Commit e959d8121fcbfee6ec049cc617e9423d1799f2e4

Authored by Ingo Molnar
Committed by David S. Miller
1 parent f3111502c0

[XFRM]: fix incorrect xfrm_policy_afinfo_lock use

xfrm_policy_afinfo_lock can be taken in bh context, at:

 [<c013fe1a>] lockdep_acquire_read+0x54/0x6d
 [<c0f6e024>] _read_lock+0x15/0x22
 [<c0e8fcdb>] xfrm_policy_get_afinfo+0x1a/0x3d
 [<c0e8fd10>] xfrm_decode_session+0x12/0x32
 [<c0e66094>] ip_route_me_harder+0x1c9/0x25b
 [<c0e770d3>] ip_nat_local_fn+0x94/0xad
 [<c0e2bbc8>] nf_iterate+0x2e/0x7a
 [<c0e2bc50>] nf_hook_slow+0x3c/0x9e
 [<c0e3a342>] ip_push_pending_frames+0x2de/0x3a7
 [<c0e53e19>] icmp_push_reply+0x136/0x141
 [<c0e543fb>] icmp_reply+0x118/0x1a0
 [<c0e54581>] icmp_echo+0x44/0x46
 [<c0e53fad>] icmp_rcv+0x111/0x138
 [<c0e36764>] ip_local_deliver+0x150/0x1f9
 [<c0e36be2>] ip_rcv+0x3d5/0x413
 [<c0df760f>] netif_receive_skb+0x337/0x356
 [<c0df76c3>] process_backlog+0x95/0x110
 [<c0df5fe2>] net_rx_action+0xa5/0x16d
 [<c012d8a7>] __do_softirq+0x6f/0xe6
 [<c0105ec2>] do_softirq+0x52/0xb1

this means that all write-locking of xfrm_policy_afinfo_lock must be
bh-safe. This patch fixes xfrm_policy_register_afinfo() and
xfrm_policy_unregister_afinfo().

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: David S. Miller <davem@davemloft.net>

Showing 1 changed file with 4 additions and 4 deletions Inline Diff

net/xfrm/xfrm_policy.c
1 /* 1 /*
2 * xfrm_policy.c 2 * xfrm_policy.c
3 * 3 *
4 * Changes: 4 * Changes:
5 * Mitsuru KANDA @USAGI 5 * Mitsuru KANDA @USAGI
6 * Kazunori MIYAZAWA @USAGI 6 * Kazunori MIYAZAWA @USAGI
7 * Kunihiro Ishiguro <kunihiro@ipinfusion.com> 7 * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
8 * IPv6 support 8 * IPv6 support
9 * Kazunori MIYAZAWA @USAGI 9 * Kazunori MIYAZAWA @USAGI
10 * YOSHIFUJI Hideaki 10 * YOSHIFUJI Hideaki
11 * Split up af-specific portion 11 * Split up af-specific portion
12 * Derek Atkins <derek@ihtfp.com> Add the post_input processor 12 * Derek Atkins <derek@ihtfp.com> Add the post_input processor
13 * 13 *
14 */ 14 */
15 15
16 #include <linux/config.h> 16 #include <linux/config.h>
17 #include <linux/slab.h> 17 #include <linux/slab.h>
18 #include <linux/kmod.h> 18 #include <linux/kmod.h>
19 #include <linux/list.h> 19 #include <linux/list.h>
20 #include <linux/spinlock.h> 20 #include <linux/spinlock.h>
21 #include <linux/workqueue.h> 21 #include <linux/workqueue.h>
22 #include <linux/notifier.h> 22 #include <linux/notifier.h>
23 #include <linux/netdevice.h> 23 #include <linux/netdevice.h>
24 #include <linux/netfilter.h> 24 #include <linux/netfilter.h>
25 #include <linux/module.h> 25 #include <linux/module.h>
26 #include <net/xfrm.h> 26 #include <net/xfrm.h>
27 #include <net/ip.h> 27 #include <net/ip.h>
28 28
29 DEFINE_MUTEX(xfrm_cfg_mutex); 29 DEFINE_MUTEX(xfrm_cfg_mutex);
30 EXPORT_SYMBOL(xfrm_cfg_mutex); 30 EXPORT_SYMBOL(xfrm_cfg_mutex);
31 31
32 static DEFINE_RWLOCK(xfrm_policy_lock); 32 static DEFINE_RWLOCK(xfrm_policy_lock);
33 33
34 struct xfrm_policy *xfrm_policy_list[XFRM_POLICY_MAX*2]; 34 struct xfrm_policy *xfrm_policy_list[XFRM_POLICY_MAX*2];
35 EXPORT_SYMBOL(xfrm_policy_list); 35 EXPORT_SYMBOL(xfrm_policy_list);
36 36
37 static DEFINE_RWLOCK(xfrm_policy_afinfo_lock); 37 static DEFINE_RWLOCK(xfrm_policy_afinfo_lock);
38 static struct xfrm_policy_afinfo *xfrm_policy_afinfo[NPROTO]; 38 static struct xfrm_policy_afinfo *xfrm_policy_afinfo[NPROTO];
39 39
40 static kmem_cache_t *xfrm_dst_cache __read_mostly; 40 static kmem_cache_t *xfrm_dst_cache __read_mostly;
41 41
42 static struct work_struct xfrm_policy_gc_work; 42 static struct work_struct xfrm_policy_gc_work;
43 static struct list_head xfrm_policy_gc_list = 43 static struct list_head xfrm_policy_gc_list =
44 LIST_HEAD_INIT(xfrm_policy_gc_list); 44 LIST_HEAD_INIT(xfrm_policy_gc_list);
45 static DEFINE_SPINLOCK(xfrm_policy_gc_lock); 45 static DEFINE_SPINLOCK(xfrm_policy_gc_lock);
46 46
47 static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family); 47 static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family);
48 static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo); 48 static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo);
49 49
50 int xfrm_register_type(struct xfrm_type *type, unsigned short family) 50 int xfrm_register_type(struct xfrm_type *type, unsigned short family)
51 { 51 {
52 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family); 52 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
53 struct xfrm_type_map *typemap; 53 struct xfrm_type_map *typemap;
54 int err = 0; 54 int err = 0;
55 55
56 if (unlikely(afinfo == NULL)) 56 if (unlikely(afinfo == NULL))
57 return -EAFNOSUPPORT; 57 return -EAFNOSUPPORT;
58 typemap = afinfo->type_map; 58 typemap = afinfo->type_map;
59 59
60 write_lock_bh(&typemap->lock); 60 write_lock_bh(&typemap->lock);
61 if (likely(typemap->map[type->proto] == NULL)) 61 if (likely(typemap->map[type->proto] == NULL))
62 typemap->map[type->proto] = type; 62 typemap->map[type->proto] = type;
63 else 63 else
64 err = -EEXIST; 64 err = -EEXIST;
65 write_unlock_bh(&typemap->lock); 65 write_unlock_bh(&typemap->lock);
66 xfrm_policy_put_afinfo(afinfo); 66 xfrm_policy_put_afinfo(afinfo);
67 return err; 67 return err;
68 } 68 }
69 EXPORT_SYMBOL(xfrm_register_type); 69 EXPORT_SYMBOL(xfrm_register_type);
70 70
71 int xfrm_unregister_type(struct xfrm_type *type, unsigned short family) 71 int xfrm_unregister_type(struct xfrm_type *type, unsigned short family)
72 { 72 {
73 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family); 73 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
74 struct xfrm_type_map *typemap; 74 struct xfrm_type_map *typemap;
75 int err = 0; 75 int err = 0;
76 76
77 if (unlikely(afinfo == NULL)) 77 if (unlikely(afinfo == NULL))
78 return -EAFNOSUPPORT; 78 return -EAFNOSUPPORT;
79 typemap = afinfo->type_map; 79 typemap = afinfo->type_map;
80 80
81 write_lock_bh(&typemap->lock); 81 write_lock_bh(&typemap->lock);
82 if (unlikely(typemap->map[type->proto] != type)) 82 if (unlikely(typemap->map[type->proto] != type))
83 err = -ENOENT; 83 err = -ENOENT;
84 else 84 else
85 typemap->map[type->proto] = NULL; 85 typemap->map[type->proto] = NULL;
86 write_unlock_bh(&typemap->lock); 86 write_unlock_bh(&typemap->lock);
87 xfrm_policy_put_afinfo(afinfo); 87 xfrm_policy_put_afinfo(afinfo);
88 return err; 88 return err;
89 } 89 }
90 EXPORT_SYMBOL(xfrm_unregister_type); 90 EXPORT_SYMBOL(xfrm_unregister_type);
91 91
92 struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family) 92 struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family)
93 { 93 {
94 struct xfrm_policy_afinfo *afinfo; 94 struct xfrm_policy_afinfo *afinfo;
95 struct xfrm_type_map *typemap; 95 struct xfrm_type_map *typemap;
96 struct xfrm_type *type; 96 struct xfrm_type *type;
97 int modload_attempted = 0; 97 int modload_attempted = 0;
98 98
99 retry: 99 retry:
100 afinfo = xfrm_policy_get_afinfo(family); 100 afinfo = xfrm_policy_get_afinfo(family);
101 if (unlikely(afinfo == NULL)) 101 if (unlikely(afinfo == NULL))
102 return NULL; 102 return NULL;
103 typemap = afinfo->type_map; 103 typemap = afinfo->type_map;
104 104
105 read_lock(&typemap->lock); 105 read_lock(&typemap->lock);
106 type = typemap->map[proto]; 106 type = typemap->map[proto];
107 if (unlikely(type && !try_module_get(type->owner))) 107 if (unlikely(type && !try_module_get(type->owner)))
108 type = NULL; 108 type = NULL;
109 read_unlock(&typemap->lock); 109 read_unlock(&typemap->lock);
110 if (!type && !modload_attempted) { 110 if (!type && !modload_attempted) {
111 xfrm_policy_put_afinfo(afinfo); 111 xfrm_policy_put_afinfo(afinfo);
112 request_module("xfrm-type-%d-%d", 112 request_module("xfrm-type-%d-%d",
113 (int) family, (int) proto); 113 (int) family, (int) proto);
114 modload_attempted = 1; 114 modload_attempted = 1;
115 goto retry; 115 goto retry;
116 } 116 }
117 117
118 xfrm_policy_put_afinfo(afinfo); 118 xfrm_policy_put_afinfo(afinfo);
119 return type; 119 return type;
120 } 120 }
121 121
122 int xfrm_dst_lookup(struct xfrm_dst **dst, struct flowi *fl, 122 int xfrm_dst_lookup(struct xfrm_dst **dst, struct flowi *fl,
123 unsigned short family) 123 unsigned short family)
124 { 124 {
125 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family); 125 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
126 int err = 0; 126 int err = 0;
127 127
