Commit ee79d1bdb6a10499e53f80b1e8d14110215178ba
Committed by
Ingo Molnar
1 parent
c1dfdc7597
Exists in
master
and in
7 other branches
sched: let arch_update_cpu_topology indicate if topology changed
Change arch_update_cpu_topology so it returns 1 if the cpu topology changed and 0 if it didn't change. This will be useful for the next patch which adds a call to this function in partition_sched_domains. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
Showing 3 changed files with 11 additions and 4 deletions Inline Diff
arch/s390/kernel/topology.c
1 | /* | 1 | /* |
2 | * Copyright IBM Corp. 2007 | 2 | * Copyright IBM Corp. 2007 |
3 | * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com> | 3 | * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com> |
4 | */ | 4 | */ |
5 | 5 | ||
6 | #include <linux/kernel.h> | 6 | #include <linux/kernel.h> |
7 | #include <linux/mm.h> | 7 | #include <linux/mm.h> |
8 | #include <linux/init.h> | 8 | #include <linux/init.h> |
9 | #include <linux/device.h> | 9 | #include <linux/device.h> |
10 | #include <linux/bootmem.h> | 10 | #include <linux/bootmem.h> |
11 | #include <linux/sched.h> | 11 | #include <linux/sched.h> |
12 | #include <linux/workqueue.h> | 12 | #include <linux/workqueue.h> |
13 | #include <linux/cpu.h> | 13 | #include <linux/cpu.h> |
14 | #include <linux/smp.h> | 14 | #include <linux/smp.h> |
15 | #include <asm/delay.h> | 15 | #include <asm/delay.h> |
16 | #include <asm/s390_ext.h> | 16 | #include <asm/s390_ext.h> |
17 | #include <asm/sysinfo.h> | 17 | #include <asm/sysinfo.h> |
18 | 18 | ||
19 | #define CPU_BITS 64 | 19 | #define CPU_BITS 64 |
20 | #define NR_MAG 6 | 20 | #define NR_MAG 6 |
21 | 21 | ||
22 | #define PTF_HORIZONTAL (0UL) | 22 | #define PTF_HORIZONTAL (0UL) |
23 | #define PTF_VERTICAL (1UL) | 23 | #define PTF_VERTICAL (1UL) |
24 | #define PTF_CHECK (2UL) | 24 | #define PTF_CHECK (2UL) |
25 | 25 | ||
26 | struct tl_cpu { | 26 | struct tl_cpu { |
27 | unsigned char reserved0[4]; | 27 | unsigned char reserved0[4]; |
28 | unsigned char :6; | 28 | unsigned char :6; |
29 | unsigned char pp:2; | 29 | unsigned char pp:2; |
30 | unsigned char reserved1; | 30 | unsigned char reserved1; |
31 | unsigned short origin; | 31 | unsigned short origin; |
32 | unsigned long mask[CPU_BITS / BITS_PER_LONG]; | 32 | unsigned long mask[CPU_BITS / BITS_PER_LONG]; |
33 | }; | 33 | }; |
34 | 34 | ||
35 | struct tl_container { | 35 | struct tl_container { |
36 | unsigned char reserved[8]; | 36 | unsigned char reserved[8]; |
37 | }; | 37 | }; |
38 | 38 | ||
39 | union tl_entry { | 39 | union tl_entry { |
40 | unsigned char nl; | 40 | unsigned char nl; |
41 | struct tl_cpu cpu; | 41 | struct tl_cpu cpu; |
42 | struct tl_container container; | 42 | struct tl_container container; |
43 | }; | 43 | }; |
44 | 44 | ||
45 | struct tl_info { | 45 | struct tl_info { |
46 | unsigned char reserved0[2]; | 46 | unsigned char reserved0[2]; |
47 | unsigned short length; | 47 | unsigned short length; |
48 | unsigned char mag[NR_MAG]; | 48 | unsigned char mag[NR_MAG]; |
49 | unsigned char reserved1; | 49 | unsigned char reserved1; |
50 | unsigned char mnest; | 50 | unsigned char mnest; |
51 | unsigned char reserved2[4]; | 51 | unsigned char reserved2[4]; |
52 | union tl_entry tle[0]; | 52 | union tl_entry tle[0]; |
53 | }; | 53 | }; |
54 | 54 | ||
55 | struct core_info { | 55 | struct core_info { |
56 | struct core_info *next; | 56 | struct core_info *next; |
57 | cpumask_t mask; | 57 | cpumask_t mask; |
58 | }; | 58 | }; |
59 | 59 | ||
60 | static void topology_work_fn(struct work_struct *work); | 60 | static void topology_work_fn(struct work_struct *work); |
61 | static struct tl_info *tl_info; | 61 | static struct tl_info *tl_info; |
62 | static struct core_info core_info; | 62 | static struct core_info core_info; |
63 | static int machine_has_topology; | 63 | static int machine_has_topology; |
64 | static int machine_has_topology_irq; | 64 | static int machine_has_topology_irq; |
65 | static struct timer_list topology_timer; | 65 | static struct timer_list topology_timer; |
66 | static void set_topology_timer(void); | 66 | static void set_topology_timer(void); |
67 | static DECLARE_WORK(topology_work, topology_work_fn); | 67 | static DECLARE_WORK(topology_work, topology_work_fn); |
68 | /* topology_lock protects the core linked list */ | 68 | /* topology_lock protects the core linked list */ |
69 | static DEFINE_SPINLOCK(topology_lock); | 69 | static DEFINE_SPINLOCK(topology_lock); |
70 | 70 | ||
71 | cpumask_t cpu_core_map[NR_CPUS]; | 71 | cpumask_t cpu_core_map[NR_CPUS]; |
72 | 72 | ||
73 | cpumask_t cpu_coregroup_map(unsigned int cpu) | 73 | cpumask_t cpu_coregroup_map(unsigned int cpu) |
74 | { | 74 | { |
75 | struct core_info *core = &core_info; | 75 | struct core_info *core = &core_info; |
76 | unsigned long flags; | 76 | unsigned long flags; |
77 | cpumask_t mask; | 77 | cpumask_t mask; |
78 | 78 | ||
79 | cpus_clear(mask); | 79 | cpus_clear(mask); |
80 | if (!machine_has_topology) | 80 | if (!machine_has_topology) |
81 | return cpu_present_map; | 81 | return cpu_present_map; |
82 | spin_lock_irqsave(&topology_lock, flags); | 82 | spin_lock_irqsave(&topology_lock, flags); |
83 | while (core) { | 83 | while (core) { |
84 | if (cpu_isset(cpu, core->mask)) { | 84 | if (cpu_isset(cpu, core->mask)) { |
85 | mask = core->mask; | 85 | mask = core->mask; |
86 | break; | 86 | break; |
87 | } | 87 | } |
88 | core = core->next; | 88 | core = core->next; |
89 | } | 89 | } |
90 | spin_unlock_irqrestore(&topology_lock, flags); | 90 | spin_unlock_irqrestore(&topology_lock, flags); |
91 | if (cpus_empty(mask)) | 91 | if (cpus_empty(mask)) |
92 | mask = cpumask_of_cpu(cpu); | 92 | mask = cpumask_of_cpu(cpu); |
93 | return mask; | 93 | return mask; |
94 | } | 94 | } |
95 | 95 | ||
96 | static void add_cpus_to_core(struct tl_cpu *tl_cpu, struct core_info *core) | 96 | static void add_cpus_to_core(struct tl_cpu *tl_cpu, struct core_info *core) |
97 | { | 97 | { |
98 | unsigned int cpu; | 98 | unsigned int cpu; |
99 | 99 | ||
100 | for (cpu = find_first_bit(&tl_cpu->mask[0], CPU_BITS); | 100 | for (cpu = find_first_bit(&tl_cpu->mask[0], CPU_BITS); |
101 | cpu < CPU_BITS; | 101 | cpu < CPU_BITS; |
102 | cpu = find_next_bit(&tl_cpu->mask[0], CPU_BITS, cpu + 1)) | 102 | cpu = find_next_bit(&tl_cpu->mask[0], CPU_BITS, cpu + 1)) |
103 | { | 103 | { |
104 | unsigned int rcpu, lcpu; | 104 | unsigned int rcpu, lcpu; |
105 | 105 | ||
106 | rcpu = CPU_BITS - 1 - cpu + tl_cpu->origin; | 106 | rcpu = CPU_BITS - 1 - cpu + tl_cpu->origin; |
107 | for_each_present_cpu(lcpu) { | 107 | for_each_present_cpu(lcpu) { |
108 | if (__cpu_logical_map[lcpu] == rcpu) { | 108 | if (__cpu_logical_map[lcpu] == rcpu) { |
109 | cpu_set(lcpu, core->mask); | 109 | cpu_set(lcpu, core->mask); |
110 | smp_cpu_polarization[lcpu] = tl_cpu->pp; | 110 | smp_cpu_polarization[lcpu] = tl_cpu->pp; |
111 | } | 111 | } |
112 | } | 112 | } |
113 | } | 113 | } |
114 | } | 114 | } |
115 | 115 | ||
116 | static void clear_cores(void) | 116 | static void clear_cores(void) |
117 | { | 117 | { |
118 | struct core_info *core = &core_info; | 118 | struct core_info *core = &core_info; |
119 | 119 | ||
120 | while (core) { | 120 | while (core) { |
121 | cpus_clear(core->mask); | 121 | cpus_clear(core->mask); |
122 | core = core->next; | 122 | core = core->next; |
123 | } | 123 | } |
124 | } | 124 | } |
125 | 125 | ||
126 | static union tl_entry *next_tle(union tl_entry *tle) | 126 | static union tl_entry *next_tle(union tl_entry *tle) |
127 | { | 127 | { |
128 | if (tle->nl) | 128 | if (tle->nl) |
129 | return (union tl_entry *)((struct tl_container *)tle + 1); | 129 | return (union tl_entry *)((struct tl_container *)tle + 1); |
130 | else | 130 | else |
131 | return (union tl_entry *)((struct tl_cpu *)tle + 1); | 131 | return (union tl_entry *)((struct tl_cpu *)tle + 1); |
132 | } | 132 | } |
133 | 133 | ||
134 | static void tl_to_cores(struct tl_info *info) | 134 | static void tl_to_cores(struct tl_info *info) |
135 | { | 135 | { |
136 | union tl_entry *tle, *end; | 136 | union tl_entry *tle, *end; |
137 | struct core_info *core = &core_info; | 137 | struct core_info *core = &core_info; |
138 | 138 | ||
139 | spin_lock_irq(&topology_lock); | 139 | spin_lock_irq(&topology_lock); |
140 | clear_cores(); | 140 | clear_cores(); |
141 | tle = info->tle; | 141 | tle = info->tle; |
142 | end = (union tl_entry *)((unsigned long)info + info->length); | 142 | end = (union tl_entry *)((unsigned long)info + info->length); |
143 | while (tle < end) { | 143 | while (tle < end) { |
144 | switch (tle->nl) { | 144 | switch (tle->nl) { |
145 | case 5: | 145 | case 5: |
146 | case 4: | 146 | case 4: |
147 | case 3: | 147 | case 3: |
148 | case 2: | 148 | case 2: |
149 | break; | 149 | break; |
150 | case 1: | 150 | case 1: |
151 | core = core->next; | 151 | core = core->next; |
152 | break; | 152 | break; |
153 | case 0: | 153 | case 0: |
154 | add_cpus_to_core(&tle->cpu, core); | 154 | add_cpus_to_core(&tle->cpu, core); |
155 | break; | 155 | break; |
156 | default: | 156 | default: |
157 | clear_cores(); | 157 | clear_cores(); |
158 | machine_has_topology = 0; | 158 | machine_has_topology = 0; |
159 | return; | 159 | return; |
160 | } | 160 | } |
161 | tle = next_tle(tle); | 161 | tle = next_tle(tle); |
162 | } | 162 | } |
163 | spin_unlock_irq(&topology_lock); | 163 | spin_unlock_irq(&topology_lock); |
164 | } | 164 | } |
165 | 165 | ||
166 | static void topology_update_polarization_simple(void) | 166 | static void topology_update_polarization_simple(void) |
167 | { | 167 | { |
168 | int cpu; | 168 | int cpu; |
169 | 169 | ||
170 | mutex_lock(&smp_cpu_state_mutex); | 170 | mutex_lock(&smp_cpu_state_mutex); |
171 | for_each_present_cpu(cpu) | 171 | for_each_present_cpu(cpu) |
172 | smp_cpu_polarization[cpu] = POLARIZATION_HRZ; | 172 | smp_cpu_polarization[cpu] = POLARIZATION_HRZ; |
173 | mutex_unlock(&smp_cpu_state_mutex); | 173 | mutex_unlock(&smp_cpu_state_mutex); |
174 | } | 174 | } |
175 | 175 | ||
176 | static int ptf(unsigned long fc) | 176 | static int ptf(unsigned long fc) |
177 | { | 177 | { |
178 | int rc; | 178 | int rc; |
179 | 179 | ||
180 | asm volatile( | 180 | asm volatile( |
181 | " .insn rre,0xb9a20000,%1,%1\n" | 181 | " .insn rre,0xb9a20000,%1,%1\n" |
182 | " ipm %0\n" | 182 | " ipm %0\n" |
183 | " srl %0,28\n" | 183 | " srl %0,28\n" |
184 | : "=d" (rc) | 184 | : "=d" (rc) |
185 | : "d" (fc) : "cc"); | 185 | : "d" (fc) : "cc"); |
186 | return rc; | 186 | return rc; |
187 | } | 187 | } |
188 | 188 | ||
189 | int topology_set_cpu_management(int fc) | 189 | int topology_set_cpu_management(int fc) |
190 | { | 190 | { |
191 | int cpu; | 191 | int cpu; |
192 | int rc; | 192 | int rc; |
193 | 193 | ||
194 | if (!machine_has_topology) | 194 | if (!machine_has_topology) |
195 | return -EOPNOTSUPP; | 195 | return -EOPNOTSUPP; |
196 | if (fc) | 196 | if (fc) |
197 | rc = ptf(PTF_VERTICAL); | 197 | rc = ptf(PTF_VERTICAL); |
198 | else | 198 | else |
199 | rc = ptf(PTF_HORIZONTAL); | 199 | rc = ptf(PTF_HORIZONTAL); |
200 | if (rc) | 200 | if (rc) |
201 | return -EBUSY; | 201 | return -EBUSY; |
202 | for_each_present_cpu(cpu) | 202 | for_each_present_cpu(cpu) |
203 | smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN; | 203 | smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN; |
204 | return rc; | 204 | return rc; |
205 | } | 205 | } |
206 | 206 | ||
207 | static void update_cpu_core_map(void) | 207 | static void update_cpu_core_map(void) |
208 | { | 208 | { |
209 | int cpu; | 209 | int cpu; |
210 | 210 | ||
211 | for_each_present_cpu(cpu) | 211 | for_each_present_cpu(cpu) |
212 | cpu_core_map[cpu] = cpu_coregroup_map(cpu); | 212 | cpu_core_map[cpu] = cpu_coregroup_map(cpu); |
213 | } | 213 | } |
214 | 214 | ||
215 | void arch_update_cpu_topology(void) | 215 | int arch_update_cpu_topology(void) |
216 | { | 216 | { |
217 | struct tl_info *info = tl_info; | 217 | struct tl_info *info = tl_info; |
218 | struct sys_device *sysdev; | 218 | struct sys_device *sysdev; |
219 | int cpu; | 219 | int cpu; |
220 | 220 | ||
221 | if (!machine_has_topology) { | 221 | if (!machine_has_topology) { |
222 | update_cpu_core_map(); | 222 | update_cpu_core_map(); |
223 | topology_update_polarization_simple(); | 223 | topology_update_polarization_simple(); |
224 | return; | 224 | return 0; |
225 | } | 225 | } |
226 | stsi(info, 15, 1, 2); | 226 | stsi(info, 15, 1, 2); |
227 | tl_to_cores(info); | 227 | tl_to_cores(info); |
228 | update_cpu_core_map(); | 228 | update_cpu_core_map(); |
229 | for_each_online_cpu(cpu) { | 229 | for_each_online_cpu(cpu) { |
230 | sysdev = get_cpu_sysdev(cpu); | 230 | sysdev = get_cpu_sysdev(cpu); |
231 | kobject_uevent(&sysdev->kobj, KOBJ_CHANGE); | 231 | kobject_uevent(&sysdev->kobj, KOBJ_CHANGE); |
232 | } | 232 | } |
233 | return 1; | ||
233 | } | 234 | } |
234 | 235 | ||
235 | static void topology_work_fn(struct work_struct *work) | 236 | static void topology_work_fn(struct work_struct *work) |
236 | { | 237 | { |
237 | arch_reinit_sched_domains(); | 238 | arch_reinit_sched_domains(); |
238 | } | 239 | } |
239 | 240 | ||
240 | void topology_schedule_update(void) | 241 | void topology_schedule_update(void) |
241 | { | 242 | { |
242 | schedule_work(&topology_work); | 243 | schedule_work(&topology_work); |
243 | } | 244 | } |
244 | 245 | ||
245 | static void topology_timer_fn(unsigned long ignored) | 246 | static void topology_timer_fn(unsigned long ignored) |
246 | { | 247 | { |
247 | if (ptf(PTF_CHECK)) | 248 | if (ptf(PTF_CHECK)) |
248 | topology_schedule_update(); | 249 | topology_schedule_update(); |
249 | set_topology_timer(); | 250 | set_topology_timer(); |
250 | } | 251 | } |
251 | 252 | ||
252 | static void set_topology_timer(void) | 253 | static void set_topology_timer(void) |
253 | { | 254 | { |
254 | topology_timer.function = topology_timer_fn; | 255 | topology_timer.function = topology_timer_fn; |
255 | topology_timer.data = 0; | 256 | topology_timer.data = 0; |
256 | topology_timer.expires = jiffies + 60 * HZ; | 257 | topology_timer.expires = jiffies + 60 * HZ; |
257 | add_timer(&topology_timer); | 258 | add_timer(&topology_timer); |
258 | } | 259 | } |
259 | 260 | ||
260 | static void topology_interrupt(__u16 code) | 261 | static void topology_interrupt(__u16 code) |
261 | { | 262 | { |
262 | schedule_work(&topology_work); | 263 | schedule_work(&topology_work); |
263 | } | 264 | } |
264 | 265 | ||
265 | static int __init init_topology_update(void) | 266 | static int __init init_topology_update(void) |
266 | { | 267 | { |
267 | int rc; | 268 | int rc; |
268 | 269 | ||
269 | rc = 0; | 270 | rc = 0; |
270 | if (!machine_has_topology) { | 271 | if (!machine_has_topology) { |
271 | topology_update_polarization_simple(); | 272 | topology_update_polarization_simple(); |
272 | goto out; | 273 | goto out; |
273 | } | 274 | } |
274 | init_timer_deferrable(&topology_timer); | 275 | init_timer_deferrable(&topology_timer); |
275 | if (machine_has_topology_irq) { | 276 | if (machine_has_topology_irq) { |
276 | rc = register_external_interrupt(0x2005, topology_interrupt); | 277 | rc = register_external_interrupt(0x2005, topology_interrupt); |
277 | if (rc) | 278 | if (rc) |
278 | goto out; | 279 | goto out; |
279 | ctl_set_bit(0, 8); | 280 | ctl_set_bit(0, 8); |
280 | } | 281 | } |
281 | else | 282 | else |
282 | set_topology_timer(); | 283 | set_topology_timer(); |
283 | out: | 284 | out: |
284 | update_cpu_core_map(); | 285 | update_cpu_core_map(); |
285 | return rc; | 286 | return rc; |
286 | } | 287 | } |
287 | __initcall(init_topology_update); | 288 | __initcall(init_topology_update); |
288 | 289 | ||
289 | void __init s390_init_cpu_topology(void) | 290 | void __init s390_init_cpu_topology(void) |
290 | { | 291 | { |
291 | unsigned long long facility_bits; | 292 | unsigned long long facility_bits; |
292 | struct tl_info *info; | 293 | struct tl_info *info; |
293 | struct core_info *core; | 294 | struct core_info *core; |
294 | int nr_cores; | 295 | int nr_cores; |
295 | int i; | 296 | int i; |
296 | 297 | ||
297 | if (stfle(&facility_bits, 1) <= 0) | 298 | if (stfle(&facility_bits, 1) <= 0) |
298 | return; | 299 | return; |
299 | if (!(facility_bits & (1ULL << 52)) || !(facility_bits & (1ULL << 61))) | 300 | if (!(facility_bits & (1ULL << 52)) || !(facility_bits & (1ULL << 61))) |
300 | return; | 301 | return; |
301 | machine_has_topology = 1; | 302 | machine_has_topology = 1; |
302 | 303 | ||
303 | if (facility_bits & (1ULL << 51)) | 304 | if (facility_bits & (1ULL << 51)) |
304 | machine_has_topology_irq = 1; | 305 | machine_has_topology_irq = 1; |
305 | 306 | ||
306 | tl_info = alloc_bootmem_pages(PAGE_SIZE); | 307 | tl_info = alloc_bootmem_pages(PAGE_SIZE); |
307 | info = tl_info; | 308 | info = tl_info; |
308 | stsi(info, 15, 1, 2); | 309 | stsi(info, 15, 1, 2); |
309 | 310 | ||
310 | nr_cores = info->mag[NR_MAG - 2]; | 311 | nr_cores = info->mag[NR_MAG - 2]; |
311 | for (i = 0; i < info->mnest - 2; i++) | 312 | for (i = 0; i < info->mnest - 2; i++) |
312 | nr_cores *= info->mag[NR_MAG - 3 - i]; | 313 | nr_cores *= info->mag[NR_MAG - 3 - i]; |
313 | 314 | ||
314 | printk(KERN_INFO "CPU topology:"); | 315 | printk(KERN_INFO "CPU topology:"); |
315 | for (i = 0; i < NR_MAG; i++) | 316 | for (i = 0; i < NR_MAG; i++) |
316 | printk(" %d", info->mag[i]); | 317 | printk(" %d", info->mag[i]); |
317 | printk(" / %d\n", info->mnest); | 318 | printk(" / %d\n", info->mnest); |
318 | 319 | ||
319 | core = &core_info; | 320 | core = &core_info; |
320 | for (i = 0; i < nr_cores; i++) { | 321 | for (i = 0; i < nr_cores; i++) { |
321 | core->next = alloc_bootmem(sizeof(struct core_info)); | 322 | core->next = alloc_bootmem(sizeof(struct core_info)); |
322 | core = core->next; | 323 | core = core->next; |
323 | if (!core) | 324 | if (!core) |
324 | goto error; | 325 | goto error; |
325 | } | 326 | } |
326 | return; | 327 | return; |
327 | error: | 328 | error: |
328 | machine_has_topology = 0; | 329 | machine_has_topology = 0; |
329 | machine_has_topology_irq = 0; | 330 | machine_has_topology_irq = 0; |
330 | } | 331 | } |
331 | 332 |
include/linux/topology.h
1 | /* | 1 | /* |
2 | * include/linux/topology.h | 2 | * include/linux/topology.h |
3 | * | 3 | * |
4 | * Written by: Matthew Dobson, IBM Corporation | 4 | * Written by: Matthew Dobson, IBM Corporation |
5 | * | 5 | * |
6 | * Copyright (C) 2002, IBM Corp. | 6 | * Copyright (C) 2002, IBM Corp. |
7 | * | 7 | * |
8 | * All rights reserved. | 8 | * All rights reserved. |
9 | * | 9 | * |
10 | * This program is free software; you can redistribute it and/or modify | 10 | * This program is free software; you can redistribute it and/or modify |
11 | * it under the terms of the GNU General Public License as published by | 11 | * it under the terms of the GNU General Public License as published by |
12 | * the Free Software Foundation; either version 2 of the License, or | 12 | * the Free Software Foundation; either version 2 of the License, or |
13 | * (at your option) any later version. | 13 | * (at your option) any later version. |
14 | * | 14 | * |
15 | * This program is distributed in the hope that it will be useful, but | 15 | * This program is distributed in the hope that it will be useful, but |
16 | * WITHOUT ANY WARRANTY; without even the implied warranty of | 16 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
17 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 17 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
18 | * NON INFRINGEMENT. See the GNU General Public License for more | 18 | * NON INFRINGEMENT. See the GNU General Public License for more |
19 | * details. | 19 | * details. |
20 | * | 20 | * |
21 | * You should have received a copy of the GNU General Public License | 21 | * You should have received a copy of the GNU General Public License |
22 | * along with this program; if not, write to the Free Software | 22 | * along with this program; if not, write to the Free Software |
23 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 23 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
24 | * | 24 | * |
25 | * Send feedback to <colpatch@us.ibm.com> | 25 | * Send feedback to <colpatch@us.ibm.com> |
26 | */ | 26 | */ |
27 | #ifndef _LINUX_TOPOLOGY_H | 27 | #ifndef _LINUX_TOPOLOGY_H |
28 | #define _LINUX_TOPOLOGY_H | 28 | #define _LINUX_TOPOLOGY_H |
29 | 29 | ||
30 | #include <linux/cpumask.h> | 30 | #include <linux/cpumask.h> |
31 | #include <linux/bitops.h> | 31 | #include <linux/bitops.h> |
32 | #include <linux/mmzone.h> | 32 | #include <linux/mmzone.h> |
33 | #include <linux/smp.h> | 33 | #include <linux/smp.h> |
34 | #include <asm/topology.h> | 34 | #include <asm/topology.h> |
35 | 35 | ||
36 | #ifndef node_has_online_mem | 36 | #ifndef node_has_online_mem |
37 | #define node_has_online_mem(nid) (1) | 37 | #define node_has_online_mem(nid) (1) |
38 | #endif | 38 | #endif |
39 | 39 | ||
40 | #ifndef nr_cpus_node | 40 | #ifndef nr_cpus_node |
41 | #define nr_cpus_node(node) \ | 41 | #define nr_cpus_node(node) \ |
42 | ({ \ | 42 | ({ \ |
43 | node_to_cpumask_ptr(__tmp__, node); \ | 43 | node_to_cpumask_ptr(__tmp__, node); \ |
44 | cpus_weight(*__tmp__); \ | 44 | cpus_weight(*__tmp__); \ |
45 | }) | 45 | }) |
46 | #endif | 46 | #endif |
47 | 47 | ||
48 | #define for_each_node_with_cpus(node) \ | 48 | #define for_each_node_with_cpus(node) \ |
49 | for_each_online_node(node) \ | 49 | for_each_online_node(node) \ |
50 | if (nr_cpus_node(node)) | 50 | if (nr_cpus_node(node)) |
51 | 51 | ||
52 | void arch_update_cpu_topology(void); | 52 | int arch_update_cpu_topology(void); |
53 | 53 | ||
54 | /* Conform to ACPI 2.0 SLIT distance definitions */ | 54 | /* Conform to ACPI 2.0 SLIT distance definitions */ |
55 | #define LOCAL_DISTANCE 10 | 55 | #define LOCAL_DISTANCE 10 |
56 | #define REMOTE_DISTANCE 20 | 56 | #define REMOTE_DISTANCE 20 |
57 | #ifndef node_distance | 57 | #ifndef node_distance |
58 | #define node_distance(from,to) ((from) == (to) ? LOCAL_DISTANCE : REMOTE_DISTANCE) | 58 | #define node_distance(from,to) ((from) == (to) ? LOCAL_DISTANCE : REMOTE_DISTANCE) |
59 | #endif | 59 | #endif |
60 | #ifndef RECLAIM_DISTANCE | 60 | #ifndef RECLAIM_DISTANCE |
61 | /* | 61 | /* |
62 | * If the distance between nodes in a system is larger than RECLAIM_DISTANCE | 62 | * If the distance between nodes in a system is larger than RECLAIM_DISTANCE |
63 | * (in whatever arch specific measurement units returned by node_distance()) | 63 | * (in whatever arch specific measurement units returned by node_distance()) |
64 | * then switch on zone reclaim on boot. | 64 | * then switch on zone reclaim on boot. |
65 | */ | 65 | */ |
66 | #define RECLAIM_DISTANCE 20 | 66 | #define RECLAIM_DISTANCE 20 |
67 | #endif | 67 | #endif |
68 | #ifndef PENALTY_FOR_NODE_WITH_CPUS | 68 | #ifndef PENALTY_FOR_NODE_WITH_CPUS |
69 | #define PENALTY_FOR_NODE_WITH_CPUS (1) | 69 | #define PENALTY_FOR_NODE_WITH_CPUS (1) |
70 | #endif | 70 | #endif |
71 | 71 | ||
72 | /* | 72 | /* |
73 | * Below are the 3 major initializers used in building sched_domains: | 73 | * Below are the 3 major initializers used in building sched_domains: |
74 | * SD_SIBLING_INIT, for SMT domains | 74 | * SD_SIBLING_INIT, for SMT domains |
75 | * SD_CPU_INIT, for SMP domains | 75 | * SD_CPU_INIT, for SMP domains |
76 | * SD_NODE_INIT, for NUMA domains | 76 | * SD_NODE_INIT, for NUMA domains |
77 | * | 77 | * |
78 | * Any architecture that cares to do any tuning to these values should do so | 78 | * Any architecture that cares to do any tuning to these values should do so |
79 | * by defining their own arch-specific initializer in include/asm/topology.h. | 79 | * by defining their own arch-specific initializer in include/asm/topology.h. |
80 | * A definition there will automagically override these default initializers | 80 | * A definition there will automagically override these default initializers |
81 | * and allow arch-specific performance tuning of sched_domains. | 81 | * and allow arch-specific performance tuning of sched_domains. |
82 | * (Only non-zero and non-null fields need be specified.) | 82 | * (Only non-zero and non-null fields need be specified.) |
83 | */ | 83 | */ |
84 | 84 | ||
85 | #ifdef CONFIG_SCHED_SMT | 85 | #ifdef CONFIG_SCHED_SMT |
86 | /* MCD - Do we really need this? It is always on if CONFIG_SCHED_SMT is, | 86 | /* MCD - Do we really need this? It is always on if CONFIG_SCHED_SMT is, |
87 | * so can't we drop this in favor of CONFIG_SCHED_SMT? | 87 | * so can't we drop this in favor of CONFIG_SCHED_SMT? |
88 | */ | 88 | */ |
89 | #define ARCH_HAS_SCHED_WAKE_IDLE | 89 | #define ARCH_HAS_SCHED_WAKE_IDLE |
90 | /* Common values for SMT siblings */ | 90 | /* Common values for SMT siblings */ |
91 | #ifndef SD_SIBLING_INIT | 91 | #ifndef SD_SIBLING_INIT |
92 | #define SD_SIBLING_INIT (struct sched_domain) { \ | 92 | #define SD_SIBLING_INIT (struct sched_domain) { \ |
93 | .min_interval = 1, \ | 93 | .min_interval = 1, \ |
94 | .max_interval = 2, \ | 94 | .max_interval = 2, \ |
95 | .busy_factor = 64, \ | 95 | .busy_factor = 64, \ |
96 | .imbalance_pct = 110, \ | 96 | .imbalance_pct = 110, \ |
97 | .flags = SD_LOAD_BALANCE \ | 97 | .flags = SD_LOAD_BALANCE \ |
98 | | SD_BALANCE_NEWIDLE \ | 98 | | SD_BALANCE_NEWIDLE \ |
99 | | SD_BALANCE_FORK \ | 99 | | SD_BALANCE_FORK \ |
100 | | SD_BALANCE_EXEC \ | 100 | | SD_BALANCE_EXEC \ |
101 | | SD_WAKE_AFFINE \ | 101 | | SD_WAKE_AFFINE \ |
102 | | SD_WAKE_BALANCE \ | 102 | | SD_WAKE_BALANCE \ |
103 | | SD_SHARE_CPUPOWER, \ | 103 | | SD_SHARE_CPUPOWER, \ |
104 | .last_balance = jiffies, \ | 104 | .last_balance = jiffies, \ |
105 | .balance_interval = 1, \ | 105 | .balance_interval = 1, \ |
106 | } | 106 | } |
107 | #endif | 107 | #endif |
108 | #endif /* CONFIG_SCHED_SMT */ | 108 | #endif /* CONFIG_SCHED_SMT */ |
109 | 109 | ||
110 | #ifdef CONFIG_SCHED_MC | 110 | #ifdef CONFIG_SCHED_MC |
111 | /* Common values for MC siblings. for now mostly derived from SD_CPU_INIT */ | 111 | /* Common values for MC siblings. for now mostly derived from SD_CPU_INIT */ |
112 | #ifndef SD_MC_INIT | 112 | #ifndef SD_MC_INIT |
113 | #define SD_MC_INIT (struct sched_domain) { \ | 113 | #define SD_MC_INIT (struct sched_domain) { \ |
114 | .min_interval = 1, \ | 114 | .min_interval = 1, \ |
115 | .max_interval = 4, \ | 115 | .max_interval = 4, \ |
116 | .busy_factor = 64, \ | 116 | .busy_factor = 64, \ |
117 | .imbalance_pct = 125, \ | 117 | .imbalance_pct = 125, \ |
118 | .cache_nice_tries = 1, \ | 118 | .cache_nice_tries = 1, \ |
119 | .busy_idx = 2, \ | 119 | .busy_idx = 2, \ |
120 | .wake_idx = 1, \ | 120 | .wake_idx = 1, \ |
121 | .forkexec_idx = 1, \ | 121 | .forkexec_idx = 1, \ |
122 | .flags = SD_LOAD_BALANCE \ | 122 | .flags = SD_LOAD_BALANCE \ |
123 | | SD_BALANCE_FORK \ | 123 | | SD_BALANCE_FORK \ |
124 | | SD_BALANCE_EXEC \ | 124 | | SD_BALANCE_EXEC \ |
125 | | SD_WAKE_AFFINE \ | 125 | | SD_WAKE_AFFINE \ |
126 | | SD_WAKE_BALANCE \ | 126 | | SD_WAKE_BALANCE \ |
127 | | SD_SHARE_PKG_RESOURCES\ | 127 | | SD_SHARE_PKG_RESOURCES\ |
128 | | BALANCE_FOR_MC_POWER, \ | 128 | | BALANCE_FOR_MC_POWER, \ |
129 | .last_balance = jiffies, \ | 129 | .last_balance = jiffies, \ |
130 | .balance_interval = 1, \ | 130 | .balance_interval = 1, \ |
131 | } | 131 | } |
132 | #endif | 132 | #endif |
133 | #endif /* CONFIG_SCHED_MC */ | 133 | #endif /* CONFIG_SCHED_MC */ |
134 | 134 | ||
135 | /* Common values for CPUs */ | 135 | /* Common values for CPUs */ |
136 | #ifndef SD_CPU_INIT | 136 | #ifndef SD_CPU_INIT |
137 | #define SD_CPU_INIT (struct sched_domain) { \ | 137 | #define SD_CPU_INIT (struct sched_domain) { \ |
138 | .min_interval = 1, \ | 138 | .min_interval = 1, \ |
139 | .max_interval = 4, \ | 139 | .max_interval = 4, \ |
140 | .busy_factor = 64, \ | 140 | .busy_factor = 64, \ |
141 | .imbalance_pct = 125, \ | 141 | .imbalance_pct = 125, \ |
142 | .cache_nice_tries = 1, \ | 142 | .cache_nice_tries = 1, \ |
143 | .busy_idx = 2, \ | 143 | .busy_idx = 2, \ |
144 | .idle_idx = 1, \ | 144 | .idle_idx = 1, \ |
145 | .newidle_idx = 2, \ | 145 | .newidle_idx = 2, \ |
146 | .wake_idx = 1, \ | 146 | .wake_idx = 1, \ |
147 | .forkexec_idx = 1, \ | 147 | .forkexec_idx = 1, \ |
148 | .flags = SD_LOAD_BALANCE \ | 148 | .flags = SD_LOAD_BALANCE \ |
149 | | SD_BALANCE_EXEC \ | 149 | | SD_BALANCE_EXEC \ |
150 | | SD_BALANCE_FORK \ | 150 | | SD_BALANCE_FORK \ |
151 | | SD_WAKE_AFFINE \ | 151 | | SD_WAKE_AFFINE \ |
152 | | SD_WAKE_BALANCE \ | 152 | | SD_WAKE_BALANCE \ |
153 | | BALANCE_FOR_PKG_POWER,\ | 153 | | BALANCE_FOR_PKG_POWER,\ |
154 | .last_balance = jiffies, \ | 154 | .last_balance = jiffies, \ |
155 | .balance_interval = 1, \ | 155 | .balance_interval = 1, \ |
156 | } | 156 | } |
157 | #endif | 157 | #endif |
158 | 158 | ||
159 | /* sched_domains SD_ALLNODES_INIT for NUMA machines */ | 159 | /* sched_domains SD_ALLNODES_INIT for NUMA machines */ |
160 | #define SD_ALLNODES_INIT (struct sched_domain) { \ | 160 | #define SD_ALLNODES_INIT (struct sched_domain) { \ |
161 | .min_interval = 64, \ | 161 | .min_interval = 64, \ |
162 | .max_interval = 64*num_online_cpus(), \ | 162 | .max_interval = 64*num_online_cpus(), \ |
163 | .busy_factor = 128, \ | 163 | .busy_factor = 128, \ |
164 | .imbalance_pct = 133, \ | 164 | .imbalance_pct = 133, \ |
165 | .cache_nice_tries = 1, \ | 165 | .cache_nice_tries = 1, \ |
166 | .busy_idx = 3, \ | 166 | .busy_idx = 3, \ |
167 | .idle_idx = 3, \ | 167 | .idle_idx = 3, \ |
168 | .flags = SD_LOAD_BALANCE \ | 168 | .flags = SD_LOAD_BALANCE \ |
169 | | SD_BALANCE_NEWIDLE \ | 169 | | SD_BALANCE_NEWIDLE \ |
170 | | SD_WAKE_AFFINE \ | 170 | | SD_WAKE_AFFINE \ |
171 | | SD_SERIALIZE, \ | 171 | | SD_SERIALIZE, \ |
172 | .last_balance = jiffies, \ | 172 | .last_balance = jiffies, \ |
173 | .balance_interval = 64, \ | 173 | .balance_interval = 64, \ |
174 | } | 174 | } |
175 | 175 | ||
176 | #ifdef CONFIG_NUMA | 176 | #ifdef CONFIG_NUMA |
177 | #ifndef SD_NODE_INIT | 177 | #ifndef SD_NODE_INIT |
178 | #error Please define an appropriate SD_NODE_INIT in include/asm/topology.h!!! | 178 | #error Please define an appropriate SD_NODE_INIT in include/asm/topology.h!!! |
179 | #endif | 179 | #endif |
180 | #endif /* CONFIG_NUMA */ | 180 | #endif /* CONFIG_NUMA */ |
181 | 181 | ||
182 | #ifndef topology_physical_package_id | 182 | #ifndef topology_physical_package_id |
183 | #define topology_physical_package_id(cpu) ((void)(cpu), -1) | 183 | #define topology_physical_package_id(cpu) ((void)(cpu), -1) |
184 | #endif | 184 | #endif |
185 | #ifndef topology_core_id | 185 | #ifndef topology_core_id |
186 | #define topology_core_id(cpu) ((void)(cpu), 0) | 186 | #define topology_core_id(cpu) ((void)(cpu), 0) |
187 | #endif | 187 | #endif |
188 | #ifndef topology_thread_siblings | 188 | #ifndef topology_thread_siblings |
189 | #define topology_thread_siblings(cpu) cpumask_of_cpu(cpu) | 189 | #define topology_thread_siblings(cpu) cpumask_of_cpu(cpu) |
190 | #endif | 190 | #endif |
191 | #ifndef topology_core_siblings | 191 | #ifndef topology_core_siblings |
192 | #define topology_core_siblings(cpu) cpumask_of_cpu(cpu) | 192 | #define topology_core_siblings(cpu) cpumask_of_cpu(cpu) |
193 | #endif | 193 | #endif |
194 | 194 | ||
195 | #endif /* _LINUX_TOPOLOGY_H */ | 195 | #endif /* _LINUX_TOPOLOGY_H */ |
196 | 196 |
kernel/sched.c
1 | /* | 1 | /* |
2 | * kernel/sched.c | 2 | * kernel/sched.c |
3 | * | 3 | * |
4 | * Kernel scheduler and related syscalls | 4 | * Kernel scheduler and related syscalls |
5 | * | 5 | * |
6 | * Copyright (C) 1991-2002 Linus Torvalds | 6 | * Copyright (C) 1991-2002 Linus Torvalds |
7 | * | 7 | * |
8 | * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and | 8 | * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and |
9 | * make semaphores SMP safe | 9 | * make semaphores SMP safe |
10 | * 1998-11-19 Implemented schedule_timeout() and related stuff | 10 | * 1998-11-19 Implemented schedule_timeout() and related stuff |
11 | * by Andrea Arcangeli | 11 | * by Andrea Arcangeli |
12 | * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: | 12 | * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: |
13 | * hybrid priority-list and round-robin design with | 13 | * hybrid priority-list and round-robin design with |
14 | * an array-switch method of distributing timeslices | 14 | * an array-switch method of distributing timeslices |
15 | * and per-CPU runqueues. Cleanups and useful suggestions | 15 | * and per-CPU runqueues. Cleanups and useful suggestions |
16 | * by Davide Libenzi, preemptible kernel bits by Robert Love. | 16 | * by Davide Libenzi, preemptible kernel bits by Robert Love. |
17 | * 2003-09-03 Interactivity tuning by Con Kolivas. | 17 | * 2003-09-03 Interactivity tuning by Con Kolivas. |
18 | * 2004-04-02 Scheduler domains code by Nick Piggin | 18 | * 2004-04-02 Scheduler domains code by Nick Piggin |
19 | * 2007-04-15 Work begun on replacing all interactivity tuning with a | 19 | * 2007-04-15 Work begun on replacing all interactivity tuning with a |
20 | * fair scheduling design by Con Kolivas. | 20 | * fair scheduling design by Con Kolivas. |
21 | * 2007-05-05 Load balancing (smp-nice) and other improvements | 21 | * 2007-05-05 Load balancing (smp-nice) and other improvements |
22 | * by Peter Williams | 22 | * by Peter Williams |
23 | * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith | 23 | * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith |
24 | * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri | 24 | * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri |
25 | * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, | 25 | * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, |
26 | * Thomas Gleixner, Mike Kravetz | 26 | * Thomas Gleixner, Mike Kravetz |
27 | */ | 27 | */ |
28 | 28 | ||
29 | #include <linux/mm.h> | 29 | #include <linux/mm.h> |
30 | #include <linux/module.h> | 30 | #include <linux/module.h> |
31 | #include <linux/nmi.h> | 31 | #include <linux/nmi.h> |
32 | #include <linux/init.h> | 32 | #include <linux/init.h> |
33 | #include <linux/uaccess.h> | 33 | #include <linux/uaccess.h> |
34 | #include <linux/highmem.h> | 34 | #include <linux/highmem.h> |
35 | #include <linux/smp_lock.h> | 35 | #include <linux/smp_lock.h> |
36 | #include <asm/mmu_context.h> | 36 | #include <asm/mmu_context.h> |
37 | #include <linux/interrupt.h> | 37 | #include <linux/interrupt.h> |
38 | #include <linux/capability.h> | 38 | #include <linux/capability.h> |
39 | #include <linux/completion.h> | 39 | #include <linux/completion.h> |
40 | #include <linux/kernel_stat.h> | 40 | #include <linux/kernel_stat.h> |
41 | #include <linux/debug_locks.h> | 41 | #include <linux/debug_locks.h> |
42 | #include <linux/security.h> | 42 | #include <linux/security.h> |
43 | #include <linux/notifier.h> | 43 | #include <linux/notifier.h> |
44 | #include <linux/profile.h> | 44 | #include <linux/profile.h> |
45 | #include <linux/freezer.h> | 45 | #include <linux/freezer.h> |
46 | #include <linux/vmalloc.h> | 46 | #include <linux/vmalloc.h> |
47 | #include <linux/blkdev.h> | 47 | #include <linux/blkdev.h> |
48 | #include <linux/delay.h> | 48 | #include <linux/delay.h> |
49 | #include <linux/pid_namespace.h> | 49 | #include <linux/pid_namespace.h> |
50 | #include <linux/smp.h> | 50 | #include <linux/smp.h> |
51 | #include <linux/threads.h> | 51 | #include <linux/threads.h> |
52 | #include <linux/timer.h> | 52 | #include <linux/timer.h> |
53 | #include <linux/rcupdate.h> | 53 | #include <linux/rcupdate.h> |
54 | #include <linux/cpu.h> | 54 | #include <linux/cpu.h> |
55 | #include <linux/cpuset.h> | 55 | #include <linux/cpuset.h> |
56 | #include <linux/percpu.h> | 56 | #include <linux/percpu.h> |
57 | #include <linux/kthread.h> | 57 | #include <linux/kthread.h> |
58 | #include <linux/proc_fs.h> | 58 | #include <linux/proc_fs.h> |
59 | #include <linux/seq_file.h> | 59 | #include <linux/seq_file.h> |
60 | #include <linux/sysctl.h> | 60 | #include <linux/sysctl.h> |
61 | #include <linux/syscalls.h> | 61 | #include <linux/syscalls.h> |
62 | #include <linux/times.h> | 62 | #include <linux/times.h> |
63 | #include <linux/tsacct_kern.h> | 63 | #include <linux/tsacct_kern.h> |
64 | #include <linux/kprobes.h> | 64 | #include <linux/kprobes.h> |
65 | #include <linux/delayacct.h> | 65 | #include <linux/delayacct.h> |
66 | #include <linux/reciprocal_div.h> | 66 | #include <linux/reciprocal_div.h> |
67 | #include <linux/unistd.h> | 67 | #include <linux/unistd.h> |
68 | #include <linux/pagemap.h> | 68 | #include <linux/pagemap.h> |
69 | #include <linux/hrtimer.h> | 69 | #include <linux/hrtimer.h> |
70 | #include <linux/tick.h> | 70 | #include <linux/tick.h> |
71 | #include <linux/bootmem.h> | 71 | #include <linux/bootmem.h> |
72 | #include <linux/debugfs.h> | 72 | #include <linux/debugfs.h> |
73 | #include <linux/ctype.h> | 73 | #include <linux/ctype.h> |
74 | #include <linux/ftrace.h> | 74 | #include <linux/ftrace.h> |
75 | #include <trace/sched.h> | 75 | #include <trace/sched.h> |
76 | 76 | ||
77 | #include <asm/tlb.h> | 77 | #include <asm/tlb.h> |
78 | #include <asm/irq_regs.h> | 78 | #include <asm/irq_regs.h> |
79 | 79 | ||
80 | #include "sched_cpupri.h" | 80 | #include "sched_cpupri.h" |
81 | 81 | ||
82 | /* | 82 | /* |
83 | * Convert user-nice values [ -20 ... 0 ... 19 ] | 83 | * Convert user-nice values [ -20 ... 0 ... 19 ] |
84 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | 84 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], |
85 | * and back. | 85 | * and back. |
86 | */ | 86 | */ |
87 | #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) | 87 | #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) |
88 | #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) | 88 | #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) |
89 | #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) | 89 | #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) |
90 | 90 | ||
91 | /* | 91 | /* |
92 | * 'User priority' is the nice value converted to something we | 92 | * 'User priority' is the nice value converted to something we |
93 | * can work with better when scaling various scheduler parameters, | 93 | * can work with better when scaling various scheduler parameters, |
94 | * it's a [ 0 ... 39 ] range. | 94 | * it's a [ 0 ... 39 ] range. |
95 | */ | 95 | */ |
96 | #define USER_PRIO(p) ((p)-MAX_RT_PRIO) | 96 | #define USER_PRIO(p) ((p)-MAX_RT_PRIO) |
97 | #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) | 97 | #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) |
98 | #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) | 98 | #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) |
99 | 99 | ||
100 | /* | 100 | /* |
101 | * Helpers for converting nanosecond timing to jiffy resolution | 101 | * Helpers for converting nanosecond timing to jiffy resolution |
102 | */ | 102 | */ |
103 | #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) | 103 | #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) |
104 | 104 | ||
105 | #define NICE_0_LOAD SCHED_LOAD_SCALE | 105 | #define NICE_0_LOAD SCHED_LOAD_SCALE |
106 | #define NICE_0_SHIFT SCHED_LOAD_SHIFT | 106 | #define NICE_0_SHIFT SCHED_LOAD_SHIFT |
107 | 107 | ||
108 | /* | 108 | /* |
109 | * These are the 'tuning knobs' of the scheduler: | 109 | * These are the 'tuning knobs' of the scheduler: |
110 | * | 110 | * |
111 | * default timeslice is 100 msecs (used only for SCHED_RR tasks). | 111 | * default timeslice is 100 msecs (used only for SCHED_RR tasks). |
112 | * Timeslices get refilled after they expire. | 112 | * Timeslices get refilled after they expire. |
113 | */ | 113 | */ |
114 | #define DEF_TIMESLICE (100 * HZ / 1000) | 114 | #define DEF_TIMESLICE (100 * HZ / 1000) |
115 | 115 | ||
116 | /* | 116 | /* |
117 | * single value that denotes runtime == period, ie unlimited time. | 117 | * single value that denotes runtime == period, ie unlimited time. |
118 | */ | 118 | */ |
119 | #define RUNTIME_INF ((u64)~0ULL) | 119 | #define RUNTIME_INF ((u64)~0ULL) |
120 | 120 | ||
121 | #ifdef CONFIG_SMP | 121 | #ifdef CONFIG_SMP |
122 | /* | 122 | /* |
123 | * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) | 123 | * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) |
124 | * Since cpu_power is a 'constant', we can use a reciprocal divide. | 124 | * Since cpu_power is a 'constant', we can use a reciprocal divide. |
125 | */ | 125 | */ |
126 | static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load) | 126 | static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load) |
127 | { | 127 | { |
128 | return reciprocal_divide(load, sg->reciprocal_cpu_power); | 128 | return reciprocal_divide(load, sg->reciprocal_cpu_power); |
129 | } | 129 | } |
130 | 130 | ||
131 | /* | 131 | /* |
132 | * Each time a sched group cpu_power is changed, | 132 | * Each time a sched group cpu_power is changed, |
133 | * we must compute its reciprocal value | 133 | * we must compute its reciprocal value |
134 | */ | 134 | */ |
135 | static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val) | 135 | static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val) |
136 | { | 136 | { |
137 | sg->__cpu_power += val; | 137 | sg->__cpu_power += val; |
138 | sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power); | 138 | sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power); |
139 | } | 139 | } |
140 | #endif | 140 | #endif |
141 | 141 | ||
142 | static inline int rt_policy(int policy) | 142 | static inline int rt_policy(int policy) |
143 | { | 143 | { |
144 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) | 144 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) |
145 | return 1; | 145 | return 1; |
146 | return 0; | 146 | return 0; |
147 | } | 147 | } |
148 | 148 | ||
149 | static inline int task_has_rt_policy(struct task_struct *p) | 149 | static inline int task_has_rt_policy(struct task_struct *p) |
150 | { | 150 | { |
151 | return rt_policy(p->policy); | 151 | return rt_policy(p->policy); |
152 | } | 152 | } |
153 | 153 | ||
154 | /* | 154 | /* |
155 | * This is the priority-queue data structure of the RT scheduling class: | 155 | * This is the priority-queue data structure of the RT scheduling class: |
156 | */ | 156 | */ |
157 | struct rt_prio_array { | 157 | struct rt_prio_array { |
158 | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | 158 | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ |
159 | struct list_head queue[MAX_RT_PRIO]; | 159 | struct list_head queue[MAX_RT_PRIO]; |
160 | }; | 160 | }; |
161 | 161 | ||
162 | struct rt_bandwidth { | 162 | struct rt_bandwidth { |
163 | /* nests inside the rq lock: */ | 163 | /* nests inside the rq lock: */ |
164 | spinlock_t rt_runtime_lock; | 164 | spinlock_t rt_runtime_lock; |
165 | ktime_t rt_period; | 165 | ktime_t rt_period; |
166 | u64 rt_runtime; | 166 | u64 rt_runtime; |
167 | struct hrtimer rt_period_timer; | 167 | struct hrtimer rt_period_timer; |
168 | }; | 168 | }; |
169 | 169 | ||
170 | static struct rt_bandwidth def_rt_bandwidth; | 170 | static struct rt_bandwidth def_rt_bandwidth; |
171 | 171 | ||
172 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); | 172 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); |
173 | 173 | ||
174 | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) | 174 | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) |
175 | { | 175 | { |
176 | struct rt_bandwidth *rt_b = | 176 | struct rt_bandwidth *rt_b = |
177 | container_of(timer, struct rt_bandwidth, rt_period_timer); | 177 | container_of(timer, struct rt_bandwidth, rt_period_timer); |
178 | ktime_t now; | 178 | ktime_t now; |
179 | int overrun; | 179 | int overrun; |
180 | int idle = 0; | 180 | int idle = 0; |
181 | 181 | ||
182 | for (;;) { | 182 | for (;;) { |
183 | now = hrtimer_cb_get_time(timer); | 183 | now = hrtimer_cb_get_time(timer); |
184 | overrun = hrtimer_forward(timer, now, rt_b->rt_period); | 184 | overrun = hrtimer_forward(timer, now, rt_b->rt_period); |
185 | 185 | ||
186 | if (!overrun) | 186 | if (!overrun) |
187 | break; | 187 | break; |
188 | 188 | ||
189 | idle = do_sched_rt_period_timer(rt_b, overrun); | 189 | idle = do_sched_rt_period_timer(rt_b, overrun); |
190 | } | 190 | } |
191 | 191 | ||
192 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | 192 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; |
193 | } | 193 | } |
194 | 194 | ||
195 | static | 195 | static |
196 | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | 196 | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) |
197 | { | 197 | { |
198 | rt_b->rt_period = ns_to_ktime(period); | 198 | rt_b->rt_period = ns_to_ktime(period); |
199 | rt_b->rt_runtime = runtime; | 199 | rt_b->rt_runtime = runtime; |
200 | 200 | ||
201 | spin_lock_init(&rt_b->rt_runtime_lock); | 201 | spin_lock_init(&rt_b->rt_runtime_lock); |
202 | 202 | ||
203 | hrtimer_init(&rt_b->rt_period_timer, | 203 | hrtimer_init(&rt_b->rt_period_timer, |
204 | CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 204 | CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
205 | rt_b->rt_period_timer.function = sched_rt_period_timer; | 205 | rt_b->rt_period_timer.function = sched_rt_period_timer; |
206 | rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED; | 206 | rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED; |
207 | } | 207 | } |
208 | 208 | ||
209 | static inline int rt_bandwidth_enabled(void) | 209 | static inline int rt_bandwidth_enabled(void) |
210 | { | 210 | { |
211 | return sysctl_sched_rt_runtime >= 0; | 211 | return sysctl_sched_rt_runtime >= 0; |
212 | } | 212 | } |
213 | 213 | ||
214 | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | 214 | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) |
215 | { | 215 | { |
216 | ktime_t now; | 216 | ktime_t now; |
217 | 217 | ||
218 | if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF) | 218 | if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF) |
219 | return; | 219 | return; |
220 | 220 | ||
221 | if (hrtimer_active(&rt_b->rt_period_timer)) | 221 | if (hrtimer_active(&rt_b->rt_period_timer)) |
222 | return; | 222 | return; |
223 | 223 | ||
224 | spin_lock(&rt_b->rt_runtime_lock); | 224 | spin_lock(&rt_b->rt_runtime_lock); |
225 | for (;;) { | 225 | for (;;) { |
226 | if (hrtimer_active(&rt_b->rt_period_timer)) | 226 | if (hrtimer_active(&rt_b->rt_period_timer)) |
227 | break; | 227 | break; |
228 | 228 | ||
229 | now = hrtimer_cb_get_time(&rt_b->rt_period_timer); | 229 | now = hrtimer_cb_get_time(&rt_b->rt_period_timer); |
230 | hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period); | 230 | hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period); |
231 | hrtimer_start_expires(&rt_b->rt_period_timer, | 231 | hrtimer_start_expires(&rt_b->rt_period_timer, |
232 | HRTIMER_MODE_ABS); | 232 | HRTIMER_MODE_ABS); |
233 | } | 233 | } |
234 | spin_unlock(&rt_b->rt_runtime_lock); | 234 | spin_unlock(&rt_b->rt_runtime_lock); |
235 | } | 235 | } |
236 | 236 | ||
237 | #ifdef CONFIG_RT_GROUP_SCHED | 237 | #ifdef CONFIG_RT_GROUP_SCHED |
238 | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | 238 | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) |
239 | { | 239 | { |
240 | hrtimer_cancel(&rt_b->rt_period_timer); | 240 | hrtimer_cancel(&rt_b->rt_period_timer); |
241 | } | 241 | } |
242 | #endif | 242 | #endif |
243 | 243 | ||
244 | /* | 244 | /* |
245 | * sched_domains_mutex serializes calls to arch_init_sched_domains, | 245 | * sched_domains_mutex serializes calls to arch_init_sched_domains, |
246 | * detach_destroy_domains and partition_sched_domains. | 246 | * detach_destroy_domains and partition_sched_domains. |
247 | */ | 247 | */ |
248 | static DEFINE_MUTEX(sched_domains_mutex); | 248 | static DEFINE_MUTEX(sched_domains_mutex); |
249 | 249 | ||
250 | #ifdef CONFIG_GROUP_SCHED | 250 | #ifdef CONFIG_GROUP_SCHED |
251 | 251 | ||
252 | #include <linux/cgroup.h> | 252 | #include <linux/cgroup.h> |
253 | 253 | ||
254 | struct cfs_rq; | 254 | struct cfs_rq; |
255 | 255 | ||
256 | static LIST_HEAD(task_groups); | 256 | static LIST_HEAD(task_groups); |
257 | 257 | ||
258 | /* task group related information */ | 258 | /* task group related information */ |
259 | struct task_group { | 259 | struct task_group { |
260 | #ifdef CONFIG_CGROUP_SCHED | 260 | #ifdef CONFIG_CGROUP_SCHED |
261 | struct cgroup_subsys_state css; | 261 | struct cgroup_subsys_state css; |
262 | #endif | 262 | #endif |
263 | 263 | ||
264 | #ifdef CONFIG_USER_SCHED | 264 | #ifdef CONFIG_USER_SCHED |
265 | uid_t uid; | 265 | uid_t uid; |
266 | #endif | 266 | #endif |
267 | 267 | ||
268 | #ifdef CONFIG_FAIR_GROUP_SCHED | 268 | #ifdef CONFIG_FAIR_GROUP_SCHED |
269 | /* schedulable entities of this group on each cpu */ | 269 | /* schedulable entities of this group on each cpu */ |
270 | struct sched_entity **se; | 270 | struct sched_entity **se; |
271 | /* runqueue "owned" by this group on each cpu */ | 271 | /* runqueue "owned" by this group on each cpu */ |
272 | struct cfs_rq **cfs_rq; | 272 | struct cfs_rq **cfs_rq; |
273 | unsigned long shares; | 273 | unsigned long shares; |
274 | #endif | 274 | #endif |
275 | 275 | ||
276 | #ifdef CONFIG_RT_GROUP_SCHED | 276 | #ifdef CONFIG_RT_GROUP_SCHED |
277 | struct sched_rt_entity **rt_se; | 277 | struct sched_rt_entity **rt_se; |
278 | struct rt_rq **rt_rq; | 278 | struct rt_rq **rt_rq; |
279 | 279 | ||
280 | struct rt_bandwidth rt_bandwidth; | 280 | struct rt_bandwidth rt_bandwidth; |
281 | #endif | 281 | #endif |
282 | 282 | ||
283 | struct rcu_head rcu; | 283 | struct rcu_head rcu; |
284 | struct list_head list; | 284 | struct list_head list; |
285 | 285 | ||
286 | struct task_group *parent; | 286 | struct task_group *parent; |
287 | struct list_head siblings; | 287 | struct list_head siblings; |
288 | struct list_head children; | 288 | struct list_head children; |
289 | }; | 289 | }; |
290 | 290 | ||
291 | #ifdef CONFIG_USER_SCHED | 291 | #ifdef CONFIG_USER_SCHED |
292 | 292 | ||
293 | /* Helper function to pass uid information to create_sched_user() */ | 293 | /* Helper function to pass uid information to create_sched_user() */ |
294 | void set_tg_uid(struct user_struct *user) | 294 | void set_tg_uid(struct user_struct *user) |
295 | { | 295 | { |
296 | user->tg->uid = user->uid; | 296 | user->tg->uid = user->uid; |
297 | } | 297 | } |
298 | 298 | ||
299 | /* | 299 | /* |
300 | * Root task group. | 300 | * Root task group. |
301 | * Every UID task group (including init_task_group aka UID-0) will | 301 | * Every UID task group (including init_task_group aka UID-0) will |
302 | * be a child to this group. | 302 | * be a child to this group. |
303 | */ | 303 | */ |
304 | struct task_group root_task_group; | 304 | struct task_group root_task_group; |
305 | 305 | ||
306 | #ifdef CONFIG_FAIR_GROUP_SCHED | 306 | #ifdef CONFIG_FAIR_GROUP_SCHED |
307 | /* Default task group's sched entity on each cpu */ | 307 | /* Default task group's sched entity on each cpu */ |
308 | static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); | 308 | static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); |
309 | /* Default task group's cfs_rq on each cpu */ | 309 | /* Default task group's cfs_rq on each cpu */ |
310 | static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; | 310 | static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; |
311 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 311 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
312 | 312 | ||
313 | #ifdef CONFIG_RT_GROUP_SCHED | 313 | #ifdef CONFIG_RT_GROUP_SCHED |
314 | static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); | 314 | static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); |
315 | static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; | 315 | static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; |
316 | #endif /* CONFIG_RT_GROUP_SCHED */ | 316 | #endif /* CONFIG_RT_GROUP_SCHED */ |
317 | #else /* !CONFIG_USER_SCHED */ | 317 | #else /* !CONFIG_USER_SCHED */ |
318 | #define root_task_group init_task_group | 318 | #define root_task_group init_task_group |
319 | #endif /* CONFIG_USER_SCHED */ | 319 | #endif /* CONFIG_USER_SCHED */ |
320 | 320 | ||
321 | /* task_group_lock serializes add/remove of task groups and also changes to | 321 | /* task_group_lock serializes add/remove of task groups and also changes to |
322 | * a task group's cpu shares. | 322 | * a task group's cpu shares. |
323 | */ | 323 | */ |
324 | static DEFINE_SPINLOCK(task_group_lock); | 324 | static DEFINE_SPINLOCK(task_group_lock); |
325 | 325 | ||
326 | #ifdef CONFIG_FAIR_GROUP_SCHED | 326 | #ifdef CONFIG_FAIR_GROUP_SCHED |
327 | #ifdef CONFIG_USER_SCHED | 327 | #ifdef CONFIG_USER_SCHED |
328 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) | 328 | # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) |
329 | #else /* !CONFIG_USER_SCHED */ | 329 | #else /* !CONFIG_USER_SCHED */ |
330 | # define INIT_TASK_GROUP_LOAD NICE_0_LOAD | 330 | # define INIT_TASK_GROUP_LOAD NICE_0_LOAD |
331 | #endif /* CONFIG_USER_SCHED */ | 331 | #endif /* CONFIG_USER_SCHED */ |
332 | 332 | ||
333 | /* | 333 | /* |
334 | * A weight of 0 or 1 can cause arithmetics problems. | 334 | * A weight of 0 or 1 can cause arithmetics problems. |
335 | * A weight of a cfs_rq is the sum of weights of which entities | 335 | * A weight of a cfs_rq is the sum of weights of which entities |
336 | * are queued on this cfs_rq, so a weight of a entity should not be | 336 | * are queued on this cfs_rq, so a weight of a entity should not be |
337 | * too large, so as the shares value of a task group. | 337 | * too large, so as the shares value of a task group. |
338 | * (The default weight is 1024 - so there's no practical | 338 | * (The default weight is 1024 - so there's no practical |
339 | * limitation from this.) | 339 | * limitation from this.) |
340 | */ | 340 | */ |
341 | #define MIN_SHARES 2 | 341 | #define MIN_SHARES 2 |
342 | #define MAX_SHARES (1UL << 18) | 342 | #define MAX_SHARES (1UL << 18) |
343 | 343 | ||
344 | static int init_task_group_load = INIT_TASK_GROUP_LOAD; | 344 | static int init_task_group_load = INIT_TASK_GROUP_LOAD; |
345 | #endif | 345 | #endif |
346 | 346 | ||
347 | /* Default task group. | 347 | /* Default task group. |
348 | * Every task in system belong to this group at bootup. | 348 | * Every task in system belong to this group at bootup. |
349 | */ | 349 | */ |
350 | struct task_group init_task_group; | 350 | struct task_group init_task_group; |
351 | 351 | ||
352 | /* return group to which a task belongs */ | 352 | /* return group to which a task belongs */ |
353 | static inline struct task_group *task_group(struct task_struct *p) | 353 | static inline struct task_group *task_group(struct task_struct *p) |
354 | { | 354 | { |
355 | struct task_group *tg; | 355 | struct task_group *tg; |
356 | 356 | ||
357 | #ifdef CONFIG_USER_SCHED | 357 | #ifdef CONFIG_USER_SCHED |
358 | tg = p->user->tg; | 358 | tg = p->user->tg; |
359 | #elif defined(CONFIG_CGROUP_SCHED) | 359 | #elif defined(CONFIG_CGROUP_SCHED) |
360 | tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), | 360 | tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), |
361 | struct task_group, css); | 361 | struct task_group, css); |
362 | #else | 362 | #else |
363 | tg = &init_task_group; | 363 | tg = &init_task_group; |
364 | #endif | 364 | #endif |
365 | return tg; | 365 | return tg; |
366 | } | 366 | } |
367 | 367 | ||
368 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | 368 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ |
369 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | 369 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) |
370 | { | 370 | { |
371 | #ifdef CONFIG_FAIR_GROUP_SCHED | 371 | #ifdef CONFIG_FAIR_GROUP_SCHED |
372 | p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; | 372 | p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; |
373 | p->se.parent = task_group(p)->se[cpu]; | 373 | p->se.parent = task_group(p)->se[cpu]; |
374 | #endif | 374 | #endif |
375 | 375 | ||
376 | #ifdef CONFIG_RT_GROUP_SCHED | 376 | #ifdef CONFIG_RT_GROUP_SCHED |
377 | p->rt.rt_rq = task_group(p)->rt_rq[cpu]; | 377 | p->rt.rt_rq = task_group(p)->rt_rq[cpu]; |
378 | p->rt.parent = task_group(p)->rt_se[cpu]; | 378 | p->rt.parent = task_group(p)->rt_se[cpu]; |
379 | #endif | 379 | #endif |
380 | } | 380 | } |
381 | 381 | ||
382 | #else | 382 | #else |
383 | 383 | ||
