, &cfs_rq->tasks); |
607 | } | 606 | } |
608 | cfs_rq->nr_running++; | 607 | cfs_rq->nr_running++; |
609 | se->on_rq = 1; | 608 | se->on_rq = 1; |
610 | } | 609 | } |
611 | 610 | ||
612 | static void | 611 | static void |
613 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) | 612 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) |
614 | { | 613 | { |
615 | update_load_sub(&cfs_rq->load, se->load.weight); | 614 | update_load_sub(&cfs_rq->load, se->load.weight); |
616 | if (!parent_entity(se)) | 615 | if (!parent_entity(se)) |
617 | dec_cpu_load(rq_of(cfs_rq), se->load.weight); | 616 | dec_cpu_load(rq_of(cfs_rq), se->load.weight); |
618 | if (entity_is_task(se)) { | 617 | if (entity_is_task(se)) { |
619 | add_cfs_task_weight(cfs_rq, -se->load.weight); | 618 | add_cfs_task_weight(cfs_rq, -se->load.weight); |
620 | list_del_init(&se->group_node); | 619 | list_del_init(&se->group_node); |
621 | } | 620 | } |
622 | cfs_rq->nr_running--; | 621 | cfs_rq->nr_running--; |
623 | se->on_rq = 0; | 622 | se->on_rq = 0; |
624 | } | 623 | } |
625 | 624 | ||
626 | static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | 625 | static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) |
627 | { | 626 | { |
628 | #ifdef CONFIG_SCHEDSTATS | 627 | #ifdef CONFIG_SCHEDSTATS |
629 | struct task_struct *tsk = NULL; | 628 | struct task_struct *tsk = NULL; |
630 | 629 | ||
631 | if (entity_is_task(se)) | 630 | if (entity_is_task(se)) |
632 | tsk = task_of(se); | 631 | tsk = task_of(se); |
633 | 632 | ||
634 | if (se->sleep_start) { | 633 | if (se->sleep_start) { |
635 | u64 delta = rq_of(cfs_rq)->clock - se->sleep_start; | 634 | u64 delta = rq_of(cfs_rq)->clock - se->sleep_start; |
636 | 635 | ||
637 | if ((s64)delta < 0) | 636 | if ((s64)delta < 0) |
638 | delta = 0; | 637 | delta = 0; |
639 | 638 | ||
640 | if (unlikely(delta > se->sleep_max)) | 639 | if (unlikely(delta > se->sleep_max)) |
641 | se->sleep_max = delta; | 640 | se->sleep_max = delta; |
642 | 641 | ||
643 | se->sleep_start = 0; | 642 | se->sleep_start = 0; |
644 | se->sum_sleep_runtime += delta; | 643 | se->sum_sleep_runtime += delta; |
645 | 644 | ||
646 | if (tsk) { | 645 | if (tsk) { |
647 | account_scheduler_latency(tsk, delta >> 10, 1); | 646 | account_scheduler_latency(tsk, delta >> 10, 1); |
648 | trace_sched_stat_sleep(tsk, delta); | 647 | trace_sched_stat_sleep(tsk, delta); |
649 | } | 648 | } |
650 | } | 649 | } |
651 | if (se->block_start) { | 650 | if (se->block_start) { |
652 | u64 delta = rq_of(cfs_rq)->clock - se->block_start; | 651 | u64 delta = rq_of(cfs_rq)->clock - se->block_start; |
653 | 652 | ||
654 | if ((s64)delta < 0) | 653 | if ((s64)delta < 0) |
655 | delta = 0; | 654 | delta = 0; |
656 | 655 | ||
657 | if (unlikely(delta > se->block_max)) | 656 | if (unlikely(delta > se->block_max)) |
658 | se->block_max = delta; | 657 | se->block_max = delta; |
659 | 658 | ||
660 | se->block_start = 0; | 659 | se->block_start = 0; |
661 | se->sum_sleep_runtime += delta; | 660 | se->sum_sleep_runtime += delta; |
662 | 661 | ||
663 | if (tsk) { | 662 | if (tsk) { |
664 | if (tsk->in_iowait) { | 663 | if (tsk->in_iowait) { |
665 | se->iowait_sum += delta; | 664 | se->iowait_sum += delta; |
666 | se->iowait_count++; | 665 | se->iowait_count++; |
667 | trace_sched_stat_iowait(tsk, delta); | 666 | trace_sched_stat_iowait(tsk, delta); |
668 | } | 667 | } |
669 | 668 | ||
670 | /* | 669 | /* |
671 | * Blocking time is in units of nanosecs, so shift by | 670 | * Blocking time is in units of nanosecs, so shift by |
672 | * 20 to get a milliseconds-range estimation of the | 671 | * 20 to get a milliseconds-range estimation of the |
673 | * amount of time that the task spent sleeping: | 672 | * amount of time that the task spent sleeping: |
674 | */ | 673 | */ |
675 | if (unlikely(prof_on == SLEEP_PROFILING)) { | 674 | if (unlikely(prof_on == SLEEP_PROFILING)) { |
676 | profile_hits(SLEEP_PROFILING, | 675 | profile_hits(SLEEP_PROFILING, |
677 | (void *)get_wchan(tsk), | 676 | (void *)get_wchan(tsk), |
678 | delta >> 20); | 677 | delta >> 20); |
679 | } | 678 | } |
680 | account_scheduler_latency(tsk, delta >> 10, 0); | 679 | account_scheduler_latency(tsk, delta >> 10, 0); |
681 | } | 680 | } |
682 | } | 681 | } |
683 | #endif | 682 | #endif |
684 | } | 683 | } |
685 | 684 | ||
686 | static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) | 685 | static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) |
687 | { | 686 | { |
688 | #ifdef CONFIG_SCHED_DEBUG | 687 | #ifdef CONFIG_SCHED_DEBUG |
689 | s64 d = se->vruntime - cfs_rq->min_vruntime; | 688 | s64 d = se->vruntime - cfs_rq->min_vruntime; |
690 | 689 | ||
691 | if (d < 0) | 690 | if (d < 0) |
692 | d = -d; | 691 | d = -d; |
693 | 692 | ||
694 | if (d > 3*sysctl_sched_latency) | 693 | if (d > 3*sysctl_sched_latency) |
695 | schedstat_inc(cfs_rq, nr_spread_over); | 694 | schedstat_inc(cfs_rq, nr_spread_over); |
696 | #endif | 695 | #endif |
697 | } | 696 | } |
698 | 697 | ||
699 | static void | 698 | static void |
700 | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | 699 | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) |
701 | { | 700 | { |
702 | u64 vruntime = cfs_rq->min_vruntime; | 701 | u64 vruntime = cfs_rq->min_vruntime; |
703 | 702 | ||
704 | /* | 703 | /* |
705 | * The 'current' period is already promised to the current tasks, | 704 | * The 'current' period is already promised to the current tasks, |
706 | * however the extra weight of the new task will slow them down a | 705 | * however the extra weight of the new task will slow them down a |
707 | * little, place the new task so that it fits in the slot that | 706 | * little, place the new task so that it fits in the slot that |
708 | * stays open at the end. | 707 | * stays open at the end. |
709 | */ | 708 | */ |
710 | if (initial && sched_feat(START_DEBIT)) | 709 | if (initial && sched_feat(START_DEBIT)) |
711 | vruntime += sched_vslice(cfs_rq, se); | 710 | vruntime += sched_vslice(cfs_rq, se); |
712 | 711 | ||
713 | if (!initial) { | 712 | if (!initial) { |
714 | /* sleeps upto a single latency don't count. */ | 713 | /* sleeps upto a single latency don't count. */ |
715 | if (sched_feat(NEW_FAIR_SLEEPERS)) { | 714 | if (sched_feat(NEW_FAIR_SLEEPERS)) { |
716 | unsigned long thresh = sysctl_sched_latency; | 715 | unsigned long thresh = sysctl_sched_latency; |
717 | 716 | ||
718 | /* | 717 | /* |
719 | * Convert the sleeper threshold into virtual time. | 718 | * Convert the sleeper threshold into virtual time. |
720 | * SCHED_IDLE is a special sub-class. We care about | 719 | * SCHED_IDLE is a special sub-class. We care about |
721 | * fairness only relative to other SCHED_IDLE tasks, | 720 | * fairness only relative to other SCHED_IDLE tasks, |
722 | * all of which have the same weight. | 721 | * all of which have the same weight. |
723 | */ | 722 | */ |
724 | if (sched_feat(NORMALIZED_SLEEPER) && | 723 | if (sched_feat(NORMALIZED_SLEEPER) && |
725 | (!entity_is_task(se) || | 724 | (!entity_is_task(se) || |
726 | task_of(se)->policy != SCHED_IDLE)) | 725 | task_of(se)->policy != SCHED_IDLE)) |
727 | thresh = calc_delta_fair(thresh, se); | 726 | thresh = calc_delta_fair(thresh, se); |
728 | 727 | ||
729 | vruntime -= thresh; | 728 | vruntime -= thresh; |
730 | } | 729 | } |
731 | } | 730 | } |
732 | 731 | ||
733 | /* ensure we never gain time by being placed backwards. */ | 732 | /* ensure we never gain time by being placed backwards. */ |
734 | vruntime = max_vruntime(se->vruntime, vruntime); | 733 | vruntime = max_vruntime(se->vruntime, vruntime); |
735 | 734 | ||
736 | se->vruntime = vruntime; | 735 | se->vruntime = vruntime; |
737 | } | 736 | } |
738 | 737 | ||
739 | static void | 738 | static void |
740 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup) | 739 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup) |
741 | { | 740 | { |
742 | /* | 741 | /* |
743 | * Update run-time statistics of the 'current'. | 742 | * Update run-time statistics of the 'current'. |
744 | */ | 743 | */ |
745 | update_curr(cfs_rq); | 744 | update_curr(cfs_rq); |
746 | account_entity_enqueue(cfs_rq, se); | 745 | account_entity_enqueue(cfs_rq, se); |
747 | 746 | ||
748 | if (wakeup) { | 747 | if (wakeup) { |
749 | place_entity(cfs_rq, se, 0); | 748 | place_entity(cfs_rq, se, 0); |
750 | enqueue_sleeper(cfs_rq, se); | 749 | enqueue_sleeper(cfs_rq, se); |
751 | } | 750 | } |
752 | 751 | ||
753 | update_stats_enqueue(cfs_rq, se); | 752 | update_stats_enqueue(cfs_rq, se); |
754 | check_spread(cfs_rq, se); | 753 | check_spread(cfs_rq, se); |
755 | if (se != cfs_rq->curr) | 754 | if (se != cfs_rq->curr) |
756 | __enqueue_entity(cfs_rq, se); | 755 | __enqueue_entity(cfs_rq, se); |
757 | } | 756 | } |
758 | 757 | ||
759 | static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | 758 | static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) |
760 | { | 759 | { |
761 | if (cfs_rq->last == se) | 760 | if (cfs_rq->last == se) |
762 | cfs_rq->last = NULL; | 761 | cfs_rq->last = NULL; |
763 | 762 | ||
764 | if (cfs_rq->next == se) | 763 | if (cfs_rq->next == se) |
765 | cfs_rq->next = NULL; | 764 | cfs_rq->next = NULL; |
766 | } | 765 | } |
767 | 766 | ||
768 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | 767 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) |
769 | { | 768 | { |
770 | for_each_sched_entity(se) | 769 | for_each_sched_entity(se) |
771 | __clear_buddies(cfs_rq_of(se), se); | 770 | __clear_buddies(cfs_rq_of(se), se); |
772 | } | 771 | } |
773 | 772 | ||
774 | static void | 773 | static void |
775 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) | 774 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) |
776 | { | 775 | { |
777 | /* | 776 | /* |
778 | * Update run-time statistics of the 'current'. | 777 | * Update run-time statistics of the 'current'. |
779 | */ | 778 | */ |
780 | update_curr(cfs_rq); | 779 | update_curr(cfs_rq); |
781 | 780 | ||
782 | update_stats_dequeue(cfs_rq, se); | 781 | update_stats_dequeue(cfs_rq, se); |