128 if (unlikely(afinfo == NULL)) 128 if (unlikely(afinfo == NULL))
129 return -EAFNOSUPPORT; 129 return -EAFNOSUPPORT;
130 130
131 if (likely(afinfo->dst_lookup != NULL)) 131 if (likely(afinfo->dst_lookup != NULL))
132 err = afinfo->dst_lookup(dst, fl); 132 err = afinfo->dst_lookup(dst, fl);
133 else 133 else
134 err = -EINVAL; 134 err = -EINVAL;
135 xfrm_policy_put_afinfo(afinfo); 135 xfrm_policy_put_afinfo(afinfo);
136 return err; 136 return err;
137 } 137 }
138 EXPORT_SYMBOL(xfrm_dst_lookup); 138 EXPORT_SYMBOL(xfrm_dst_lookup);
139 139
140 void xfrm_put_type(struct xfrm_type *type) 140 void xfrm_put_type(struct xfrm_type *type)
141 { 141 {
142 module_put(type->owner); 142 module_put(type->owner);
143 } 143 }
144 144
145 static inline unsigned long make_jiffies(long secs) 145 static inline unsigned long make_jiffies(long secs)
146 { 146 {
147 if (secs >= (MAX_SCHEDULE_TIMEOUT-1)/HZ) 147 if (secs >= (MAX_SCHEDULE_TIMEOUT-1)/HZ)
148 return MAX_SCHEDULE_TIMEOUT-1; 148 return MAX_SCHEDULE_TIMEOUT-1;
149 else 149 else
150 return secs*HZ; 150 return secs*HZ;
151 } 151 }
152 152
153 static void xfrm_policy_timer(unsigned long data) 153 static void xfrm_policy_timer(unsigned long data)
154 { 154 {
155 struct xfrm_policy *xp = (struct xfrm_policy*)data; 155 struct xfrm_policy *xp = (struct xfrm_policy*)data;
156 unsigned long now = (unsigned long)xtime.tv_sec; 156 unsigned long now = (unsigned long)xtime.tv_sec;
157 long next = LONG_MAX; 157 long next = LONG_MAX;
158 int warn = 0; 158 int warn = 0;
159 int dir; 159 int dir;
160 160
161 read_lock(&xp->lock); 161 read_lock(&xp->lock);
162 162
163 if (xp->dead) 163 if (xp->dead)
164 goto out; 164 goto out;
165 165
166 dir = xfrm_policy_id2dir(xp->index); 166 dir = xfrm_policy_id2dir(xp->index);
167 167
168 if (xp->lft.hard_add_expires_seconds) { 168 if (xp->lft.hard_add_expires_seconds) {
169 long tmo = xp->lft.hard_add_expires_seconds + 169 long tmo = xp->lft.hard_add_expires_seconds +
170 xp->curlft.add_time - now; 170 xp->curlft.add_time - now;
171 if (tmo <= 0) 171 if (tmo <= 0)
172 goto expired; 172 goto expired;
173 if (tmo < next) 173 if (tmo < next)
174 next = tmo; 174 next = tmo;
175 } 175 }
176 if (xp->lft.hard_use_expires_seconds) { 176 if (xp->lft.hard_use_expires_seconds) {
177 long tmo = xp->lft.hard_use_expires_seconds + 177 long tmo = xp->lft.hard_use_expires_seconds +
178 (xp->curlft.use_time ? : xp->curlft.add_time) - now; 178 (xp->curlft.use_time ? : xp->curlft.add_time) - now;
179 if (tmo <= 0) 179 if (tmo <= 0)
180 goto expired; 180 goto expired;
181 if (tmo < next) 181 if (tmo < next)
182 next = tmo; 182 next = tmo;
183 } 183 }
184 if (xp->lft.soft_add_expires_seconds) { 184 if (xp->lft.soft_add_expires_seconds) {
185 long tmo = xp->lft.soft_add_expires_seconds + 185 long tmo = xp->lft.soft_add_expires_seconds +
186 xp->curlft.add_time - now; 186 xp->curlft.add_time - now;
187 if (tmo <= 0) { 187 if (tmo <= 0) {
188 warn = 1; 188 warn = 1;
189 tmo = XFRM_KM_TIMEOUT; 189 tmo = XFRM_KM_TIMEOUT;
190 } 190 }
191 if (tmo < next) 191 if (tmo < next)
192 next = tmo; 192 next = tmo;
193 } 193 }
194 if (xp->lft.soft_use_expires_seconds) { 194 if (xp->lft.soft_use_expires_seconds) {
195 long tmo = xp->lft.soft_use_expires_seconds + 195 long tmo = xp->lft.soft_use_expires_seconds +
196 (xp->curlft.use_time ? : xp->curlft.add_time) - now; 196 (xp->curlft.use_time ? : xp->curlft.add_time) - now;
197 if (tmo <= 0) { 197 if (tmo <= 0) {
198 warn = 1; 198 warn = 1;
199 tmo = XFRM_KM_TIMEOUT; 199 tmo = XFRM_KM_TIMEOUT;
200 } 200 }
201 if (tmo < next) 201 if (tmo < next)
202 next = tmo; 202 next = tmo;
203 } 203 }
204 204
205 if (warn) 205 if (warn)
206 km_policy_expired(xp, dir, 0, 0); 206 km_policy_expired(xp, dir, 0, 0);
207 if (next != LONG_MAX && 207 if (next != LONG_MAX &&
208 !mod_timer(&xp->timer, jiffies + make_jiffies(next))) 208 !mod_timer(&xp->timer, jiffies + make_jiffies(next)))
209 xfrm_pol_hold(xp); 209 xfrm_pol_hold(xp);
210 210
211 out: 211 out:
212 read_unlock(&xp->lock); 212 read_unlock(&xp->lock);
213 xfrm_pol_put(xp); 213 xfrm_pol_put(xp);
214 return; 214 return;
215 215
216 expired: 216 expired:
217 read_unlock(&xp->lock); 217 read_unlock(&xp->lock);
218 if (!xfrm_policy_delete(xp, dir)) 218 if (!xfrm_policy_delete(xp, dir))
219 km_policy_expired(xp, dir, 1, 0); 219 km_policy_expired(xp, dir, 1, 0);
220 xfrm_pol_put(xp); 220 xfrm_pol_put(xp);
221 } 221 }
222 222
223 223
224 /* Allocate xfrm_policy. Not used here, it is supposed to be used by pfkeyv2 224 /* Allocate xfrm_policy. Not used here, it is supposed to be used by pfkeyv2
225 * SPD calls. 225 * SPD calls.
226 */ 226 */
227 227
228 struct xfrm_policy *xfrm_policy_alloc(gfp_t gfp) 228 struct xfrm_policy *xfrm_policy_alloc(gfp_t gfp)
229 { 229 {
230 struct xfrm_policy *policy; 230 struct xfrm_policy *policy;
231 231
232 policy = kmalloc(sizeof(struct xfrm_policy), gfp); 232 policy = kmalloc(sizeof(struct xfrm_policy), gfp);
233 233
234 if (policy) { 234 if (policy) {
235 memset(policy, 0, sizeof(struct xfrm_policy)); 235 memset(policy, 0, sizeof(struct xfrm_policy));
236 atomic_set(&policy->refcnt, 1); 236 atomic_set(&policy->refcnt, 1);
237 rwlock_init(&policy->lock); 237 rwlock_init(&policy->lock);
238 init_timer(&policy->timer); 238 init_timer(&policy->timer);
239 policy->timer.data = (unsigned long)policy; 239 policy->timer.data = (unsigned long)policy;
240 policy->timer.function = xfrm_policy_timer; 240 policy->timer.function = xfrm_policy_timer;
241 } 241 }
242 return policy; 242 return policy;
243 } 243 }
244 EXPORT_SYMBOL(xfrm_policy_alloc); 244 EXPORT_SYMBOL(xfrm_policy_alloc);
245 245
246 /* Destroy xfrm_policy: descendant resources must be released to this moment. */ 246 /* Destroy xfrm_policy: descendant resources must be released to this moment. */
247 247
248 void __xfrm_policy_destroy(struct xfrm_policy *policy) 248 void __xfrm_policy_destroy(struct xfrm_policy *policy)
249 { 249 {
250 BUG_ON(!policy->dead); 250 BUG_ON(!policy->dead);
251 251
252 BUG_ON(policy->bundles); 252 BUG_ON(policy->bundles);
253 253
254 if (del_timer(&policy->timer)) 254 if (del_timer(&policy->timer))
255 BUG(); 255 BUG();
256 256
257 security_xfrm_policy_free(policy); 257 security_xfrm_policy_free(policy);
258 kfree(policy); 258 kfree(policy);
259 } 259 }
260 EXPORT_SYMBOL(__xfrm_policy_destroy); 260 EXPORT_SYMBOL(__xfrm_policy_destroy);
261 261
262 static void xfrm_policy_gc_kill(struct xfrm_policy *policy) 262 static void xfrm_policy_gc_kill(struct xfrm_policy *policy)
263 { 263 {
264 struct dst_entry *dst; 264 struct dst_entry *dst;
265 265
266 while ((dst = policy->bundles) != NULL) { 266 while ((dst = policy->bundles) != NULL) {
267 policy->bundles = dst->next; 267 policy->bundles = dst->next;
268 dst_free(dst); 268 dst_free(dst);
269 } 269 }
270 270
271 if (del_timer(&policy->timer)) 271 if (del_timer(&policy->timer))
272 atomic_dec(&policy->refcnt); 272 atomic_dec(&policy->refcnt);
273 273
274 if (atomic_read(&policy->refcnt) > 1) 274 if (atomic_read(&policy->refcnt) > 1)
275 flow_cache_flush(); 275 flow_cache_flush();
276 276
277 xfrm_pol_put(policy); 277 xfrm_pol_put(policy);
278 } 278 }
279 279
280 static void xfrm_policy_gc_task(void *data) 280 static void xfrm_policy_gc_task(void *data)
281 { 281 {
282 struct xfrm_policy *policy; 282 struct xfrm_policy *policy;
283 struct list_head *entry, *tmp; 283 struct list_head *entry, *tmp;
284 struct list_head gc_list = LIST_HEAD_INIT(gc_list); 284 struct list_head gc_list = LIST_HEAD_INIT(gc_list);
285 285
286 spin_lock_bh(&xfrm_policy_gc_lock); 286 spin_lock_bh(&xfrm_policy_gc_lock);
287 list_splice_init(&xfrm_policy_gc_list, &gc_list); 287 list_splice_init(&xfrm_policy_gc_list, &gc_list);
288 spin_unlock_bh(&xfrm_policy_gc_lock); 288 spin_unlock_bh(&xfrm_policy_gc_lock);
289 289
290 list_for_each_safe(entry, tmp, &gc_list) { 290 list_for_each_safe(entry, tmp, &gc_list) {
291 policy = list_entry(entry, struct xfrm_policy, list); 291 policy = list_entry(entry, struct xfrm_policy, list);
292 xfrm_policy_gc_kill(policy); 292 xfrm_policy_gc_kill(policy);
293 } 293 }
294 } 294 }
295 295
296 /* Rule must be locked. Release descentant resources, announce 296 /* Rule must be locked. Release descentant resources, announce
297 * entry dead. The rule must be unlinked from lists to the moment. 297 * entry dead. The rule must be unlinked from lists to the moment.