384 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | 384 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
385 | static inline struct task_group *task_group(struct task_struct *p) | 385 | static inline struct task_group *task_group(struct task_struct *p) |
386 | { | 386 | { |
387 | return NULL; | 387 | return NULL; |
388 | } | 388 | } |
389 | 389 | ||
390 | #endif /* CONFIG_GROUP_SCHED */ | 390 | #endif /* CONFIG_GROUP_SCHED */ |
391 | 391 | ||
392 | /* CFS-related fields in a runqueue */ | 392 | /* CFS-related fields in a runqueue */ |
393 | struct cfs_rq { | 393 | struct cfs_rq { |
394 | struct load_weight load; | 394 | struct load_weight load; |
395 | unsigned long nr_running; | 395 | unsigned long nr_running; |
396 | 396 | ||
397 | u64 exec_clock; | 397 | u64 exec_clock; |
398 | u64 min_vruntime; | 398 | u64 min_vruntime; |
399 | 399 | ||
400 | struct rb_root tasks_timeline; | 400 | struct rb_root tasks_timeline; |
401 | struct rb_node *rb_leftmost; | 401 | struct rb_node *rb_leftmost; |
402 | 402 | ||
403 | struct list_head tasks; | 403 | struct list_head tasks; |
404 | struct list_head *balance_iterator; | 404 | struct list_head *balance_iterator; |
405 | 405 | ||
406 | /* | 406 | /* |
407 | * 'curr' points to currently running entity on this cfs_rq. | 407 | * 'curr' points to currently running entity on this cfs_rq. |
408 | * It is set to NULL otherwise (i.e when none are currently running). | 408 | * It is set to NULL otherwise (i.e when none are currently running). |
409 | */ | 409 | */ |
410 | struct sched_entity *curr, *next, *last; | 410 | struct sched_entity *curr, *next, *last; |
411 | 411 | ||
412 | unsigned int nr_spread_over; | 412 | unsigned int nr_spread_over; |
413 | 413 | ||
414 | #ifdef CONFIG_FAIR_GROUP_SCHED | 414 | #ifdef CONFIG_FAIR_GROUP_SCHED |
415 | struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ | 415 | struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ |
416 | 416 | ||
417 | /* | 417 | /* |
418 | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | 418 | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in |
419 | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities | 419 | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities |
420 | * (like users, containers etc.) | 420 | * (like users, containers etc.) |
421 | * | 421 | * |
422 | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This | 422 | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This |
423 | * list is used during load balance. | 423 | * list is used during load balance. |
424 | */ | 424 | */ |
425 | struct list_head leaf_cfs_rq_list; | 425 | struct list_head leaf_cfs_rq_list; |
426 | struct task_group *tg; /* group that "owns" this runqueue */ | 426 | struct task_group *tg; /* group that "owns" this runqueue */ |
427 | 427 | ||
428 | #ifdef CONFIG_SMP | 428 | #ifdef CONFIG_SMP |
429 | /* | 429 | /* |
430 | * the part of load.weight contributed by tasks | 430 | * the part of load.weight contributed by tasks |
431 | */ | 431 | */ |
432 | unsigned long task_weight; | 432 | unsigned long task_weight; |
433 | 433 | ||
434 | /* | 434 | /* |
435 | * h_load = weight * f(tg) | 435 | * h_load = weight * f(tg) |
436 | * | 436 | * |
437 | * Where f(tg) is the recursive weight fraction assigned to | 437 | * Where f(tg) is the recursive weight fraction assigned to |
438 | * this group. | 438 | * this group. |
439 | */ | 439 | */ |
440 | unsigned long h_load; | 440 | unsigned long h_load; |
441 | 441 | ||
442 | /* | 442 | /* |
443 | * this cpu's part of tg->shares | 443 | * this cpu's part of tg->shares |
444 | */ | 444 | */ |
445 | unsigned long shares; | 445 | unsigned long shares; |
446 | 446 | ||
447 | /* | 447 | /* |
448 | * load.weight at the time we set shares | 448 | * load.weight at the time we set shares |
449 | */ | 449 | */ |
450 | unsigned long rq_weight; | 450 | unsigned long rq_weight; |
451 | #endif | 451 | #endif |
452 | #endif | 452 | #endif |
453 | }; | 453 | }; |
454 | 454 | ||
455 | /* Real-Time classes' related field in a runqueue: */ | 455 | /* Real-Time classes' related field in a runqueue: */ |
456 | struct rt_rq { | 456 | struct rt_rq { |
457 | struct rt_prio_array active; | 457 | struct rt_prio_array active; |
458 | unsigned long rt_nr_running; | 458 | unsigned long rt_nr_running; |
459 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 459 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
460 | int highest_prio; /* highest queued rt task prio */ | 460 | int highest_prio; /* highest queued rt task prio */ |
461 | #endif | 461 | #endif |
462 | #ifdef CONFIG_SMP | 462 | #ifdef CONFIG_SMP |
463 | unsigned long rt_nr_migratory; | 463 | unsigned long rt_nr_migratory; |
464 | int overloaded; | 464 | int overloaded; |
465 | #endif | 465 | #endif |
466 | int rt_throttled; | 466 | int rt_throttled; |
467 | u64 rt_time; | 467 | u64 rt_time; |
468 | u64 rt_runtime; | 468 | u64 rt_runtime; |
469 | /* Nests inside the rq lock: */ | 469 | /* Nests inside the rq lock: */ |
470 | spinlock_t rt_runtime_lock; | 470 | spinlock_t rt_runtime_lock; |
471 | 471 | ||
472 | #ifdef CONFIG_RT_GROUP_SCHED | 472 | #ifdef CONFIG_RT_GROUP_SCHED |
473 | unsigned long rt_nr_boosted; | 473 | unsigned long rt_nr_boosted; |
474 | 474 | ||
475 | struct rq *rq; | 475 | struct rq *rq; |
476 | struct list_head leaf_rt_rq_list; | 476 | struct list_head leaf_rt_rq_list; |
477 | struct task_group *tg; | 477 | struct task_group *tg; |
478 | struct sched_rt_entity *rt_se; | 478 | struct sched_rt_entity *rt_se; |
479 | #endif | 479 | #endif |
480 | }; | 480 | }; |
481 | 481 | ||
482 | #ifdef CONFIG_SMP | 482 | #ifdef CONFIG_SMP |
483 | 483 | ||
484 | /* | 484 | /* |
485 | * We add the notion of a root-domain which will be used to define per-domain | 485 | * We add the notion of a root-domain which will be used to define per-domain |
486 | * variables. Each exclusive cpuset essentially defines an island domain by | 486 | * variables. Each exclusive cpuset essentially defines an island domain by |
487 | * fully partitioning the member cpus from any other cpuset. Whenever a new | 487 | * fully partitioning the member cpus from any other cpuset. Whenever a new |
488 | * exclusive cpuset is created, we also create and attach a new root-domain | 488 | * exclusive cpuset is created, we also create and attach a new root-domain |
489 | * object. | 489 | * object. |
490 | * | 490 | * |
491 | */ | 491 | */ |
492 | struct root_domain { | 492 | struct root_domain { |
493 | atomic_t refcount; | 493 | atomic_t refcount; |
494 | cpumask_t span; | 494 | cpumask_t span; |
495 | cpumask_t online; | 495 | cpumask_t online; |
496 | 496 | ||
497 | /* | 497 | /* |
498 | * The "RT overload" flag: it gets set if a CPU has more than | 498 | * The "RT overload" flag: it gets set if a CPU has more than |
499 | * one runnable RT task. | 499 | * one runnable RT task. |
500 | */ | 500 | */ |
501 | cpumask_t rto_mask; | 501 | cpumask_t rto_mask; |
502 | atomic_t rto_count; | 502 | atomic_t rto_count; |
503 | #ifdef CONFIG_SMP | 503 | #ifdef CONFIG_SMP |
504 | struct cpupri cpupri; | 504 | struct cpupri cpupri; |
505 | #endif | 505 | #endif |
506 | }; | 506 | }; |
507 | 507 | ||
508 | /* | 508 | /* |
509 | * By default the system creates a single root-domain with all cpus as | 509 | * By default the system creates a single root-domain with all cpus as |
510 | * members (mimicking the global state we have today). | 510 | * members (mimicking the global state we have today). |
511 | */ | 511 | */ |
512 | static struct root_domain def_root_domain; | 512 | static struct root_domain def_root_domain; |
513 | 513 | ||
514 | #endif | 514 | #endif |
515 | 515 | ||
516 | /* | 516 | /* |
517 | * This is the main, per-CPU runqueue data structure. | 517 | * This is the main, per-CPU runqueue data structure. |
518 | * | 518 | * |
519 | * Locking rule: those places that want to lock multiple runqueues | 519 | * Locking rule: those places that want to lock multiple runqueues |
520 | * (such as the load balancing or the thread migration code), lock | 520 | * (such as the load balancing or the thread migration code), lock |
521 | * acquire operations must be ordered by ascending &runqueue. | 521 | * acquire operations must be ordered by ascending &runqueue. |
522 | */ | 522 | */ |
523 | struct rq { | 523 | struct rq { |
524 | /* runqueue lock: */ | 524 | /* runqueue lock: */ |
525 | spinlock_t lock; | 525 | spinlock_t lock; |
526 | 526 | ||
527 | /* | 527 | /* |
528 | * nr_running and cpu_load should be in the same cacheline because | 528 | * nr_running and cpu_load should be in the same cacheline because |
529 | * remote CPUs use both these fields when doing load calculation. | 529 | * remote CPUs use both these fields when doing load calculation. |
530 | */ | 530 | */ |
531 | unsigned long nr_running; | 531 | unsigned long nr_running; |
532 | #define CPU_LOAD_IDX_MAX 5 | 532 | #define CPU_LOAD_IDX_MAX 5 |
533 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | 533 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; |
534 | unsigned char idle_at_tick; | 534 | unsigned char idle_at_tick; |
535 | #ifdef CONFIG_NO_HZ | 535 | #ifdef CONFIG_NO_HZ |
536 | unsigned long last_tick_seen; | 536 | unsigned long last_tick_seen; |
537 | unsigned char in_nohz_recently; | 537 | unsigned char in_nohz_recently; |
538 | #endif | 538 | #endif |
539 | /* capture load from *all* tasks on this cpu: */ | 539 | /* capture load from *all* tasks on this cpu: */ |
540 | struct load_weight load; | 540 | struct load_weight load; |
541 | unsigned long nr_load_updates; | 541 | unsigned long nr_load_updates; |
542 | u64 nr_switches; | 542 | u64 nr_switches; |
543 | 543 | ||
544 | struct cfs_rq cfs; | 544 | struct cfs_rq cfs; |
545 | struct rt_rq rt; | 545 | struct rt_rq rt; |
546 | 546 | ||
547 | #ifdef CONFIG_FAIR_GROUP_SCHED | 547 | #ifdef CONFIG_FAIR_GROUP_SCHED |
548 | /* list of leaf cfs_rq on this cpu: */ | 548 | /* list of leaf cfs_rq on this cpu: */ |
549 | struct list_head leaf_cfs_rq_list; | 549 | struct list_head leaf_cfs_rq_list; |
550 | #endif | 550 | #endif |
551 | #ifdef CONFIG_RT_GROUP_SCHED | 551 | #ifdef CONFIG_RT_GROUP_SCHED |
552 | struct list_head leaf_rt_rq_list; | 552 | struct list_head leaf_rt_rq_list; |
553 | #endif | 553 | #endif |
554 | 554 | ||
555 | /* | 555 | /* |
556 | * This is part of a global counter where only the total sum | 556 | * This is part of a global counter where only the total sum |
557 | * over all CPUs matters. A task can increase this counter on | 557 | * over all CPUs matters. A task can increase this counter on |
558 | * one CPU and if it got migrated afterwards it may decrease | 558 | * one CPU and if it got migrated afterwards it may decrease |
559 | * it on another CPU. Always updated under the runqueue lock: | 559 | * it on another CPU. Always updated under the runqueue lock: |
560 | */ | 560 | */ |
561 | unsigned long nr_uninterruptible; | 561 | unsigned long nr_uninterruptible; |
562 | 562 | ||
563 | struct task_struct *curr, *idle; | 563 | struct task_struct *curr, *idle; |
564 | unsigned long next_balance; | 564 | unsigned long next_balance; |
565 | struct mm_struct *prev_mm; | 565 | struct mm_struct *prev_mm; |
566 | 566 | ||
567 | u64 clock; | 567 | u64 clock; |
568 | 568 | ||
569 | atomic_t nr_iowait; | 569 | atomic_t nr_iowait; |
570 | 570 | ||
571 | #ifdef CONFIG_SMP | 571 | #ifdef CONFIG_SMP |
572 | struct root_domain *rd; | 572 | struct root_domain *rd; |
573 | struct sched_domain *sd; | 573 | struct sched_domain *sd; |
574 | 574 | ||
575 | /* For active balancing */ | 575 | /* For active balancing */ |
576 | int active_balance; | 576 | int active_balance; |
577 | int push_cpu; | 577 | int push_cpu; |
578 | /* cpu of this runqueue: */ | 578 | /* cpu of this runqueue: */ |
579 | int cpu; | 579 | int cpu; |
580 | int online; | 580 | int online; |
581 | 581 | ||
582 | unsigned long avg_load_per_task; | 582 | unsigned long avg_load_per_task; |
583 | 583 | ||
584 | struct task_struct *migration_thread; | 584 | struct task_struct *migration_thread; |
585 | struct list_head migration_queue; | 585 | struct list_head migration_queue; |
586 | #endif | 586 | #endif |
587 | 587 | ||
588 | #ifdef CONFIG_SCHED_HRTICK | 588 | #ifdef CONFIG_SCHED_HRTICK |
589 | #ifdef CONFIG_SMP | 589 | #ifdef CONFIG_SMP |
590 | int hrtick_csd_pending; | 590 | int hrtick_csd_pending; |
591 | struct call_single_data hrtick_csd; | 591 | struct call_single_data hrtick_csd; |
592 | #endif | 592 | #endif |
593 | struct hrtimer hrtick_timer; | 593 | struct hrtimer hrtick_timer; |
594 | #endif | 594 | #endif |
595 | 595 | ||
596 | #ifdef CONFIG_SCHEDSTATS | 596 | #ifdef CONFIG_SCHEDSTATS |
597 | /* latency stats */ | 597 | /* latency stats */ |
598 | struct sched_info rq_sched_info; | 598 | struct sched_info rq_sched_info; |
599 | 599 | ||
600 | /* sys_sched_yield() stats */ | 600 | /* sys_sched_yield() stats */ |
601 | unsigned int yld_exp_empty; | 601 | unsigned int yld_exp_empty; |
602 | unsigned int yld_act_empty; | 602 | unsigned int yld_act_empty; |
603 | unsigned int yld_both_empty; | 603 | unsigned int yld_both_empty; |
604 | unsigned int yld_count; | 604 | unsigned int yld_count; |
605 | 605 | ||
606 | /* schedule() stats */ | 606 | /* schedule() stats */ |
607 | unsigned int sched_switch; | 607 | unsigned int sched_switch; |
608 | unsigned int sched_count; | 608 | unsigned int sched_count; |
609 | unsigned int sched_goidle; | 609 | unsigned int sched_goidle; |
610 | 610 | ||
611 | /* try_to_wake_up() stats */ | 611 | /* try_to_wake_up() stats */ |
612 | unsigned int ttwu_count; | 612 | unsigned int ttwu_count; |
613 | unsigned int ttwu_local; | 613 | unsigned int ttwu_local; |
614 | 614 | ||
615 | /* BKL stats */ | 615 | /* BKL stats */ |
616 | unsigned int bkl_count; | 616 | unsigned int bkl_count; |
617 | #endif | 617 | #endif |
618 | }; | 618 | }; |
619 | 619 | ||
620 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); | 620 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
621 | 621 | ||
622 | static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync) | 622 | static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync) |
623 | { | 623 | { |
624 | rq->curr->sched_class->check_preempt_curr(rq, p, sync); | 624 | rq->curr->sched_class->check_preempt_curr(rq, p, sync); |
625 | } | 625 | } |
626 | 626 | ||
627 | static inline int cpu_of(struct rq *rq) | 627 | static inline int cpu_of(struct rq *rq) |
628 | { | 628 | { |
629 | #ifdef CONFIG_SMP | 629 | #ifdef CONFIG_SMP |
630 | return rq->cpu; | 630 | return rq->cpu; |
631 | #else | 631 | #else |
632 | return 0; | 632 | return 0; |
633 | #endif | 633 | #endif |
634 | } | 634 | } |
635 | 635 | ||
636 | /* | 636 | /* |
637 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | 637 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. |
638 | * See detach_destroy_domains: synchronize_sched for details. | 638 | * See detach_destroy_domains: synchronize_sched for details. |
639 | * | 639 | * |
640 | * The domain tree of any CPU may only be accessed from within | 640 | * The domain tree of any CPU may only be accessed from within |
641 | * preempt-disabled sections. | 641 | * preempt-disabled sections. |
642 | */ | 642 | */ |
643 | #define for_each_domain(cpu, __sd) \ | 643 | #define for_each_domain(cpu, __sd) \ |
644 | for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) | 644 | for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) |
645 | 645 | ||
646 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) | 646 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) |
647 | #define this_rq() (&__get_cpu_var(runqueues)) | 647 | #define this_rq() (&__get_cpu_var(runqueues)) |
648 | #define task_rq(p) cpu_rq(task_cpu(p)) | 648 | #define task_rq(p) cpu_rq(task_cpu(p)) |
649 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) | 649 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) |
650 | 650 | ||
651 | static inline void update_rq_clock(struct rq *rq) | 651 | static inline void update_rq_clock(struct rq *rq) |
652 | { | 652 | { |
653 | rq->clock = sched_clock_cpu(cpu_of(rq)); | 653 | rq->clock = sched_clock_cpu(cpu_of(rq)); |
654 | } | 654 | } |
655 | 655 | ||
656 | /* | 656 | /* |
657 | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | 657 | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: |
658 | */ | 658 | */ |
659 | #ifdef CONFIG_SCHED_DEBUG | 659 | #ifdef CONFIG_SCHED_DEBUG |
660 | # define const_debug __read_mostly | 660 | # define const_debug __read_mostly |
661 | #else | 661 | #else |
662 | # define const_debug static const | 662 | # define const_debug static const |
663 | #endif | 663 | #endif |
664 | 664 | ||
665 | /** | 665 | /** |
666 | * runqueue_is_locked | 666 | * runqueue_is_locked |
667 | * | 667 | * |
668 | * Returns true if the current cpu runqueue is locked. | 668 | * Returns true if the current cpu runqueue is locked. |
669 | * This interface allows printk to be called with the runqueue lock | 669 | * This interface allows printk to be called with the runqueue lock |
670 | * held and know whether or not it is OK to wake up the klogd. | 670 | * held and know whether or not it is OK to wake up the klogd. |
671 | */ | 671 | */ |
672 | int runqueue_is_locked(void) | 672 | int runqueue_is_locked(void) |
673 | { | 673 | { |
674 | int cpu = get_cpu(); | 674 | int cpu = get_cpu(); |
675 | struct rq *rq = cpu_rq(cpu); | 675 | struct rq *rq = cpu_rq(cpu); |
676 | int ret; | 676 | int ret; |
677 | 677 | ||
678 | ret = spin_is_locked(&rq->lock); | 678 | ret = spin_is_locked(&rq->lock); |
679 | put_cpu(); | 679 | put_cpu(); |
680 | return ret; | 680 | return ret; |
681 | } | 681 | } |
682 | 682 | ||
683 | /* | 683 | /* |
684 | * Debugging: various feature bits | 684 | * Debugging: various feature bits |
685 | */ | 685 | */ |
686 | 686 | ||
687 | #define SCHED_FEAT(name, enabled) \ | 687 | #define SCHED_FEAT(name, enabled) \ |
688 | __SCHED_FEAT_##name , | 688 | __SCHED_FEAT_##name , |
689 | 689 | ||
690 | enum { | 690 | enum { |
691 | #include "sched_features.h" | 691 | #include "sched_features.h" |
692 | }; | 692 | }; |
693 | 693 | ||
694 | #undef SCHED_FEAT | 694 | #undef SCHED_FEAT |
695 | 695 | ||
696 | #define SCHED_FEAT(name, enabled) \ | 696 | #define SCHED_FEAT(name, enabled) \ |
697 | (1UL << __SCHED_FEAT_##name) * enabled | | 697 | (1UL << __SCHED_FEAT_##name) * enabled | |
698 | 698 | ||
699 | const_debug unsigned int sysctl_sched_features = | 699 | const_debug unsigned int sysctl_sched_features = |
700 | #include "sched_features.h" | 700 | #include "sched_features.h" |
701 | 0; | 701 | 0; |
702 | 702 | ||
703 | #undef SCHED_FEAT | 703 | #undef SCHED_FEAT |
704 | 704 | ||
705 | #ifdef CONFIG_SCHED_DEBUG | 705 | #ifdef CONFIG_SCHED_DEBUG |
706 | #define SCHED_FEAT(name, enabled) \ | 706 | #define SCHED_FEAT(name, enabled) \ |
707 | #name , | 707 | #name , |
708 | 708 | ||
709 | static __read_mostly char *sched_feat_names[] = { | 709 | static __read_mostly char *sched_feat_names[] = { |
710 | #include "sched_features.h" | 710 | #include "sched_features.h" |
711 | NULL | 711 | NULL |
712 | }; | 712 | }; |
713 | 713 | ||
714 | #undef SCHED_FEAT | 714 | #undef SCHED_FEAT |
715 | 715 | ||
716 | static int sched_feat_show(struct seq_file *m, void *v) | 716 | static int sched_feat_show(struct seq_file *m, void *v) |
717 | { | 717 | { |
718 | int i; | 718 | int i; |
719 | 719 | ||
720 | for (i = 0; sched_feat_names[i]; i++) { | 720 | for (i = 0; sched_feat_names[i]; i++) { |
721 | if (!(sysctl_sched_features & (1UL << i))) | 721 | if (!(sysctl_sched_features & (1UL << i))) |
722 | seq_puts(m, "NO_"); | 722 | seq_puts(m, "NO_"); |
723 | seq_printf(m, "%s ", sched_feat_names[i]); | 723 | seq_printf(m, "%s ", sched_feat_names[i]); |
724 | } | 724 | } |
725 | seq_puts(m, "\n"); | 725 | seq_puts(m, "\n"); |
726 | 726 | ||
727 | return 0; | 727 | return 0; |
728 | } | 728 | } |
729 | 729 | ||
730 | static ssize_t | 730 | static ssize_t |
731 | sched_feat_write(struct file *filp, const char __user *ubuf, | 731 | sched_feat_write(struct file *filp, const char __user *ubuf, |
732 | size_t cnt, loff_t *ppos) | 732 | size_t cnt, loff_t *ppos) |
733 | { | 733 | { |
734 | char buf[64]; | 734 | char buf[64]; |
735 | char *cmp = buf; | 735 | char *cmp = buf; |
736 | int neg = 0; | 736 | int neg = 0; |
737 | int i; | 737 | int i; |
738 | 738 | ||
739 | if (cnt > 63) | 739 | if (cnt > 63) |
740 | cnt = 63; | 740 | cnt = 63; |
741 | 741 | ||
742 | if (copy_from_user(&buf, ubuf, cnt)) | 742 | if (copy_from_user(&buf, ubuf, cnt)) |
743 | return -EFAULT; | 743 | return -EFAULT; |
744 | 744 | ||
745 | buf[cnt] = 0; | 745 | buf[cnt] = 0; |
746 | 746 | ||
747 | if (strncmp(buf, "NO_", 3) == 0) { | 747 | if (strncmp(buf, "NO_", 3) == 0) { |
748 | neg = 1; | 748 | neg = 1; |
749 | cmp += 3; | 749 | cmp += 3; |
750 | } | 750 | } |
751 | 751 | ||
752 | for (i = 0; sched_feat_names[i]; i++) { | 752 | for (i = 0; sched_feat_names[i]; i++) { |
753 | int len = strlen(sched_feat_names[i]); | 753 | int len = strlen(sched_feat_names[i]); |
754 | 754 | ||
755 | if (strncmp(cmp, sched_feat_names[i], len) == 0) { | 755 | if (strncmp(cmp, sched_feat_names[i], len) == 0) { |
756 | if (neg) | 756 | if (neg) |
757 | sysctl_sched_features &= ~(1UL << i); | 757 | sysctl_sched_features &= ~(1UL << i); |
758 | else | 758 | else |
759 | sysctl_sched_features |= (1UL << i); | 759 | sysctl_sched_features |= (1UL << i); |
760 | break; | 760 | break; |
761 | } | 761 | } |
762 | } | 762 | } |
763 | 763 | ||
764 | if (!sched_feat_names[i]) | 764 | if (!sched_feat_names[i]) |
765 | return -EINVAL; | 765 | return -EINVAL; |
766 | 766 | ||
767 | filp->f_pos += cnt; | 767 | filp->f_pos += cnt; |
768 | 768 | ||
769 | return cnt; | 769 | return cnt; |
770 | } | 770 | } |
771 | 771 | ||
772 | static int sched_feat_open(struct inode *inode, struct file *filp) | 772 | static int sched_feat_open(struct inode *inode, struct file *filp) |
773 | { | 773 | { |
774 | return single_open(filp, sched_feat_show, NULL); | 774 | return single_open(filp, sched_feat_show, NULL); |
775 | } | 775 | } |
776 | 776 | ||
777 | static struct file_operations sched_feat_fops = { | 777 | static struct file_operations sched_feat_fops = { |
778 | .open = sched_feat_open, | 778 | .open = sched_feat_open, |
779 | .write = sched_feat_write, | 779 | .write = sched_feat_write, |
780 | .read = seq_read, | 780 | .read = seq_read, |
781 | .llseek = seq_lseek, | 781 | .llseek = seq_lseek, |
782 | .release = single_release, | 782 | .release = single_release, |
783 | }; | 783 | }; |
784 | 784 | ||
785 | static __init int sched_init_debug(void) | 785 | static __init int sched_init_debug(void) |
786 | { | 786 | { |
787 | debugfs_create_file("sched_features", 0644, NULL, NULL, | 787 | debugfs_create_file("sched_features", 0644, NULL, NULL, |
788 | &sched_feat_fops); | 788 | &sched_feat_fops); |
789 | 789 | ||
790 | return 0; | 790 | return 0; |
791 | } | 791 | } |
792 | late_initcall(sched_init_debug); | 792 | late_initcall(sched_init_debug); |
793 | 793 | ||
794 | #endif | 794 | #endif |
795 | 795 | ||
796 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) | 796 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) |
797 | 797 | ||
798 | /* | 798 | /* |
799 | * Number of tasks to iterate in a single balance run. | 799 | * Number of tasks to iterate in a single balance run. |
800 | * Limited because this is done with IRQs disabled. | 800 | * Limited because this is done with IRQs disabled. |
801 | */ | 801 | */ |
802 | const_debug unsigned int sysctl_sched_nr_migrate = 32; | 802 | const_debug unsigned int sysctl_sched_nr_migrate = 32; |
803 | 803 | ||
804 | /* | 804 | /* |
805 | * ratelimit for updating the group shares. | 805 | * ratelimit for updating the group shares. |
806 | * default: 0.25ms | 806 | * default: 0.25ms |
807 | */ | 807 | */ |
808 | unsigned int sysctl_sched_shares_ratelimit = 250000; | 808 | unsigned int sysctl_sched_shares_ratelimit = 250000; |
809 | 809 | ||
810 | /* | 810 | /* |
811 | * Inject some fuzzyness into changing the per-cpu group shares | 811 | * Inject some fuzzyness into changing the per-cpu group shares |
812 | * this avoids remote rq-locks at the expense of fairness. | 812 | * this avoids remote rq-locks at the expense of fairness. |
813 | * default: 4 | 813 | * default: 4 |
814 | */ | 814 | */ |
815 | unsigned int sysctl_sched_shares_thresh = 4; | 815 | unsigned int sysctl_sched_shares_thresh = 4; |
816 | 816 | ||
817 | /* | 817 | /* |
818 | * period over which we measure -rt task cpu usage in us. | 818 | * period over which we measure -rt task cpu usage in us. |
819 | * default: 1s | 819 | * default: 1s |
820 | */ | 820 | */ |
821 | unsigned int sysctl_sched_rt_period = 1000000; | 821 | unsigned int sysctl_sched_rt_period = 1000000; |
822 | 822 | ||
823 | static __read_mostly int scheduler_running; | 823 | static __read_mostly int scheduler_running; |
824 | 824 | ||
825 | /* | 825 | /* |
826 | * part of the period that we allow rt tasks to run in us. | 826 | * part of the period that we allow rt tasks to run in us. |
827 | * default: 0.95s | 827 | * default: 0.95s |
828 | */ | 828 | */ |
829 | int sysctl_sched_rt_runtime = 950000; | 829 | int sysctl_sched_rt_runtime = 950000; |
830 | 830 | ||
831 | static inline u64 global_rt_period(void) | 831 | static inline u64 global_rt_period(void) |
832 | { | 832 | { |
833 | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; | 833 | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; |
834 | } | 834 | } |
835 | 835 | ||
836 | static inline u64 global_rt_runtime(void) | 836 | static inline u64 global_rt_runtime(void) |
837 | { | 837 | { |
838 | if (sysctl_sched_rt_runtime < 0) | 838 | if (sysctl_sched_rt_runtime < 0) |
839 | return RUNTIME_INF; | 839 | return RUNTIME_INF; |
840 | 840 | ||
841 | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; | 841 | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; |
842 | } | 842 | } |
843 | 843 | ||
844 | #ifndef prepare_arch_switch | 844 | #ifndef prepare_arch_switch |
845 | # define prepare_arch_switch(next) do { } while (0) | 845 | # define prepare_arch_switch(next) do { } while (0) |
846 | #endif | 846 | #endif |
847 | #ifndef finish_arch_switch | 847 | #ifndef finish_arch_switch |
848 | # define finish_arch_switch(prev) do { } while (0) | 848 | # define finish_arch_switch(prev) do { } while (0) |
849 | #endif | 849 | #endif |
850 | 850 | ||
851 | static inline int task_current(struct rq *rq, struct task_struct *p) | 851 | static inline int task_current(struct rq *rq, struct task_struct *p) |
852 | { | 852 | { |
853 | return rq->curr == p; | 853 | return rq->curr == p; |
854 | } | 854 | } |
855 | 855 | ||
856 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | 856 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW |
857 | static inline int task_running(struct rq *rq, struct task_struct *p) | 857 | static inline int task_running(struct rq *rq, struct task_struct *p) |
858 | { | 858 | { |
859 | return task_current(rq, p); | 859 | return task_current(rq, p); |
860 | } | 860 | } |
861 | 861 | ||
862 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | 862 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
863 | { | 863 | { |
864 | } | 864 | } |
865 | 865 | ||
866 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | 866 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
867 | { | 867 | { |
868 | #ifdef CONFIG_DEBUG_SPINLOCK | 868 | #ifdef CONFIG_DEBUG_SPINLOCK |
869 | /* this is a valid case when another task releases the spinlock */ | 869 | /* this is a valid case when another task releases the spinlock */ |
870 | rq->lock.owner = current; | 870 | rq->lock.owner = current; |
871 | #endif | 871 | #endif |
872 | /* | 872 | /* |
873 | * If we are tracking spinlock dependencies then we have to | 873 | * If we are tracking spinlock dependencies then we have to |
874 | * fix up the runqueue lock - which gets 'carried over' from | 874 | * fix up the runqueue lock - which gets 'carried over' from |
875 | * prev into current: | 875 | * prev into current: |
876 | */ | 876 | */ |
877 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | 877 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); |
878 | 878 | ||
879 | spin_unlock_irq(&rq->lock); | 879 | spin_unlock_irq(&rq->lock); |
880 | } | 880 | } |
881 | 881 | ||
882 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | 882 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ |
883 | static inline int task_running(struct rq *rq, struct task_struct *p) | 883 | static inline int task_running(struct rq *rq, struct task_struct *p) |
884 | { | 884 | { |
885 | #ifdef CONFIG_SMP | 885 | #ifdef CONFIG_SMP |
886 | return p->oncpu; | 886 | return p->oncpu; |
887 | #else | 887 | #else |
888 | return task_current(rq, p); | 888 | return task_current(rq, p); |
889 | #endif | 889 | #endif |
890 | } | 890 | } |
891 | 891 | ||
892 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | 892 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
893 | { | 893 | { |
894 | #ifdef CONFIG_SMP | 894 | #ifdef CONFIG_SMP |
895 | /* | 895 | /* |
896 | * We can optimise this out completely for !SMP, because the | 896 | * We can optimise this out completely for !SMP, because the |
897 | * SMP rebalancing from interrupt is the only thing that cares | 897 | * SMP rebalancing from interrupt is the only thing that cares |
898 | * here. | 898 | * here. |
899 | */ | 899 | */ |
900 | next->oncpu = 1; | 900 | next->oncpu = 1; |
901 | #endif | 901 | #endif |
902 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 902 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
903 | spin_unlock_irq(&rq->lock); | 903 | spin_unlock_irq(&rq->lock); |
904 | #else | 904 | #else |
905 | spin_unlock(&rq->lock); | 905 | spin_unlock(&rq->lock); |
906 | #endif | 906 | #endif |
907 | } | 907 | } |
908 | 908 | ||
909 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | 909 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
910 | { | 910 | { |
911 | #ifdef CONFIG_SMP | 911 | #ifdef CONFIG_SMP |
912 | /* | 912 | /* |
913 | * After ->oncpu is cleared, the task can be moved to a different CPU. | 913 | * After ->oncpu is cleared, the task can be moved to a different CPU. |
914 | * We must ensure this doesn't happen until the switch is completely | 914 | * We must ensure this doesn't happen until the switch is completely |
915 | * finished. | 915 | * finished. |
916 | */ | 916 | */ |
917 | smp_wmb(); | 917 | smp_wmb(); |
918 | prev->oncpu = 0; | 918 | prev->oncpu = 0; |
919 | #endif | 919 | #endif |
920 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 920 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
921 | local_irq_enable(); | 921 | local_irq_enable(); |
922 | #endif | 922 | #endif |
923 | } | 923 | } |
924 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | 924 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ |
925 | 925 | ||
926 | /* | 926 | /* |
927 | * __task_rq_lock - lock the runqueue a given task resides on. | 927 | * __task_rq_lock - lock the runqueue a given task resides on. |
928 | * Must be called interrupts disabled. | 928 | * Must be called interrupts disabled. |
929 | */ | 929 | */ |
930 | static inline struct rq *__task_rq_lock(struct task_struct *p) | 930 | static inline struct rq *__task_rq_lock(struct task_struct *p) |
931 | __acquires(rq->lock) | 931 | __acquires(rq->lock) |
932 | { | 932 | { |
933 | for (;;) { | 933 | for (;;) { |
934 | struct rq *rq = task_rq(p); | 934 | struct rq *rq = task_rq(p); |
935 | spin_lock(&rq->lock); | 935 | spin_lock(&rq->lock); |
936 | if (likely(rq == task_rq(p))) | 936 | if (likely(rq == task_rq(p))) |
937 | return rq; | 937 | return rq; |
938 | spin_unlock(&rq->lock); | 938 | spin_unlock(&rq->lock); |
939 | } | 939 | } |
940 | } | 940 | } |
941 | 941 | ||
942 | /* | 942 | /* |
943 | * task_rq_lock - lock the runqueue a given task resides on and disable | 943 | * task_rq_lock - lock the runqueue a given task resides on and disable |
944 | * interrupts. Note the ordering: we can safely lookup the task_rq without | 944 | * interrupts. Note the ordering: we can safely lookup the task_rq without |
945 | * explicitly disabling preemption. | 945 | * explicitly disabling preemption. |
946 | */ | 946 | */ |
947 | static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) | 947 | static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) |
948 | __acquires(rq->lock) | 948 | __acquires(rq->lock) |
949 | { | 949 | { |
950 | struct rq *rq; | 950 | struct rq *rq; |
951 | 951 | ||
952 | for (;;) { | 952 | for (;;) { |
953 | local_irq_save(*flags); | 953 | local_irq_save(*flags); |
954 | rq = task_rq(p); | 954 | rq = task_rq(p); |
955 | spin_lock(&rq->lock); | 955 | spin_lock(&rq->lock); |
956 | if (likely(rq == task_rq(p))) | 956 | if (likely(rq == task_rq(p))) |
957 | return rq; | 957 | return rq; |
958 | spin_unlock_irqrestore(&rq->lock, *flags); | 958 | spin_unlock_irqrestore(&rq->lock, *flags); |
959 | } | 959 | } |
960 | } | 960 | } |
961 | 961 | ||
962 | void task_rq_unlock_wait(struct task_struct *p) | 962 | void task_rq_unlock_wait(struct task_struct *p) |
963 | { | 963 | { |
964 | struct rq *rq = task_rq(p); | 964 | struct rq *rq = task_rq(p); |
965 | 965 | ||
966 | smp_mb(); /* spin-unlock-wait is not a full memory barrier */ | 966 | smp_mb(); /* spin-unlock-wait is not a full memory barrier */ |
967 | spin_unlock_wait(&rq->lock); | 967 | spin_unlock_wait(&rq->lock); |
968 | } | 968 | } |
969 | 969 | ||
970 | static void __task_rq_unlock(struct rq *rq) | 970 | static void __task_rq_unlock(struct rq *rq) |
971 | __releases(rq->lock) | 971 | __releases(rq->lock) |
972 | { | 972 | { |
973 | spin_unlock(&rq->lock); | 973 | spin_unlock(&rq->lock); |
974 | } | 974 | } |
975 | 975 | ||
976 | static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) | 976 | static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) |
977 | __releases(rq->lock) | 977 | __releases(rq->lock) |
978 | { | 978 | { |
979 | spin_unlock_irqrestore(&rq->lock, *flags); | 979 | spin_unlock_irqrestore(&rq->lock, *flags); |
980 | } | 980 | } |
981 | 981 | ||
982 | /* | 982 | /* |
983 | * this_rq_lock - lock this runqueue and disable interrupts. | 983 | * this_rq_lock - lock this runqueue and disable interrupts. |
984 | */ | 984 | */ |
985 | static struct rq *this_rq_lock(void) | 985 | static struct rq *this_rq_lock(void) |
986 | __acquires(rq->lock) | 986 | __acquires(rq->lock) |
987 | { | 987 | { |
988 | struct rq *rq; | 988 | struct rq *rq; |
989 | 989 | ||
990 | local_irq_disable(); | 990 | local_irq_disable(); |
991 | rq = this_rq(); | 991 | rq = this_rq(); |
992 | spin_lock(&rq->lock); | 992 | spin_lock(&rq->lock); |
993 | 993 | ||
994 | return rq; | 994 | return rq; |
995 | } | 995 | } |
996 | 996 | ||
997 | #ifdef CONFIG_SCHED_HRTICK | 997 | #ifdef CONFIG_SCHED_HRTICK |
998 | /* | 998 | /* |
999 | * Use HR-timers to deliver accurate preemption points. | 999 | * Use HR-timers to deliver accurate preemption points. |
1000 | * | 1000 | * |
1001 | * Its all a bit involved since we cannot program an hrt while holding the | 1001 | * Its all a bit involved since we cannot program an hrt while holding the |
1002 | * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a | 1002 | * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a |
1003 | * reschedule event. | 1003 | * reschedule event. |
1004 | * | 1004 | * |
1005 | * When we get rescheduled we reprogram the hrtick_timer outside of the | 1005 | * When we get rescheduled we reprogram the hrtick_timer outside of the |
1006 | * rq->lock. | 1006 | * rq->lock. |
1007 | */ | 1007 | */ |
1008 | 1008 | ||
1009 | /* | 1009 | /* |
1010 | * Use hrtick when: | 1010 | * Use hrtick when: |
1011 | * - enabled by features | 1011 | * - enabled by features |
1012 | * - hrtimer is actually high res | 1012 | * - hrtimer is actually high res |
1013 | */ | 1013 | */ |
1014 | static inline int hrtick_enabled(struct rq *rq) | 1014 | static inline int hrtick_enabled(struct rq *rq) |
1015 | { | 1015 | { |
1016 | if (!sched_feat(HRTICK)) | 1016 | if (!sched_feat(HRTICK)) |
1017 | return 0; | 1017 | return 0; |
1018 | if (!cpu_active(cpu_of(rq))) | 1018 | if (!cpu_active(cpu_of(rq))) |
1019 | return 0; | 1019 | return 0; |
1020 | return hrtimer_is_hres_active(&rq->hrtick_timer); | 1020 | return hrtimer_is_hres_active(&rq->hrtick_timer); |
1021 | } | 1021 | } |
1022 | 1022 | ||
1023 | static void hrtick_clear(struct rq *rq) | 1023 | static void hrtick_clear(struct rq *rq) |
1024 | { | 1024 | { |
1025 | if (hrtimer_active(&rq->hrtick_timer)) | 1025 | if (hrtimer_active(&rq->hrtick_timer)) |
1026 | hrtimer_cancel(&rq->hrtick_timer); | 1026 | hrtimer_cancel(&rq->hrtick_timer); |
1027 | } | 1027 | } |
1028 | 1028 | ||
1029 | /* | 1029 | /* |
1030 | * High-resolution timer tick. | 1030 | * High-resolution timer tick. |
1031 | * Runs from hardirq context with interrupts disabled. | 1031 | * Runs from hardirq context with interrupts disabled. |
1032 | */ | 1032 | */ |
1033 | static enum hrtimer_restart hrtick(struct hrtimer *timer) | 1033 | static enum hrtimer_restart hrtick(struct hrtimer *timer) |
1034 | { | 1034 | { |
1035 | struct rq *rq = container_of(timer, struct rq, hrtick_timer); | 1035 | struct rq *rq = container_of(timer, struct rq, hrtick_timer); |
1036 | 1036 | ||
1037 | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); | 1037 | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); |
1038 | 1038 | ||
1039 | spin_lock(&rq->lock); | 1039 | spin_lock(&rq->lock); |
1040 | update_rq_clock(rq); | 1040 | update_rq_clock(rq); |
1041 | rq->curr->sched_class->task_tick(rq, rq->curr, 1); | 1041 | rq->curr->sched_class->task_tick(rq, rq->curr, 1); |
1042 | spin_unlock(&rq->lock); | 1042 | spin_unlock(&rq->lock); |
1043 | 1043 | ||
1044 | return HRTIMER_NORESTART; | 1044 | return HRTIMER_NORESTART; |
1045 | } | 1045 | } |
1046 | 1046 | ||
1047 | #ifdef CONFIG_SMP | 1047 | #ifdef CONFIG_SMP |
1048 | /* | 1048 | /* |
1049 | * called from hardirq (IPI) context | 1049 | * called from hardirq (IPI) context |
1050 | */ | 1050 | */ |
1051 | static void __hrtick_start(void *arg) | 1051 | static void __hrtick_start(void *arg) |
1052 | { | 1052 | { |
1053 | struct rq *rq = arg; | 1053 | struct rq *rq = arg; |
1054 | 1054 | ||
1055 | spin_lock(&rq->lock); | 1055 | spin_lock(&rq->lock); |
1056 | hrtimer_restart(&rq->hrtick_timer); | 1056 | hrtimer_restart(&rq->hrtick_timer); |
1057 | rq->hrtick_csd_pending = 0; | 1057 | rq->hrtick_csd_pending = 0; |
1058 | spin_unlock(&rq->lock); | 1058 | spin_unlock(&rq->lock); |
1059 | } | 1059 | } |
1060 | 1060 | ||
1061 | /* | 1061 | /* |
1062 | * Called to set the hrtick timer state. | 1062 | * Called to set the hrtick timer state. |
1063 | * | 1063 | * |
1064 | * called with rq->lock held and irqs disabled | 1064 | * called with rq->lock held and irqs disabled |
1065 | */ | 1065 | */ |
1066 | static void hrtick_start(struct rq *rq, u64 delay) | 1066 | static void hrtick_start(struct rq *rq, u64 delay) |
1067 | { | 1067 | { |
1068 | struct hrtimer *timer = &rq->hrtick_timer; | 1068 | struct hrtimer *timer = &rq->hrtick_timer; |
1069 | ktime_t time = ktime_add_ns(timer->base->get_time(), delay); | 1069 | ktime_t time = ktime_add_ns(timer->base->get_time(), delay); |
1070 | 1070 | ||
1071 | hrtimer_set_expires(timer, time); | 1071 | hrtimer_set_expires(timer, time); |
1072 | 1072 | ||
1073 | if (rq == this_rq()) { | 1073 | if (rq == this_rq()) { |
1074 | hrtimer_restart(timer); | 1074 | hrtimer_restart(timer); |
1075 | } else if (!rq->hrtick_csd_pending) { | 1075 | } else if (!rq->hrtick_csd_pending) { |
1076 | __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd); | 1076 | __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd); |
1077 | rq->hrtick_csd_pending = 1; | 1077 | rq->hrtick_csd_pending = 1; |
1078 | } | 1078 | } |
1079 | } | 1079 | } |
1080 | 1080 | ||
1081 | static int | 1081 | static int |
1082 | hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) | 1082 | hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) |
1083 | { | 1083 | { |
1084 | int cpu = (int)(long)hcpu; | 1084 | int cpu = (int)(long)hcpu; |
1085 | 1085 | ||
1086 | switch (action) { | 1086 | switch (action) { |
1087 | case CPU_UP_CANCELED: | 1087 | case CPU_UP_CANCELED: |
1088 | case CPU_UP_CANCELED_FROZEN: | 1088 | case CPU_UP_CANCELED_FROZEN: |
1089 | case CPU_DOWN_PREPARE: | 1089 | case CPU_DOWN_PREPARE: |
1090 | case CPU_DOWN_PREPARE_FROZEN: | 1090 | case CPU_DOWN_PREPARE_FROZEN: |
1091 | case CPU_DEAD: | 1091 | case CPU_DEAD: |
1092 | case CPU_DEAD_FROZEN: | 1092 | case CPU_DEAD_FROZEN: |
1093 | hrtick_clear(cpu_rq(cpu)); | 1093 | hrtick_clear(cpu_rq(cpu)); |
1094 | return NOTIFY_OK; | 1094 | return NOTIFY_OK; |
1095 | } | 1095 | } |
1096 | 1096 | ||
1097 | return NOTIFY_DONE; | 1097 | return NOTIFY_DONE; |
1098 | } | 1098 | } |
1099 | 1099 | ||
1100 | static __init void init_hrtick(void) | 1100 | static __init void init_hrtick(void) |
1101 | { | 1101 | { |
1102 | hotcpu_notifier(hotplug_hrtick, 0); | 1102 | hotcpu_notifier(hotplug_hrtick, 0); |
1103 | } | 1103 | } |
1104 | #else | 1104 | #else |
1105 | /* | 1105 | /* |
1106 | * Called to set the hrtick timer state. | 1106 | * Called to set the hrtick timer state. |
1107 | * | 1107 | * |
1108 | * called with rq->lock held and irqs disabled | 1108 | * called with rq->lock held and irqs disabled |
1109 | */ | 1109 | */ |
1110 | static void hrtick_start(struct rq *rq, u64 delay) | 1110 | static void hrtick_start(struct rq *rq, u64 delay) |
1111 | { | 1111 | { |
1112 | hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL); | 1112 | hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL); |
1113 | } | 1113 | } |
1114 | 1114 | ||
1115 | static inline void init_hrtick(void) | 1115 | static inline void init_hrtick(void) |
1116 | { | 1116 | { |
1117 | } | 1117 | } |
1118 | #endif /* CONFIG_SMP */ | 1118 | #endif /* CONFIG_SMP */ |
1119 | 1119 | ||
1120 | static void init_rq_hrtick(struct rq *rq) | 1120 | static void init_rq_hrtick(struct rq *rq) |
1121 | { | 1121 | { |
1122 | #ifdef CONFIG_SMP | 1122 | #ifdef CONFIG_SMP |
1123 | rq->hrtick_csd_pending = 0; | 1123 | rq->hrtick_csd_pending = 0; |
1124 | 1124 | ||
1125 | rq->hrtick_csd.flags = 0; | 1125 | rq->hrtick_csd.flags = 0; |
1126 | rq->hrtick_csd.func = __hrtick_start; | 1126 | rq->hrtick_csd.func = __hrtick_start; |
1127 | rq->hrtick_csd.info = rq; | 1127 | rq->hrtick_csd.info = rq; |
1128 | #endif | 1128 | #endif |
1129 | 1129 | ||
1130 | hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 1130 | hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
1131 | rq->hrtick_timer.function = hrtick; | 1131 | rq->hrtick_timer.function = hrtick; |
1132 | rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU; | 1132 | rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU; |
1133 | } | 1133 | } |
1134 | #else /* CONFIG_SCHED_HRTICK */ | 1134 | #else /* CONFIG_SCHED_HRTICK */ |
1135 | static inline void hrtick_clear(struct rq *rq) | 1135 | static inline void hrtick_clear(struct rq *rq) |
1136 | { | 1136 | { |
1137 | } | 1137 | } |
1138 | 1138 | ||
1139 | static inline void init_rq_hrtick(struct rq *rq) | 1139 | static inline void init_rq_hrtick(struct rq *rq) |
1140 | { | 1140 | { |
1141 | } | 1141 | } |
1142 | 1142 | ||
1143 | static inline void init_hrtick(void) | 1143 | static inline void init_hrtick(void) |
1144 | { | 1144 | { |
1145 | } | 1145 | } |
1146 | #endif /* CONFIG_SCHED_HRTICK */ | 1146 | #endif /* CONFIG_SCHED_HRTICK */ |
1147 | 1147 | ||
1148 | /* | 1148 | /* |
1149 | * resched_task - mark a task 'to be rescheduled now'. | 1149 | * resched_task - mark a task 'to be rescheduled now'. |
1150 | * | 1150 | * |
1151 | * On UP this means the setting of the need_resched flag, on SMP it | 1151 | * On UP this means the setting of the need_resched flag, on SMP it |
1152 | * might also involve a cross-CPU call to trigger the scheduler on | 1152 | * might also involve a cross-CPU call to trigger the scheduler on |
1153 | * the target CPU. | 1153 | * the target CPU. |
1154 | */ | 1154 | */ |
1155 | #ifdef CONFIG_SMP | 1155 | #ifdef CONFIG_SMP |
1156 | 1156 | ||
1157 | #ifndef tsk_is_polling | 1157 | #ifndef tsk_is_polling |
1158 | #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) | 1158 | #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) |
1159 | #endif | 1159 | #endif |
1160 | 1160 | ||
1161 | static void resched_task(struct task_struct *p) | 1161 | static void resched_task(struct task_struct *p) |
1162 | { | 1162 | { |
1163 | int cpu; | 1163 | int cpu; |
1164 | 1164 | ||
1165 | assert_spin_locked(&task_rq(p)->lock); | 1165 | assert_spin_locked(&task_rq(p)->lock); |
1166 | 1166 | ||
1167 | if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) | 1167 | if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) |
1168 | return; | 1168 | return; |
1169 | 1169 | ||
1170 | set_tsk_thread_flag(p, TIF_NEED_RESCHED); | 1170 | set_tsk_thread_flag(p, TIF_NEED_RESCHED); |
1171 | 1171 | ||
1172 | cpu = task_cpu(p); | 1172 | cpu = task_cpu(p); |
1173 | if (cpu == smp_processor_id()) | 1173 | if (cpu == smp_processor_id()) |
1174 | return; | 1174 | return; |
1175 | 1175 | ||
1176 | /* NEED_RESCHED must be visible before we test polling */ | 1176 | /* NEED_RESCHED must be visible before we test polling */ |
1177 | smp_mb(); | 1177 | smp_mb(); |
1178 | if (!tsk_is_polling(p)) | 1178 | if (!tsk_is_polling(p)) |
1179 | smp_send_reschedule(cpu); | 1179 | smp_send_reschedule(cpu); |
1180 | } | 1180 | } |
1181 | 1181 | ||
1182 | static void resched_cpu(int cpu) | 1182 | static void resched_cpu(int cpu) |
1183 | { | 1183 | { |
1184 | struct rq *rq = cpu_rq(cpu); | 1184 | struct rq *rq = cpu_rq(cpu); |
1185 | unsigned long flags; | 1185 | unsigned long flags; |
1186 | 1186 | ||
1187 | if (!spin_trylock_irqsave(&rq->lock, flags)) | 1187 | if (!spin_trylock_irqsave(&rq->lock, flags)) |
1188 | return; | 1188 | return; |
1189 | resched_task(cpu_curr(cpu)); | 1189 | resched_task(cpu_curr(cpu)); |
1190 | spin_unlock_irqrestore(&rq->lock, flags); | 1190 | spin_unlock_irqrestore(&rq->lock, flags); |
1191 | } | 1191 | } |
1192 | 1192 | ||
1193 | #ifdef CONFIG_NO_HZ | 1193 | #ifdef CONFIG_NO_HZ |
1194 | /* | 1194 | /* |
1195 | * When add_timer_on() enqueues a timer into the timer wheel of an | 1195 | * When add_timer_on() enqueues a timer into the timer wheel of an |
1196 | * idle CPU then this timer might expire before the next timer event | 1196 | * idle CPU then this timer might expire before the next timer event |
1197 | * which is scheduled to wake up that CPU. In case of a completely | 1197 | * which is scheduled to wake up that CPU. In case of a completely |
1198 | * idle system the next event might even be infinite time into the | 1198 | * idle system the next event might even be infinite time into the |
1199 | * future. wake_up_idle_cpu() ensures that the CPU is woken up and | 1199 | * future. wake_up_idle_cpu() ensures that the CPU is woken up and |
1200 | * leaves the inner idle loop so the newly added timer is taken into | 1200 | * leaves the inner idle loop so the newly added timer is taken into |
1201 | * account when the CPU goes back to idle and evaluates the timer | 1201 | * account when the CPU goes back to idle and evaluates the timer |
1202 | * wheel for the next timer event. | 1202 | * wheel for the next timer event. |
1203 | */ | 1203 | */ |
1204 | void wake_up_idle_cpu(int cpu) | 1204 | void wake_up_idle_cpu(int cpu) |
1205 | { | 1205 | { |
1206 | struct rq *rq = cpu_rq(cpu); | 1206 | struct rq *rq = cpu_rq(cpu); |
1207 | 1207 | ||
1208 | if (cpu == smp_processor_id()) | 1208 | if (cpu == smp_processor_id()) |
1209 | return; | 1209 | return; |
1210 | 1210 | ||
1211 | /* | 1211 | /* |
1212 | * This is safe, as this function is called with the timer | 1212 | * This is safe, as this function is called with the timer |
1213 | * wheel base lock of (cpu) held. When the CPU is on the way | 1213 | * wheel base lock of (cpu) held. When the CPU is on the way |
1214 | * to idle and has not yet set rq->curr to idle then it will | 1214 | * to idle and has not yet set rq->curr to idle then it will |
1215 | * be serialized on the timer wheel base lock and take the new | 1215 | * be serialized on the timer wheel base lock and take the new |
1216 | * timer into account automatically. | 1216 | * timer into account automatically. |
1217 | */ | 1217 | */ |
1218 | if (rq->curr != rq->idle) | 1218 | if (rq->curr != rq->idle) |
1219 | return; | 1219 | return; |
1220 | 1220 | ||
1221 | /* | 1221 | /* |
1222 | * We can set TIF_RESCHED on the idle task of the other CPU | 1222 | * We can set TIF_RESCHED on the idle task of the other CPU |
1223 | * lockless. The worst case is that the other CPU runs the | 1223 | * lockless. The worst case is that the other CPU runs the |
1224 | * idle task through an additional NOOP schedule() | 1224 | * idle task through an additional NOOP schedule() |
1225 | */ | 1225 | */ |
1226 | set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED); | 1226 | set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED); |
1227 | 1227 | ||
1228 | /* NEED_RESCHED must be visible before we test polling */ | 1228 | /* NEED_RESCHED must be visible before we test polling */ |
1229 | smp_mb(); | 1229 | smp_mb(); |
1230 | if (!tsk_is_polling(rq->idle)) | 1230 | if (!tsk_is_polling(rq->idle)) |
1231 | smp_send_reschedule(cpu); | 1231 | smp_send_reschedule(cpu); |
1232 | } | 1232 | } |
1233 | #endif /* CONFIG_NO_HZ */ | 1233 | #endif /* CONFIG_NO_HZ */ |
1234 | 1234 | ||
1235 | #else /* !CONFIG_SMP */ | 1235 | #else /* !CONFIG_SMP */ |
1236 | static void resched_task(struct task_struct *p) | 1236 | static void resched_task(struct task_struct *p) |
1237 | { | 1237 | { |
1238 | assert_spin_locked(&task_rq(p)->lock); | 1238 | assert_spin_locked(&task_rq(p)->lock); |
1239 | set_tsk_need_resched(p); | 1239 | set_tsk_need_resched(p); |
1240 | } | 1240 | } |
1241 | #endif /* CONFIG_SMP */ | 1241 | #endif /* CONFIG_SMP */ |
1242 | 1242 | ||
1243 | #if BITS_PER_LONG == 32 | 1243 | #if BITS_PER_LONG == 32 |
1244 | # define WMULT_CONST (~0UL) | 1244 | # define WMULT_CONST (~0UL) |
1245 | #else | 1245 | #else |
1246 | # define WMULT_CONST (1UL << 32) | 1246 | # define WMULT_CONST (1UL << 32) |
1247 | #endif | 1247 | #endif |
1248 | 1248 | ||
1249 | #define WMULT_SHIFT 32 | 1249 | #define WMULT_SHIFT 32 |
1250 | 1250 | ||
1251 | /* | 1251 | /* |
1252 | * Shift right and round: | 1252 | * Shift right and round: |
1253 | */ | 1253 | */ |
1254 | #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) | 1254 | #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) |
1255 | 1255 | ||
1256 | /* | 1256 | /* |
1257 | * delta *= weight / lw | 1257 | * delta *= weight / lw |
1258 | */ | 1258 | */ |
1259 | static unsigned long | 1259 | static unsigned long |
1260 | calc_delta_mine(unsigned long delta_exec, unsigned long weight, | 1260 | calc_delta_mine(unsigned long delta_exec, unsigned long weight, |
1261 | struct load_weight *lw) | 1261 | struct load_weight *lw) |
1262 | { | 1262 | { |
1263 | u64 tmp; | 1263 | u64 tmp; |
1264 | 1264 | ||
1265 | if (!lw->inv_weight) { | 1265 | if (!lw->inv_weight) { |
1266 | if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST)) | 1266 | if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST)) |
1267 | lw->inv_weight = 1; | 1267 | lw->inv_weight = 1; |
1268 | else | 1268 | else |
1269 | lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2) | 1269 | lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2) |
1270 | / (lw->weight+1); | 1270 | / (lw->weight+1); |
1271 | } | 1271 | } |
1272 | 1272 | ||
1273 | tmp = (u64)delta_exec * weight; | 1273 | tmp = (u64)delta_exec * weight; |
1274 | /* | 1274 | /* |
1275 | * Check whether we'd overflow the 64-bit multiplication: | 1275 | * Check whether we'd overflow the 64-bit multiplication: |
1276 | */ | 1276 | */ |
1277 | if (unlikely(tmp > WMULT_CONST)) | 1277 | if (unlikely(tmp > WMULT_CONST)) |
1278 | tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, | 1278 | tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, |
1279 | WMULT_SHIFT/2); | 1279 | WMULT_SHIFT/2); |
1280 | else | 1280 | else |
1281 | tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); | 1281 | tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); |
1282 | 1282 | ||
1283 | return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); | 1283 | return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); |
1284 | } | 1284 | } |
1285 | 1285 | ||
1286 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) | 1286 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
1287 | { | 1287 | { |
1288 | lw->weight += inc; | 1288 | lw->weight += inc; |
1289 | lw->inv_weight = 0; | 1289 | lw->inv_weight = 0; |
1290 | } | 1290 | } |
1291 | 1291 | ||
1292 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) | 1292 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) |
1293 | { | 1293 | { |
1294 | lw->weight -= dec; | 1294 | lw->weight -= dec; |
1295 | lw->inv_weight = 0; | 1295 | lw->inv_weight = 0; |
1296 | } | 1296 | } |
1297 | 1297 | ||
1298 | /* | 1298 | /* |
1299 | * To aid in avoiding the subversion of "niceness" due to uneven distribution | 1299 | * To aid in avoiding the subversion of "niceness" due to uneven distribution |
1300 | * of tasks with abnormal "nice" values across CPUs the contribution that | 1300 | * of tasks with abnormal "nice" values across CPUs the contribution that |
1301 | * each task makes to its run queue's load is weighted according to its | 1301 | * each task makes to its run queue's load is weighted according to its |
1302 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a | 1302 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a |
1303 | * scaled version of the new time slice allocation that they receive on time | 1303 | * scaled version of the new time slice allocation that they receive on time |
1304 | * slice expiry etc. | 1304 | * slice expiry etc. |
1305 | */ | 1305 | */ |
1306 | 1306 | ||
1307 | #define WEIGHT_IDLEPRIO 2 | 1307 | #define WEIGHT_IDLEPRIO 2 |
1308 | #define WMULT_IDLEPRIO (1 << 31) | 1308 | #define WMULT_IDLEPRIO (1 << 31) |
1309 | 1309 | ||
1310 | /* | 1310 | /* |
1311 | * Nice levels are multiplicative, with a gentle 10% change for every | 1311 | * Nice levels are multiplicative, with a gentle 10% change for every |
1312 | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | 1312 | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to |
1313 | * nice 1, it will get ~10% less CPU time than another CPU-bound task | 1313 | * nice 1, it will get ~10% less CPU time than another CPU-bound task |
1314 | * that remained on nice 0. | 1314 | * that remained on nice 0. |
1315 | * | 1315 | * |
1316 | * The "10% effect" is relative and cumulative: from _any_ nice level, | 1316 | * The "10% effect" is relative and cumulative: from _any_ nice level, |
1317 | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | 1317 | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level |
1318 | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. | 1318 | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. |
1319 | * If a task goes up by ~10% and another task goes down by ~10% then | 1319 | * If a task goes up by ~10% and another task goes down by ~10% then |
1320 | * the relative distance between them is ~25%.) | 1320 | * the relative distance between them is ~25%.) |
1321 | */ | 1321 | */ |
1322 | static const int prio_to_weight[40] = { | 1322 | static const int prio_to_weight[40] = { |
1323 | /* -20 */ 88761, 71755, 56483, 46273, 36291, | 1323 | /* -20 */ 88761, 71755, 56483, 46273, 36291, |
1324 | /* -15 */ 29154, 23254, 18705, 14949, 11916, | 1324 | /* -15 */ 29154, 23254, 18705, 14949, 11916, |
1325 | /* -10 */ 9548, 7620, 6100, 4904, 3906, | 1325 | /* -10 */ 9548, 7620, 6100, 4904, 3906, |
1326 | /* -5 */ 3121, 2501, 1991, 1586, 1277, | 1326 | /* -5 */ 3121, 2501, 1991, 1586, 1277, |
1327 | /* 0 */ 1024, 820, 655, 526, 423, | 1327 | /* 0 */ 1024, 820, 655, 526, 423, |
1328 | /* 5 */ 335, 272, 215, 172, 137, | 1328 | /* 5 */ 335, 272, 215, 172, 137, |
1329 | /* 10 */ 110, 87, 70, 56, 45, | 1329 | /* 10 */ 110, 87, 70, 56, 45, |
1330 | /* 15 */ 36, 29, 23, 18, 15, | 1330 | /* 15 */ 36, 29, 23, 18, 15, |
1331 | }; | 1331 | }; |
1332 | 1332 | ||
1333 | /* | 1333 | /* |
1334 | * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. | 1334 | * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. |