783 | if (sleep) { | 782 | if (sleep) { |
784 | #ifdef CONFIG_SCHEDSTATS | 783 | #ifdef CONFIG_SCHEDSTATS |
785 | if (entity_is_task(se)) { | 784 | if (entity_is_task(se)) { |
786 | struct task_struct *tsk = task_of(se); | 785 | struct task_struct *tsk = task_of(se); |
787 | 786 | ||
788 | if (tsk->state & TASK_INTERRUPTIBLE) | 787 | if (tsk->state & TASK_INTERRUPTIBLE) |
789 | se->sleep_start = rq_of(cfs_rq)->clock; | 788 | se->sleep_start = rq_of(cfs_rq)->clock; |
790 | if (tsk->state & TASK_UNINTERRUPTIBLE) | 789 | if (tsk->state & TASK_UNINTERRUPTIBLE) |
791 | se->block_start = rq_of(cfs_rq)->clock; | 790 | se->block_start = rq_of(cfs_rq)->clock; |
792 | } | 791 | } |
793 | #endif | 792 | #endif |
794 | } | 793 | } |
795 | 794 | ||
796 | clear_buddies(cfs_rq, se); | 795 | clear_buddies(cfs_rq, se); |
797 | 796 | ||
798 | if (se != cfs_rq->curr) | 797 | if (se != cfs_rq->curr) |
799 | __dequeue_entity(cfs_rq, se); | 798 | __dequeue_entity(cfs_rq, se); |
800 | account_entity_dequeue(cfs_rq, se); | 799 | account_entity_dequeue(cfs_rq, se); |
801 | update_min_vruntime(cfs_rq); | 800 | update_min_vruntime(cfs_rq); |
802 | } | 801 | } |
803 | 802 | ||
804 | /* | 803 | /* |
805 | * Preempt the current task with a newly woken task if needed: | 804 | * Preempt the current task with a newly woken task if needed: |
806 | */ | 805 | */ |
807 | static void | 806 | static void |
808 | check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) | 807 | check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) |
809 | { | 808 | { |
810 | unsigned long ideal_runtime, delta_exec; | 809 | unsigned long ideal_runtime, delta_exec; |
811 | 810 | ||
812 | ideal_runtime = sched_slice(cfs_rq, curr); | 811 | ideal_runtime = sched_slice(cfs_rq, curr); |
813 | delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | 812 | delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; |
814 | if (delta_exec > ideal_runtime) { | 813 | if (delta_exec > ideal_runtime) { |
815 | resched_task(rq_of(cfs_rq)->curr); | 814 | resched_task(rq_of(cfs_rq)->curr); |
816 | /* | 815 | /* |
817 | * The current task ran long enough, ensure it doesn't get | 816 | * The current task ran long enough, ensure it doesn't get |
818 | * re-elected due to buddy favours. | 817 | * re-elected due to buddy favours. |
819 | */ | 818 | */ |
820 | clear_buddies(cfs_rq, curr); | 819 | clear_buddies(cfs_rq, curr); |
821 | } | 820 | } |
822 | } | 821 | } |
823 | 822 | ||
824 | static void | 823 | static void |
825 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | 824 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
826 | { | 825 | { |
827 | /* 'current' is not kept within the tree. */ | 826 | /* 'current' is not kept within the tree. */ |
828 | if (se->on_rq) { | 827 | if (se->on_rq) { |
829 | /* | 828 | /* |
830 | * Any task has to be enqueued before it get to execute on | 829 | * Any task has to be enqueued before it get to execute on |
831 | * a CPU. So account for the time it spent waiting on the | 830 | * a CPU. So account for the time it spent waiting on the |
832 | * runqueue. | 831 | * runqueue. |
833 | */ | 832 | */ |
834 | update_stats_wait_end(cfs_rq, se); | 833 | update_stats_wait_end(cfs_rq, se); |
835 | __dequeue_entity(cfs_rq, se); | 834 | __dequeue_entity(cfs_rq, se); |
836 | } | 835 | } |
837 | 836 | ||
838 | update_stats_curr_start(cfs_rq, se); | 837 | update_stats_curr_start(cfs_rq, se); |
839 | cfs_rq->curr = se; | 838 | cfs_rq->curr = se; |
840 | #ifdef CONFIG_SCHEDSTATS | 839 | #ifdef CONFIG_SCHEDSTATS |
841 | /* | 840 | /* |
842 | * Track our maximum slice length, if the CPU's load is at | 841 | * Track our maximum slice length, if the CPU's load is at |
843 | * least twice that of our own weight (i.e. dont track it | 842 | * least twice that of our own weight (i.e. dont track it |
844 | * when there are only lesser-weight tasks around): | 843 | * when there are only lesser-weight tasks around): |
845 | */ | 844 | */ |
846 | if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { | 845 | if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { |
847 | se->slice_max = max(se->slice_max, | 846 | se->slice_max = max(se->slice_max, |
848 | se->sum_exec_runtime - se->prev_sum_exec_runtime); | 847 | se->sum_exec_runtime - se->prev_sum_exec_runtime); |
849 | } | 848 | } |
850 | #endif | 849 | #endif |
851 | se->prev_sum_exec_runtime = se->sum_exec_runtime; | 850 | se->prev_sum_exec_runtime = se->sum_exec_runtime; |
852 | } | 851 | } |
853 | 852 | ||
854 | static int | 853 | static int |
855 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); | 854 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); |
856 | 855 | ||
857 | static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) | 856 | static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) |
858 | { | 857 | { |
859 | struct sched_entity *se = __pick_next_entity(cfs_rq); | 858 | struct sched_entity *se = __pick_next_entity(cfs_rq); |
860 | 859 | ||
861 | if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1) | 860 | if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1) |
862 | return cfs_rq->next; | 861 | return cfs_rq->next; |
863 | 862 | ||
864 | if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1) | 863 | if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1) |
865 | return cfs_rq->last; | 864 | return cfs_rq->last; |
866 | 865 | ||
867 | return se; | 866 | return se; |
868 | } | 867 | } |
869 | 868 | ||
870 | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) | 869 | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) |
871 | { | 870 | { |
872 | /* | 871 | /* |
873 | * If still on the runqueue then deactivate_task() | 872 | * If still on the runqueue then deactivate_task() |
874 | * was not called and update_curr() has to be done: | 873 | * was not called and update_curr() has to be done: |
875 | */ | 874 | */ |
876 | if (prev->on_rq) | 875 | if (prev->on_rq) |
877 | update_curr(cfs_rq); | 876 | update_curr(cfs_rq); |
878 | 877 | ||
879 | check_spread(cfs_rq, prev); | 878 | check_spread(cfs_rq, prev); |
880 | if (prev->on_rq) { | 879 | if (prev->on_rq) { |
881 | update_stats_wait_start(cfs_rq, prev); | 880 | update_stats_wait_start(cfs_rq, prev); |
882 | /* Put 'current' back into the tree. */ | 881 | /* Put 'current' back into the tree. */ |
883 | __enqueue_entity(cfs_rq, prev); | 882 | __enqueue_entity(cfs_rq, prev); |
884 | } | 883 | } |
885 | cfs_rq->curr = NULL; | 884 | cfs_rq->curr = NULL; |
886 | } | 885 | } |
887 | 886 | ||
888 | static void | 887 | static void |
889 | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) | 888 | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) |
890 | { | 889 | { |
891 | /* | 890 | /* |
892 | * Update run-time statistics of the 'current'. | 891 | * Update run-time statistics of the 'current'. |
893 | */ | 892 | */ |
894 | update_curr(cfs_rq); | 893 | update_curr(cfs_rq); |
895 | 894 | ||
896 | #ifdef CONFIG_SCHED_HRTICK | 895 | #ifdef CONFIG_SCHED_HRTICK |
897 | /* | 896 | /* |
898 | * queued ticks are scheduled to match the slice, so don't bother | 897 | * queued ticks are scheduled to match the slice, so don't bother |
899 | * validating it and just reschedule. | 898 | * validating it and just reschedule. |
900 | */ | 899 | */ |
901 | if (queued) { | 900 | if (queued) { |
902 | resched_task(rq_of(cfs_rq)->curr); | 901 | resched_task(rq_of(cfs_rq)->curr); |
903 | return; | 902 | return; |
904 | } | 903 | } |
905 | /* | 904 | /* |
906 | * don't let the period tick interfere with the hrtick preemption | 905 | * don't let the period tick interfere with the hrtick preemption |
907 | */ | 906 | */ |
908 | if (!sched_feat(DOUBLE_TICK) && | 907 | if (!sched_feat(DOUBLE_TICK) && |
909 | hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) | 908 | hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) |
910 | return; | 909 | return; |
911 | #endif | 910 | #endif |
912 | 911 | ||
913 | if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT)) | 912 | if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT)) |
914 | check_preempt_tick(cfs_rq, curr); | 913 | check_preempt_tick(cfs_rq, curr); |
915 | } | 914 | } |
916 | 915 | ||
917 | /************************************************** | 916 | /************************************************** |
918 | * CFS operations on tasks: | 917 | * CFS operations on tasks: |
919 | */ | 918 | */ |
920 | 919 | ||
921 | #ifdef CONFIG_SCHED_HRTICK | 920 | #ifdef CONFIG_SCHED_HRTICK |
922 | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) | 921 | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) |
923 | { | 922 | { |
924 | struct sched_entity *se = &p->se; | 923 | struct sched_entity *se = &p->se; |
925 | struct cfs_rq *cfs_rq = cfs_rq_of(se); | 924 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
926 | 925 | ||
927 | WARN_ON(task_rq(p) != rq); | 926 | WARN_ON(task_rq(p) != rq); |
928 | 927 | ||
929 | if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) { | 928 | if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) { |
930 | u64 slice = sched_slice(cfs_rq, se); | 929 | u64 slice = sched_slice(cfs_rq, se); |
931 | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; | 930 | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; |
932 | s64 delta = slice - ran; | 931 | s64 delta = slice - ran; |
933 | 932 | ||
934 | if (delta < 0) { | 933 | if (delta < 0) { |
935 | if (rq->curr == p) | 934 | if (rq->curr == p) |
936 | resched_task(p); | 935 | resched_task(p); |
937 | return; | 936 | return; |
938 | } | 937 | } |
939 | 938 | ||
940 | /* | 939 | /* |
941 | * Don't schedule slices shorter than 10000ns, that just | 940 | * Don't schedule slices shorter than 10000ns, that just |
942 | * doesn't make sense. Rely on vruntime for fairness. | 941 | * doesn't make sense. Rely on vruntime for fairness. |
943 | */ | 942 | */ |
944 | if (rq->curr != p) | 943 | if (rq->curr != p) |
945 | delta = max_t(s64, 10000LL, delta); | 944 | delta = max_t(s64, 10000LL, delta); |