298 */ 298 */
299 299
300 static void xfrm_policy_kill(struct xfrm_policy *policy) 300 static void xfrm_policy_kill(struct xfrm_policy *policy)
301 { 301 {
302 int dead; 302 int dead;
303 303
304 write_lock_bh(&policy->lock); 304 write_lock_bh(&policy->lock);
305 dead = policy->dead; 305 dead = policy->dead;
306 policy->dead = 1; 306 policy->dead = 1;
307 write_unlock_bh(&policy->lock); 307 write_unlock_bh(&policy->lock);
308 308
309 if (unlikely(dead)) { 309 if (unlikely(dead)) {
310 WARN_ON(1); 310 WARN_ON(1);
311 return; 311 return;
312 } 312 }
313 313
314 spin_lock(&xfrm_policy_gc_lock); 314 spin_lock(&xfrm_policy_gc_lock);
315 list_add(&policy->list, &xfrm_policy_gc_list); 315 list_add(&policy->list, &xfrm_policy_gc_list);
316 spin_unlock(&xfrm_policy_gc_lock); 316 spin_unlock(&xfrm_policy_gc_lock);
317 317
318 schedule_work(&xfrm_policy_gc_work); 318 schedule_work(&xfrm_policy_gc_work);
319 } 319 }
320 320
321 /* Generate new index... KAME seems to generate them ordered by cost 321 /* Generate new index... KAME seems to generate them ordered by cost
322 * of an absolute inpredictability of ordering of rules. This will not pass. */ 322 * of an absolute inpredictability of ordering of rules. This will not pass. */
323 static u32 xfrm_gen_index(int dir) 323 static u32 xfrm_gen_index(int dir)
324 { 324 {
325 u32 idx; 325 u32 idx;
326 struct xfrm_policy *p; 326 struct xfrm_policy *p;
327 static u32 idx_generator; 327 static u32 idx_generator;
328 328
329 for (;;) { 329 for (;;) {
330 idx = (idx_generator | dir); 330 idx = (idx_generator | dir);
331 idx_generator += 8; 331 idx_generator += 8;
332 if (idx == 0) 332 if (idx == 0)
333 idx = 8; 333 idx = 8;
334 for (p = xfrm_policy_list[dir]; p; p = p->next) { 334 for (p = xfrm_policy_list[dir]; p; p = p->next) {
335 if (p->index == idx) 335 if (p->index == idx)
336 break; 336 break;
337 } 337 }
338 if (!p) 338 if (!p)
339 return idx; 339 return idx;
340 } 340 }
341 } 341 }
342 342
343 int xfrm_policy_insert(int dir, struct xfrm_policy *policy, int excl) 343 int xfrm_policy_insert(int dir, struct xfrm_policy *policy, int excl)
344 { 344 {
345 struct xfrm_policy *pol, **p; 345 struct xfrm_policy *pol, **p;
346 struct xfrm_policy *delpol = NULL; 346 struct xfrm_policy *delpol = NULL;
347 struct xfrm_policy **newpos = NULL; 347 struct xfrm_policy **newpos = NULL;
348 struct dst_entry *gc_list; 348 struct dst_entry *gc_list;
349 349
350 write_lock_bh(&xfrm_policy_lock); 350 write_lock_bh(&xfrm_policy_lock);
351 for (p = &xfrm_policy_list[dir]; (pol=*p)!=NULL;) { 351 for (p = &xfrm_policy_list[dir]; (pol=*p)!=NULL;) {
352 if (!delpol && memcmp(&policy->selector, &pol->selector, sizeof(pol->selector)) == 0 && 352 if (!delpol && memcmp(&policy->selector, &pol->selector, sizeof(pol->selector)) == 0 &&
353 xfrm_sec_ctx_match(pol->security, policy->security)) { 353 xfrm_sec_ctx_match(pol->security, policy->security)) {
354 if (excl) { 354 if (excl) {
355 write_unlock_bh(&xfrm_policy_lock); 355 write_unlock_bh(&xfrm_policy_lock);
356 return -EEXIST; 356 return -EEXIST;
357 } 357 }
358 *p = pol->next; 358 *p = pol->next;
359 delpol = pol; 359 delpol = pol;
360 if (policy->priority > pol->priority) 360 if (policy->priority > pol->priority)
361 continue; 361 continue;
362 } else if (policy->priority >= pol->priority) { 362 } else if (policy->priority >= pol->priority) {
363 p = &pol->next; 363 p = &pol->next;
364 continue; 364 continue;
365 } 365 }
366 if (!newpos) 366 if (!newpos)
367 newpos = p; 367 newpos = p;
368 if (delpol) 368 if (delpol)
369 break; 369 break;
370 p = &pol->next; 370 p = &pol->next;
371 } 371 }
372 if (newpos) 372 if (newpos)
373 p = newpos; 373 p = newpos;
374 xfrm_pol_hold(policy); 374 xfrm_pol_hold(policy);
375 policy->next = *p; 375 policy->next = *p;
376 *p = policy; 376 *p = policy;
377 atomic_inc(&flow_cache_genid); 377 atomic_inc(&flow_cache_genid);
378 policy->index = delpol ? delpol->index : xfrm_gen_index(dir); 378 policy->index = delpol ? delpol->index : xfrm_gen_index(dir);
379 policy->curlft.add_time = (unsigned long)xtime.tv_sec; 379 policy->curlft.add_time = (unsigned long)xtime.tv_sec;
380 policy->curlft.use_time = 0; 380 policy->curlft.use_time = 0;
381 if (!mod_timer(&policy->timer, jiffies + HZ)) 381 if (!mod_timer(&policy->timer, jiffies + HZ))
382 xfrm_pol_hold(policy); 382 xfrm_pol_hold(policy);
383 write_unlock_bh(&xfrm_policy_lock); 383 write_unlock_bh(&xfrm_policy_lock);
384 384
385 if (delpol) 385 if (delpol)
386 xfrm_policy_kill(delpol); 386 xfrm_policy_kill(delpol);
387 387
388 read_lock_bh(&xfrm_policy_lock); 388 read_lock_bh(&xfrm_policy_lock);
389 gc_list = NULL; 389 gc_list = NULL;
390 for (policy = policy->next; policy; policy = policy->next) { 390 for (policy = policy->next; policy; policy = policy->next) {
391 struct dst_entry *dst; 391 struct dst_entry *dst;
392 392
393 write_lock(&policy->lock); 393 write_lock(&policy->lock);
394 dst = policy->bundles; 394 dst = policy->bundles;
395 if (dst) { 395 if (dst) {
396 struct dst_entry *tail = dst; 396 struct dst_entry *tail = dst;
397 while (tail->next) 397 while (tail->next)
398 tail = tail->next; 398 tail = tail->next;
399 tail->next = gc_list; 399 tail->next = gc_list;
400 gc_list = dst; 400 gc_list = dst;
401 401
402 policy->bundles = NULL; 402 policy->bundles = NULL;
403 } 403 }
404 write_unlock(&policy->lock); 404 write_unlock(&policy->lock);
405 } 405 }
406 read_unlock_bh(&xfrm_policy_lock); 406 read_unlock_bh(&xfrm_policy_lock);
407 407
408 while (gc_list) { 408 while (gc_list) {
409 struct dst_entry *dst = gc_list; 409 struct dst_entry *dst = gc_list;
410 410
411 gc_list = dst->next; 411 gc_list = dst->next;
412 dst_free(dst); 412 dst_free(dst);
413 } 413 }
414 414
415 return 0; 415 return 0;
416 } 416 }
417 EXPORT_SYMBOL(xfrm_policy_insert); 417 EXPORT_SYMBOL(xfrm_policy_insert);
418 418
419 struct xfrm_policy *xfrm_policy_bysel_ctx(int dir, struct xfrm_selector *sel, 419 struct xfrm_policy *xfrm_policy_bysel_ctx(int dir, struct xfrm_selector *sel,
420 struct xfrm_sec_ctx *ctx, int delete) 420 struct xfrm_sec_ctx *ctx, int delete)
421 { 421 {
422 struct xfrm_policy *pol, **p; 422 struct xfrm_policy *pol, **p;
423 423
424 write_lock_bh(&xfrm_policy_lock); 424 write_lock_bh(&xfrm_policy_lock);
425 for (p = &xfrm_policy_list[dir]; (pol=*p)!=NULL; p = &pol->next) { 425 for (p = &xfrm_policy_list[dir]; (pol=*p)!=NULL; p = &pol->next) {
426 if ((memcmp(sel, &pol->selector, sizeof(*sel)) == 0) && 426 if ((memcmp(sel, &pol->selector, sizeof(*sel)) == 0) &&
427 (xfrm_sec_ctx_match(ctx, pol->security))) { 427 (xfrm_sec_ctx_match(ctx, pol->security))) {
428 xfrm_pol_hold(pol); 428 xfrm_pol_hold(pol);
429 if (delete) 429 if (delete)
430 *p = pol->next; 430 *p = pol->next;
431 break; 431 break;
432 } 432 }
433 } 433 }
434 write_unlock_bh(&xfrm_policy_lock); 434 write_unlock_bh(&xfrm_policy_lock);
435 435
436 if (pol && delete) { 436 if (pol && delete) {
437 atomic_inc(&flow_cache_genid); 437 atomic_inc(&flow_cache_genid);
438 xfrm_policy_kill(pol); 438 xfrm_policy_kill(pol);
439 } 439 }
440 return pol; 440 return pol;
441 } 441 }
442 EXPORT_SYMBOL(xfrm_policy_bysel_ctx); 442 EXPORT_SYMBOL(xfrm_policy_bysel_ctx);
443 443
444 struct xfrm_policy *xfrm_policy_byid(int dir, u32 id, int delete) 444 struct xfrm_policy *xfrm_policy_byid(int dir, u32 id, int delete)
445 { 445 {
446 struct xfrm_policy *pol, **p; 446 struct xfrm_policy *pol, **p;
447 447
448 write_lock_bh(&xfrm_policy_lock); 448 write_lock_bh(&xfrm_policy_lock);
449 for (p = &xfrm_policy_list[dir]; (pol=*p)!=NULL; p = &pol->next) { 449 for (p = &xfrm_policy_list[dir]; (pol=*p)!=NULL; p = &pol->next) {
450 if (pol->index == id) { 450 if (pol->index == id) {
451 xfrm_pol_hold(pol); 451 xfrm_pol_hold(pol);
452 if (delete) 452 if (delete)
453 *p = pol->next; 453 *p = pol->next;
454 break; 454 break;
455 } 455 }
456 } 456 }
457 write_unlock_bh(&xfrm_policy_lock); 457 write_unlock_bh(&xfrm_policy_lock);
458 458
459 if (pol && delete) { 459 if (pol && delete) {
460 atomic_inc(&flow_cache_genid); 460 atomic_inc(&flow_cache_genid);
461 xfrm_policy_kill(pol); 461 xfrm_policy_kill(pol);
462 } 462 }
463 return pol; 463 return pol;
464 } 464 }
465 EXPORT_SYMBOL(xfrm_policy_byid); 465 EXPORT_SYMBOL(xfrm_policy_byid);
466 466
467 void xfrm_policy_flush(void) 467 void xfrm_policy_flush(void)
468 { 468 {
469 struct xfrm_policy *xp; 469 struct xfrm_policy *xp;
470 int dir; 470 int dir;
471 471
472 write_lock_bh(&xfrm_policy_lock); 472 write_lock_bh(&xfrm_policy_lock);
473 for (dir = 0; dir < XFRM_POLICY_MAX; dir++) { 473 for (dir = 0; dir < XFRM_POLICY_MAX; dir++) {
474 while ((xp = xfrm_policy_list[dir]) != NULL) { 474 while ((xp = xfrm_policy_list[dir]) != NULL) {
475 xfrm_policy_list[dir] = xp->next; 475 xfrm_policy_list[dir] = xp->next;
476 write_unlock_bh(&xfrm_policy_lock); 476 write_unlock_bh(&xfrm_policy_lock);
477 477
478 xfrm_policy_kill(xp); 478 xfrm_policy_kill(xp);
479 479
480 write_lock_bh(&xfrm_policy_lock); 480 write_lock_bh(&xfrm_policy_lock);