1335 | * | 1335 | * |
1336 | * In cases where the weight does not change often, we can use the | 1336 | * In cases where the weight does not change often, we can use the |
1337 | * precalculated inverse to speed up arithmetics by turning divisions | 1337 | * precalculated inverse to speed up arithmetics by turning divisions |
1338 | * into multiplications: | 1338 | * into multiplications: |
1339 | */ | 1339 | */ |
1340 | static const u32 prio_to_wmult[40] = { | 1340 | static const u32 prio_to_wmult[40] = { |
1341 | /* -20 */ 48388, 59856, 76040, 92818, 118348, | 1341 | /* -20 */ 48388, 59856, 76040, 92818, 118348, |
1342 | /* -15 */ 147320, 184698, 229616, 287308, 360437, | 1342 | /* -15 */ 147320, 184698, 229616, 287308, 360437, |
1343 | /* -10 */ 449829, 563644, 704093, 875809, 1099582, | 1343 | /* -10 */ 449829, 563644, 704093, 875809, 1099582, |
1344 | /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, | 1344 | /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, |
1345 | /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, | 1345 | /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, |
1346 | /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, | 1346 | /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, |
1347 | /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, | 1347 | /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, |
1348 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | 1348 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, |
1349 | }; | 1349 | }; |
1350 | 1350 | ||
1351 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup); | 1351 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup); |
1352 | 1352 | ||
1353 | /* | 1353 | /* |
1354 | * runqueue iterator, to support SMP load-balancing between different | 1354 | * runqueue iterator, to support SMP load-balancing between different |
1355 | * scheduling classes, without having to expose their internal data | 1355 | * scheduling classes, without having to expose their internal data |
1356 | * structures to the load-balancing proper: | 1356 | * structures to the load-balancing proper: |
1357 | */ | 1357 | */ |
1358 | struct rq_iterator { | 1358 | struct rq_iterator { |
1359 | void *arg; | 1359 | void *arg; |
1360 | struct task_struct *(*start)(void *); | 1360 | struct task_struct *(*start)(void *); |
1361 | struct task_struct *(*next)(void *); | 1361 | struct task_struct *(*next)(void *); |
1362 | }; | 1362 | }; |
1363 | 1363 | ||
1364 | #ifdef CONFIG_SMP | 1364 | #ifdef CONFIG_SMP |
1365 | static unsigned long | 1365 | static unsigned long |
1366 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | 1366 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, |
1367 | unsigned long max_load_move, struct sched_domain *sd, | 1367 | unsigned long max_load_move, struct sched_domain *sd, |
1368 | enum cpu_idle_type idle, int *all_pinned, | 1368 | enum cpu_idle_type idle, int *all_pinned, |
1369 | int *this_best_prio, struct rq_iterator *iterator); | 1369 | int *this_best_prio, struct rq_iterator *iterator); |
1370 | 1370 | ||
1371 | static int | 1371 | static int |
1372 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | 1372 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, |
1373 | struct sched_domain *sd, enum cpu_idle_type idle, | 1373 | struct sched_domain *sd, enum cpu_idle_type idle, |
1374 | struct rq_iterator *iterator); | 1374 | struct rq_iterator *iterator); |
1375 | #endif | 1375 | #endif |
1376 | 1376 | ||
1377 | #ifdef CONFIG_CGROUP_CPUACCT | 1377 | #ifdef CONFIG_CGROUP_CPUACCT |
1378 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime); | 1378 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime); |
1379 | #else | 1379 | #else |
1380 | static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} | 1380 | static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} |
1381 | #endif | 1381 | #endif |
1382 | 1382 | ||
1383 | static inline void inc_cpu_load(struct rq *rq, unsigned long load) | 1383 | static inline void inc_cpu_load(struct rq *rq, unsigned long load) |
1384 | { | 1384 | { |
1385 | update_load_add(&rq->load, load); | 1385 | update_load_add(&rq->load, load); |
1386 | } | 1386 | } |
1387 | 1387 | ||
1388 | static inline void dec_cpu_load(struct rq *rq, unsigned long load) | 1388 | static inline void dec_cpu_load(struct rq *rq, unsigned long load) |
1389 | { | 1389 | { |
1390 | update_load_sub(&rq->load, load); | 1390 | update_load_sub(&rq->load, load); |
1391 | } | 1391 | } |
1392 | 1392 | ||
1393 | #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED) | 1393 | #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED) |
1394 | typedef int (*tg_visitor)(struct task_group *, void *); | 1394 | typedef int (*tg_visitor)(struct task_group *, void *); |
1395 | 1395 | ||
1396 | /* | 1396 | /* |
1397 | * Iterate the full tree, calling @down when first entering a node and @up when | 1397 | * Iterate the full tree, calling @down when first entering a node and @up when |
1398 | * leaving it for the final time. | 1398 | * leaving it for the final time. |
1399 | */ | 1399 | */ |
1400 | static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) | 1400 | static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) |
1401 | { | 1401 | { |
1402 | struct task_group *parent, *child; | 1402 | struct task_group *parent, *child; |
1403 | int ret; | 1403 | int ret; |
1404 | 1404 | ||
1405 | rcu_read_lock(); | 1405 | rcu_read_lock(); |
1406 | parent = &root_task_group; | 1406 | parent = &root_task_group; |
1407 | down: | 1407 | down: |
1408 | ret = (*down)(parent, data); | 1408 | ret = (*down)(parent, data); |
1409 | if (ret) | 1409 | if (ret) |
1410 | goto out_unlock; | 1410 | goto out_unlock; |
1411 | list_for_each_entry_rcu(child, &parent->children, siblings) { | 1411 | list_for_each_entry_rcu(child, &parent->children, siblings) { |
1412 | parent = child; | 1412 | parent = child; |
1413 | goto down; | 1413 | goto down; |
1414 | 1414 | ||
1415 | up: | 1415 | up: |
1416 | continue; | 1416 | continue; |
1417 | } | 1417 | } |
1418 | ret = (*up)(parent, data); | 1418 | ret = (*up)(parent, data); |
1419 | if (ret) | 1419 | if (ret) |
1420 | goto out_unlock; | 1420 | goto out_unlock; |
1421 | 1421 | ||
1422 | child = parent; | 1422 | child = parent; |
1423 | parent = parent->parent; | 1423 | parent = parent->parent; |
1424 | if (parent) | 1424 | if (parent) |
1425 | goto up; | 1425 | goto up; |
1426 | out_unlock: | 1426 | out_unlock: |
1427 | rcu_read_unlock(); | 1427 | rcu_read_unlock(); |
1428 | 1428 | ||
1429 | return ret; | 1429 | return ret; |
1430 | } | 1430 | } |
1431 | 1431 | ||
1432 | static int tg_nop(struct task_group *tg, void *data) | 1432 | static int tg_nop(struct task_group *tg, void *data) |
1433 | { | 1433 | { |
1434 | return 0; | 1434 | return 0; |
1435 | } | 1435 | } |
1436 | #endif | 1436 | #endif |
1437 | 1437 | ||
1438 | #ifdef CONFIG_SMP | 1438 | #ifdef CONFIG_SMP |
1439 | static unsigned long source_load(int cpu, int type); | 1439 | static unsigned long source_load(int cpu, int type); |
1440 | static unsigned long target_load(int cpu, int type); | 1440 | static unsigned long target_load(int cpu, int type); |
1441 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); | 1441 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); |
1442 | 1442 | ||
1443 | static unsigned long cpu_avg_load_per_task(int cpu) | 1443 | static unsigned long cpu_avg_load_per_task(int cpu) |
1444 | { | 1444 | { |
1445 | struct rq *rq = cpu_rq(cpu); | 1445 | struct rq *rq = cpu_rq(cpu); |
1446 | unsigned long nr_running = ACCESS_ONCE(rq->nr_running); | 1446 | unsigned long nr_running = ACCESS_ONCE(rq->nr_running); |
1447 | 1447 | ||
1448 | if (nr_running) | 1448 | if (nr_running) |
1449 | rq->avg_load_per_task = rq->load.weight / nr_running; | 1449 | rq->avg_load_per_task = rq->load.weight / nr_running; |
1450 | else | 1450 | else |
1451 | rq->avg_load_per_task = 0; | 1451 | rq->avg_load_per_task = 0; |
1452 | 1452 | ||
1453 | return rq->avg_load_per_task; | 1453 | return rq->avg_load_per_task; |
1454 | } | 1454 | } |
1455 | 1455 | ||
1456 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1456 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1457 | 1457 | ||
1458 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); | 1458 | static void __set_se_shares(struct sched_entity *se, unsigned long shares); |
1459 | 1459 | ||
1460 | /* | 1460 | /* |
1461 | * Calculate and set the cpu's group shares. | 1461 | * Calculate and set the cpu's group shares. |
1462 | */ | 1462 | */ |
1463 | static void | 1463 | static void |
1464 | update_group_shares_cpu(struct task_group *tg, int cpu, | 1464 | update_group_shares_cpu(struct task_group *tg, int cpu, |
1465 | unsigned long sd_shares, unsigned long sd_rq_weight) | 1465 | unsigned long sd_shares, unsigned long sd_rq_weight) |
1466 | { | 1466 | { |
1467 | unsigned long shares; | 1467 | unsigned long shares; |
1468 | unsigned long rq_weight; | 1468 | unsigned long rq_weight; |
1469 | 1469 | ||
1470 | if (!tg->se[cpu]) | 1470 | if (!tg->se[cpu]) |
1471 | return; | 1471 | return; |
1472 | 1472 | ||
1473 | rq_weight = tg->cfs_rq[cpu]->rq_weight; | 1473 | rq_weight = tg->cfs_rq[cpu]->rq_weight; |
1474 | 1474 | ||
1475 | /* | 1475 | /* |
1476 | * \Sum shares * rq_weight | 1476 | * \Sum shares * rq_weight |
1477 | * shares = ----------------------- | 1477 | * shares = ----------------------- |
1478 | * \Sum rq_weight | 1478 | * \Sum rq_weight |
1479 | * | 1479 | * |
1480 | */ | 1480 | */ |
1481 | shares = (sd_shares * rq_weight) / sd_rq_weight; | 1481 | shares = (sd_shares * rq_weight) / sd_rq_weight; |
1482 | shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); | 1482 | shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); |
1483 | 1483 | ||
1484 | if (abs(shares - tg->se[cpu]->load.weight) > | 1484 | if (abs(shares - tg->se[cpu]->load.weight) > |
1485 | sysctl_sched_shares_thresh) { | 1485 | sysctl_sched_shares_thresh) { |
1486 | struct rq *rq = cpu_rq(cpu); | 1486 | struct rq *rq = cpu_rq(cpu); |
1487 | unsigned long flags; | 1487 | unsigned long flags; |
1488 | 1488 | ||
1489 | spin_lock_irqsave(&rq->lock, flags); | 1489 | spin_lock_irqsave(&rq->lock, flags); |
1490 | tg->cfs_rq[cpu]->shares = shares; | 1490 | tg->cfs_rq[cpu]->shares = shares; |
1491 | 1491 | ||
1492 | __set_se_shares(tg->se[cpu], shares); | 1492 | __set_se_shares(tg->se[cpu], shares); |
1493 | spin_unlock_irqrestore(&rq->lock, flags); | 1493 | spin_unlock_irqrestore(&rq->lock, flags); |
1494 | } | 1494 | } |
1495 | } | 1495 | } |
1496 | 1496 | ||
1497 | /* | 1497 | /* |
1498 | * Re-compute the task group their per cpu shares over the given domain. | 1498 | * Re-compute the task group their per cpu shares over the given domain. |
1499 | * This needs to be done in a bottom-up fashion because the rq weight of a | 1499 | * This needs to be done in a bottom-up fashion because the rq weight of a |
1500 | * parent group depends on the shares of its child groups. | 1500 | * parent group depends on the shares of its child groups. |
1501 | */ | 1501 | */ |
1502 | static int tg_shares_up(struct task_group *tg, void *data) | 1502 | static int tg_shares_up(struct task_group *tg, void *data) |
1503 | { | 1503 | { |
1504 | unsigned long weight, rq_weight = 0; | 1504 | unsigned long weight, rq_weight = 0; |
1505 | unsigned long shares = 0; | 1505 | unsigned long shares = 0; |
1506 | struct sched_domain *sd = data; | 1506 | struct sched_domain *sd = data; |
1507 | int i; | 1507 | int i; |
1508 | 1508 | ||
1509 | for_each_cpu_mask(i, sd->span) { | 1509 | for_each_cpu_mask(i, sd->span) { |
1510 | /* | 1510 | /* |
1511 | * If there are currently no tasks on the cpu pretend there | 1511 | * If there are currently no tasks on the cpu pretend there |
1512 | * is one of average load so that when a new task gets to | 1512 | * is one of average load so that when a new task gets to |
1513 | * run here it will not get delayed by group starvation. | 1513 | * run here it will not get delayed by group starvation. |
1514 | */ | 1514 | */ |
1515 | weight = tg->cfs_rq[i]->load.weight; | 1515 | weight = tg->cfs_rq[i]->load.weight; |
1516 | if (!weight) | 1516 | if (!weight) |
1517 | weight = NICE_0_LOAD; | 1517 | weight = NICE_0_LOAD; |
1518 | 1518 | ||
1519 | tg->cfs_rq[i]->rq_weight = weight; | 1519 | tg->cfs_rq[i]->rq_weight = weight; |
1520 | rq_weight += weight; | 1520 | rq_weight += weight; |
1521 | shares += tg->cfs_rq[i]->shares; | 1521 | shares += tg->cfs_rq[i]->shares; |
1522 | } | 1522 | } |
1523 | 1523 | ||
1524 | if ((!shares && rq_weight) || shares > tg->shares) | 1524 | if ((!shares && rq_weight) || shares > tg->shares) |
1525 | shares = tg->shares; | 1525 | shares = tg->shares; |
1526 | 1526 | ||
1527 | if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) | 1527 | if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) |
1528 | shares = tg->shares; | 1528 | shares = tg->shares; |
1529 | 1529 | ||
1530 | for_each_cpu_mask(i, sd->span) | 1530 | for_each_cpu_mask(i, sd->span) |
1531 | update_group_shares_cpu(tg, i, shares, rq_weight); | 1531 | update_group_shares_cpu(tg, i, shares, rq_weight); |
1532 | 1532 | ||
1533 | return 0; | 1533 | return 0; |
1534 | } | 1534 | } |
1535 | 1535 | ||
1536 | /* | 1536 | /* |
1537 | * Compute the cpu's hierarchical load factor for each task group. | 1537 | * Compute the cpu's hierarchical load factor for each task group. |
1538 | * This needs to be done in a top-down fashion because the load of a child | 1538 | * This needs to be done in a top-down fashion because the load of a child |
1539 | * group is a fraction of its parents load. | 1539 | * group is a fraction of its parents load. |
1540 | */ | 1540 | */ |
1541 | static int tg_load_down(struct task_group *tg, void *data) | 1541 | static int tg_load_down(struct task_group *tg, void *data) |
1542 | { | 1542 | { |
1543 | unsigned long load; | 1543 | unsigned long load; |
1544 | long cpu = (long)data; | 1544 | long cpu = (long)data; |
1545 | 1545 | ||
1546 | if (!tg->parent) { | 1546 | if (!tg->parent) { |
1547 | load = cpu_rq(cpu)->load.weight; | 1547 | load = cpu_rq(cpu)->load.weight; |
1548 | } else { | 1548 | } else { |
1549 | load = tg->parent->cfs_rq[cpu]->h_load; | 1549 | load = tg->parent->cfs_rq[cpu]->h_load; |
1550 | load *= tg->cfs_rq[cpu]->shares; | 1550 | load *= tg->cfs_rq[cpu]->shares; |
1551 | load /= tg->parent->cfs_rq[cpu]->load.weight + 1; | 1551 | load /= tg->parent->cfs_rq[cpu]->load.weight + 1; |
1552 | } | 1552 | } |
1553 | 1553 | ||
1554 | tg->cfs_rq[cpu]->h_load = load; | 1554 | tg->cfs_rq[cpu]->h_load = load; |
1555 | 1555 | ||
1556 | return 0; | 1556 | return 0; |
1557 | } | 1557 | } |
1558 | 1558 | ||
1559 | static void update_shares(struct sched_domain *sd) | 1559 | static void update_shares(struct sched_domain *sd) |
1560 | { | 1560 | { |
1561 | u64 now = cpu_clock(raw_smp_processor_id()); | 1561 | u64 now = cpu_clock(raw_smp_processor_id()); |
1562 | s64 elapsed = now - sd->last_update; | 1562 | s64 elapsed = now - sd->last_update; |
1563 | 1563 | ||
1564 | if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { | 1564 | if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { |
1565 | sd->last_update = now; | 1565 | sd->last_update = now; |
1566 | walk_tg_tree(tg_nop, tg_shares_up, sd); | 1566 | walk_tg_tree(tg_nop, tg_shares_up, sd); |
1567 | } | 1567 | } |
1568 | } | 1568 | } |
1569 | 1569 | ||
1570 | static void update_shares_locked(struct rq *rq, struct sched_domain *sd) | 1570 | static void update_shares_locked(struct rq *rq, struct sched_domain *sd) |
1571 | { | 1571 | { |
1572 | spin_unlock(&rq->lock); | 1572 | spin_unlock(&rq->lock); |
1573 | update_shares(sd); | 1573 | update_shares(sd); |
1574 | spin_lock(&rq->lock); | 1574 | spin_lock(&rq->lock); |
1575 | } | 1575 | } |
1576 | 1576 | ||
1577 | static void update_h_load(long cpu) | 1577 | static void update_h_load(long cpu) |
1578 | { | 1578 | { |
1579 | walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); | 1579 | walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); |
1580 | } | 1580 | } |
1581 | 1581 | ||
1582 | #else | 1582 | #else |
1583 | 1583 | ||
1584 | static inline void update_shares(struct sched_domain *sd) | 1584 | static inline void update_shares(struct sched_domain *sd) |
1585 | { | 1585 | { |
1586 | } | 1586 | } |
1587 | 1587 | ||
1588 | static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) | 1588 | static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) |
1589 | { | 1589 | { |
1590 | } | 1590 | } |
1591 | 1591 | ||
1592 | #endif | 1592 | #endif |
1593 | 1593 | ||
1594 | /* | 1594 | /* |
1595 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | 1595 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. |
1596 | */ | 1596 | */ |
1597 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | 1597 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) |
1598 | __releases(this_rq->lock) | 1598 | __releases(this_rq->lock) |
1599 | __acquires(busiest->lock) | 1599 | __acquires(busiest->lock) |
1600 | __acquires(this_rq->lock) | 1600 | __acquires(this_rq->lock) |
1601 | { | 1601 | { |
1602 | int ret = 0; | 1602 | int ret = 0; |
1603 | 1603 | ||
1604 | if (unlikely(!irqs_disabled())) { | 1604 | if (unlikely(!irqs_disabled())) { |
1605 | /* printk() doesn't work good under rq->lock */ | 1605 | /* printk() doesn't work good under rq->lock */ |
1606 | spin_unlock(&this_rq->lock); | 1606 | spin_unlock(&this_rq->lock); |
1607 | BUG_ON(1); | 1607 | BUG_ON(1); |
1608 | } | 1608 | } |
1609 | if (unlikely(!spin_trylock(&busiest->lock))) { | 1609 | if (unlikely(!spin_trylock(&busiest->lock))) { |
1610 | if (busiest < this_rq) { | 1610 | if (busiest < this_rq) { |
1611 | spin_unlock(&this_rq->lock); | 1611 | spin_unlock(&this_rq->lock); |
1612 | spin_lock(&busiest->lock); | 1612 | spin_lock(&busiest->lock); |
1613 | spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING); | 1613 | spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING); |
1614 | ret = 1; | 1614 | ret = 1; |
1615 | } else | 1615 | } else |
1616 | spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING); | 1616 | spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING); |
1617 | } | 1617 | } |
1618 | return ret; | 1618 | return ret; |
1619 | } | 1619 | } |
1620 | 1620 | ||
1621 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | 1621 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) |
1622 | __releases(busiest->lock) | 1622 | __releases(busiest->lock) |
1623 | { | 1623 | { |
1624 | spin_unlock(&busiest->lock); | 1624 | spin_unlock(&busiest->lock); |
1625 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | 1625 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); |
1626 | } | 1626 | } |
1627 | #endif | 1627 | #endif |
1628 | 1628 | ||
1629 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1629 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1630 | static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) | 1630 | static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) |
1631 | { | 1631 | { |
1632 | #ifdef CONFIG_SMP | 1632 | #ifdef CONFIG_SMP |
1633 | cfs_rq->shares = shares; | 1633 | cfs_rq->shares = shares; |
1634 | #endif | 1634 | #endif |
1635 | } | 1635 | } |
1636 | #endif | 1636 | #endif |
1637 | 1637 | ||
1638 | #include "sched_stats.h" | 1638 | #include "sched_stats.h" |
1639 | #include "sched_idletask.c" | 1639 | #include "sched_idletask.c" |
1640 | #include "sched_fair.c" | 1640 | #include "sched_fair.c" |
1641 | #include "sched_rt.c" | 1641 | #include "sched_rt.c" |
1642 | #ifdef CONFIG_SCHED_DEBUG | 1642 | #ifdef CONFIG_SCHED_DEBUG |
1643 | # include "sched_debug.c" | 1643 | # include "sched_debug.c" |
1644 | #endif | 1644 | #endif |
1645 | 1645 | ||
1646 | #define sched_class_highest (&rt_sched_class) | 1646 | #define sched_class_highest (&rt_sched_class) |
1647 | #define for_each_class(class) \ | 1647 | #define for_each_class(class) \ |
1648 | for (class = sched_class_highest; class; class = class->next) | 1648 | for (class = sched_class_highest; class; class = class->next) |
1649 | 1649 | ||
1650 | static void inc_nr_running(struct rq *rq) | 1650 | static void inc_nr_running(struct rq *rq) |
1651 | { | 1651 | { |
1652 | rq->nr_running++; | 1652 | rq->nr_running++; |
1653 | } | 1653 | } |
1654 | 1654 | ||
1655 | static void dec_nr_running(struct rq *rq) | 1655 | static void dec_nr_running(struct rq *rq) |
1656 | { | 1656 | { |
1657 | rq->nr_running--; | 1657 | rq->nr_running--; |
1658 | } | 1658 | } |
1659 | 1659 | ||
1660 | static void set_load_weight(struct task_struct *p) | 1660 | static void set_load_weight(struct task_struct *p) |
1661 | { | 1661 | { |
1662 | if (task_has_rt_policy(p)) { | 1662 | if (task_has_rt_policy(p)) { |
1663 | p->se.load.weight = prio_to_weight[0] * 2; | 1663 | p->se.load.weight = prio_to_weight[0] * 2; |
1664 | p->se.load.inv_weight = prio_to_wmult[0] >> 1; | 1664 | p->se.load.inv_weight = prio_to_wmult[0] >> 1; |
1665 | return; | 1665 | return; |
1666 | } | 1666 | } |
1667 | 1667 | ||
1668 | /* | 1668 | /* |
1669 | * SCHED_IDLE tasks get minimal weight: | 1669 | * SCHED_IDLE tasks get minimal weight: |
1670 | */ | 1670 | */ |
1671 | if (p->policy == SCHED_IDLE) { | 1671 | if (p->policy == SCHED_IDLE) { |
1672 | p->se.load.weight = WEIGHT_IDLEPRIO; | 1672 | p->se.load.weight = WEIGHT_IDLEPRIO; |
1673 | p->se.load.inv_weight = WMULT_IDLEPRIO; | 1673 | p->se.load.inv_weight = WMULT_IDLEPRIO; |
1674 | return; | 1674 | return; |
1675 | } | 1675 | } |
1676 | 1676 | ||
1677 | p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO]; | 1677 | p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO]; |
1678 | p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; | 1678 | p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; |
1679 | } | 1679 | } |
1680 | 1680 | ||
1681 | static void update_avg(u64 *avg, u64 sample) | 1681 | static void update_avg(u64 *avg, u64 sample) |
1682 | { | 1682 | { |
1683 | s64 diff = sample - *avg; | 1683 | s64 diff = sample - *avg; |
1684 | *avg += diff >> 3; | 1684 | *avg += diff >> 3; |
1685 | } | 1685 | } |
1686 | 1686 | ||
1687 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) | 1687 | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) |
1688 | { | 1688 | { |
1689 | sched_info_queued(p); | 1689 | sched_info_queued(p); |
1690 | p->sched_class->enqueue_task(rq, p, wakeup); | 1690 | p->sched_class->enqueue_task(rq, p, wakeup); |
1691 | p->se.on_rq = 1; | 1691 | p->se.on_rq = 1; |
1692 | } | 1692 | } |
1693 | 1693 | ||
1694 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) | 1694 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) |
1695 | { | 1695 | { |
1696 | if (sleep && p->se.last_wakeup) { | 1696 | if (sleep && p->se.last_wakeup) { |
1697 | update_avg(&p->se.avg_overlap, | 1697 | update_avg(&p->se.avg_overlap, |
1698 | p->se.sum_exec_runtime - p->se.last_wakeup); | 1698 | p->se.sum_exec_runtime - p->se.last_wakeup); |
1699 | p->se.last_wakeup = 0; | 1699 | p->se.last_wakeup = 0; |
1700 | } | 1700 | } |
1701 | 1701 | ||
1702 | sched_info_dequeued(p); | 1702 | sched_info_dequeued(p); |
1703 | p->sched_class->dequeue_task(rq, p, sleep); | 1703 | p->sched_class->dequeue_task(rq, p, sleep); |
1704 | p->se.on_rq = 0; | 1704 | p->se.on_rq = 0; |
1705 | } | 1705 | } |
1706 | 1706 | ||
1707 | /* | 1707 | /* |
1708 | * __normal_prio - return the priority that is based on the static prio | 1708 | * __normal_prio - return the priority that is based on the static prio |
1709 | */ | 1709 | */ |
1710 | static inline int __normal_prio(struct task_struct *p) | 1710 | static inline int __normal_prio(struct task_struct *p) |
1711 | { | 1711 | { |
1712 | return p->static_prio; | 1712 | return p->static_prio; |
1713 | } | 1713 | } |
1714 | 1714 | ||
1715 | /* | 1715 | /* |
1716 | * Calculate the expected normal priority: i.e. priority | 1716 | * Calculate the expected normal priority: i.e. priority |
1717 | * without taking RT-inheritance into account. Might be | 1717 | * without taking RT-inheritance into account. Might be |
1718 | * boosted by interactivity modifiers. Changes upon fork, | 1718 | * boosted by interactivity modifiers. Changes upon fork, |
1719 | * setprio syscalls, and whenever the interactivity | 1719 | * setprio syscalls, and whenever the interactivity |
1720 | * estimator recalculates. | 1720 | * estimator recalculates. |
1721 | */ | 1721 | */ |
1722 | static inline int normal_prio(struct task_struct *p) | 1722 | static inline int normal_prio(struct task_struct *p) |
1723 | { | 1723 | { |
1724 | int prio; | 1724 | int prio; |
1725 | 1725 | ||
1726 | if (task_has_rt_policy(p)) | 1726 | if (task_has_rt_policy(p)) |
1727 | prio = MAX_RT_PRIO-1 - p->rt_priority; | 1727 | prio = MAX_RT_PRIO-1 - p->rt_priority; |
1728 | else | 1728 | else |
1729 | prio = __normal_prio(p); | 1729 | prio = __normal_prio(p); |
1730 | return prio; | 1730 | return prio; |
1731 | } | 1731 | } |
1732 | 1732 | ||
1733 | /* | 1733 | /* |
1734 | * Calculate the current priority, i.e. the priority | 1734 | * Calculate the current priority, i.e. the priority |
1735 | * taken into account by the scheduler. This value might | 1735 | * taken into account by the scheduler. This value might |
1736 | * be boosted by RT tasks, or might be boosted by | 1736 | * be boosted by RT tasks, or might be boosted by |
1737 | * interactivity modifiers. Will be RT if the task got | 1737 | * interactivity modifiers. Will be RT if the task got |
1738 | * RT-boosted. If not then it returns p->normal_prio. | 1738 | * RT-boosted. If not then it returns p->normal_prio. |
1739 | */ | 1739 | */ |
1740 | static int effective_prio(struct task_struct *p) | 1740 | static int effective_prio(struct task_struct *p) |
1741 | { | 1741 | { |
1742 | p->normal_prio = normal_prio(p); | 1742 | p->normal_prio = normal_prio(p); |
1743 | /* | 1743 | /* |
1744 | * If we are RT tasks or we were boosted to RT priority, | 1744 | * If we are RT tasks or we were boosted to RT priority, |
1745 | * keep the priority unchanged. Otherwise, update priority | 1745 | * keep the priority unchanged. Otherwise, update priority |
1746 | * to the normal priority: | 1746 | * to the normal priority: |
1747 | */ | 1747 | */ |
1748 | if (!rt_prio(p->prio)) | 1748 | if (!rt_prio(p->prio)) |
1749 | return p->normal_prio; | 1749 | return p->normal_prio; |
1750 | return p->prio; | 1750 | return p->prio; |
1751 | } | 1751 | } |
1752 | 1752 | ||
1753 | /* | 1753 | /* |
1754 | * activate_task - move a task to the runqueue. | 1754 | * activate_task - move a task to the runqueue. |
1755 | */ | 1755 | */ |
1756 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) | 1756 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) |
1757 | { | 1757 | { |
1758 | if (task_contributes_to_load(p)) | 1758 | if (task_contributes_to_load(p)) |
1759 | rq->nr_uninterruptible--; | 1759 | rq->nr_uninterruptible--; |
1760 | 1760 | ||
1761 | enqueue_task(rq, p, wakeup); | 1761 | enqueue_task(rq, p, wakeup); |
1762 | inc_nr_running(rq); | 1762 | inc_nr_running(rq); |
1763 | } | 1763 | } |
1764 | 1764 | ||
1765 | /* | 1765 | /* |
1766 | * deactivate_task - remove a task from the runqueue. | 1766 | * deactivate_task - remove a task from the runqueue. |
1767 | */ | 1767 | */ |
1768 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) | 1768 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) |
1769 | { | 1769 | { |
1770 | if (task_contributes_to_load(p)) | 1770 | if (task_contributes_to_load(p)) |
1771 | rq->nr_uninterruptible++; | 1771 | rq->nr_uninterruptible++; |
1772 | 1772 | ||
1773 | dequeue_task(rq, p, sleep); | 1773 | dequeue_task(rq, p, sleep); |
1774 | dec_nr_running(rq); | 1774 | dec_nr_running(rq); |
1775 | } | 1775 | } |
1776 | 1776 | ||
1777 | /** | 1777 | /** |
1778 | * task_curr - is this task currently executing on a CPU? | 1778 | * task_curr - is this task currently executing on a CPU? |
1779 | * @p: the task in question. | 1779 | * @p: the task in question. |
1780 | */ | 1780 | */ |
1781 | inline int task_curr(const struct task_struct *p) | 1781 | inline int task_curr(const struct task_struct *p) |
1782 | { | 1782 | { |
1783 | return cpu_curr(task_cpu(p)) == p; | 1783 | return cpu_curr(task_cpu(p)) == p; |
1784 | } | 1784 | } |
1785 | 1785 | ||
1786 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | 1786 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) |
1787 | { | 1787 | { |
1788 | set_task_rq(p, cpu); | 1788 | set_task_rq(p, cpu); |
1789 | #ifdef CONFIG_SMP | 1789 | #ifdef CONFIG_SMP |
1790 | /* | 1790 | /* |
1791 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | 1791 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be |
1792 | * successfuly executed on another CPU. We must ensure that updates of | 1792 | * successfuly executed on another CPU. We must ensure that updates of |
1793 | * per-task data have been completed by this moment. | 1793 | * per-task data have been completed by this moment. |
1794 | */ | 1794 | */ |
1795 | smp_wmb(); | 1795 | smp_wmb(); |
1796 | task_thread_info(p)->cpu = cpu; | 1796 | task_thread_info(p)->cpu = cpu; |
1797 | #endif | 1797 | #endif |
1798 | } | 1798 | } |
1799 | 1799 | ||
1800 | static inline void check_class_changed(struct rq *rq, struct task_struct *p, | 1800 | static inline void check_class_changed(struct rq *rq, struct task_struct *p, |
1801 | const struct sched_class *prev_class, | 1801 | const struct sched_class *prev_class, |
1802 | int oldprio, int running) | 1802 | int oldprio, int running) |
1803 | { | 1803 | { |
1804 | if (prev_class != p->sched_class) { | 1804 | if (prev_class != p->sched_class) { |
1805 | if (prev_class->switched_from) | 1805 | if (prev_class->switched_from) |
1806 | prev_class->switched_from(rq, p, running); | 1806 | prev_class->switched_from(rq, p, running); |
1807 | p->sched_class->switched_to(rq, p, running); | 1807 | p->sched_class->switched_to(rq, p, running); |
1808 | } else | 1808 | } else |
1809 | p->sched_class->prio_changed(rq, p, oldprio, running); | 1809 | p->sched_class->prio_changed(rq, p, oldprio, running); |
1810 | } | 1810 | } |
1811 | 1811 | ||
1812 | #ifdef CONFIG_SMP | 1812 | #ifdef CONFIG_SMP |
1813 | 1813 | ||
1814 | /* Used instead of source_load when we know the type == 0 */ | 1814 | /* Used instead of source_load when we know the type == 0 */ |
1815 | static unsigned long weighted_cpuload(const int cpu) | 1815 | static unsigned long weighted_cpuload(const int cpu) |
1816 | { | 1816 | { |
1817 | return cpu_rq(cpu)->load.weight; | 1817 | return cpu_rq(cpu)->load.weight; |
1818 | } | 1818 | } |
1819 | 1819 | ||
1820 | /* | 1820 | /* |
1821 | * Is this task likely cache-hot: | 1821 | * Is this task likely cache-hot: |
1822 | */ | 1822 | */ |
1823 | static int | 1823 | static int |
1824 | task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) | 1824 | task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) |
1825 | { | 1825 | { |
1826 | s64 delta; | 1826 | s64 delta; |
1827 | 1827 | ||
1828 | /* | 1828 | /* |
1829 | * Buddy candidates are cache hot: | 1829 | * Buddy candidates are cache hot: |
1830 | */ | 1830 | */ |
1831 | if (sched_feat(CACHE_HOT_BUDDY) && | 1831 | if (sched_feat(CACHE_HOT_BUDDY) && |
1832 | (&p->se == cfs_rq_of(&p->se)->next || | 1832 | (&p->se == cfs_rq_of(&p->se)->next || |
1833 | &p->se == cfs_rq_of(&p->se)->last)) | 1833 | &p->se == cfs_rq_of(&p->se)->last)) |
1834 | return 1; | 1834 | return 1; |
1835 | 1835 | ||
1836 | if (p->sched_class != &fair_sched_class) | 1836 | if (p->sched_class != &fair_sched_class) |
1837 | return 0; | 1837 | return 0; |
1838 | 1838 | ||
1839 | if (sysctl_sched_migration_cost == -1) | 1839 | if (sysctl_sched_migration_cost == -1) |
1840 | return 1; | 1840 | return 1; |
1841 | if (sysctl_sched_migration_cost == 0) | 1841 | if (sysctl_sched_migration_cost == 0) |
1842 | return 0; | 1842 | return 0; |
1843 | 1843 | ||
1844 | delta = now - p->se.exec_start; | 1844 | delta = now - p->se.exec_start; |
1845 | 1845 | ||
1846 | return delta < (s64)sysctl_sched_migration_cost; | 1846 | return delta < (s64)sysctl_sched_migration_cost; |
1847 | } | 1847 | } |
1848 | 1848 | ||
1849 | 1849 | ||
1850 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | 1850 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) |
1851 | { | 1851 | { |
1852 | int old_cpu = task_cpu(p); | 1852 | int old_cpu = task_cpu(p); |
1853 | struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu); | 1853 | struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu); |
1854 | struct cfs_rq *old_cfsrq = task_cfs_rq(p), | 1854 | struct cfs_rq *old_cfsrq = task_cfs_rq(p), |
1855 | *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu); | 1855 | *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu); |
1856 | u64 clock_offset; | 1856 | u64 clock_offset; |
1857 | 1857 | ||
1858 | clock_offset = old_rq->clock - new_rq->clock; | 1858 | clock_offset = old_rq->clock - new_rq->clock; |
1859 | 1859 | ||
1860 | #ifdef CONFIG_SCHEDSTATS | 1860 | #ifdef CONFIG_SCHEDSTATS |
1861 | if (p->se.wait_start) | 1861 | if (p->se.wait_start) |
1862 | p->se.wait_start -= clock_offset; | 1862 | p->se.wait_start -= clock_offset; |
1863 | if (p->se.sleep_start) | 1863 | if (p->se.sleep_start) |
1864 | p->se.sleep_start -= clock_offset; | 1864 | p->se.sleep_start -= clock_offset; |
1865 | if (p->se.block_start) | 1865 | if (p->se.block_start) |
1866 | p->se.block_start -= clock_offset; | 1866 | p->se.block_start -= clock_offset; |
1867 | if (old_cpu != new_cpu) { | 1867 | if (old_cpu != new_cpu) { |
1868 | schedstat_inc(p, se.nr_migrations); | 1868 | schedstat_inc(p, se.nr_migrations); |
1869 | if (task_hot(p, old_rq->clock, NULL)) | 1869 | if (task_hot(p, old_rq->clock, NULL)) |
1870 | schedstat_inc(p, se.nr_forced2_migrations); | 1870 | schedstat_inc(p, se.nr_forced2_migrations); |
1871 | } | 1871 | } |
1872 | #endif | 1872 | #endif |
1873 | p->se.vruntime -= old_cfsrq->min_vruntime - | 1873 | p->se.vruntime -= old_cfsrq->min_vruntime - |
1874 | new_cfsrq->min_vruntime; | 1874 | new_cfsrq->min_vruntime; |
1875 | 1875 | ||
1876 | __set_task_cpu(p, new_cpu); | 1876 | __set_task_cpu(p, new_cpu); |
1877 | } | 1877 | } |
1878 | 1878 | ||
1879 | struct migration_req { | 1879 | struct migration_req { |
1880 | struct list_head list; | 1880 | struct list_head list; |
1881 | 1881 | ||
1882 | struct task_struct *task; | 1882 | struct task_struct *task; |
1883 | int dest_cpu; | 1883 | int dest_cpu; |
1884 | 1884 | ||
1885 | struct completion done; | 1885 | struct completion done; |
1886 | }; | 1886 | }; |
1887 | 1887 | ||
1888 | /* | 1888 | /* |
1889 | * The task's runqueue lock must be held. | 1889 | * The task's runqueue lock must be held. |
1890 | * Returns true if you have to wait for migration thread. | 1890 | * Returns true if you have to wait for migration thread. |
1891 | */ | 1891 | */ |
1892 | static int | 1892 | static int |
1893 | migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) | 1893 | migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) |
1894 | { | 1894 | { |
1895 | struct rq *rq = task_rq(p); | 1895 | struct rq *rq = task_rq(p); |
1896 | 1896 | ||
1897 | /* | 1897 | /* |
1898 | * If the task is not on a runqueue (and not running), then | 1898 | * If the task is not on a runqueue (and not running), then |
1899 | * it is sufficient to simply update the task's cpu field. | 1899 | * it is sufficient to simply update the task's cpu field. |
1900 | */ | 1900 | */ |
1901 | if (!p->se.on_rq && !task_running(rq, p)) { | 1901 | if (!p->se.on_rq && !task_running(rq, p)) { |
1902 | set_task_cpu(p, dest_cpu); | 1902 | set_task_cpu(p, dest_cpu); |
1903 | return 0; | 1903 | return 0; |
1904 | } | 1904 | } |
1905 | 1905 | ||
1906 | init_completion(&req->done); | 1906 | init_completion(&req->done); |
1907 | req->task = p; | 1907 | req->task = p; |
1908 | req->dest_cpu = dest_cpu; | 1908 | req->dest_cpu = dest_cpu; |
1909 | list_add(&req->list, &rq->migration_queue); | 1909 | list_add(&req->list, &rq->migration_queue); |
1910 | 1910 | ||
1911 | return 1; | 1911 | return 1; |
1912 | } | 1912 | } |
1913 | 1913 | ||
1914 | /* | 1914 | /* |
1915 | * wait_task_inactive - wait for a thread to unschedule. | 1915 | * wait_task_inactive - wait for a thread to unschedule. |
1916 | * | 1916 | * |
1917 | * If @match_state is nonzero, it's the @p->state value just checked and | 1917 | * If @match_state is nonzero, it's the @p->state value just checked and |
1918 | * not expected to change. If it changes, i.e. @p might have woken up, | 1918 | * not expected to change. If it changes, i.e. @p might have woken up, |
1919 | * then return zero. When we succeed in waiting for @p to be off its CPU, | 1919 | * then return zero. When we succeed in waiting for @p to be off its CPU, |
1920 | * we return a positive number (its total switch count). If a second call | 1920 | * we return a positive number (its total switch count). If a second call |
1921 | * a short while later returns the same number, the caller can be sure that | 1921 | * a short while later returns the same number, the caller can be sure that |
1922 | * @p has remained unscheduled the whole time. | 1922 | * @p has remained unscheduled the whole time. |
1923 | * | 1923 | * |
1924 | * The caller must ensure that the task *will* unschedule sometime soon, | 1924 | * The caller must ensure that the task *will* unschedule sometime soon, |
1925 | * else this function might spin for a *long* time. This function can't | 1925 | * else this function might spin for a *long* time. This function can't |
1926 | * be called with interrupts off, or it may introduce deadlock with | 1926 | * be called with interrupts off, or it may introduce deadlock with |
1927 | * smp_call_function() if an IPI is sent by the same process we are | 1927 | * smp_call_function() if an IPI is sent by the same process we are |
1928 | * waiting to become inactive. | 1928 | * waiting to become inactive. |
1929 | */ | 1929 | */ |
1930 | unsigned long wait_task_inactive(struct task_struct *p, long match_state) | 1930 | unsigned long wait_task_inactive(struct task_struct *p, long match_state) |
1931 | { | 1931 | { |
1932 | unsigned long flags; | 1932 | unsigned long flags; |
1933 | int running, on_rq; | 1933 | int running, on_rq; |
1934 | unsigned long ncsw; | 1934 | unsigned long ncsw; |
1935 | struct rq *rq; | 1935 | struct rq *rq; |
1936 | 1936 | ||
1937 | for (;;) { | 1937 | for (;;) { |
1938 | /* | 1938 | /* |
1939 | * We do the initial early heuristics without holding | 1939 | * We do the initial early heuristics without holding |
1940 | * any task-queue locks at all. We'll only try to get | 1940 | * any task-queue locks at all. We'll only try to get |
1941 | * the runqueue lock when things look like they will | 1941 | * the runqueue lock when things look like they will |
1942 | * work out! | 1942 | * work out! |
1943 | */ | 1943 | */ |
1944 | rq = task_rq(p); | 1944 | rq = task_rq(p); |
1945 | 1945 | ||
1946 | /* | 1946 | /* |
1947 | * If the task is actively running on another CPU | 1947 | * If the task is actively running on another CPU |
1948 | * still, just relax and busy-wait without holding | 1948 | * still, just relax and busy-wait without holding |
1949 | * any locks. | 1949 | * any locks. |
1950 | * | 1950 | * |
1951 | * NOTE! Since we don't hold any locks, it's not | 1951 | * NOTE! Since we don't hold any locks, it's not |
1952 | * even sure that "rq" stays as the right runqueue! | 1952 | * even sure that "rq" stays as the right runqueue! |
1953 | * But we don't care, since "task_running()" will | 1953 | * But we don't care, since "task_running()" will |
1954 | * return false if the runqueue has changed and p | 1954 | * return false if the runqueue has changed and p |
1955 | * is actually now running somewhere else! | 1955 | * is actually now running somewhere else! |
1956 | */ | 1956 | */ |
1957 | while (task_running(rq, p)) { | 1957 | while (task_running(rq, p)) { |
1958 | if (match_state && unlikely(p->state != match_state)) | 1958 | if (match_state && unlikely(p->state != match_state)) |
1959 | return 0; | 1959 | return 0; |
1960 | cpu_relax(); | 1960 | cpu_relax(); |
1961 | } | 1961 | } |
1962 | 1962 | ||
1963 | /* | 1963 | /* |
1964 | * Ok, time to look more closely! We need the rq | 1964 | * Ok, time to look more closely! We need the rq |
1965 | * lock now, to be *sure*. If we're wrong, we'll | 1965 | * lock now, to be *sure*. If we're wrong, we'll |
1966 | * just go back and repeat. | 1966 | * just go back and repeat. |
1967 | */ | 1967 | */ |
1968 | rq = task_rq_lock(p, &flags); | 1968 | rq = task_rq_lock(p, &flags); |
1969 | trace_sched_wait_task(rq, p); | 1969 | trace_sched_wait_task(rq, p); |
1970 | running = task_running(rq, p); | 1970 | running = task_running(rq, p); |
1971 | on_rq = p->se.on_rq; | 1971 | on_rq = p->se.on_rq; |
1972 | ncsw = 0; | 1972 | ncsw = 0; |
1973 | if (!match_state || p->state == match_state) | 1973 | if (!match_state || p->state == match_state) |
1974 | ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ | 1974 | ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ |
1975 | task_rq_unlock(rq, &flags); | 1975 | task_rq_unlock(rq, &flags); |
1976 | 1976 | ||
1977 | /* | 1977 | /* |
1978 | * If it changed from the expected state, bail out now. | 1978 | * If it changed from the expected state, bail out now. |
1979 | */ | 1979 | */ |
1980 | if (unlikely(!ncsw)) | 1980 | if (unlikely(!ncsw)) |
1981 | break; | 1981 | break; |
1982 | 1982 | ||
1983 | /* | 1983 | /* |
1984 | * Was it really running after all now that we | 1984 | * Was it really running after all now that we |
1985 | * checked with the proper locks actually held? | 1985 | * checked with the proper locks actually held? |
1986 | * | 1986 | * |
1987 | * Oops. Go back and try again.. | 1987 | * Oops. Go back and try again.. |
1988 | */ | 1988 | */ |
1989 | if (unlikely(running)) { | 1989 | if (unlikely(running)) { |
1990 | cpu_relax(); | 1990 | cpu_relax(); |
1991 | continue; | 1991 | continue; |
1992 | } | 1992 | } |
1993 | 1993 | ||
1994 | /* | 1994 | /* |
1995 | * It's not enough that it's not actively running, | 1995 | * It's not enough that it's not actively running, |
1996 | * it must be off the runqueue _entirely_, and not | 1996 | * it must be off the runqueue _entirely_, and not |
1997 | * preempted! | 1997 | * preempted! |
1998 | * | 1998 | * |
1999 | * So if it wa still runnable (but just not actively | 1999 | * So if it wa still runnable (but just not actively |
2000 | * running right now), it's preempted, and we should | 2000 | * running right now), it's preempted, and we should |
2001 | * yield - it could be a while. | 2001 | * yield - it could be a while. |
2002 | */ | 2002 | */ |
2003 | if (unlikely(on_rq)) { | 2003 | if (unlikely(on_rq)) { |
2004 | schedule_timeout_uninterruptible(1); | 2004 | schedule_timeout_uninterruptible(1); |
2005 | continue; | 2005 | continue; |
2006 | } | 2006 | } |
2007 | 2007 | ||
2008 | /* | 2008 | /* |
2009 | * Ahh, all good. It wasn't running, and it wasn't | 2009 | * Ahh, all good. It wasn't running, and it wasn't |
2010 | * runnable, which means that it will never become | 2010 | * runnable, which means that it will never become |
2011 | * running in the future either. We're all done! | 2011 | * running in the future either. We're all done! |
2012 | */ | 2012 | */ |
2013 | break; | 2013 | break; |
2014 | } | 2014 | } |
2015 | 2015 | ||
2016 | return ncsw; | 2016 | return ncsw; |
2017 | } | 2017 | } |
2018 | 2018 | ||
2019 | /*** | 2019 | /*** |
2020 | * kick_process - kick a running thread to enter/exit the kernel | 2020 | * kick_process - kick a running thread to enter/exit the kernel |
2021 | * @p: the to-be-kicked thread | 2021 | * @p: the to-be-kicked thread |
2022 | * | 2022 | * |
2023 | * Cause a process which is running on another CPU to enter | 2023 | * Cause a process which is running on another CPU to enter |
2024 | * kernel-mode, without any delay. (to get signals handled.) | 2024 | * kernel-mode, without any delay. (to get signals handled.) |
2025 | * | 2025 | * |
2026 | * NOTE: this function doesnt have to take the runqueue lock, | 2026 | * NOTE: this function doesnt have to take the runqueue lock, |
2027 | * because all it wants to ensure is that the remote task enters | 2027 | * because all it wants to ensure is that the remote task enters |
2028 | * the kernel. If the IPI races and the task has been migrated | 2028 | * the kernel. If the IPI races and the task has been migrated |
2029 | * to another CPU then no harm is done and the purpose has been | 2029 | * to another CPU then no harm is done and the purpose has been |
2030 | * achieved as well. | 2030 | * achieved as well. |
2031 | */ | 2031 | */ |
2032 | void kick_process(struct task_struct *p) | 2032 | void kick_process(struct task_struct *p) |
2033 | { | 2033 | { |
2034 | int cpu; | 2034 | int cpu; |
2035 | 2035 | ||
2036 | preempt_disable(); | 2036 | preempt_disable(); |
2037 | cpu = task_cpu(p); | 2037 | cpu = task_cpu(p); |
2038 | if ((cpu != smp_processor_id()) && task_curr(p)) | 2038 | if ((cpu != smp_processor_id()) && task_curr(p)) |
2039 | smp_send_reschedule(cpu); | 2039 | smp_send_reschedule(cpu); |
2040 | preempt_enable(); | 2040 | preempt_enable(); |
2041 | } | 2041 | } |
2042 | 2042 | ||
2043 | /* | 2043 | /* |
2044 | * Return a low guess at the load of a migration-source cpu weighted | 2044 | * Return a low guess at the load of a migration-source cpu weighted |
2045 | * according to the scheduling class and "nice" value. | 2045 | * according to the scheduling class and "nice" value. |
2046 | * | 2046 | * |
2047 | * We want to under-estimate the load of migration sources, to | 2047 | * We want to under-estimate the load of migration sources, to |
2048 | * balance conservatively. | 2048 | * balance conservatively. |
2049 | */ | 2049 | */ |
2050 | static unsigned long source_load(int cpu, int type) | 2050 | static unsigned long source_load(int cpu, int type) |
2051 | { | 2051 | { |
2052 | struct rq *rq = cpu_rq(cpu); | 2052 | struct rq *rq = cpu_rq(cpu); |
2053 | unsigned long total = weighted_cpuload(cpu); | 2053 | unsigned long total = weighted_cpuload(cpu); |
2054 | 2054 | ||
2055 | if (type == 0 || !sched_feat(LB_BIAS)) | 2055 | if (type == 0 || !sched_feat(LB_BIAS)) |
2056 | return total; | 2056 | return total; |
2057 | 2057 | ||
2058 | return min(rq->cpu_load[type-1], total); | 2058 | return min(rq->cpu_load[type-1], total); |
2059 | } | 2059 | } |
2060 | 2060 | ||
2061 | /* | 2061 | /* |
2062 | * Return a high guess at the load of a migration-target cpu weighted | 2062 | * Return a high guess at the load of a migration-target cpu weighted |
2063 | * according to the scheduling class and "nice" value. | 2063 | * according to the scheduling class and "nice" value. |
2064 | */ | 2064 | */ |
2065 | static unsigned long target_load(int cpu, int type) | 2065 | static unsigned long target_load(int cpu, int type) |
2066 | { | 2066 | { |
2067 | struct rq *rq = cpu_rq(cpu); | 2067 | struct rq *rq = cpu_rq(cpu); |
2068 | unsigned long total = weighted_cpuload(cpu); | 2068 | unsigned long total = weighted_cpuload(cpu); |
2069 | 2069 | ||
2070 | if (type == 0 || !sched_feat(LB_BIAS)) | 2070 | if (type == 0 || !sched_feat(LB_BIAS)) |
2071 | return total; | 2071 | return total; |
2072 | 2072 | ||
2073 | return max(rq->cpu_load[type-1], total); | 2073 | return max(rq->cpu_load[type-1], total); |
2074 | } | 2074 | } |
2075 | 2075 | ||
2076 | /* | 2076 | /* |
2077 | * find_idlest_group finds and returns the least busy CPU group within the | 2077 | * find_idlest_group finds and returns the least busy CPU group within the |
2078 | * domain. | 2078 | * domain. |
2079 | */ | 2079 | */ |
2080 | static struct sched_group * | 2080 | static struct sched_group * |
2081 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) | 2081 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) |
2082 | { | 2082 | { |
2083 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; | 2083 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; |
2084 | unsigned long min_load = ULONG_MAX, this_load = 0; | 2084 | unsigned long min_load = ULONG_MAX, this_load = 0; |
2085 | int load_idx = sd->forkexec_idx; | 2085 | int load_idx = sd->forkexec_idx; |
2086 | int imbalance = 100 + (sd->imbalance_pct-100)/2; | 2086 | int imbalance = 100 + (sd->imbalance_pct-100)/2; |
2087 | 2087 | ||
2088 | do { | 2088 | do { |
2089 | unsigned long load, avg_load; | 2089 | unsigned long load, avg_load; |
2090 | int local_group; | 2090 | int local_group; |
2091 | int i; | 2091 | int i; |
2092 | 2092 | ||
2093 | /* Skip over this group if it has no CPUs allowed */ | 2093 | /* Skip over this group if it has no CPUs allowed */ |
2094 | if (!cpus_intersects(group->cpumask, p->cpus_allowed)) | 2094 | if (!cpus_intersects(group->cpumask, p->cpus_allowed)) |
2095 | continue; | 2095 | continue; |
2096 | 2096 | ||
2097 | local_group = cpu_isset(this_cpu, group->cpumask); | 2097 | local_group = cpu_isset(this_cpu, group->cpumask); |
2098 | 2098 | ||
2099 | /* Tally up the load of all CPUs in the group */ | 2099 | /* Tally up the load of all CPUs in the group */ |
2100 | avg_load = 0; | 2100 | avg_load = 0; |
2101 | 2101 | ||
2102 | for_each_cpu_mask_nr(i, group->cpumask) { | 2102 | for_each_cpu_mask_nr(i, group->cpumask) { |
2103 | /* Bias balancing toward cpus of our domain */ | 2103 | /* Bias balancing toward cpus of our domain */ |
2104 | if (local_group) | 2104 | if (local_group) |
2105 | load = source_load(i, load_idx); | 2105 | load = source_load(i, load_idx); |
2106 | else | 2106 | else |
2107 | load = target_load(i, load_idx); | 2107 | load = target_load(i, load_idx); |
2108 | 2108 | ||
2109 | avg_load += load; | 2109 | avg_load += load; |
2110 | } | 2110 | } |
2111 | 2111 | ||
2112 | /* Adjust by relative CPU power of the group */ | 2112 | /* Adjust by relative CPU power of the group */ |
2113 | avg_load = sg_div_cpu_power(group, | 2113 | avg_load = sg_div_cpu_power(group, |
2114 | avg_load * SCHED_LOAD_SCALE); | 2114 | avg_load * SCHED_LOAD_SCALE); |
2115 | 2115 | ||
2116 | if (local_group) { | 2116 | if (local_group) { |
2117 | this_load = avg_load; | 2117 | this_load = avg_load; |
2118 | this = group; | 2118 | this = group; |
2119 | } else if (avg_load < min_load) { | 2119 | } else if (avg_load < min_load) { |
2120 | min_load = avg_load; | 2120 | min_load = avg_load; |
2121 | idlest = group; | 2121 | idlest = group; |
2122 | } | 2122 | } |
2123 | } while (group = group->next, group != sd->groups); | 2123 | } while (group = group->next, group != sd->groups); |
2124 | 2124 | ||
2125 | if (!idlest || 100*this_load < imbalance*min_load) | 2125 | if (!idlest || 100*this_load < imbalance*min_load) |
2126 | return NULL; | 2126 | return NULL; |
2127 | return idlest; | 2127 | return idlest; |
2128 | } | 2128 | } |
2129 | 2129 | ||
2130 | /* | 2130 | /* |
2131 | * find_idlest_cpu - find the idlest cpu among the cpus in group. | 2131 | * find_idlest_cpu - find the idlest cpu among the cpus in group. |
2132 | */ | 2132 | */ |
2133 | static int | 2133 | static int |
2134 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu, | 2134 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu, |
2135 | cpumask_t *tmp) | 2135 | cpumask_t *tmp) |
2136 | { | 2136 | { |
2137 | unsigned long load, min_load = ULONG_MAX; | 2137 | unsigned long load, min_load = ULONG_MAX; |
2138 | int idlest = -1; | 2138 | int idlest = -1; |
2139 | int i; | 2139 | int i; |
2140 | 2140 | ||
2141 | /* Traverse only the allowed CPUs */ | 2141 | /* Traverse only the allowed CPUs */ |
2142 | cpus_and(*tmp, group->cpumask, p->cpus_allowed); | 2142 | cpus_and(*tmp, group->cpumask, p->cpus_allowed); |
2143 | 2143 | ||
2144 | for_each_cpu_mask_nr(i, *tmp) { | 2144 | for_each_cpu_mask_nr(i, *tmp) { |
2145 | load = weighted_cpuload(i); | 2145 | load = weighted_cpuload(i); |
2146 | 2146 | ||
2147 | if (load < min_load || (load == min_load && i == this_cpu)) { | 2147 | if (load < min_load || (load == min_load && i == this_cpu)) { |
2148 | min_load = load; | 2148 | min_load = load; |
2149 | idlest = i; | 2149 | idlest = i; |
2150 | } | 2150 | } |
2151 | } | 2151 | } |
2152 | 2152 | ||
2153 | return idlest; | 2153 | return idlest; |
2154 | } | 2154 | } |
2155 | 2155 | ||
2156 | /* | 2156 | /* |
2157 | * sched_balance_self: balance the current task (running on cpu) in domains | 2157 | * sched_balance_self: balance the current task (running on cpu) in domains |
2158 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | 2158 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and |
2159 | * SD_BALANCE_EXEC. | 2159 | * SD_BALANCE_EXEC. |
2160 | * | 2160 | * |
2161 | * Balance, ie. select the least loaded group. | 2161 | * Balance, ie. select the least loaded group. |
2162 | * | 2162 | * |
2163 | * Returns the target CPU number, or the same CPU if no balancing is needed. | 2163 | * Returns the target CPU number, or the same CPU if no balancing is needed. |
2164 | * | 2164 | * |
2165 | * preempt must be disabled. | 2165 | * preempt must be disabled. |
2166 | */ | 2166 | */ |
2167 | static int sched_balance_self(int cpu, int flag) | 2167 | static int sched_balance_self(int cpu, int flag) |
2168 | { | 2168 | { |
2169 | struct task_struct *t = current; | 2169 | struct task_struct *t = current; |
2170 | struct sched_domain *tmp, *sd = NULL; | 2170 | struct sched_domain *tmp, *sd = NULL; |
2171 | 2171 | ||
2172 | for_each_domain(cpu, tmp) { | 2172 | for_each_domain(cpu, tmp) { |
2173 | /* | 2173 | /* |
2174 | * If power savings logic is enabled for a domain, stop there. | 2174 | * If power savings logic is enabled for a domain, stop there. |
2175 | */ | 2175 | */ |
2176 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) | 2176 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) |
2177 | break; | 2177 | break; |
2178 | if (tmp->flags & flag) | 2178 | if (tmp->flags & flag) |
2179 | sd = tmp; | 2179 | sd = tmp; |
2180 | } | 2180 | } |
2181 | 2181 | ||
2182 | if (sd) | 2182 | if (sd) |
2183 | update_shares(sd); | 2183 | update_shares(sd); |
2184 | 2184 | ||
2185 | while (sd) { | 2185 | while (sd) { |
2186 | cpumask_t span, tmpmask; | 2186 | cpumask_t span, tmpmask; |
2187 | struct sched_group *group; | 2187 | struct sched_group *group; |
2188 | int new_cpu, weight; | 2188 | int new_cpu, weight; |
2189 | 2189 | ||
2190 | if (!(sd->flags & flag)) { | 2190 | if (!(sd->flags & flag)) { |
2191 | sd = sd->child; | 2191 | sd = sd->child; |
2192 | continue; | 2192 | continue; |
2193 | } | 2193 | } |
2194 | 2194 | ||
2195 | span = sd->span; | 2195 | span = sd->span; |
2196 | group = find_idlest_group(sd, t, cpu); | 2196 | group = find_idlest_group(sd, t, cpu); |
2197 | if (!group) { | 2197 | if (!group) { |
2198 | sd = sd->child; | 2198 | sd = sd->child; |
2199 | continue; | 2199 | continue; |
2200 | } | 2200 | } |
2201 | 2201 | ||
2202 | new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask); | 2202 | new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask); |
2203 | if (new_cpu == -1 || new_cpu == cpu) { | 2203 | if (new_cpu == -1 || new_cpu == cpu) { |
2204 | /* Now try balancing at a lower domain level of cpu */ | 2204 | /* Now try balancing at a lower domain level of cpu */ |
2205 | sd = sd->child; | 2205 | sd = sd->child; |
2206 | continue; | 2206 | continue; |
2207 | } | 2207 | } |
2208 | 2208 | ||
2209 | /* Now try balancing at a lower domain level of new_cpu */ | 2209 | /* Now try balancing at a lower domain level of new_cpu */ |
2210 | cpu = new_cpu; | 2210 | cpu = new_cpu; |
2211 | sd = NULL; | 2211 | sd = NULL; |
2212 | weight = cpus_weight(span); | 2212 | weight = cpus_weight(span); |
2213 | for_each_domain(cpu, tmp) { | 2213 | for_each_domain(cpu, tmp) { |
2214 | if (weight <= cpus_weight(tmp->span)) | 2214 | if (weight <= cpus_weight(tmp->span)) |
2215 | break; | 2215 | break; |
2216 | if (tmp->flags & flag) | 2216 | if (tmp->flags & flag) |
2217 | sd = tmp; | 2217 | sd = tmp; |
2218 | } | 2218 | } |
2219 | /* while loop will break here if sd == NULL */ | 2219 | /* while loop will break here if sd == NULL */ |
2220 | } | 2220 | } |
2221 | 2221 | ||
2222 | return cpu; | 2222 | return cpu; |
2223 | } | 2223 | } |
2224 | 2224 | ||
2225 | #endif /* CONFIG_SMP */ | 2225 | #endif /* CONFIG_SMP */ |
2226 | 2226 | ||
2227 | /*** | 2227 | /*** |
2228 | * try_to_wake_up - wake up a thread | 2228 | * try_to_wake_up - wake up a thread |