946 | 945 | ||
947 | hrtick_start(rq, delta); | 946 | hrtick_start(rq, delta); |
948 | } | 947 | } |
949 | } | 948 | } |
950 | 949 | ||
951 | /* | 950 | /* |
952 | * called from enqueue/dequeue and updates the hrtick when the | 951 | * called from enqueue/dequeue and updates the hrtick when the |
953 | * current task is from our class and nr_running is low enough | 952 | * current task is from our class and nr_running is low enough |
954 | * to matter. | 953 | * to matter. |
955 | */ | 954 | */ |
956 | static void hrtick_update(struct rq *rq) | 955 | static void hrtick_update(struct rq *rq) |
957 | { | 956 | { |
958 | struct task_struct *curr = rq->curr; | 957 | struct task_struct *curr = rq->curr; |
959 | 958 | ||
960 | if (curr->sched_class != &fair_sched_class) | 959 | if (curr->sched_class != &fair_sched_class) |
961 | return; | 960 | return; |
962 | 961 | ||
963 | if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) | 962 | if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) |
964 | hrtick_start_fair(rq, curr); | 963 | hrtick_start_fair(rq, curr); |
965 | } | 964 | } |
966 | #else /* !CONFIG_SCHED_HRTICK */ | 965 | #else /* !CONFIG_SCHED_HRTICK */ |
967 | static inline void | 966 | static inline void |
968 | hrtick_start_fair(struct rq *rq, struct task_struct *p) | 967 | hrtick_start_fair(struct rq *rq, struct task_struct *p) |
969 | { | 968 | { |
970 | } | 969 | } |
971 | 970 | ||
972 | static inline void hrtick_update(struct rq *rq) | 971 | static inline void hrtick_update(struct rq *rq) |
973 | { | 972 | { |
974 | } | 973 | } |
975 | #endif | 974 | #endif |
976 | 975 | ||
977 | /* | 976 | /* |
978 | * The enqueue_task method is called before nr_running is | 977 | * The enqueue_task method is called before nr_running is |
979 | * increased. Here we update the fair scheduling stats and | 978 | * increased. Here we update the fair scheduling stats and |
980 | * then put the task into the rbtree: | 979 | * then put the task into the rbtree: |
981 | */ | 980 | */ |
982 | static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup) | 981 | static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup) |
983 | { | 982 | { |
984 | struct cfs_rq *cfs_rq; | 983 | struct cfs_rq *cfs_rq; |
985 | struct sched_entity *se = &p->se; | 984 | struct sched_entity *se = &p->se; |
986 | 985 | ||
987 | for_each_sched_entity(se) { | 986 | for_each_sched_entity(se) { |
988 | if (se->on_rq) | 987 | if (se->on_rq) |
989 | break; | 988 | break; |
990 | cfs_rq = cfs_rq_of(se); | 989 | cfs_rq = cfs_rq_of(se); |
991 | enqueue_entity(cfs_rq, se, wakeup); | 990 | enqueue_entity(cfs_rq, se, wakeup); |
992 | wakeup = 1; | 991 | wakeup = 1; |
993 | } | 992 | } |
994 | 993 | ||
995 | hrtick_update(rq); | 994 | hrtick_update(rq); |
996 | } | 995 | } |
997 | 996 | ||
998 | /* | 997 | /* |
999 | * The dequeue_task method is called before nr_running is | 998 | * The dequeue_task method is called before nr_running is |
1000 | * decreased. We remove the task from the rbtree and | 999 | * decreased. We remove the task from the rbtree and |
1001 | * update the fair scheduling stats: | 1000 | * update the fair scheduling stats: |
1002 | */ | 1001 | */ |
1003 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep) | 1002 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep) |
1004 | { | 1003 | { |
1005 | struct cfs_rq *cfs_rq; | 1004 | struct cfs_rq *cfs_rq; |
1006 | struct sched_entity *se = &p->se; | 1005 | struct sched_entity *se = &p->se; |
1007 | 1006 | ||
1008 | for_each_sched_entity(se) { | 1007 | for_each_sched_entity(se) { |
1009 | cfs_rq = cfs_rq_of(se); | 1008 | cfs_rq = cfs_rq_of(se); |
1010 | dequeue_entity(cfs_rq, se, sleep); | 1009 | dequeue_entity(cfs_rq, se, sleep); |
1011 | /* Don't dequeue parent if it has other entities besides us */ | 1010 | /* Don't dequeue parent if it has other entities besides us */ |
1012 | if (cfs_rq->load.weight) | 1011 | if (cfs_rq->load.weight) |
1013 | break; | 1012 | break; |
1014 | sleep = 1; | 1013 | sleep = 1; |
1015 | } | 1014 | } |
1016 | 1015 | ||
1017 | hrtick_update(rq); | 1016 | hrtick_update(rq); |
1018 | } | 1017 | } |
1019 | 1018 | ||
1020 | /* | 1019 | /* |
1021 | * sched_yield() support is very simple - we dequeue and enqueue. | 1020 | * sched_yield() support is very simple - we dequeue and enqueue. |
1022 | * | 1021 | * |
1023 | * If compat_yield is turned on then we requeue to the end of the tree. | 1022 | * If compat_yield is turned on then we requeue to the end of the tree. |
1024 | */ | 1023 | */ |
1025 | static void yield_task_fair(struct rq *rq) | 1024 | static void yield_task_fair(struct rq *rq) |
1026 | { | 1025 | { |
1027 | struct task_struct *curr = rq->curr; | 1026 | struct task_struct *curr = rq->curr; |
1028 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 1027 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
1029 | struct sched_entity *rightmost, *se = &curr->se; | 1028 | struct sched_entity *rightmost, *se = &curr->se; |
1030 | 1029 | ||
1031 | /* | 1030 | /* |
1032 | * Are we the only task in the tree? | 1031 | * Are we the only task in the tree? |
1033 | */ | 1032 | */ |
1034 | if (unlikely(cfs_rq->nr_running == 1)) | 1033 | if (unlikely(cfs_rq->nr_running == 1)) |
1035 | return; | 1034 | return; |
1036 | 1035 | ||
1037 | clear_buddies(cfs_rq, se); | 1036 | clear_buddies(cfs_rq, se); |
1038 | 1037 | ||
1039 | if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) { | 1038 | if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) { |
1040 | update_rq_clock(rq); | 1039 | update_rq_clock(rq); |
1041 | /* | 1040 | /* |
1042 | * Update run-time statistics of the 'current'. | 1041 | * Update run-time statistics of the 'current'. |
1043 | */ | 1042 | */ |
1044 | update_curr(cfs_rq); | 1043 | update_curr(cfs_rq); |
1045 | 1044 | ||
1046 | return; | 1045 | return; |
1047 | } | 1046 | } |
1048 | /* | 1047 | /* |
1049 | * Find the rightmost entry in the rbtree: | 1048 | * Find the rightmost entry in the rbtree: |
1050 | */ | 1049 | */ |
1051 | rightmost = __pick_last_entity(cfs_rq); | 1050 | rightmost = __pick_last_entity(cfs_rq); |
1052 | /* | 1051 | /* |
1053 | * Already in the rightmost position? | 1052 | * Already in the rightmost position? |
1054 | */ | 1053 | */ |
1055 | if (unlikely(!rightmost || entity_before(rightmost, se))) | 1054 | if (unlikely(!rightmost || entity_before(rightmost, se))) |
1056 | return; | 1055 | return; |
1057 | 1056 | ||
1058 | /* | 1057 | /* |
1059 | * Minimally necessary key value to be last in the tree: | 1058 | * Minimally necessary key value to be last in the tree: |
1060 | * Upon rescheduling, sched_class::put_prev_task() will place | 1059 | * Upon rescheduling, sched_class::put_prev_task() will place |
1061 | * 'current' within the tree based on its new key value. | 1060 | * 'current' within the tree based on its new key value. |
1062 | */ | 1061 | */ |
1063 | se->vruntime = rightmost->vruntime + 1; | 1062 | se->vruntime = rightmost->vruntime + 1; |
1064 | } | 1063 | } |
1065 | 1064 | ||
1066 | /* | 1065 | /* |
1067 | * wake_idle() will wake a task on an idle cpu if task->cpu is | 1066 | * wake_idle() will wake a task on an idle cpu if task->cpu is |
1068 | * not idle and an idle cpu is available. The span of cpus to | 1067 | * not idle and an idle cpu is available. The span of cpus to |
1069 | * search starts with cpus closest then further out as needed, | 1068 | * search starts with cpus closest then further out as needed, |
1070 | * so we always favor a closer, idle cpu. | 1069 | * so we always favor a closer, idle cpu. |
1071 | * Domains may include CPUs that are not usable for migration, | 1070 | * Domains may include CPUs that are not usable for migration, |
1072 | * hence we need to mask them out (rq->rd->online) | 1071 | * hence we need to mask them out (rq->rd->online) |
1073 | * | 1072 | * |
1074 | * Returns the CPU we should wake onto. | 1073 | * Returns the CPU we should wake onto. |
1075 | */ | 1074 | */ |
1076 | #if defined(ARCH_HAS_SCHED_WAKE_IDLE) | 1075 | #if defined(ARCH_HAS_SCHED_WAKE_IDLE) |
1077 | 1076 | ||
1078 | #define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online) | 1077 | #define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online) |
1079 | 1078 | ||
1080 | static int wake_idle(int cpu, struct task_struct *p) | 1079 | static int wake_idle(int cpu, struct task_struct *p) |
1081 | { | 1080 | { |
1082 | struct sched_domain *sd; | 1081 | struct sched_domain *sd; |
1083 | int i; | 1082 | int i; |
1084 | unsigned int chosen_wakeup_cpu; | 1083 | unsigned int chosen_wakeup_cpu; |
1085 | int this_cpu; | 1084 | int this_cpu; |
1086 | struct rq *task_rq = task_rq(p); | 1085 | struct rq *task_rq = task_rq(p); |
1087 | 1086 | ||
1088 | /* | 1087 | /* |
1089 | * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu | 1088 | * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu |
1090 | * are idle and this is not a kernel thread and this task's affinity | 1089 | * are idle and this is not a kernel thread and this task's affinity |
1091 | * allows it to be moved to preferred cpu, then just move! | 1090 | * allows it to be moved to preferred cpu, then just move! |
1092 | */ | 1091 | */ |
1093 | 1092 | ||
1094 | this_cpu = smp_processor_id(); | 1093 | this_cpu = smp_processor_id(); |
1095 | chosen_wakeup_cpu = | 1094 | chosen_wakeup_cpu = |
1096 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu; | 1095 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu; |
1097 | 1096 | ||
1098 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP && | 1097 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP && |
1099 | idle_cpu(cpu) && idle_cpu(this_cpu) && | 1098 | idle_cpu(cpu) && idle_cpu(this_cpu) && |
1100 | p->mm && !(p->flags & PF_KTHREAD) && | 1099 | p->mm && !(p->flags & PF_KTHREAD) && |
1101 | cpu_isset(chosen_wakeup_cpu, p->cpus_allowed)) | 1100 | cpu_isset(chosen_wakeup_cpu, p->cpus_allowed)) |
1102 | return chosen_wakeup_cpu; | 1101 | return chosen_wakeup_cpu; |
1103 | 1102 | ||