481 } 481 }
482 } 482 }
483 atomic_inc(&flow_cache_genid); 483 atomic_inc(&flow_cache_genid);
484 write_unlock_bh(&xfrm_policy_lock); 484 write_unlock_bh(&xfrm_policy_lock);
485 } 485 }
486 EXPORT_SYMBOL(xfrm_policy_flush); 486 EXPORT_SYMBOL(xfrm_policy_flush);
487 487
488 int xfrm_policy_walk(int (*func)(struct xfrm_policy *, int, int, void*), 488 int xfrm_policy_walk(int (*func)(struct xfrm_policy *, int, int, void*),
489 void *data) 489 void *data)
490 { 490 {
491 struct xfrm_policy *xp; 491 struct xfrm_policy *xp;
492 int dir; 492 int dir;
493 int count = 0; 493 int count = 0;
494 int error = 0; 494 int error = 0;
495 495
496 read_lock_bh(&xfrm_policy_lock); 496 read_lock_bh(&xfrm_policy_lock);
497 for (dir = 0; dir < 2*XFRM_POLICY_MAX; dir++) { 497 for (dir = 0; dir < 2*XFRM_POLICY_MAX; dir++) {
498 for (xp = xfrm_policy_list[dir]; xp; xp = xp->next) 498 for (xp = xfrm_policy_list[dir]; xp; xp = xp->next)
499 count++; 499 count++;
500 } 500 }
501 501
502 if (count == 0) { 502 if (count == 0) {
503 error = -ENOENT; 503 error = -ENOENT;
504 goto out; 504 goto out;
505 } 505 }
506 506
507 for (dir = 0; dir < 2*XFRM_POLICY_MAX; dir++) { 507 for (dir = 0; dir < 2*XFRM_POLICY_MAX; dir++) {
508 for (xp = xfrm_policy_list[dir]; xp; xp = xp->next) { 508 for (xp = xfrm_policy_list[dir]; xp; xp = xp->next) {
509 error = func(xp, dir%XFRM_POLICY_MAX, --count, data); 509 error = func(xp, dir%XFRM_POLICY_MAX, --count, data);
510 if (error) 510 if (error)
511 goto out; 511 goto out;
512 } 512 }
513 } 513 }
514 514
515 out: 515 out:
516 read_unlock_bh(&xfrm_policy_lock); 516 read_unlock_bh(&xfrm_policy_lock);
517 return error; 517 return error;
518 } 518 }
519 EXPORT_SYMBOL(xfrm_policy_walk); 519 EXPORT_SYMBOL(xfrm_policy_walk);
520 520
521 /* Find policy to apply to this flow. */ 521 /* Find policy to apply to this flow. */
522 522
523 static void xfrm_policy_lookup(struct flowi *fl, u32 sk_sid, u16 family, u8 dir, 523 static void xfrm_policy_lookup(struct flowi *fl, u32 sk_sid, u16 family, u8 dir,
524 void **objp, atomic_t **obj_refp) 524 void **objp, atomic_t **obj_refp)
525 { 525 {
526 struct xfrm_policy *pol; 526 struct xfrm_policy *pol;
527 527
528 read_lock_bh(&xfrm_policy_lock); 528 read_lock_bh(&xfrm_policy_lock);
529 for (pol = xfrm_policy_list[dir]; pol; pol = pol->next) { 529 for (pol = xfrm_policy_list[dir]; pol; pol = pol->next) {
530 struct xfrm_selector *sel = &pol->selector; 530 struct xfrm_selector *sel = &pol->selector;
531 int match; 531 int match;
532 532
533 if (pol->family != family) 533 if (pol->family != family)
534 continue; 534 continue;
535 535
536 match = xfrm_selector_match(sel, fl, family); 536 match = xfrm_selector_match(sel, fl, family);
537 537
538 if (match) { 538 if (match) {
539 if (!security_xfrm_policy_lookup(pol, sk_sid, dir)) { 539 if (!security_xfrm_policy_lookup(pol, sk_sid, dir)) {
540 xfrm_pol_hold(pol); 540 xfrm_pol_hold(pol);
541 break; 541 break;
542 } 542 }
543 } 543 }
544 } 544 }
545 read_unlock_bh(&xfrm_policy_lock); 545 read_unlock_bh(&xfrm_policy_lock);
546 if ((*objp = (void *) pol) != NULL) 546 if ((*objp = (void *) pol) != NULL)
547 *obj_refp = &pol->refcnt; 547 *obj_refp = &pol->refcnt;
548 } 548 }
549 549
550 static inline int policy_to_flow_dir(int dir) 550 static inline int policy_to_flow_dir(int dir)
551 { 551 {
552 if (XFRM_POLICY_IN == FLOW_DIR_IN && 552 if (XFRM_POLICY_IN == FLOW_DIR_IN &&
553 XFRM_POLICY_OUT == FLOW_DIR_OUT && 553 XFRM_POLICY_OUT == FLOW_DIR_OUT &&
554 XFRM_POLICY_FWD == FLOW_DIR_FWD) 554 XFRM_POLICY_FWD == FLOW_DIR_FWD)
555 return dir; 555 return dir;
556 switch (dir) { 556 switch (dir) {
557 default: 557 default:
558 case XFRM_POLICY_IN: 558 case XFRM_POLICY_IN:
559 return FLOW_DIR_IN; 559 return FLOW_DIR_IN;
560 case XFRM_POLICY_OUT: 560 case XFRM_POLICY_OUT:
561 return FLOW_DIR_OUT; 561 return FLOW_DIR_OUT;
562 case XFRM_POLICY_FWD: 562 case XFRM_POLICY_FWD:
563 return FLOW_DIR_FWD; 563 return FLOW_DIR_FWD;
564 }; 564 };
565 } 565 }
566 566
567 static struct xfrm_policy *xfrm_sk_policy_lookup(struct sock *sk, int dir, struct flowi *fl, u32 sk_sid) 567 static struct xfrm_policy *xfrm_sk_policy_lookup(struct sock *sk, int dir, struct flowi *fl, u32 sk_sid)
568 { 568 {
569 struct xfrm_policy *pol; 569 struct xfrm_policy *pol;
570 570
571 read_lock_bh(&xfrm_policy_lock); 571 read_lock_bh(&xfrm_policy_lock);
572 if ((pol = sk->sk_policy[dir]) != NULL) { 572 if ((pol = sk->sk_policy[dir]) != NULL) {
573 int match = xfrm_selector_match(&pol->selector, fl, 573 int match = xfrm_selector_match(&pol->selector, fl,
574 sk->sk_family); 574 sk->sk_family);
575 int err = 0; 575 int err = 0;
576 576
577 if (match) 577 if (match)
578 err = security_xfrm_policy_lookup(pol, sk_sid, policy_to_flow_dir(dir)); 578 err = security_xfrm_policy_lookup(pol, sk_sid, policy_to_flow_dir(dir));
579 579
580 if (match && !err) 580 if (match && !err)
581 xfrm_pol_hold(pol); 581 xfrm_pol_hold(pol);
582 else 582 else
583 pol = NULL; 583 pol = NULL;
584 } 584 }
585 read_unlock_bh(&xfrm_policy_lock); 585 read_unlock_bh(&xfrm_policy_lock);
586 return pol; 586 return pol;
587 } 587 }
588 588
589 static void __xfrm_policy_link(struct xfrm_policy *pol, int dir) 589 static void __xfrm_policy_link(struct xfrm_policy *pol, int dir)
590 { 590 {
591 pol->next = xfrm_policy_list[dir]; 591 pol->next = xfrm_policy_list[dir];
592 xfrm_policy_list[dir] = pol; 592 xfrm_policy_list[dir] = pol;
593 xfrm_pol_hold(pol); 593 xfrm_pol_hold(pol);
594 } 594 }
595 595
596 static struct xfrm_policy *__xfrm_policy_unlink(struct xfrm_policy *pol, 596 static struct xfrm_policy *__xfrm_policy_unlink(struct xfrm_policy *pol,
597 int dir) 597 int dir)
598 { 598 {
599 struct xfrm_policy **polp; 599 struct xfrm_policy **polp;
600 600
601 for (polp = &xfrm_policy_list[dir]; 601 for (polp = &xfrm_policy_list[dir];
602 *polp != NULL; polp = &(*polp)->next) { 602 *polp != NULL; polp = &(*polp)->next) {
603 if (*polp == pol) { 603 if (*polp == pol) {
604 *polp = pol->next; 604 *polp = pol->next;
605 return pol; 605 return pol;
606 } 606 }
607 } 607 }
608 return NULL; 608 return NULL;
609 } 609 }
610 610
611 int xfrm_policy_delete(struct xfrm_policy *pol, int dir) 611 int xfrm_policy_delete(struct xfrm_policy *pol, int dir)
612 { 612 {
613 write_lock_bh(&xfrm_policy_lock); 613 write_lock_bh(&xfrm_policy_lock);
614 pol = __xfrm_policy_unlink(pol, dir); 614 pol = __xfrm_policy_unlink(pol, dir);
615 write_unlock_bh(&xfrm_policy_lock); 615 write_unlock_bh(&xfrm_policy_lock);
616 if (pol) { 616 if (pol) {
617 if (dir < XFRM_POLICY_MAX) 617 if (dir < XFRM_POLICY_MAX)
618 atomic_inc(&flow_cache_genid); 618 atomic_inc(&flow_cache_genid);
619 xfrm_policy_kill(pol); 619 xfrm_policy_kill(pol);
620 return 0; 620 return 0;
621 } 621 }
622 return -ENOENT; 622 return -ENOENT;
623 } 623 }
624 EXPORT_SYMBOL(xfrm_policy_delete); 624 EXPORT_SYMBOL(xfrm_policy_delete);
625 625
626 int xfrm_sk_policy_insert(struct sock *sk, int dir, struct xfrm_policy *pol) 626 int xfrm_sk_policy_insert(struct sock *sk, int dir, struct xfrm_policy *pol)
627 { 627 {
628 struct xfrm_policy *old_pol; 628 struct xfrm_policy *old_pol;
629 629
630 write_lock_bh(&xfrm_policy_lock); 630 write_lock_bh(&xfrm_policy_lock);
631 old_pol = sk->sk_policy[dir]; 631 old_pol = sk->sk_policy[dir];
632 sk->sk_policy[dir] = pol; 632 sk->sk_policy[dir] = pol;
633 if (pol) { 633 if (pol) {
634 pol->curlft.add_time = (unsigned long)xtime.tv_sec; 634 pol->curlft.add_time = (unsigned long)xtime.tv_sec;
635 pol->index = xfrm_gen_index(XFRM_POLICY_MAX+dir); 635 pol->index = xfrm_gen_index(XFRM_POLICY_MAX+dir);
636 __xfrm_policy_link(pol, XFRM_POLICY_MAX+dir); 636 __xfrm_policy_link(pol, XFRM_POLICY_MAX+dir);
637 } 637 }
638 if (old_pol) 638 if (old_pol)
639 __xfrm_policy_unlink(old_pol, XFRM_POLICY_MAX+dir); 639 __xfrm_policy_unlink(old_pol, XFRM_POLICY_MAX+dir);
640 write_unlock_bh(&xfrm_policy_lock); 640 write_unlock_bh(&xfrm_policy_lock);
641 641
642 if (old_pol) { 642 if (old_pol) {
643 xfrm_policy_kill(old_pol); 643 xfrm_policy_kill(old_pol);
644 } 644 }
645 return 0; 645 return 0;
646 } 646 }
647 647
648 static struct xfrm_policy *clone_policy(struct xfrm_policy *old, int dir) 648 static struct xfrm_policy *clone_policy(struct xfrm_policy *old, int dir)
649 { 649 {
650 struct xfrm_policy *newp = xfrm_policy_alloc(GFP_ATOMIC); 650 struct xfrm_policy *newp = xfrm_policy_alloc(GFP_ATOMIC);
651 651
652 if (newp) { 652 if (newp) {
653 newp->selector = old->selector; 653 newp->selector = old->selector;
654 if (security_xfrm_policy_clone(old, newp)) { 654 if (security_xfrm_policy_clone(old, newp)) {
655 kfree(newp); 655 kfree(newp);
656 return NULL; /* ENOMEM */ 656 return NULL; /* ENOMEM */
657 } 657 }
658 newp->lft = old->lft; 658 newp->lft = old->lft;
659 newp->curlft = old->curlft; 659 newp->curlft = old->curlft;
660 newp->action = old->action; 660 newp->action = old->action;
661 newp->flags = old->flags; 661 newp->flags = old->flags;