2229 | * @p: the to-be-woken-up thread | 2229 | * @p: the to-be-woken-up thread |
2230 | * @state: the mask of task states that can be woken | 2230 | * @state: the mask of task states that can be woken |
2231 | * @sync: do a synchronous wakeup? | 2231 | * @sync: do a synchronous wakeup? |
2232 | * | 2232 | * |
2233 | * Put it on the run-queue if it's not already there. The "current" | 2233 | * Put it on the run-queue if it's not already there. The "current" |
2234 | * thread is always on the run-queue (except when the actual | 2234 | * thread is always on the run-queue (except when the actual |
2235 | * re-schedule is in progress), and as such you're allowed to do | 2235 | * re-schedule is in progress), and as such you're allowed to do |
2236 | * the simpler "current->state = TASK_RUNNING" to mark yourself | 2236 | * the simpler "current->state = TASK_RUNNING" to mark yourself |
2237 | * runnable without the overhead of this. | 2237 | * runnable without the overhead of this. |
2238 | * | 2238 | * |
2239 | * returns failure only if the task is already active. | 2239 | * returns failure only if the task is already active. |
2240 | */ | 2240 | */ |
2241 | static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | 2241 | static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) |
2242 | { | 2242 | { |
2243 | int cpu, orig_cpu, this_cpu, success = 0; | 2243 | int cpu, orig_cpu, this_cpu, success = 0; |
2244 | unsigned long flags; | 2244 | unsigned long flags; |
2245 | long old_state; | 2245 | long old_state; |
2246 | struct rq *rq; | 2246 | struct rq *rq; |
2247 | 2247 | ||
2248 | if (!sched_feat(SYNC_WAKEUPS)) | 2248 | if (!sched_feat(SYNC_WAKEUPS)) |
2249 | sync = 0; | 2249 | sync = 0; |
2250 | 2250 | ||
2251 | #ifdef CONFIG_SMP | 2251 | #ifdef CONFIG_SMP |
2252 | if (sched_feat(LB_WAKEUP_UPDATE)) { | 2252 | if (sched_feat(LB_WAKEUP_UPDATE)) { |
2253 | struct sched_domain *sd; | 2253 | struct sched_domain *sd; |
2254 | 2254 | ||
2255 | this_cpu = raw_smp_processor_id(); | 2255 | this_cpu = raw_smp_processor_id(); |
2256 | cpu = task_cpu(p); | 2256 | cpu = task_cpu(p); |
2257 | 2257 | ||
2258 | for_each_domain(this_cpu, sd) { | 2258 | for_each_domain(this_cpu, sd) { |
2259 | if (cpu_isset(cpu, sd->span)) { | 2259 | if (cpu_isset(cpu, sd->span)) { |
2260 | update_shares(sd); | 2260 | update_shares(sd); |
2261 | break; | 2261 | break; |
2262 | } | 2262 | } |
2263 | } | 2263 | } |
2264 | } | 2264 | } |
2265 | #endif | 2265 | #endif |
2266 | 2266 | ||
2267 | smp_wmb(); | 2267 | smp_wmb(); |
2268 | rq = task_rq_lock(p, &flags); | 2268 | rq = task_rq_lock(p, &flags); |
2269 | old_state = p->state; | 2269 | old_state = p->state; |
2270 | if (!(old_state & state)) | 2270 | if (!(old_state & state)) |
2271 | goto out; | 2271 | goto out; |
2272 | 2272 | ||
2273 | if (p->se.on_rq) | 2273 | if (p->se.on_rq) |
2274 | goto out_running; | 2274 | goto out_running; |
2275 | 2275 | ||
2276 | cpu = task_cpu(p); | 2276 | cpu = task_cpu(p); |
2277 | orig_cpu = cpu; | 2277 | orig_cpu = cpu; |
2278 | this_cpu = smp_processor_id(); | 2278 | this_cpu = smp_processor_id(); |
2279 | 2279 | ||
2280 | #ifdef CONFIG_SMP | 2280 | #ifdef CONFIG_SMP |
2281 | if (unlikely(task_running(rq, p))) | 2281 | if (unlikely(task_running(rq, p))) |
2282 | goto out_activate; | 2282 | goto out_activate; |
2283 | 2283 | ||
2284 | cpu = p->sched_class->select_task_rq(p, sync); | 2284 | cpu = p->sched_class->select_task_rq(p, sync); |
2285 | if (cpu != orig_cpu) { | 2285 | if (cpu != orig_cpu) { |
2286 | set_task_cpu(p, cpu); | 2286 | set_task_cpu(p, cpu); |
2287 | task_rq_unlock(rq, &flags); | 2287 | task_rq_unlock(rq, &flags); |
2288 | /* might preempt at this point */ | 2288 | /* might preempt at this point */ |
2289 | rq = task_rq_lock(p, &flags); | 2289 | rq = task_rq_lock(p, &flags); |
2290 | old_state = p->state; | 2290 | old_state = p->state; |
2291 | if (!(old_state & state)) | 2291 | if (!(old_state & state)) |
2292 | goto out; | 2292 | goto out; |
2293 | if (p->se.on_rq) | 2293 | if (p->se.on_rq) |
2294 | goto out_running; | 2294 | goto out_running; |
2295 | 2295 | ||
2296 | this_cpu = smp_processor_id(); | 2296 | this_cpu = smp_processor_id(); |
2297 | cpu = task_cpu(p); | 2297 | cpu = task_cpu(p); |
2298 | } | 2298 | } |
2299 | 2299 | ||
2300 | #ifdef CONFIG_SCHEDSTATS | 2300 | #ifdef CONFIG_SCHEDSTATS |
2301 | schedstat_inc(rq, ttwu_count); | 2301 | schedstat_inc(rq, ttwu_count); |
2302 | if (cpu == this_cpu) | 2302 | if (cpu == this_cpu) |
2303 | schedstat_inc(rq, ttwu_local); | 2303 | schedstat_inc(rq, ttwu_local); |
2304 | else { | 2304 | else { |
2305 | struct sched_domain *sd; | 2305 | struct sched_domain *sd; |
2306 | for_each_domain(this_cpu, sd) { | 2306 | for_each_domain(this_cpu, sd) { |
2307 | if (cpu_isset(cpu, sd->span)) { | 2307 | if (cpu_isset(cpu, sd->span)) { |
2308 | schedstat_inc(sd, ttwu_wake_remote); | 2308 | schedstat_inc(sd, ttwu_wake_remote); |
2309 | break; | 2309 | break; |
2310 | } | 2310 | } |
2311 | } | 2311 | } |
2312 | } | 2312 | } |
2313 | #endif /* CONFIG_SCHEDSTATS */ | 2313 | #endif /* CONFIG_SCHEDSTATS */ |
2314 | 2314 | ||
2315 | out_activate: | 2315 | out_activate: |
2316 | #endif /* CONFIG_SMP */ | 2316 | #endif /* CONFIG_SMP */ |
2317 | schedstat_inc(p, se.nr_wakeups); | 2317 | schedstat_inc(p, se.nr_wakeups); |
2318 | if (sync) | 2318 | if (sync) |
2319 | schedstat_inc(p, se.nr_wakeups_sync); | 2319 | schedstat_inc(p, se.nr_wakeups_sync); |
2320 | if (orig_cpu != cpu) | 2320 | if (orig_cpu != cpu) |
2321 | schedstat_inc(p, se.nr_wakeups_migrate); | 2321 | schedstat_inc(p, se.nr_wakeups_migrate); |
2322 | if (cpu == this_cpu) | 2322 | if (cpu == this_cpu) |
2323 | schedstat_inc(p, se.nr_wakeups_local); | 2323 | schedstat_inc(p, se.nr_wakeups_local); |
2324 | else | 2324 | else |
2325 | schedstat_inc(p, se.nr_wakeups_remote); | 2325 | schedstat_inc(p, se.nr_wakeups_remote); |
2326 | update_rq_clock(rq); | 2326 | update_rq_clock(rq); |
2327 | activate_task(rq, p, 1); | 2327 | activate_task(rq, p, 1); |
2328 | success = 1; | 2328 | success = 1; |
2329 | 2329 | ||
2330 | out_running: | 2330 | out_running: |
2331 | trace_sched_wakeup(rq, p); | 2331 | trace_sched_wakeup(rq, p); |
2332 | check_preempt_curr(rq, p, sync); | 2332 | check_preempt_curr(rq, p, sync); |
2333 | 2333 | ||
2334 | p->state = TASK_RUNNING; | 2334 | p->state = TASK_RUNNING; |
2335 | #ifdef CONFIG_SMP | 2335 | #ifdef CONFIG_SMP |
2336 | if (p->sched_class->task_wake_up) | 2336 | if (p->sched_class->task_wake_up) |
2337 | p->sched_class->task_wake_up(rq, p); | 2337 | p->sched_class->task_wake_up(rq, p); |
2338 | #endif | 2338 | #endif |
2339 | out: | 2339 | out: |
2340 | current->se.last_wakeup = current->se.sum_exec_runtime; | 2340 | current->se.last_wakeup = current->se.sum_exec_runtime; |
2341 | 2341 | ||
2342 | task_rq_unlock(rq, &flags); | 2342 | task_rq_unlock(rq, &flags); |
2343 | 2343 | ||
2344 | return success; | 2344 | return success; |
2345 | } | 2345 | } |
2346 | 2346 | ||
2347 | int wake_up_process(struct task_struct *p) | 2347 | int wake_up_process(struct task_struct *p) |
2348 | { | 2348 | { |
2349 | return try_to_wake_up(p, TASK_ALL, 0); | 2349 | return try_to_wake_up(p, TASK_ALL, 0); |
2350 | } | 2350 | } |
2351 | EXPORT_SYMBOL(wake_up_process); | 2351 | EXPORT_SYMBOL(wake_up_process); |
2352 | 2352 | ||
2353 | int wake_up_state(struct task_struct *p, unsigned int state) | 2353 | int wake_up_state(struct task_struct *p, unsigned int state) |
2354 | { | 2354 | { |
2355 | return try_to_wake_up(p, state, 0); | 2355 | return try_to_wake_up(p, state, 0); |
2356 | } | 2356 | } |
2357 | 2357 | ||
2358 | /* | 2358 | /* |
2359 | * Perform scheduler related setup for a newly forked process p. | 2359 | * Perform scheduler related setup for a newly forked process p. |
2360 | * p is forked by current. | 2360 | * p is forked by current. |
2361 | * | 2361 | * |
2362 | * __sched_fork() is basic setup used by init_idle() too: | 2362 | * __sched_fork() is basic setup used by init_idle() too: |
2363 | */ | 2363 | */ |
2364 | static void __sched_fork(struct task_struct *p) | 2364 | static void __sched_fork(struct task_struct *p) |
2365 | { | 2365 | { |
2366 | p->se.exec_start = 0; | 2366 | p->se.exec_start = 0; |
2367 | p->se.sum_exec_runtime = 0; | 2367 | p->se.sum_exec_runtime = 0; |
2368 | p->se.prev_sum_exec_runtime = 0; | 2368 | p->se.prev_sum_exec_runtime = 0; |
2369 | p->se.last_wakeup = 0; | 2369 | p->se.last_wakeup = 0; |
2370 | p->se.avg_overlap = 0; | 2370 | p->se.avg_overlap = 0; |
2371 | 2371 | ||
2372 | #ifdef CONFIG_SCHEDSTATS | 2372 | #ifdef CONFIG_SCHEDSTATS |
2373 | p->se.wait_start = 0; | 2373 | p->se.wait_start = 0; |
2374 | p->se.sum_sleep_runtime = 0; | 2374 | p->se.sum_sleep_runtime = 0; |
2375 | p->se.sleep_start = 0; | 2375 | p->se.sleep_start = 0; |
2376 | p->se.block_start = 0; | 2376 | p->se.block_start = 0; |
2377 | p->se.sleep_max = 0; | 2377 | p->se.sleep_max = 0; |
2378 | p->se.block_max = 0; | 2378 | p->se.block_max = 0; |
2379 | p->se.exec_max = 0; | 2379 | p->se.exec_max = 0; |
2380 | p->se.slice_max = 0; | 2380 | p->se.slice_max = 0; |
2381 | p->se.wait_max = 0; | 2381 | p->se.wait_max = 0; |
2382 | #endif | 2382 | #endif |
2383 | 2383 | ||
2384 | INIT_LIST_HEAD(&p->rt.run_list); | 2384 | INIT_LIST_HEAD(&p->rt.run_list); |
2385 | p->se.on_rq = 0; | 2385 | p->se.on_rq = 0; |
2386 | INIT_LIST_HEAD(&p->se.group_node); | 2386 | INIT_LIST_HEAD(&p->se.group_node); |
2387 | 2387 | ||
2388 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 2388 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2389 | INIT_HLIST_HEAD(&p->preempt_notifiers); | 2389 | INIT_HLIST_HEAD(&p->preempt_notifiers); |
2390 | #endif | 2390 | #endif |
2391 | 2391 | ||
2392 | /* | 2392 | /* |
2393 | * We mark the process as running here, but have not actually | 2393 | * We mark the process as running here, but have not actually |
2394 | * inserted it onto the runqueue yet. This guarantees that | 2394 | * inserted it onto the runqueue yet. This guarantees that |
2395 | * nobody will actually run it, and a signal or other external | 2395 | * nobody will actually run it, and a signal or other external |
2396 | * event cannot wake it up and insert it on the runqueue either. | 2396 | * event cannot wake it up and insert it on the runqueue either. |
2397 | */ | 2397 | */ |
2398 | p->state = TASK_RUNNING; | 2398 | p->state = TASK_RUNNING; |
2399 | } | 2399 | } |
2400 | 2400 | ||
2401 | /* | 2401 | /* |
2402 | * fork()/clone()-time setup: | 2402 | * fork()/clone()-time setup: |
2403 | */ | 2403 | */ |
2404 | void sched_fork(struct task_struct *p, int clone_flags) | 2404 | void sched_fork(struct task_struct *p, int clone_flags) |
2405 | { | 2405 | { |
2406 | int cpu = get_cpu(); | 2406 | int cpu = get_cpu(); |
2407 | 2407 | ||
2408 | __sched_fork(p); | 2408 | __sched_fork(p); |
2409 | 2409 | ||
2410 | #ifdef CONFIG_SMP | 2410 | #ifdef CONFIG_SMP |
2411 | cpu = sched_balance_self(cpu, SD_BALANCE_FORK); | 2411 | cpu = sched_balance_self(cpu, SD_BALANCE_FORK); |
2412 | #endif | 2412 | #endif |
2413 | set_task_cpu(p, cpu); | 2413 | set_task_cpu(p, cpu); |
2414 | 2414 | ||
2415 | /* | 2415 | /* |
2416 | * Make sure we do not leak PI boosting priority to the child: | 2416 | * Make sure we do not leak PI boosting priority to the child: |
2417 | */ | 2417 | */ |
2418 | p->prio = current->normal_prio; | 2418 | p->prio = current->normal_prio; |
2419 | if (!rt_prio(p->prio)) | 2419 | if (!rt_prio(p->prio)) |
2420 | p->sched_class = &fair_sched_class; | 2420 | p->sched_class = &fair_sched_class; |
2421 | 2421 | ||
2422 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | 2422 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
2423 | if (likely(sched_info_on())) | 2423 | if (likely(sched_info_on())) |
2424 | memset(&p->sched_info, 0, sizeof(p->sched_info)); | 2424 | memset(&p->sched_info, 0, sizeof(p->sched_info)); |
2425 | #endif | 2425 | #endif |
2426 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) | 2426 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
2427 | p->oncpu = 0; | 2427 | p->oncpu = 0; |
2428 | #endif | 2428 | #endif |
2429 | #ifdef CONFIG_PREEMPT | 2429 | #ifdef CONFIG_PREEMPT |
2430 | /* Want to start with kernel preemption disabled. */ | 2430 | /* Want to start with kernel preemption disabled. */ |
2431 | task_thread_info(p)->preempt_count = 1; | 2431 | task_thread_info(p)->preempt_count = 1; |
2432 | #endif | 2432 | #endif |
2433 | put_cpu(); | 2433 | put_cpu(); |
2434 | } | 2434 | } |
2435 | 2435 | ||
2436 | /* | 2436 | /* |
2437 | * wake_up_new_task - wake up a newly created task for the first time. | 2437 | * wake_up_new_task - wake up a newly created task for the first time. |
2438 | * | 2438 | * |
2439 | * This function will do some initial scheduler statistics housekeeping | 2439 | * This function will do some initial scheduler statistics housekeeping |
2440 | * that must be done for every newly created context, then puts the task | 2440 | * that must be done for every newly created context, then puts the task |
2441 | * on the runqueue and wakes it. | 2441 | * on the runqueue and wakes it. |
2442 | */ | 2442 | */ |
2443 | void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | 2443 | void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) |
2444 | { | 2444 | { |
2445 | unsigned long flags; | 2445 | unsigned long flags; |
2446 | struct rq *rq; | 2446 | struct rq *rq; |
2447 | 2447 | ||
2448 | rq = task_rq_lock(p, &flags); | 2448 | rq = task_rq_lock(p, &flags); |
2449 | BUG_ON(p->state != TASK_RUNNING); | 2449 | BUG_ON(p->state != TASK_RUNNING); |
2450 | update_rq_clock(rq); | 2450 | update_rq_clock(rq); |
2451 | 2451 | ||
2452 | p->prio = effective_prio(p); | 2452 | p->prio = effective_prio(p); |
2453 | 2453 | ||
2454 | if (!p->sched_class->task_new || !current->se.on_rq) { | 2454 | if (!p->sched_class->task_new || !current->se.on_rq) { |
2455 | activate_task(rq, p, 0); | 2455 | activate_task(rq, p, 0); |
2456 | } else { | 2456 | } else { |
2457 | /* | 2457 | /* |
2458 | * Let the scheduling class do new task startup | 2458 | * Let the scheduling class do new task startup |
2459 | * management (if any): | 2459 | * management (if any): |
2460 | */ | 2460 | */ |
2461 | p->sched_class->task_new(rq, p); | 2461 | p->sched_class->task_new(rq, p); |
2462 | inc_nr_running(rq); | 2462 | inc_nr_running(rq); |
2463 | } | 2463 | } |
2464 | trace_sched_wakeup_new(rq, p); | 2464 | trace_sched_wakeup_new(rq, p); |
2465 | check_preempt_curr(rq, p, 0); | 2465 | check_preempt_curr(rq, p, 0); |
2466 | #ifdef CONFIG_SMP | 2466 | #ifdef CONFIG_SMP |
2467 | if (p->sched_class->task_wake_up) | 2467 | if (p->sched_class->task_wake_up) |
2468 | p->sched_class->task_wake_up(rq, p); | 2468 | p->sched_class->task_wake_up(rq, p); |
2469 | #endif | 2469 | #endif |
2470 | task_rq_unlock(rq, &flags); | 2470 | task_rq_unlock(rq, &flags); |
2471 | } | 2471 | } |
2472 | 2472 | ||
2473 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 2473 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2474 | 2474 | ||
2475 | /** | 2475 | /** |
2476 | * preempt_notifier_register - tell me when current is being being preempted & rescheduled | 2476 | * preempt_notifier_register - tell me when current is being being preempted & rescheduled |
2477 | * @notifier: notifier struct to register | 2477 | * @notifier: notifier struct to register |
2478 | */ | 2478 | */ |
2479 | void preempt_notifier_register(struct preempt_notifier *notifier) | 2479 | void preempt_notifier_register(struct preempt_notifier *notifier) |
2480 | { | 2480 | { |
2481 | hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); | 2481 | hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); |
2482 | } | 2482 | } |
2483 | EXPORT_SYMBOL_GPL(preempt_notifier_register); | 2483 | EXPORT_SYMBOL_GPL(preempt_notifier_register); |
2484 | 2484 | ||
2485 | /** | 2485 | /** |
2486 | * preempt_notifier_unregister - no longer interested in preemption notifications | 2486 | * preempt_notifier_unregister - no longer interested in preemption notifications |
2487 | * @notifier: notifier struct to unregister | 2487 | * @notifier: notifier struct to unregister |
2488 | * | 2488 | * |
2489 | * This is safe to call from within a preemption notifier. | 2489 | * This is safe to call from within a preemption notifier. |
2490 | */ | 2490 | */ |
2491 | void preempt_notifier_unregister(struct preempt_notifier *notifier) | 2491 | void preempt_notifier_unregister(struct preempt_notifier *notifier) |
2492 | { | 2492 | { |
2493 | hlist_del(¬ifier->link); | 2493 | hlist_del(¬ifier->link); |
2494 | } | 2494 | } |
2495 | EXPORT_SYMBOL_GPL(preempt_notifier_unregister); | 2495 | EXPORT_SYMBOL_GPL(preempt_notifier_unregister); |
2496 | 2496 | ||
2497 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | 2497 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) |
2498 | { | 2498 | { |
2499 | struct preempt_notifier *notifier; | 2499 | struct preempt_notifier *notifier; |
2500 | struct hlist_node *node; | 2500 | struct hlist_node *node; |
2501 | 2501 | ||
2502 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | 2502 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) |
2503 | notifier->ops->sched_in(notifier, raw_smp_processor_id()); | 2503 | notifier->ops->sched_in(notifier, raw_smp_processor_id()); |
2504 | } | 2504 | } |
2505 | 2505 | ||
2506 | static void | 2506 | static void |
2507 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | 2507 | fire_sched_out_preempt_notifiers(struct task_struct *curr, |
2508 | struct task_struct *next) | 2508 | struct task_struct *next) |
2509 | { | 2509 | { |
2510 | struct preempt_notifier *notifier; | 2510 | struct preempt_notifier *notifier; |
2511 | struct hlist_node *node; | 2511 | struct hlist_node *node; |
2512 | 2512 | ||
2513 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | 2513 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) |
2514 | notifier->ops->sched_out(notifier, next); | 2514 | notifier->ops->sched_out(notifier, next); |
2515 | } | 2515 | } |
2516 | 2516 | ||
2517 | #else /* !CONFIG_PREEMPT_NOTIFIERS */ | 2517 | #else /* !CONFIG_PREEMPT_NOTIFIERS */ |
2518 | 2518 | ||
2519 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | 2519 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) |
2520 | { | 2520 | { |
2521 | } | 2521 | } |
2522 | 2522 | ||
2523 | static void | 2523 | static void |
2524 | fire_sched_out_preempt_notifiers(struct task_struct *curr, | 2524 | fire_sched_out_preempt_notifiers(struct task_struct *curr, |
2525 | struct task_struct *next) | 2525 | struct task_struct *next) |
2526 | { | 2526 | { |
2527 | } | 2527 | } |
2528 | 2528 | ||
2529 | #endif /* CONFIG_PREEMPT_NOTIFIERS */ | 2529 | #endif /* CONFIG_PREEMPT_NOTIFIERS */ |
2530 | 2530 | ||
2531 | /** | 2531 | /** |
2532 | * prepare_task_switch - prepare to switch tasks | 2532 | * prepare_task_switch - prepare to switch tasks |
2533 | * @rq: the runqueue preparing to switch | 2533 | * @rq: the runqueue preparing to switch |
2534 | * @prev: the current task that is being switched out | 2534 | * @prev: the current task that is being switched out |
2535 | * @next: the task we are going to switch to. | 2535 | * @next: the task we are going to switch to. |
2536 | * | 2536 | * |
2537 | * This is called with the rq lock held and interrupts off. It must | 2537 | * This is called with the rq lock held and interrupts off. It must |
2538 | * be paired with a subsequent finish_task_switch after the context | 2538 | * be paired with a subsequent finish_task_switch after the context |
2539 | * switch. | 2539 | * switch. |
2540 | * | 2540 | * |
2541 | * prepare_task_switch sets up locking and calls architecture specific | 2541 | * prepare_task_switch sets up locking and calls architecture specific |
2542 | * hooks. | 2542 | * hooks. |
2543 | */ | 2543 | */ |
2544 | static inline void | 2544 | static inline void |
2545 | prepare_task_switch(struct rq *rq, struct task_struct *prev, | 2545 | prepare_task_switch(struct rq *rq, struct task_struct *prev, |
2546 | struct task_struct *next) | 2546 | struct task_struct *next) |
2547 | { | 2547 | { |
2548 | fire_sched_out_preempt_notifiers(prev, next); | 2548 | fire_sched_out_preempt_notifiers(prev, next); |
2549 | prepare_lock_switch(rq, next); | 2549 | prepare_lock_switch(rq, next); |
2550 | prepare_arch_switch(next); | 2550 | prepare_arch_switch(next); |
2551 | } | 2551 | } |
2552 | 2552 | ||
2553 | /** | 2553 | /** |
2554 | * finish_task_switch - clean up after a task-switch | 2554 | * finish_task_switch - clean up after a task-switch |
2555 | * @rq: runqueue associated with task-switch | 2555 | * @rq: runqueue associated with task-switch |
2556 | * @prev: the thread we just switched away from. | 2556 | * @prev: the thread we just switched away from. |
2557 | * | 2557 | * |
2558 | * finish_task_switch must be called after the context switch, paired | 2558 | * finish_task_switch must be called after the context switch, paired |
2559 | * with a prepare_task_switch call before the context switch. | 2559 | * with a prepare_task_switch call before the context switch. |
2560 | * finish_task_switch will reconcile locking set up by prepare_task_switch, | 2560 | * finish_task_switch will reconcile locking set up by prepare_task_switch, |
2561 | * and do any other architecture-specific cleanup actions. | 2561 | * and do any other architecture-specific cleanup actions. |
2562 | * | 2562 | * |
2563 | * Note that we may have delayed dropping an mm in context_switch(). If | 2563 | * Note that we may have delayed dropping an mm in context_switch(). If |
2564 | * so, we finish that here outside of the runqueue lock. (Doing it | 2564 | * so, we finish that here outside of the runqueue lock. (Doing it |
2565 | * with the lock held can cause deadlocks; see schedule() for | 2565 | * with the lock held can cause deadlocks; see schedule() for |
2566 | * details.) | 2566 | * details.) |
2567 | */ | 2567 | */ |
2568 | static void finish_task_switch(struct rq *rq, struct task_struct *prev) | 2568 | static void finish_task_switch(struct rq *rq, struct task_struct *prev) |
2569 | __releases(rq->lock) | 2569 | __releases(rq->lock) |
2570 | { | 2570 | { |
2571 | struct mm_struct *mm = rq->prev_mm; | 2571 | struct mm_struct *mm = rq->prev_mm; |
2572 | long prev_state; | 2572 | long prev_state; |
2573 | 2573 | ||
2574 | rq->prev_mm = NULL; | 2574 | rq->prev_mm = NULL; |
2575 | 2575 | ||
2576 | /* | 2576 | /* |
2577 | * A task struct has one reference for the use as "current". | 2577 | * A task struct has one reference for the use as "current". |
2578 | * If a task dies, then it sets TASK_DEAD in tsk->state and calls | 2578 | * If a task dies, then it sets TASK_DEAD in tsk->state and calls |
2579 | * schedule one last time. The schedule call will never return, and | 2579 | * schedule one last time. The schedule call will never return, and |
2580 | * the scheduled task must drop that reference. | 2580 | * the scheduled task must drop that reference. |
2581 | * The test for TASK_DEAD must occur while the runqueue locks are | 2581 | * The test for TASK_DEAD must occur while the runqueue locks are |
2582 | * still held, otherwise prev could be scheduled on another cpu, die | 2582 | * still held, otherwise prev could be scheduled on another cpu, die |
2583 | * there before we look at prev->state, and then the reference would | 2583 | * there before we look at prev->state, and then the reference would |
2584 | * be dropped twice. | 2584 | * be dropped twice. |
2585 | * Manfred Spraul <manfred@colorfullife.com> | 2585 | * Manfred Spraul <manfred@colorfullife.com> |
2586 | */ | 2586 | */ |
2587 | prev_state = prev->state; | 2587 | prev_state = prev->state; |
2588 | finish_arch_switch(prev); | 2588 | finish_arch_switch(prev); |
2589 | finish_lock_switch(rq, prev); | 2589 | finish_lock_switch(rq, prev); |
2590 | #ifdef CONFIG_SMP | 2590 | #ifdef CONFIG_SMP |
2591 | if (current->sched_class->post_schedule) | 2591 | if (current->sched_class->post_schedule) |
2592 | current->sched_class->post_schedule(rq); | 2592 | current->sched_class->post_schedule(rq); |
2593 | #endif | 2593 | #endif |
2594 | 2594 | ||
2595 | fire_sched_in_preempt_notifiers(current); | 2595 | fire_sched_in_preempt_notifiers(current); |
2596 | if (mm) | 2596 | if (mm) |
2597 | mmdrop(mm); | 2597 | mmdrop(mm); |
2598 | if (unlikely(prev_state == TASK_DEAD)) { | 2598 | if (unlikely(prev_state == TASK_DEAD)) { |
2599 | /* | 2599 | /* |
2600 | * Remove function-return probe instances associated with this | 2600 | * Remove function-return probe instances associated with this |
2601 | * task and put them back on the free list. | 2601 | * task and put them back on the free list. |
2602 | */ | 2602 | */ |
2603 | kprobe_flush_task(prev); | 2603 | kprobe_flush_task(prev); |
2604 | put_task_struct(prev); | 2604 | put_task_struct(prev); |
2605 | } | 2605 | } |
2606 | } | 2606 | } |
2607 | 2607 | ||
2608 | /** | 2608 | /** |
2609 | * schedule_tail - first thing a freshly forked thread must call. | 2609 | * schedule_tail - first thing a freshly forked thread must call. |
2610 | * @prev: the thread we just switched away from. | 2610 | * @prev: the thread we just switched away from. |
2611 | */ | 2611 | */ |
2612 | asmlinkage void schedule_tail(struct task_struct *prev) | 2612 | asmlinkage void schedule_tail(struct task_struct *prev) |
2613 | __releases(rq->lock) | 2613 | __releases(rq->lock) |
2614 | { | 2614 | { |
2615 | struct rq *rq = this_rq(); | 2615 | struct rq *rq = this_rq(); |
2616 | 2616 | ||
2617 | finish_task_switch(rq, prev); | 2617 | finish_task_switch(rq, prev); |
2618 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW | 2618 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW |
2619 | /* In this case, finish_task_switch does not reenable preemption */ | 2619 | /* In this case, finish_task_switch does not reenable preemption */ |
2620 | preempt_enable(); | 2620 | preempt_enable(); |
2621 | #endif | 2621 | #endif |
2622 | if (current->set_child_tid) | 2622 | if (current->set_child_tid) |
2623 | put_user(task_pid_vnr(current), current->set_child_tid); | 2623 | put_user(task_pid_vnr(current), current->set_child_tid); |
2624 | } | 2624 | } |
2625 | 2625 | ||
2626 | /* | 2626 | /* |
2627 | * context_switch - switch to the new MM and the new | 2627 | * context_switch - switch to the new MM and the new |
2628 | * thread's register state. | 2628 | * thread's register state. |
2629 | */ | 2629 | */ |
2630 | static inline void | 2630 | static inline void |
2631 | context_switch(struct rq *rq, struct task_struct *prev, | 2631 | context_switch(struct rq *rq, struct task_struct *prev, |
2632 | struct task_struct *next) | 2632 | struct task_struct *next) |
2633 | { | 2633 | { |
2634 | struct mm_struct *mm, *oldmm; | 2634 | struct mm_struct *mm, *oldmm; |
2635 | 2635 | ||
2636 | prepare_task_switch(rq, prev, next); | 2636 | prepare_task_switch(rq, prev, next); |
2637 | trace_sched_switch(rq, prev, next); | 2637 | trace_sched_switch(rq, prev, next); |
2638 | mm = next->mm; | 2638 | mm = next->mm; |
2639 | oldmm = prev->active_mm; | 2639 | oldmm = prev->active_mm; |
2640 | /* | 2640 | /* |
2641 | * For paravirt, this is coupled with an exit in switch_to to | 2641 | * For paravirt, this is coupled with an exit in switch_to to |
2642 | * combine the page table reload and the switch backend into | 2642 | * combine the page table reload and the switch backend into |
2643 | * one hypercall. | 2643 | * one hypercall. |
2644 | */ | 2644 | */ |
2645 | arch_enter_lazy_cpu_mode(); | 2645 | arch_enter_lazy_cpu_mode(); |
2646 | 2646 | ||
2647 | if (unlikely(!mm)) { | 2647 | if (unlikely(!mm)) { |
2648 | next->active_mm = oldmm; | 2648 | next->active_mm = oldmm; |
2649 | atomic_inc(&oldmm->mm_count); | 2649 | atomic_inc(&oldmm->mm_count); |
2650 | enter_lazy_tlb(oldmm, next); | 2650 | enter_lazy_tlb(oldmm, next); |
2651 | } else | 2651 | } else |
2652 | switch_mm(oldmm, mm, next); | 2652 | switch_mm(oldmm, mm, next); |
2653 | 2653 | ||
2654 | if (unlikely(!prev->mm)) { | 2654 | if (unlikely(!prev->mm)) { |
2655 | prev->active_mm = NULL; | 2655 | prev->active_mm = NULL; |
2656 | rq->prev_mm = oldmm; | 2656 | rq->prev_mm = oldmm; |
2657 | } | 2657 | } |
2658 | /* | 2658 | /* |
2659 | * Since the runqueue lock will be released by the next | 2659 | * Since the runqueue lock will be released by the next |
2660 | * task (which is an invalid locking op but in the case | 2660 | * task (which is an invalid locking op but in the case |
2661 | * of the scheduler it's an obvious special-case), so we | 2661 | * of the scheduler it's an obvious special-case), so we |
2662 | * do an early lockdep release here: | 2662 | * do an early lockdep release here: |
2663 | */ | 2663 | */ |
2664 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | 2664 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW |
2665 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | 2665 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
2666 | #endif | 2666 | #endif |
2667 | 2667 | ||
2668 | /* Here we just switch the register state and the stack. */ | 2668 | /* Here we just switch the register state and the stack. */ |
2669 | switch_to(prev, next, prev); | 2669 | switch_to(prev, next, prev); |
2670 | 2670 | ||
2671 | barrier(); | 2671 | barrier(); |
2672 | /* | 2672 | /* |
2673 | * this_rq must be evaluated again because prev may have moved | 2673 | * this_rq must be evaluated again because prev may have moved |
2674 | * CPUs since it called schedule(), thus the 'rq' on its stack | 2674 | * CPUs since it called schedule(), thus the 'rq' on its stack |
2675 | * frame will be invalid. | 2675 | * frame will be invalid. |
2676 | */ | 2676 | */ |
2677 | finish_task_switch(this_rq(), prev); | 2677 | finish_task_switch(this_rq(), prev); |
2678 | } | 2678 | } |
2679 | 2679 | ||
2680 | /* | 2680 | /* |
2681 | * nr_running, nr_uninterruptible and nr_context_switches: | 2681 | * nr_running, nr_uninterruptible and nr_context_switches: |
2682 | * | 2682 | * |
2683 | * externally visible scheduler statistics: current number of runnable | 2683 | * externally visible scheduler statistics: current number of runnable |
2684 | * threads, current number of uninterruptible-sleeping threads, total | 2684 | * threads, current number of uninterruptible-sleeping threads, total |
2685 | * number of context switches performed since bootup. | 2685 | * number of context switches performed since bootup. |
2686 | */ | 2686 | */ |
2687 | unsigned long nr_running(void) | 2687 | unsigned long nr_running(void) |
2688 | { | 2688 | { |
2689 | unsigned long i, sum = 0; | 2689 | unsigned long i, sum = 0; |
2690 | 2690 | ||
2691 | for_each_online_cpu(i) | 2691 | for_each_online_cpu(i) |
2692 | sum += cpu_rq(i)->nr_running; | 2692 | sum += cpu_rq(i)->nr_running; |
2693 | 2693 | ||
2694 | return sum; | 2694 | return sum; |
2695 | } | 2695 | } |
2696 | 2696 | ||
2697 | unsigned long nr_uninterruptible(void) | 2697 | unsigned long nr_uninterruptible(void) |
2698 | { | 2698 | { |
2699 | unsigned long i, sum = 0; | 2699 | unsigned long i, sum = 0; |
2700 | 2700 | ||
2701 | for_each_possible_cpu(i) | 2701 | for_each_possible_cpu(i) |
2702 | sum += cpu_rq(i)->nr_uninterruptible; | 2702 | sum += cpu_rq(i)->nr_uninterruptible; |
2703 | 2703 | ||
2704 | /* | 2704 | /* |
2705 | * Since we read the counters lockless, it might be slightly | 2705 | * Since we read the counters lockless, it might be slightly |
2706 | * inaccurate. Do not allow it to go below zero though: | 2706 | * inaccurate. Do not allow it to go below zero though: |
2707 | */ | 2707 | */ |
2708 | if (unlikely((long)sum < 0)) | 2708 | if (unlikely((long)sum < 0)) |
2709 | sum = 0; | 2709 | sum = 0; |
2710 | 2710 | ||
2711 | return sum; | 2711 | return sum; |
2712 | } | 2712 | } |
2713 | 2713 | ||
2714 | unsigned long long nr_context_switches(void) | 2714 | unsigned long long nr_context_switches(void) |
2715 | { | 2715 | { |
2716 | int i; | 2716 | int i; |
2717 | unsigned long long sum = 0; | 2717 | unsigned long long sum = 0; |
2718 | 2718 | ||
2719 | for_each_possible_cpu(i) | 2719 | for_each_possible_cpu(i) |
2720 | sum += cpu_rq(i)->nr_switches; | 2720 | sum += cpu_rq(i)->nr_switches; |
2721 | 2721 | ||
2722 | return sum; | 2722 | return sum; |
2723 | } | 2723 | } |
2724 | 2724 | ||
2725 | unsigned long nr_iowait(void) | 2725 | unsigned long nr_iowait(void) |
2726 | { | 2726 | { |
2727 | unsigned long i, sum = 0; | 2727 | unsigned long i, sum = 0; |
2728 | 2728 | ||
2729 | for_each_possible_cpu(i) | 2729 | for_each_possible_cpu(i) |
2730 | sum += atomic_read(&cpu_rq(i)->nr_iowait); | 2730 | sum += atomic_read(&cpu_rq(i)->nr_iowait); |
2731 | 2731 | ||
2732 | return sum; | 2732 | return sum; |
2733 | } | 2733 | } |
2734 | 2734 | ||
2735 | unsigned long nr_active(void) | 2735 | unsigned long nr_active(void) |
2736 | { | 2736 | { |
2737 | unsigned long i, running = 0, uninterruptible = 0; | 2737 | unsigned long i, running = 0, uninterruptible = 0; |
2738 | 2738 | ||
2739 | for_each_online_cpu(i) { | 2739 | for_each_online_cpu(i) { |
2740 | running += cpu_rq(i)->nr_running; | 2740 | running += cpu_rq(i)->nr_running; |
2741 | uninterruptible += cpu_rq(i)->nr_uninterruptible; | 2741 | uninterruptible += cpu_rq(i)->nr_uninterruptible; |
2742 | } | 2742 | } |
2743 | 2743 | ||
2744 | if (unlikely((long)uninterruptible < 0)) | 2744 | if (unlikely((long)uninterruptible < 0)) |
2745 | uninterruptible = 0; | 2745 | uninterruptible = 0; |
2746 | 2746 | ||
2747 | return running + uninterruptible; | 2747 | return running + uninterruptible; |
2748 | } | 2748 | } |
2749 | 2749 | ||
2750 | /* | 2750 | /* |
2751 | * Update rq->cpu_load[] statistics. This function is usually called every | 2751 | * Update rq->cpu_load[] statistics. This function is usually called every |
2752 | * scheduler tick (TICK_NSEC). | 2752 | * scheduler tick (TICK_NSEC). |
2753 | */ | 2753 | */ |
2754 | static void update_cpu_load(struct rq *this_rq) | 2754 | static void update_cpu_load(struct rq *this_rq) |
2755 | { | 2755 | { |
2756 | unsigned long this_load = this_rq->load.weight; | 2756 | unsigned long this_load = this_rq->load.weight; |
2757 | int i, scale; | 2757 | int i, scale; |
2758 | 2758 | ||
2759 | this_rq->nr_load_updates++; | 2759 | this_rq->nr_load_updates++; |
2760 | 2760 | ||
2761 | /* Update our load: */ | 2761 | /* Update our load: */ |
2762 | for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { | 2762 | for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { |
2763 | unsigned long old_load, new_load; | 2763 | unsigned long old_load, new_load; |
2764 | 2764 | ||
2765 | /* scale is effectively 1 << i now, and >> i divides by scale */ | 2765 | /* scale is effectively 1 << i now, and >> i divides by scale */ |
2766 | 2766 | ||
2767 | old_load = this_rq->cpu_load[i]; | 2767 | old_load = this_rq->cpu_load[i]; |
2768 | new_load = this_load; | 2768 | new_load = this_load; |
2769 | /* | 2769 | /* |
2770 | * Round up the averaging division if load is increasing. This | 2770 | * Round up the averaging division if load is increasing. This |
2771 | * prevents us from getting stuck on 9 if the load is 10, for | 2771 | * prevents us from getting stuck on 9 if the load is 10, for |
2772 | * example. | 2772 | * example. |
2773 | */ | 2773 | */ |
2774 | if (new_load > old_load) | 2774 | if (new_load > old_load) |
2775 | new_load += scale-1; | 2775 | new_load += scale-1; |
2776 | this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; | 2776 | this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; |
2777 | } | 2777 | } |
2778 | } | 2778 | } |
2779 | 2779 | ||
2780 | #ifdef CONFIG_SMP | 2780 | #ifdef CONFIG_SMP |
2781 | 2781 | ||
2782 | /* | 2782 | /* |
2783 | * double_rq_lock - safely lock two runqueues | 2783 | * double_rq_lock - safely lock two runqueues |
2784 | * | 2784 | * |
2785 | * Note this does not disable interrupts like task_rq_lock, | 2785 | * Note this does not disable interrupts like task_rq_lock, |
2786 | * you need to do so manually before calling. | 2786 | * you need to do so manually before calling. |
2787 | */ | 2787 | */ |
2788 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | 2788 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) |
2789 | __acquires(rq1->lock) | 2789 | __acquires(rq1->lock) |
2790 | __acquires(rq2->lock) | 2790 | __acquires(rq2->lock) |
2791 | { | 2791 | { |
2792 | BUG_ON(!irqs_disabled()); | 2792 | BUG_ON(!irqs_disabled()); |
2793 | if (rq1 == rq2) { | 2793 | if (rq1 == rq2) { |
2794 | spin_lock(&rq1->lock); | 2794 | spin_lock(&rq1->lock); |
2795 | __acquire(rq2->lock); /* Fake it out ;) */ | 2795 | __acquire(rq2->lock); /* Fake it out ;) */ |
2796 | } else { | 2796 | } else { |
2797 | if (rq1 < rq2) { | 2797 | if (rq1 < rq2) { |
2798 | spin_lock(&rq1->lock); | 2798 | spin_lock(&rq1->lock); |
2799 | spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | 2799 | spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); |
2800 | } else { | 2800 | } else { |
2801 | spin_lock(&rq2->lock); | 2801 | spin_lock(&rq2->lock); |
2802 | spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | 2802 | spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); |
2803 | } | 2803 | } |
2804 | } | 2804 | } |
2805 | update_rq_clock(rq1); | 2805 | update_rq_clock(rq1); |
2806 | update_rq_clock(rq2); | 2806 | update_rq_clock(rq2); |
2807 | } | 2807 | } |
2808 | 2808 | ||
2809 | /* | 2809 | /* |
2810 | * double_rq_unlock - safely unlock two runqueues | 2810 | * double_rq_unlock - safely unlock two runqueues |
2811 | * | 2811 | * |
2812 | * Note this does not restore interrupts like task_rq_unlock, | 2812 | * Note this does not restore interrupts like task_rq_unlock, |
2813 | * you need to do so manually after calling. | 2813 | * you need to do so manually after calling. |
2814 | */ | 2814 | */ |
2815 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | 2815 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
2816 | __releases(rq1->lock) | 2816 | __releases(rq1->lock) |
2817 | __releases(rq2->lock) | 2817 | __releases(rq2->lock) |
2818 | { | 2818 | { |
2819 | spin_unlock(&rq1->lock); | 2819 | spin_unlock(&rq1->lock); |
2820 | if (rq1 != rq2) | 2820 | if (rq1 != rq2) |
2821 | spin_unlock(&rq2->lock); | 2821 | spin_unlock(&rq2->lock); |
2822 | else | 2822 | else |
2823 | __release(rq2->lock); | 2823 | __release(rq2->lock); |
2824 | } | 2824 | } |
2825 | 2825 | ||
2826 | /* | 2826 | /* |
2827 | * If dest_cpu is allowed for this process, migrate the task to it. | 2827 | * If dest_cpu is allowed for this process, migrate the task to it. |
2828 | * This is accomplished by forcing the cpu_allowed mask to only | 2828 | * This is accomplished by forcing the cpu_allowed mask to only |
2829 | * allow dest_cpu, which will force the cpu onto dest_cpu. Then | 2829 | * allow dest_cpu, which will force the cpu onto dest_cpu. Then |
2830 | * the cpu_allowed mask is restored. | 2830 | * the cpu_allowed mask is restored. |
2831 | */ | 2831 | */ |
2832 | static void sched_migrate_task(struct task_struct *p, int dest_cpu) | 2832 | static void sched_migrate_task(struct task_struct *p, int dest_cpu) |
2833 | { | 2833 | { |
2834 | struct migration_req req; | 2834 | struct migration_req req; |
2835 | unsigned long flags; | 2835 | unsigned long flags; |
2836 | struct rq *rq; | 2836 | struct rq *rq; |
2837 | 2837 | ||
2838 | rq = task_rq_lock(p, &flags); | 2838 | rq = task_rq_lock(p, &flags); |
2839 | if (!cpu_isset(dest_cpu, p->cpus_allowed) | 2839 | if (!cpu_isset(dest_cpu, p->cpus_allowed) |
2840 | || unlikely(!cpu_active(dest_cpu))) | 2840 | || unlikely(!cpu_active(dest_cpu))) |
2841 | goto out; | 2841 | goto out; |
2842 | 2842 | ||
2843 | trace_sched_migrate_task(rq, p, dest_cpu); | 2843 | trace_sched_migrate_task(rq, p, dest_cpu); |
2844 | /* force the process onto the specified CPU */ | 2844 | /* force the process onto the specified CPU */ |
2845 | if (migrate_task(p, dest_cpu, &req)) { | 2845 | if (migrate_task(p, dest_cpu, &req)) { |
2846 | /* Need to wait for migration thread (might exit: take ref). */ | 2846 | /* Need to wait for migration thread (might exit: take ref). */ |
2847 | struct task_struct *mt = rq->migration_thread; | 2847 | struct task_struct *mt = rq->migration_thread; |
2848 | 2848 | ||
2849 | get_task_struct(mt); | 2849 | get_task_struct(mt); |
2850 | task_rq_unlock(rq, &flags); | 2850 | task_rq_unlock(rq, &flags); |
2851 | wake_up_process(mt); | 2851 | wake_up_process(mt); |
2852 | put_task_struct(mt); | 2852 | put_task_struct(mt); |
2853 | wait_for_completion(&req.done); | 2853 | wait_for_completion(&req.done); |
2854 | 2854 | ||
2855 | return; | 2855 | return; |
2856 | } | 2856 | } |
2857 | out: | 2857 | out: |
2858 | task_rq_unlock(rq, &flags); | 2858 | task_rq_unlock(rq, &flags); |
2859 | } | 2859 | } |
2860 | 2860 | ||
2861 | /* | 2861 | /* |
2862 | * sched_exec - execve() is a valuable balancing opportunity, because at | 2862 | * sched_exec - execve() is a valuable balancing opportunity, because at |
2863 | * this point the task has the smallest effective memory and cache footprint. | 2863 | * this point the task has the smallest effective memory and cache footprint. |
2864 | */ | 2864 | */ |
2865 | void sched_exec(void) | 2865 | void sched_exec(void) |
2866 | { | 2866 | { |
2867 | int new_cpu, this_cpu = get_cpu(); | 2867 | int new_cpu, this_cpu = get_cpu(); |
2868 | new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); | 2868 | new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); |
2869 | put_cpu(); | 2869 | put_cpu(); |
2870 | if (new_cpu != this_cpu) | 2870 | if (new_cpu != this_cpu) |
2871 | sched_migrate_task(current, new_cpu); | 2871 | sched_migrate_task(current, new_cpu); |
2872 | } | 2872 | } |
2873 | 2873 | ||
2874 | /* | 2874 | /* |
2875 | * pull_task - move a task from a remote runqueue to the local runqueue. | 2875 | * pull_task - move a task from a remote runqueue to the local runqueue. |
2876 | * Both runqueues must be locked. | 2876 | * Both runqueues must be locked. |
2877 | */ | 2877 | */ |
2878 | static void pull_task(struct rq *src_rq, struct task_struct *p, | 2878 | static void pull_task(struct rq *src_rq, struct task_struct *p, |
2879 | struct rq *this_rq, int this_cpu) | 2879 | struct rq *this_rq, int this_cpu) |
2880 | { | 2880 | { |
2881 | deactivate_task(src_rq, p, 0); | 2881 | deactivate_task(src_rq, p, 0); |
2882 | set_task_cpu(p, this_cpu); | 2882 | set_task_cpu(p, this_cpu); |
2883 | activate_task(this_rq, p, 0); | 2883 | activate_task(this_rq, p, 0); |
2884 | /* | 2884 | /* |
2885 | * Note that idle threads have a prio of MAX_PRIO, for this test | 2885 | * Note that idle threads have a prio of MAX_PRIO, for this test |
2886 | * to be always true for them. | 2886 | * to be always true for them. |
2887 | */ | 2887 | */ |
2888 | check_preempt_curr(this_rq, p, 0); | 2888 | check_preempt_curr(this_rq, p, 0); |
2889 | } | 2889 | } |
2890 | 2890 | ||
2891 | /* | 2891 | /* |
2892 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | 2892 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? |
2893 | */ | 2893 | */ |
2894 | static | 2894 | static |
2895 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | 2895 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, |
2896 | struct sched_domain *sd, enum cpu_idle_type idle, | 2896 | struct sched_domain *sd, enum cpu_idle_type idle, |
2897 | int *all_pinned) | 2897 | int *all_pinned) |
2898 | { | 2898 | { |
2899 | /* | 2899 | /* |
2900 | * We do not migrate tasks that are: | 2900 | * We do not migrate tasks that are: |
2901 | * 1) running (obviously), or | 2901 | * 1) running (obviously), or |
2902 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | 2902 | * 2) cannot be migrated to this CPU due to cpus_allowed, or |
2903 | * 3) are cache-hot on their current CPU. | 2903 | * 3) are cache-hot on their current CPU. |
2904 | */ | 2904 | */ |
2905 | if (!cpu_isset(this_cpu, p->cpus_allowed)) { | 2905 | if (!cpu_isset(this_cpu, p->cpus_allowed)) { |
2906 | schedstat_inc(p, se.nr_failed_migrations_affine); | 2906 | schedstat_inc(p, se.nr_failed_migrations_affine); |
2907 | return 0; | 2907 | return 0; |
2908 | } | 2908 | } |
2909 | *all_pinned = 0; | 2909 | *all_pinned = 0; |
2910 | 2910 | ||
2911 | if (task_running(rq, p)) { | 2911 | if (task_running(rq, p)) { |
2912 | schedstat_inc(p, se.nr_failed_migrations_running); | 2912 | schedstat_inc(p, se.nr_failed_migrations_running); |
2913 | return 0; | 2913 | return 0; |
2914 | } | 2914 | } |
2915 | 2915 | ||
2916 | /* | 2916 | /* |
2917 | * Aggressive migration if: | 2917 | * Aggressive migration if: |
2918 | * 1) task is cache cold, or | 2918 | * 1) task is cache cold, or |
2919 | * 2) too many balance attempts have failed. | 2919 | * 2) too many balance attempts have failed. |
2920 | */ | 2920 | */ |
2921 | 2921 | ||
2922 | if (!task_hot(p, rq->clock, sd) || | 2922 | if (!task_hot(p, rq->clock, sd) || |
2923 | sd->nr_balance_failed > sd->cache_nice_tries) { | 2923 | sd->nr_balance_failed > sd->cache_nice_tries) { |
2924 | #ifdef CONFIG_SCHEDSTATS | 2924 | #ifdef CONFIG_SCHEDSTATS |
2925 | if (task_hot(p, rq->clock, sd)) { | 2925 | if (task_hot(p, rq->clock, sd)) { |
2926 | schedstat_inc(sd, lb_hot_gained[idle]); | 2926 | schedstat_inc(sd, lb_hot_gained[idle]); |
2927 | schedstat_inc(p, se.nr_forced_migrations); | 2927 | schedstat_inc(p, se.nr_forced_migrations); |
2928 | } | 2928 | } |
2929 | #endif | 2929 | #endif |
2930 | return 1; | 2930 | return 1; |
2931 | } | 2931 | } |
2932 | 2932 | ||
2933 | if (task_hot(p, rq->clock, sd)) { | 2933 | if (task_hot(p, rq->clock, sd)) { |
2934 | schedstat_inc(p, se.nr_failed_migrations_hot); | 2934 | schedstat_inc(p, se.nr_failed_migrations_hot); |
2935 | return 0; | 2935 | return 0; |
2936 | } | 2936 | } |
2937 | return 1; | 2937 | return 1; |
2938 | } | 2938 | } |
2939 | 2939 | ||
2940 | static unsigned long | 2940 | static unsigned long |
2941 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | 2941 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, |
2942 | unsigned long max_load_move, struct sched_domain *sd, | 2942 | unsigned long max_load_move, struct sched_domain *sd, |
2943 | enum cpu_idle_type idle, int *all_pinned, | 2943 | enum cpu_idle_type idle, int *all_pinned, |
2944 | int *this_best_prio, struct rq_iterator *iterator) | 2944 | int *this_best_prio, struct rq_iterator *iterator) |
2945 | { | 2945 | { |
2946 | int loops = 0, pulled = 0, pinned = 0; | 2946 | int loops = 0, pulled = 0, pinned = 0; |
2947 | struct task_struct *p; | 2947 | struct task_struct *p; |
2948 | long rem_load_move = max_load_move; | 2948 | long rem_load_move = max_load_move; |
2949 | 2949 | ||
2950 | if (max_load_move == 0) | 2950 | if (max_load_move == 0) |
2951 | goto out; | 2951 | goto out; |
2952 | 2952 | ||
2953 | pinned = 1; | 2953 | pinned = 1; |
2954 | 2954 | ||
2955 | /* | 2955 | /* |
2956 | * Start the load-balancing iterator: | 2956 | * Start the load-balancing iterator: |
2957 | */ | 2957 | */ |
2958 | p = iterator->start(iterator->arg); | 2958 | p = iterator->start(iterator->arg); |
2959 | next: | 2959 | next: |
2960 | if (!p || loops++ > sysctl_sched_nr_migrate) | 2960 | if (!p || loops++ > sysctl_sched_nr_migrate) |
2961 | goto out; | 2961 | goto out; |
2962 | 2962 | ||
2963 | if ((p->se.load.weight >> 1) > rem_load_move || | 2963 | if ((p->se.load.weight >> 1) > rem_load_move || |
2964 | !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | 2964 | !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { |
2965 | p = iterator->next(iterator->arg); | 2965 | p = iterator->next(iterator->arg); |
2966 | goto next; | 2966 | goto next; |
2967 | } | 2967 | } |
2968 | 2968 | ||
2969 | pull_task(busiest, p, this_rq, this_cpu); | 2969 | pull_task(busiest, p, this_rq, this_cpu); |
2970 | pulled++; | 2970 | pulled++; |
2971 | rem_load_move -= p->se.load.weight; | 2971 | rem_load_move -= p->se.load.weight; |
2972 | 2972 | ||
2973 | /* | 2973 | /* |
2974 | * We only want to steal up to the prescribed amount of weighted load. | 2974 | * We only want to steal up to the prescribed amount of weighted load. |
2975 | */ | 2975 | */ |
2976 | if (rem_load_move > 0) { | 2976 | if (rem_load_move > 0) { |
2977 | if (p->prio < *this_best_prio) | 2977 | if (p->prio < *this_best_prio) |
2978 | *this_best_prio = p->prio; | 2978 | *this_best_prio = p->prio; |
2979 | p = iterator->next(iterator->arg); | 2979 | p = iterator->next(iterator->arg); |
2980 | goto next; | 2980 | goto next; |
2981 | } | 2981 | } |
2982 | out: | 2982 | out: |
2983 | /* | 2983 | /* |
2984 | * Right now, this is one of only two places pull_task() is called, | 2984 | * Right now, this is one of only two places pull_task() is called, |
2985 | * so we can safely collect pull_task() stats here rather than | 2985 | * so we can safely collect pull_task() stats here rather than |
2986 | * inside pull_task(). | 2986 | * inside pull_task(). |
2987 | */ | 2987 | */ |
2988 | schedstat_add(sd, lb_gained[idle], pulled); | 2988 | schedstat_add(sd, lb_gained[idle], pulled); |
2989 | 2989 | ||
2990 | if (all_pinned) | 2990 | if (all_pinned) |
2991 | *all_pinned = pinned; | 2991 | *all_pinned = pinned; |
2992 | 2992 | ||
2993 | return max_load_move - rem_load_move; | 2993 | return max_load_move - rem_load_move; |
2994 | } | 2994 | } |
2995 | 2995 | ||
2996 | /* | 2996 | /* |
2997 | * move_tasks tries to move up to max_load_move weighted load from busiest to | 2997 | * move_tasks tries to move up to max_load_move weighted load from busiest to |
2998 | * this_rq, as part of a balancing operation within domain "sd". | 2998 | * this_rq, as part of a balancing operation within domain "sd". |
2999 | * Returns 1 if successful and 0 otherwise. | 2999 | * Returns 1 if successful and 0 otherwise. |
3000 | * | 3000 | * |
3001 | * Called with both runqueues locked. | 3001 | * Called with both runqueues locked. |
3002 | */ | 3002 | */ |
3003 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | 3003 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, |
3004 | unsigned long max_load_move, | 3004 | unsigned long max_load_move, |
3005 | struct sched_domain *sd, enum cpu_idle_type idle, | 3005 | struct sched_domain *sd, enum cpu_idle_type idle, |
3006 | int *all_pinned) | 3006 | int *all_pinned) |
3007 | { | 3007 | { |
3008 | const struct sched_class *class = sched_class_highest; | 3008 | const struct sched_class *class = sched_class_highest; |
3009 | unsigned long total_load_moved = 0; | 3009 | unsigned long total_load_moved = 0; |
3010 | int this_best_prio = this_rq->curr->prio; | 3010 | int this_best_prio = this_rq->curr->prio; |
3011 | 3011 | ||
3012 | do { | 3012 | do { |
3013 | total_load_moved += | 3013 | total_load_moved += |
3014 | class->load_balance(this_rq, this_cpu, busiest, | 3014 | class->load_balance(this_rq, this_cpu, busiest, |
3015 | max_load_move - total_load_moved, | 3015 | max_load_move - total_load_moved, |
3016 | sd, idle, all_pinned, &this_best_prio); | 3016 | sd, idle, all_pinned, &this_best_prio); |
3017 | class = class->next; | 3017 | class = class->next; |
3018 | 3018 | ||
3019 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | 3019 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) |
3020 | break; | 3020 | break; |
3021 | 3021 | ||
3022 | } while (class && max_load_move > total_load_moved); | 3022 | } while (class && max_load_move > total_load_moved); |
3023 | 3023 | ||
3024 | return total_load_moved > 0; | 3024 | return total_load_moved > 0; |
3025 | } | 3025 | } |
3026 | 3026 | ||
3027 | static int | 3027 | static int |
3028 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | 3028 | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, |
3029 | struct sched_domain *sd, enum cpu_idle_type idle, | 3029 | struct sched_domain *sd, enum cpu_idle_type idle, |
3030 | struct rq_iterator *iterator) | 3030 | struct rq_iterator *iterator) |
3031 | { | 3031 | { |
3032 | struct task_struct *p = iterator->start(iterator->arg); | 3032 | struct task_struct *p = iterator->start(iterator->arg); |
3033 | int pinned = 0; | 3033 | int pinned = 0; |
3034 | 3034 | ||
3035 | while (p) { | 3035 | while (p) { |
3036 | if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | 3036 | if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { |
3037 | pull_task(busiest, p, this_rq, this_cpu); | 3037 | pull_task(busiest, p, this_rq, this_cpu); |
3038 | /* | 3038 | /* |
3039 | * Right now, this is only the second place pull_task() | 3039 | * Right now, this is only the second place pull_task() |
3040 | * is called, so we can safely collect pull_task() | 3040 | * is called, so we can safely collect pull_task() |
3041 | * stats here rather than inside pull_task(). | 3041 | * stats here rather than inside pull_task(). |
3042 | */ | 3042 | */ |
3043 | schedstat_inc(sd, lb_gained[idle]); | 3043 | schedstat_inc(sd, lb_gained[idle]); |
3044 | 3044 | ||
3045 | return 1; | 3045 | return 1; |
3046 | } | 3046 | } |
3047 | p = iterator->next(iterator->arg); | 3047 | p = iterator->next(iterator->arg); |
3048 | } | 3048 | } |
3049 | 3049 | ||
3050 | return 0; | 3050 | return 0; |
3051 | } | 3051 | } |
3052 | 3052 | ||
3053 | /* | 3053 | /* |
3054 | * move_one_task tries to move exactly one task from busiest to this_rq, as | 3054 | * move_one_task tries to move exactly one task from busiest to this_rq, as |
3055 | * part of active balancing operations within "domain". | 3055 | * part of active balancing operations within "domain". |
3056 | * Returns 1 if successful and 0 otherwise. | 3056 | * Returns 1 if successful and 0 otherwise. |
3057 | * | 3057 | * |
3058 | * Called with both runqueues locked. | 3058 | * Called with both runqueues locked. |
3059 | */ | 3059 | */ |
3060 | static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | 3060 | static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, |
3061 | struct sched_domain *sd, enum cpu_idle_type idle) | 3061 | struct sched_domain *sd, enum cpu_idle_type idle) |
3062 | { | 3062 | { |
3063 | const struct sched_class *class; | 3063 | const struct sched_class *class; |
3064 | 3064 | ||
3065 | for (class = sched_class_highest; class; class = class->next) | 3065 | for (class = sched_class_highest; class; class = class->next) |
3066 | if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) | 3066 | if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) |
3067 | return 1; | 3067 | return 1; |
3068 | 3068 | ||
3069 | return 0; | 3069 | return 0; |
3070 | } | 3070 | } |
3071 | 3071 | ||
3072 | /* | 3072 | /* |
3073 | * find_busiest_group finds and returns the busiest CPU group within the | 3073 | * find_busiest_group finds and returns the busiest CPU group within the |
3074 | * domain. It calculates and returns the amount of weighted load which | 3074 | * domain. It calculates and returns the amount of weighted load which |
3075 | * should be moved to restore balance via the imbalance parameter. | 3075 | * should be moved to restore balance via the imbalance parameter. |
3076 | */ | 3076 | */ |
3077 | static struct sched_group * | 3077 | static struct sched_group * |
3078 | find_busiest_group(struct sched_domain *sd, int this_cpu, | 3078 | find_busiest_group(struct sched_domain *sd, int this_cpu, |
3079 | unsigned long *imbalance, enum cpu_idle_type idle, | 3079 | unsigned long *imbalance, enum cpu_idle_type idle, |
3080 | int *sd_idle, const cpumask_t *cpus, int *balance) | 3080 | int *sd_idle, const cpumask_t *cpus, int *balance) |
3081 | { | 3081 | { |
3082 | struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; | 3082 | struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; |
3083 | unsigned long max_load, avg_load, total_load, this_load, total_pwr; | 3083 | unsigned long max_load, avg_load, total_load, this_load, total_pwr; |
3084 | unsigned long max_pull; | 3084 | unsigned long max_pull; |
3085 | unsigned long busiest_load_per_task, busiest_nr_running; | 3085 | unsigned long busiest_load_per_task, busiest_nr_running; |
3086 | unsigned long this_load_per_task, this_nr_running; | 3086 | unsigned long this_load_per_task, this_nr_running; |
3087 | int load_idx, group_imb = 0; | 3087 | int load_idx, group_imb = 0; |
3088 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 3088 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
3089 | int power_savings_balance = 1; | 3089 | int power_savings_balance = 1; |
3090 | unsigned long leader_nr_running = 0, min_load_per_task = 0; | 3090 | unsigned long leader_nr_running = 0, min_load_per_task = 0; |