1104 | /* | 1103 | /* |
1105 | * If it is idle, then it is the best cpu to run this task. | 1104 | * If it is idle, then it is the best cpu to run this task. |
1106 | * | 1105 | * |
1107 | * This cpu is also the best, if it has more than one task already. | 1106 | * This cpu is also the best, if it has more than one task already. |
1108 | * Siblings must be also busy(in most cases) as they didn't already | 1107 | * Siblings must be also busy(in most cases) as they didn't already |
1109 | * pickup the extra load from this cpu and hence we need not check | 1108 | * pickup the extra load from this cpu and hence we need not check |
1110 | * sibling runqueue info. This will avoid the checks and cache miss | 1109 | * sibling runqueue info. This will avoid the checks and cache miss |
1111 | * penalities associated with that. | 1110 | * penalities associated with that. |
1112 | */ | 1111 | */ |
1113 | if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1) | 1112 | if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1) |
1114 | return cpu; | 1113 | return cpu; |
1115 | 1114 | ||
1116 | for_each_domain(cpu, sd) { | 1115 | for_each_domain(cpu, sd) { |
1117 | if ((sd->flags & SD_WAKE_IDLE) | 1116 | if ((sd->flags & SD_WAKE_IDLE) |
1118 | || ((sd->flags & SD_WAKE_IDLE_FAR) | 1117 | || ((sd->flags & SD_WAKE_IDLE_FAR) |
1119 | && !task_hot(p, task_rq->clock, sd))) { | 1118 | && !task_hot(p, task_rq->clock, sd))) { |
1120 | for_each_cpu_and(i, sched_domain_span(sd), | 1119 | for_each_cpu_and(i, sched_domain_span(sd), |
1121 | &p->cpus_allowed) { | 1120 | &p->cpus_allowed) { |
1122 | if (cpu_rd_active(i, task_rq) && idle_cpu(i)) { | 1121 | if (cpu_rd_active(i, task_rq) && idle_cpu(i)) { |
1123 | if (i != task_cpu(p)) { | 1122 | if (i != task_cpu(p)) { |
1124 | schedstat_inc(p, | 1123 | schedstat_inc(p, |
1125 | se.nr_wakeups_idle); | 1124 | se.nr_wakeups_idle); |
1126 | } | 1125 | } |
1127 | return i; | 1126 | return i; |
1128 | } | 1127 | } |
1129 | } | 1128 | } |
1130 | } else { | 1129 | } else { |
1131 | break; | 1130 | break; |
1132 | } | 1131 | } |
1133 | } | 1132 | } |
1134 | return cpu; | 1133 | return cpu; |
1135 | } | 1134 | } |
1136 | #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/ | 1135 | #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/ |
1137 | static inline int wake_idle(int cpu, struct task_struct *p) | 1136 | static inline int wake_idle(int cpu, struct task_struct *p) |
1138 | { | 1137 | { |
1139 | return cpu; | 1138 | return cpu; |
1140 | } | 1139 | } |
1141 | #endif | 1140 | #endif |
1142 | 1141 | ||
1143 | #ifdef CONFIG_SMP | 1142 | #ifdef CONFIG_SMP |
1144 | 1143 | ||
1145 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1144 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1146 | /* | 1145 | /* |
1147 | * effective_load() calculates the load change as seen from the root_task_group | 1146 | * effective_load() calculates the load change as seen from the root_task_group |
1148 | * | 1147 | * |
1149 | * Adding load to a group doesn't make a group heavier, but can cause movement | 1148 | * Adding load to a group doesn't make a group heavier, but can cause movement |
1150 | * of group shares between cpus. Assuming the shares were perfectly aligned one | 1149 | * of group shares between cpus. Assuming the shares were perfectly aligned one |
1151 | * can calculate the shift in shares. | 1150 | * can calculate the shift in shares. |
1152 | * | 1151 | * |
1153 | * The problem is that perfectly aligning the shares is rather expensive, hence | 1152 | * The problem is that perfectly aligning the shares is rather expensive, hence |
1154 | * we try to avoid doing that too often - see update_shares(), which ratelimits | 1153 | * we try to avoid doing that too often - see update_shares(), which ratelimits |
1155 | * this change. | 1154 | * this change. |
1156 | * | 1155 | * |
1157 | * We compensate this by not only taking the current delta into account, but | 1156 | * We compensate this by not only taking the current delta into account, but |
1158 | * also considering the delta between when the shares were last adjusted and | 1157 | * also considering the delta between when the shares were last adjusted and |
1159 | * now. | 1158 | * now. |
1160 | * | 1159 | * |
1161 | * We still saw a performance dip, some tracing learned us that between | 1160 | * We still saw a performance dip, some tracing learned us that between |
1162 | * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased | 1161 | * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased |
1163 | * significantly. Therefore try to bias the error in direction of failing | 1162 | * significantly. Therefore try to bias the error in direction of failing |
1164 | * the affine wakeup. | 1163 | * the affine wakeup. |
1165 | * | 1164 | * |
1166 | */ | 1165 | */ |
1167 | static long effective_load(struct task_group *tg, int cpu, | 1166 | static long effective_load(struct task_group *tg, int cpu, |
1168 | long wl, long wg) | 1167 | long wl, long wg) |
1169 | { | 1168 | { |
1170 | struct sched_entity *se = tg->se[cpu]; | 1169 | struct sched_entity *se = tg->se[cpu]; |
1171 | 1170 | ||
1172 | if (!tg->parent) | 1171 | if (!tg->parent) |
1173 | return wl; | 1172 | return wl; |
1174 | 1173 | ||
1175 | /* | 1174 | /* |
1176 | * By not taking the decrease of shares on the other cpu into | 1175 | * By not taking the decrease of shares on the other cpu into |
1177 | * account our error leans towards reducing the affine wakeups. | 1176 | * account our error leans towards reducing the affine wakeups. |
1178 | */ | 1177 | */ |
1179 | if (!wl && sched_feat(ASYM_EFF_LOAD)) | 1178 | if (!wl && sched_feat(ASYM_EFF_LOAD)) |
1180 | return wl; | 1179 | return wl; |
1181 | 1180 | ||
1182 | for_each_sched_entity(se) { | 1181 | for_each_sched_entity(se) { |
1183 | long S, rw, s, a, b; | 1182 | long S, rw, s, a, b; |
1184 | long more_w; | 1183 | long more_w; |
1185 | 1184 | ||
1186 | /* | 1185 | /* |
1187 | * Instead of using this increment, also add the difference | 1186 | * Instead of using this increment, also add the difference |
1188 | * between when the shares were last updated and now. | 1187 | * between when the shares were last updated and now. |
1189 | */ | 1188 | */ |
1190 | more_w = se->my_q->load.weight - se->my_q->rq_weight; | 1189 | more_w = se->my_q->load.weight - se->my_q->rq_weight; |
1191 | wl += more_w; | 1190 | wl += more_w; |
1192 | wg += more_w; | 1191 | wg += more_w; |
1193 | 1192 | ||
1194 | S = se->my_q->tg->shares; | 1193 | S = se->my_q->tg->shares; |
1195 | s = se->my_q->shares; | 1194 | s = se->my_q->shares; |
1196 | rw = se->my_q->rq_weight; | 1195 | rw = se->my_q->rq_weight; |
1197 | 1196 | ||
1198 | a = S*(rw + wl); | 1197 | a = S*(rw + wl); |
1199 | b = S*rw + s*wg; | 1198 | b = S*rw + s*wg; |
1200 | 1199 | ||
1201 | wl = s*(a-b); | 1200 | wl = s*(a-b); |
1202 | 1201 | ||
1203 | if (likely(b)) | 1202 | if (likely(b)) |
1204 | wl /= b; | 1203 | wl /= b; |
1205 | 1204 | ||
1206 | /* | 1205 | /* |
1207 | * Assume the group is already running and will | 1206 | * Assume the group is already running and will |
1208 | * thus already be accounted for in the weight. | 1207 | * thus already be accounted for in the weight. |
1209 | * | 1208 | * |
1210 | * That is, moving shares between CPUs, does not | 1209 | * That is, moving shares between CPUs, does not |
1211 | * alter the group weight. | 1210 | * alter the group weight. |
1212 | */ | 1211 | */ |
1213 | wg = 0; | 1212 | wg = 0; |
1214 | } | 1213 | } |
1215 | 1214 | ||
1216 | return wl; | 1215 | return wl; |
1217 | } | 1216 | } |
1218 | 1217 | ||
1219 | #else | 1218 | #else |
1220 | 1219 | ||
1221 | static inline unsigned long effective_load(struct task_group *tg, int cpu, | 1220 | static inline unsigned long effective_load(struct task_group *tg, int cpu, |
1222 | unsigned long wl, unsigned long wg) | 1221 | unsigned long wl, unsigned long wg) |
1223 | { | 1222 | { |
1224 | return wl; | 1223 | return wl; |
1225 | } | 1224 | } |
1226 | 1225 | ||
1227 | #endif | 1226 | #endif |
1228 | 1227 | ||
1229 | static int | 1228 | static int |
1230 | wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | 1229 | wake_affine(struct sched_domain *this_sd, struct rq *this_rq, |
1231 | struct task_struct *p, int prev_cpu, int this_cpu, int sync, | 1230 | struct task_struct *p, int prev_cpu, int this_cpu, int sync, |
1232 | int idx, unsigned long load, unsigned long this_load, | 1231 | int idx, unsigned long load, unsigned long this_load, |
1233 | unsigned int imbalance) | 1232 | unsigned int imbalance) |
1234 | { | 1233 | { |
1235 | struct task_struct *curr = this_rq->curr; | 1234 | struct task_struct *curr = this_rq->curr; |
1236 | struct task_group *tg; | 1235 | struct task_group *tg; |
1237 | unsigned long tl = this_load; | 1236 | unsigned long tl = this_load; |
1238 | unsigned long tl_per_task; | 1237 | unsigned long tl_per_task; |
1239 | unsigned long weight; | 1238 | unsigned long weight; |
1240 | int balanced; | 1239 | int balanced; |
1241 | 1240 | ||
1242 | if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS)) | 1241 | if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS)) |
1243 | return 0; | 1242 | return 0; |
1244 | 1243 | ||
1245 | if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost || | 1244 | if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost || |
1246 | p->se.avg_overlap > sysctl_sched_migration_cost)) | 1245 | p->se.avg_overlap > sysctl_sched_migration_cost)) |
1247 | sync = 0; | 1246 | sync = 0; |
1248 | 1247 | ||
1249 | /* | 1248 | /* |
1250 | * If sync wakeup then subtract the (maximum possible) | 1249 | * If sync wakeup then subtract the (maximum possible) |
1251 | * effect of the currently running task from the load | 1250 | * effect of the currently running task from the load |
1252 | * of the current CPU: | 1251 | * of the current CPU: |
1253 | */ | 1252 | */ |
1254 | if (sync) { | 1253 | if (sync) { |
1255 | tg = task_group(current); | 1254 | tg = task_group(current); |