662 newp->xfrm_nr = old->xfrm_nr; 662 newp->xfrm_nr = old->xfrm_nr;
663 newp->index = old->index; 663 newp->index = old->index;
664 memcpy(newp->xfrm_vec, old->xfrm_vec, 664 memcpy(newp->xfrm_vec, old->xfrm_vec,
665 newp->xfrm_nr*sizeof(struct xfrm_tmpl)); 665 newp->xfrm_nr*sizeof(struct xfrm_tmpl));
666 write_lock_bh(&xfrm_policy_lock); 666 write_lock_bh(&xfrm_policy_lock);
667 __xfrm_policy_link(newp, XFRM_POLICY_MAX+dir); 667 __xfrm_policy_link(newp, XFRM_POLICY_MAX+dir);
668 write_unlock_bh(&xfrm_policy_lock); 668 write_unlock_bh(&xfrm_policy_lock);
669 xfrm_pol_put(newp); 669 xfrm_pol_put(newp);
670 } 670 }
671 return newp; 671 return newp;
672 } 672 }
673 673
674 int __xfrm_sk_clone_policy(struct sock *sk) 674 int __xfrm_sk_clone_policy(struct sock *sk)
675 { 675 {
676 struct xfrm_policy *p0 = sk->sk_policy[0], 676 struct xfrm_policy *p0 = sk->sk_policy[0],
677 *p1 = sk->sk_policy[1]; 677 *p1 = sk->sk_policy[1];
678 678
679 sk->sk_policy[0] = sk->sk_policy[1] = NULL; 679 sk->sk_policy[0] = sk->sk_policy[1] = NULL;
680 if (p0 && (sk->sk_policy[0] = clone_policy(p0, 0)) == NULL) 680 if (p0 && (sk->sk_policy[0] = clone_policy(p0, 0)) == NULL)
681 return -ENOMEM; 681 return -ENOMEM;
682 if (p1 && (sk->sk_policy[1] = clone_policy(p1, 1)) == NULL) 682 if (p1 && (sk->sk_policy[1] = clone_policy(p1, 1)) == NULL)
683 return -ENOMEM; 683 return -ENOMEM;
684 return 0; 684 return 0;
685 } 685 }
686 686
687 /* Resolve list of templates for the flow, given policy. */ 687 /* Resolve list of templates for the flow, given policy. */
688 688
689 static int 689 static int
690 xfrm_tmpl_resolve(struct xfrm_policy *policy, struct flowi *fl, 690 xfrm_tmpl_resolve(struct xfrm_policy *policy, struct flowi *fl,
691 struct xfrm_state **xfrm, 691 struct xfrm_state **xfrm,
692 unsigned short family) 692 unsigned short family)
693 { 693 {
694 int nx; 694 int nx;
695 int i, error; 695 int i, error;
696 xfrm_address_t *daddr = xfrm_flowi_daddr(fl, family); 696 xfrm_address_t *daddr = xfrm_flowi_daddr(fl, family);
697 xfrm_address_t *saddr = xfrm_flowi_saddr(fl, family); 697 xfrm_address_t *saddr = xfrm_flowi_saddr(fl, family);
698 698
699 for (nx=0, i = 0; i < policy->xfrm_nr; i++) { 699 for (nx=0, i = 0; i < policy->xfrm_nr; i++) {
700 struct xfrm_state *x; 700 struct xfrm_state *x;
701 xfrm_address_t *remote = daddr; 701 xfrm_address_t *remote = daddr;
702 xfrm_address_t *local = saddr; 702 xfrm_address_t *local = saddr;
703 struct xfrm_tmpl *tmpl = &policy->xfrm_vec[i]; 703 struct xfrm_tmpl *tmpl = &policy->xfrm_vec[i];
704 704
705 if (tmpl->mode) { 705 if (tmpl->mode) {
706 remote = &tmpl->id.daddr; 706 remote = &tmpl->id.daddr;
707 local = &tmpl->saddr; 707 local = &tmpl->saddr;
708 } 708 }
709 709
710 x = xfrm_state_find(remote, local, fl, tmpl, policy, &error, family); 710 x = xfrm_state_find(remote, local, fl, tmpl, policy, &error, family);
711 711
712 if (x && x->km.state == XFRM_STATE_VALID) { 712 if (x && x->km.state == XFRM_STATE_VALID) {
713 xfrm[nx++] = x; 713 xfrm[nx++] = x;
714 daddr = remote; 714 daddr = remote;
715 saddr = local; 715 saddr = local;
716 continue; 716 continue;
717 } 717 }
718 if (x) { 718 if (x) {
719 error = (x->km.state == XFRM_STATE_ERROR ? 719 error = (x->km.state == XFRM_STATE_ERROR ?
720 -EINVAL : -EAGAIN); 720 -EINVAL : -EAGAIN);
721 xfrm_state_put(x); 721 xfrm_state_put(x);
722 } 722 }
723 723
724 if (!tmpl->optional) 724 if (!tmpl->optional)
725 goto fail; 725 goto fail;
726 } 726 }
727 return nx; 727 return nx;
728 728
729 fail: 729 fail:
730 for (nx--; nx>=0; nx--) 730 for (nx--; nx>=0; nx--)
731 xfrm_state_put(xfrm[nx]); 731 xfrm_state_put(xfrm[nx]);
732 return error; 732 return error;
733 } 733 }
734 734
735 /* Check that the bundle accepts the flow and its components are 735 /* Check that the bundle accepts the flow and its components are
736 * still valid. 736 * still valid.
737 */ 737 */
738 738
739 static struct dst_entry * 739 static struct dst_entry *
740 xfrm_find_bundle(struct flowi *fl, struct xfrm_policy *policy, unsigned short family) 740 xfrm_find_bundle(struct flowi *fl, struct xfrm_policy *policy, unsigned short family)
741 { 741 {
742 struct dst_entry *x; 742 struct dst_entry *x;
743 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family); 743 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
744 if (unlikely(afinfo == NULL)) 744 if (unlikely(afinfo == NULL))
745 return ERR_PTR(-EINVAL); 745 return ERR_PTR(-EINVAL);
746 x = afinfo->find_bundle(fl, policy); 746 x = afinfo->find_bundle(fl, policy);
747 xfrm_policy_put_afinfo(afinfo); 747 xfrm_policy_put_afinfo(afinfo);
748 return x; 748 return x;
749 } 749 }
750 750
751 /* Allocate chain of dst_entry's, attach known xfrm's, calculate 751 /* Allocate chain of dst_entry's, attach known xfrm's, calculate
752 * all the metrics... Shortly, bundle a bundle. 752 * all the metrics... Shortly, bundle a bundle.
753 */ 753 */
754 754
755 static int 755 static int
756 xfrm_bundle_create(struct xfrm_policy *policy, struct xfrm_state **xfrm, int nx, 756 xfrm_bundle_create(struct xfrm_policy *policy, struct xfrm_state **xfrm, int nx,
757 struct flowi *fl, struct dst_entry **dst_p, 757 struct flowi *fl, struct dst_entry **dst_p,
758 unsigned short family) 758 unsigned short family)
759 { 759 {
760 int err; 760 int err;
761 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family); 761 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
762 if (unlikely(afinfo == NULL)) 762 if (unlikely(afinfo == NULL))
763 return -EINVAL; 763 return -EINVAL;
764 err = afinfo->bundle_create(policy, xfrm, nx, fl, dst_p); 764 err = afinfo->bundle_create(policy, xfrm, nx, fl, dst_p);
765 xfrm_policy_put_afinfo(afinfo); 765 xfrm_policy_put_afinfo(afinfo);
766 return err; 766 return err;
767 } 767 }
768 768
769 769
770 static int stale_bundle(struct dst_entry *dst); 770 static int stale_bundle(struct dst_entry *dst);
771 771
772 /* Main function: finds/creates a bundle for given flow. 772 /* Main function: finds/creates a bundle for given flow.
773 * 773 *
774 * At the moment we eat a raw IP route. Mostly to speed up lookups 774 * At the moment we eat a raw IP route. Mostly to speed up lookups
775 * on interfaces with disabled IPsec. 775 * on interfaces with disabled IPsec.
776 */ 776 */
777 int xfrm_lookup(struct dst_entry **dst_p, struct flowi *fl, 777 int xfrm_lookup(struct dst_entry **dst_p, struct flowi *fl,
778 struct sock *sk, int flags) 778 struct sock *sk, int flags)
779 { 779 {
780 struct xfrm_policy *policy; 780 struct xfrm_policy *policy;
781 struct xfrm_state *xfrm[XFRM_MAX_DEPTH]; 781 struct xfrm_state *xfrm[XFRM_MAX_DEPTH];
782 struct dst_entry *dst, *dst_orig = *dst_p; 782 struct dst_entry *dst, *dst_orig = *dst_p;
783 int nx = 0; 783 int nx = 0;
784 int err; 784 int err;
785 u32 genid; 785 u32 genid;
786 u16 family; 786 u16 family;
787 u8 dir = policy_to_flow_dir(XFRM_POLICY_OUT); 787 u8 dir = policy_to_flow_dir(XFRM_POLICY_OUT);
788 u32 sk_sid = security_sk_sid(sk, fl, dir); 788 u32 sk_sid = security_sk_sid(sk, fl, dir);
789 restart: 789 restart:
790 genid = atomic_read(&flow_cache_genid); 790 genid = atomic_read(&flow_cache_genid);
791 policy = NULL; 791 policy = NULL;
792 if (sk && sk->sk_policy[1]) 792 if (sk && sk->sk_policy[1])
793 policy = xfrm_sk_policy_lookup(sk, XFRM_POLICY_OUT, fl, sk_sid); 793 policy = xfrm_sk_policy_lookup(sk, XFRM_POLICY_OUT, fl, sk_sid);
794 794
795 if (!policy) { 795 if (!policy) {
796 /* To accelerate a bit... */ 796 /* To accelerate a bit... */
797 if ((dst_orig->flags & DST_NOXFRM) || !xfrm_policy_list[XFRM_POLICY_OUT]) 797 if ((dst_orig->flags & DST_NOXFRM) || !xfrm_policy_list[XFRM_POLICY_OUT])
798 return 0; 798 return 0;
799 799
800 policy = flow_cache_lookup(fl, sk_sid, dst_orig->ops->family, 800 policy = flow_cache_lookup(fl, sk_sid, dst_orig->ops->family,
801 dir, xfrm_policy_lookup); 801 dir, xfrm_policy_lookup);
802 } 802 }
803 803
804 if (!policy) 804 if (!policy)
805 return 0; 805 return 0;
806 806
807 family = dst_orig->ops->family; 807 family = dst_orig->ops->family;
808 policy->curlft.use_time = (unsigned long)xtime.tv_sec; 808 policy->curlft.use_time = (unsigned long)xtime.tv_sec;
809 809
810 switch (policy->action) { 810 switch (policy->action) {
811 case XFRM_POLICY_BLOCK: 811 case XFRM_POLICY_BLOCK:
812 /* Prohibit the flow */ 812 /* Prohibit the flow */
813 err = -EPERM; 813 err = -EPERM;
814 goto error; 814 goto error;
815 815
816 case XFRM_POLICY_ALLOW: 816 case XFRM_POLICY_ALLOW:
817 if (policy->xfrm_nr == 0) { 817 if (policy->xfrm_nr == 0) {
818 /* Flow passes not transformed. */ 818 /* Flow passes not transformed. */
819 xfrm_pol_put(policy); 819 xfrm_pol_put(policy);
820 return 0; 820 return 0;
821 } 821 }
822 822
823 /* Try to find matching bundle. 823 /* Try to find matching bundle.
824 * 824 *
825 * LATER: help from flow cache. It is optional, this 825 * LATER: help from flow cache. It is optional, this
826 * is required only for output policy. 826 * is required only for output policy.