3091 | unsigned long min_nr_running = ULONG_MAX; | 3091 | unsigned long min_nr_running = ULONG_MAX; |
3092 | struct sched_group *group_min = NULL, *group_leader = NULL; | 3092 | struct sched_group *group_min = NULL, *group_leader = NULL; |
3093 | #endif | 3093 | #endif |
3094 | 3094 | ||
3095 | max_load = this_load = total_load = total_pwr = 0; | 3095 | max_load = this_load = total_load = total_pwr = 0; |
3096 | busiest_load_per_task = busiest_nr_running = 0; | 3096 | busiest_load_per_task = busiest_nr_running = 0; |
3097 | this_load_per_task = this_nr_running = 0; | 3097 | this_load_per_task = this_nr_running = 0; |
3098 | 3098 | ||
3099 | if (idle == CPU_NOT_IDLE) | 3099 | if (idle == CPU_NOT_IDLE) |
3100 | load_idx = sd->busy_idx; | 3100 | load_idx = sd->busy_idx; |
3101 | else if (idle == CPU_NEWLY_IDLE) | 3101 | else if (idle == CPU_NEWLY_IDLE) |
3102 | load_idx = sd->newidle_idx; | 3102 | load_idx = sd->newidle_idx; |
3103 | else | 3103 | else |
3104 | load_idx = sd->idle_idx; | 3104 | load_idx = sd->idle_idx; |
3105 | 3105 | ||
3106 | do { | 3106 | do { |
3107 | unsigned long load, group_capacity, max_cpu_load, min_cpu_load; | 3107 | unsigned long load, group_capacity, max_cpu_load, min_cpu_load; |
3108 | int local_group; | 3108 | int local_group; |
3109 | int i; | 3109 | int i; |
3110 | int __group_imb = 0; | 3110 | int __group_imb = 0; |
3111 | unsigned int balance_cpu = -1, first_idle_cpu = 0; | 3111 | unsigned int balance_cpu = -1, first_idle_cpu = 0; |
3112 | unsigned long sum_nr_running, sum_weighted_load; | 3112 | unsigned long sum_nr_running, sum_weighted_load; |
3113 | unsigned long sum_avg_load_per_task; | 3113 | unsigned long sum_avg_load_per_task; |
3114 | unsigned long avg_load_per_task; | 3114 | unsigned long avg_load_per_task; |
3115 | 3115 | ||
3116 | local_group = cpu_isset(this_cpu, group->cpumask); | 3116 | local_group = cpu_isset(this_cpu, group->cpumask); |
3117 | 3117 | ||
3118 | if (local_group) | 3118 | if (local_group) |
3119 | balance_cpu = first_cpu(group->cpumask); | 3119 | balance_cpu = first_cpu(group->cpumask); |
3120 | 3120 | ||
3121 | /* Tally up the load of all CPUs in the group */ | 3121 | /* Tally up the load of all CPUs in the group */ |
3122 | sum_weighted_load = sum_nr_running = avg_load = 0; | 3122 | sum_weighted_load = sum_nr_running = avg_load = 0; |
3123 | sum_avg_load_per_task = avg_load_per_task = 0; | 3123 | sum_avg_load_per_task = avg_load_per_task = 0; |
3124 | 3124 | ||
3125 | max_cpu_load = 0; | 3125 | max_cpu_load = 0; |
3126 | min_cpu_load = ~0UL; | 3126 | min_cpu_load = ~0UL; |
3127 | 3127 | ||
3128 | for_each_cpu_mask_nr(i, group->cpumask) { | 3128 | for_each_cpu_mask_nr(i, group->cpumask) { |
3129 | struct rq *rq; | 3129 | struct rq *rq; |
3130 | 3130 | ||
3131 | if (!cpu_isset(i, *cpus)) | 3131 | if (!cpu_isset(i, *cpus)) |
3132 | continue; | 3132 | continue; |
3133 | 3133 | ||
3134 | rq = cpu_rq(i); | 3134 | rq = cpu_rq(i); |
3135 | 3135 | ||
3136 | if (*sd_idle && rq->nr_running) | 3136 | if (*sd_idle && rq->nr_running) |
3137 | *sd_idle = 0; | 3137 | *sd_idle = 0; |
3138 | 3138 | ||
3139 | /* Bias balancing toward cpus of our domain */ | 3139 | /* Bias balancing toward cpus of our domain */ |
3140 | if (local_group) { | 3140 | if (local_group) { |
3141 | if (idle_cpu(i) && !first_idle_cpu) { | 3141 | if (idle_cpu(i) && !first_idle_cpu) { |
3142 | first_idle_cpu = 1; | 3142 | first_idle_cpu = 1; |
3143 | balance_cpu = i; | 3143 | balance_cpu = i; |
3144 | } | 3144 | } |
3145 | 3145 | ||
3146 | load = target_load(i, load_idx); | 3146 | load = target_load(i, load_idx); |
3147 | } else { | 3147 | } else { |
3148 | load = source_load(i, load_idx); | 3148 | load = source_load(i, load_idx); |
3149 | if (load > max_cpu_load) | 3149 | if (load > max_cpu_load) |
3150 | max_cpu_load = load; | 3150 | max_cpu_load = load; |
3151 | if (min_cpu_load > load) | 3151 | if (min_cpu_load > load) |
3152 | min_cpu_load = load; | 3152 | min_cpu_load = load; |
3153 | } | 3153 | } |
3154 | 3154 | ||
3155 | avg_load += load; | 3155 | avg_load += load; |
3156 | sum_nr_running += rq->nr_running; | 3156 | sum_nr_running += rq->nr_running; |
3157 | sum_weighted_load += weighted_cpuload(i); | 3157 | sum_weighted_load += weighted_cpuload(i); |
3158 | 3158 | ||
3159 | sum_avg_load_per_task += cpu_avg_load_per_task(i); | 3159 | sum_avg_load_per_task += cpu_avg_load_per_task(i); |
3160 | } | 3160 | } |
3161 | 3161 | ||
3162 | /* | 3162 | /* |
3163 | * First idle cpu or the first cpu(busiest) in this sched group | 3163 | * First idle cpu or the first cpu(busiest) in this sched group |
3164 | * is eligible for doing load balancing at this and above | 3164 | * is eligible for doing load balancing at this and above |
3165 | * domains. In the newly idle case, we will allow all the cpu's | 3165 | * domains. In the newly idle case, we will allow all the cpu's |
3166 | * to do the newly idle load balance. | 3166 | * to do the newly idle load balance. |
3167 | */ | 3167 | */ |
3168 | if (idle != CPU_NEWLY_IDLE && local_group && | 3168 | if (idle != CPU_NEWLY_IDLE && local_group && |
3169 | balance_cpu != this_cpu && balance) { | 3169 | balance_cpu != this_cpu && balance) { |
3170 | *balance = 0; | 3170 | *balance = 0; |
3171 | goto ret; | 3171 | goto ret; |
3172 | } | 3172 | } |
3173 | 3173 | ||
3174 | total_load += avg_load; | 3174 | total_load += avg_load; |
3175 | total_pwr += group->__cpu_power; | 3175 | total_pwr += group->__cpu_power; |
3176 | 3176 | ||
3177 | /* Adjust by relative CPU power of the group */ | 3177 | /* Adjust by relative CPU power of the group */ |
3178 | avg_load = sg_div_cpu_power(group, | 3178 | avg_load = sg_div_cpu_power(group, |
3179 | avg_load * SCHED_LOAD_SCALE); | 3179 | avg_load * SCHED_LOAD_SCALE); |
3180 | 3180 | ||
3181 | 3181 | ||
3182 | /* | 3182 | /* |
3183 | * Consider the group unbalanced when the imbalance is larger | 3183 | * Consider the group unbalanced when the imbalance is larger |
3184 | * than the average weight of two tasks. | 3184 | * than the average weight of two tasks. |
3185 | * | 3185 | * |
3186 | * APZ: with cgroup the avg task weight can vary wildly and | 3186 | * APZ: with cgroup the avg task weight can vary wildly and |
3187 | * might not be a suitable number - should we keep a | 3187 | * might not be a suitable number - should we keep a |
3188 | * normalized nr_running number somewhere that negates | 3188 | * normalized nr_running number somewhere that negates |
3189 | * the hierarchy? | 3189 | * the hierarchy? |
3190 | */ | 3190 | */ |
3191 | avg_load_per_task = sg_div_cpu_power(group, | 3191 | avg_load_per_task = sg_div_cpu_power(group, |
3192 | sum_avg_load_per_task * SCHED_LOAD_SCALE); | 3192 | sum_avg_load_per_task * SCHED_LOAD_SCALE); |
3193 | 3193 | ||
3194 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | 3194 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) |
3195 | __group_imb = 1; | 3195 | __group_imb = 1; |
3196 | 3196 | ||
3197 | group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; | 3197 | group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; |
3198 | 3198 | ||
3199 | if (local_group) { | 3199 | if (local_group) { |
3200 | this_load = avg_load; | 3200 | this_load = avg_load; |
3201 | this = group; | 3201 | this = group; |
3202 | this_nr_running = sum_nr_running; | 3202 | this_nr_running = sum_nr_running; |
3203 | this_load_per_task = sum_weighted_load; | 3203 | this_load_per_task = sum_weighted_load; |
3204 | } else if (avg_load > max_load && | 3204 | } else if (avg_load > max_load && |
3205 | (sum_nr_running > group_capacity || __group_imb)) { | 3205 | (sum_nr_running > group_capacity || __group_imb)) { |
3206 | max_load = avg_load; | 3206 | max_load = avg_load; |
3207 | busiest = group; | 3207 | busiest = group; |
3208 | busiest_nr_running = sum_nr_running; | 3208 | busiest_nr_running = sum_nr_running; |
3209 | busiest_load_per_task = sum_weighted_load; | 3209 | busiest_load_per_task = sum_weighted_load; |
3210 | group_imb = __group_imb; | 3210 | group_imb = __group_imb; |
3211 | } | 3211 | } |
3212 | 3212 | ||
3213 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 3213 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
3214 | /* | 3214 | /* |
3215 | * Busy processors will not participate in power savings | 3215 | * Busy processors will not participate in power savings |
3216 | * balance. | 3216 | * balance. |
3217 | */ | 3217 | */ |
3218 | if (idle == CPU_NOT_IDLE || | 3218 | if (idle == CPU_NOT_IDLE || |
3219 | !(sd->flags & SD_POWERSAVINGS_BALANCE)) | 3219 | !(sd->flags & SD_POWERSAVINGS_BALANCE)) |
3220 | goto group_next; | 3220 | goto group_next; |
3221 | 3221 | ||
3222 | /* | 3222 | /* |
3223 | * If the local group is idle or completely loaded | 3223 | * If the local group is idle or completely loaded |
3224 | * no need to do power savings balance at this domain | 3224 | * no need to do power savings balance at this domain |
3225 | */ | 3225 | */ |
3226 | if (local_group && (this_nr_running >= group_capacity || | 3226 | if (local_group && (this_nr_running >= group_capacity || |
3227 | !this_nr_running)) | 3227 | !this_nr_running)) |
3228 | power_savings_balance = 0; | 3228 | power_savings_balance = 0; |
3229 | 3229 | ||
3230 | /* | 3230 | /* |
3231 | * If a group is already running at full capacity or idle, | 3231 | * If a group is already running at full capacity or idle, |
3232 | * don't include that group in power savings calculations | 3232 | * don't include that group in power savings calculations |
3233 | */ | 3233 | */ |
3234 | if (!power_savings_balance || sum_nr_running >= group_capacity | 3234 | if (!power_savings_balance || sum_nr_running >= group_capacity |
3235 | || !sum_nr_running) | 3235 | || !sum_nr_running) |
3236 | goto group_next; | 3236 | goto group_next; |
3237 | 3237 | ||
3238 | /* | 3238 | /* |
3239 | * Calculate the group which has the least non-idle load. | 3239 | * Calculate the group which has the least non-idle load. |
3240 | * This is the group from where we need to pick up the load | 3240 | * This is the group from where we need to pick up the load |
3241 | * for saving power | 3241 | * for saving power |
3242 | */ | 3242 | */ |
3243 | if ((sum_nr_running < min_nr_running) || | 3243 | if ((sum_nr_running < min_nr_running) || |
3244 | (sum_nr_running == min_nr_running && | 3244 | (sum_nr_running == min_nr_running && |
3245 | first_cpu(group->cpumask) < | 3245 | first_cpu(group->cpumask) < |
3246 | first_cpu(group_min->cpumask))) { | 3246 | first_cpu(group_min->cpumask))) { |
3247 | group_min = group; | 3247 | group_min = group; |
3248 | min_nr_running = sum_nr_running; | 3248 | min_nr_running = sum_nr_running; |
3249 | min_load_per_task = sum_weighted_load / | 3249 | min_load_per_task = sum_weighted_load / |
3250 | sum_nr_running; | 3250 | sum_nr_running; |
3251 | } | 3251 | } |
3252 | 3252 | ||
3253 | /* | 3253 | /* |
3254 | * Calculate the group which is almost near its | 3254 | * Calculate the group which is almost near its |
3255 | * capacity but still has some space to pick up some load | 3255 | * capacity but still has some space to pick up some load |
3256 | * from other group and save more power | 3256 | * from other group and save more power |
3257 | */ | 3257 | */ |
3258 | if (sum_nr_running <= group_capacity - 1) { | 3258 | if (sum_nr_running <= group_capacity - 1) { |
3259 | if (sum_nr_running > leader_nr_running || | 3259 | if (sum_nr_running > leader_nr_running || |
3260 | (sum_nr_running == leader_nr_running && | 3260 | (sum_nr_running == leader_nr_running && |
3261 | first_cpu(group->cpumask) > | 3261 | first_cpu(group->cpumask) > |
3262 | first_cpu(group_leader->cpumask))) { | 3262 | first_cpu(group_leader->cpumask))) { |
3263 | group_leader = group; | 3263 | group_leader = group; |
3264 | leader_nr_running = sum_nr_running; | 3264 | leader_nr_running = sum_nr_running; |
3265 | } | 3265 | } |
3266 | } | 3266 | } |
3267 | group_next: | 3267 | group_next: |
3268 | #endif | 3268 | #endif |
3269 | group = group->next; | 3269 | group = group->next; |
3270 | } while (group != sd->groups); | 3270 | } while (group != sd->groups); |
3271 | 3271 | ||
3272 | if (!busiest || this_load >= max_load || busiest_nr_running == 0) | 3272 | if (!busiest || this_load >= max_load || busiest_nr_running == 0) |
3273 | goto out_balanced; | 3273 | goto out_balanced; |
3274 | 3274 | ||
3275 | avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; | 3275 | avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; |
3276 | 3276 | ||
3277 | if (this_load >= avg_load || | 3277 | if (this_load >= avg_load || |
3278 | 100*max_load <= sd->imbalance_pct*this_load) | 3278 | 100*max_load <= sd->imbalance_pct*this_load) |
3279 | goto out_balanced; | 3279 | goto out_balanced; |
3280 | 3280 | ||
3281 | busiest_load_per_task /= busiest_nr_running; | 3281 | busiest_load_per_task /= busiest_nr_running; |
3282 | if (group_imb) | 3282 | if (group_imb) |
3283 | busiest_load_per_task = min(busiest_load_per_task, avg_load); | 3283 | busiest_load_per_task = min(busiest_load_per_task, avg_load); |
3284 | 3284 | ||
3285 | /* | 3285 | /* |
3286 | * We're trying to get all the cpus to the average_load, so we don't | 3286 | * We're trying to get all the cpus to the average_load, so we don't |
3287 | * want to push ourselves above the average load, nor do we wish to | 3287 | * want to push ourselves above the average load, nor do we wish to |
3288 | * reduce the max loaded cpu below the average load, as either of these | 3288 | * reduce the max loaded cpu below the average load, as either of these |
3289 | * actions would just result in more rebalancing later, and ping-pong | 3289 | * actions would just result in more rebalancing later, and ping-pong |
3290 | * tasks around. Thus we look for the minimum possible imbalance. | 3290 | * tasks around. Thus we look for the minimum possible imbalance. |
3291 | * Negative imbalances (*we* are more loaded than anyone else) will | 3291 | * Negative imbalances (*we* are more loaded than anyone else) will |
3292 | * be counted as no imbalance for these purposes -- we can't fix that | 3292 | * be counted as no imbalance for these purposes -- we can't fix that |
3293 | * by pulling tasks to us. Be careful of negative numbers as they'll | 3293 | * by pulling tasks to us. Be careful of negative numbers as they'll |
3294 | * appear as very large values with unsigned longs. | 3294 | * appear as very large values with unsigned longs. |
3295 | */ | 3295 | */ |
3296 | if (max_load <= busiest_load_per_task) | 3296 | if (max_load <= busiest_load_per_task) |
3297 | goto out_balanced; | 3297 | goto out_balanced; |
3298 | 3298 | ||
3299 | /* | 3299 | /* |
3300 | * In the presence of smp nice balancing, certain scenarios can have | 3300 | * In the presence of smp nice balancing, certain scenarios can have |
3301 | * max load less than avg load(as we skip the groups at or below | 3301 | * max load less than avg load(as we skip the groups at or below |
3302 | * its cpu_power, while calculating max_load..) | 3302 | * its cpu_power, while calculating max_load..) |
3303 | */ | 3303 | */ |
3304 | if (max_load < avg_load) { | 3304 | if (max_load < avg_load) { |
3305 | *imbalance = 0; | 3305 | *imbalance = 0; |
3306 | goto small_imbalance; | 3306 | goto small_imbalance; |
3307 | } | 3307 | } |
3308 | 3308 | ||
3309 | /* Don't want to pull so many tasks that a group would go idle */ | 3309 | /* Don't want to pull so many tasks that a group would go idle */ |
3310 | max_pull = min(max_load - avg_load, max_load - busiest_load_per_task); | 3310 | max_pull = min(max_load - avg_load, max_load - busiest_load_per_task); |
3311 | 3311 | ||
3312 | /* How much load to actually move to equalise the imbalance */ | 3312 | /* How much load to actually move to equalise the imbalance */ |
3313 | *imbalance = min(max_pull * busiest->__cpu_power, | 3313 | *imbalance = min(max_pull * busiest->__cpu_power, |
3314 | (avg_load - this_load) * this->__cpu_power) | 3314 | (avg_load - this_load) * this->__cpu_power) |
3315 | / SCHED_LOAD_SCALE; | 3315 | / SCHED_LOAD_SCALE; |
3316 | 3316 | ||
3317 | /* | 3317 | /* |
3318 | * if *imbalance is less than the average load per runnable task | 3318 | * if *imbalance is less than the average load per runnable task |
3319 | * there is no gaurantee that any tasks will be moved so we'll have | 3319 | * there is no gaurantee that any tasks will be moved so we'll have |
3320 | * a think about bumping its value to force at least one task to be | 3320 | * a think about bumping its value to force at least one task to be |
3321 | * moved | 3321 | * moved |
3322 | */ | 3322 | */ |
3323 | if (*imbalance < busiest_load_per_task) { | 3323 | if (*imbalance < busiest_load_per_task) { |
3324 | unsigned long tmp, pwr_now, pwr_move; | 3324 | unsigned long tmp, pwr_now, pwr_move; |
3325 | unsigned int imbn; | 3325 | unsigned int imbn; |
3326 | 3326 | ||
3327 | small_imbalance: | 3327 | small_imbalance: |
3328 | pwr_move = pwr_now = 0; | 3328 | pwr_move = pwr_now = 0; |
3329 | imbn = 2; | 3329 | imbn = 2; |
3330 | if (this_nr_running) { | 3330 | if (this_nr_running) { |
3331 | this_load_per_task /= this_nr_running; | 3331 | this_load_per_task /= this_nr_running; |
3332 | if (busiest_load_per_task > this_load_per_task) | 3332 | if (busiest_load_per_task > this_load_per_task) |
3333 | imbn = 1; | 3333 | imbn = 1; |
3334 | } else | 3334 | } else |
3335 | this_load_per_task = cpu_avg_load_per_task(this_cpu); | 3335 | this_load_per_task = cpu_avg_load_per_task(this_cpu); |
3336 | 3336 | ||
3337 | if (max_load - this_load + busiest_load_per_task >= | 3337 | if (max_load - this_load + busiest_load_per_task >= |
3338 | busiest_load_per_task * imbn) { | 3338 | busiest_load_per_task * imbn) { |
3339 | *imbalance = busiest_load_per_task; | 3339 | *imbalance = busiest_load_per_task; |
3340 | return busiest; | 3340 | return busiest; |
3341 | } | 3341 | } |
3342 | 3342 | ||
3343 | /* | 3343 | /* |
3344 | * OK, we don't have enough imbalance to justify moving tasks, | 3344 | * OK, we don't have enough imbalance to justify moving tasks, |
3345 | * however we may be able to increase total CPU power used by | 3345 | * however we may be able to increase total CPU power used by |
3346 | * moving them. | 3346 | * moving them. |
3347 | */ | 3347 | */ |
3348 | 3348 | ||
3349 | pwr_now += busiest->__cpu_power * | 3349 | pwr_now += busiest->__cpu_power * |
3350 | min(busiest_load_per_task, max_load); | 3350 | min(busiest_load_per_task, max_load); |
3351 | pwr_now += this->__cpu_power * | 3351 | pwr_now += this->__cpu_power * |
3352 | min(this_load_per_task, this_load); | 3352 | min(this_load_per_task, this_load); |
3353 | pwr_now /= SCHED_LOAD_SCALE; | 3353 | pwr_now /= SCHED_LOAD_SCALE; |
3354 | 3354 | ||
3355 | /* Amount of load we'd subtract */ | 3355 | /* Amount of load we'd subtract */ |
3356 | tmp = sg_div_cpu_power(busiest, | 3356 | tmp = sg_div_cpu_power(busiest, |
3357 | busiest_load_per_task * SCHED_LOAD_SCALE); | 3357 | busiest_load_per_task * SCHED_LOAD_SCALE); |
3358 | if (max_load > tmp) | 3358 | if (max_load > tmp) |
3359 | pwr_move += busiest->__cpu_power * | 3359 | pwr_move += busiest->__cpu_power * |
3360 | min(busiest_load_per_task, max_load - tmp); | 3360 | min(busiest_load_per_task, max_load - tmp); |
3361 | 3361 | ||
3362 | /* Amount of load we'd add */ | 3362 | /* Amount of load we'd add */ |
3363 | if (max_load * busiest->__cpu_power < | 3363 | if (max_load * busiest->__cpu_power < |
3364 | busiest_load_per_task * SCHED_LOAD_SCALE) | 3364 | busiest_load_per_task * SCHED_LOAD_SCALE) |
3365 | tmp = sg_div_cpu_power(this, | 3365 | tmp = sg_div_cpu_power(this, |
3366 | max_load * busiest->__cpu_power); | 3366 | max_load * busiest->__cpu_power); |
3367 | else | 3367 | else |
3368 | tmp = sg_div_cpu_power(this, | 3368 | tmp = sg_div_cpu_power(this, |
3369 | busiest_load_per_task * SCHED_LOAD_SCALE); | 3369 | busiest_load_per_task * SCHED_LOAD_SCALE); |
3370 | pwr_move += this->__cpu_power * | 3370 | pwr_move += this->__cpu_power * |
3371 | min(this_load_per_task, this_load + tmp); | 3371 | min(this_load_per_task, this_load + tmp); |
3372 | pwr_move /= SCHED_LOAD_SCALE; | 3372 | pwr_move /= SCHED_LOAD_SCALE; |
3373 | 3373 | ||
3374 | /* Move if we gain throughput */ | 3374 | /* Move if we gain throughput */ |
3375 | if (pwr_move > pwr_now) | 3375 | if (pwr_move > pwr_now) |
3376 | *imbalance = busiest_load_per_task; | 3376 | *imbalance = busiest_load_per_task; |
3377 | } | 3377 | } |
3378 | 3378 | ||
3379 | return busiest; | 3379 | return busiest; |
3380 | 3380 | ||
3381 | out_balanced: | 3381 | out_balanced: |
3382 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 3382 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
3383 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | 3383 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) |
3384 | goto ret; | 3384 | goto ret; |
3385 | 3385 | ||
3386 | if (this == group_leader && group_leader != group_min) { | 3386 | if (this == group_leader && group_leader != group_min) { |
3387 | *imbalance = min_load_per_task; | 3387 | *imbalance = min_load_per_task; |
3388 | return group_min; | 3388 | return group_min; |
3389 | } | 3389 | } |
3390 | #endif | 3390 | #endif |
3391 | ret: | 3391 | ret: |
3392 | *imbalance = 0; | 3392 | *imbalance = 0; |
3393 | return NULL; | 3393 | return NULL; |
3394 | } | 3394 | } |
3395 | 3395 | ||
3396 | /* | 3396 | /* |
3397 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | 3397 | * find_busiest_queue - find the busiest runqueue among the cpus in group. |
3398 | */ | 3398 | */ |
3399 | static struct rq * | 3399 | static struct rq * |
3400 | find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, | 3400 | find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, |
3401 | unsigned long imbalance, const cpumask_t *cpus) | 3401 | unsigned long imbalance, const cpumask_t *cpus) |
3402 | { | 3402 | { |
3403 | struct rq *busiest = NULL, *rq; | 3403 | struct rq *busiest = NULL, *rq; |
3404 | unsigned long max_load = 0; | 3404 | unsigned long max_load = 0; |
3405 | int i; | 3405 | int i; |
3406 | 3406 | ||
3407 | for_each_cpu_mask_nr(i, group->cpumask) { | 3407 | for_each_cpu_mask_nr(i, group->cpumask) { |
3408 | unsigned long wl; | 3408 | unsigned long wl; |
3409 | 3409 | ||
3410 | if (!cpu_isset(i, *cpus)) | 3410 | if (!cpu_isset(i, *cpus)) |
3411 | continue; | 3411 | continue; |
3412 | 3412 | ||
3413 | rq = cpu_rq(i); | 3413 | rq = cpu_rq(i); |
3414 | wl = weighted_cpuload(i); | 3414 | wl = weighted_cpuload(i); |
3415 | 3415 | ||
3416 | if (rq->nr_running == 1 && wl > imbalance) | 3416 | if (rq->nr_running == 1 && wl > imbalance) |
3417 | continue; | 3417 | continue; |
3418 | 3418 | ||
3419 | if (wl > max_load) { | 3419 | if (wl > max_load) { |
3420 | max_load = wl; | 3420 | max_load = wl; |
3421 | busiest = rq; | 3421 | busiest = rq; |
3422 | } | 3422 | } |
3423 | } | 3423 | } |
3424 | 3424 | ||
3425 | return busiest; | 3425 | return busiest; |
3426 | } | 3426 | } |
3427 | 3427 | ||
3428 | /* | 3428 | /* |
3429 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | 3429 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but |
3430 | * so long as it is large enough. | 3430 | * so long as it is large enough. |
3431 | */ | 3431 | */ |
3432 | #define MAX_PINNED_INTERVAL 512 | 3432 | #define MAX_PINNED_INTERVAL 512 |
3433 | 3433 | ||
3434 | /* | 3434 | /* |
3435 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | 3435 | * Check this_cpu to ensure it is balanced within domain. Attempt to move |
3436 | * tasks if there is an imbalance. | 3436 | * tasks if there is an imbalance. |
3437 | */ | 3437 | */ |
3438 | static int load_balance(int this_cpu, struct rq *this_rq, | 3438 | static int load_balance(int this_cpu, struct rq *this_rq, |
3439 | struct sched_domain *sd, enum cpu_idle_type idle, | 3439 | struct sched_domain *sd, enum cpu_idle_type idle, |
3440 | int *balance, cpumask_t *cpus) | 3440 | int *balance, cpumask_t *cpus) |
3441 | { | 3441 | { |
3442 | int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; | 3442 | int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; |
3443 | struct sched_group *group; | 3443 | struct sched_group *group; |
3444 | unsigned long imbalance; | 3444 | unsigned long imbalance; |
3445 | struct rq *busiest; | 3445 | struct rq *busiest; |
3446 | unsigned long flags; | 3446 | unsigned long flags; |
3447 | 3447 | ||
3448 | cpus_setall(*cpus); | 3448 | cpus_setall(*cpus); |
3449 | 3449 | ||
3450 | /* | 3450 | /* |
3451 | * When power savings policy is enabled for the parent domain, idle | 3451 | * When power savings policy is enabled for the parent domain, idle |
3452 | * sibling can pick up load irrespective of busy siblings. In this case, | 3452 | * sibling can pick up load irrespective of busy siblings. In this case, |
3453 | * let the state of idle sibling percolate up as CPU_IDLE, instead of | 3453 | * let the state of idle sibling percolate up as CPU_IDLE, instead of |
3454 | * portraying it as CPU_NOT_IDLE. | 3454 | * portraying it as CPU_NOT_IDLE. |
3455 | */ | 3455 | */ |
3456 | if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && | 3456 | if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && |
3457 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 3457 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
3458 | sd_idle = 1; | 3458 | sd_idle = 1; |
3459 | 3459 | ||
3460 | schedstat_inc(sd, lb_count[idle]); | 3460 | schedstat_inc(sd, lb_count[idle]); |
3461 | 3461 | ||
3462 | redo: | 3462 | redo: |
3463 | update_shares(sd); | 3463 | update_shares(sd); |
3464 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, | 3464 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, |
3465 | cpus, balance); | 3465 | cpus, balance); |
3466 | 3466 | ||
3467 | if (*balance == 0) | 3467 | if (*balance == 0) |
3468 | goto out_balanced; | 3468 | goto out_balanced; |
3469 | 3469 | ||
3470 | if (!group) { | 3470 | if (!group) { |
3471 | schedstat_inc(sd, lb_nobusyg[idle]); | 3471 | schedstat_inc(sd, lb_nobusyg[idle]); |
3472 | goto out_balanced; | 3472 | goto out_balanced; |
3473 | } | 3473 | } |
3474 | 3474 | ||
3475 | busiest = find_busiest_queue(group, idle, imbalance, cpus); | 3475 | busiest = find_busiest_queue(group, idle, imbalance, cpus); |
3476 | if (!busiest) { | 3476 | if (!busiest) { |
3477 | schedstat_inc(sd, lb_nobusyq[idle]); | 3477 | schedstat_inc(sd, lb_nobusyq[idle]); |
3478 | goto out_balanced; | 3478 | goto out_balanced; |
3479 | } | 3479 | } |
3480 | 3480 | ||
3481 | BUG_ON(busiest == this_rq); | 3481 | BUG_ON(busiest == this_rq); |
3482 | 3482 | ||
3483 | schedstat_add(sd, lb_imbalance[idle], imbalance); | 3483 | schedstat_add(sd, lb_imbalance[idle], imbalance); |
3484 | 3484 | ||
3485 | ld_moved = 0; | 3485 | ld_moved = 0; |
3486 | if (busiest->nr_running > 1) { | 3486 | if (busiest->nr_running > 1) { |
3487 | /* | 3487 | /* |
3488 | * Attempt to move tasks. If find_busiest_group has found | 3488 | * Attempt to move tasks. If find_busiest_group has found |
3489 | * an imbalance but busiest->nr_running <= 1, the group is | 3489 | * an imbalance but busiest->nr_running <= 1, the group is |
3490 | * still unbalanced. ld_moved simply stays zero, so it is | 3490 | * still unbalanced. ld_moved simply stays zero, so it is |
3491 | * correctly treated as an imbalance. | 3491 | * correctly treated as an imbalance. |
3492 | */ | 3492 | */ |
3493 | local_irq_save(flags); | 3493 | local_irq_save(flags); |
3494 | double_rq_lock(this_rq, busiest); | 3494 | double_rq_lock(this_rq, busiest); |
3495 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | 3495 | ld_moved = move_tasks(this_rq, this_cpu, busiest, |
3496 | imbalance, sd, idle, &all_pinned); | 3496 | imbalance, sd, idle, &all_pinned); |
3497 | double_rq_unlock(this_rq, busiest); | 3497 | double_rq_unlock(this_rq, busiest); |
3498 | local_irq_restore(flags); | 3498 | local_irq_restore(flags); |
3499 | 3499 | ||
3500 | /* | 3500 | /* |
3501 | * some other cpu did the load balance for us. | 3501 | * some other cpu did the load balance for us. |
3502 | */ | 3502 | */ |
3503 | if (ld_moved && this_cpu != smp_processor_id()) | 3503 | if (ld_moved && this_cpu != smp_processor_id()) |
3504 | resched_cpu(this_cpu); | 3504 | resched_cpu(this_cpu); |
3505 | 3505 | ||
3506 | /* All tasks on this runqueue were pinned by CPU affinity */ | 3506 | /* All tasks on this runqueue were pinned by CPU affinity */ |
3507 | if (unlikely(all_pinned)) { | 3507 | if (unlikely(all_pinned)) { |
3508 | cpu_clear(cpu_of(busiest), *cpus); | 3508 | cpu_clear(cpu_of(busiest), *cpus); |
3509 | if (!cpus_empty(*cpus)) | 3509 | if (!cpus_empty(*cpus)) |
3510 | goto redo; | 3510 | goto redo; |
3511 | goto out_balanced; | 3511 | goto out_balanced; |
3512 | } | 3512 | } |
3513 | } | 3513 | } |
3514 | 3514 | ||
3515 | if (!ld_moved) { | 3515 | if (!ld_moved) { |
3516 | schedstat_inc(sd, lb_failed[idle]); | 3516 | schedstat_inc(sd, lb_failed[idle]); |
3517 | sd->nr_balance_failed++; | 3517 | sd->nr_balance_failed++; |
3518 | 3518 | ||
3519 | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | 3519 | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { |
3520 | 3520 | ||
3521 | spin_lock_irqsave(&busiest->lock, flags); | 3521 | spin_lock_irqsave(&busiest->lock, flags); |
3522 | 3522 | ||
3523 | /* don't kick the migration_thread, if the curr | 3523 | /* don't kick the migration_thread, if the curr |
3524 | * task on busiest cpu can't be moved to this_cpu | 3524 | * task on busiest cpu can't be moved to this_cpu |
3525 | */ | 3525 | */ |
3526 | if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) { | 3526 | if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) { |
3527 | spin_unlock_irqrestore(&busiest->lock, flags); | 3527 | spin_unlock_irqrestore(&busiest->lock, flags); |
3528 | all_pinned = 1; | 3528 | all_pinned = 1; |
3529 | goto out_one_pinned; | 3529 | goto out_one_pinned; |
3530 | } | 3530 | } |
3531 | 3531 | ||
3532 | if (!busiest->active_balance) { | 3532 | if (!busiest->active_balance) { |
3533 | busiest->active_balance = 1; | 3533 | busiest->active_balance = 1; |
3534 | busiest->push_cpu = this_cpu; | 3534 | busiest->push_cpu = this_cpu; |
3535 | active_balance = 1; | 3535 | active_balance = 1; |
3536 | } | 3536 | } |
3537 | spin_unlock_irqrestore(&busiest->lock, flags); | 3537 | spin_unlock_irqrestore(&busiest->lock, flags); |
3538 | if (active_balance) | 3538 | if (active_balance) |
3539 | wake_up_process(busiest->migration_thread); | 3539 | wake_up_process(busiest->migration_thread); |
3540 | 3540 | ||
3541 | /* | 3541 | /* |
3542 | * We've kicked active balancing, reset the failure | 3542 | * We've kicked active balancing, reset the failure |
3543 | * counter. | 3543 | * counter. |
3544 | */ | 3544 | */ |
3545 | sd->nr_balance_failed = sd->cache_nice_tries+1; | 3545 | sd->nr_balance_failed = sd->cache_nice_tries+1; |
3546 | } | 3546 | } |
3547 | } else | 3547 | } else |
3548 | sd->nr_balance_failed = 0; | 3548 | sd->nr_balance_failed = 0; |
3549 | 3549 | ||
3550 | if (likely(!active_balance)) { | 3550 | if (likely(!active_balance)) { |
3551 | /* We were unbalanced, so reset the balancing interval */ | 3551 | /* We were unbalanced, so reset the balancing interval */ |
3552 | sd->balance_interval = sd->min_interval; | 3552 | sd->balance_interval = sd->min_interval; |
3553 | } else { | 3553 | } else { |
3554 | /* | 3554 | /* |
3555 | * If we've begun active balancing, start to back off. This | 3555 | * If we've begun active balancing, start to back off. This |
3556 | * case may not be covered by the all_pinned logic if there | 3556 | * case may not be covered by the all_pinned logic if there |
3557 | * is only 1 task on the busy runqueue (because we don't call | 3557 | * is only 1 task on the busy runqueue (because we don't call |
3558 | * move_tasks). | 3558 | * move_tasks). |
3559 | */ | 3559 | */ |
3560 | if (sd->balance_interval < sd->max_interval) | 3560 | if (sd->balance_interval < sd->max_interval) |
3561 | sd->balance_interval *= 2; | 3561 | sd->balance_interval *= 2; |
3562 | } | 3562 | } |
3563 | 3563 | ||
3564 | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 3564 | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
3565 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 3565 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
3566 | ld_moved = -1; | 3566 | ld_moved = -1; |
3567 | 3567 | ||
3568 | goto out; | 3568 | goto out; |
3569 | 3569 | ||
3570 | out_balanced: | 3570 | out_balanced: |
3571 | schedstat_inc(sd, lb_balanced[idle]); | 3571 | schedstat_inc(sd, lb_balanced[idle]); |
3572 | 3572 | ||
3573 | sd->nr_balance_failed = 0; | 3573 | sd->nr_balance_failed = 0; |
3574 | 3574 | ||
3575 | out_one_pinned: | 3575 | out_one_pinned: |
3576 | /* tune up the balancing interval */ | 3576 | /* tune up the balancing interval */ |
3577 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || | 3577 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || |
3578 | (sd->balance_interval < sd->max_interval)) | 3578 | (sd->balance_interval < sd->max_interval)) |
3579 | sd->balance_interval *= 2; | 3579 | sd->balance_interval *= 2; |
3580 | 3580 | ||
3581 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 3581 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
3582 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 3582 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
3583 | ld_moved = -1; | 3583 | ld_moved = -1; |
3584 | else | 3584 | else |
3585 | ld_moved = 0; | 3585 | ld_moved = 0; |
3586 | out: | 3586 | out: |
3587 | if (ld_moved) | 3587 | if (ld_moved) |
3588 | update_shares(sd); | 3588 | update_shares(sd); |
3589 | return ld_moved; | 3589 | return ld_moved; |
3590 | } | 3590 | } |
3591 | 3591 | ||
3592 | /* | 3592 | /* |
3593 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | 3593 | * Check this_cpu to ensure it is balanced within domain. Attempt to move |
3594 | * tasks if there is an imbalance. | 3594 | * tasks if there is an imbalance. |
3595 | * | 3595 | * |
3596 | * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). | 3596 | * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). |
3597 | * this_rq is locked. | 3597 | * this_rq is locked. |
3598 | */ | 3598 | */ |
3599 | static int | 3599 | static int |
3600 | load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd, | 3600 | load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd, |
3601 | cpumask_t *cpus) | 3601 | cpumask_t *cpus) |
3602 | { | 3602 | { |
3603 | struct sched_group *group; | 3603 | struct sched_group *group; |
3604 | struct rq *busiest = NULL; | 3604 | struct rq *busiest = NULL; |
3605 | unsigned long imbalance; | 3605 | unsigned long imbalance; |
3606 | int ld_moved = 0; | 3606 | int ld_moved = 0; |
3607 | int sd_idle = 0; | 3607 | int sd_idle = 0; |
3608 | int all_pinned = 0; | 3608 | int all_pinned = 0; |
3609 | 3609 | ||
3610 | cpus_setall(*cpus); | 3610 | cpus_setall(*cpus); |
3611 | 3611 | ||
3612 | /* | 3612 | /* |
3613 | * When power savings policy is enabled for the parent domain, idle | 3613 | * When power savings policy is enabled for the parent domain, idle |
3614 | * sibling can pick up load irrespective of busy siblings. In this case, | 3614 | * sibling can pick up load irrespective of busy siblings. In this case, |
3615 | * let the state of idle sibling percolate up as IDLE, instead of | 3615 | * let the state of idle sibling percolate up as IDLE, instead of |
3616 | * portraying it as CPU_NOT_IDLE. | 3616 | * portraying it as CPU_NOT_IDLE. |
3617 | */ | 3617 | */ |
3618 | if (sd->flags & SD_SHARE_CPUPOWER && | 3618 | if (sd->flags & SD_SHARE_CPUPOWER && |
3619 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 3619 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
3620 | sd_idle = 1; | 3620 | sd_idle = 1; |
3621 | 3621 | ||
3622 | schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); | 3622 | schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); |
3623 | redo: | 3623 | redo: |
3624 | update_shares_locked(this_rq, sd); | 3624 | update_shares_locked(this_rq, sd); |
3625 | group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, | 3625 | group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, |
3626 | &sd_idle, cpus, NULL); | 3626 | &sd_idle, cpus, NULL); |
3627 | if (!group) { | 3627 | if (!group) { |
3628 | schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); | 3628 | schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); |
3629 | goto out_balanced; | 3629 | goto out_balanced; |
3630 | } | 3630 | } |
3631 | 3631 | ||
3632 | busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus); | 3632 | busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus); |
3633 | if (!busiest) { | 3633 | if (!busiest) { |
3634 | schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); | 3634 | schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); |
3635 | goto out_balanced; | 3635 | goto out_balanced; |
3636 | } | 3636 | } |
3637 | 3637 | ||
3638 | BUG_ON(busiest == this_rq); | 3638 | BUG_ON(busiest == this_rq); |
3639 | 3639 | ||
3640 | schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); | 3640 | schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); |
3641 | 3641 | ||
3642 | ld_moved = 0; | 3642 | ld_moved = 0; |
3643 | if (busiest->nr_running > 1) { | 3643 | if (busiest->nr_running > 1) { |
3644 | /* Attempt to move tasks */ | 3644 | /* Attempt to move tasks */ |
3645 | double_lock_balance(this_rq, busiest); | 3645 | double_lock_balance(this_rq, busiest); |
3646 | /* this_rq->clock is already updated */ | 3646 | /* this_rq->clock is already updated */ |
3647 | update_rq_clock(busiest); | 3647 | update_rq_clock(busiest); |
3648 | ld_moved = move_tasks(this_rq, this_cpu, busiest, | 3648 | ld_moved = move_tasks(this_rq, this_cpu, busiest, |
3649 | imbalance, sd, CPU_NEWLY_IDLE, | 3649 | imbalance, sd, CPU_NEWLY_IDLE, |
3650 | &all_pinned); | 3650 | &all_pinned); |
3651 | double_unlock_balance(this_rq, busiest); | 3651 | double_unlock_balance(this_rq, busiest); |
3652 | 3652 | ||
3653 | if (unlikely(all_pinned)) { | 3653 | if (unlikely(all_pinned)) { |
3654 | cpu_clear(cpu_of(busiest), *cpus); | 3654 | cpu_clear(cpu_of(busiest), *cpus); |
3655 | if (!cpus_empty(*cpus)) | 3655 | if (!cpus_empty(*cpus)) |
3656 | goto redo; | 3656 | goto redo; |
3657 | } | 3657 | } |
3658 | } | 3658 | } |
3659 | 3659 | ||
3660 | if (!ld_moved) { | 3660 | if (!ld_moved) { |
3661 | schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); | 3661 | schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); |
3662 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 3662 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
3663 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 3663 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
3664 | return -1; | 3664 | return -1; |
3665 | } else | 3665 | } else |
3666 | sd->nr_balance_failed = 0; | 3666 | sd->nr_balance_failed = 0; |
3667 | 3667 | ||
3668 | update_shares_locked(this_rq, sd); | 3668 | update_shares_locked(this_rq, sd); |
3669 | return ld_moved; | 3669 | return ld_moved; |
3670 | 3670 | ||
3671 | out_balanced: | 3671 | out_balanced: |
3672 | schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); | 3672 | schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); |
3673 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 3673 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
3674 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 3674 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
3675 | return -1; | 3675 | return -1; |
3676 | sd->nr_balance_failed = 0; | 3676 | sd->nr_balance_failed = 0; |
3677 | 3677 | ||
3678 | return 0; | 3678 | return 0; |
3679 | } | 3679 | } |
3680 | 3680 | ||
3681 | /* | 3681 | /* |
3682 | * idle_balance is called by schedule() if this_cpu is about to become | 3682 | * idle_balance is called by schedule() if this_cpu is about to become |
3683 | * idle. Attempts to pull tasks from other CPUs. | 3683 | * idle. Attempts to pull tasks from other CPUs. |
3684 | */ | 3684 | */ |
3685 | static void idle_balance(int this_cpu, struct rq *this_rq) | 3685 | static void idle_balance(int this_cpu, struct rq *this_rq) |
3686 | { | 3686 | { |
3687 | struct sched_domain *sd; | 3687 | struct sched_domain *sd; |
3688 | int pulled_task = 0; | 3688 | int pulled_task = 0; |
3689 | unsigned long next_balance = jiffies + HZ; | 3689 | unsigned long next_balance = jiffies + HZ; |
3690 | cpumask_t tmpmask; | 3690 | cpumask_t tmpmask; |
3691 | 3691 | ||
3692 | for_each_domain(this_cpu, sd) { | 3692 | for_each_domain(this_cpu, sd) { |
3693 | unsigned long interval; | 3693 | unsigned long interval; |
3694 | 3694 | ||
3695 | if (!(sd->flags & SD_LOAD_BALANCE)) | 3695 | if (!(sd->flags & SD_LOAD_BALANCE)) |
3696 | continue; | 3696 | continue; |
3697 | 3697 | ||
3698 | if (sd->flags & SD_BALANCE_NEWIDLE) | 3698 | if (sd->flags & SD_BALANCE_NEWIDLE) |
3699 | /* If we've pulled tasks over stop searching: */ | 3699 | /* If we've pulled tasks over stop searching: */ |
3700 | pulled_task = load_balance_newidle(this_cpu, this_rq, | 3700 | pulled_task = load_balance_newidle(this_cpu, this_rq, |
3701 | sd, &tmpmask); | 3701 | sd, &tmpmask); |
3702 | 3702 | ||
3703 | interval = msecs_to_jiffies(sd->balance_interval); | 3703 | interval = msecs_to_jiffies(sd->balance_interval); |
3704 | if (time_after(next_balance, sd->last_balance + interval)) | 3704 | if (time_after(next_balance, sd->last_balance + interval)) |
3705 | next_balance = sd->last_balance + interval; | 3705 | next_balance = sd->last_balance + interval; |
3706 | if (pulled_task) | 3706 | if (pulled_task) |
3707 | break; | 3707 | break; |
3708 | } | 3708 | } |
3709 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { | 3709 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { |
3710 | /* | 3710 | /* |
3711 | * We are going idle. next_balance may be set based on | 3711 | * We are going idle. next_balance may be set based on |
3712 | * a busy processor. So reset next_balance. | 3712 | * a busy processor. So reset next_balance. |
3713 | */ | 3713 | */ |
3714 | this_rq->next_balance = next_balance; | 3714 | this_rq->next_balance = next_balance; |
3715 | } | 3715 | } |
3716 | } | 3716 | } |
3717 | 3717 | ||
3718 | /* | 3718 | /* |
3719 | * active_load_balance is run by migration threads. It pushes running tasks | 3719 | * active_load_balance is run by migration threads. It pushes running tasks |
3720 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | 3720 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be |
3721 | * running on each physical CPU where possible, and avoids physical / | 3721 | * running on each physical CPU where possible, and avoids physical / |
3722 | * logical imbalances. | 3722 | * logical imbalances. |
3723 | * | 3723 | * |
3724 | * Called with busiest_rq locked. | 3724 | * Called with busiest_rq locked. |
3725 | */ | 3725 | */ |
3726 | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) | 3726 | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) |
3727 | { | 3727 | { |
3728 | int target_cpu = busiest_rq->push_cpu; | 3728 | int target_cpu = busiest_rq->push_cpu; |
3729 | struct sched_domain *sd; | 3729 | struct sched_domain *sd; |
3730 | struct rq *target_rq; | 3730 | struct rq *target_rq; |
3731 | 3731 | ||
3732 | /* Is there any task to move? */ | 3732 | /* Is there any task to move? */ |
3733 | if (busiest_rq->nr_running <= 1) | 3733 | if (busiest_rq->nr_running <= 1) |
3734 | return; | 3734 | return; |
3735 | 3735 | ||
3736 | target_rq = cpu_rq(target_cpu); | 3736 | target_rq = cpu_rq(target_cpu); |
3737 | 3737 | ||
3738 | /* | 3738 | /* |
3739 | * This condition is "impossible", if it occurs | 3739 | * This condition is "impossible", if it occurs |
3740 | * we need to fix it. Originally reported by | 3740 | * we need to fix it. Originally reported by |
3741 | * Bjorn Helgaas on a 128-cpu setup. | 3741 | * Bjorn Helgaas on a 128-cpu setup. |
3742 | */ | 3742 | */ |
3743 | BUG_ON(busiest_rq == target_rq); | 3743 | BUG_ON(busiest_rq == target_rq); |
3744 | 3744 | ||
3745 | /* move a task from busiest_rq to target_rq */ | 3745 | /* move a task from busiest_rq to target_rq */ |
3746 | double_lock_balance(busiest_rq, target_rq); | 3746 | double_lock_balance(busiest_rq, target_rq); |
3747 | update_rq_clock(busiest_rq); | 3747 | update_rq_clock(busiest_rq); |
3748 | update_rq_clock(target_rq); | 3748 | update_rq_clock(target_rq); |
3749 | 3749 | ||
3750 | /* Search for an sd spanning us and the target CPU. */ | 3750 | /* Search for an sd spanning us and the target CPU. */ |
3751 | for_each_domain(target_cpu, sd) { | 3751 | for_each_domain(target_cpu, sd) { |
3752 | if ((sd->flags & SD_LOAD_BALANCE) && | 3752 | if ((sd->flags & SD_LOAD_BALANCE) && |
3753 | cpu_isset(busiest_cpu, sd->span)) | 3753 | cpu_isset(busiest_cpu, sd->span)) |
3754 | break; | 3754 | break; |
3755 | } | 3755 | } |
3756 | 3756 | ||
3757 | if (likely(sd)) { | 3757 | if (likely(sd)) { |
3758 | schedstat_inc(sd, alb_count); | 3758 | schedstat_inc(sd, alb_count); |
3759 | 3759 | ||
3760 | if (move_one_task(target_rq, target_cpu, busiest_rq, | 3760 | if (move_one_task(target_rq, target_cpu, busiest_rq, |
3761 | sd, CPU_IDLE)) | 3761 | sd, CPU_IDLE)) |
3762 | schedstat_inc(sd, alb_pushed); | 3762 | schedstat_inc(sd, alb_pushed); |
3763 | else | 3763 | else |
3764 | schedstat_inc(sd, alb_failed); | 3764 | schedstat_inc(sd, alb_failed); |
3765 | } | 3765 | } |
3766 | double_unlock_balance(busiest_rq, target_rq); | 3766 | double_unlock_balance(busiest_rq, target_rq); |
3767 | } | 3767 | } |
3768 | 3768 | ||
3769 | #ifdef CONFIG_NO_HZ | 3769 | #ifdef CONFIG_NO_HZ |
3770 | static struct { | 3770 | static struct { |
3771 | atomic_t load_balancer; | 3771 | atomic_t load_balancer; |
3772 | cpumask_t cpu_mask; | 3772 | cpumask_t cpu_mask; |
3773 | } nohz ____cacheline_aligned = { | 3773 | } nohz ____cacheline_aligned = { |
3774 | .load_balancer = ATOMIC_INIT(-1), | 3774 | .load_balancer = ATOMIC_INIT(-1), |
3775 | .cpu_mask = CPU_MASK_NONE, | 3775 | .cpu_mask = CPU_MASK_NONE, |
3776 | }; | 3776 | }; |
3777 | 3777 | ||
3778 | /* | 3778 | /* |
3779 | * This routine will try to nominate the ilb (idle load balancing) | 3779 | * This routine will try to nominate the ilb (idle load balancing) |
3780 | * owner among the cpus whose ticks are stopped. ilb owner will do the idle | 3780 | * owner among the cpus whose ticks are stopped. ilb owner will do the idle |
3781 | * load balancing on behalf of all those cpus. If all the cpus in the system | 3781 | * load balancing on behalf of all those cpus. If all the cpus in the system |
3782 | * go into this tickless mode, then there will be no ilb owner (as there is | 3782 | * go into this tickless mode, then there will be no ilb owner (as there is |
3783 | * no need for one) and all the cpus will sleep till the next wakeup event | 3783 | * no need for one) and all the cpus will sleep till the next wakeup event |
3784 | * arrives... | 3784 | * arrives... |
3785 | * | 3785 | * |
3786 | * For the ilb owner, tick is not stopped. And this tick will be used | 3786 | * For the ilb owner, tick is not stopped. And this tick will be used |
3787 | * for idle load balancing. ilb owner will still be part of | 3787 | * for idle load balancing. ilb owner will still be part of |
3788 | * nohz.cpu_mask.. | 3788 | * nohz.cpu_mask.. |
3789 | * | 3789 | * |
3790 | * While stopping the tick, this cpu will become the ilb owner if there | 3790 | * While stopping the tick, this cpu will become the ilb owner if there |
3791 | * is no other owner. And will be the owner till that cpu becomes busy | 3791 | * is no other owner. And will be the owner till that cpu becomes busy |
3792 | * or if all cpus in the system stop their ticks at which point | 3792 | * or if all cpus in the system stop their ticks at which point |
3793 | * there is no need for ilb owner. | 3793 | * there is no need for ilb owner. |
3794 | * | 3794 | * |
3795 | * When the ilb owner becomes busy, it nominates another owner, during the | 3795 | * When the ilb owner becomes busy, it nominates another owner, during the |
3796 | * next busy scheduler_tick() | 3796 | * next busy scheduler_tick() |
3797 | */ | 3797 | */ |
3798 | int select_nohz_load_balancer(int stop_tick) | 3798 | int select_nohz_load_balancer(int stop_tick) |
3799 | { | 3799 | { |
3800 | int cpu = smp_processor_id(); | 3800 | int cpu = smp_processor_id(); |
3801 | 3801 | ||
3802 | if (stop_tick) { | 3802 | if (stop_tick) { |
3803 | cpu_set(cpu, nohz.cpu_mask); | 3803 | cpu_set(cpu, nohz.cpu_mask); |
3804 | cpu_rq(cpu)->in_nohz_recently = 1; | 3804 | cpu_rq(cpu)->in_nohz_recently = 1; |
3805 | 3805 | ||
3806 | /* | 3806 | /* |
3807 | * If we are going offline and still the leader, give up! | 3807 | * If we are going offline and still the leader, give up! |
3808 | */ | 3808 | */ |
3809 | if (!cpu_active(cpu) && | 3809 | if (!cpu_active(cpu) && |
3810 | atomic_read(&nohz.load_balancer) == cpu) { | 3810 | atomic_read(&nohz.load_balancer) == cpu) { |
3811 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | 3811 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) |
3812 | BUG(); | 3812 | BUG(); |
3813 | return 0; | 3813 | return 0; |
3814 | } | 3814 | } |
3815 | 3815 | ||
3816 | /* time for ilb owner also to sleep */ | 3816 | /* time for ilb owner also to sleep */ |
3817 | if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) { | 3817 | if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) { |
3818 | if (atomic_read(&nohz.load_balancer) == cpu) | 3818 | if (atomic_read(&nohz.load_balancer) == cpu) |
3819 | atomic_set(&nohz.load_balancer, -1); | 3819 | atomic_set(&nohz.load_balancer, -1); |
3820 | return 0; | 3820 | return 0; |
3821 | } | 3821 | } |
3822 | 3822 | ||
3823 | if (atomic_read(&nohz.load_balancer) == -1) { | 3823 | if (atomic_read(&nohz.load_balancer) == -1) { |
3824 | /* make me the ilb owner */ | 3824 | /* make me the ilb owner */ |
3825 | if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) | 3825 | if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) |
3826 | return 1; | 3826 | return 1; |
3827 | } else if (atomic_read(&nohz.load_balancer) == cpu) | 3827 | } else if (atomic_read(&nohz.load_balancer) == cpu) |
3828 | return 1; | 3828 | return 1; |
3829 | } else { | 3829 | } else { |
3830 | if (!cpu_isset(cpu, nohz.cpu_mask)) | 3830 | if (!cpu_isset(cpu, nohz.cpu_mask)) |
3831 | return 0; | 3831 | return 0; |
3832 | 3832 | ||
3833 | cpu_clear(cpu, nohz.cpu_mask); | 3833 | cpu_clear(cpu, nohz.cpu_mask); |
3834 | 3834 | ||
3835 | if (atomic_read(&nohz.load_balancer) == cpu) | 3835 | if (atomic_read(&nohz.load_balancer) == cpu) |
3836 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | 3836 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) |
3837 | BUG(); | 3837 | BUG(); |
3838 | } | 3838 | } |
3839 | return 0; | 3839 | return 0; |
3840 | } | 3840 | } |
3841 | #endif | 3841 | #endif |
3842 | 3842 | ||
3843 | static DEFINE_SPINLOCK(balancing); | 3843 | static DEFINE_SPINLOCK(balancing); |
3844 | 3844 | ||
3845 | /* | 3845 | /* |
3846 | * It checks each scheduling domain to see if it is due to be balanced, | 3846 | * It checks each scheduling domain to see if it is due to be balanced, |
3847 | * and initiates a balancing operation if so. | 3847 | * and initiates a balancing operation if so. |
3848 | * | 3848 | * |
3849 | * Balancing parameters are set up in arch_init_sched_domains. | 3849 | * Balancing parameters are set up in arch_init_sched_domains. |
3850 | */ | 3850 | */ |
3851 | static void rebalance_domains(int cpu, enum cpu_idle_type idle) | 3851 | static void rebalance_domains(int cpu, enum cpu_idle_type idle) |
3852 | { | 3852 | { |
3853 | int balance = 1; | 3853 | int balance = 1; |
3854 | struct rq *rq = cpu_rq(cpu); | 3854 | struct rq *rq = cpu_rq(cpu); |
3855 | unsigned long interval; | 3855 | unsigned long interval; |
3856 | struct sched_domain *sd; | 3856 | struct sched_domain *sd; |
3857 | /* Earliest time when we have to do rebalance again */ | 3857 | /* Earliest time when we have to do rebalance again */ |
3858 | unsigned long next_balance = jiffies + 60*HZ; | 3858 | unsigned long next_balance = jiffies + 60*HZ; |
3859 | int update_next_balance = 0; | 3859 | int update_next_balance = 0; |
3860 | int need_serialize; | 3860 | int need_serialize; |
3861 | cpumask_t tmp; | 3861 | cpumask_t tmp; |
3862 | 3862 | ||
3863 | for_each_domain(cpu, sd) { | 3863 | for_each_domain(cpu, sd) { |
3864 | if (!(sd->flags & SD_LOAD_BALANCE)) | 3864 | if (!(sd->flags & SD_LOAD_BALANCE)) |
3865 | continue; | 3865 | continue; |
3866 | 3866 | ||
3867 | interval = sd->balance_interval; | 3867 | interval = sd->balance_interval; |
3868 | if (idle != CPU_IDLE) | 3868 | if (idle != CPU_IDLE) |
3869 | interval *= sd->busy_factor; | 3869 | interval *= sd->busy_factor; |
3870 | 3870 | ||
3871 | /* scale ms to jiffies */ | 3871 | /* scale ms to jiffies */ |
3872 | interval = msecs_to_jiffies(interval); | 3872 | interval = msecs_to_jiffies(interval); |
3873 | if (unlikely(!interval)) | 3873 | if (unlikely(!interval)) |
3874 | interval = 1; | 3874 | interval = 1; |
3875 | if (interval > HZ*NR_CPUS/10) | 3875 | if (interval > HZ*NR_CPUS/10) |
3876 | interval = HZ*NR_CPUS/10; | 3876 | interval = HZ*NR_CPUS/10; |
3877 | 3877 | ||
3878 | need_serialize = sd->flags & SD_SERIALIZE; | 3878 | need_serialize = sd->flags & SD_SERIALIZE; |
3879 | 3879 | ||
3880 | if (need_serialize) { | 3880 | if (need_serialize) { |
3881 | if (!spin_trylock(&balancing)) | 3881 | if (!spin_trylock(&balancing)) |
3882 | goto out; | 3882 | goto out; |
3883 | } | 3883 | } |
3884 | 3884 | ||
3885 | if (time_after_eq(jiffies, sd->last_balance + interval)) { | 3885 | if (time_after_eq(jiffies, sd->last_balance + interval)) { |
3886 | if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) { | 3886 | if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) { |
3887 | /* | 3887 | /* |
3888 | * We've pulled tasks over so either we're no | 3888 | * We've pulled tasks over so either we're no |
3889 | * longer idle, or one of our SMT siblings is | 3889 | * longer idle, or one of our SMT siblings is |
3890 | * not idle. | 3890 | * not idle. |
3891 | */ | 3891 | */ |
3892 | idle = CPU_NOT_IDLE; | 3892 | idle = CPU_NOT_IDLE; |
3893 | } | 3893 | } |
3894 | sd->last_balance = jiffies; | 3894 | sd->last_balance = jiffies; |
3895 | } | 3895 | } |
3896 | if (need_serialize) | 3896 | if (need_serialize) |
3897 | spin_unlock(&balancing); | 3897 | spin_unlock(&balancing); |
3898 | out: | 3898 | out: |
3899 | if (time_after(next_balance, sd->last_balance + interval)) { | 3899 | if (time_after(next_balance, sd->last_balance + interval)) { |
3900 | next_balance = sd->last_balance + interval; | 3900 | next_balance = sd->last_balance + interval; |
3901 | update_next_balance = 1; | 3901 | update_next_balance = 1; |
3902 | } | 3902 | } |
3903 | 3903 | ||
3904 | /* | 3904 | /* |
3905 | * Stop the load balance at this level. There is another | 3905 | * Stop the load balance at this level. There is another |
3906 | * CPU in our sched group which is doing load balancing more | 3906 | * CPU in our sched group which is doing load balancing more |
3907 | * actively. | 3907 | * actively. |
3908 | */ | 3908 | */ |
3909 | if (!balance) | 3909 | if (!balance) |
3910 | break; | 3910 | break; |
3911 | } | 3911 | } |
3912 | 3912 | ||
3913 | /* | 3913 | /* |
3914 | * next_balance will be updated only when there is a need. | 3914 | * next_balance will be updated only when there is a need. |
3915 | * When the cpu is attached to null domain for ex, it will not be | 3915 | * When the cpu is attached to null domain for ex, it will not be |
3916 | * updated. | 3916 | * updated. |
3917 | */ | 3917 | */ |
3918 | if (likely(update_next_balance)) | 3918 | if (likely(update_next_balance)) |
3919 | rq->next_balance = next_balance; | 3919 | rq->next_balance = next_balance; |
3920 | } | 3920 | } |
3921 | 3921 | ||
3922 | /* | 3922 | /* |
3923 | * run_rebalance_domains is triggered when needed from the scheduler tick. | 3923 | * run_rebalance_domains is triggered when needed from the scheduler tick. |
3924 | * In CONFIG_NO_HZ case, the idle load balance owner will do the | 3924 | * In CONFIG_NO_HZ case, the idle load balance owner will do the |
3925 | * rebalancing for all the cpus for whom scheduler ticks are stopped. | 3925 | * rebalancing for all the cpus for whom scheduler ticks are stopped. |