1256 | weight = current->se.load.weight; | 1255 | weight = current->se.load.weight; |
1257 | 1256 | ||
1258 | tl += effective_load(tg, this_cpu, -weight, -weight); | 1257 | tl += effective_load(tg, this_cpu, -weight, -weight); |
1259 | load += effective_load(tg, prev_cpu, 0, -weight); | 1258 | load += effective_load(tg, prev_cpu, 0, -weight); |
1260 | } | 1259 | } |
1261 | 1260 | ||
1262 | tg = task_group(p); | 1261 | tg = task_group(p); |
1263 | weight = p->se.load.weight; | 1262 | weight = p->se.load.weight; |
1264 | 1263 | ||
1265 | /* | 1264 | /* |
1266 | * In low-load situations, where prev_cpu is idle and this_cpu is idle | 1265 | * In low-load situations, where prev_cpu is idle and this_cpu is idle |
1267 | * due to the sync cause above having dropped tl to 0, we'll always have | 1266 | * due to the sync cause above having dropped tl to 0, we'll always have |
1268 | * an imbalance, but there's really nothing you can do about that, so | 1267 | * an imbalance, but there's really nothing you can do about that, so |
1269 | * that's good too. | 1268 | * that's good too. |
1270 | * | 1269 | * |
1271 | * Otherwise check if either cpus are near enough in load to allow this | 1270 | * Otherwise check if either cpus are near enough in load to allow this |
1272 | * task to be woken on this_cpu. | 1271 | * task to be woken on this_cpu. |
1273 | */ | 1272 | */ |
1274 | balanced = !tl || | 1273 | balanced = !tl || |
1275 | 100*(tl + effective_load(tg, this_cpu, weight, weight)) <= | 1274 | 100*(tl + effective_load(tg, this_cpu, weight, weight)) <= |
1276 | imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); | 1275 | imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); |
1277 | 1276 | ||
1278 | /* | 1277 | /* |
1279 | * If the currently running task will sleep within | 1278 | * If the currently running task will sleep within |
1280 | * a reasonable amount of time then attract this newly | 1279 | * a reasonable amount of time then attract this newly |
1281 | * woken task: | 1280 | * woken task: |
1282 | */ | 1281 | */ |
1283 | if (sync && balanced) | 1282 | if (sync && balanced) |
1284 | return 1; | 1283 | return 1; |
1285 | 1284 | ||
1286 | schedstat_inc(p, se.nr_wakeups_affine_attempts); | 1285 | schedstat_inc(p, se.nr_wakeups_affine_attempts); |
1287 | tl_per_task = cpu_avg_load_per_task(this_cpu); | 1286 | tl_per_task = cpu_avg_load_per_task(this_cpu); |
1288 | 1287 | ||
1289 | if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <= | 1288 | if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <= |
1290 | tl_per_task)) { | 1289 | tl_per_task)) { |
1291 | /* | 1290 | /* |
1292 | * This domain has SD_WAKE_AFFINE and | 1291 | * This domain has SD_WAKE_AFFINE and |
1293 | * p is cache cold in this domain, and | 1292 | * p is cache cold in this domain, and |
1294 | * there is no bad imbalance. | 1293 | * there is no bad imbalance. |
1295 | */ | 1294 | */ |
1296 | schedstat_inc(this_sd, ttwu_move_affine); | 1295 | schedstat_inc(this_sd, ttwu_move_affine); |
1297 | schedstat_inc(p, se.nr_wakeups_affine); | 1296 | schedstat_inc(p, se.nr_wakeups_affine); |
1298 | 1297 | ||
1299 | return 1; | 1298 | return 1; |
1300 | } | 1299 | } |
1301 | return 0; | 1300 | return 0; |
1302 | } | 1301 | } |
1303 | 1302 | ||
1304 | static int select_task_rq_fair(struct task_struct *p, int sync) | 1303 | static int select_task_rq_fair(struct task_struct *p, int sync) |
1305 | { | 1304 | { |
1306 | struct sched_domain *sd, *this_sd = NULL; | 1305 | struct sched_domain *sd, *this_sd = NULL; |
1307 | int prev_cpu, this_cpu, new_cpu; | 1306 | int prev_cpu, this_cpu, new_cpu; |
1308 | unsigned long load, this_load; | 1307 | unsigned long load, this_load; |
1309 | struct rq *this_rq; | 1308 | struct rq *this_rq; |
1310 | unsigned int imbalance; | 1309 | unsigned int imbalance; |
1311 | int idx; | 1310 | int idx; |
1312 | 1311 | ||
1313 | prev_cpu = task_cpu(p); | 1312 | prev_cpu = task_cpu(p); |
1314 | this_cpu = smp_processor_id(); | 1313 | this_cpu = smp_processor_id(); |
1315 | this_rq = cpu_rq(this_cpu); | 1314 | this_rq = cpu_rq(this_cpu); |
1316 | new_cpu = prev_cpu; | 1315 | new_cpu = prev_cpu; |
1317 | 1316 | ||
1318 | /* | 1317 | /* |
1319 | * 'this_sd' is the first domain that both | 1318 | * 'this_sd' is the first domain that both |
1320 | * this_cpu and prev_cpu are present in: | 1319 | * this_cpu and prev_cpu are present in: |
1321 | */ | 1320 | */ |
1322 | for_each_domain(this_cpu, sd) { | 1321 | for_each_domain(this_cpu, sd) { |
1323 | if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) { | 1322 | if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) { |
1324 | this_sd = sd; | 1323 | this_sd = sd; |
1325 | break; | 1324 | break; |
1326 | } | 1325 | } |
1327 | } | 1326 | } |
1328 | 1327 | ||
1329 | if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed))) | 1328 | if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed))) |
1330 | goto out; | 1329 | goto out; |
1331 | 1330 | ||
1332 | /* | 1331 | /* |
1333 | * Check for affine wakeup and passive balancing possibilities. | 1332 | * Check for affine wakeup and passive balancing possibilities. |
1334 | */ | 1333 | */ |
1335 | if (!this_sd) | 1334 | if (!this_sd) |
1336 | goto out; | 1335 | goto out; |
1337 | 1336 | ||
1338 | idx = this_sd->wake_idx; | 1337 | idx = this_sd->wake_idx; |
1339 | 1338 | ||
1340 | imbalance = 100 + (this_sd->imbalance_pct - 100) / 2; | 1339 | imbalance = 100 + (this_sd->imbalance_pct - 100) / 2; |
1341 | 1340 | ||
1342 | load = source_load(prev_cpu, idx); | 1341 | load = source_load(prev_cpu, idx); |
1343 | this_load = target_load(this_cpu, idx); | 1342 | this_load = target_load(this_cpu, idx); |
1344 | 1343 | ||
1345 | if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx, | 1344 | if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx, |
1346 | load, this_load, imbalance)) | 1345 | load, this_load, imbalance)) |
1347 | return this_cpu; | 1346 | return this_cpu; |
1348 | 1347 | ||
1349 | /* | 1348 | /* |
1350 | * Start passive balancing when half the imbalance_pct | 1349 | * Start passive balancing when half the imbalance_pct |
1351 | * limit is reached. | 1350 | * limit is reached. |
1352 | */ | 1351 | */ |
1353 | if (this_sd->flags & SD_WAKE_BALANCE) { | 1352 | if (this_sd->flags & SD_WAKE_BALANCE) { |
1354 | if (imbalance*this_load <= 100*load) { | 1353 | if (imbalance*this_load <= 100*load) { |
1355 | schedstat_inc(this_sd, ttwu_move_balance); | 1354 | schedstat_inc(this_sd, ttwu_move_balance); |
1356 | schedstat_inc(p, se.nr_wakeups_passive); | 1355 | schedstat_inc(p, se.nr_wakeups_passive); |
1357 | return this_cpu; | 1356 | return this_cpu; |
1358 | } | 1357 | } |
1359 | } | 1358 | } |
1360 | 1359 | ||
1361 | out: | 1360 | out: |
1362 | return wake_idle(new_cpu, p); | 1361 | return wake_idle(new_cpu, p); |
1363 | } | 1362 | } |
1364 | #endif /* CONFIG_SMP */ | 1363 | #endif /* CONFIG_SMP */ |
1365 | 1364 | ||
1366 | /* | 1365 | /* |
1367 | * Adaptive granularity | 1366 | * Adaptive granularity |
1368 | * | 1367 | * |
1369 | * se->avg_wakeup gives the average time a task runs until it does a wakeup, | 1368 | * se->avg_wakeup gives the average time a task runs until it does a wakeup, |
1370 | * with the limit of wakeup_gran -- when it never does a wakeup. | 1369 | * with the limit of wakeup_gran -- when it never does a wakeup. |
1371 | * | 1370 | * |
1372 | * So the smaller avg_wakeup is the faster we want this task to preempt, | 1371 | * So the smaller avg_wakeup is the faster we want this task to preempt, |
1373 | * but we don't want to treat the preemptee unfairly and therefore allow it | 1372 | * but we don't want to treat the preemptee unfairly and therefore allow it |
1374 | * to run for at least the amount of time we'd like to run. | 1373 | * to run for at least the amount of time we'd like to run. |
1375 | * | 1374 | * |
1376 | * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one | 1375 | * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one |
1377 | * | 1376 | * |
1378 | * NOTE: we use *nr_running to scale with load, this nicely matches the | 1377 | * NOTE: we use *nr_running to scale with load, this nicely matches the |
1379 | * degrading latency on load. | 1378 | * degrading latency on load. |
1380 | */ | 1379 | */ |
1381 | static unsigned long | 1380 | static unsigned long |
1382 | adaptive_gran(struct sched_entity *curr, struct sched_entity *se) | 1381 | adaptive_gran(struct sched_entity *curr, struct sched_entity *se) |
1383 | { | 1382 | { |
1384 | u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | 1383 | u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; |
1385 | u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running; | 1384 | u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running; |
1386 | u64 gran = 0; | 1385 | u64 gran = 0; |
1387 | 1386 | ||
1388 | if (this_run < expected_wakeup) | 1387 | if (this_run < expected_wakeup) |
1389 | gran = expected_wakeup - this_run; | 1388 | gran = expected_wakeup - this_run; |
1390 | 1389 | ||
1391 | return min_t(s64, gran, sysctl_sched_wakeup_granularity); | 1390 | return min_t(s64, gran, sysctl_sched_wakeup_granularity); |
1392 | } | 1391 | } |
1393 | 1392 | ||
1394 | static unsigned long | 1393 | static unsigned long |
1395 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) | 1394 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) |
1396 | { | 1395 | { |
1397 | unsigned long gran = sysctl_sched_wakeup_granularity; | 1396 | unsigned long gran = sysctl_sched_wakeup_granularity; |
1398 | 1397 | ||
1399 | if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN)) | 1398 | if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN)) |
1400 | gran = adaptive_gran(curr, se); | 1399 | gran = adaptive_gran(curr, se); |
1401 | 1400 | ||
1402 | /* | 1401 | /* |
1403 | * Since its curr running now, convert the gran from real-time | 1402 | * Since its curr running now, convert the gran from real-time |
1404 | * to virtual-time in his units. | 1403 | * to virtual-time in his units. |