827 */ 827 */
828 dst = xfrm_find_bundle(fl, policy, family); 828 dst = xfrm_find_bundle(fl, policy, family);
829 if (IS_ERR(dst)) { 829 if (IS_ERR(dst)) {
830 err = PTR_ERR(dst); 830 err = PTR_ERR(dst);
831 goto error; 831 goto error;
832 } 832 }
833 833
834 if (dst) 834 if (dst)
835 break; 835 break;
836 836
837 nx = xfrm_tmpl_resolve(policy, fl, xfrm, family); 837 nx = xfrm_tmpl_resolve(policy, fl, xfrm, family);
838 838
839 if (unlikely(nx<0)) { 839 if (unlikely(nx<0)) {
840 err = nx; 840 err = nx;
841 if (err == -EAGAIN && flags) { 841 if (err == -EAGAIN && flags) {
842 DECLARE_WAITQUEUE(wait, current); 842 DECLARE_WAITQUEUE(wait, current);
843 843
844 add_wait_queue(&km_waitq, &wait); 844 add_wait_queue(&km_waitq, &wait);
845 set_current_state(TASK_INTERRUPTIBLE); 845 set_current_state(TASK_INTERRUPTIBLE);
846 schedule(); 846 schedule();
847 set_current_state(TASK_RUNNING); 847 set_current_state(TASK_RUNNING);
848 remove_wait_queue(&km_waitq, &wait); 848 remove_wait_queue(&km_waitq, &wait);
849 849
850 nx = xfrm_tmpl_resolve(policy, fl, xfrm, family); 850 nx = xfrm_tmpl_resolve(policy, fl, xfrm, family);
851 851
852 if (nx == -EAGAIN && signal_pending(current)) { 852 if (nx == -EAGAIN && signal_pending(current)) {
853 err = -ERESTART; 853 err = -ERESTART;
854 goto error; 854 goto error;
855 } 855 }
856 if (nx == -EAGAIN || 856 if (nx == -EAGAIN ||
857 genid != atomic_read(&flow_cache_genid)) { 857 genid != atomic_read(&flow_cache_genid)) {
858 xfrm_pol_put(policy); 858 xfrm_pol_put(policy);
859 goto restart; 859 goto restart;
860 } 860 }
861 err = nx; 861 err = nx;
862 } 862 }
863 if (err < 0) 863 if (err < 0)
864 goto error; 864 goto error;
865 } 865 }
866 if (nx == 0) { 866 if (nx == 0) {
867 /* Flow passes not transformed. */ 867 /* Flow passes not transformed. */
868 xfrm_pol_put(policy); 868 xfrm_pol_put(policy);
869 return 0; 869 return 0;
870 } 870 }
871 871
872 dst = dst_orig; 872 dst = dst_orig;
873 err = xfrm_bundle_create(policy, xfrm, nx, fl, &dst, family); 873 err = xfrm_bundle_create(policy, xfrm, nx, fl, &dst, family);
874 874
875 if (unlikely(err)) { 875 if (unlikely(err)) {
876 int i; 876 int i;
877 for (i=0; i<nx; i++) 877 for (i=0; i<nx; i++)
878 xfrm_state_put(xfrm[i]); 878 xfrm_state_put(xfrm[i]);
879 goto error; 879 goto error;
880 } 880 }
881 881
882 write_lock_bh(&policy->lock); 882 write_lock_bh(&policy->lock);
883 if (unlikely(policy->dead || stale_bundle(dst))) { 883 if (unlikely(policy->dead || stale_bundle(dst))) {
884 /* Wow! While we worked on resolving, this 884 /* Wow! While we worked on resolving, this
885 * policy has gone. Retry. It is not paranoia, 885 * policy has gone. Retry. It is not paranoia,
886 * we just cannot enlist new bundle to dead object. 886 * we just cannot enlist new bundle to dead object.
887 * We can't enlist stable bundles either. 887 * We can't enlist stable bundles either.
888 */ 888 */
889 write_unlock_bh(&policy->lock); 889 write_unlock_bh(&policy->lock);
890 if (dst) 890 if (dst)
891 dst_free(dst); 891 dst_free(dst);
892 892
893 err = -EHOSTUNREACH; 893 err = -EHOSTUNREACH;
894 goto error; 894 goto error;
895 } 895 }
896 dst->next = policy->bundles; 896 dst->next = policy->bundles;
897 policy->bundles = dst; 897 policy->bundles = dst;
898 dst_hold(dst); 898 dst_hold(dst);
899 write_unlock_bh(&policy->lock); 899 write_unlock_bh(&policy->lock);
900 } 900 }
901 *dst_p = dst; 901 *dst_p = dst;
902 dst_release(dst_orig); 902 dst_release(dst_orig);
903 xfrm_pol_put(policy); 903 xfrm_pol_put(policy);
904 return 0; 904 return 0;
905 905
906 error: 906 error:
907 dst_release(dst_orig); 907 dst_release(dst_orig);
908 xfrm_pol_put(policy); 908 xfrm_pol_put(policy);
909 *dst_p = NULL; 909 *dst_p = NULL;
910 return err; 910 return err;
911 } 911 }
912 EXPORT_SYMBOL(xfrm_lookup); 912 EXPORT_SYMBOL(xfrm_lookup);
913 913
914 /* When skb is transformed back to its "native" form, we have to 914 /* When skb is transformed back to its "native" form, we have to
915 * check policy restrictions. At the moment we make this in maximally 915 * check policy restrictions. At the moment we make this in maximally
916 * stupid way. Shame on me. :-) Of course, connected sockets must 916 * stupid way. Shame on me. :-) Of course, connected sockets must
917 * have policy cached at them. 917 * have policy cached at them.
918 */ 918 */
919 919
920 static inline int 920 static inline int
921 xfrm_state_ok(struct xfrm_tmpl *tmpl, struct xfrm_state *x, 921 xfrm_state_ok(struct xfrm_tmpl *tmpl, struct xfrm_state *x,
922 unsigned short family) 922 unsigned short family)
923 { 923 {
924 if (xfrm_state_kern(x)) 924 if (xfrm_state_kern(x))
925 return tmpl->optional && !xfrm_state_addr_cmp(tmpl, x, family); 925 return tmpl->optional && !xfrm_state_addr_cmp(tmpl, x, family);
926 return x->id.proto == tmpl->id.proto && 926 return x->id.proto == tmpl->id.proto &&
927 (x->id.spi == tmpl->id.spi || !tmpl->id.spi) && 927 (x->id.spi == tmpl->id.spi || !tmpl->id.spi) &&
928 (x->props.reqid == tmpl->reqid || !tmpl->reqid) && 928 (x->props.reqid == tmpl->reqid || !tmpl->reqid) &&
929 x->props.mode == tmpl->mode && 929 x->props.mode == tmpl->mode &&
930 (tmpl->aalgos & (1<<x->props.aalgo)) && 930 (tmpl->aalgos & (1<<x->props.aalgo)) &&
931 !(x->props.mode && xfrm_state_addr_cmp(tmpl, x, family)); 931 !(x->props.mode && xfrm_state_addr_cmp(tmpl, x, family));
932 } 932 }
933 933
934 static inline int 934 static inline int
935 xfrm_policy_ok(struct xfrm_tmpl *tmpl, struct sec_path *sp, int start, 935 xfrm_policy_ok(struct xfrm_tmpl *tmpl, struct sec_path *sp, int start,
936 unsigned short family) 936 unsigned short family)
937 { 937 {
938 int idx = start; 938 int idx = start;
939 939
940 if (tmpl->optional) { 940 if (tmpl->optional) {
941 if (!tmpl->mode) 941 if (!tmpl->mode)
942 return start; 942 return start;
943 } else 943 } else
944 start = -1; 944 start = -1;
945 for (; idx < sp->len; idx++) { 945 for (; idx < sp->len; idx++) {
946 if (xfrm_state_ok(tmpl, sp->xvec[idx], family)) 946 if (xfrm_state_ok(tmpl, sp->xvec[idx], family))
947 return ++idx; 947 return ++idx;
948 if (sp->xvec[idx]->props.mode) 948 if (sp->xvec[idx]->props.mode)
949 break; 949 break;
950 } 950 }
951 return start; 951 return start;
952 } 952 }
953 953
954 int 954 int
955 xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, unsigned short family) 955 xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, unsigned short family)
956 { 956 {
957 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family); 957 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
958 958
959 if (unlikely(afinfo == NULL)) 959 if (unlikely(afinfo == NULL))
960 return -EAFNOSUPPORT; 960 return -EAFNOSUPPORT;
961 961
962 afinfo->decode_session(skb, fl); 962 afinfo->decode_session(skb, fl);
963 xfrm_policy_put_afinfo(afinfo); 963 xfrm_policy_put_afinfo(afinfo);
964 return 0; 964 return 0;
965 } 965 }
966 EXPORT_SYMBOL(xfrm_decode_session); 966 EXPORT_SYMBOL(xfrm_decode_session);
967 967
968 static inline int secpath_has_tunnel(struct sec_path *sp, int k) 968 static inline int secpath_has_tunnel(struct sec_path *sp, int k)
969 { 969 {
970 for (; k < sp->len; k++) { 970 for (; k < sp->len; k++) {
971 if (sp->xvec[k]->props.mode) 971 if (sp->xvec[k]->props.mode)
972 return 1; 972 return 1;
973 } 973 }
974 974
975 return 0; 975 return 0;
976 } 976 }
977 977
978 int __xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb, 978 int __xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb,
979 unsigned short family) 979 unsigned short family)
980 { 980 {
981 struct xfrm_policy *pol; 981 struct xfrm_policy *pol;
982 struct flowi fl; 982 struct flowi fl;
983 u8 fl_dir = policy_to_flow_dir(dir); 983 u8 fl_dir = policy_to_flow_dir(dir);
984 u32 sk_sid; 984 u32 sk_sid;
985 985
986 if (xfrm_decode_session(skb, &fl, family) < 0) 986 if (xfrm_decode_session(skb, &fl, family) < 0)
987 return 0; 987 return 0;
988 nf_nat_decode_session(skb, &fl, family); 988 nf_nat_decode_session(skb, &fl, family);
989 989
990 sk_sid = security_sk_sid(sk, &fl, fl_dir); 990 sk_sid = security_sk_sid(sk, &fl, fl_dir);
991 991
992 /* First, check used SA against their selectors. */ 992 /* First, check used SA against their selectors. */
993 if (skb->sp) { 993 if (skb->sp) {
994 int i; 994 int i;
995 995
996 for (i=skb->sp->len-1; i>=0; i--) { 996 for (i=skb->sp->len-1; i>=0; i--) {
997 struct xfrm_state *x = skb->sp->xvec[i]; 997 struct xfrm_state *x = skb->sp->xvec[i];
998 if (!xfrm_selector_match(&x->sel, &fl, family)) 998 if (!xfrm_selector_match(&x->sel, &fl, family))
999 return 0; 999 return 0;
1000 } 1000 }
1001 } 1001 }
1002 1002
1003 pol = NULL; 1003 pol = NULL;
1004 if (sk && sk->sk_policy[dir]) 1004 if (sk && sk->sk_policy[dir])
1005 pol = xfrm_sk_policy_lookup(sk, dir, &fl, sk_sid); 1005 pol = xfrm_sk_policy_lookup(sk, dir, &fl, sk_sid);
1006 1006
1007 if (!pol) 1007 if (!pol)
1008 pol = flow_cache_lookup(&fl, sk_sid, family, fl_dir, 1008 pol = flow_cache_lookup(&fl, sk_sid, family, fl_dir,
1009 xfrm_policy_lookup); 1009 xfrm_policy_lookup);
1010 1010
1011 if (!pol) 1011 if (!pol)
1012 return !skb->sp || !secpath_has_tunnel(skb->sp, 0); 1012 return !skb->sp || !secpath_has_tunnel(skb->sp, 0);
1013 1013
1014 pol->curlft.use_time = (unsigned long)xtime.tv_sec; 1014 pol->curlft.use_time = (unsigned long)xtime.tv_sec;
1015 1015
1016 if (pol->action == XFRM_POLICY_ALLOW) { 1016 if (pol->action == XFRM_POLICY_ALLOW) {
1017 struct sec_path *sp; 1017 struct sec_path *sp;
1018 static struct sec_path dummy; 1018 static struct sec_path dummy;
1019 int i, k; 1019 int i, k;
1020 1020
1021 if ((sp = skb->sp) == NULL) 1021 if ((sp = skb->sp) == NULL)
1022 sp = &dummy; 1022 sp = &dummy;
1023 1023
1024 /* For each tunnel xfrm, find the first matching tmpl. 1024 /* For each tunnel xfrm, find the first matching tmpl.