3926 | */ | 3926 | */ |
3927 | static void run_rebalance_domains(struct softirq_action *h) | 3927 | static void run_rebalance_domains(struct softirq_action *h) |
3928 | { | 3928 | { |
3929 | int this_cpu = smp_processor_id(); | 3929 | int this_cpu = smp_processor_id(); |
3930 | struct rq *this_rq = cpu_rq(this_cpu); | 3930 | struct rq *this_rq = cpu_rq(this_cpu); |
3931 | enum cpu_idle_type idle = this_rq->idle_at_tick ? | 3931 | enum cpu_idle_type idle = this_rq->idle_at_tick ? |
3932 | CPU_IDLE : CPU_NOT_IDLE; | 3932 | CPU_IDLE : CPU_NOT_IDLE; |
3933 | 3933 | ||
3934 | rebalance_domains(this_cpu, idle); | 3934 | rebalance_domains(this_cpu, idle); |
3935 | 3935 | ||
3936 | #ifdef CONFIG_NO_HZ | 3936 | #ifdef CONFIG_NO_HZ |
3937 | /* | 3937 | /* |
3938 | * If this cpu is the owner for idle load balancing, then do the | 3938 | * If this cpu is the owner for idle load balancing, then do the |
3939 | * balancing on behalf of the other idle cpus whose ticks are | 3939 | * balancing on behalf of the other idle cpus whose ticks are |
3940 | * stopped. | 3940 | * stopped. |
3941 | */ | 3941 | */ |
3942 | if (this_rq->idle_at_tick && | 3942 | if (this_rq->idle_at_tick && |
3943 | atomic_read(&nohz.load_balancer) == this_cpu) { | 3943 | atomic_read(&nohz.load_balancer) == this_cpu) { |
3944 | cpumask_t cpus = nohz.cpu_mask; | 3944 | cpumask_t cpus = nohz.cpu_mask; |
3945 | struct rq *rq; | 3945 | struct rq *rq; |
3946 | int balance_cpu; | 3946 | int balance_cpu; |
3947 | 3947 | ||
3948 | cpu_clear(this_cpu, cpus); | 3948 | cpu_clear(this_cpu, cpus); |
3949 | for_each_cpu_mask_nr(balance_cpu, cpus) { | 3949 | for_each_cpu_mask_nr(balance_cpu, cpus) { |
3950 | /* | 3950 | /* |
3951 | * If this cpu gets work to do, stop the load balancing | 3951 | * If this cpu gets work to do, stop the load balancing |
3952 | * work being done for other cpus. Next load | 3952 | * work being done for other cpus. Next load |
3953 | * balancing owner will pick it up. | 3953 | * balancing owner will pick it up. |
3954 | */ | 3954 | */ |
3955 | if (need_resched()) | 3955 | if (need_resched()) |
3956 | break; | 3956 | break; |
3957 | 3957 | ||
3958 | rebalance_domains(balance_cpu, CPU_IDLE); | 3958 | rebalance_domains(balance_cpu, CPU_IDLE); |
3959 | 3959 | ||
3960 | rq = cpu_rq(balance_cpu); | 3960 | rq = cpu_rq(balance_cpu); |
3961 | if (time_after(this_rq->next_balance, rq->next_balance)) | 3961 | if (time_after(this_rq->next_balance, rq->next_balance)) |
3962 | this_rq->next_balance = rq->next_balance; | 3962 | this_rq->next_balance = rq->next_balance; |
3963 | } | 3963 | } |
3964 | } | 3964 | } |
3965 | #endif | 3965 | #endif |
3966 | } | 3966 | } |
3967 | 3967 | ||
3968 | /* | 3968 | /* |
3969 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | 3969 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. |
3970 | * | 3970 | * |
3971 | * In case of CONFIG_NO_HZ, this is the place where we nominate a new | 3971 | * In case of CONFIG_NO_HZ, this is the place where we nominate a new |
3972 | * idle load balancing owner or decide to stop the periodic load balancing, | 3972 | * idle load balancing owner or decide to stop the periodic load balancing, |
3973 | * if the whole system is idle. | 3973 | * if the whole system is idle. |
3974 | */ | 3974 | */ |
3975 | static inline void trigger_load_balance(struct rq *rq, int cpu) | 3975 | static inline void trigger_load_balance(struct rq *rq, int cpu) |
3976 | { | 3976 | { |
3977 | #ifdef CONFIG_NO_HZ | 3977 | #ifdef CONFIG_NO_HZ |
3978 | /* | 3978 | /* |
3979 | * If we were in the nohz mode recently and busy at the current | 3979 | * If we were in the nohz mode recently and busy at the current |
3980 | * scheduler tick, then check if we need to nominate new idle | 3980 | * scheduler tick, then check if we need to nominate new idle |
3981 | * load balancer. | 3981 | * load balancer. |
3982 | */ | 3982 | */ |
3983 | if (rq->in_nohz_recently && !rq->idle_at_tick) { | 3983 | if (rq->in_nohz_recently && !rq->idle_at_tick) { |
3984 | rq->in_nohz_recently = 0; | 3984 | rq->in_nohz_recently = 0; |
3985 | 3985 | ||
3986 | if (atomic_read(&nohz.load_balancer) == cpu) { | 3986 | if (atomic_read(&nohz.load_balancer) == cpu) { |
3987 | cpu_clear(cpu, nohz.cpu_mask); | 3987 | cpu_clear(cpu, nohz.cpu_mask); |
3988 | atomic_set(&nohz.load_balancer, -1); | 3988 | atomic_set(&nohz.load_balancer, -1); |
3989 | } | 3989 | } |
3990 | 3990 | ||
3991 | if (atomic_read(&nohz.load_balancer) == -1) { | 3991 | if (atomic_read(&nohz.load_balancer) == -1) { |
3992 | /* | 3992 | /* |
3993 | * simple selection for now: Nominate the | 3993 | * simple selection for now: Nominate the |
3994 | * first cpu in the nohz list to be the next | 3994 | * first cpu in the nohz list to be the next |
3995 | * ilb owner. | 3995 | * ilb owner. |
3996 | * | 3996 | * |
3997 | * TBD: Traverse the sched domains and nominate | 3997 | * TBD: Traverse the sched domains and nominate |
3998 | * the nearest cpu in the nohz.cpu_mask. | 3998 | * the nearest cpu in the nohz.cpu_mask. |
3999 | */ | 3999 | */ |
4000 | int ilb = first_cpu(nohz.cpu_mask); | 4000 | int ilb = first_cpu(nohz.cpu_mask); |
4001 | 4001 | ||
4002 | if (ilb < nr_cpu_ids) | 4002 | if (ilb < nr_cpu_ids) |
4003 | resched_cpu(ilb); | 4003 | resched_cpu(ilb); |
4004 | } | 4004 | } |
4005 | } | 4005 | } |
4006 | 4006 | ||
4007 | /* | 4007 | /* |
4008 | * If this cpu is idle and doing idle load balancing for all the | 4008 | * If this cpu is idle and doing idle load balancing for all the |
4009 | * cpus with ticks stopped, is it time for that to stop? | 4009 | * cpus with ticks stopped, is it time for that to stop? |
4010 | */ | 4010 | */ |
4011 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && | 4011 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && |
4012 | cpus_weight(nohz.cpu_mask) == num_online_cpus()) { | 4012 | cpus_weight(nohz.cpu_mask) == num_online_cpus()) { |
4013 | resched_cpu(cpu); | 4013 | resched_cpu(cpu); |
4014 | return; | 4014 | return; |
4015 | } | 4015 | } |
4016 | 4016 | ||
4017 | /* | 4017 | /* |
4018 | * If this cpu is idle and the idle load balancing is done by | 4018 | * If this cpu is idle and the idle load balancing is done by |
4019 | * someone else, then no need raise the SCHED_SOFTIRQ | 4019 | * someone else, then no need raise the SCHED_SOFTIRQ |
4020 | */ | 4020 | */ |
4021 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && | 4021 | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && |
4022 | cpu_isset(cpu, nohz.cpu_mask)) | 4022 | cpu_isset(cpu, nohz.cpu_mask)) |
4023 | return; | 4023 | return; |
4024 | #endif | 4024 | #endif |
4025 | if (time_after_eq(jiffies, rq->next_balance)) | 4025 | if (time_after_eq(jiffies, rq->next_balance)) |
4026 | raise_softirq(SCHED_SOFTIRQ); | 4026 | raise_softirq(SCHED_SOFTIRQ); |
4027 | } | 4027 | } |
4028 | 4028 | ||
4029 | #else /* CONFIG_SMP */ | 4029 | #else /* CONFIG_SMP */ |
4030 | 4030 | ||
4031 | /* | 4031 | /* |
4032 | * on UP we do not need to balance between CPUs: | 4032 | * on UP we do not need to balance between CPUs: |
4033 | */ | 4033 | */ |
4034 | static inline void idle_balance(int cpu, struct rq *rq) | 4034 | static inline void idle_balance(int cpu, struct rq *rq) |
4035 | { | 4035 | { |
4036 | } | 4036 | } |
4037 | 4037 | ||
4038 | #endif | 4038 | #endif |
4039 | 4039 | ||
4040 | DEFINE_PER_CPU(struct kernel_stat, kstat); | 4040 | DEFINE_PER_CPU(struct kernel_stat, kstat); |
4041 | 4041 | ||
4042 | EXPORT_PER_CPU_SYMBOL(kstat); | 4042 | EXPORT_PER_CPU_SYMBOL(kstat); |
4043 | 4043 | ||
4044 | /* | 4044 | /* |
4045 | * Return any ns on the sched_clock that have not yet been banked in | 4045 | * Return any ns on the sched_clock that have not yet been banked in |
4046 | * @p in case that task is currently running. | 4046 | * @p in case that task is currently running. |
4047 | */ | 4047 | */ |
4048 | unsigned long long task_delta_exec(struct task_struct *p) | 4048 | unsigned long long task_delta_exec(struct task_struct *p) |
4049 | { | 4049 | { |
4050 | unsigned long flags; | 4050 | unsigned long flags; |
4051 | struct rq *rq; | 4051 | struct rq *rq; |
4052 | u64 ns = 0; | 4052 | u64 ns = 0; |
4053 | 4053 | ||
4054 | rq = task_rq_lock(p, &flags); | 4054 | rq = task_rq_lock(p, &flags); |
4055 | 4055 | ||
4056 | if (task_current(rq, p)) { | 4056 | if (task_current(rq, p)) { |
4057 | u64 delta_exec; | 4057 | u64 delta_exec; |
4058 | 4058 | ||
4059 | update_rq_clock(rq); | 4059 | update_rq_clock(rq); |
4060 | delta_exec = rq->clock - p->se.exec_start; | 4060 | delta_exec = rq->clock - p->se.exec_start; |
4061 | if ((s64)delta_exec > 0) | 4061 | if ((s64)delta_exec > 0) |
4062 | ns = delta_exec; | 4062 | ns = delta_exec; |
4063 | } | 4063 | } |
4064 | 4064 | ||
4065 | task_rq_unlock(rq, &flags); | 4065 | task_rq_unlock(rq, &flags); |
4066 | 4066 | ||
4067 | return ns; | 4067 | return ns; |
4068 | } | 4068 | } |
4069 | 4069 | ||
4070 | /* | 4070 | /* |
4071 | * Account user cpu time to a process. | 4071 | * Account user cpu time to a process. |
4072 | * @p: the process that the cpu time gets accounted to | 4072 | * @p: the process that the cpu time gets accounted to |
4073 | * @cputime: the cpu time spent in user space since the last update | 4073 | * @cputime: the cpu time spent in user space since the last update |
4074 | */ | 4074 | */ |
4075 | void account_user_time(struct task_struct *p, cputime_t cputime) | 4075 | void account_user_time(struct task_struct *p, cputime_t cputime) |
4076 | { | 4076 | { |
4077 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 4077 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; |
4078 | cputime64_t tmp; | 4078 | cputime64_t tmp; |
4079 | 4079 | ||
4080 | p->utime = cputime_add(p->utime, cputime); | 4080 | p->utime = cputime_add(p->utime, cputime); |
4081 | account_group_user_time(p, cputime); | 4081 | account_group_user_time(p, cputime); |
4082 | 4082 | ||
4083 | /* Add user time to cpustat. */ | 4083 | /* Add user time to cpustat. */ |
4084 | tmp = cputime_to_cputime64(cputime); | 4084 | tmp = cputime_to_cputime64(cputime); |
4085 | if (TASK_NICE(p) > 0) | 4085 | if (TASK_NICE(p) > 0) |
4086 | cpustat->nice = cputime64_add(cpustat->nice, tmp); | 4086 | cpustat->nice = cputime64_add(cpustat->nice, tmp); |
4087 | else | 4087 | else |
4088 | cpustat->user = cputime64_add(cpustat->user, tmp); | 4088 | cpustat->user = cputime64_add(cpustat->user, tmp); |
4089 | /* Account for user time used */ | 4089 | /* Account for user time used */ |
4090 | acct_update_integrals(p); | 4090 | acct_update_integrals(p); |
4091 | } | 4091 | } |
4092 | 4092 | ||
4093 | /* | 4093 | /* |
4094 | * Account guest cpu time to a process. | 4094 | * Account guest cpu time to a process. |
4095 | * @p: the process that the cpu time gets accounted to | 4095 | * @p: the process that the cpu time gets accounted to |
4096 | * @cputime: the cpu time spent in virtual machine since the last update | 4096 | * @cputime: the cpu time spent in virtual machine since the last update |
4097 | */ | 4097 | */ |
4098 | static void account_guest_time(struct task_struct *p, cputime_t cputime) | 4098 | static void account_guest_time(struct task_struct *p, cputime_t cputime) |
4099 | { | 4099 | { |
4100 | cputime64_t tmp; | 4100 | cputime64_t tmp; |
4101 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 4101 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; |
4102 | 4102 | ||
4103 | tmp = cputime_to_cputime64(cputime); | 4103 | tmp = cputime_to_cputime64(cputime); |
4104 | 4104 | ||
4105 | p->utime = cputime_add(p->utime, cputime); | 4105 | p->utime = cputime_add(p->utime, cputime); |
4106 | account_group_user_time(p, cputime); | 4106 | account_group_user_time(p, cputime); |
4107 | p->gtime = cputime_add(p->gtime, cputime); | 4107 | p->gtime = cputime_add(p->gtime, cputime); |
4108 | 4108 | ||
4109 | cpustat->user = cputime64_add(cpustat->user, tmp); | 4109 | cpustat->user = cputime64_add(cpustat->user, tmp); |
4110 | cpustat->guest = cputime64_add(cpustat->guest, tmp); | 4110 | cpustat->guest = cputime64_add(cpustat->guest, tmp); |
4111 | } | 4111 | } |
4112 | 4112 | ||
4113 | /* | 4113 | /* |
4114 | * Account scaled user cpu time to a process. | 4114 | * Account scaled user cpu time to a process. |
4115 | * @p: the process that the cpu time gets accounted to | 4115 | * @p: the process that the cpu time gets accounted to |
4116 | * @cputime: the cpu time spent in user space since the last update | 4116 | * @cputime: the cpu time spent in user space since the last update |
4117 | */ | 4117 | */ |
4118 | void account_user_time_scaled(struct task_struct *p, cputime_t cputime) | 4118 | void account_user_time_scaled(struct task_struct *p, cputime_t cputime) |
4119 | { | 4119 | { |
4120 | p->utimescaled = cputime_add(p->utimescaled, cputime); | 4120 | p->utimescaled = cputime_add(p->utimescaled, cputime); |
4121 | } | 4121 | } |
4122 | 4122 | ||
4123 | /* | 4123 | /* |
4124 | * Account system cpu time to a process. | 4124 | * Account system cpu time to a process. |
4125 | * @p: the process that the cpu time gets accounted to | 4125 | * @p: the process that the cpu time gets accounted to |
4126 | * @hardirq_offset: the offset to subtract from hardirq_count() | 4126 | * @hardirq_offset: the offset to subtract from hardirq_count() |
4127 | * @cputime: the cpu time spent in kernel space since the last update | 4127 | * @cputime: the cpu time spent in kernel space since the last update |
4128 | */ | 4128 | */ |
4129 | void account_system_time(struct task_struct *p, int hardirq_offset, | 4129 | void account_system_time(struct task_struct *p, int hardirq_offset, |
4130 | cputime_t cputime) | 4130 | cputime_t cputime) |
4131 | { | 4131 | { |
4132 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 4132 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; |
4133 | struct rq *rq = this_rq(); | 4133 | struct rq *rq = this_rq(); |
4134 | cputime64_t tmp; | 4134 | cputime64_t tmp; |
4135 | 4135 | ||
4136 | if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { | 4136 | if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { |
4137 | account_guest_time(p, cputime); | 4137 | account_guest_time(p, cputime); |
4138 | return; | 4138 | return; |
4139 | } | 4139 | } |
4140 | 4140 | ||
4141 | p->stime = cputime_add(p->stime, cputime); | 4141 | p->stime = cputime_add(p->stime, cputime); |
4142 | account_group_system_time(p, cputime); | 4142 | account_group_system_time(p, cputime); |
4143 | 4143 | ||
4144 | /* Add system time to cpustat. */ | 4144 | /* Add system time to cpustat. */ |
4145 | tmp = cputime_to_cputime64(cputime); | 4145 | tmp = cputime_to_cputime64(cputime); |
4146 | if (hardirq_count() - hardirq_offset) | 4146 | if (hardirq_count() - hardirq_offset) |
4147 | cpustat->irq = cputime64_add(cpustat->irq, tmp); | 4147 | cpustat->irq = cputime64_add(cpustat->irq, tmp); |
4148 | else if (softirq_count()) | 4148 | else if (softirq_count()) |
4149 | cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | 4149 | cpustat->softirq = cputime64_add(cpustat->softirq, tmp); |
4150 | else if (p != rq->idle) | 4150 | else if (p != rq->idle) |
4151 | cpustat->system = cputime64_add(cpustat->system, tmp); | 4151 | cpustat->system = cputime64_add(cpustat->system, tmp); |
4152 | else if (atomic_read(&rq->nr_iowait) > 0) | 4152 | else if (atomic_read(&rq->nr_iowait) > 0) |
4153 | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | 4153 | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); |
4154 | else | 4154 | else |
4155 | cpustat->idle = cputime64_add(cpustat->idle, tmp); | 4155 | cpustat->idle = cputime64_add(cpustat->idle, tmp); |
4156 | /* Account for system time used */ | 4156 | /* Account for system time used */ |
4157 | acct_update_integrals(p); | 4157 | acct_update_integrals(p); |
4158 | } | 4158 | } |
4159 | 4159 | ||
4160 | /* | 4160 | /* |
4161 | * Account scaled system cpu time to a process. | 4161 | * Account scaled system cpu time to a process. |
4162 | * @p: the process that the cpu time gets accounted to | 4162 | * @p: the process that the cpu time gets accounted to |
4163 | * @hardirq_offset: the offset to subtract from hardirq_count() | 4163 | * @hardirq_offset: the offset to subtract from hardirq_count() |
4164 | * @cputime: the cpu time spent in kernel space since the last update | 4164 | * @cputime: the cpu time spent in kernel space since the last update |
4165 | */ | 4165 | */ |
4166 | void account_system_time_scaled(struct task_struct *p, cputime_t cputime) | 4166 | void account_system_time_scaled(struct task_struct *p, cputime_t cputime) |
4167 | { | 4167 | { |
4168 | p->stimescaled = cputime_add(p->stimescaled, cputime); | 4168 | p->stimescaled = cputime_add(p->stimescaled, cputime); |
4169 | } | 4169 | } |
4170 | 4170 | ||
4171 | /* | 4171 | /* |
4172 | * Account for involuntary wait time. | 4172 | * Account for involuntary wait time. |
4173 | * @p: the process from which the cpu time has been stolen | 4173 | * @p: the process from which the cpu time has been stolen |
4174 | * @steal: the cpu time spent in involuntary wait | 4174 | * @steal: the cpu time spent in involuntary wait |
4175 | */ | 4175 | */ |
4176 | void account_steal_time(struct task_struct *p, cputime_t steal) | 4176 | void account_steal_time(struct task_struct *p, cputime_t steal) |
4177 | { | 4177 | { |
4178 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 4178 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; |
4179 | cputime64_t tmp = cputime_to_cputime64(steal); | 4179 | cputime64_t tmp = cputime_to_cputime64(steal); |
4180 | struct rq *rq = this_rq(); | 4180 | struct rq *rq = this_rq(); |
4181 | 4181 | ||
4182 | if (p == rq->idle) { | 4182 | if (p == rq->idle) { |
4183 | p->stime = cputime_add(p->stime, steal); | 4183 | p->stime = cputime_add(p->stime, steal); |
4184 | account_group_system_time(p, steal); | 4184 | account_group_system_time(p, steal); |
4185 | if (atomic_read(&rq->nr_iowait) > 0) | 4185 | if (atomic_read(&rq->nr_iowait) > 0) |
4186 | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | 4186 | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); |
4187 | else | 4187 | else |
4188 | cpustat->idle = cputime64_add(cpustat->idle, tmp); | 4188 | cpustat->idle = cputime64_add(cpustat->idle, tmp); |
4189 | } else | 4189 | } else |
4190 | cpustat->steal = cputime64_add(cpustat->steal, tmp); | 4190 | cpustat->steal = cputime64_add(cpustat->steal, tmp); |
4191 | } | 4191 | } |
4192 | 4192 | ||
4193 | /* | 4193 | /* |
4194 | * Use precise platform statistics if available: | 4194 | * Use precise platform statistics if available: |
4195 | */ | 4195 | */ |
4196 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING | 4196 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING |
4197 | cputime_t task_utime(struct task_struct *p) | 4197 | cputime_t task_utime(struct task_struct *p) |
4198 | { | 4198 | { |
4199 | return p->utime; | 4199 | return p->utime; |
4200 | } | 4200 | } |
4201 | 4201 | ||
4202 | cputime_t task_stime(struct task_struct *p) | 4202 | cputime_t task_stime(struct task_struct *p) |
4203 | { | 4203 | { |
4204 | return p->stime; | 4204 | return p->stime; |
4205 | } | 4205 | } |
4206 | #else | 4206 | #else |
4207 | cputime_t task_utime(struct task_struct *p) | 4207 | cputime_t task_utime(struct task_struct *p) |
4208 | { | 4208 | { |
4209 | clock_t utime = cputime_to_clock_t(p->utime), | 4209 | clock_t utime = cputime_to_clock_t(p->utime), |
4210 | total = utime + cputime_to_clock_t(p->stime); | 4210 | total = utime + cputime_to_clock_t(p->stime); |
4211 | u64 temp; | 4211 | u64 temp; |
4212 | 4212 | ||
4213 | /* | 4213 | /* |
4214 | * Use CFS's precise accounting: | 4214 | * Use CFS's precise accounting: |
4215 | */ | 4215 | */ |
4216 | temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); | 4216 | temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); |
4217 | 4217 | ||
4218 | if (total) { | 4218 | if (total) { |
4219 | temp *= utime; | 4219 | temp *= utime; |
4220 | do_div(temp, total); | 4220 | do_div(temp, total); |
4221 | } | 4221 | } |
4222 | utime = (clock_t)temp; | 4222 | utime = (clock_t)temp; |
4223 | 4223 | ||
4224 | p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); | 4224 | p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); |
4225 | return p->prev_utime; | 4225 | return p->prev_utime; |
4226 | } | 4226 | } |
4227 | 4227 | ||
4228 | cputime_t task_stime(struct task_struct *p) | 4228 | cputime_t task_stime(struct task_struct *p) |
4229 | { | 4229 | { |
4230 | clock_t stime; | 4230 | clock_t stime; |
4231 | 4231 | ||
4232 | /* | 4232 | /* |
4233 | * Use CFS's precise accounting. (we subtract utime from | 4233 | * Use CFS's precise accounting. (we subtract utime from |
4234 | * the total, to make sure the total observed by userspace | 4234 | * the total, to make sure the total observed by userspace |
4235 | * grows monotonically - apps rely on that): | 4235 | * grows monotonically - apps rely on that): |
4236 | */ | 4236 | */ |
4237 | stime = nsec_to_clock_t(p->se.sum_exec_runtime) - | 4237 | stime = nsec_to_clock_t(p->se.sum_exec_runtime) - |
4238 | cputime_to_clock_t(task_utime(p)); | 4238 | cputime_to_clock_t(task_utime(p)); |
4239 | 4239 | ||
4240 | if (stime >= 0) | 4240 | if (stime >= 0) |
4241 | p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); | 4241 | p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); |
4242 | 4242 | ||
4243 | return p->prev_stime; | 4243 | return p->prev_stime; |
4244 | } | 4244 | } |
4245 | #endif | 4245 | #endif |
4246 | 4246 | ||
4247 | inline cputime_t task_gtime(struct task_struct *p) | 4247 | inline cputime_t task_gtime(struct task_struct *p) |
4248 | { | 4248 | { |
4249 | return p->gtime; | 4249 | return p->gtime; |
4250 | } | 4250 | } |
4251 | 4251 | ||
4252 | /* | 4252 | /* |
4253 | * This function gets called by the timer code, with HZ frequency. | 4253 | * This function gets called by the timer code, with HZ frequency. |
4254 | * We call it with interrupts disabled. | 4254 | * We call it with interrupts disabled. |
4255 | * | 4255 | * |
4256 | * It also gets called by the fork code, when changing the parent's | 4256 | * It also gets called by the fork code, when changing the parent's |
4257 | * timeslices. | 4257 | * timeslices. |
4258 | */ | 4258 | */ |
4259 | void scheduler_tick(void) | 4259 | void scheduler_tick(void) |
4260 | { | 4260 | { |
4261 | int cpu = smp_processor_id(); | 4261 | int cpu = smp_processor_id(); |
4262 | struct rq *rq = cpu_rq(cpu); | 4262 | struct rq *rq = cpu_rq(cpu); |
4263 | struct task_struct *curr = rq->curr; | 4263 | struct task_struct *curr = rq->curr; |
4264 | 4264 | ||
4265 | sched_clock_tick(); | 4265 | sched_clock_tick(); |
4266 | 4266 | ||
4267 | spin_lock(&rq->lock); | 4267 | spin_lock(&rq->lock); |
4268 | update_rq_clock(rq); | 4268 | update_rq_clock(rq); |
4269 | update_cpu_load(rq); | 4269 | update_cpu_load(rq); |
4270 | curr->sched_class->task_tick(rq, curr, 0); | 4270 | curr->sched_class->task_tick(rq, curr, 0); |
4271 | spin_unlock(&rq->lock); | 4271 | spin_unlock(&rq->lock); |
4272 | 4272 | ||
4273 | #ifdef CONFIG_SMP | 4273 | #ifdef CONFIG_SMP |
4274 | rq->idle_at_tick = idle_cpu(cpu); | 4274 | rq->idle_at_tick = idle_cpu(cpu); |
4275 | trigger_load_balance(rq, cpu); | 4275 | trigger_load_balance(rq, cpu); |
4276 | #endif | 4276 | #endif |
4277 | } | 4277 | } |
4278 | 4278 | ||
4279 | #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ | 4279 | #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ |
4280 | defined(CONFIG_PREEMPT_TRACER)) | 4280 | defined(CONFIG_PREEMPT_TRACER)) |
4281 | 4281 | ||
4282 | static inline unsigned long get_parent_ip(unsigned long addr) | 4282 | static inline unsigned long get_parent_ip(unsigned long addr) |
4283 | { | 4283 | { |
4284 | if (in_lock_functions(addr)) { | 4284 | if (in_lock_functions(addr)) { |
4285 | addr = CALLER_ADDR2; | 4285 | addr = CALLER_ADDR2; |
4286 | if (in_lock_functions(addr)) | 4286 | if (in_lock_functions(addr)) |
4287 | addr = CALLER_ADDR3; | 4287 | addr = CALLER_ADDR3; |
4288 | } | 4288 | } |
4289 | return addr; | 4289 | return addr; |
4290 | } | 4290 | } |
4291 | 4291 | ||
4292 | void __kprobes add_preempt_count(int val) | 4292 | void __kprobes add_preempt_count(int val) |
4293 | { | 4293 | { |
4294 | #ifdef CONFIG_DEBUG_PREEMPT | 4294 | #ifdef CONFIG_DEBUG_PREEMPT |
4295 | /* | 4295 | /* |
4296 | * Underflow? | 4296 | * Underflow? |
4297 | */ | 4297 | */ |
4298 | if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) | 4298 | if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) |
4299 | return; | 4299 | return; |
4300 | #endif | 4300 | #endif |
4301 | preempt_count() += val; | 4301 | preempt_count() += val; |
4302 | #ifdef CONFIG_DEBUG_PREEMPT | 4302 | #ifdef CONFIG_DEBUG_PREEMPT |
4303 | /* | 4303 | /* |
4304 | * Spinlock count overflowing soon? | 4304 | * Spinlock count overflowing soon? |
4305 | */ | 4305 | */ |
4306 | DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= | 4306 | DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= |
4307 | PREEMPT_MASK - 10); | 4307 | PREEMPT_MASK - 10); |
4308 | #endif | 4308 | #endif |
4309 | if (preempt_count() == val) | 4309 | if (preempt_count() == val) |
4310 | trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | 4310 | trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); |
4311 | } | 4311 | } |
4312 | EXPORT_SYMBOL(add_preempt_count); | 4312 | EXPORT_SYMBOL(add_preempt_count); |
4313 | 4313 | ||
4314 | void __kprobes sub_preempt_count(int val) | 4314 | void __kprobes sub_preempt_count(int val) |
4315 | { | 4315 | { |
4316 | #ifdef CONFIG_DEBUG_PREEMPT | 4316 | #ifdef CONFIG_DEBUG_PREEMPT |
4317 | /* | 4317 | /* |
4318 | * Underflow? | 4318 | * Underflow? |
4319 | */ | 4319 | */ |
4320 | if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) | 4320 | if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) |
4321 | return; | 4321 | return; |
4322 | /* | 4322 | /* |
4323 | * Is the spinlock portion underflowing? | 4323 | * Is the spinlock portion underflowing? |
4324 | */ | 4324 | */ |
4325 | if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && | 4325 | if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && |
4326 | !(preempt_count() & PREEMPT_MASK))) | 4326 | !(preempt_count() & PREEMPT_MASK))) |
4327 | return; | 4327 | return; |
4328 | #endif | 4328 | #endif |
4329 | 4329 | ||
4330 | if (preempt_count() == val) | 4330 | if (preempt_count() == val) |
4331 | trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | 4331 | trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); |
4332 | preempt_count() -= val; | 4332 | preempt_count() -= val; |
4333 | } | 4333 | } |
4334 | EXPORT_SYMBOL(sub_preempt_count); | 4334 | EXPORT_SYMBOL(sub_preempt_count); |
4335 | 4335 | ||
4336 | #endif | 4336 | #endif |
4337 | 4337 | ||
4338 | /* | 4338 | /* |
4339 | * Print scheduling while atomic bug: | 4339 | * Print scheduling while atomic bug: |
4340 | */ | 4340 | */ |
4341 | static noinline void __schedule_bug(struct task_struct *prev) | 4341 | static noinline void __schedule_bug(struct task_struct *prev) |
4342 | { | 4342 | { |
4343 | struct pt_regs *regs = get_irq_regs(); | 4343 | struct pt_regs *regs = get_irq_regs(); |
4344 | 4344 | ||
4345 | printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", | 4345 | printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", |
4346 | prev->comm, prev->pid, preempt_count()); | 4346 | prev->comm, prev->pid, preempt_count()); |
4347 | 4347 | ||
4348 | debug_show_held_locks(prev); | 4348 | debug_show_held_locks(prev); |
4349 | print_modules(); | 4349 | print_modules(); |
4350 | if (irqs_disabled()) | 4350 | if (irqs_disabled()) |
4351 | print_irqtrace_events(prev); | 4351 | print_irqtrace_events(prev); |
4352 | 4352 | ||
4353 | if (regs) | 4353 | if (regs) |
4354 | show_regs(regs); | 4354 | show_regs(regs); |
4355 | else | 4355 | else |
4356 | dump_stack(); | 4356 | dump_stack(); |
4357 | } | 4357 | } |
4358 | 4358 | ||
4359 | /* | 4359 | /* |
4360 | * Various schedule()-time debugging checks and statistics: | 4360 | * Various schedule()-time debugging checks and statistics: |
4361 | */ | 4361 | */ |
4362 | static inline void schedule_debug(struct task_struct *prev) | 4362 | static inline void schedule_debug(struct task_struct *prev) |
4363 | { | 4363 | { |
4364 | /* | 4364 | /* |
4365 | * Test if we are atomic. Since do_exit() needs to call into | 4365 | * Test if we are atomic. Since do_exit() needs to call into |
4366 | * schedule() atomically, we ignore that path for now. | 4366 | * schedule() atomically, we ignore that path for now. |
4367 | * Otherwise, whine if we are scheduling when we should not be. | 4367 | * Otherwise, whine if we are scheduling when we should not be. |
4368 | */ | 4368 | */ |
4369 | if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) | 4369 | if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) |
4370 | __schedule_bug(prev); | 4370 | __schedule_bug(prev); |
4371 | 4371 | ||
4372 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); | 4372 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); |
4373 | 4373 | ||
4374 | schedstat_inc(this_rq(), sched_count); | 4374 | schedstat_inc(this_rq(), sched_count); |
4375 | #ifdef CONFIG_SCHEDSTATS | 4375 | #ifdef CONFIG_SCHEDSTATS |
4376 | if (unlikely(prev->lock_depth >= 0)) { | 4376 | if (unlikely(prev->lock_depth >= 0)) { |
4377 | schedstat_inc(this_rq(), bkl_count); | 4377 | schedstat_inc(this_rq(), bkl_count); |
4378 | schedstat_inc(prev, sched_info.bkl_count); | 4378 | schedstat_inc(prev, sched_info.bkl_count); |
4379 | } | 4379 | } |
4380 | #endif | 4380 | #endif |
4381 | } | 4381 | } |
4382 | 4382 | ||
4383 | /* | 4383 | /* |
4384 | * Pick up the highest-prio task: | 4384 | * Pick up the highest-prio task: |
4385 | */ | 4385 | */ |
4386 | static inline struct task_struct * | 4386 | static inline struct task_struct * |
4387 | pick_next_task(struct rq *rq, struct task_struct *prev) | 4387 | pick_next_task(struct rq *rq, struct task_struct *prev) |
4388 | { | 4388 | { |
4389 | const struct sched_class *class; | 4389 | const struct sched_class *class; |
4390 | struct task_struct *p; | 4390 | struct task_struct *p; |
4391 | 4391 | ||
4392 | /* | 4392 | /* |
4393 | * Optimization: we know that if all tasks are in | 4393 | * Optimization: we know that if all tasks are in |
4394 | * the fair class we can call that function directly: | 4394 | * the fair class we can call that function directly: |
4395 | */ | 4395 | */ |
4396 | if (likely(rq->nr_running == rq->cfs.nr_running)) { | 4396 | if (likely(rq->nr_running == rq->cfs.nr_running)) { |
4397 | p = fair_sched_class.pick_next_task(rq); | 4397 | p = fair_sched_class.pick_next_task(rq); |
4398 | if (likely(p)) | 4398 | if (likely(p)) |
4399 | return p; | 4399 | return p; |
4400 | } | 4400 | } |
4401 | 4401 | ||
4402 | class = sched_class_highest; | 4402 | class = sched_class_highest; |
4403 | for ( ; ; ) { | 4403 | for ( ; ; ) { |
4404 | p = class->pick_next_task(rq); | 4404 | p = class->pick_next_task(rq); |
4405 | if (p) | 4405 | if (p) |
4406 | return p; | 4406 | return p; |
4407 | /* | 4407 | /* |
4408 | * Will never be NULL as the idle class always | 4408 | * Will never be NULL as the idle class always |
4409 | * returns a non-NULL p: | 4409 | * returns a non-NULL p: |
4410 | */ | 4410 | */ |
4411 | class = class->next; | 4411 | class = class->next; |
4412 | } | 4412 | } |
4413 | } | 4413 | } |
4414 | 4414 | ||
4415 | /* | 4415 | /* |
4416 | * schedule() is the main scheduler function. | 4416 | * schedule() is the main scheduler function. |
4417 | */ | 4417 | */ |
4418 | asmlinkage void __sched schedule(void) | 4418 | asmlinkage void __sched schedule(void) |
4419 | { | 4419 | { |
4420 | struct task_struct *prev, *next; | 4420 | struct task_struct *prev, *next; |
4421 | unsigned long *switch_count; | 4421 | unsigned long *switch_count; |
4422 | struct rq *rq; | 4422 | struct rq *rq; |
4423 | int cpu; | 4423 | int cpu; |
4424 | 4424 | ||
4425 | need_resched: | 4425 | need_resched: |
4426 | preempt_disable(); | 4426 | preempt_disable(); |
4427 | cpu = smp_processor_id(); | 4427 | cpu = smp_processor_id(); |
4428 | rq = cpu_rq(cpu); | 4428 | rq = cpu_rq(cpu); |
4429 | rcu_qsctr_inc(cpu); | 4429 | rcu_qsctr_inc(cpu); |
4430 | prev = rq->curr; | 4430 | prev = rq->curr; |
4431 | switch_count = &prev->nivcsw; | 4431 | switch_count = &prev->nivcsw; |
4432 | 4432 | ||
4433 | release_kernel_lock(prev); | 4433 | release_kernel_lock(prev); |
4434 | need_resched_nonpreemptible: | 4434 | need_resched_nonpreemptible: |
4435 | 4435 | ||
4436 | schedule_debug(prev); | 4436 | schedule_debug(prev); |
4437 | 4437 | ||
4438 | if (sched_feat(HRTICK)) | 4438 | if (sched_feat(HRTICK)) |
4439 | hrtick_clear(rq); | 4439 | hrtick_clear(rq); |
4440 | 4440 | ||
4441 | spin_lock_irq(&rq->lock); | 4441 | spin_lock_irq(&rq->lock); |
4442 | update_rq_clock(rq); | 4442 | update_rq_clock(rq); |
4443 | clear_tsk_need_resched(prev); | 4443 | clear_tsk_need_resched(prev); |
4444 | 4444 | ||
4445 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | 4445 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { |
4446 | if (unlikely(signal_pending_state(prev->state, prev))) | 4446 | if (unlikely(signal_pending_state(prev->state, prev))) |
4447 | prev->state = TASK_RUNNING; | 4447 | prev->state = TASK_RUNNING; |
4448 | else | 4448 | else |
4449 | deactivate_task(rq, prev, 1); | 4449 | deactivate_task(rq, prev, 1); |
4450 | switch_count = &prev->nvcsw; | 4450 | switch_count = &prev->nvcsw; |
4451 | } | 4451 | } |
4452 | 4452 | ||
4453 | #ifdef CONFIG_SMP | 4453 | #ifdef CONFIG_SMP |
4454 | if (prev->sched_class->pre_schedule) | 4454 | if (prev->sched_class->pre_schedule) |
4455 | prev->sched_class->pre_schedule(rq, prev); | 4455 | prev->sched_class->pre_schedule(rq, prev); |
4456 | #endif | 4456 | #endif |
4457 | 4457 | ||
4458 | if (unlikely(!rq->nr_running)) | 4458 | if (unlikely(!rq->nr_running)) |
4459 | idle_balance(cpu, rq); | 4459 | idle_balance(cpu, rq); |
4460 | 4460 | ||
4461 | prev->sched_class->put_prev_task(rq, prev); | 4461 | prev->sched_class->put_prev_task(rq, prev); |
4462 | next = pick_next_task(rq, prev); | 4462 | next = pick_next_task(rq, prev); |
4463 | 4463 | ||
4464 | if (likely(prev != next)) { | 4464 | if (likely(prev != next)) { |
4465 | sched_info_switch(prev, next); | 4465 | sched_info_switch(prev, next); |
4466 | 4466 | ||
4467 | rq->nr_switches++; | 4467 | rq->nr_switches++; |
4468 | rq->curr = next; | 4468 | rq->curr = next; |
4469 | ++*switch_count; | 4469 | ++*switch_count; |
4470 | 4470 | ||
4471 | context_switch(rq, prev, next); /* unlocks the rq */ | 4471 | context_switch(rq, prev, next); /* unlocks the rq */ |
4472 | /* | 4472 | /* |
4473 | * the context switch might have flipped the stack from under | 4473 | * the context switch might have flipped the stack from under |
4474 | * us, hence refresh the local variables. | 4474 | * us, hence refresh the local variables. |
4475 | */ | 4475 | */ |
4476 | cpu = smp_processor_id(); | 4476 | cpu = smp_processor_id(); |
4477 | rq = cpu_rq(cpu); | 4477 | rq = cpu_rq(cpu); |
4478 | } else | 4478 | } else |
4479 | spin_unlock_irq(&rq->lock); | 4479 | spin_unlock_irq(&rq->lock); |
4480 | 4480 | ||
4481 | if (unlikely(reacquire_kernel_lock(current) < 0)) | 4481 | if (unlikely(reacquire_kernel_lock(current) < 0)) |
4482 | goto need_resched_nonpreemptible; | 4482 | goto need_resched_nonpreemptible; |
4483 | 4483 | ||
4484 | preempt_enable_no_resched(); | 4484 | preempt_enable_no_resched(); |
4485 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 4485 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) |
4486 | goto need_resched; | 4486 | goto need_resched; |
4487 | } | 4487 | } |
4488 | EXPORT_SYMBOL(schedule); | 4488 | EXPORT_SYMBOL(schedule); |
4489 | 4489 | ||
4490 | #ifdef CONFIG_PREEMPT | 4490 | #ifdef CONFIG_PREEMPT |
4491 | /* | 4491 | /* |
4492 | * this is the entry point to schedule() from in-kernel preemption | 4492 | * this is the entry point to schedule() from in-kernel preemption |
4493 | * off of preempt_enable. Kernel preemptions off return from interrupt | 4493 | * off of preempt_enable. Kernel preemptions off return from interrupt |
4494 | * occur there and call schedule directly. | 4494 | * occur there and call schedule directly. |
4495 | */ | 4495 | */ |
4496 | asmlinkage void __sched preempt_schedule(void) | 4496 | asmlinkage void __sched preempt_schedule(void) |
4497 | { | 4497 | { |
4498 | struct thread_info *ti = current_thread_info(); | 4498 | struct thread_info *ti = current_thread_info(); |
4499 | 4499 | ||
4500 | /* | 4500 | /* |
4501 | * If there is a non-zero preempt_count or interrupts are disabled, | 4501 | * If there is a non-zero preempt_count or interrupts are disabled, |
4502 | * we do not want to preempt the current task. Just return.. | 4502 | * we do not want to preempt the current task. Just return.. |
4503 | */ | 4503 | */ |
4504 | if (likely(ti->preempt_count || irqs_disabled())) | 4504 | if (likely(ti->preempt_count || irqs_disabled())) |
4505 | return; | 4505 | return; |
4506 | 4506 | ||
4507 | do { | 4507 | do { |
4508 | add_preempt_count(PREEMPT_ACTIVE); | 4508 | add_preempt_count(PREEMPT_ACTIVE); |
4509 | schedule(); | 4509 | schedule(); |
4510 | sub_preempt_count(PREEMPT_ACTIVE); | 4510 | sub_preempt_count(PREEMPT_ACTIVE); |
4511 | 4511 | ||
4512 | /* | 4512 | /* |
4513 | * Check again in case we missed a preemption opportunity | 4513 | * Check again in case we missed a preemption opportunity |
4514 | * between schedule and now. | 4514 | * between schedule and now. |
4515 | */ | 4515 | */ |
4516 | barrier(); | 4516 | barrier(); |
4517 | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); | 4517 | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); |
4518 | } | 4518 | } |
4519 | EXPORT_SYMBOL(preempt_schedule); | 4519 | EXPORT_SYMBOL(preempt_schedule); |
4520 | 4520 | ||
4521 | /* | 4521 | /* |
4522 | * this is the entry point to schedule() from kernel preemption | 4522 | * this is the entry point to schedule() from kernel preemption |
4523 | * off of irq context. | 4523 | * off of irq context. |
4524 | * Note, that this is called and return with irqs disabled. This will | 4524 | * Note, that this is called and return with irqs disabled. This will |
4525 | * protect us against recursive calling from irq. | 4525 | * protect us against recursive calling from irq. |
4526 | */ | 4526 | */ |
4527 | asmlinkage void __sched preempt_schedule_irq(void) | 4527 | asmlinkage void __sched preempt_schedule_irq(void) |
4528 | { | 4528 | { |
4529 | struct thread_info *ti = current_thread_info(); | 4529 | struct thread_info *ti = current_thread_info(); |
4530 | 4530 | ||
4531 | /* Catch callers which need to be fixed */ | 4531 | /* Catch callers which need to be fixed */ |
4532 | BUG_ON(ti->preempt_count || !irqs_disabled()); | 4532 | BUG_ON(ti->preempt_count || !irqs_disabled()); |
4533 | 4533 | ||
4534 | do { | 4534 | do { |
4535 | add_preempt_count(PREEMPT_ACTIVE); | 4535 | add_preempt_count(PREEMPT_ACTIVE); |
4536 | local_irq_enable(); | 4536 | local_irq_enable(); |
4537 | schedule(); | 4537 | schedule(); |
4538 | local_irq_disable(); | 4538 | local_irq_disable(); |
4539 | sub_preempt_count(PREEMPT_ACTIVE); | 4539 | sub_preempt_count(PREEMPT_ACTIVE); |
4540 | 4540 | ||
4541 | /* | 4541 | /* |
4542 | * Check again in case we missed a preemption opportunity | 4542 | * Check again in case we missed a preemption opportunity |
4543 | * between schedule and now. | 4543 | * between schedule and now. |
4544 | */ | 4544 | */ |
4545 | barrier(); | 4545 | barrier(); |
4546 | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); | 4546 | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); |
4547 | } | 4547 | } |
4548 | 4548 | ||
4549 | #endif /* CONFIG_PREEMPT */ | 4549 | #endif /* CONFIG_PREEMPT */ |
4550 | 4550 | ||
4551 | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, | 4551 | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, |
4552 | void *key) | 4552 | void *key) |
4553 | { | 4553 | { |
4554 | return try_to_wake_up(curr->private, mode, sync); | 4554 | return try_to_wake_up(curr->private, mode, sync); |
4555 | } | 4555 | } |
4556 | EXPORT_SYMBOL(default_wake_function); | 4556 | EXPORT_SYMBOL(default_wake_function); |
4557 | 4557 | ||
4558 | /* | 4558 | /* |
4559 | * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just | 4559 | * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just |
4560 | * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve | 4560 | * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve |
4561 | * number) then we wake all the non-exclusive tasks and one exclusive task. | 4561 | * number) then we wake all the non-exclusive tasks and one exclusive task. |
4562 | * | 4562 | * |
4563 | * There are circumstances in which we can try to wake a task which has already | 4563 | * There are circumstances in which we can try to wake a task which has already |
4564 | * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns | 4564 | * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns |
4565 | * zero in this (rare) case, and we handle it by continuing to scan the queue. | 4565 | * zero in this (rare) case, and we handle it by continuing to scan the queue. |
4566 | */ | 4566 | */ |
4567 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | 4567 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, |
4568 | int nr_exclusive, int sync, void *key) | 4568 | int nr_exclusive, int sync, void *key) |
4569 | { | 4569 | { |
4570 | wait_queue_t *curr, *next; | 4570 | wait_queue_t *curr, *next; |
4571 | 4571 | ||
4572 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { | 4572 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { |
4573 | unsigned flags = curr->flags; | 4573 | unsigned flags = curr->flags; |
4574 | 4574 | ||
4575 | if (curr->func(curr, mode, sync, key) && | 4575 | if (curr->func(curr, mode, sync, key) && |
4576 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) | 4576 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) |
4577 | break; | 4577 | break; |
4578 | } | 4578 | } |
4579 | } | 4579 | } |
4580 | 4580 | ||
4581 | /** | 4581 | /** |
4582 | * __wake_up - wake up threads blocked on a waitqueue. | 4582 | * __wake_up - wake up threads blocked on a waitqueue. |
4583 | * @q: the waitqueue | 4583 | * @q: the waitqueue |
4584 | * @mode: which threads | 4584 | * @mode: which threads |
4585 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | 4585 | * @nr_exclusive: how many wake-one or wake-many threads to wake up |
4586 | * @key: is directly passed to the wakeup function | 4586 | * @key: is directly passed to the wakeup function |
4587 | */ | 4587 | */ |
4588 | void __wake_up(wait_queue_head_t *q, unsigned int mode, | 4588 | void __wake_up(wait_queue_head_t *q, unsigned int mode, |
4589 | int nr_exclusive, void *key) | 4589 | int nr_exclusive, void *key) |
4590 | { | 4590 | { |
4591 | unsigned long flags; | 4591 | unsigned long flags; |
4592 | 4592 | ||
4593 | spin_lock_irqsave(&q->lock, flags); | 4593 | spin_lock_irqsave(&q->lock, flags); |
4594 | __wake_up_common(q, mode, nr_exclusive, 0, key); | 4594 | __wake_up_common(q, mode, nr_exclusive, 0, key); |
4595 | spin_unlock_irqrestore(&q->lock, flags); | 4595 | spin_unlock_irqrestore(&q->lock, flags); |
4596 | } | 4596 | } |
4597 | EXPORT_SYMBOL(__wake_up); | 4597 | EXPORT_SYMBOL(__wake_up); |
4598 | 4598 | ||
4599 | /* | 4599 | /* |
4600 | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | 4600 | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. |
4601 | */ | 4601 | */ |
4602 | void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | 4602 | void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) |
4603 | { | 4603 | { |
4604 | __wake_up_common(q, mode, 1, 0, NULL); | 4604 | __wake_up_common(q, mode, 1, 0, NULL); |
4605 | } | 4605 | } |
4606 | 4606 | ||
4607 | /** | 4607 | /** |
4608 | * __wake_up_sync - wake up threads blocked on a waitqueue. | 4608 | * __wake_up_sync - wake up threads blocked on a waitqueue. |
4609 | * @q: the waitqueue | 4609 | * @q: the waitqueue |
4610 | * @mode: which threads | 4610 | * @mode: which threads |
4611 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | 4611 | * @nr_exclusive: how many wake-one or wake-many threads to wake up |
4612 | * | 4612 | * |
4613 | * The sync wakeup differs that the waker knows that it will schedule | 4613 | * The sync wakeup differs that the waker knows that it will schedule |
4614 | * away soon, so while the target thread will be woken up, it will not | 4614 | * away soon, so while the target thread will be woken up, it will not |
4615 | * be migrated to another CPU - ie. the two threads are 'synchronized' | 4615 | * be migrated to another CPU - ie. the two threads are 'synchronized' |
4616 | * with each other. This can prevent needless bouncing between CPUs. | 4616 | * with each other. This can prevent needless bouncing between CPUs. |
4617 | * | 4617 | * |
4618 | * On UP it can prevent extra preemption. | 4618 | * On UP it can prevent extra preemption. |
4619 | */ | 4619 | */ |
4620 | void | 4620 | void |
4621 | __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | 4621 | __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) |
4622 | { | 4622 | { |
4623 | unsigned long flags; | 4623 | unsigned long flags; |
4624 | int sync = 1; | 4624 | int sync = 1; |
4625 | 4625 | ||
4626 | if (unlikely(!q)) | 4626 | if (unlikely(!q)) |
4627 | return; | 4627 | return; |
4628 | 4628 | ||
4629 | if (unlikely(!nr_exclusive)) | 4629 | if (unlikely(!nr_exclusive)) |
4630 | sync = 0; | 4630 | sync = 0; |
4631 | 4631 | ||
4632 | spin_lock_irqsave(&q->lock, flags); | 4632 | spin_lock_irqsave(&q->lock, flags); |
4633 | __wake_up_common(q, mode, nr_exclusive, sync, NULL); | 4633 | __wake_up_common(q, mode, nr_exclusive, sync, NULL); |
4634 | spin_unlock_irqrestore(&q->lock, flags); | 4634 | spin_unlock_irqrestore(&q->lock, flags); |
4635 | } | 4635 | } |
4636 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ | 4636 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ |
4637 | 4637 | ||
4638 | /** | 4638 | /** |
4639 | * complete: - signals a single thread waiting on this completion | 4639 | * complete: - signals a single thread waiting on this completion |
4640 | * @x: holds the state of this particular completion | 4640 | * @x: holds the state of this particular completion |
4641 | * | 4641 | * |
4642 | * This will wake up a single thread waiting on this completion. Threads will be | 4642 | * This will wake up a single thread waiting on this completion. Threads will be |
4643 | * awakened in the same order in which they were queued. | 4643 | * awakened in the same order in which they were queued. |
4644 | * | 4644 | * |
4645 | * See also complete_all(), wait_for_completion() and related routines. | 4645 | * See also complete_all(), wait_for_completion() and related routines. |
4646 | */ | 4646 | */ |
4647 | void complete(struct completion *x) | 4647 | void complete(struct completion *x) |
4648 | { | 4648 | { |
4649 | unsigned long flags; | 4649 | unsigned long flags; |
4650 | 4650 | ||
4651 | spin_lock_irqsave(&x->wait.lock, flags); | 4651 | spin_lock_irqsave(&x->wait.lock, flags); |
4652 | x->done++; | 4652 | x->done++; |
4653 | __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); | 4653 | __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); |
4654 | spin_unlock_irqrestore(&x->wait.lock, flags); | 4654 | spin_unlock_irqrestore(&x->wait.lock, flags); |
4655 | } | 4655 | } |
4656 | EXPORT_SYMBOL(complete); | 4656 | EXPORT_SYMBOL(complete); |
4657 | 4657 | ||
4658 | /** | 4658 | /** |
4659 | * complete_all: - signals all threads waiting on this completion | 4659 | * complete_all: - signals all threads waiting on this completion |
4660 | * @x: holds the state of this particular completion | 4660 | * @x: holds the state of this particular completion |
4661 | * | 4661 | * |
4662 | * This will wake up all threads waiting on this particular completion event. | 4662 | * This will wake up all threads waiting on this particular completion event. |
4663 | */ | 4663 | */ |
4664 | void complete_all(struct completion *x) | 4664 | void complete_all(struct completion *x) |
4665 | { | 4665 | { |
4666 | unsigned long flags; | 4666 | unsigned long flags; |
4667 | 4667 | ||
4668 | spin_lock_irqsave(&x->wait.lock, flags); | 4668 | spin_lock_irqsave(&x->wait.lock, flags); |
4669 | x->done += UINT_MAX/2; | 4669 | x->done += UINT_MAX/2; |
4670 | __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); | 4670 | __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); |
4671 | spin_unlock_irqrestore(&x->wait.lock, flags); | 4671 | spin_unlock_irqrestore(&x->wait.lock, flags); |
4672 | } | 4672 | } |
4673 | EXPORT_SYMBOL(complete_all); | 4673 | EXPORT_SYMBOL(complete_all); |
4674 | 4674 | ||
4675 | static inline long __sched | 4675 | static inline long __sched |
4676 | do_wait_for_common(struct completion *x, long timeout, int state) | 4676 | do_wait_for_common(struct completion *x, long timeout, int state) |
4677 | { | 4677 | { |
4678 | if (!x->done) { | 4678 | if (!x->done) { |
4679 | DECLARE_WAITQUEUE(wait, current); | 4679 | DECLARE_WAITQUEUE(wait, current); |
4680 | 4680 | ||
4681 | wait.flags |= WQ_FLAG_EXCLUSIVE; | 4681 | wait.flags |= WQ_FLAG_EXCLUSIVE; |
4682 | __add_wait_queue_tail(&x->wait, &wait); | 4682 | __add_wait_queue_tail(&x->wait, &wait); |
4683 | do { | 4683 | do { |
4684 | if (signal_pending_state(state, current)) { | 4684 | if (signal_pending_state(state, current)) { |
4685 | timeout = -ERESTARTSYS; | 4685 | timeout = -ERESTARTSYS; |
4686 | break; | 4686 | break; |
4687 | } | 4687 | } |
4688 | __set_current_state(state); | 4688 | __set_current_state(state); |
4689 | spin_unlock_irq(&x->wait.lock); | 4689 | spin_unlock_irq(&x->wait.lock); |
4690 | timeout = schedule_timeout(timeout); | 4690 | timeout = schedule_timeout(timeout); |
4691 | spin_lock_irq(&x->wait.lock); | 4691 | spin_lock_irq(&x->wait.lock); |
4692 | } while (!x->done && timeout); | 4692 | } while (!x->done && timeout); |
4693 | __remove_wait_queue(&x->wait, &wait); | 4693 | __remove_wait_queue(&x->wait, &wait); |
4694 | if (!x->done) | 4694 | if (!x->done) |
4695 | return timeout; | 4695 | return timeout; |
4696 | } | 4696 | } |
4697 | x->done--; | 4697 | x->done--; |
4698 | return timeout ?: 1; | 4698 | return timeout ?: 1; |
4699 | } | 4699 | } |
4700 | 4700 | ||
4701 | static long __sched | 4701 | static long __sched |
4702 | wait_for_common(struct completion *x, long timeout, int state) | 4702 | wait_for_common(struct completion *x, long timeout, int state) |
4703 | { | 4703 | { |
4704 | might_sleep(); | 4704 | might_sleep(); |
4705 | 4705 | ||
4706 | spin_lock_irq(&x->wait.lock); | 4706 | spin_lock_irq(&x->wait.lock); |
4707 | timeout = do_wait_for_common(x, timeout, state); | 4707 | timeout = do_wait_for_common(x, timeout, state); |
4708 | spin_unlock_irq(&x->wait.lock); | 4708 | spin_unlock_irq(&x->wait.lock); |
4709 | return timeout; | 4709 | return timeout; |
4710 | } | 4710 | } |
4711 | 4711 | ||
4712 | /** | 4712 | /** |
4713 | * wait_for_completion: - waits for completion of a task | 4713 | * wait_for_completion: - waits for completion of a task |
4714 | * @x: holds the state of this particular completion | 4714 | * @x: holds the state of this particular completion |
4715 | * | 4715 | * |
4716 | * This waits to be signaled for completion of a specific task. It is NOT | 4716 | * This waits to be signaled for completion of a specific task. It is NOT |
4717 | * interruptible and there is no timeout. | 4717 | * interruptible and there is no timeout. |
4718 | * | 4718 | * |
4719 | * See also similar routines (i.e. wait_for_completion_timeout()) with timeout | 4719 | * See also similar routines (i.e. wait_for_completion_timeout()) with timeout |
4720 | * and interrupt capability. Also see complete(). | 4720 | * and interrupt capability. Also see complete(). |
4721 | */ | 4721 | */ |
4722 | void __sched wait_for_completion(struct completion *x) | 4722 | void __sched wait_for_completion(struct completion *x) |
4723 | { | 4723 | { |
4724 | wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); | 4724 | wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); |
4725 | } | 4725 | } |
4726 | EXPORT_SYMBOL(wait_for_completion); | 4726 | EXPORT_SYMBOL(wait_for_completion); |
4727 | 4727 | ||
4728 | /** | 4728 | /** |
4729 | * wait_for_completion_timeout: - waits for completion of a task (w/timeout) | 4729 | * wait_for_completion_timeout: - waits for completion of a task (w/timeout) |
4730 | * @x: holds the state of this particular completion | 4730 | * @x: holds the state of this particular completion |
4731 | * @timeout: timeout value in jiffies | 4731 | * @timeout: timeout value in jiffies |
4732 | * | 4732 | * |
4733 | * This waits for either a completion of a specific task to be signaled or for a | 4733 | * This waits for either a completion of a specific task to be signaled or for a |
4734 | * specified timeout to expire. The timeout is in jiffies. It is not | 4734 | * specified timeout to expire. The timeout is in jiffies. It is not |
4735 | * interruptible. | 4735 | * interruptible. |
4736 | */ | 4736 | */ |
4737 | unsigned long __sched | 4737 | unsigned long __sched |
4738 | wait_for_completion_timeout(struct completion *x, unsigned long timeout) | 4738 | wait_for_completion_timeout(struct completion *x, unsigned long timeout) |
4739 | { | 4739 | { |
4740 | return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); | 4740 | return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); |
4741 | } | 4741 | } |
4742 | EXPORT_SYMBOL(wait_for_completion_timeout); | 4742 | EXPORT_SYMBOL(wait_for_completion_timeout); |
4743 | 4743 | ||
4744 | /** | 4744 | /** |
4745 | * wait_for_completion_interruptible: - waits for completion of a task (w/intr) | 4745 | * wait_for_completion_interruptible: - waits for completion of a task (w/intr) |
4746 | * @x: holds the state of this particular completion | 4746 | * @x: holds the state of this particular completion |
4747 | * | 4747 | * |
4748 | * This waits for completion of a specific task to be signaled. It is | 4748 | * This waits for completion of a specific task to be signaled. It is |
4749 | * interruptible. | 4749 | * interruptible. |
4750 | */ | 4750 | */ |
4751 | int __sched wait_for_completion_interruptible(struct completion *x) | 4751 | int __sched wait_for_completion_interruptible(struct completion *x) |
4752 | { | 4752 | { |
4753 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); | 4753 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); |
4754 | if (t == -ERESTARTSYS) | 4754 | if (t == -ERESTARTSYS) |
4755 | return t; | 4755 | return t; |
4756 | return 0; | 4756 | return 0; |
4757 | } | 4757 | } |
4758 | EXPORT_SYMBOL(wait_for_completion_interruptible); | 4758 | EXPORT_SYMBOL(wait_for_completion_interruptible); |
4759 | 4759 | ||
4760 | /** | 4760 | /** |
4761 | * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) | 4761 | * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) |
4762 | * @x: holds the state of this particular completion | 4762 | * @x: holds the state of this particular completion |
4763 | * @timeout: timeout value in jiffies | 4763 | * @timeout: timeout value in jiffies |
4764 | * | 4764 | * |
4765 | * This waits for either a completion of a specific task to be signaled or for a | 4765 | * This waits for either a completion of a specific task to be signaled or for a |
4766 | * specified timeout to expire. It is interruptible. The timeout is in jiffies. | 4766 | * specified timeout to expire. It is interruptible. The timeout is in jiffies. |
4767 | */ | 4767 | */ |
4768 | unsigned long __sched | 4768 | unsigned long __sched |
4769 | wait_for_completion_interruptible_timeout(struct completion *x, | 4769 | wait_for_completion_interruptible_timeout(struct completion *x, |
4770 | unsigned long timeout) | 4770 | unsigned long timeout) |
4771 | { | 4771 | { |
4772 | return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); | 4772 | return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); |
4773 | } | 4773 | } |
4774 | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); | 4774 | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); |
4775 | 4775 | ||
4776 | /** | 4776 | /** |