1405 | */ | 1404 | */ |
1406 | if (sched_feat(ASYM_GRAN)) { | 1405 | if (sched_feat(ASYM_GRAN)) { |
1407 | /* | 1406 | /* |
1408 | * By using 'se' instead of 'curr' we penalize light tasks, so | 1407 | * By using 'se' instead of 'curr' we penalize light tasks, so |
1409 | * they get preempted easier. That is, if 'se' < 'curr' then | 1408 | * they get preempted easier. That is, if 'se' < 'curr' then |
1410 | * the resulting gran will be larger, therefore penalizing the | 1409 | * the resulting gran will be larger, therefore penalizing the |
1411 | * lighter, if otoh 'se' > 'curr' then the resulting gran will | 1410 | * lighter, if otoh 'se' > 'curr' then the resulting gran will |
1412 | * be smaller, again penalizing the lighter task. | 1411 | * be smaller, again penalizing the lighter task. |
1413 | * | 1412 | * |
1414 | * This is especially important for buddies when the leftmost | 1413 | * This is especially important for buddies when the leftmost |
1415 | * task is higher priority than the buddy. | 1414 | * task is higher priority than the buddy. |
1416 | */ | 1415 | */ |
1417 | if (unlikely(se->load.weight != NICE_0_LOAD)) | 1416 | if (unlikely(se->load.weight != NICE_0_LOAD)) |
1418 | gran = calc_delta_fair(gran, se); | 1417 | gran = calc_delta_fair(gran, se); |
1419 | } else { | 1418 | } else { |
1420 | if (unlikely(curr->load.weight != NICE_0_LOAD)) | 1419 | if (unlikely(curr->load.weight != NICE_0_LOAD)) |
1421 | gran = calc_delta_fair(gran, curr); | 1420 | gran = calc_delta_fair(gran, curr); |
1422 | } | 1421 | } |
1423 | 1422 | ||
1424 | return gran; | 1423 | return gran; |
1425 | } | 1424 | } |
1426 | 1425 | ||
1427 | /* | 1426 | /* |
1428 | * Should 'se' preempt 'curr'. | 1427 | * Should 'se' preempt 'curr'. |
1429 | * | 1428 | * |
1430 | * |s1 | 1429 | * |s1 |
1431 | * |s2 | 1430 | * |s2 |
1432 | * |s3 | 1431 | * |s3 |
1433 | * g | 1432 | * g |
1434 | * |<--->|c | 1433 | * |<--->|c |
1435 | * | 1434 | * |
1436 | * w(c, s1) = -1 | 1435 | * w(c, s1) = -1 |
1437 | * w(c, s2) = 0 | 1436 | * w(c, s2) = 0 |
1438 | * w(c, s3) = 1 | 1437 | * w(c, s3) = 1 |
1439 | * | 1438 | * |
1440 | */ | 1439 | */ |
1441 | static int | 1440 | static int |
1442 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) | 1441 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) |
1443 | { | 1442 | { |
1444 | s64 gran, vdiff = curr->vruntime - se->vruntime; | 1443 | s64 gran, vdiff = curr->vruntime - se->vruntime; |
1445 | 1444 | ||
1446 | if (vdiff <= 0) | 1445 | if (vdiff <= 0) |
1447 | return -1; | 1446 | return -1; |
1448 | 1447 | ||
1449 | gran = wakeup_gran(curr, se); | 1448 | gran = wakeup_gran(curr, se); |
1450 | if (vdiff > gran) | 1449 | if (vdiff > gran) |
1451 | return 1; | 1450 | return 1; |
1452 | 1451 | ||
1453 | return 0; | 1452 | return 0; |
1454 | } | 1453 | } |
1455 | 1454 | ||
1456 | static void set_last_buddy(struct sched_entity *se) | 1455 | static void set_last_buddy(struct sched_entity *se) |
1457 | { | 1456 | { |
1458 | if (likely(task_of(se)->policy != SCHED_IDLE)) { | 1457 | if (likely(task_of(se)->policy != SCHED_IDLE)) { |
1459 | for_each_sched_entity(se) | 1458 | for_each_sched_entity(se) |
1460 | cfs_rq_of(se)->last = se; | 1459 | cfs_rq_of(se)->last = se; |
1461 | } | 1460 | } |
1462 | } | 1461 | } |
1463 | 1462 | ||
1464 | static void set_next_buddy(struct sched_entity *se) | 1463 | static void set_next_buddy(struct sched_entity *se) |
1465 | { | 1464 | { |
1466 | if (likely(task_of(se)->policy != SCHED_IDLE)) { | 1465 | if (likely(task_of(se)->policy != SCHED_IDLE)) { |
1467 | for_each_sched_entity(se) | 1466 | for_each_sched_entity(se) |
1468 | cfs_rq_of(se)->next = se; | 1467 | cfs_rq_of(se)->next = se; |
1469 | } | 1468 | } |
1470 | } | 1469 | } |
1471 | 1470 | ||
1472 | /* | 1471 | /* |
1473 | * Preempt the current task with a newly woken task if needed: | 1472 | * Preempt the current task with a newly woken task if needed: |
1474 | */ | 1473 | */ |
1475 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | 1474 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) |
1476 | { | 1475 | { |
1477 | struct task_struct *curr = rq->curr; | 1476 | struct task_struct *curr = rq->curr; |
1478 | struct sched_entity *se = &curr->se, *pse = &p->se; | 1477 | struct sched_entity *se = &curr->se, *pse = &p->se; |
1479 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 1478 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
1480 | 1479 | ||
1481 | update_curr(cfs_rq); | 1480 | update_curr(cfs_rq); |
1482 | 1481 | ||
1483 | if (unlikely(rt_prio(p->prio))) { | 1482 | if (unlikely(rt_prio(p->prio))) { |
1484 | resched_task(curr); | 1483 | resched_task(curr); |
1485 | return; | 1484 | return; |
1486 | } | 1485 | } |
1487 | 1486 | ||
1488 | if (unlikely(p->sched_class != &fair_sched_class)) | 1487 | if (unlikely(p->sched_class != &fair_sched_class)) |
1489 | return; | 1488 | return; |
1490 | 1489 | ||
1491 | if (unlikely(se == pse)) | 1490 | if (unlikely(se == pse)) |
1492 | return; | 1491 | return; |
1493 | 1492 | ||
1494 | /* | 1493 | /* |
1495 | * Only set the backward buddy when the current task is still on the | 1494 | * Only set the backward buddy when the current task is still on the |
1496 | * rq. This can happen when a wakeup gets interleaved with schedule on | 1495 | * rq. This can happen when a wakeup gets interleaved with schedule on |
1497 | * the ->pre_schedule() or idle_balance() point, either of which can | 1496 | * the ->pre_schedule() or idle_balance() point, either of which can |
1498 | * drop the rq lock. | 1497 | * drop the rq lock. |
1499 | * | 1498 | * |
1500 | * Also, during early boot the idle thread is in the fair class, for | 1499 | * Also, during early boot the idle thread is in the fair class, for |
1501 | * obvious reasons its a bad idea to schedule back to the idle thread. | 1500 | * obvious reasons its a bad idea to schedule back to the idle thread. |
1502 | */ | 1501 | */ |
1503 | if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle)) | 1502 | if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle)) |
1504 | set_last_buddy(se); | 1503 | set_last_buddy(se); |
1505 | set_next_buddy(pse); | 1504 | set_next_buddy(pse); |
1506 | 1505 | ||
1507 | /* | 1506 | /* |
1508 | * We can come here with TIF_NEED_RESCHED already set from new task | 1507 | * We can come here with TIF_NEED_RESCHED already set from new task |
1509 | * wake up path. | 1508 | * wake up path. |
1510 | */ | 1509 | */ |
1511 | if (test_tsk_need_resched(curr)) | 1510 | if (test_tsk_need_resched(curr)) |
1512 | return; | 1511 | return; |
1513 | 1512 | ||
1514 | /* | 1513 | /* |
1515 | * Batch and idle tasks do not preempt (their preemption is driven by | 1514 | * Batch and idle tasks do not preempt (their preemption is driven by |
1516 | * the tick): | 1515 | * the tick): |
1517 | */ | 1516 | */ |
1518 | if (unlikely(p->policy != SCHED_NORMAL)) | 1517 | if (unlikely(p->policy != SCHED_NORMAL)) |
1519 | return; | 1518 | return; |
1520 | 1519 | ||
1521 | /* Idle tasks are by definition preempted by everybody. */ | 1520 | /* Idle tasks are by definition preempted by everybody. */ |
1522 | if (unlikely(curr->policy == SCHED_IDLE)) { | 1521 | if (unlikely(curr->policy == SCHED_IDLE)) { |
1523 | resched_task(curr); | 1522 | resched_task(curr); |
1524 | return; | 1523 | return; |
1525 | } | 1524 | } |
1526 | 1525 | ||
1527 | if (!sched_feat(WAKEUP_PREEMPT)) | 1526 | if (!sched_feat(WAKEUP_PREEMPT)) |
1528 | return; | 1527 | return; |
1529 | 1528 | ||
1530 | if (sched_feat(WAKEUP_OVERLAP) && (sync || | 1529 | if (sched_feat(WAKEUP_OVERLAP) && (sync || |
1531 | (se->avg_overlap < sysctl_sched_migration_cost && | 1530 | (se->avg_overlap < sysctl_sched_migration_cost && |
1532 | pse->avg_overlap < sysctl_sched_migration_cost))) { | 1531 | pse->avg_overlap < sysctl_sched_migration_cost))) { |
1533 | resched_task(curr); | 1532 | resched_task(curr); |
1534 | return; | 1533 | return; |
1535 | } | 1534 | } |
1536 | 1535 | ||
1537 | find_matching_se(&se, &pse); | 1536 | find_matching_se(&se, &pse); |
1538 | 1537 | ||
1539 | BUG_ON(!pse); | 1538 | BUG_ON(!pse); |
1540 | 1539 | ||
1541 | if (wakeup_preempt_entity(se, pse) == 1) | 1540 | if (wakeup_preempt_entity(se, pse) == 1) |
1542 | resched_task(curr); | 1541 | resched_task(curr); |
1543 | } | 1542 | } |
1544 | 1543 | ||
1545 | static struct task_struct *pick_next_task_fair(struct rq *rq) | 1544 | static struct task_struct *pick_next_task_fair(struct rq *rq) |
1546 | { | 1545 | { |
1547 | struct task_struct *p; | 1546 | struct task_struct *p; |
1548 | struct cfs_rq *cfs_rq = &rq->cfs; | 1547 | struct cfs_rq *cfs_rq = &rq->cfs; |
1549 | struct sched_entity *se; | 1548 | struct sched_entity *se; |
1550 | 1549 | ||
1551 | if (unlikely(!cfs_rq->nr_running)) | 1550 | if (unlikely(!cfs_rq->nr_running)) |
1552 | return NULL; | 1551 | return NULL; |
1553 | 1552 | ||
1554 | do { | 1553 | do { |
1555 | se = pick_next_entity(cfs_rq); | 1554 | se = pick_next_entity(cfs_rq); |
1556 | /* | 1555 | /* |
1557 | * If se was a buddy, clear it so that it will have to earn | 1556 | * If se was a buddy, clear it so that it will have to earn |
1558 | * the favour again. | 1557 | * the favour again. |
1559 | */ | 1558 | */ |
1560 | __clear_buddies(cfs_rq, se); | 1559 | __clear_buddies(cfs_rq, se); |
1561 | set_next_entity(cfs_rq, se); | 1560 | set_next_entity(cfs_rq, se); |
1562 | cfs_rq = group_cfs_rq(se); | 1561 | cfs_rq = group_cfs_rq(se); |
1563 | } while (cfs_rq); | 1562 | } while (cfs_rq); |
1564 | 1563 | ||
1565 | p = task_of(se); | 1564 | p = task_of(se); |
1566 | hrtick_start_fair(rq, p); | 1565 | hrtick_start_fair(rq, p); |
1567 | 1566 | ||
1568 | return p; | 1567 | return p; |
1569 | } | 1568 | } |
1570 | 1569 | ||
1571 | /* | 1570 | /* |
1572 | * Account for a descheduled task: | 1571 | * Account for a descheduled task: |
1573 | */ | 1572 | */ |
1574 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) | 1573 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) |