1025 * For each tmpl before that, find corresponding xfrm. 1025 * For each tmpl before that, find corresponding xfrm.
1026 * Order is _important_. Later we will implement 1026 * Order is _important_. Later we will implement
1027 * some barriers, but at the moment barriers 1027 * some barriers, but at the moment barriers
1028 * are implied between each two transformations. 1028 * are implied between each two transformations.
1029 */ 1029 */
1030 for (i = pol->xfrm_nr-1, k = 0; i >= 0; i--) { 1030 for (i = pol->xfrm_nr-1, k = 0; i >= 0; i--) {
1031 k = xfrm_policy_ok(pol->xfrm_vec+i, sp, k, family); 1031 k = xfrm_policy_ok(pol->xfrm_vec+i, sp, k, family);
1032 if (k < 0) 1032 if (k < 0)
1033 goto reject; 1033 goto reject;
1034 } 1034 }
1035 1035
1036 if (secpath_has_tunnel(sp, k)) 1036 if (secpath_has_tunnel(sp, k))
1037 goto reject; 1037 goto reject;
1038 1038
1039 xfrm_pol_put(pol); 1039 xfrm_pol_put(pol);
1040 return 1; 1040 return 1;
1041 } 1041 }
1042 1042
1043 reject: 1043 reject:
1044 xfrm_pol_put(pol); 1044 xfrm_pol_put(pol);
1045 return 0; 1045 return 0;
1046 } 1046 }
1047 EXPORT_SYMBOL(__xfrm_policy_check); 1047 EXPORT_SYMBOL(__xfrm_policy_check);
1048 1048
1049 int __xfrm_route_forward(struct sk_buff *skb, unsigned short family) 1049 int __xfrm_route_forward(struct sk_buff *skb, unsigned short family)
1050 { 1050 {
1051 struct flowi fl; 1051 struct flowi fl;
1052 1052
1053 if (xfrm_decode_session(skb, &fl, family) < 0) 1053 if (xfrm_decode_session(skb, &fl, family) < 0)
1054 return 0; 1054 return 0;
1055 1055
1056 return xfrm_lookup(&skb->dst, &fl, NULL, 0) == 0; 1056 return xfrm_lookup(&skb->dst, &fl, NULL, 0) == 0;
1057 } 1057 }
1058 EXPORT_SYMBOL(__xfrm_route_forward); 1058 EXPORT_SYMBOL(__xfrm_route_forward);
1059 1059
1060 static struct dst_entry *xfrm_dst_check(struct dst_entry *dst, u32 cookie) 1060 static struct dst_entry *xfrm_dst_check(struct dst_entry *dst, u32 cookie)
1061 { 1061 {
1062 /* If it is marked obsolete, which is how we even get here, 1062 /* If it is marked obsolete, which is how we even get here,
1063 * then we have purged it from the policy bundle list and we 1063 * then we have purged it from the policy bundle list and we
1064 * did that for a good reason. 1064 * did that for a good reason.
1065 */ 1065 */
1066 return NULL; 1066 return NULL;
1067 } 1067 }
1068 1068
1069 static int stale_bundle(struct dst_entry *dst) 1069 static int stale_bundle(struct dst_entry *dst)
1070 { 1070 {
1071 return !xfrm_bundle_ok((struct xfrm_dst *)dst, NULL, AF_UNSPEC); 1071 return !xfrm_bundle_ok((struct xfrm_dst *)dst, NULL, AF_UNSPEC);
1072 } 1072 }
1073 1073
1074 void xfrm_dst_ifdown(struct dst_entry *dst, struct net_device *dev) 1074 void xfrm_dst_ifdown(struct dst_entry *dst, struct net_device *dev)
1075 { 1075 {
1076 while ((dst = dst->child) && dst->xfrm && dst->dev == dev) { 1076 while ((dst = dst->child) && dst->xfrm && dst->dev == dev) {
1077 dst->dev = &loopback_dev; 1077 dst->dev = &loopback_dev;
1078 dev_hold(&loopback_dev); 1078 dev_hold(&loopback_dev);
1079 dev_put(dev); 1079 dev_put(dev);
1080 } 1080 }
1081 } 1081 }
1082 EXPORT_SYMBOL(xfrm_dst_ifdown); 1082 EXPORT_SYMBOL(xfrm_dst_ifdown);
1083 1083
1084 static void xfrm_link_failure(struct sk_buff *skb) 1084 static void xfrm_link_failure(struct sk_buff *skb)
1085 { 1085 {
1086 /* Impossible. Such dst must be popped before reaches point of failure. */ 1086 /* Impossible. Such dst must be popped before reaches point of failure. */
1087 return; 1087 return;
1088 } 1088 }
1089 1089
1090 static struct dst_entry *xfrm_negative_advice(struct dst_entry *dst) 1090 static struct dst_entry *xfrm_negative_advice(struct dst_entry *dst)
1091 { 1091 {
1092 if (dst) { 1092 if (dst) {
1093 if (dst->obsolete) { 1093 if (dst->obsolete) {
1094 dst_release(dst); 1094 dst_release(dst);
1095 dst = NULL; 1095 dst = NULL;
1096 } 1096 }
1097 } 1097 }
1098 return dst; 1098 return dst;
1099 } 1099 }
1100 1100
1101 static void xfrm_prune_bundles(int (*func)(struct dst_entry *)) 1101 static void xfrm_prune_bundles(int (*func)(struct dst_entry *))
1102 { 1102 {
1103 int i; 1103 int i;
1104 struct xfrm_policy *pol; 1104 struct xfrm_policy *pol;
1105 struct dst_entry *dst, **dstp, *gc_list = NULL; 1105 struct dst_entry *dst, **dstp, *gc_list = NULL;
1106 1106
1107 read_lock_bh(&xfrm_policy_lock); 1107 read_lock_bh(&xfrm_policy_lock);
1108 for (i=0; i<2*XFRM_POLICY_MAX; i++) { 1108 for (i=0; i<2*XFRM_POLICY_MAX; i++) {
1109 for (pol = xfrm_policy_list[i]; pol; pol = pol->next) { 1109 for (pol = xfrm_policy_list[i]; pol; pol = pol->next) {
1110 write_lock(&pol->lock); 1110 write_lock(&pol->lock);
1111 dstp = &pol->bundles; 1111 dstp = &pol->bundles;
1112 while ((dst=*dstp) != NULL) { 1112 while ((dst=*dstp) != NULL) {
1113 if (func(dst)) { 1113 if (func(dst)) {
1114 *dstp = dst->next; 1114 *dstp = dst->next;
1115 dst->next = gc_list; 1115 dst->next = gc_list;
1116 gc_list = dst; 1116 gc_list = dst;
1117 } else { 1117 } else {
1118 dstp = &dst->next; 1118 dstp = &dst->next;
1119 } 1119 }
1120 } 1120 }
1121 write_unlock(&pol->lock); 1121 write_unlock(&pol->lock);
1122 } 1122 }
1123 } 1123 }
1124 read_unlock_bh(&xfrm_policy_lock); 1124 read_unlock_bh(&xfrm_policy_lock);
1125 1125
1126 while (gc_list) { 1126 while (gc_list) {
1127 dst = gc_list; 1127 dst = gc_list;
1128 gc_list = dst->next; 1128 gc_list = dst->next;
1129 dst_free(dst); 1129 dst_free(dst);
1130 } 1130 }
1131 } 1131 }
1132 1132
1133 static int unused_bundle(struct dst_entry *dst) 1133 static int unused_bundle(struct dst_entry *dst)
1134 { 1134 {
1135 return !atomic_read(&dst->__refcnt); 1135 return !atomic_read(&dst->__refcnt);
1136 } 1136 }
1137 1137
1138 static void __xfrm_garbage_collect(void) 1138 static void __xfrm_garbage_collect(void)
1139 { 1139 {
1140 xfrm_prune_bundles(unused_bundle); 1140 xfrm_prune_bundles(unused_bundle);
1141 } 1141 }
1142 1142
1143 int xfrm_flush_bundles(void) 1143 int xfrm_flush_bundles(void)
1144 { 1144 {
1145 xfrm_prune_bundles(stale_bundle); 1145 xfrm_prune_bundles(stale_bundle);
1146 return 0; 1146 return 0;
1147 } 1147 }
1148 1148
1149 static int always_true(struct dst_entry *dst) 1149 static int always_true(struct dst_entry *dst)
1150 { 1150 {
1151 return 1; 1151 return 1;
1152 } 1152 }
1153 1153
1154 void xfrm_flush_all_bundles(void) 1154 void xfrm_flush_all_bundles(void)
1155 { 1155 {
1156 xfrm_prune_bundles(always_true); 1156 xfrm_prune_bundles(always_true);
1157 } 1157 }
1158 1158
1159 void xfrm_init_pmtu(struct dst_entry *dst) 1159 void xfrm_init_pmtu(struct dst_entry *dst)
1160 { 1160 {
1161 do { 1161 do {
1162 struct xfrm_dst *xdst = (struct xfrm_dst *)dst; 1162 struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
1163 u32 pmtu, route_mtu_cached; 1163 u32 pmtu, route_mtu_cached;
1164 1164
1165 pmtu = dst_mtu(dst->child); 1165 pmtu = dst_mtu(dst->child);
1166 xdst->child_mtu_cached = pmtu; 1166 xdst->child_mtu_cached = pmtu;
1167 1167
1168 pmtu = xfrm_state_mtu(dst->xfrm, pmtu); 1168 pmtu = xfrm_state_mtu(dst->xfrm, pmtu);
1169 1169
1170 route_mtu_cached = dst_mtu(xdst->route); 1170 route_mtu_cached = dst_mtu(xdst->route);
1171 xdst->route_mtu_cached = route_mtu_cached; 1171 xdst->route_mtu_cached = route_mtu_cached;
1172 1172
1173 if (pmtu > route_mtu_cached) 1173 if (pmtu > route_mtu_cached)
1174 pmtu = route_mtu_cached; 1174 pmtu = route_mtu_cached;
1175 1175
1176 dst->metrics[RTAX_MTU-1] = pmtu; 1176 dst->metrics[RTAX_MTU-1] = pmtu;
1177 } while ((dst = dst->next)); 1177 } while ((dst = dst->next));
1178 } 1178 }
1179 1179
1180 EXPORT_SYMBOL(xfrm_init_pmtu); 1180 EXPORT_SYMBOL(xfrm_init_pmtu);
1181 1181
1182 /* Check that the bundle accepts the flow and its components are 1182 /* Check that the bundle accepts the flow and its components are
1183 * still valid. 1183 * still valid.