4777 | * wait_for_completion_killable: - waits for completion of a task (killable) | 4777 | * wait_for_completion_killable: - waits for completion of a task (killable) |
4778 | * @x: holds the state of this particular completion | 4778 | * @x: holds the state of this particular completion |
4779 | * | 4779 | * |
4780 | * This waits to be signaled for completion of a specific task. It can be | 4780 | * This waits to be signaled for completion of a specific task. It can be |
4781 | * interrupted by a kill signal. | 4781 | * interrupted by a kill signal. |
4782 | */ | 4782 | */ |
4783 | int __sched wait_for_completion_killable(struct completion *x) | 4783 | int __sched wait_for_completion_killable(struct completion *x) |
4784 | { | 4784 | { |
4785 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); | 4785 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); |
4786 | if (t == -ERESTARTSYS) | 4786 | if (t == -ERESTARTSYS) |
4787 | return t; | 4787 | return t; |
4788 | return 0; | 4788 | return 0; |
4789 | } | 4789 | } |
4790 | EXPORT_SYMBOL(wait_for_completion_killable); | 4790 | EXPORT_SYMBOL(wait_for_completion_killable); |
4791 | 4791 | ||
4792 | /** | 4792 | /** |
4793 | * try_wait_for_completion - try to decrement a completion without blocking | 4793 | * try_wait_for_completion - try to decrement a completion without blocking |
4794 | * @x: completion structure | 4794 | * @x: completion structure |
4795 | * | 4795 | * |
4796 | * Returns: 0 if a decrement cannot be done without blocking | 4796 | * Returns: 0 if a decrement cannot be done without blocking |
4797 | * 1 if a decrement succeeded. | 4797 | * 1 if a decrement succeeded. |
4798 | * | 4798 | * |
4799 | * If a completion is being used as a counting completion, | 4799 | * If a completion is being used as a counting completion, |
4800 | * attempt to decrement the counter without blocking. This | 4800 | * attempt to decrement the counter without blocking. This |
4801 | * enables us to avoid waiting if the resource the completion | 4801 | * enables us to avoid waiting if the resource the completion |
4802 | * is protecting is not available. | 4802 | * is protecting is not available. |
4803 | */ | 4803 | */ |
4804 | bool try_wait_for_completion(struct completion *x) | 4804 | bool try_wait_for_completion(struct completion *x) |
4805 | { | 4805 | { |
4806 | int ret = 1; | 4806 | int ret = 1; |
4807 | 4807 | ||
4808 | spin_lock_irq(&x->wait.lock); | 4808 | spin_lock_irq(&x->wait.lock); |
4809 | if (!x->done) | 4809 | if (!x->done) |
4810 | ret = 0; | 4810 | ret = 0; |
4811 | else | 4811 | else |
4812 | x->done--; | 4812 | x->done--; |
4813 | spin_unlock_irq(&x->wait.lock); | 4813 | spin_unlock_irq(&x->wait.lock); |
4814 | return ret; | 4814 | return ret; |
4815 | } | 4815 | } |
4816 | EXPORT_SYMBOL(try_wait_for_completion); | 4816 | EXPORT_SYMBOL(try_wait_for_completion); |
4817 | 4817 | ||
4818 | /** | 4818 | /** |
4819 | * completion_done - Test to see if a completion has any waiters | 4819 | * completion_done - Test to see if a completion has any waiters |
4820 | * @x: completion structure | 4820 | * @x: completion structure |
4821 | * | 4821 | * |
4822 | * Returns: 0 if there are waiters (wait_for_completion() in progress) | 4822 | * Returns: 0 if there are waiters (wait_for_completion() in progress) |
4823 | * 1 if there are no waiters. | 4823 | * 1 if there are no waiters. |
4824 | * | 4824 | * |
4825 | */ | 4825 | */ |
4826 | bool completion_done(struct completion *x) | 4826 | bool completion_done(struct completion *x) |
4827 | { | 4827 | { |
4828 | int ret = 1; | 4828 | int ret = 1; |
4829 | 4829 | ||
4830 | spin_lock_irq(&x->wait.lock); | 4830 | spin_lock_irq(&x->wait.lock); |
4831 | if (!x->done) | 4831 | if (!x->done) |
4832 | ret = 0; | 4832 | ret = 0; |
4833 | spin_unlock_irq(&x->wait.lock); | 4833 | spin_unlock_irq(&x->wait.lock); |
4834 | return ret; | 4834 | return ret; |
4835 | } | 4835 | } |
4836 | EXPORT_SYMBOL(completion_done); | 4836 | EXPORT_SYMBOL(completion_done); |
4837 | 4837 | ||
4838 | static long __sched | 4838 | static long __sched |
4839 | sleep_on_common(wait_queue_head_t *q, int state, long timeout) | 4839 | sleep_on_common(wait_queue_head_t *q, int state, long timeout) |
4840 | { | 4840 | { |
4841 | unsigned long flags; | 4841 | unsigned long flags; |
4842 | wait_queue_t wait; | 4842 | wait_queue_t wait; |
4843 | 4843 | ||
4844 | init_waitqueue_entry(&wait, current); | 4844 | init_waitqueue_entry(&wait, current); |
4845 | 4845 | ||
4846 | __set_current_state(state); | 4846 | __set_current_state(state); |
4847 | 4847 | ||
4848 | spin_lock_irqsave(&q->lock, flags); | 4848 | spin_lock_irqsave(&q->lock, flags); |
4849 | __add_wait_queue(q, &wait); | 4849 | __add_wait_queue(q, &wait); |
4850 | spin_unlock(&q->lock); | 4850 | spin_unlock(&q->lock); |
4851 | timeout = schedule_timeout(timeout); | 4851 | timeout = schedule_timeout(timeout); |
4852 | spin_lock_irq(&q->lock); | 4852 | spin_lock_irq(&q->lock); |
4853 | __remove_wait_queue(q, &wait); | 4853 | __remove_wait_queue(q, &wait); |
4854 | spin_unlock_irqrestore(&q->lock, flags); | 4854 | spin_unlock_irqrestore(&q->lock, flags); |
4855 | 4855 | ||
4856 | return timeout; | 4856 | return timeout; |
4857 | } | 4857 | } |
4858 | 4858 | ||
4859 | void __sched interruptible_sleep_on(wait_queue_head_t *q) | 4859 | void __sched interruptible_sleep_on(wait_queue_head_t *q) |
4860 | { | 4860 | { |
4861 | sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); | 4861 | sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); |
4862 | } | 4862 | } |
4863 | EXPORT_SYMBOL(interruptible_sleep_on); | 4863 | EXPORT_SYMBOL(interruptible_sleep_on); |
4864 | 4864 | ||
4865 | long __sched | 4865 | long __sched |
4866 | interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) | 4866 | interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) |
4867 | { | 4867 | { |
4868 | return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); | 4868 | return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); |
4869 | } | 4869 | } |
4870 | EXPORT_SYMBOL(interruptible_sleep_on_timeout); | 4870 | EXPORT_SYMBOL(interruptible_sleep_on_timeout); |
4871 | 4871 | ||
4872 | void __sched sleep_on(wait_queue_head_t *q) | 4872 | void __sched sleep_on(wait_queue_head_t *q) |
4873 | { | 4873 | { |
4874 | sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); | 4874 | sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); |
4875 | } | 4875 | } |
4876 | EXPORT_SYMBOL(sleep_on); | 4876 | EXPORT_SYMBOL(sleep_on); |
4877 | 4877 | ||
4878 | long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) | 4878 | long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) |
4879 | { | 4879 | { |
4880 | return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); | 4880 | return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); |
4881 | } | 4881 | } |
4882 | EXPORT_SYMBOL(sleep_on_timeout); | 4882 | EXPORT_SYMBOL(sleep_on_timeout); |
4883 | 4883 | ||
4884 | #ifdef CONFIG_RT_MUTEXES | 4884 | #ifdef CONFIG_RT_MUTEXES |
4885 | 4885 | ||
4886 | /* | 4886 | /* |
4887 | * rt_mutex_setprio - set the current priority of a task | 4887 | * rt_mutex_setprio - set the current priority of a task |
4888 | * @p: task | 4888 | * @p: task |
4889 | * @prio: prio value (kernel-internal form) | 4889 | * @prio: prio value (kernel-internal form) |
4890 | * | 4890 | * |
4891 | * This function changes the 'effective' priority of a task. It does | 4891 | * This function changes the 'effective' priority of a task. It does |
4892 | * not touch ->normal_prio like __setscheduler(). | 4892 | * not touch ->normal_prio like __setscheduler(). |
4893 | * | 4893 | * |
4894 | * Used by the rt_mutex code to implement priority inheritance logic. | 4894 | * Used by the rt_mutex code to implement priority inheritance logic. |
4895 | */ | 4895 | */ |
4896 | void rt_mutex_setprio(struct task_struct *p, int prio) | 4896 | void rt_mutex_setprio(struct task_struct *p, int prio) |
4897 | { | 4897 | { |
4898 | unsigned long flags; | 4898 | unsigned long flags; |
4899 | int oldprio, on_rq, running; | 4899 | int oldprio, on_rq, running; |
4900 | struct rq *rq; | 4900 | struct rq *rq; |
4901 | const struct sched_class *prev_class = p->sched_class; | 4901 | const struct sched_class *prev_class = p->sched_class; |
4902 | 4902 | ||
4903 | BUG_ON(prio < 0 || prio > MAX_PRIO); | 4903 | BUG_ON(prio < 0 || prio > MAX_PRIO); |
4904 | 4904 | ||
4905 | rq = task_rq_lock(p, &flags); | 4905 | rq = task_rq_lock(p, &flags); |
4906 | update_rq_clock(rq); | 4906 | update_rq_clock(rq); |
4907 | 4907 | ||
4908 | oldprio = p->prio; | 4908 | oldprio = p->prio; |
4909 | on_rq = p->se.on_rq; | 4909 | on_rq = p->se.on_rq; |
4910 | running = task_current(rq, p); | 4910 | running = task_current(rq, p); |
4911 | if (on_rq) | 4911 | if (on_rq) |
4912 | dequeue_task(rq, p, 0); | 4912 | dequeue_task(rq, p, 0); |
4913 | if (running) | 4913 | if (running) |
4914 | p->sched_class->put_prev_task(rq, p); | 4914 | p->sched_class->put_prev_task(rq, p); |
4915 | 4915 | ||
4916 | if (rt_prio(prio)) | 4916 | if (rt_prio(prio)) |
4917 | p->sched_class = &rt_sched_class; | 4917 | p->sched_class = &rt_sched_class; |
4918 | else | 4918 | else |
4919 | p->sched_class = &fair_sched_class; | 4919 | p->sched_class = &fair_sched_class; |
4920 | 4920 | ||
4921 | p->prio = prio; | 4921 | p->prio = prio; |
4922 | 4922 | ||
4923 | if (running) | 4923 | if (running) |
4924 | p->sched_class->set_curr_task(rq); | 4924 | p->sched_class->set_curr_task(rq); |
4925 | if (on_rq) { | 4925 | if (on_rq) { |
4926 | enqueue_task(rq, p, 0); | 4926 | enqueue_task(rq, p, 0); |
4927 | 4927 | ||
4928 | check_class_changed(rq, p, prev_class, oldprio, running); | 4928 | check_class_changed(rq, p, prev_class, oldprio, running); |
4929 | } | 4929 | } |
4930 | task_rq_unlock(rq, &flags); | 4930 | task_rq_unlock(rq, &flags); |
4931 | } | 4931 | } |
4932 | 4932 | ||
4933 | #endif | 4933 | #endif |
4934 | 4934 | ||
4935 | void set_user_nice(struct task_struct *p, long nice) | 4935 | void set_user_nice(struct task_struct *p, long nice) |
4936 | { | 4936 | { |
4937 | int old_prio, delta, on_rq; | 4937 | int old_prio, delta, on_rq; |
4938 | unsigned long flags; | 4938 | unsigned long flags; |
4939 | struct rq *rq; | 4939 | struct rq *rq; |
4940 | 4940 | ||
4941 | if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | 4941 | if (TASK_NICE(p) == nice || nice < -20 || nice > 19) |
4942 | return; | 4942 | return; |
4943 | /* | 4943 | /* |
4944 | * We have to be careful, if called from sys_setpriority(), | 4944 | * We have to be careful, if called from sys_setpriority(), |
4945 | * the task might be in the middle of scheduling on another CPU. | 4945 | * the task might be in the middle of scheduling on another CPU. |
4946 | */ | 4946 | */ |
4947 | rq = task_rq_lock(p, &flags); | 4947 | rq = task_rq_lock(p, &flags); |
4948 | update_rq_clock(rq); | 4948 | update_rq_clock(rq); |
4949 | /* | 4949 | /* |
4950 | * The RT priorities are set via sched_setscheduler(), but we still | 4950 | * The RT priorities are set via sched_setscheduler(), but we still |
4951 | * allow the 'normal' nice value to be set - but as expected | 4951 | * allow the 'normal' nice value to be set - but as expected |
4952 | * it wont have any effect on scheduling until the task is | 4952 | * it wont have any effect on scheduling until the task is |
4953 | * SCHED_FIFO/SCHED_RR: | 4953 | * SCHED_FIFO/SCHED_RR: |
4954 | */ | 4954 | */ |
4955 | if (task_has_rt_policy(p)) { | 4955 | if (task_has_rt_policy(p)) { |
4956 | p->static_prio = NICE_TO_PRIO(nice); | 4956 | p->static_prio = NICE_TO_PRIO(nice); |
4957 | goto out_unlock; | 4957 | goto out_unlock; |
4958 | } | 4958 | } |
4959 | on_rq = p->se.on_rq; | 4959 | on_rq = p->se.on_rq; |
4960 | if (on_rq) | 4960 | if (on_rq) |
4961 | dequeue_task(rq, p, 0); | 4961 | dequeue_task(rq, p, 0); |
4962 | 4962 | ||
4963 | p->static_prio = NICE_TO_PRIO(nice); | 4963 | p->static_prio = NICE_TO_PRIO(nice); |
4964 | set_load_weight(p); | 4964 | set_load_weight(p); |
4965 | old_prio = p->prio; | 4965 | old_prio = p->prio; |
4966 | p->prio = effective_prio(p); | 4966 | p->prio = effective_prio(p); |
4967 | delta = p->prio - old_prio; | 4967 | delta = p->prio - old_prio; |
4968 | 4968 | ||
4969 | if (on_rq) { | 4969 | if (on_rq) { |
4970 | enqueue_task(rq, p, 0); | 4970 | enqueue_task(rq, p, 0); |
4971 | /* | 4971 | /* |
4972 | * If the task increased its priority or is running and | 4972 | * If the task increased its priority or is running and |
4973 | * lowered its priority, then reschedule its CPU: | 4973 | * lowered its priority, then reschedule its CPU: |
4974 | */ | 4974 | */ |
4975 | if (delta < 0 || (delta > 0 && task_running(rq, p))) | 4975 | if (delta < 0 || (delta > 0 && task_running(rq, p))) |
4976 | resched_task(rq->curr); | 4976 | resched_task(rq->curr); |
4977 | } | 4977 | } |
4978 | out_unlock: | 4978 | out_unlock: |
4979 | task_rq_unlock(rq, &flags); | 4979 | task_rq_unlock(rq, &flags); |
4980 | } | 4980 | } |
4981 | EXPORT_SYMBOL(set_user_nice); | 4981 | EXPORT_SYMBOL(set_user_nice); |
4982 | 4982 | ||
4983 | /* | 4983 | /* |
4984 | * can_nice - check if a task can reduce its nice value | 4984 | * can_nice - check if a task can reduce its nice value |
4985 | * @p: task | 4985 | * @p: task |
4986 | * @nice: nice value | 4986 | * @nice: nice value |
4987 | */ | 4987 | */ |
4988 | int can_nice(const struct task_struct *p, const int nice) | 4988 | int can_nice(const struct task_struct *p, const int nice) |
4989 | { | 4989 | { |
4990 | /* convert nice value [19,-20] to rlimit style value [1,40] */ | 4990 | /* convert nice value [19,-20] to rlimit style value [1,40] */ |
4991 | int nice_rlim = 20 - nice; | 4991 | int nice_rlim = 20 - nice; |
4992 | 4992 | ||
4993 | return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || | 4993 | return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || |
4994 | capable(CAP_SYS_NICE)); | 4994 | capable(CAP_SYS_NICE)); |
4995 | } | 4995 | } |
4996 | 4996 | ||
4997 | #ifdef __ARCH_WANT_SYS_NICE | 4997 | #ifdef __ARCH_WANT_SYS_NICE |
4998 | 4998 | ||
4999 | /* | 4999 | /* |
5000 | * sys_nice - change the priority of the current process. | 5000 | * sys_nice - change the priority of the current process. |
5001 | * @increment: priority increment | 5001 | * @increment: priority increment |
5002 | * | 5002 | * |
5003 | * sys_setpriority is a more generic, but much slower function that | 5003 | * sys_setpriority is a more generic, but much slower function that |
5004 | * does similar things. | 5004 | * does similar things. |
5005 | */ | 5005 | */ |
5006 | asmlinkage long sys_nice(int increment) | 5006 | asmlinkage long sys_nice(int increment) |
5007 | { | 5007 | { |
5008 | long nice, retval; | 5008 | long nice, retval; |
5009 | 5009 | ||
5010 | /* | 5010 | /* |
5011 | * Setpriority might change our priority at the same moment. | 5011 | * Setpriority might change our priority at the same moment. |
5012 | * We don't have to worry. Conceptually one call occurs first | 5012 | * We don't have to worry. Conceptually one call occurs first |
5013 | * and we have a single winner. | 5013 | * and we have a single winner. |
5014 | */ | 5014 | */ |
5015 | if (increment < -40) | 5015 | if (increment < -40) |
5016 | increment = -40; | 5016 | increment = -40; |
5017 | if (increment > 40) | 5017 | if (increment > 40) |
5018 | increment = 40; | 5018 | increment = 40; |
5019 | 5019 | ||
5020 | nice = PRIO_TO_NICE(current->static_prio) + increment; | 5020 | nice = PRIO_TO_NICE(current->static_prio) + increment; |
5021 | if (nice < -20) | 5021 | if (nice < -20) |
5022 | nice = -20; | 5022 | nice = -20; |
5023 | if (nice > 19) | 5023 | if (nice > 19) |
5024 | nice = 19; | 5024 | nice = 19; |
5025 | 5025 | ||
5026 | if (increment < 0 && !can_nice(current, nice)) | 5026 | if (increment < 0 && !can_nice(current, nice)) |
5027 | return -EPERM; | 5027 | return -EPERM; |
5028 | 5028 | ||
5029 | retval = security_task_setnice(current, nice); | 5029 | retval = security_task_setnice(current, nice); |
5030 | if (retval) | 5030 | if (retval) |
5031 | return retval; | 5031 | return retval; |
5032 | 5032 | ||
5033 | set_user_nice(current, nice); | 5033 | set_user_nice(current, nice); |
5034 | return 0; | 5034 | return 0; |
5035 | } | 5035 | } |
5036 | 5036 | ||
5037 | #endif | 5037 | #endif |
5038 | 5038 | ||
5039 | /** | 5039 | /** |
5040 | * task_prio - return the priority value of a given task. | 5040 | * task_prio - return the priority value of a given task. |
5041 | * @p: the task in question. | 5041 | * @p: the task in question. |
5042 | * | 5042 | * |
5043 | * This is the priority value as seen by users in /proc. | 5043 | * This is the priority value as seen by users in /proc. |
5044 | * RT tasks are offset by -200. Normal tasks are centered | 5044 | * RT tasks are offset by -200. Normal tasks are centered |
5045 | * around 0, value goes from -16 to +15. | 5045 | * around 0, value goes from -16 to +15. |
5046 | */ | 5046 | */ |
5047 | int task_prio(const struct task_struct *p) | 5047 | int task_prio(const struct task_struct *p) |
5048 | { | 5048 | { |
5049 | return p->prio - MAX_RT_PRIO; | 5049 | return p->prio - MAX_RT_PRIO; |
5050 | } | 5050 | } |
5051 | 5051 | ||
5052 | /** | 5052 | /** |
5053 | * task_nice - return the nice value of a given task. | 5053 | * task_nice - return the nice value of a given task. |
5054 | * @p: the task in question. | 5054 | * @p: the task in question. |
5055 | */ | 5055 | */ |
5056 | int task_nice(const struct task_struct *p) | 5056 | int task_nice(const struct task_struct *p) |
5057 | { | 5057 | { |
5058 | return TASK_NICE(p); | 5058 | return TASK_NICE(p); |
5059 | } | 5059 | } |
5060 | EXPORT_SYMBOL(task_nice); | 5060 | EXPORT_SYMBOL(task_nice); |
5061 | 5061 | ||
5062 | /** | 5062 | /** |
5063 | * idle_cpu - is a given cpu idle currently? | 5063 | * idle_cpu - is a given cpu idle currently? |
5064 | * @cpu: the processor in question. | 5064 | * @cpu: the processor in question. |
5065 | */ | 5065 | */ |
5066 | int idle_cpu(int cpu) | 5066 | int idle_cpu(int cpu) |
5067 | { | 5067 | { |
5068 | return cpu_curr(cpu) == cpu_rq(cpu)->idle; | 5068 | return cpu_curr(cpu) == cpu_rq(cpu)->idle; |
5069 | } | 5069 | } |
5070 | 5070 | ||
5071 | /** | 5071 | /** |
5072 | * idle_task - return the idle task for a given cpu. | 5072 | * idle_task - return the idle task for a given cpu. |
5073 | * @cpu: the processor in question. | 5073 | * @cpu: the processor in question. |
5074 | */ | 5074 | */ |
5075 | struct task_struct *idle_task(int cpu) | 5075 | struct task_struct *idle_task(int cpu) |
5076 | { | 5076 | { |
5077 | return cpu_rq(cpu)->idle; | 5077 | return cpu_rq(cpu)->idle; |
5078 | } | 5078 | } |
5079 | 5079 | ||
5080 | /** | 5080 | /** |
5081 | * find_process_by_pid - find a process with a matching PID value. | 5081 | * find_process_by_pid - find a process with a matching PID value. |
5082 | * @pid: the pid in question. | 5082 | * @pid: the pid in question. |
5083 | */ | 5083 | */ |
5084 | static struct task_struct *find_process_by_pid(pid_t pid) | 5084 | static struct task_struct *find_process_by_pid(pid_t pid) |
5085 | { | 5085 | { |
5086 | return pid ? find_task_by_vpid(pid) : current; | 5086 | return pid ? find_task_by_vpid(pid) : current; |
5087 | } | 5087 | } |
5088 | 5088 | ||
5089 | /* Actually do priority change: must hold rq lock. */ | 5089 | /* Actually do priority change: must hold rq lock. */ |
5090 | static void | 5090 | static void |
5091 | __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) | 5091 | __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) |
5092 | { | 5092 | { |
5093 | BUG_ON(p->se.on_rq); | 5093 | BUG_ON(p->se.on_rq); |
5094 | 5094 | ||
5095 | p->policy = policy; | 5095 | p->policy = policy; |
5096 | switch (p->policy) { | 5096 | switch (p->policy) { |
5097 | case SCHED_NORMAL: | 5097 | case SCHED_NORMAL: |
5098 | case SCHED_BATCH: | 5098 | case SCHED_BATCH: |
5099 | case SCHED_IDLE: | 5099 | case SCHED_IDLE: |
5100 | p->sched_class = &fair_sched_class; | 5100 | p->sched_class = &fair_sched_class; |
5101 | break; | 5101 | break; |
5102 | case SCHED_FIFO: | 5102 | case SCHED_FIFO: |
5103 | case SCHED_RR: | 5103 | case SCHED_RR: |
5104 | p->sched_class = &rt_sched_class; | 5104 | p->sched_class = &rt_sched_class; |
5105 | break; | 5105 | break; |
5106 | } | 5106 | } |
5107 | 5107 | ||
5108 | p->rt_priority = prio; | 5108 | p->rt_priority = prio; |
5109 | p->normal_prio = normal_prio(p); | 5109 | p->normal_prio = normal_prio(p); |
5110 | /* we are holding p->pi_lock already */ | 5110 | /* we are holding p->pi_lock already */ |
5111 | p->prio = rt_mutex_getprio(p); | 5111 | p->prio = rt_mutex_getprio(p); |
5112 | set_load_weight(p); | 5112 | set_load_weight(p); |
5113 | } | 5113 | } |
5114 | 5114 | ||
5115 | static int __sched_setscheduler(struct task_struct *p, int policy, | 5115 | static int __sched_setscheduler(struct task_struct *p, int policy, |
5116 | struct sched_param *param, bool user) | 5116 | struct sched_param *param, bool user) |
5117 | { | 5117 | { |
5118 | int retval, oldprio, oldpolicy = -1, on_rq, running; | 5118 | int retval, oldprio, oldpolicy = -1, on_rq, running; |
5119 | unsigned long flags; | 5119 | unsigned long flags; |
5120 | const struct sched_class *prev_class = p->sched_class; | 5120 | const struct sched_class *prev_class = p->sched_class; |
5121 | struct rq *rq; | 5121 | struct rq *rq; |
5122 | 5122 | ||
5123 | /* may grab non-irq protected spin_locks */ | 5123 | /* may grab non-irq protected spin_locks */ |
5124 | BUG_ON(in_interrupt()); | 5124 | BUG_ON(in_interrupt()); |
5125 | recheck: | 5125 | recheck: |
5126 | /* double check policy once rq lock held */ | 5126 | /* double check policy once rq lock held */ |
5127 | if (policy < 0) | 5127 | if (policy < 0) |
5128 | policy = oldpolicy = p->policy; | 5128 | policy = oldpolicy = p->policy; |
5129 | else if (policy != SCHED_FIFO && policy != SCHED_RR && | 5129 | else if (policy != SCHED_FIFO && policy != SCHED_RR && |
5130 | policy != SCHED_NORMAL && policy != SCHED_BATCH && | 5130 | policy != SCHED_NORMAL && policy != SCHED_BATCH && |
5131 | policy != SCHED_IDLE) | 5131 | policy != SCHED_IDLE) |
5132 | return -EINVAL; | 5132 | return -EINVAL; |
5133 | /* | 5133 | /* |
5134 | * Valid priorities for SCHED_FIFO and SCHED_RR are | 5134 | * Valid priorities for SCHED_FIFO and SCHED_RR are |
5135 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, | 5135 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, |
5136 | * SCHED_BATCH and SCHED_IDLE is 0. | 5136 | * SCHED_BATCH and SCHED_IDLE is 0. |
5137 | */ | 5137 | */ |
5138 | if (param->sched_priority < 0 || | 5138 | if (param->sched_priority < 0 || |
5139 | (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || | 5139 | (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || |
5140 | (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) | 5140 | (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) |
5141 | return -EINVAL; | 5141 | return -EINVAL; |
5142 | if (rt_policy(policy) != (param->sched_priority != 0)) | 5142 | if (rt_policy(policy) != (param->sched_priority != 0)) |
5143 | return -EINVAL; | 5143 | return -EINVAL; |
5144 | 5144 | ||
5145 | /* | 5145 | /* |
5146 | * Allow unprivileged RT tasks to decrease priority: | 5146 | * Allow unprivileged RT tasks to decrease priority: |
5147 | */ | 5147 | */ |
5148 | if (user && !capable(CAP_SYS_NICE)) { | 5148 | if (user && !capable(CAP_SYS_NICE)) { |
5149 | if (rt_policy(policy)) { | 5149 | if (rt_policy(policy)) { |
5150 | unsigned long rlim_rtprio; | 5150 | unsigned long rlim_rtprio; |
5151 | 5151 | ||
5152 | if (!lock_task_sighand(p, &flags)) | 5152 | if (!lock_task_sighand(p, &flags)) |
5153 | return -ESRCH; | 5153 | return -ESRCH; |
5154 | rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; | 5154 | rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; |
5155 | unlock_task_sighand(p, &flags); | 5155 | unlock_task_sighand(p, &flags); |
5156 | 5156 | ||
5157 | /* can't set/change the rt policy */ | 5157 | /* can't set/change the rt policy */ |
5158 | if (policy != p->policy && !rlim_rtprio) | 5158 | if (policy != p->policy && !rlim_rtprio) |
5159 | return -EPERM; | 5159 | return -EPERM; |
5160 | 5160 | ||
5161 | /* can't increase priority */ | 5161 | /* can't increase priority */ |
5162 | if (param->sched_priority > p->rt_priority && | 5162 | if (param->sched_priority > p->rt_priority && |
5163 | param->sched_priority > rlim_rtprio) | 5163 | param->sched_priority > rlim_rtprio) |
5164 | return -EPERM; | 5164 | return -EPERM; |
5165 | } | 5165 | } |
5166 | /* | 5166 | /* |
5167 | * Like positive nice levels, dont allow tasks to | 5167 | * Like positive nice levels, dont allow tasks to |
5168 | * move out of SCHED_IDLE either: | 5168 | * move out of SCHED_IDLE either: |
5169 | */ | 5169 | */ |
5170 | if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) | 5170 | if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) |
5171 | return -EPERM; | 5171 | return -EPERM; |
5172 | 5172 | ||
5173 | /* can't change other user's priorities */ | 5173 | /* can't change other user's priorities */ |
5174 | if ((current->euid != p->euid) && | 5174 | if ((current->euid != p->euid) && |
5175 | (current->euid != p->uid)) | 5175 | (current->euid != p->uid)) |
5176 | return -EPERM; | 5176 | return -EPERM; |
5177 | } | 5177 | } |
5178 | 5178 | ||
5179 | if (user) { | 5179 | if (user) { |
5180 | #ifdef CONFIG_RT_GROUP_SCHED | 5180 | #ifdef CONFIG_RT_GROUP_SCHED |
5181 | /* | 5181 | /* |
5182 | * Do not allow realtime tasks into groups that have no runtime | 5182 | * Do not allow realtime tasks into groups that have no runtime |
5183 | * assigned. | 5183 | * assigned. |
5184 | */ | 5184 | */ |
5185 | if (rt_bandwidth_enabled() && rt_policy(policy) && | 5185 | if (rt_bandwidth_enabled() && rt_policy(policy) && |
5186 | task_group(p)->rt_bandwidth.rt_runtime == 0) | 5186 | task_group(p)->rt_bandwidth.rt_runtime == 0) |
5187 | return -EPERM; | 5187 | return -EPERM; |
5188 | #endif | 5188 | #endif |
5189 | 5189 | ||
5190 | retval = security_task_setscheduler(p, policy, param); | 5190 | retval = security_task_setscheduler(p, policy, param); |
5191 | if (retval) | 5191 | if (retval) |
5192 | return retval; | 5192 | return retval; |
5193 | } | 5193 | } |
5194 | 5194 | ||
5195 | /* | 5195 | /* |
5196 | * make sure no PI-waiters arrive (or leave) while we are | 5196 | * make sure no PI-waiters arrive (or leave) while we are |
5197 | * changing the priority of the task: | 5197 | * changing the priority of the task: |
5198 | */ | 5198 | */ |
5199 | spin_lock_irqsave(&p->pi_lock, flags); | 5199 | spin_lock_irqsave(&p->pi_lock, flags); |
5200 | /* | 5200 | /* |
5201 | * To be able to change p->policy safely, the apropriate | 5201 | * To be able to change p->policy safely, the apropriate |
5202 | * runqueue lock must be held. | 5202 | * runqueue lock must be held. |
5203 | */ | 5203 | */ |
5204 | rq = __task_rq_lock(p); | 5204 | rq = __task_rq_lock(p); |
5205 | /* recheck policy now with rq lock held */ | 5205 | /* recheck policy now with rq lock held */ |
5206 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | 5206 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { |
5207 | policy = oldpolicy = -1; | 5207 | policy = oldpolicy = -1; |
5208 | __task_rq_unlock(rq); | 5208 | __task_rq_unlock(rq); |
5209 | spin_unlock_irqrestore(&p->pi_lock, flags); | 5209 | spin_unlock_irqrestore(&p->pi_lock, flags); |
5210 | goto recheck; | 5210 | goto recheck; |
5211 | } | 5211 | } |
5212 | update_rq_clock(rq); | 5212 | update_rq_clock(rq); |
5213 | on_rq = p->se.on_rq; | 5213 | on_rq = p->se.on_rq; |
5214 | running = task_current(rq, p); | 5214 | running = task_current(rq, p); |
5215 | if (on_rq) | 5215 | if (on_rq) |
5216 | deactivate_task(rq, p, 0); | 5216 | deactivate_task(rq, p, 0); |
5217 | if (running) | 5217 | if (running) |
5218 | p->sched_class->put_prev_task(rq, p); | 5218 | p->sched_class->put_prev_task(rq, p); |
5219 | 5219 | ||
5220 | oldprio = p->prio; | 5220 | oldprio = p->prio; |
5221 | __setscheduler(rq, p, policy, param->sched_priority); | 5221 | __setscheduler(rq, p, policy, param->sched_priority); |
5222 | 5222 | ||
5223 | if (running) | 5223 | if (running) |
5224 | p->sched_class->set_curr_task(rq); | 5224 | p->sched_class->set_curr_task(rq); |
5225 | if (on_rq) { | 5225 | if (on_rq) { |
5226 | activate_task(rq, p, 0); | 5226 | activate_task(rq, p, 0); |
5227 | 5227 | ||
5228 | check_class_changed(rq, p, prev_class, oldprio, running); | 5228 | check_class_changed(rq, p, prev_class, oldprio, running); |
5229 | } | 5229 | } |
5230 | __task_rq_unlock(rq); | 5230 | __task_rq_unlock(rq); |
5231 | spin_unlock_irqrestore(&p->pi_lock, flags); | 5231 | spin_unlock_irqrestore(&p->pi_lock, flags); |
5232 | 5232 | ||
5233 | rt_mutex_adjust_pi(p); | 5233 | rt_mutex_adjust_pi(p); |
5234 | 5234 | ||
5235 | return 0; | 5235 | return 0; |
5236 | } | 5236 | } |
5237 | 5237 | ||
5238 | /** | 5238 | /** |
5239 | * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. | 5239 | * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. |
5240 | * @p: the task in question. | 5240 | * @p: the task in question. |
5241 | * @policy: new policy. | 5241 | * @policy: new policy. |
5242 | * @param: structure containing the new RT priority. | 5242 | * @param: structure containing the new RT priority. |
5243 | * | 5243 | * |
5244 | * NOTE that the task may be already dead. | 5244 | * NOTE that the task may be already dead. |
5245 | */ | 5245 | */ |
5246 | int sched_setscheduler(struct task_struct *p, int policy, | 5246 | int sched_setscheduler(struct task_struct *p, int policy, |
5247 | struct sched_param *param) | 5247 | struct sched_param *param) |
5248 | { | 5248 | { |
5249 | return __sched_setscheduler(p, policy, param, true); | 5249 | return __sched_setscheduler(p, policy, param, true); |
5250 | } | 5250 | } |
5251 | EXPORT_SYMBOL_GPL(sched_setscheduler); | 5251 | EXPORT_SYMBOL_GPL(sched_setscheduler); |
5252 | 5252 | ||
5253 | /** | 5253 | /** |
5254 | * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. | 5254 | * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. |
5255 | * @p: the task in question. | 5255 | * @p: the task in question. |
5256 | * @policy: new policy. | 5256 | * @policy: new policy. |
5257 | * @param: structure containing the new RT priority. | 5257 | * @param: structure containing the new RT priority. |
5258 | * | 5258 | * |
5259 | * Just like sched_setscheduler, only don't bother checking if the | 5259 | * Just like sched_setscheduler, only don't bother checking if the |
5260 | * current context has permission. For example, this is needed in | 5260 | * current context has permission. For example, this is needed in |
5261 | * stop_machine(): we create temporary high priority worker threads, | 5261 | * stop_machine(): we create temporary high priority worker threads, |
5262 | * but our caller might not have that capability. | 5262 | * but our caller might not have that capability. |
5263 | */ | 5263 | */ |
5264 | int sched_setscheduler_nocheck(struct task_struct *p, int policy, | 5264 | int sched_setscheduler_nocheck(struct task_struct *p, int policy, |
5265 | struct sched_param *param) | 5265 | struct sched_param *param) |
5266 | { | 5266 | { |
5267 | return __sched_setscheduler(p, policy, param, false); | 5267 | return __sched_setscheduler(p, policy, param, false); |
5268 | } | 5268 | } |
5269 | 5269 | ||
5270 | static int | 5270 | static int |
5271 | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | 5271 | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) |
5272 | { | 5272 | { |
5273 | struct sched_param lparam; | 5273 | struct sched_param lparam; |
5274 | struct task_struct *p; | 5274 | struct task_struct *p; |
5275 | int retval; | 5275 | int retval; |
5276 | 5276 | ||
5277 | if (!param || pid < 0) | 5277 | if (!param || pid < 0) |
5278 | return -EINVAL; | 5278 | return -EINVAL; |
5279 | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | 5279 | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) |
5280 | return -EFAULT; | 5280 | return -EFAULT; |
5281 | 5281 | ||
5282 | rcu_read_lock(); | 5282 | rcu_read_lock(); |
5283 | retval = -ESRCH; | 5283 | retval = -ESRCH; |
5284 | p = find_process_by_pid(pid); | 5284 | p = find_process_by_pid(pid); |
5285 | if (p != NULL) | 5285 | if (p != NULL) |
5286 | retval = sched_setscheduler(p, policy, &lparam); | 5286 | retval = sched_setscheduler(p, policy, &lparam); |
5287 | rcu_read_unlock(); | 5287 | rcu_read_unlock(); |
5288 | 5288 | ||
5289 | return retval; | 5289 | return retval; |
5290 | } | 5290 | } |
5291 | 5291 | ||
5292 | /** | 5292 | /** |
5293 | * sys_sched_setscheduler - set/change the scheduler policy and RT priority | 5293 | * sys_sched_setscheduler - set/change the scheduler policy and RT priority |
5294 | * @pid: the pid in question. | 5294 | * @pid: the pid in question. |
5295 | * @policy: new policy. | 5295 | * @policy: new policy. |
5296 | * @param: structure containing the new RT priority. | 5296 | * @param: structure containing the new RT priority. |
5297 | */ | 5297 | */ |
5298 | asmlinkage long | 5298 | asmlinkage long |
5299 | sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | 5299 | sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) |
5300 | { | 5300 | { |
5301 | /* negative values for policy are not valid */ | 5301 | /* negative values for policy are not valid */ |
5302 | if (policy < 0) | 5302 | if (policy < 0) |
5303 | return -EINVAL; | 5303 | return -EINVAL; |
5304 | 5304 | ||
5305 | return do_sched_setscheduler(pid, policy, param); | 5305 | return do_sched_setscheduler(pid, policy, param); |
5306 | } | 5306 | } |
5307 | 5307 | ||
5308 | /** | 5308 | /** |
5309 | * sys_sched_setparam - set/change the RT priority of a thread | 5309 | * sys_sched_setparam - set/change the RT priority of a thread |
5310 | * @pid: the pid in question. | 5310 | * @pid: the pid in question. |
5311 | * @param: structure containing the new RT priority. | 5311 | * @param: structure containing the new RT priority. |
5312 | */ | 5312 | */ |
5313 | asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param) | 5313 | asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param) |
5314 | { | 5314 | { |
5315 | return do_sched_setscheduler(pid, -1, param); | 5315 | return do_sched_setscheduler(pid, -1, param); |
5316 | } | 5316 | } |
5317 | 5317 | ||
5318 | /** | 5318 | /** |
5319 | * sys_sched_getscheduler - get the policy (scheduling class) of a thread | 5319 | * sys_sched_getscheduler - get the policy (scheduling class) of a thread |
5320 | * @pid: the pid in question. | 5320 | * @pid: the pid in question. |
5321 | */ | 5321 | */ |
5322 | asmlinkage long sys_sched_getscheduler(pid_t pid) | 5322 | asmlinkage long sys_sched_getscheduler(pid_t pid) |
5323 | { | 5323 | { |
5324 | struct task_struct *p; | 5324 | struct task_struct *p; |
5325 | int retval; | 5325 | int retval; |
5326 | 5326 | ||
5327 | if (pid < 0) | 5327 | if (pid < 0) |
5328 | return -EINVAL; | 5328 | return -EINVAL; |
5329 | 5329 | ||
5330 | retval = -ESRCH; | 5330 | retval = -ESRCH; |
5331 | read_lock(&tasklist_lock); | 5331 | read_lock(&tasklist_lock); |
5332 | p = find_process_by_pid(pid); | 5332 | p = find_process_by_pid(pid); |
5333 | if (p) { | 5333 | if (p) { |
5334 | retval = security_task_getscheduler(p); | 5334 | retval = security_task_getscheduler(p); |
5335 | if (!retval) | 5335 | if (!retval) |
5336 | retval = p->policy; | 5336 | retval = p->policy; |
5337 | } | 5337 | } |
5338 | read_unlock(&tasklist_lock); | 5338 | read_unlock(&tasklist_lock); |
5339 | return retval; | 5339 | return retval; |
5340 | } | 5340 | } |
5341 | 5341 | ||
5342 | /** | 5342 | /** |
5343 | * sys_sched_getscheduler - get the RT priority of a thread | 5343 | * sys_sched_getscheduler - get the RT priority of a thread |
5344 | * @pid: the pid in question. | 5344 | * @pid: the pid in question. |
5345 | * @param: structure containing the RT priority. | 5345 | * @param: structure containing the RT priority. |
5346 | */ | 5346 | */ |
5347 | asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param) | 5347 | asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param) |
5348 | { | 5348 | { |
5349 | struct sched_param lp; | 5349 | struct sched_param lp; |
5350 | struct task_struct *p; | 5350 | struct task_struct *p; |
5351 | int retval; | 5351 | int retval; |
5352 | 5352 | ||
5353 | if (!param || pid < 0) | 5353 | if (!param || pid < 0) |
5354 | return -EINVAL; | 5354 | return -EINVAL; |
5355 | 5355 | ||
5356 | read_lock(&tasklist_lock); | 5356 | read_lock(&tasklist_lock); |
5357 | p = find_process_by_pid(pid); | 5357 | p = find_process_by_pid(pid); |
5358 | retval = -ESRCH; | 5358 | retval = -ESRCH; |
5359 | if (!p) | 5359 | if (!p) |
5360 | goto out_unlock; | 5360 | goto out_unlock; |
5361 | 5361 | ||
5362 | retval = security_task_getscheduler(p); | 5362 | retval = security_task_getscheduler(p); |
5363 | if (retval) | 5363 | if (retval) |
5364 | goto out_unlock; | 5364 | goto out_unlock; |
5365 | 5365 | ||
5366 | lp.sched_priority = p->rt_priority; | 5366 | lp.sched_priority = p->rt_priority; |
5367 | read_unlock(&tasklist_lock); | 5367 | read_unlock(&tasklist_lock); |
5368 | 5368 | ||
5369 | /* | 5369 | /* |
5370 | * This one might sleep, we cannot do it with a spinlock held ... | 5370 | * This one might sleep, we cannot do it with a spinlock held ... |
5371 | */ | 5371 | */ |
5372 | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | 5372 | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; |
5373 | 5373 | ||
5374 | return retval; | 5374 | return retval; |
5375 | 5375 | ||
5376 | out_unlock: | 5376 | out_unlock: |
5377 | read_unlock(&tasklist_lock); | 5377 | read_unlock(&tasklist_lock); |
5378 | return retval; | 5378 | return retval; |
5379 | } | 5379 | } |
5380 | 5380 | ||
5381 | long sched_setaffinity(pid_t pid, const cpumask_t *in_mask) | 5381 | long sched_setaffinity(pid_t pid, const cpumask_t *in_mask) |
5382 | { | 5382 | { |
5383 | cpumask_t cpus_allowed; | 5383 | cpumask_t cpus_allowed; |
5384 | cpumask_t new_mask = *in_mask; | 5384 | cpumask_t new_mask = *in_mask; |
5385 | struct task_struct *p; | 5385 | struct task_struct *p; |
5386 | int retval; | 5386 | int retval; |
5387 | 5387 | ||
5388 | get_online_cpus(); | 5388 | get_online_cpus(); |
5389 | read_lock(&tasklist_lock); | 5389 | read_lock(&tasklist_lock); |
5390 | 5390 | ||
5391 | p = find_process_by_pid(pid); | 5391 | p = find_process_by_pid(pid); |
5392 | if (!p) { | 5392 | if (!p) { |
5393 | read_unlock(&tasklist_lock); | 5393 | read_unlock(&tasklist_lock); |
5394 | put_online_cpus(); | 5394 | put_online_cpus(); |
5395 | return -ESRCH; | 5395 | return -ESRCH; |
5396 | } | 5396 | } |
5397 | 5397 | ||
5398 | /* | 5398 | /* |
5399 | * It is not safe to call set_cpus_allowed with the | 5399 | * It is not safe to call set_cpus_allowed with the |
5400 | * tasklist_lock held. We will bump the task_struct's | 5400 | * tasklist_lock held. We will bump the task_struct's |
5401 | * usage count and then drop tasklist_lock. | 5401 | * usage count and then drop tasklist_lock. |
5402 | */ | 5402 | */ |
5403 | get_task_struct(p); | 5403 | get_task_struct(p); |
5404 | read_unlock(&tasklist_lock); | 5404 | read_unlock(&tasklist_lock); |
5405 | 5405 | ||
5406 | retval = -EPERM; | 5406 | retval = -EPERM; |
5407 | if ((current->euid != p->euid) && (current->euid != p->uid) && | 5407 | if ((current->euid != p->euid) && (current->euid != p->uid) && |
5408 | !capable(CAP_SYS_NICE)) | 5408 | !capable(CAP_SYS_NICE)) |
5409 | goto out_unlock; | 5409 | goto out_unlock; |
5410 | 5410 | ||
5411 | retval = security_task_setscheduler(p, 0, NULL); | 5411 | retval = security_task_setscheduler(p, 0, NULL); |
5412 | if (retval) | 5412 | if (retval) |
5413 | goto out_unlock; | 5413 | goto out_unlock; |
5414 | 5414 | ||
5415 | cpuset_cpus_allowed(p, &cpus_allowed); | 5415 | cpuset_cpus_allowed(p, &cpus_allowed); |
5416 | cpus_and(new_mask, new_mask, cpus_allowed); | 5416 | cpus_and(new_mask, new_mask, cpus_allowed); |
5417 | again: | 5417 | again: |
5418 | retval = set_cpus_allowed_ptr(p, &new_mask); | 5418 | retval = set_cpus_allowed_ptr(p, &new_mask); |
5419 | 5419 | ||
5420 | if (!retval) { | 5420 | if (!retval) { |
5421 | cpuset_cpus_allowed(p, &cpus_allowed); | 5421 | cpuset_cpus_allowed(p, &cpus_allowed); |
5422 | if (!cpus_subset(new_mask, cpus_allowed)) { | 5422 | if (!cpus_subset(new_mask, cpus_allowed)) { |
5423 | /* | 5423 | /* |
5424 | * We must have raced with a concurrent cpuset | 5424 | * We must have raced with a concurrent cpuset |
5425 | * update. Just reset the cpus_allowed to the | 5425 | * update. Just reset the cpus_allowed to the |
5426 | * cpuset's cpus_allowed | 5426 | * cpuset's cpus_allowed |
5427 | */ | 5427 | */ |
5428 | new_mask = cpus_allowed; | 5428 | new_mask = cpus_allowed; |
5429 | goto again; | 5429 | goto again; |
5430 | } | 5430 | } |
5431 | } | 5431 | } |
5432 | out_unlock: | 5432 | out_unlock: |
5433 | put_task_struct(p); | 5433 | put_task_struct(p); |
5434 | put_online_cpus(); | 5434 | put_online_cpus(); |
5435 | return retval; | 5435 | return retval; |
5436 | } | 5436 | } |
5437 | 5437 | ||
5438 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | 5438 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, |
5439 | cpumask_t *new_mask) | 5439 | cpumask_t *new_mask) |
5440 | { | 5440 | { |
5441 | if (len < sizeof(cpumask_t)) { | 5441 | if (len < sizeof(cpumask_t)) { |
5442 | memset(new_mask, 0, sizeof(cpumask_t)); | 5442 | memset(new_mask, 0, sizeof(cpumask_t)); |
5443 | } else if (len > sizeof(cpumask_t)) { | 5443 | } else if (len > sizeof(cpumask_t)) { |
5444 | len = sizeof(cpumask_t); | 5444 | len = sizeof(cpumask_t); |
5445 | } | 5445 | } |
5446 | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | 5446 | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; |
5447 | } | 5447 | } |
5448 | 5448 | ||
5449 | /** | 5449 | /** |
5450 | * sys_sched_setaffinity - set the cpu affinity of a process | 5450 | * sys_sched_setaffinity - set the cpu affinity of a process |
5451 | * @pid: pid of the process | 5451 | * @pid: pid of the process |
5452 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 5452 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr |
5453 | * @user_mask_ptr: user-space pointer to the new cpu mask | 5453 | * @user_mask_ptr: user-space pointer to the new cpu mask |
5454 | */ | 5454 | */ |
5455 | asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len, | 5455 | asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len, |
5456 | unsigned long __user *user_mask_ptr) | 5456 | unsigned long __user *user_mask_ptr) |
5457 | { | 5457 | { |
5458 | cpumask_t new_mask; | 5458 | cpumask_t new_mask; |
5459 | int retval; | 5459 | int retval; |
5460 | 5460 | ||
5461 | retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask); | 5461 | retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask); |
5462 | if (retval) | 5462 | if (retval) |
5463 | return retval; | 5463 | return retval; |
5464 | 5464 | ||
5465 | return sched_setaffinity(pid, &new_mask); | 5465 | return sched_setaffinity(pid, &new_mask); |
5466 | } | 5466 | } |
5467 | 5467 | ||
5468 | long sched_getaffinity(pid_t pid, cpumask_t *mask) | 5468 | long sched_getaffinity(pid_t pid, cpumask_t *mask) |
5469 | { | 5469 | { |
5470 | struct task_struct *p; | 5470 | struct task_struct *p; |
5471 | int retval; | 5471 | int retval; |
5472 | 5472 | ||
5473 | get_online_cpus(); | 5473 | get_online_cpus(); |
5474 | read_lock(&tasklist_lock); | 5474 | read_lock(&tasklist_lock); |
5475 | 5475 | ||
5476 | retval = -ESRCH; | 5476 | retval = -ESRCH; |
5477 | p = find_process_by_pid(pid); | 5477 | p = find_process_by_pid(pid); |
5478 | if (!p) | 5478 | if (!p) |
5479 | goto out_unlock; | 5479 | goto out_unlock; |
5480 | 5480 | ||
5481 | retval = security_task_getscheduler(p); | 5481 | retval = security_task_getscheduler(p); |
5482 | if (retval) | 5482 | if (retval) |
5483 | goto out_unlock; | 5483 | goto out_unlock; |
5484 | 5484 | ||
5485 | cpus_and(*mask, p->cpus_allowed, cpu_online_map); | 5485 | cpus_and(*mask, p->cpus_allowed, cpu_online_map); |
5486 | 5486 | ||
5487 | out_unlock: | 5487 | out_unlock: |
5488 | read_unlock(&tasklist_lock); | 5488 | read_unlock(&tasklist_lock); |
5489 | put_online_cpus(); | 5489 | put_online_cpus(); |
5490 | 5490 | ||
5491 | return retval; | 5491 | return retval; |
5492 | } | 5492 | } |
5493 | 5493 | ||
5494 | /** | 5494 | /** |
5495 | * sys_sched_getaffinity - get the cpu affinity of a process | 5495 | * sys_sched_getaffinity - get the cpu affinity of a process |
5496 | * @pid: pid of the process | 5496 | * @pid: pid of the process |
5497 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 5497 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr |
5498 | * @user_mask_ptr: user-space pointer to hold the current cpu mask | 5498 | * @user_mask_ptr: user-space pointer to hold the current cpu mask |
5499 | */ | 5499 | */ |
5500 | asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len, | 5500 | asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len, |
5501 | unsigned long __user *user_mask_ptr) | 5501 | unsigned long __user *user_mask_ptr) |
5502 | { | 5502 | { |
5503 | int ret; | 5503 | int ret; |
5504 | cpumask_t mask; | 5504 | cpumask_t mask; |
5505 | 5505 | ||
5506 | if (len < sizeof(cpumask_t)) | 5506 | if (len < sizeof(cpumask_t)) |
5507 | return -EINVAL; | 5507 | return -EINVAL; |
5508 | 5508 | ||
5509 | ret = sched_getaffinity(pid, &mask); | 5509 | ret = sched_getaffinity(pid, &mask); |
5510 | if (ret < 0) | 5510 | if (ret < 0) |
5511 | return ret; | 5511 | return ret; |
5512 | 5512 | ||
5513 | if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t))) | 5513 | if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t))) |
5514 | return -EFAULT; | 5514 | return -EFAULT; |
5515 | 5515 | ||
5516 | return sizeof(cpumask_t); | 5516 | return sizeof(cpumask_t); |
5517 | } | 5517 | } |
5518 | 5518 | ||
5519 | /** | 5519 | /** |
5520 | * sys_sched_yield - yield the current processor to other threads. | 5520 | * sys_sched_yield - yield the current processor to other threads. |
5521 | * | 5521 | * |
5522 | * This function yields the current CPU to other tasks. If there are no | 5522 | * This function yields the current CPU to other tasks. If there are no |
5523 | * other threads running on this CPU then this function will return. | 5523 | * other threads running on this CPU then this function will return. |
5524 | */ | 5524 | */ |
5525 | asmlinkage long sys_sched_yield(void) | 5525 | asmlinkage long sys_sched_yield(void) |
5526 | { | 5526 | { |
5527 | struct rq *rq = this_rq_lock(); | 5527 | struct rq *rq = this_rq_lock(); |
5528 | 5528 | ||
5529 | schedstat_inc(rq, yld_count); | 5529 | schedstat_inc(rq, yld_count); |
5530 | current->sched_class->yield_task(rq); | 5530 | current->sched_class->yield_task(rq); |
5531 | 5531 | ||
5532 | /* | 5532 | /* |
5533 | * Since we are going to call schedule() anyway, there's | 5533 | * Since we are going to call schedule() anyway, there's |
5534 | * no need to preempt or enable interrupts: | 5534 | * no need to preempt or enable interrupts: |
5535 | */ | 5535 | */ |
5536 | __release(rq->lock); | 5536 | __release(rq->lock); |
5537 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | 5537 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
5538 | _raw_spin_unlock(&rq->lock); | 5538 | _raw_spin_unlock(&rq->lock); |
5539 | preempt_enable_no_resched(); | 5539 | preempt_enable_no_resched(); |
5540 | 5540 | ||
5541 | schedule(); | 5541 | schedule(); |
5542 | 5542 | ||
5543 | return 0; | 5543 | return 0; |
5544 | } | 5544 | } |
5545 | 5545 | ||
5546 | static void __cond_resched(void) | 5546 | static void __cond_resched(void) |
5547 | { | 5547 | { |
5548 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 5548 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP |
5549 | __might_sleep(__FILE__, __LINE__); | 5549 | __might_sleep(__FILE__, __LINE__); |
5550 | #endif | 5550 | #endif |
5551 | /* | 5551 | /* |
5552 | * The BKS might be reacquired before we have dropped | 5552 | * The BKS might be reacquired before we have dropped |
5553 | * PREEMPT_ACTIVE, which could trigger a second | 5553 | * PREEMPT_ACTIVE, which could trigger a second |
5554 | * cond_resched() call. | 5554 | * cond_resched() call. |
5555 | */ | 5555 | */ |
5556 | do { | 5556 | do { |
5557 | add_preempt_count(PREEMPT_ACTIVE); | 5557 | add_preempt_count(PREEMPT_ACTIVE); |
5558 | schedule(); | 5558 | schedule(); |
5559 | sub_preempt_count(PREEMPT_ACTIVE); | 5559 | sub_preempt_count(PREEMPT_ACTIVE); |
5560 | } while (need_resched()); | 5560 | } while (need_resched()); |
5561 | } | 5561 | } |
5562 | 5562 | ||
5563 | int __sched _cond_resched(void) | 5563 | int __sched _cond_resched(void) |
5564 | { | 5564 | { |
5565 | if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) && | 5565 | if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) && |
5566 | system_state == SYSTEM_RUNNING) { | 5566 | system_state == SYSTEM_RUNNING) { |
5567 | __cond_resched(); | 5567 | __cond_resched(); |
5568 | return 1; | 5568 | return 1; |
5569 | } | 5569 | } |
5570 | return 0; | 5570 | return 0; |
5571 | } | 5571 | } |
5572 | EXPORT_SYMBOL(_cond_resched); | 5572 | EXPORT_SYMBOL(_cond_resched); |
5573 | 5573 | ||
5574 | /* | 5574 | /* |
5575 | * cond_resched_lock() - if a reschedule is pending, drop the given lock, | 5575 | * cond_resched_lock() - if a reschedule is pending, drop the given lock, |
5576 | * call schedule, and on return reacquire the lock. | 5576 | * call schedule, and on return reacquire the lock. |
5577 | * | 5577 | * |
5578 | * This works OK both with and without CONFIG_PREEMPT. We do strange low-level | 5578 | * This works OK both with and without CONFIG_PREEMPT. We do strange low-level |
5579 | * operations here to prevent schedule() from being called twice (once via | 5579 | * operations here to prevent schedule() from being called twice (once via |
5580 | * spin_unlock(), once by hand). | 5580 | * spin_unlock(), once by hand). |
5581 | */ | 5581 | */ |
5582 | int cond_resched_lock(spinlock_t *lock) | 5582 | int cond_resched_lock(spinlock_t *lock) |
5583 | { | 5583 | { |
5584 | int resched = need_resched() && system_state == SYSTEM_RUNNING; | 5584 | int resched = need_resched() && system_state == SYSTEM_RUNNING; |
5585 | int ret = 0; | 5585 | int ret = 0; |
5586 | 5586 | ||
5587 | if (spin_needbreak(lock) || resched) { | 5587 | if (spin_needbreak(lock) || resched) { |
5588 | spin_unlock(lock); | 5588 | spin_unlock(lock); |
5589 | if (resched && need_resched()) | 5589 | if (resched && need_resched()) |
5590 | __cond_resched(); | 5590 | __cond_resched(); |
5591 | else | 5591 | else |
5592 | cpu_relax(); | 5592 | cpu_relax(); |
5593 | ret = 1; | 5593 | ret = 1; |
5594 | spin_lock(lock); | 5594 | spin_lock(lock); |
5595 | } | 5595 | } |
5596 | return ret; | 5596 | return ret; |
5597 | } | 5597 | } |
5598 | EXPORT_SYMBOL(cond_resched_lock); | 5598 | EXPORT_SYMBOL(cond_resched_lock); |
5599 | 5599 | ||
5600 | int __sched cond_resched_softirq(void) | 5600 | int __sched cond_resched_softirq(void) |
5601 | { | 5601 | { |
5602 | BUG_ON(!in_softirq()); | 5602 | BUG_ON(!in_softirq()); |
5603 | 5603 | ||
5604 | if (need_resched() && system_state == SYSTEM_RUNNING) { | 5604 | if (need_resched() && system_state == SYSTEM_RUNNING) { |
5605 | local_bh_enable(); | 5605 | local_bh_enable(); |
5606 | __cond_resched(); | 5606 | __cond_resched(); |
5607 | local_bh_disable(); | 5607 | local_bh_disable(); |
5608 | return 1; | 5608 | return 1; |
5609 | } | 5609 | } |
5610 | return 0; | 5610 | return 0; |
5611 | } | 5611 | } |
5612 | EXPORT_SYMBOL(cond_resched_softirq); | 5612 | EXPORT_SYMBOL(cond_resched_softirq); |
5613 | 5613 | ||
5614 | /** | 5614 | /** |
5615 | * yield - yield the current processor to other threads. | 5615 | * yield - yield the current processor to other threads. |
5616 | * | 5616 | * |
5617 | * This is a shortcut for kernel-space yielding - it marks the | 5617 | * This is a shortcut for kernel-space yielding - it marks the |
5618 | * thread runnable and calls sys_sched_yield(). | 5618 | * thread runnable and calls sys_sched_yield(). |
5619 | */ | 5619 | */ |
5620 | void __sched yield(void) | 5620 | void __sched yield(void) |
5621 | { | 5621 | { |
5622 | set_current_state(TASK_RUNNING); | 5622 | set_current_state(TASK_RUNNING); |
5623 | sys_sched_yield(); | 5623 | sys_sched_yield(); |
5624 | } | 5624 | } |
5625 | EXPORT_SYMBOL(yield); | 5625 | EXPORT_SYMBOL(yield); |
5626 | 5626 | ||
5627 | /* | 5627 | /* |
5628 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so | 5628 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so |
5629 | * that process accounting knows that this is a task in IO wait state. | 5629 | * that process accounting knows that this is a task in IO wait state. |
5630 | * | 5630 | * |
5631 | * But don't do that if it is a deliberate, throttling IO wait (this task | 5631 | * But don't do that if it is a deliberate, throttling IO wait (this task |
5632 | * has set its backing_dev_info: the queue against which it should throttle) | 5632 | * has set its backing_dev_info: the queue against which it should throttle) |
5633 | */ | 5633 | */ |
5634 | void __sched io_schedule(void) | 5634 | void __sched io_schedule(void) |
5635 | { | 5635 | { |
5636 | struct rq *rq = &__raw_get_cpu_var(runqueues); | 5636 | struct rq *rq = &__raw_get_cpu_var(runqueues); |
5637 | 5637 | ||
5638 | delayacct_blkio_start(); | 5638 | delayacct_blkio_start(); |
5639 | atomic_inc(&rq->nr_iowait); | 5639 | atomic_inc(&rq->nr_iowait); |
5640 | schedule(); | 5640 | schedule(); |
5641 | atomic_dec(&rq->nr_iowait); | 5641 | atomic_dec(&rq->nr_iowait); |
5642 | delayacct_blkio_end(); | 5642 | delayacct_blkio_end(); |
5643 | } | 5643 | } |
5644 | EXPORT_SYMBOL(io_schedule); | 5644 | EXPORT_SYMBOL(io_schedule); |
5645 | 5645 | ||
5646 | long __sched io_schedule_timeout(long timeout) | 5646 | long __sched io_schedule_timeout(long timeout) |
5647 | { | 5647 | { |
5648 | struct rq *rq = &__raw_get_cpu_var(runqueues); | 5648 | struct rq *rq = &__raw_get_cpu_var(runqueues); |
5649 | long ret; | 5649 | long ret; |
5650 | 5650 | ||
5651 | delayacct_blkio_start(); | 5651 | delayacct_blkio_start(); |
5652 | atomic_inc(&rq->nr_iowait); | 5652 | atomic_inc(&rq->nr_iowait); |
5653 | ret = schedule_timeout(timeout); | 5653 | ret = schedule_timeout(timeout); |
5654 | atomic_dec(&rq->nr_iowait); | 5654 | atomic_dec(&rq->nr_iowait); |
5655 | delayacct_blkio_end(); | 5655 | delayacct_blkio_end(); |
5656 | return ret; | 5656 | return ret; |
5657 | } | 5657 | } |
5658 | 5658 | ||
5659 | /** | 5659 | /** |
5660 | * sys_sched_get_priority_max - return maximum RT priority. | 5660 | * sys_sched_get_priority_max - return maximum RT priority. |
5661 | * @policy: scheduling class. | 5661 | * @policy: scheduling class. |
5662 | * | 5662 | * |
5663 | * this syscall returns the maximum rt_priority that can be used | 5663 | * this syscall returns the maximum rt_priority that can be used |
5664 | * by a given scheduling class. | 5664 | * by a given scheduling class. |
5665 | */ | 5665 | */ |
5666 | asmlinkage long sys_sched_get_priority_max(int policy) | 5666 | asmlinkage long sys_sched_get_priority_max(int policy) |
5667 | { | 5667 | { |
5668 | int ret = -EINVAL; | 5668 | int ret = -EINVAL; |
5669 | 5669 | ||
5670 | switch (policy) { | 5670 | switch (policy) { |
5671 | case SCHED_FIFO: | 5671 | case SCHED_FIFO: |
5672 | case SCHED_RR: | 5672 | case SCHED_RR: |
5673 | ret = MAX_USER_RT_PRIO-1; | 5673 | ret = MAX_USER_RT_PRIO-1; |
5674 | break; | 5674 | break; |
5675 | case SCHED_NORMAL: | 5675 | case SCHED_NORMAL: |
5676 | case SCHED_BATCH: | 5676 | case SCHED_BATCH: |
5677 | case SCHED_IDLE: | 5677 | case SCHED_IDLE: |
5678 | ret = 0; | 5678 | ret = 0; |
5679 | break; | 5679 | break; |
5680 | } | 5680 | } |
5681 | return ret; | 5681 | return ret; |
5682 | } | 5682 | } |
5683 | 5683 | ||
5684 | /** | 5684 | /** |
5685 | * sys_sched_get_priority_min - return minimum RT priority. | 5685 | * sys_sched_get_priority_min - return minimum RT priority. |
5686 | * @policy: scheduling class. | 5686 | * @policy: scheduling class. |
5687 | * | 5687 | * |
5688 | * this syscall returns the minimum rt_priority that can be used | 5688 | * this syscall returns the minimum rt_priority that can be used |