1575 | { | 1574 | { |
1576 | struct sched_entity *se = &prev->se; | 1575 | struct sched_entity *se = &prev->se; |
1577 | struct cfs_rq *cfs_rq; | 1576 | struct cfs_rq *cfs_rq; |
1578 | 1577 | ||
1579 | for_each_sched_entity(se) { | 1578 | for_each_sched_entity(se) { |
1580 | cfs_rq = cfs_rq_of(se); | 1579 | cfs_rq = cfs_rq_of(se); |
1581 | put_prev_entity(cfs_rq, se); | 1580 | put_prev_entity(cfs_rq, se); |
1582 | } | 1581 | } |
1583 | } | 1582 | } |
1584 | 1583 | ||
1585 | #ifdef CONFIG_SMP | 1584 | #ifdef CONFIG_SMP |
1586 | /************************************************** | 1585 | /************************************************** |
1587 | * Fair scheduling class load-balancing methods: | 1586 | * Fair scheduling class load-balancing methods: |
1588 | */ | 1587 | */ |
1589 | 1588 | ||
1590 | /* | 1589 | /* |
1591 | * Load-balancing iterator. Note: while the runqueue stays locked | 1590 | * Load-balancing iterator. Note: while the runqueue stays locked |
1592 | * during the whole iteration, the current task might be | 1591 | * during the whole iteration, the current task might be |
1593 | * dequeued so the iterator has to be dequeue-safe. Here we | 1592 | * dequeued so the iterator has to be dequeue-safe. Here we |
1594 | * achieve that by always pre-iterating before returning | 1593 | * achieve that by always pre-iterating before returning |
1595 | * the current task: | 1594 | * the current task: |
1596 | */ | 1595 | */ |
1597 | static struct task_struct * | 1596 | static struct task_struct * |
1598 | __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next) | 1597 | __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next) |
1599 | { | 1598 | { |
1600 | struct task_struct *p = NULL; | 1599 | struct task_struct *p = NULL; |
1601 | struct sched_entity *se; | 1600 | struct sched_entity *se; |
1602 | 1601 | ||
1603 | if (next == &cfs_rq->tasks) | 1602 | if (next == &cfs_rq->tasks) |
1604 | return NULL; | 1603 | return NULL; |
1605 | 1604 | ||
1606 | se = list_entry(next, struct sched_entity, group_node); | 1605 | se = list_entry(next, struct sched_entity, group_node); |
1607 | p = task_of(se); | 1606 | p = task_of(se); |
1608 | cfs_rq->balance_iterator = next->next; | 1607 | cfs_rq->balance_iterator = next->next; |
1609 | 1608 | ||
1610 | return p; | 1609 | return p; |
1611 | } | 1610 | } |
1612 | 1611 | ||
1613 | static struct task_struct *load_balance_start_fair(void *arg) | 1612 | static struct task_struct *load_balance_start_fair(void *arg) |
1614 | { | 1613 | { |
1615 | struct cfs_rq *cfs_rq = arg; | 1614 | struct cfs_rq *cfs_rq = arg; |
1616 | 1615 | ||
1617 | return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next); | 1616 | return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next); |
1618 | } | 1617 | } |
1619 | 1618 | ||
1620 | static struct task_struct *load_balance_next_fair(void *arg) | 1619 | static struct task_struct *load_balance_next_fair(void *arg) |
1621 | { | 1620 | { |
1622 | struct cfs_rq *cfs_rq = arg; | 1621 | struct cfs_rq *cfs_rq = arg; |
1623 | 1622 | ||
1624 | return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator); | 1623 | return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator); |
1625 | } | 1624 | } |
1626 | 1625 | ||
1627 | static unsigned long | 1626 | static unsigned long |
1628 | __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 1627 | __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, |
1629 | unsigned long max_load_move, struct sched_domain *sd, | 1628 | unsigned long max_load_move, struct sched_domain *sd, |
1630 | enum cpu_idle_type idle, int *all_pinned, int *this_best_prio, | 1629 | enum cpu_idle_type idle, int *all_pinned, int *this_best_prio, |
1631 | struct cfs_rq *cfs_rq) | 1630 | struct cfs_rq *cfs_rq) |
1632 | { | 1631 | { |
1633 | struct rq_iterator cfs_rq_iterator; | 1632 | struct rq_iterator cfs_rq_iterator; |
1634 | 1633 | ||
1635 | cfs_rq_iterator.start = load_balance_start_fair; | 1634 | cfs_rq_iterator.start = load_balance_start_fair; |
1636 | cfs_rq_iterator.next = load_balance_next_fair; | 1635 | cfs_rq_iterator.next = load_balance_next_fair; |
1637 | cfs_rq_iterator.arg = cfs_rq; | 1636 | cfs_rq_iterator.arg = cfs_rq; |
1638 | 1637 | ||
1639 | return balance_tasks(this_rq, this_cpu, busiest, | 1638 | return balance_tasks(this_rq, this_cpu, busiest, |
1640 | max_load_move, sd, idle, all_pinned, | 1639 | max_load_move, sd, idle, all_pinned, |
1641 | this_best_prio, &cfs_rq_iterator); | 1640 | this_best_prio, &cfs_rq_iterator); |
1642 | } | 1641 | } |
1643 | 1642 | ||
1644 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1643 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1645 | static unsigned long | 1644 | static unsigned long |
1646 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 1645 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, |
1647 | unsigned long max_load_move, | 1646 | unsigned long max_load_move, |
1648 | struct sched_domain *sd, enum cpu_idle_type idle, | 1647 | struct sched_domain *sd, enum cpu_idle_type idle, |
1649 | int *all_pinned, int *this_best_prio) | 1648 | int *all_pinned, int *this_best_prio) |
1650 | { | 1649 | { |
1651 | long rem_load_move = max_load_move; | 1650 | long rem_load_move = max_load_move; |
1652 | int busiest_cpu = cpu_of(busiest); | 1651 | int busiest_cpu = cpu_of(busiest); |
1653 | struct task_group *tg; | 1652 | struct task_group *tg; |
1654 | 1653 | ||
1655 | rcu_read_lock(); | 1654 | rcu_read_lock(); |
1656 | update_h_load(busiest_cpu); | 1655 | update_h_load(busiest_cpu); |
1657 | 1656 | ||
1658 | list_for_each_entry_rcu(tg, &task_groups, list) { | 1657 | list_for_each_entry_rcu(tg, &task_groups, list) { |
1659 | struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu]; | 1658 | struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu]; |
1660 | unsigned long busiest_h_load = busiest_cfs_rq->h_load; | 1659 | unsigned long busiest_h_load = busiest_cfs_rq->h_load; |
1661 | unsigned long busiest_weight = busiest_cfs_rq->load.weight; | 1660 | unsigned long busiest_weight = busiest_cfs_rq->load.weight; |
1662 | u64 rem_load, moved_load; | 1661 | u64 rem_load, moved_load; |
1663 | 1662 | ||
1664 | /* | 1663 | /* |
1665 | * empty group | 1664 | * empty group |
1666 | */ | 1665 | */ |
1667 | if (!busiest_cfs_rq->task_weight) | 1666 | if (!busiest_cfs_rq->task_weight) |
1668 | continue; | 1667 | continue; |
1669 | 1668 | ||
1670 | rem_load = (u64)rem_load_move * busiest_weight; | 1669 | rem_load = (u64)rem_load_move * busiest_weight; |
1671 | rem_load = div_u64(rem_load, busiest_h_load + 1); | 1670 | rem_load = div_u64(rem_load, busiest_h_load + 1); |
1672 | 1671 | ||
1673 | moved_load = __load_balance_fair(this_rq, this_cpu, busiest, | 1672 | moved_load = __load_balance_fair(this_rq, this_cpu, busiest, |
1674 | rem_load, sd, idle, all_pinned, this_best_prio, | 1673 | rem_load, sd, idle, all_pinned, this_best_prio, |
1675 | tg->cfs_rq[busiest_cpu]); | 1674 | tg->cfs_rq[busiest_cpu]); |
1676 | 1675 | ||
1677 | if (!moved_load) | 1676 | if (!moved_load) |
1678 | continue; | 1677 | continue; |
1679 | 1678 | ||
1680 | moved_load *= busiest_h_load; | 1679 | moved_load *= busiest_h_load; |
1681 | moved_load = div_u64(moved_load, busiest_weight + 1); | 1680 | moved_load = div_u64(moved_load, busiest_weight + 1); |
1682 | 1681 | ||
1683 | rem_load_move -= moved_load; | 1682 | rem_load_move -= moved_load; |
1684 | if (rem_load_move < 0) | 1683 | if (rem_load_move < 0) |
1685 | break; | 1684 | break; |
1686 | } | 1685 | } |
1687 | rcu_read_unlock(); | 1686 | rcu_read_unlock(); |
1688 | 1687 | ||
1689 | return max_load_move - rem_load_move; | 1688 | return max_load_move - rem_load_move; |
1690 | } | 1689 | } |
1691 | #else | 1690 | #else |
1692 | static unsigned long | 1691 | static unsigned long |
1693 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 1692 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, |
1694 | unsigned long max_load_move, | 1693 | unsigned long max_load_move, |
1695 | struct sched_domain *sd, enum cpu_idle_type idle, | 1694 | struct sched_domain *sd, enum cpu_idle_type idle, |
1696 | int *all_pinned, int *this_best_prio) | 1695 | int *all_pinned, int *this_best_prio) |
1697 | { | 1696 | { |
1698 | return __load_balance_fair(this_rq, this_cpu, busiest, | 1697 | return __load_balance_fair(this_rq, this_cpu, busiest, |
1699 | max_load_move, sd, idle, all_pinned, | 1698 | max_load_move, sd, idle, all_pinned, |
1700 | this_best_prio, &busiest->cfs); | 1699 | this_best_prio, &busiest->cfs); |
1701 | } | 1700 | } |
1702 | #endif | 1701 | #endif |
1703 | 1702 | ||
1704 | static int | 1703 | static int |
1705 | move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, | 1704 | move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, |
1706 | struct sched_domain *sd, enum cpu_idle_type idle) | 1705 | struct sched_domain *sd, enum cpu_idle_type idle) |
1707 | { | 1706 | { |
1708 | struct cfs_rq *busy_cfs_rq; | 1707 | struct cfs_rq *busy_cfs_rq; |
1709 | struct rq_iterator cfs_rq_iterator; | 1708 | struct rq_iterator cfs_rq_iterator; |
1710 | 1709 | ||
1711 | cfs_rq_iterator.start = load_balance_start_fair; | 1710 | cfs_rq_iterator.start = load_balance_start_fair; |
1712 | cfs_rq_iterator.next = load_balance_next_fair; | 1711 | cfs_rq_iterator.next = load_balance_next_fair; |
1713 | 1712 | ||
1714 | for_each_leaf_cfs_rq(busiest, busy_cfs_rq) { | 1713 | for_each_leaf_cfs_rq(busiest, busy_cfs_rq) { |
1715 | /* | 1714 | /* |
1716 | * pass busy_cfs_rq argument into | 1715 | * pass busy_cfs_rq argument into |
1717 | * load_balance_[start|next]_fair iterators | 1716 | * load_balance_[start|next]_fair iterators |
1718 | */ | 1717 | */ |
1719 | cfs_rq_iterator.arg = busy_cfs_rq; | 1718 | cfs_rq_iterator.arg = busy_cfs_rq; |
1720 | if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle, | 1719 | if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle, |
1721 | &cfs_rq_iterator)) | 1720 | &cfs_rq_iterator)) |
1722 | return 1; | 1721 | return 1; |