1184 */ 1184 */
1185 1185
1186 int xfrm_bundle_ok(struct xfrm_dst *first, struct flowi *fl, int family) 1186 int xfrm_bundle_ok(struct xfrm_dst *first, struct flowi *fl, int family)
1187 { 1187 {
1188 struct dst_entry *dst = &first->u.dst; 1188 struct dst_entry *dst = &first->u.dst;
1189 struct xfrm_dst *last; 1189 struct xfrm_dst *last;
1190 u32 mtu; 1190 u32 mtu;
1191 1191
1192 if (!dst_check(dst->path, ((struct xfrm_dst *)dst)->path_cookie) || 1192 if (!dst_check(dst->path, ((struct xfrm_dst *)dst)->path_cookie) ||
1193 (dst->dev && !netif_running(dst->dev))) 1193 (dst->dev && !netif_running(dst->dev)))
1194 return 0; 1194 return 0;
1195 1195
1196 last = NULL; 1196 last = NULL;
1197 1197
1198 do { 1198 do {
1199 struct xfrm_dst *xdst = (struct xfrm_dst *)dst; 1199 struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
1200 1200
1201 if (fl && !xfrm_selector_match(&dst->xfrm->sel, fl, family)) 1201 if (fl && !xfrm_selector_match(&dst->xfrm->sel, fl, family))
1202 return 0; 1202 return 0;
1203 if (dst->xfrm->km.state != XFRM_STATE_VALID) 1203 if (dst->xfrm->km.state != XFRM_STATE_VALID)
1204 return 0; 1204 return 0;
1205 1205
1206 mtu = dst_mtu(dst->child); 1206 mtu = dst_mtu(dst->child);
1207 if (xdst->child_mtu_cached != mtu) { 1207 if (xdst->child_mtu_cached != mtu) {
1208 last = xdst; 1208 last = xdst;
1209 xdst->child_mtu_cached = mtu; 1209 xdst->child_mtu_cached = mtu;
1210 } 1210 }
1211 1211
1212 if (!dst_check(xdst->route, xdst->route_cookie)) 1212 if (!dst_check(xdst->route, xdst->route_cookie))
1213 return 0; 1213 return 0;
1214 mtu = dst_mtu(xdst->route); 1214 mtu = dst_mtu(xdst->route);
1215 if (xdst->route_mtu_cached != mtu) { 1215 if (xdst->route_mtu_cached != mtu) {
1216 last = xdst; 1216 last = xdst;
1217 xdst->route_mtu_cached = mtu; 1217 xdst->route_mtu_cached = mtu;
1218 } 1218 }
1219 1219
1220 dst = dst->child; 1220 dst = dst->child;
1221 } while (dst->xfrm); 1221 } while (dst->xfrm);
1222 1222
1223 if (likely(!last)) 1223 if (likely(!last))
1224 return 1; 1224 return 1;
1225 1225
1226 mtu = last->child_mtu_cached; 1226 mtu = last->child_mtu_cached;
1227 for (;;) { 1227 for (;;) {
1228 dst = &last->u.dst; 1228 dst = &last->u.dst;
1229 1229
1230 mtu = xfrm_state_mtu(dst->xfrm, mtu); 1230 mtu = xfrm_state_mtu(dst->xfrm, mtu);
1231 if (mtu > last->route_mtu_cached) 1231 if (mtu > last->route_mtu_cached)
1232 mtu = last->route_mtu_cached; 1232 mtu = last->route_mtu_cached;
1233 dst->metrics[RTAX_MTU-1] = mtu; 1233 dst->metrics[RTAX_MTU-1] = mtu;
1234 1234
1235 if (last == first) 1235 if (last == first)
1236 break; 1236 break;
1237 1237
1238 last = last->u.next; 1238 last = last->u.next;
1239 last->child_mtu_cached = mtu; 1239 last->child_mtu_cached = mtu;
1240 } 1240 }
1241 1241
1242 return 1; 1242 return 1;
1243 } 1243 }
1244 1244
1245 EXPORT_SYMBOL(xfrm_bundle_ok); 1245 EXPORT_SYMBOL(xfrm_bundle_ok);
1246 1246
1247 int xfrm_policy_register_afinfo(struct xfrm_policy_afinfo *afinfo) 1247 int xfrm_policy_register_afinfo(struct xfrm_policy_afinfo *afinfo)
1248 { 1248 {
1249 int err = 0; 1249 int err = 0;
1250 if (unlikely(afinfo == NULL)) 1250 if (unlikely(afinfo == NULL))
1251 return -EINVAL; 1251 return -EINVAL;
1252 if (unlikely(afinfo->family >= NPROTO)) 1252 if (unlikely(afinfo->family >= NPROTO))
1253 return -EAFNOSUPPORT; 1253 return -EAFNOSUPPORT;
1254 write_lock(&xfrm_policy_afinfo_lock); 1254 write_lock_bh(&xfrm_policy_afinfo_lock);
1255 if (unlikely(xfrm_policy_afinfo[afinfo->family] != NULL)) 1255 if (unlikely(xfrm_policy_afinfo[afinfo->family] != NULL))
1256 err = -ENOBUFS; 1256 err = -ENOBUFS;
1257 else { 1257 else {
1258 struct dst_ops *dst_ops = afinfo->dst_ops; 1258 struct dst_ops *dst_ops = afinfo->dst_ops;
1259 if (likely(dst_ops->kmem_cachep == NULL)) 1259 if (likely(dst_ops->kmem_cachep == NULL))
1260 dst_ops->kmem_cachep = xfrm_dst_cache; 1260 dst_ops->kmem_cachep = xfrm_dst_cache;
1261 if (likely(dst_ops->check == NULL)) 1261 if (likely(dst_ops->check == NULL))
1262 dst_ops->check = xfrm_dst_check; 1262 dst_ops->check = xfrm_dst_check;
1263 if (likely(dst_ops->negative_advice == NULL)) 1263 if (likely(dst_ops->negative_advice == NULL))
1264 dst_ops->negative_advice = xfrm_negative_advice; 1264 dst_ops->negative_advice = xfrm_negative_advice;
1265 if (likely(dst_ops->link_failure == NULL)) 1265 if (likely(dst_ops->link_failure == NULL))
1266 dst_ops->link_failure = xfrm_link_failure; 1266 dst_ops->link_failure = xfrm_link_failure;
1267 if (likely(afinfo->garbage_collect == NULL)) 1267 if (likely(afinfo->garbage_collect == NULL))
1268 afinfo->garbage_collect = __xfrm_garbage_collect; 1268 afinfo->garbage_collect = __xfrm_garbage_collect;
1269 xfrm_policy_afinfo[afinfo->family] = afinfo; 1269 xfrm_policy_afinfo[afinfo->family] = afinfo;
1270 } 1270 }
1271 write_unlock(&xfrm_policy_afinfo_lock); 1271 write_unlock_bh(&xfrm_policy_afinfo_lock);
1272 return err; 1272 return err;
1273 } 1273 }
1274 EXPORT_SYMBOL(xfrm_policy_register_afinfo); 1274 EXPORT_SYMBOL(xfrm_policy_register_afinfo);
1275 1275
1276 int xfrm_policy_unregister_afinfo(struct xfrm_policy_afinfo *afinfo) 1276 int xfrm_policy_unregister_afinfo(struct xfrm_policy_afinfo *afinfo)
1277 { 1277 {
1278 int err = 0; 1278 int err = 0;
1279 if (unlikely(afinfo == NULL)) 1279 if (unlikely(afinfo == NULL))
1280 return -EINVAL; 1280 return -EINVAL;
1281 if (unlikely(afinfo->family >= NPROTO)) 1281 if (unlikely(afinfo->family >= NPROTO))
1282 return -EAFNOSUPPORT; 1282 return -EAFNOSUPPORT;
1283 write_lock(&xfrm_policy_afinfo_lock); 1283 write_lock_bh(&xfrm_policy_afinfo_lock);
1284 if (likely(xfrm_policy_afinfo[afinfo->family] != NULL)) { 1284 if (likely(xfrm_policy_afinfo[afinfo->family] != NULL)) {
1285 if (unlikely(xfrm_policy_afinfo[afinfo->family] != afinfo)) 1285 if (unlikely(xfrm_policy_afinfo[afinfo->family] != afinfo))
1286 err = -EINVAL; 1286 err = -EINVAL;
1287 else { 1287 else {
1288 struct dst_ops *dst_ops = afinfo->dst_ops; 1288 struct dst_ops *dst_ops = afinfo->dst_ops;
1289 xfrm_policy_afinfo[afinfo->family] = NULL; 1289 xfrm_policy_afinfo[afinfo->family] = NULL;
1290 dst_ops->kmem_cachep = NULL; 1290 dst_ops->kmem_cachep = NULL;
1291 dst_ops->check = NULL; 1291 dst_ops->check = NULL;
1292 dst_ops->negative_advice = NULL; 1292 dst_ops->negative_advice = NULL;
1293 dst_ops->link_failure = NULL; 1293 dst_ops->link_failure = NULL;
1294 afinfo->garbage_collect = NULL; 1294 afinfo->garbage_collect = NULL;
1295 } 1295 }
1296 } 1296 }
1297 write_unlock(&xfrm_policy_afinfo_lock); 1297 write_unlock_bh(&xfrm_policy_afinfo_lock);
1298 return err; 1298 return err;
1299 } 1299 }
1300 EXPORT_SYMBOL(xfrm_policy_unregister_afinfo); 1300 EXPORT_SYMBOL(xfrm_policy_unregister_afinfo);
1301 1301
1302 static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family) 1302 static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family)
1303 { 1303 {
1304 struct xfrm_policy_afinfo *afinfo; 1304 struct xfrm_policy_afinfo *afinfo;
1305 if (unlikely(family >= NPROTO)) 1305 if (unlikely(family >= NPROTO))
1306 return NULL; 1306 return NULL;
1307 read_lock(&xfrm_policy_afinfo_lock); 1307 read_lock(&xfrm_policy_afinfo_lock);
1308 afinfo = xfrm_policy_afinfo[family]; 1308 afinfo = xfrm_policy_afinfo[family];
1309 if (likely(afinfo != NULL)) 1309 if (likely(afinfo != NULL))
1310 read_lock(&afinfo->lock); 1310 read_lock(&afinfo->lock);
1311 read_unlock(&xfrm_policy_afinfo_lock); 1311 read_unlock(&xfrm_policy_afinfo_lock);
1312 return afinfo; 1312 return afinfo;
1313 } 1313 }
1314 1314
1315 static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo) 1315 static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo)
1316 { 1316 {
1317 if (unlikely(afinfo == NULL)) 1317 if (unlikely(afinfo == NULL))
1318 return; 1318 return;
1319 read_unlock(&afinfo->lock); 1319 read_unlock(&afinfo->lock);
1320 } 1320 }
1321 1321
1322 static int xfrm_dev_event(struct notifier_block *this, unsigned long event, void *ptr) 1322 static int xfrm_dev_event(struct notifier_block *this, unsigned long event, void *ptr)
1323 { 1323 {
1324 switch (event) { 1324 switch (event) {
1325 case NETDEV_DOWN: 1325 case NETDEV_DOWN:
1326 xfrm_flush_bundles(); 1326 xfrm_flush_bundles();
1327 } 1327 }
1328 return NOTIFY_DONE; 1328 return NOTIFY_DONE;
1329 } 1329 }
1330 1330
1331 static struct notifier_block xfrm_dev_notifier = { 1331 static struct notifier_block xfrm_dev_notifier = {
1332 xfrm_dev_event, 1332 xfrm_dev_event,
1333 NULL, 1333 NULL,
1334 0 1334 0
1335 }; 1335 };
1336 1336
1337 static void __init xfrm_policy_init(void) 1337 static void __init xfrm_policy_init(void)
1338 { 1338 {
1339 xfrm_dst_cache = kmem_cache_create("xfrm_dst_cache", 1339 xfrm_dst_cache = kmem_cache_create("xfrm_dst_cache",
1340 sizeof(struct xfrm_dst), 1340 sizeof(struct xfrm_dst),
1341 0, SLAB_HWCACHE_ALIGN, 1341 0, SLAB_HWCACHE_ALIGN,
1342 NULL, NULL); 1342 NULL, NULL);
1343 if (!xfrm_dst_cache) 1343 if (!xfrm_dst_cache)
1344 panic("XFRM: failed to allocate xfrm_dst_cache\n"); 1344 panic("XFRM: failed to allocate xfrm_dst_cache\n");
1345 1345
1346 INIT_WORK(&xfrm_policy_gc_work, xfrm_policy_gc_task, NULL); 1346 INIT_WORK(&xfrm_policy_gc_work, xfrm_policy_gc_task, NULL);
1347 register_netdevice_notifier(&xfrm_dev_notifier); 1347 register_netdevice_notifier(&xfrm_dev_notifier);
1348 } 1348 }
1349 1349
1350 void __init xfrm_init(void) 1350 void __init xfrm_init(void)
1351 { 1351 {
1352 xfrm_state_init(); 1352 xfrm_state_init();
1353 xfrm_policy_init(); 1353 xfrm_policy_init();
1354 xfrm_input_init(); 1354 xfrm_input_init();
1355 } 1355 }
1356 1356
1357 1357