1723 | } | 1722 | } |
1724 | 1723 | ||
1725 | return 0; | 1724 | return 0; |
1726 | } | 1725 | } |
1727 | #endif /* CONFIG_SMP */ | 1726 | #endif /* CONFIG_SMP */ |
1728 | 1727 | ||
1729 | /* | 1728 | /* |
1730 | * scheduler tick hitting a task of our scheduling class: | 1729 | * scheduler tick hitting a task of our scheduling class: |
1731 | */ | 1730 | */ |
1732 | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) | 1731 | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) |
1733 | { | 1732 | { |
1734 | struct cfs_rq *cfs_rq; | 1733 | struct cfs_rq *cfs_rq; |
1735 | struct sched_entity *se = &curr->se; | 1734 | struct sched_entity *se = &curr->se; |
1736 | 1735 | ||
1737 | for_each_sched_entity(se) { | 1736 | for_each_sched_entity(se) { |
1738 | cfs_rq = cfs_rq_of(se); | 1737 | cfs_rq = cfs_rq_of(se); |
1739 | entity_tick(cfs_rq, se, queued); | 1738 | entity_tick(cfs_rq, se, queued); |
1740 | } | 1739 | } |
1741 | } | 1740 | } |
1742 | 1741 | ||
1743 | /* | 1742 | /* |
1744 | * Share the fairness runtime between parent and child, thus the | 1743 | * Share the fairness runtime between parent and child, thus the |
1745 | * total amount of pressure for CPU stays equal - new tasks | 1744 | * total amount of pressure for CPU stays equal - new tasks |
1746 | * get a chance to run but frequent forkers are not allowed to | 1745 | * get a chance to run but frequent forkers are not allowed to |
1747 | * monopolize the CPU. Note: the parent runqueue is locked, | 1746 | * monopolize the CPU. Note: the parent runqueue is locked, |
1748 | * the child is not running yet. | 1747 | * the child is not running yet. |
1749 | */ | 1748 | */ |
1750 | static void task_new_fair(struct rq *rq, struct task_struct *p) | 1749 | static void task_new_fair(struct rq *rq, struct task_struct *p) |
1751 | { | 1750 | { |
1752 | struct cfs_rq *cfs_rq = task_cfs_rq(p); | 1751 | struct cfs_rq *cfs_rq = task_cfs_rq(p); |
1753 | struct sched_entity *se = &p->se, *curr = cfs_rq->curr; | 1752 | struct sched_entity *se = &p->se, *curr = cfs_rq->curr; |
1754 | int this_cpu = smp_processor_id(); | 1753 | int this_cpu = smp_processor_id(); |
1755 | 1754 | ||
1756 | sched_info_queued(p); | 1755 | sched_info_queued(p); |
1757 | 1756 | ||
1758 | update_curr(cfs_rq); | 1757 | update_curr(cfs_rq); |
1759 | if (curr) | 1758 | if (curr) |
1760 | se->vruntime = curr->vruntime; | 1759 | se->vruntime = curr->vruntime; |
1761 | place_entity(cfs_rq, se, 1); | 1760 | place_entity(cfs_rq, se, 1); |
1762 | 1761 | ||
1763 | /* 'curr' will be NULL if the child belongs to a different group */ | 1762 | /* 'curr' will be NULL if the child belongs to a different group */ |
1764 | if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) && | 1763 | if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) && |
1765 | curr && entity_before(curr, se)) { | 1764 | curr && entity_before(curr, se)) { |
1766 | /* | 1765 | /* |
1767 | * Upon rescheduling, sched_class::put_prev_task() will place | 1766 | * Upon rescheduling, sched_class::put_prev_task() will place |
1768 | * 'current' within the tree based on its new key value. | 1767 | * 'current' within the tree based on its new key value. |
1769 | */ | 1768 | */ |
1770 | swap(curr->vruntime, se->vruntime); | 1769 | swap(curr->vruntime, se->vruntime); |
1771 | resched_task(rq->curr); | 1770 | resched_task(rq->curr); |
1772 | } | 1771 | } |
1773 | 1772 | ||
1774 | enqueue_task_fair(rq, p, 0); | 1773 | enqueue_task_fair(rq, p, 0); |
1775 | } | 1774 | } |
1776 | 1775 | ||
1777 | /* | 1776 | /* |
1778 | * Priority of the task has changed. Check to see if we preempt | 1777 | * Priority of the task has changed. Check to see if we preempt |
1779 | * the current task. | 1778 | * the current task. |
1780 | */ | 1779 | */ |
1781 | static void prio_changed_fair(struct rq *rq, struct task_struct *p, | 1780 | static void prio_changed_fair(struct rq *rq, struct task_struct *p, |
1782 | int oldprio, int running) | 1781 | int oldprio, int running) |
1783 | { | 1782 | { |
1784 | /* | 1783 | /* |
1785 | * Reschedule if we are currently running on this runqueue and | 1784 | * Reschedule if we are currently running on this runqueue and |
1786 | * our priority decreased, or if we are not currently running on | 1785 | * our priority decreased, or if we are not currently running on |
1787 | * this runqueue and our priority is higher than the current's | 1786 | * this runqueue and our priority is higher than the current's |
1788 | */ | 1787 | */ |
1789 | if (running) { | 1788 | if (running) { |
1790 | if (p->prio > oldprio) | 1789 | if (p->prio > oldprio) |
1791 | resched_task(rq->curr); | 1790 | resched_task(rq->curr); |
1792 | } else | 1791 | } else |
1793 | check_preempt_curr(rq, p, 0); | 1792 | check_preempt_curr(rq, p, 0); |
1794 | } | 1793 | } |
1795 | 1794 | ||
1796 | /* | 1795 | /* |
1797 | * We switched to the sched_fair class. | 1796 | * We switched to the sched_fair class. |
1798 | */ | 1797 | */ |
1799 | static void switched_to_fair(struct rq *rq, struct task_struct *p, | 1798 | static void switched_to_fair(struct rq *rq, struct task_struct *p, |
1800 | int running) | 1799 | int running) |
1801 | { | 1800 | { |
1802 | /* | 1801 | /* |
1803 | * We were most likely switched from sched_rt, so | 1802 | * We were most likely switched from sched_rt, so |
1804 | * kick off the schedule if running, otherwise just see | 1803 | * kick off the schedule if running, otherwise just see |
1805 | * if we can still preempt the current task. | 1804 | * if we can still preempt the current task. |
1806 | */ | 1805 | */ |
1807 | if (running) | 1806 | if (running) |
1808 | resched_task(rq->curr); | 1807 | resched_task(rq->curr); |
1809 | else | 1808 | else |
1810 | check_preempt_curr(rq, p, 0); | 1809 | check_preempt_curr(rq, p, 0); |
1811 | } | 1810 | } |
1812 | 1811 | ||
1813 | /* Account for a task changing its policy or group. | 1812 | /* Account for a task changing its policy or group. |
1814 | * | 1813 | * |
1815 | * This routine is mostly called to set cfs_rq->curr field when a task | 1814 | * This routine is mostly called to set cfs_rq->curr field when a task |
1816 | * migrates between groups/classes. | 1815 | * migrates between groups/classes. |
1817 | */ | 1816 | */ |
1818 | static void set_curr_task_fair(struct rq *rq) | 1817 | static void set_curr_task_fair(struct rq *rq) |
1819 | { | 1818 | { |
1820 | struct sched_entity *se = &rq->curr->se; | 1819 | struct sched_entity *se = &rq->curr->se; |
1821 | 1820 | ||
1822 | for_each_sched_entity(se) | 1821 | for_each_sched_entity(se) |
1823 | set_next_entity(cfs_rq_of(se), se); | 1822 | set_next_entity(cfs_rq_of(se), se); |
1824 | } | 1823 | } |
1825 | 1824 | ||
1826 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1825 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1827 | static void moved_group_fair(struct task_struct *p) | 1826 | static void moved_group_fair(struct task_struct *p) |
1828 | { | 1827 | { |
1829 | struct cfs_rq *cfs_rq = task_cfs_rq(p); | 1828 | struct cfs_rq *cfs_rq = task_cfs_rq(p); |
1830 | 1829 | ||
1831 | update_curr(cfs_rq); | 1830 | update_curr(cfs_rq); |
1832 | place_entity(cfs_rq, &p->se, 1); | 1831 | place_entity(cfs_rq, &p->se, 1); |
1833 | } | 1832 | } |
1834 | #endif | 1833 | #endif |
1835 | 1834 | ||
1836 | /* | 1835 | /* |
1837 | * All the scheduling class methods: | 1836 | * All the scheduling class methods: |
1838 | */ | 1837 | */ |
1839 | static const struct sched_class fair_sched_class = { | 1838 | static const struct sched_class fair_sched_class = { |
1840 | .next = &idle_sched_class, | 1839 | .next = &idle_sched_class, |
1841 | .enqueue_task = enqueue_task_fair, | 1840 | .enqueue_task = enqueue_task_fair, |
1842 | .dequeue_task = dequeue_task_fair, | 1841 | .dequeue_task = dequeue_task_fair, |
1843 | .yield_task = yield_task_fair, | 1842 | .yield_task = yield_task_fair, |
1844 | 1843 | ||
1845 | .check_preempt_curr = check_preempt_wakeup, | 1844 | .check_preempt_curr = check_preempt_wakeup, |
1846 | 1845 | ||
1847 | .pick_next_task = pick_next_task_fair, | 1846 | .pick_next_task = pick_next_task_fair, |
1848 | .put_prev_task = put_prev_task_fair, | 1847 | .put_prev_task = put_prev_task_fair, |
1849 | 1848 | ||
1850 | #ifdef CONFIG_SMP | 1849 | #ifdef CONFIG_SMP |
1851 | .select_task_rq = select_task_rq_fair, | 1850 | .select_task_rq = select_task_rq_fair, |
1852 | 1851 | ||
1853 | .load_balance = load_balance_fair, | 1852 | .load_balance = load_balance_fair, |
1854 | .move_one_task = move_one_task_fair, | 1853 | .move_one_task = move_one_task_fair, |
1855 | #endif | 1854 | #endif |
1856 | 1855 | ||
1857 | .set_curr_task = set_curr_task_fair, | 1856 | .set_curr_task = set_curr_task_fair, |
1858 | .task_tick = task_tick_fair, | 1857 | .task_tick = task_tick_fair, |
1859 | .task_new = task_new_fair, | 1858 | .task_new = task_new_fair, |
1860 | 1859 | ||
1861 | .prio_changed = prio_changed_fair, | 1860 | .prio_changed = prio_changed_fair, |
1862 | .switched_to = switched_to_fair, | 1861 | .switched_to = switched_to_fair, |
1863 | 1862 | ||
1864 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1863 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1865 | .moved_group = moved_group_fair, | 1864 | .moved_group = moved_group_fair, |
1866 | #endif | 1865 | #endif |
1867 | }; | 1866 | }; |
1868 | 1867 | ||
1869 | #ifdef CONFIG_SCHED_DEBUG | 1868 | #ifdef CONFIG_SCHED_DEBUG |
1870 | static void print_cfs_stats(struct seq_file *m, int cpu) | 1869 | static void print_cfs_stats(struct seq_file *m, int cpu) |
1871 | { | 1870 | { |
1872 | struct cfs_rq *cfs_rq; | 1871 | struct cfs_rq *cfs_rq; |
1873 | 1872 | ||
1874 | rcu_read_lock(); | 1873 | rcu_read_lock(); |
1875 | for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) | 1874 | for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) |
1876 | print_cfs_rq(m, cpu, cfs_rq); | 1875 | print_cfs_rq(m, cpu, cfs_rq); |
1877 | rcu_read_unlock(); | 1876 | rcu_read_unlock(); |
1878 | } | 1877 | } |
1879 | #endif | 1878 | #endif |