5689 | * by a given scheduling class. | 5689 | * by a given scheduling class. |
5690 | */ | 5690 | */ |
5691 | asmlinkage long sys_sched_get_priority_min(int policy) | 5691 | asmlinkage long sys_sched_get_priority_min(int policy) |
5692 | { | 5692 | { |
5693 | int ret = -EINVAL; | 5693 | int ret = -EINVAL; |
5694 | 5694 | ||
5695 | switch (policy) { | 5695 | switch (policy) { |
5696 | case SCHED_FIFO: | 5696 | case SCHED_FIFO: |
5697 | case SCHED_RR: | 5697 | case SCHED_RR: |
5698 | ret = 1; | 5698 | ret = 1; |
5699 | break; | 5699 | break; |
5700 | case SCHED_NORMAL: | 5700 | case SCHED_NORMAL: |
5701 | case SCHED_BATCH: | 5701 | case SCHED_BATCH: |
5702 | case SCHED_IDLE: | 5702 | case SCHED_IDLE: |
5703 | ret = 0; | 5703 | ret = 0; |
5704 | } | 5704 | } |
5705 | return ret; | 5705 | return ret; |
5706 | } | 5706 | } |
5707 | 5707 | ||
5708 | /** | 5708 | /** |
5709 | * sys_sched_rr_get_interval - return the default timeslice of a process. | 5709 | * sys_sched_rr_get_interval - return the default timeslice of a process. |
5710 | * @pid: pid of the process. | 5710 | * @pid: pid of the process. |
5711 | * @interval: userspace pointer to the timeslice value. | 5711 | * @interval: userspace pointer to the timeslice value. |
5712 | * | 5712 | * |
5713 | * this syscall writes the default timeslice value of a given process | 5713 | * this syscall writes the default timeslice value of a given process |
5714 | * into the user-space timespec buffer. A value of '0' means infinity. | 5714 | * into the user-space timespec buffer. A value of '0' means infinity. |
5715 | */ | 5715 | */ |
5716 | asmlinkage | 5716 | asmlinkage |
5717 | long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval) | 5717 | long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval) |
5718 | { | 5718 | { |
5719 | struct task_struct *p; | 5719 | struct task_struct *p; |
5720 | unsigned int time_slice; | 5720 | unsigned int time_slice; |
5721 | int retval; | 5721 | int retval; |
5722 | struct timespec t; | 5722 | struct timespec t; |
5723 | 5723 | ||
5724 | if (pid < 0) | 5724 | if (pid < 0) |
5725 | return -EINVAL; | 5725 | return -EINVAL; |
5726 | 5726 | ||
5727 | retval = -ESRCH; | 5727 | retval = -ESRCH; |
5728 | read_lock(&tasklist_lock); | 5728 | read_lock(&tasklist_lock); |
5729 | p = find_process_by_pid(pid); | 5729 | p = find_process_by_pid(pid); |
5730 | if (!p) | 5730 | if (!p) |
5731 | goto out_unlock; | 5731 | goto out_unlock; |
5732 | 5732 | ||
5733 | retval = security_task_getscheduler(p); | 5733 | retval = security_task_getscheduler(p); |
5734 | if (retval) | 5734 | if (retval) |
5735 | goto out_unlock; | 5735 | goto out_unlock; |
5736 | 5736 | ||
5737 | /* | 5737 | /* |
5738 | * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER | 5738 | * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER |
5739 | * tasks that are on an otherwise idle runqueue: | 5739 | * tasks that are on an otherwise idle runqueue: |
5740 | */ | 5740 | */ |
5741 | time_slice = 0; | 5741 | time_slice = 0; |
5742 | if (p->policy == SCHED_RR) { | 5742 | if (p->policy == SCHED_RR) { |
5743 | time_slice = DEF_TIMESLICE; | 5743 | time_slice = DEF_TIMESLICE; |
5744 | } else if (p->policy != SCHED_FIFO) { | 5744 | } else if (p->policy != SCHED_FIFO) { |
5745 | struct sched_entity *se = &p->se; | 5745 | struct sched_entity *se = &p->se; |
5746 | unsigned long flags; | 5746 | unsigned long flags; |
5747 | struct rq *rq; | 5747 | struct rq *rq; |
5748 | 5748 | ||
5749 | rq = task_rq_lock(p, &flags); | 5749 | rq = task_rq_lock(p, &flags); |
5750 | if (rq->cfs.load.weight) | 5750 | if (rq->cfs.load.weight) |
5751 | time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | 5751 | time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); |
5752 | task_rq_unlock(rq, &flags); | 5752 | task_rq_unlock(rq, &flags); |
5753 | } | 5753 | } |
5754 | read_unlock(&tasklist_lock); | 5754 | read_unlock(&tasklist_lock); |
5755 | jiffies_to_timespec(time_slice, &t); | 5755 | jiffies_to_timespec(time_slice, &t); |
5756 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | 5756 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; |
5757 | return retval; | 5757 | return retval; |
5758 | 5758 | ||
5759 | out_unlock: | 5759 | out_unlock: |
5760 | read_unlock(&tasklist_lock); | 5760 | read_unlock(&tasklist_lock); |
5761 | return retval; | 5761 | return retval; |
5762 | } | 5762 | } |
5763 | 5763 | ||
5764 | static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; | 5764 | static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; |
5765 | 5765 | ||
5766 | void sched_show_task(struct task_struct *p) | 5766 | void sched_show_task(struct task_struct *p) |
5767 | { | 5767 | { |
5768 | unsigned long free = 0; | 5768 | unsigned long free = 0; |
5769 | unsigned state; | 5769 | unsigned state; |
5770 | 5770 | ||
5771 | state = p->state ? __ffs(p->state) + 1 : 0; | 5771 | state = p->state ? __ffs(p->state) + 1 : 0; |
5772 | printk(KERN_INFO "%-13.13s %c", p->comm, | 5772 | printk(KERN_INFO "%-13.13s %c", p->comm, |
5773 | state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); | 5773 | state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); |
5774 | #if BITS_PER_LONG == 32 | 5774 | #if BITS_PER_LONG == 32 |
5775 | if (state == TASK_RUNNING) | 5775 | if (state == TASK_RUNNING) |
5776 | printk(KERN_CONT " running "); | 5776 | printk(KERN_CONT " running "); |
5777 | else | 5777 | else |
5778 | printk(KERN_CONT " %08lx ", thread_saved_pc(p)); | 5778 | printk(KERN_CONT " %08lx ", thread_saved_pc(p)); |
5779 | #else | 5779 | #else |
5780 | if (state == TASK_RUNNING) | 5780 | if (state == TASK_RUNNING) |
5781 | printk(KERN_CONT " running task "); | 5781 | printk(KERN_CONT " running task "); |
5782 | else | 5782 | else |
5783 | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); | 5783 | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); |
5784 | #endif | 5784 | #endif |
5785 | #ifdef CONFIG_DEBUG_STACK_USAGE | 5785 | #ifdef CONFIG_DEBUG_STACK_USAGE |
5786 | { | 5786 | { |
5787 | unsigned long *n = end_of_stack(p); | 5787 | unsigned long *n = end_of_stack(p); |
5788 | while (!*n) | 5788 | while (!*n) |
5789 | n++; | 5789 | n++; |
5790 | free = (unsigned long)n - (unsigned long)end_of_stack(p); | 5790 | free = (unsigned long)n - (unsigned long)end_of_stack(p); |
5791 | } | 5791 | } |
5792 | #endif | 5792 | #endif |
5793 | printk(KERN_CONT "%5lu %5d %6d\n", free, | 5793 | printk(KERN_CONT "%5lu %5d %6d\n", free, |
5794 | task_pid_nr(p), task_pid_nr(p->real_parent)); | 5794 | task_pid_nr(p), task_pid_nr(p->real_parent)); |
5795 | 5795 | ||
5796 | show_stack(p, NULL); | 5796 | show_stack(p, NULL); |
5797 | } | 5797 | } |
5798 | 5798 | ||
5799 | void show_state_filter(unsigned long state_filter) | 5799 | void show_state_filter(unsigned long state_filter) |
5800 | { | 5800 | { |
5801 | struct task_struct *g, *p; | 5801 | struct task_struct *g, *p; |
5802 | 5802 | ||
5803 | #if BITS_PER_LONG == 32 | 5803 | #if BITS_PER_LONG == 32 |
5804 | printk(KERN_INFO | 5804 | printk(KERN_INFO |
5805 | " task PC stack pid father\n"); | 5805 | " task PC stack pid father\n"); |
5806 | #else | 5806 | #else |
5807 | printk(KERN_INFO | 5807 | printk(KERN_INFO |
5808 | " task PC stack pid father\n"); | 5808 | " task PC stack pid father\n"); |
5809 | #endif | 5809 | #endif |
5810 | read_lock(&tasklist_lock); | 5810 | read_lock(&tasklist_lock); |
5811 | do_each_thread(g, p) { | 5811 | do_each_thread(g, p) { |
5812 | /* | 5812 | /* |
5813 | * reset the NMI-timeout, listing all files on a slow | 5813 | * reset the NMI-timeout, listing all files on a slow |
5814 | * console might take alot of time: | 5814 | * console might take alot of time: |
5815 | */ | 5815 | */ |
5816 | touch_nmi_watchdog(); | 5816 | touch_nmi_watchdog(); |
5817 | if (!state_filter || (p->state & state_filter)) | 5817 | if (!state_filter || (p->state & state_filter)) |
5818 | sched_show_task(p); | 5818 | sched_show_task(p); |
5819 | } while_each_thread(g, p); | 5819 | } while_each_thread(g, p); |
5820 | 5820 | ||
5821 | touch_all_softlockup_watchdogs(); | 5821 | touch_all_softlockup_watchdogs(); |
5822 | 5822 | ||
5823 | #ifdef CONFIG_SCHED_DEBUG | 5823 | #ifdef CONFIG_SCHED_DEBUG |
5824 | sysrq_sched_debug_show(); | 5824 | sysrq_sched_debug_show(); |
5825 | #endif | 5825 | #endif |
5826 | read_unlock(&tasklist_lock); | 5826 | read_unlock(&tasklist_lock); |
5827 | /* | 5827 | /* |
5828 | * Only show locks if all tasks are dumped: | 5828 | * Only show locks if all tasks are dumped: |
5829 | */ | 5829 | */ |
5830 | if (state_filter == -1) | 5830 | if (state_filter == -1) |
5831 | debug_show_all_locks(); | 5831 | debug_show_all_locks(); |
5832 | } | 5832 | } |
5833 | 5833 | ||
5834 | void __cpuinit init_idle_bootup_task(struct task_struct *idle) | 5834 | void __cpuinit init_idle_bootup_task(struct task_struct *idle) |
5835 | { | 5835 | { |
5836 | idle->sched_class = &idle_sched_class; | 5836 | idle->sched_class = &idle_sched_class; |
5837 | } | 5837 | } |
5838 | 5838 | ||
5839 | /** | 5839 | /** |
5840 | * init_idle - set up an idle thread for a given CPU | 5840 | * init_idle - set up an idle thread for a given CPU |
5841 | * @idle: task in question | 5841 | * @idle: task in question |
5842 | * @cpu: cpu the idle task belongs to | 5842 | * @cpu: cpu the idle task belongs to |
5843 | * | 5843 | * |
5844 | * NOTE: this function does not set the idle thread's NEED_RESCHED | 5844 | * NOTE: this function does not set the idle thread's NEED_RESCHED |
5845 | * flag, to make booting more robust. | 5845 | * flag, to make booting more robust. |
5846 | */ | 5846 | */ |
5847 | void __cpuinit init_idle(struct task_struct *idle, int cpu) | 5847 | void __cpuinit init_idle(struct task_struct *idle, int cpu) |
5848 | { | 5848 | { |
5849 | struct rq *rq = cpu_rq(cpu); | 5849 | struct rq *rq = cpu_rq(cpu); |
5850 | unsigned long flags; | 5850 | unsigned long flags; |
5851 | 5851 | ||
5852 | spin_lock_irqsave(&rq->lock, flags); | 5852 | spin_lock_irqsave(&rq->lock, flags); |
5853 | 5853 | ||
5854 | __sched_fork(idle); | 5854 | __sched_fork(idle); |
5855 | idle->se.exec_start = sched_clock(); | 5855 | idle->se.exec_start = sched_clock(); |
5856 | 5856 | ||
5857 | idle->prio = idle->normal_prio = MAX_PRIO; | 5857 | idle->prio = idle->normal_prio = MAX_PRIO; |
5858 | idle->cpus_allowed = cpumask_of_cpu(cpu); | 5858 | idle->cpus_allowed = cpumask_of_cpu(cpu); |
5859 | __set_task_cpu(idle, cpu); | 5859 | __set_task_cpu(idle, cpu); |
5860 | 5860 | ||
5861 | rq->curr = rq->idle = idle; | 5861 | rq->curr = rq->idle = idle; |
5862 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) | 5862 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
5863 | idle->oncpu = 1; | 5863 | idle->oncpu = 1; |
5864 | #endif | 5864 | #endif |
5865 | spin_unlock_irqrestore(&rq->lock, flags); | 5865 | spin_unlock_irqrestore(&rq->lock, flags); |
5866 | 5866 | ||
5867 | /* Set the preempt count _outside_ the spinlocks! */ | 5867 | /* Set the preempt count _outside_ the spinlocks! */ |
5868 | #if defined(CONFIG_PREEMPT) | 5868 | #if defined(CONFIG_PREEMPT) |
5869 | task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); | 5869 | task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); |
5870 | #else | 5870 | #else |
5871 | task_thread_info(idle)->preempt_count = 0; | 5871 | task_thread_info(idle)->preempt_count = 0; |
5872 | #endif | 5872 | #endif |
5873 | /* | 5873 | /* |
5874 | * The idle tasks have their own, simple scheduling class: | 5874 | * The idle tasks have their own, simple scheduling class: |
5875 | */ | 5875 | */ |
5876 | idle->sched_class = &idle_sched_class; | 5876 | idle->sched_class = &idle_sched_class; |
5877 | } | 5877 | } |
5878 | 5878 | ||
5879 | /* | 5879 | /* |
5880 | * In a system that switches off the HZ timer nohz_cpu_mask | 5880 | * In a system that switches off the HZ timer nohz_cpu_mask |
5881 | * indicates which cpus entered this state. This is used | 5881 | * indicates which cpus entered this state. This is used |
5882 | * in the rcu update to wait only for active cpus. For system | 5882 | * in the rcu update to wait only for active cpus. For system |
5883 | * which do not switch off the HZ timer nohz_cpu_mask should | 5883 | * which do not switch off the HZ timer nohz_cpu_mask should |
5884 | * always be CPU_MASK_NONE. | 5884 | * always be CPU_MASK_NONE. |
5885 | */ | 5885 | */ |
5886 | cpumask_t nohz_cpu_mask = CPU_MASK_NONE; | 5886 | cpumask_t nohz_cpu_mask = CPU_MASK_NONE; |
5887 | 5887 | ||
5888 | /* | 5888 | /* |
5889 | * Increase the granularity value when there are more CPUs, | 5889 | * Increase the granularity value when there are more CPUs, |
5890 | * because with more CPUs the 'effective latency' as visible | 5890 | * because with more CPUs the 'effective latency' as visible |
5891 | * to users decreases. But the relationship is not linear, | 5891 | * to users decreases. But the relationship is not linear, |
5892 | * so pick a second-best guess by going with the log2 of the | 5892 | * so pick a second-best guess by going with the log2 of the |
5893 | * number of CPUs. | 5893 | * number of CPUs. |
5894 | * | 5894 | * |
5895 | * This idea comes from the SD scheduler of Con Kolivas: | 5895 | * This idea comes from the SD scheduler of Con Kolivas: |
5896 | */ | 5896 | */ |
5897 | static inline void sched_init_granularity(void) | 5897 | static inline void sched_init_granularity(void) |
5898 | { | 5898 | { |
5899 | unsigned int factor = 1 + ilog2(num_online_cpus()); | 5899 | unsigned int factor = 1 + ilog2(num_online_cpus()); |
5900 | const unsigned long limit = 200000000; | 5900 | const unsigned long limit = 200000000; |
5901 | 5901 | ||
5902 | sysctl_sched_min_granularity *= factor; | 5902 | sysctl_sched_min_granularity *= factor; |
5903 | if (sysctl_sched_min_granularity > limit) | 5903 | if (sysctl_sched_min_granularity > limit) |
5904 | sysctl_sched_min_granularity = limit; | 5904 | sysctl_sched_min_granularity = limit; |
5905 | 5905 | ||
5906 | sysctl_sched_latency *= factor; | 5906 | sysctl_sched_latency *= factor; |
5907 | if (sysctl_sched_latency > limit) | 5907 | if (sysctl_sched_latency > limit) |
5908 | sysctl_sched_latency = limit; | 5908 | sysctl_sched_latency = limit; |
5909 | 5909 | ||
5910 | sysctl_sched_wakeup_granularity *= factor; | 5910 | sysctl_sched_wakeup_granularity *= factor; |
5911 | 5911 | ||
5912 | sysctl_sched_shares_ratelimit *= factor; | 5912 | sysctl_sched_shares_ratelimit *= factor; |
5913 | } | 5913 | } |
5914 | 5914 | ||
5915 | #ifdef CONFIG_SMP | 5915 | #ifdef CONFIG_SMP |
5916 | /* | 5916 | /* |
5917 | * This is how migration works: | 5917 | * This is how migration works: |
5918 | * | 5918 | * |
5919 | * 1) we queue a struct migration_req structure in the source CPU's | 5919 | * 1) we queue a struct migration_req structure in the source CPU's |
5920 | * runqueue and wake up that CPU's migration thread. | 5920 | * runqueue and wake up that CPU's migration thread. |
5921 | * 2) we down() the locked semaphore => thread blocks. | 5921 | * 2) we down() the locked semaphore => thread blocks. |
5922 | * 3) migration thread wakes up (implicitly it forces the migrated | 5922 | * 3) migration thread wakes up (implicitly it forces the migrated |
5923 | * thread off the CPU) | 5923 | * thread off the CPU) |
5924 | * 4) it gets the migration request and checks whether the migrated | 5924 | * 4) it gets the migration request and checks whether the migrated |
5925 | * task is still in the wrong runqueue. | 5925 | * task is still in the wrong runqueue. |
5926 | * 5) if it's in the wrong runqueue then the migration thread removes | 5926 | * 5) if it's in the wrong runqueue then the migration thread removes |
5927 | * it and puts it into the right queue. | 5927 | * it and puts it into the right queue. |
5928 | * 6) migration thread up()s the semaphore. | 5928 | * 6) migration thread up()s the semaphore. |
5929 | * 7) we wake up and the migration is done. | 5929 | * 7) we wake up and the migration is done. |
5930 | */ | 5930 | */ |
5931 | 5931 | ||
5932 | /* | 5932 | /* |
5933 | * Change a given task's CPU affinity. Migrate the thread to a | 5933 | * Change a given task's CPU affinity. Migrate the thread to a |
5934 | * proper CPU and schedule it away if the CPU it's executing on | 5934 | * proper CPU and schedule it away if the CPU it's executing on |
5935 | * is removed from the allowed bitmask. | 5935 | * is removed from the allowed bitmask. |
5936 | * | 5936 | * |
5937 | * NOTE: the caller must have a valid reference to the task, the | 5937 | * NOTE: the caller must have a valid reference to the task, the |
5938 | * task must not exit() & deallocate itself prematurely. The | 5938 | * task must not exit() & deallocate itself prematurely. The |
5939 | * call is not atomic; no spinlocks may be held. | 5939 | * call is not atomic; no spinlocks may be held. |
5940 | */ | 5940 | */ |
5941 | int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask) | 5941 | int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask) |
5942 | { | 5942 | { |
5943 | struct migration_req req; | 5943 | struct migration_req req; |
5944 | unsigned long flags; | 5944 | unsigned long flags; |
5945 | struct rq *rq; | 5945 | struct rq *rq; |
5946 | int ret = 0; | 5946 | int ret = 0; |
5947 | 5947 | ||
5948 | rq = task_rq_lock(p, &flags); | 5948 | rq = task_rq_lock(p, &flags); |
5949 | if (!cpus_intersects(*new_mask, cpu_online_map)) { | 5949 | if (!cpus_intersects(*new_mask, cpu_online_map)) { |
5950 | ret = -EINVAL; | 5950 | ret = -EINVAL; |
5951 | goto out; | 5951 | goto out; |
5952 | } | 5952 | } |
5953 | 5953 | ||
5954 | if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && | 5954 | if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && |
5955 | !cpus_equal(p->cpus_allowed, *new_mask))) { | 5955 | !cpus_equal(p->cpus_allowed, *new_mask))) { |
5956 | ret = -EINVAL; | 5956 | ret = -EINVAL; |
5957 | goto out; | 5957 | goto out; |
5958 | } | 5958 | } |
5959 | 5959 | ||
5960 | if (p->sched_class->set_cpus_allowed) | 5960 | if (p->sched_class->set_cpus_allowed) |
5961 | p->sched_class->set_cpus_allowed(p, new_mask); | 5961 | p->sched_class->set_cpus_allowed(p, new_mask); |
5962 | else { | 5962 | else { |
5963 | p->cpus_allowed = *new_mask; | 5963 | p->cpus_allowed = *new_mask; |
5964 | p->rt.nr_cpus_allowed = cpus_weight(*new_mask); | 5964 | p->rt.nr_cpus_allowed = cpus_weight(*new_mask); |
5965 | } | 5965 | } |
5966 | 5966 | ||
5967 | /* Can the task run on the task's current CPU? If so, we're done */ | 5967 | /* Can the task run on the task's current CPU? If so, we're done */ |
5968 | if (cpu_isset(task_cpu(p), *new_mask)) | 5968 | if (cpu_isset(task_cpu(p), *new_mask)) |
5969 | goto out; | 5969 | goto out; |
5970 | 5970 | ||
5971 | if (migrate_task(p, any_online_cpu(*new_mask), &req)) { | 5971 | if (migrate_task(p, any_online_cpu(*new_mask), &req)) { |
5972 | /* Need help from migration thread: drop lock and wait. */ | 5972 | /* Need help from migration thread: drop lock and wait. */ |
5973 | task_rq_unlock(rq, &flags); | 5973 | task_rq_unlock(rq, &flags); |
5974 | wake_up_process(rq->migration_thread); | 5974 | wake_up_process(rq->migration_thread); |
5975 | wait_for_completion(&req.done); | 5975 | wait_for_completion(&req.done); |
5976 | tlb_migrate_finish(p->mm); | 5976 | tlb_migrate_finish(p->mm); |
5977 | return 0; | 5977 | return 0; |
5978 | } | 5978 | } |
5979 | out: | 5979 | out: |
5980 | task_rq_unlock(rq, &flags); | 5980 | task_rq_unlock(rq, &flags); |
5981 | 5981 | ||
5982 | return ret; | 5982 | return ret; |
5983 | } | 5983 | } |
5984 | EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); | 5984 | EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); |
5985 | 5985 | ||
5986 | /* | 5986 | /* |
5987 | * Move (not current) task off this cpu, onto dest cpu. We're doing | 5987 | * Move (not current) task off this cpu, onto dest cpu. We're doing |
5988 | * this because either it can't run here any more (set_cpus_allowed() | 5988 | * this because either it can't run here any more (set_cpus_allowed() |
5989 | * away from this CPU, or CPU going down), or because we're | 5989 | * away from this CPU, or CPU going down), or because we're |
5990 | * attempting to rebalance this task on exec (sched_exec). | 5990 | * attempting to rebalance this task on exec (sched_exec). |
5991 | * | 5991 | * |
5992 | * So we race with normal scheduler movements, but that's OK, as long | 5992 | * So we race with normal scheduler movements, but that's OK, as long |
5993 | * as the task is no longer on this CPU. | 5993 | * as the task is no longer on this CPU. |
5994 | * | 5994 | * |
5995 | * Returns non-zero if task was successfully migrated. | 5995 | * Returns non-zero if task was successfully migrated. |
5996 | */ | 5996 | */ |
5997 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) | 5997 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) |
5998 | { | 5998 | { |
5999 | struct rq *rq_dest, *rq_src; | 5999 | struct rq *rq_dest, *rq_src; |
6000 | int ret = 0, on_rq; | 6000 | int ret = 0, on_rq; |
6001 | 6001 | ||
6002 | if (unlikely(!cpu_active(dest_cpu))) | 6002 | if (unlikely(!cpu_active(dest_cpu))) |
6003 | return ret; | 6003 | return ret; |
6004 | 6004 | ||
6005 | rq_src = cpu_rq(src_cpu); | 6005 | rq_src = cpu_rq(src_cpu); |
6006 | rq_dest = cpu_rq(dest_cpu); | 6006 | rq_dest = cpu_rq(dest_cpu); |
6007 | 6007 | ||
6008 | double_rq_lock(rq_src, rq_dest); | 6008 | double_rq_lock(rq_src, rq_dest); |
6009 | /* Already moved. */ | 6009 | /* Already moved. */ |
6010 | if (task_cpu(p) != src_cpu) | 6010 | if (task_cpu(p) != src_cpu) |
6011 | goto done; | 6011 | goto done; |
6012 | /* Affinity changed (again). */ | 6012 | /* Affinity changed (again). */ |
6013 | if (!cpu_isset(dest_cpu, p->cpus_allowed)) | 6013 | if (!cpu_isset(dest_cpu, p->cpus_allowed)) |
6014 | goto fail; | 6014 | goto fail; |
6015 | 6015 | ||
6016 | on_rq = p->se.on_rq; | 6016 | on_rq = p->se.on_rq; |
6017 | if (on_rq) | 6017 | if (on_rq) |
6018 | deactivate_task(rq_src, p, 0); | 6018 | deactivate_task(rq_src, p, 0); |
6019 | 6019 | ||
6020 | set_task_cpu(p, dest_cpu); | 6020 | set_task_cpu(p, dest_cpu); |
6021 | if (on_rq) { | 6021 | if (on_rq) { |
6022 | activate_task(rq_dest, p, 0); | 6022 | activate_task(rq_dest, p, 0); |
6023 | check_preempt_curr(rq_dest, p, 0); | 6023 | check_preempt_curr(rq_dest, p, 0); |
6024 | } | 6024 | } |
6025 | done: | 6025 | done: |
6026 | ret = 1; | 6026 | ret = 1; |
6027 | fail: | 6027 | fail: |
6028 | double_rq_unlock(rq_src, rq_dest); | 6028 | double_rq_unlock(rq_src, rq_dest); |
6029 | return ret; | 6029 | return ret; |
6030 | } | 6030 | } |
6031 | 6031 | ||
6032 | /* | 6032 | /* |
6033 | * migration_thread - this is a highprio system thread that performs | 6033 | * migration_thread - this is a highprio system thread that performs |
6034 | * thread migration by bumping thread off CPU then 'pushing' onto | 6034 | * thread migration by bumping thread off CPU then 'pushing' onto |
6035 | * another runqueue. | 6035 | * another runqueue. |
6036 | */ | 6036 | */ |
6037 | static int migration_thread(void *data) | 6037 | static int migration_thread(void *data) |
6038 | { | 6038 | { |
6039 | int cpu = (long)data; | 6039 | int cpu = (long)data; |
6040 | struct rq *rq; | 6040 | struct rq *rq; |
6041 | 6041 | ||
6042 | rq = cpu_rq(cpu); | 6042 | rq = cpu_rq(cpu); |
6043 | BUG_ON(rq->migration_thread != current); | 6043 | BUG_ON(rq->migration_thread != current); |
6044 | 6044 | ||
6045 | set_current_state(TASK_INTERRUPTIBLE); | 6045 | set_current_state(TASK_INTERRUPTIBLE); |
6046 | while (!kthread_should_stop()) { | 6046 | while (!kthread_should_stop()) { |
6047 | struct migration_req *req; | 6047 | struct migration_req *req; |
6048 | struct list_head *head; | 6048 | struct list_head *head; |
6049 | 6049 | ||
6050 | spin_lock_irq(&rq->lock); | 6050 | spin_lock_irq(&rq->lock); |
6051 | 6051 | ||
6052 | if (cpu_is_offline(cpu)) { | 6052 | if (cpu_is_offline(cpu)) { |
6053 | spin_unlock_irq(&rq->lock); | 6053 | spin_unlock_irq(&rq->lock); |
6054 | goto wait_to_die; | 6054 | goto wait_to_die; |
6055 | } | 6055 | } |
6056 | 6056 | ||
6057 | if (rq->active_balance) { | 6057 | if (rq->active_balance) { |
6058 | active_load_balance(rq, cpu); | 6058 | active_load_balance(rq, cpu); |
6059 | rq->active_balance = 0; | 6059 | rq->active_balance = 0; |
6060 | } | 6060 | } |
6061 | 6061 | ||
6062 | head = &rq->migration_queue; | 6062 | head = &rq->migration_queue; |
6063 | 6063 | ||
6064 | if (list_empty(head)) { | 6064 | if (list_empty(head)) { |
6065 | spin_unlock_irq(&rq->lock); | 6065 | spin_unlock_irq(&rq->lock); |
6066 | schedule(); | 6066 | schedule(); |
6067 | set_current_state(TASK_INTERRUPTIBLE); | 6067 | set_current_state(TASK_INTERRUPTIBLE); |
6068 | continue; | 6068 | continue; |
6069 | } | 6069 | } |
6070 | req = list_entry(head->next, struct migration_req, list); | 6070 | req = list_entry(head->next, struct migration_req, list); |
6071 | list_del_init(head->next); | 6071 | list_del_init(head->next); |
6072 | 6072 | ||
6073 | spin_unlock(&rq->lock); | 6073 | spin_unlock(&rq->lock); |
6074 | __migrate_task(req->task, cpu, req->dest_cpu); | 6074 | __migrate_task(req->task, cpu, req->dest_cpu); |
6075 | local_irq_enable(); | 6075 | local_irq_enable(); |
6076 | 6076 | ||
6077 | complete(&req->done); | 6077 | complete(&req->done); |
6078 | } | 6078 | } |
6079 | __set_current_state(TASK_RUNNING); | 6079 | __set_current_state(TASK_RUNNING); |
6080 | return 0; | 6080 | return 0; |
6081 | 6081 | ||
6082 | wait_to_die: | 6082 | wait_to_die: |
6083 | /* Wait for kthread_stop */ | 6083 | /* Wait for kthread_stop */ |
6084 | set_current_state(TASK_INTERRUPTIBLE); | 6084 | set_current_state(TASK_INTERRUPTIBLE); |
6085 | while (!kthread_should_stop()) { | 6085 | while (!kthread_should_stop()) { |
6086 | schedule(); | 6086 | schedule(); |
6087 | set_current_state(TASK_INTERRUPTIBLE); | 6087 | set_current_state(TASK_INTERRUPTIBLE); |
6088 | } | 6088 | } |
6089 | __set_current_state(TASK_RUNNING); | 6089 | __set_current_state(TASK_RUNNING); |
6090 | return 0; | 6090 | return 0; |
6091 | } | 6091 | } |
6092 | 6092 | ||
6093 | #ifdef CONFIG_HOTPLUG_CPU | 6093 | #ifdef CONFIG_HOTPLUG_CPU |
6094 | 6094 | ||
6095 | static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu) | 6095 | static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu) |
6096 | { | 6096 | { |
6097 | int ret; | 6097 | int ret; |
6098 | 6098 | ||
6099 | local_irq_disable(); | 6099 | local_irq_disable(); |
6100 | ret = __migrate_task(p, src_cpu, dest_cpu); | 6100 | ret = __migrate_task(p, src_cpu, dest_cpu); |
6101 | local_irq_enable(); | 6101 | local_irq_enable(); |
6102 | return ret; | 6102 | return ret; |
6103 | } | 6103 | } |
6104 | 6104 | ||
6105 | /* | 6105 | /* |
6106 | * Figure out where task on dead CPU should go, use force if necessary. | 6106 | * Figure out where task on dead CPU should go, use force if necessary. |
6107 | */ | 6107 | */ |
6108 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) | 6108 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) |
6109 | { | 6109 | { |
6110 | unsigned long flags; | 6110 | unsigned long flags; |
6111 | cpumask_t mask; | 6111 | cpumask_t mask; |
6112 | struct rq *rq; | 6112 | struct rq *rq; |
6113 | int dest_cpu; | 6113 | int dest_cpu; |
6114 | 6114 | ||
6115 | do { | 6115 | do { |
6116 | /* On same node? */ | 6116 | /* On same node? */ |
6117 | mask = node_to_cpumask(cpu_to_node(dead_cpu)); | 6117 | mask = node_to_cpumask(cpu_to_node(dead_cpu)); |
6118 | cpus_and(mask, mask, p->cpus_allowed); | 6118 | cpus_and(mask, mask, p->cpus_allowed); |
6119 | dest_cpu = any_online_cpu(mask); | 6119 | dest_cpu = any_online_cpu(mask); |
6120 | 6120 | ||
6121 | /* On any allowed CPU? */ | 6121 | /* On any allowed CPU? */ |
6122 | if (dest_cpu >= nr_cpu_ids) | 6122 | if (dest_cpu >= nr_cpu_ids) |
6123 | dest_cpu = any_online_cpu(p->cpus_allowed); | 6123 | dest_cpu = any_online_cpu(p->cpus_allowed); |
6124 | 6124 | ||
6125 | /* No more Mr. Nice Guy. */ | 6125 | /* No more Mr. Nice Guy. */ |
6126 | if (dest_cpu >= nr_cpu_ids) { | 6126 | if (dest_cpu >= nr_cpu_ids) { |
6127 | cpumask_t cpus_allowed; | 6127 | cpumask_t cpus_allowed; |
6128 | 6128 | ||
6129 | cpuset_cpus_allowed_locked(p, &cpus_allowed); | 6129 | cpuset_cpus_allowed_locked(p, &cpus_allowed); |
6130 | /* | 6130 | /* |
6131 | * Try to stay on the same cpuset, where the | 6131 | * Try to stay on the same cpuset, where the |
6132 | * current cpuset may be a subset of all cpus. | 6132 | * current cpuset may be a subset of all cpus. |
6133 | * The cpuset_cpus_allowed_locked() variant of | 6133 | * The cpuset_cpus_allowed_locked() variant of |
6134 | * cpuset_cpus_allowed() will not block. It must be | 6134 | * cpuset_cpus_allowed() will not block. It must be |
6135 | * called within calls to cpuset_lock/cpuset_unlock. | 6135 | * called within calls to cpuset_lock/cpuset_unlock. |
6136 | */ | 6136 | */ |
6137 | rq = task_rq_lock(p, &flags); | 6137 | rq = task_rq_lock(p, &flags); |
6138 | p->cpus_allowed = cpus_allowed; | 6138 | p->cpus_allowed = cpus_allowed; |
6139 | dest_cpu = any_online_cpu(p->cpus_allowed); | 6139 | dest_cpu = any_online_cpu(p->cpus_allowed); |
6140 | task_rq_unlock(rq, &flags); | 6140 | task_rq_unlock(rq, &flags); |
6141 | 6141 | ||
6142 | /* | 6142 | /* |
6143 | * Don't tell them about moving exiting tasks or | 6143 | * Don't tell them about moving exiting tasks or |
6144 | * kernel threads (both mm NULL), since they never | 6144 | * kernel threads (both mm NULL), since they never |
6145 | * leave kernel. | 6145 | * leave kernel. |
6146 | */ | 6146 | */ |
6147 | if (p->mm && printk_ratelimit()) { | 6147 | if (p->mm && printk_ratelimit()) { |
6148 | printk(KERN_INFO "process %d (%s) no " | 6148 | printk(KERN_INFO "process %d (%s) no " |
6149 | "longer affine to cpu%d\n", | 6149 | "longer affine to cpu%d\n", |
6150 | task_pid_nr(p), p->comm, dead_cpu); | 6150 | task_pid_nr(p), p->comm, dead_cpu); |
6151 | } | 6151 | } |
6152 | } | 6152 | } |
6153 | } while (!__migrate_task_irq(p, dead_cpu, dest_cpu)); | 6153 | } while (!__migrate_task_irq(p, dead_cpu, dest_cpu)); |
6154 | } | 6154 | } |
6155 | 6155 | ||
6156 | /* | 6156 | /* |
6157 | * While a dead CPU has no uninterruptible tasks queued at this point, | 6157 | * While a dead CPU has no uninterruptible tasks queued at this point, |
6158 | * it might still have a nonzero ->nr_uninterruptible counter, because | 6158 | * it might still have a nonzero ->nr_uninterruptible counter, because |
6159 | * for performance reasons the counter is not stricly tracking tasks to | 6159 | * for performance reasons the counter is not stricly tracking tasks to |
6160 | * their home CPUs. So we just add the counter to another CPU's counter, | 6160 | * their home CPUs. So we just add the counter to another CPU's counter, |
6161 | * to keep the global sum constant after CPU-down: | 6161 | * to keep the global sum constant after CPU-down: |
6162 | */ | 6162 | */ |
6163 | static void migrate_nr_uninterruptible(struct rq *rq_src) | 6163 | static void migrate_nr_uninterruptible(struct rq *rq_src) |
6164 | { | 6164 | { |
6165 | struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR)); | 6165 | struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR)); |
6166 | unsigned long flags; | 6166 | unsigned long flags; |
6167 | 6167 | ||
6168 | local_irq_save(flags); | 6168 | local_irq_save(flags); |
6169 | double_rq_lock(rq_src, rq_dest); | 6169 | double_rq_lock(rq_src, rq_dest); |
6170 | rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; | 6170 | rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; |
6171 | rq_src->nr_uninterruptible = 0; | 6171 | rq_src->nr_uninterruptible = 0; |
6172 | double_rq_unlock(rq_src, rq_dest); | 6172 | double_rq_unlock(rq_src, rq_dest); |
6173 | local_irq_restore(flags); | 6173 | local_irq_restore(flags); |
6174 | } | 6174 | } |
6175 | 6175 | ||
6176 | /* Run through task list and migrate tasks from the dead cpu. */ | 6176 | /* Run through task list and migrate tasks from the dead cpu. */ |
6177 | static void migrate_live_tasks(int src_cpu) | 6177 | static void migrate_live_tasks(int src_cpu) |
6178 | { | 6178 | { |
6179 | struct task_struct *p, *t; | 6179 | struct task_struct *p, *t; |
6180 | 6180 | ||
6181 | read_lock(&tasklist_lock); | 6181 | read_lock(&tasklist_lock); |
6182 | 6182 | ||
6183 | do_each_thread(t, p) { | 6183 | do_each_thread(t, p) { |
6184 | if (p == current) | 6184 | if (p == current) |
6185 | continue; | 6185 | continue; |
6186 | 6186 | ||
6187 | if (task_cpu(p) == src_cpu) | 6187 | if (task_cpu(p) == src_cpu) |
6188 | move_task_off_dead_cpu(src_cpu, p); | 6188 | move_task_off_dead_cpu(src_cpu, p); |
6189 | } while_each_thread(t, p); | 6189 | } while_each_thread(t, p); |
6190 | 6190 | ||
6191 | read_unlock(&tasklist_lock); | 6191 | read_unlock(&tasklist_lock); |
6192 | } | 6192 | } |
6193 | 6193 | ||
6194 | /* | 6194 | /* |
6195 | * Schedules idle task to be the next runnable task on current CPU. | 6195 | * Schedules idle task to be the next runnable task on current CPU. |
6196 | * It does so by boosting its priority to highest possible. | 6196 | * It does so by boosting its priority to highest possible. |
6197 | * Used by CPU offline code. | 6197 | * Used by CPU offline code. |
6198 | */ | 6198 | */ |
6199 | void sched_idle_next(void) | 6199 | void sched_idle_next(void) |
6200 | { | 6200 | { |
6201 | int this_cpu = smp_processor_id(); | 6201 | int this_cpu = smp_processor_id(); |
6202 | struct rq *rq = cpu_rq(this_cpu); | 6202 | struct rq *rq = cpu_rq(this_cpu); |
6203 | struct task_struct *p = rq->idle; | 6203 | struct task_struct *p = rq->idle; |
6204 | unsigned long flags; | 6204 | unsigned long flags; |
6205 | 6205 | ||
6206 | /* cpu has to be offline */ | 6206 | /* cpu has to be offline */ |
6207 | BUG_ON(cpu_online(this_cpu)); | 6207 | BUG_ON(cpu_online(this_cpu)); |
6208 | 6208 | ||
6209 | /* | 6209 | /* |
6210 | * Strictly not necessary since rest of the CPUs are stopped by now | 6210 | * Strictly not necessary since rest of the CPUs are stopped by now |
6211 | * and interrupts disabled on the current cpu. | 6211 | * and interrupts disabled on the current cpu. |
6212 | */ | 6212 | */ |
6213 | spin_lock_irqsave(&rq->lock, flags); | 6213 | spin_lock_irqsave(&rq->lock, flags); |
6214 | 6214 | ||
6215 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); | 6215 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); |
6216 | 6216 | ||
6217 | update_rq_clock(rq); | 6217 | update_rq_clock(rq); |
6218 | activate_task(rq, p, 0); | 6218 | activate_task(rq, p, 0); |
6219 | 6219 | ||
6220 | spin_unlock_irqrestore(&rq->lock, flags); | 6220 | spin_unlock_irqrestore(&rq->lock, flags); |
6221 | } | 6221 | } |
6222 | 6222 | ||
6223 | /* | 6223 | /* |
6224 | * Ensures that the idle task is using init_mm right before its cpu goes | 6224 | * Ensures that the idle task is using init_mm right before its cpu goes |
6225 | * offline. | 6225 | * offline. |
6226 | */ | 6226 | */ |
6227 | void idle_task_exit(void) | 6227 | void idle_task_exit(void) |
6228 | { | 6228 | { |
6229 | struct mm_struct *mm = current->active_mm; | 6229 | struct mm_struct *mm = current->active_mm; |
6230 | 6230 | ||
6231 | BUG_ON(cpu_online(smp_processor_id())); | 6231 | BUG_ON(cpu_online(smp_processor_id())); |
6232 | 6232 | ||
6233 | if (mm != &init_mm) | 6233 | if (mm != &init_mm) |
6234 | switch_mm(mm, &init_mm, current); | 6234 | switch_mm(mm, &init_mm, current); |
6235 | mmdrop(mm); | 6235 | mmdrop(mm); |
6236 | } | 6236 | } |
6237 | 6237 | ||
6238 | /* called under rq->lock with disabled interrupts */ | 6238 | /* called under rq->lock with disabled interrupts */ |
6239 | static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) | 6239 | static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) |
6240 | { | 6240 | { |
6241 | struct rq *rq = cpu_rq(dead_cpu); | 6241 | struct rq *rq = cpu_rq(dead_cpu); |
6242 | 6242 | ||
6243 | /* Must be exiting, otherwise would be on tasklist. */ | 6243 | /* Must be exiting, otherwise would be on tasklist. */ |
6244 | BUG_ON(!p->exit_state); | 6244 | BUG_ON(!p->exit_state); |
6245 | 6245 | ||
6246 | /* Cannot have done final schedule yet: would have vanished. */ | 6246 | /* Cannot have done final schedule yet: would have vanished. */ |
6247 | BUG_ON(p->state == TASK_DEAD); | 6247 | BUG_ON(p->state == TASK_DEAD); |
6248 | 6248 | ||
6249 | get_task_struct(p); | 6249 | get_task_struct(p); |
6250 | 6250 | ||
6251 | /* | 6251 | /* |
6252 | * Drop lock around migration; if someone else moves it, | 6252 | * Drop lock around migration; if someone else moves it, |
6253 | * that's OK. No task can be added to this CPU, so iteration is | 6253 | * that's OK. No task can be added to this CPU, so iteration is |
6254 | * fine. | 6254 | * fine. |
6255 | */ | 6255 | */ |
6256 | spin_unlock_irq(&rq->lock); | 6256 | spin_unlock_irq(&rq->lock); |
6257 | move_task_off_dead_cpu(dead_cpu, p); | 6257 | move_task_off_dead_cpu(dead_cpu, p); |
6258 | spin_lock_irq(&rq->lock); | 6258 | spin_lock_irq(&rq->lock); |
6259 | 6259 | ||
6260 | put_task_struct(p); | 6260 | put_task_struct(p); |
6261 | } | 6261 | } |
6262 | 6262 | ||
6263 | /* release_task() removes task from tasklist, so we won't find dead tasks. */ | 6263 | /* release_task() removes task from tasklist, so we won't find dead tasks. */ |
6264 | static void migrate_dead_tasks(unsigned int dead_cpu) | 6264 | static void migrate_dead_tasks(unsigned int dead_cpu) |
6265 | { | 6265 | { |
6266 | struct rq *rq = cpu_rq(dead_cpu); | 6266 | struct rq *rq = cpu_rq(dead_cpu); |
6267 | struct task_struct *next; | 6267 | struct task_struct *next; |
6268 | 6268 | ||
6269 | for ( ; ; ) { | 6269 | for ( ; ; ) { |
6270 | if (!rq->nr_running) | 6270 | if (!rq->nr_running) |
6271 | break; | 6271 | break; |
6272 | update_rq_clock(rq); | 6272 | update_rq_clock(rq); |
6273 | next = pick_next_task(rq, rq->curr); | 6273 | next = pick_next_task(rq, rq->curr); |
6274 | if (!next) | 6274 | if (!next) |
6275 | break; | 6275 | break; |
6276 | next->sched_class->put_prev_task(rq, next); | 6276 | next->sched_class->put_prev_task(rq, next); |
6277 | migrate_dead(dead_cpu, next); | 6277 | migrate_dead(dead_cpu, next); |
6278 | 6278 | ||
6279 | } | 6279 | } |
6280 | } | 6280 | } |
6281 | #endif /* CONFIG_HOTPLUG_CPU */ | 6281 | #endif /* CONFIG_HOTPLUG_CPU */ |
6282 | 6282 | ||
6283 | #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) | 6283 | #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) |
6284 | 6284 | ||
6285 | static struct ctl_table sd_ctl_dir[] = { | 6285 | static struct ctl_table sd_ctl_dir[] = { |
6286 | { | 6286 | { |
6287 | .procname = "sched_domain", | 6287 | .procname = "sched_domain", |
6288 | .mode = 0555, | 6288 | .mode = 0555, |
6289 | }, | 6289 | }, |
6290 | {0, }, | 6290 | {0, }, |
6291 | }; | 6291 | }; |
6292 | 6292 | ||
6293 | static struct ctl_table sd_ctl_root[] = { | 6293 | static struct ctl_table sd_ctl_root[] = { |
6294 | { | 6294 | { |
6295 | .ctl_name = CTL_KERN, | 6295 | .ctl_name = CTL_KERN, |
6296 | .procname = "kernel", | 6296 | .procname = "kernel", |
6297 | .mode = 0555, | 6297 | .mode = 0555, |
6298 | .child = sd_ctl_dir, | 6298 | .child = sd_ctl_dir, |
6299 | }, | 6299 | }, |
6300 | {0, }, | 6300 | {0, }, |
6301 | }; | 6301 | }; |
6302 | 6302 | ||
6303 | static struct ctl_table *sd_alloc_ctl_entry(int n) | 6303 | static struct ctl_table *sd_alloc_ctl_entry(int n) |
6304 | { | 6304 | { |
6305 | struct ctl_table *entry = | 6305 | struct ctl_table *entry = |
6306 | kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); | 6306 | kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); |
6307 | 6307 | ||
6308 | return entry; | 6308 | return entry; |
6309 | } | 6309 | } |
6310 | 6310 | ||
6311 | static void sd_free_ctl_entry(struct ctl_table **tablep) | 6311 | static void sd_free_ctl_entry(struct ctl_table **tablep) |
6312 | { | 6312 | { |
6313 | struct ctl_table *entry; | 6313 | struct ctl_table *entry; |
6314 | 6314 | ||
6315 | /* | 6315 | /* |
6316 | * In the intermediate directories, both the child directory and | 6316 | * In the intermediate directories, both the child directory and |
6317 | * procname are dynamically allocated and could fail but the mode | 6317 | * procname are dynamically allocated and could fail but the mode |
6318 | * will always be set. In the lowest directory the names are | 6318 | * will always be set. In the lowest directory the names are |
6319 | * static strings and all have proc handlers. | 6319 | * static strings and all have proc handlers. |
6320 | */ | 6320 | */ |
6321 | for (entry = *tablep; entry->mode; entry++) { | 6321 | for (entry = *tablep; entry->mode; entry++) { |
6322 | if (entry->child) | 6322 | if (entry->child) |
6323 | sd_free_ctl_entry(&entry->child); | 6323 | sd_free_ctl_entry(&entry->child); |
6324 | if (entry->proc_handler == NULL) | 6324 | if (entry->proc_handler == NULL) |
6325 | kfree(entry->procname); | 6325 | kfree(entry->procname); |
6326 | } | 6326 | } |
6327 | 6327 | ||
6328 | kfree(*tablep); | 6328 | kfree(*tablep); |
6329 | *tablep = NULL; | 6329 | *tablep = NULL; |
6330 | } | 6330 | } |
6331 | 6331 | ||
6332 | static void | 6332 | static void |
6333 | set_table_entry(struct ctl_table *entry, | 6333 | set_table_entry(struct ctl_table *entry, |
6334 | const char *procname, void *data, int maxlen, | 6334 | const char *procname, void *data, int maxlen, |
6335 | mode_t mode, proc_handler *proc_handler) | 6335 | mode_t mode, proc_handler *proc_handler) |
6336 | { | 6336 | { |
6337 | entry->procname = procname; | 6337 | entry->procname = procname; |
6338 | entry->data = data; | 6338 | entry->data = data; |
6339 | entry->maxlen = maxlen; | 6339 | entry->maxlen = maxlen; |
6340 | entry->mode = mode; | 6340 | entry->mode = mode; |
6341 | entry->proc_handler = proc_handler; | 6341 | entry->proc_handler = proc_handler; |
6342 | } | 6342 | } |
6343 | 6343 | ||
6344 | static struct ctl_table * | 6344 | static struct ctl_table * |
6345 | sd_alloc_ctl_domain_table(struct sched_domain *sd) | 6345 | sd_alloc_ctl_domain_table(struct sched_domain *sd) |
6346 | { | 6346 | { |
6347 | struct ctl_table *table = sd_alloc_ctl_entry(13); | 6347 | struct ctl_table *table = sd_alloc_ctl_entry(13); |
6348 | 6348 | ||
6349 | if (table == NULL) | 6349 | if (table == NULL) |
6350 | return NULL; | 6350 | return NULL; |
6351 | 6351 | ||
6352 | set_table_entry(&table[0], "min_interval", &sd->min_interval, | 6352 | set_table_entry(&table[0], "min_interval", &sd->min_interval, |
6353 | sizeof(long), 0644, proc_doulongvec_minmax); | 6353 | sizeof(long), 0644, proc_doulongvec_minmax); |
6354 | set_table_entry(&table[1], "max_interval", &sd->max_interval, | 6354 | set_table_entry(&table[1], "max_interval", &sd->max_interval, |
6355 | sizeof(long), 0644, proc_doulongvec_minmax); | 6355 | sizeof(long), 0644, proc_doulongvec_minmax); |
6356 | set_table_entry(&table[2], "busy_idx", &sd->busy_idx, | 6356 | set_table_entry(&table[2], "busy_idx", &sd->busy_idx, |
6357 | sizeof(int), 0644, proc_dointvec_minmax); | 6357 | sizeof(int), 0644, proc_dointvec_minmax); |
6358 | set_table_entry(&table[3], "idle_idx", &sd->idle_idx, | 6358 | set_table_entry(&table[3], "idle_idx", &sd->idle_idx, |
6359 | sizeof(int), 0644, proc_dointvec_minmax); | 6359 | sizeof(int), 0644, proc_dointvec_minmax); |
6360 | set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, | 6360 | set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, |
6361 | sizeof(int), 0644, proc_dointvec_minmax); | 6361 | sizeof(int), 0644, proc_dointvec_minmax); |
6362 | set_table_entry(&table[5], "wake_idx", &sd->wake_idx, | 6362 | set_table_entry(&table[5], "wake_idx", &sd->wake_idx, |
6363 | sizeof(int), 0644, proc_dointvec_minmax); | 6363 | sizeof(int), 0644, proc_dointvec_minmax); |
6364 | set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, | 6364 | set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, |
6365 | sizeof(int), 0644, proc_dointvec_minmax); | 6365 | sizeof(int), 0644, proc_dointvec_minmax); |
6366 | set_table_entry(&table[7], "busy_factor", &sd->busy_factor, | 6366 | set_table_entry(&table[7], "busy_factor", &sd->busy_factor, |
6367 | sizeof(int), 0644, proc_dointvec_minmax); | 6367 | sizeof(int), 0644, proc_dointvec_minmax); |
6368 | set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, | 6368 | set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, |
6369 | sizeof(int), 0644, proc_dointvec_minmax); | 6369 | sizeof(int), 0644, proc_dointvec_minmax); |
6370 | set_table_entry(&table[9], "cache_nice_tries", | 6370 | set_table_entry(&table[9], "cache_nice_tries", |
6371 | &sd->cache_nice_tries, | 6371 | &sd->cache_nice_tries, |
6372 | sizeof(int), 0644, proc_dointvec_minmax); | 6372 | sizeof(int), 0644, proc_dointvec_minmax); |
6373 | set_table_entry(&table[10], "flags", &sd->flags, | 6373 | set_table_entry(&table[10], "flags", &sd->flags, |
6374 | sizeof(int), 0644, proc_dointvec_minmax); | 6374 | sizeof(int), 0644, proc_dointvec_minmax); |
6375 | set_table_entry(&table[11], "name", sd->name, | 6375 | set_table_entry(&table[11], "name", sd->name, |
6376 | CORENAME_MAX_SIZE, 0444, proc_dostring); | 6376 | CORENAME_MAX_SIZE, 0444, proc_dostring); |
6377 | /* &table[12] is terminator */ | 6377 | /* &table[12] is terminator */ |
6378 | 6378 | ||
6379 | return table; | 6379 | return table; |
6380 | } | 6380 | } |
6381 | 6381 | ||
6382 | static ctl_table *sd_alloc_ctl_cpu_table(int cpu) | 6382 | static ctl_table *sd_alloc_ctl_cpu_table(int cpu) |
6383 | { | 6383 | { |
6384 | struct ctl_table *entry, *table; | 6384 | struct ctl_table *entry, *table; |
6385 | struct sched_domain *sd; | 6385 | struct sched_domain *sd; |
6386 | int domain_num = 0, i; | 6386 | int domain_num = 0, i; |
6387 | char buf[32]; | 6387 | char buf[32]; |
6388 | 6388 | ||
6389 | for_each_domain(cpu, sd) | 6389 | for_each_domain(cpu, sd) |
6390 | domain_num++; | 6390 | domain_num++; |
6391 | entry = table = sd_alloc_ctl_entry(domain_num + 1); | 6391 | entry = table = sd_alloc_ctl_entry(domain_num + 1); |
6392 | if (table == NULL) | 6392 | if (table == NULL) |
6393 | return NULL; | 6393 | return NULL; |
6394 | 6394 | ||
6395 | i = 0; | 6395 | i = 0; |
6396 | for_each_domain(cpu, sd) { | 6396 | for_each_domain(cpu, sd) { |
6397 | snprintf(buf, 32, "domain%d", i); | 6397 | snprintf(buf, 32, "domain%d", i); |
6398 | entry->procname = kstrdup(buf, GFP_KERNEL); | 6398 | entry->procname = kstrdup(buf, GFP_KERNEL); |
6399 | entry->mode = 0555; | 6399 | entry->mode = 0555; |
6400 | entry->child = sd_alloc_ctl_domain_table(sd); | 6400 | entry->child = sd_alloc_ctl_domain_table(sd); |
6401 | entry++; | 6401 | entry++; |
6402 | i++; | 6402 | i++; |
6403 | } | 6403 | } |
6404 | return table; | 6404 | return table; |
6405 | } | 6405 | } |
6406 | 6406 | ||
6407 | static struct ctl_table_header *sd_sysctl_header; | 6407 | static struct ctl_table_header *sd_sysctl_header; |
6408 | static void register_sched_domain_sysctl(void) | 6408 | static void register_sched_domain_sysctl(void) |
6409 | { | 6409 | { |
6410 | int i, cpu_num = num_online_cpus(); | 6410 | int i, cpu_num = num_online_cpus(); |
6411 | struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); | 6411 | struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); |
6412 | char buf[32]; | 6412 | char buf[32]; |
6413 | 6413 | ||
6414 | WARN_ON(sd_ctl_dir[0].child); | 6414 | WARN_ON(sd_ctl_dir[0].child); |
6415 | sd_ctl_dir[0].child = entry; | 6415 | sd_ctl_dir[0].child = entry; |
6416 | 6416 | ||
6417 | if (entry == NULL) | 6417 | if (entry == NULL) |
6418 | return; | 6418 | return; |
6419 | 6419 | ||
6420 | for_each_online_cpu(i) { | 6420 | for_each_online_cpu(i) { |
6421 | snprintf(buf, 32, "cpu%d", i); | 6421 | snprintf(buf, 32, "cpu%d", i); |
6422 | entry->procname = kstrdup(buf, GFP_KERNEL); | 6422 | entry->procname = kstrdup(buf, GFP_KERNEL); |
6423 | entry->mode = 0555; | 6423 | entry->mode = 0555; |
6424 | entry->child = sd_alloc_ctl_cpu_table(i); | 6424 | entry->child = sd_alloc_ctl_cpu_table(i); |
6425 | entry++; | 6425 | entry++; |
6426 | } | 6426 | } |
6427 | 6427 | ||
6428 | WARN_ON(sd_sysctl_header); | 6428 | WARN_ON(sd_sysctl_header); |
6429 | sd_sysctl_header = register_sysctl_table(sd_ctl_root); | 6429 | sd_sysctl_header = register_sysctl_table(sd_ctl_root); |
6430 | } | 6430 | } |
6431 | 6431 | ||
6432 | /* may be called multiple times per register */ | 6432 | /* may be called multiple times per register */ |
6433 | static void unregister_sched_domain_sysctl(void) | 6433 | static void unregister_sched_domain_sysctl(void) |
6434 | { | 6434 | { |
6435 | if (sd_sysctl_header) | 6435 | if (sd_sysctl_header) |
6436 | unregister_sysctl_table(sd_sysctl_header); | 6436 | unregister_sysctl_table(sd_sysctl_header); |
6437 | sd_sysctl_header = NULL; | 6437 | sd_sysctl_header = NULL; |
6438 | if (sd_ctl_dir[0].child) | 6438 | if (sd_ctl_dir[0].child) |
6439 | sd_free_ctl_entry(&sd_ctl_dir[0].child); | 6439 | sd_free_ctl_entry(&sd_ctl_dir[0].child); |
6440 | } | 6440 | } |
6441 | #else | 6441 | #else |
6442 | static void register_sched_domain_sysctl(void) | 6442 | static void register_sched_domain_sysctl(void) |
6443 | { | 6443 | { |
6444 | } | 6444 | } |
6445 | static void unregister_sched_domain_sysctl(void) | 6445 | static void unregister_sched_domain_sysctl(void) |
6446 | { | 6446 | { |
6447 | } | 6447 | } |
6448 | #endif | 6448 | #endif |
6449 | 6449 | ||
6450 | static void set_rq_online(struct rq *rq) | 6450 | static void set_rq_online(struct rq *rq) |
6451 | { | 6451 | { |
6452 | if (!rq->online) { | 6452 | if (!rq->online) { |
6453 | const struct sched_class *class; | 6453 | const struct sched_class *class; |
6454 | 6454 | ||
6455 | cpu_set(rq->cpu, rq->rd->online); | 6455 | cpu_set(rq->cpu, rq->rd->online); |
6456 | rq->online = 1; | 6456 | rq->online = 1; |
6457 | 6457 | ||
6458 | for_each_class(class) { | 6458 | for_each_class(class) { |
6459 | if (class->rq_online) | 6459 | if (class->rq_online) |
6460 | class->rq_online(rq); | 6460 | class->rq_online(rq); |
6461 | } | 6461 | } |
6462 | } | 6462 | } |
6463 | } | 6463 | } |
6464 | 6464 | ||
6465 | static void set_rq_offline(struct rq *rq) | 6465 | static void set_rq_offline(struct rq *rq) |
6466 | { | 6466 | { |
6467 | if (rq->online) { | 6467 | if (rq->online) { |
6468 | const struct sched_class *class; | 6468 | const struct sched_class *class; |
6469 | 6469 | ||
6470 | for_each_class(class) { | 6470 | for_each_class(class) { |
6471 | if (class->rq_offline) | 6471 | if (class->rq_offline) |
6472 | class->rq_offline(rq); | 6472 | class->rq_offline(rq); |
6473 | } | 6473 | } |
6474 | 6474 | ||
6475 | cpu_clear(rq->cpu, rq->rd->online); | 6475 | cpu_clear(rq->cpu, rq->rd->online); |
6476 | rq->online = 0; | 6476 | rq->online = 0; |
6477 | } | 6477 | } |
6478 | } | 6478 | } |
6479 | 6479 | ||
6480 | /* | 6480 | /* |
6481 | * migration_call - callback that gets triggered when a CPU is added. | 6481 | * migration_call - callback that gets triggered when a CPU is added. |
6482 | * Here we can start up the necessary migration thread for the new CPU. | 6482 | * Here we can start up the necessary migration thread for the new CPU. |
6483 | */ | 6483 | */ |
6484 | static int __cpuinit | 6484 | static int __cpuinit |
6485 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | 6485 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) |
6486 | { | 6486 | { |
6487 | struct task_struct *p; | 6487 | struct task_struct *p; |
6488 | int cpu = (long)hcpu; | 6488 | int cpu = (long)hcpu; |
6489 | unsigned long flags; | 6489 | unsigned long flags; |
6490 | struct rq *rq; | 6490 | struct rq *rq; |
6491 | 6491 | ||
6492 | switch (action) { | 6492 | switch (action) { |
6493 | 6493 | ||
6494 | case CPU_UP_PREPARE: | 6494 | case CPU_UP_PREPARE: |
6495 | case CPU_UP_PREPARE_FROZEN: | 6495 | case CPU_UP_PREPARE_FROZEN: |
6496 | p = kthread_create(migration_thread, hcpu, "migration/%d", cpu); | 6496 | p = kthread_create(migration_thread, hcpu, "migration/%d", cpu); |
6497 | if (IS_ERR(p)) | 6497 | if (IS_ERR(p)) |
6498 | return NOTIFY_BAD; | 6498 | return NOTIFY_BAD; |
6499 | kthread_bind(p, cpu); | 6499 | kthread_bind(p, cpu); |
6500 | /* Must be high prio: stop_machine expects to yield to it. */ | 6500 | /* Must be high prio: stop_machine expects to yield to it. */ |
6501 | rq = task_rq_lock(p, &flags); | 6501 | rq = task_rq_lock(p, &flags); |
6502 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); | 6502 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); |
6503 | task_rq_unlock(rq, &flags); | 6503 | task_rq_unlock(rq, &flags); |
6504 | cpu_rq(cpu)->migration_thread = p; | 6504 | cpu_rq(cpu)->migration_thread = p; |
6505 | break; | 6505 | break; |
6506 | 6506 | ||
6507 | case CPU_ONLINE: | 6507 | case CPU_ONLINE: |
6508 | case CPU_ONLINE_FROZEN: | 6508 | case CPU_ONLINE_FROZEN: |
6509 | /* Strictly unnecessary, as first user will wake it. */ | 6509 | /* Strictly unnecessary, as first user will wake it. */ |
6510 | wake_up_process(cpu_rq(cpu)->migration_thread); | 6510 | wake_up_process(cpu_rq(cpu)->migration_thread); |
6511 | 6511 | ||
6512 | /* Update our root-domain */ | 6512 | /* Update our root-domain */ |
6513 | rq = cpu_rq(cpu); | 6513 | rq = cpu_rq(cpu); |
6514 | spin_lock_irqsave(&rq->lock, flags); | 6514 | spin_lock_irqsave(&rq->lock, flags); |
6515 | if (rq->rd) { | 6515 | if (rq->rd) { |
6516 | BUG_ON(!cpu_isset(cpu, rq->rd->span)); | 6516 | BUG_ON(!cpu_isset(cpu, rq->rd->span)); |
6517 | 6517 | ||
6518 | set_rq_online(rq); | 6518 | set_rq_online(rq); |
6519 | } | 6519 | } |
6520 | spin_unlock_irqrestore(&rq->lock, flags); | 6520 | spin_unlock_irqrestore(&rq->lock, flags); |
6521 | break; | 6521 | break; |
6522 | 6522 | ||
6523 | #ifdef CONFIG_HOTPLUG_CPU | 6523 | #ifdef CONFIG_HOTPLUG_CPU |
6524 | case CPU_UP_CANCELED: | 6524 | case CPU_UP_CANCELED: |
6525 | case CPU_UP_CANCELED_FROZEN: | 6525 | case CPU_UP_CANCELED_FROZEN: |
6526 | if (!cpu_rq(cpu)->migration_thread) | 6526 | if (!cpu_rq(cpu)->migration_thread) |
6527 | break; | 6527 | break; |
6528 | /* Unbind it from offline cpu so it can run. Fall thru. */ | 6528 | /* Unbind it from offline cpu so it can run. Fall thru. */ |
6529 | kthread_bind(cpu_rq(cpu)->migration_thread, | 6529 | kthread_bind(cpu_rq(cpu)->migration_thread, |
6530 | any_online_cpu(cpu_online_map)); | 6530 | any_online_cpu(cpu_online_map)); |
6531 | kthread_stop(cpu_rq(cpu)->migration_thread); | 6531 | kthread_stop(cpu_rq(cpu)->migration_thread); |
6532 | cpu_rq(cpu)->migration_thread = NULL; | 6532 | cpu_rq(cpu)->migration_thread = NULL; |
6533 | break; | 6533 | break; |
6534 | 6534 | ||
6535 | case CPU_DEAD: | 6535 | case CPU_DEAD: |
6536 | case CPU_DEAD_FROZEN: | 6536 | case CPU_DEAD_FROZEN: |
6537 | cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */ | 6537 | cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */ |
6538 | migrate_live_tasks(cpu); | 6538 | migrate_live_tasks(cpu); |
6539 | rq = cpu_rq(cpu); | 6539 | rq = cpu_rq(cpu); |
6540 | kthread_stop(rq->migration_thread); | 6540 | kthread_stop(rq->migration_thread); |
6541 | rq->migration_thread = NULL; | 6541 | rq->migration_thread = NULL; |
6542 | /* Idle task back to normal (off runqueue, low prio) */ | 6542 | /* Idle task back to normal (off runqueue, low prio) */ |
6543 | spin_lock_irq(&rq->lock); | 6543 | spin_lock_irq(&rq->lock); |
6544 | update_rq_clock(rq); | 6544 | update_rq_clock(rq); |
6545 | deactivate_task(rq, rq->idle, 0); | 6545 | deactivate_task(rq, rq->idle, 0); |
6546 | rq->idle->static_prio = MAX_PRIO; | 6546 | rq->idle->static_prio = MAX_PRIO; |
6547 | __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); | 6547 | __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); |
6548 | rq->idle->sched_class = &idle_sched_class; | 6548 | rq->idle->sched_class = &idle_sched_class; |
6549 | migrate_dead_tasks(cpu); | 6549 | migrate_dead_tasks(cpu); |
6550 | spin_unlock_irq(&rq->lock); | 6550 | spin_unlock_irq(&rq->lock); |
6551 | cpuset_unlock(); | 6551 | cpuset_unlock(); |
6552 | migrate_nr_uninterruptible(rq); | 6552 | migrate_nr_uninterruptible(rq); |
6553 | BUG_ON(rq->nr_running != 0); | 6553 | BUG_ON(rq->nr_running != 0); |
6554 | 6554 | ||
6555 | /* | 6555 | /* |
6556 | * No need to migrate the tasks: it was best-effort if | 6556 | * No need to migrate the tasks: it was best-effort if |
6557 | * they didn't take sched_hotcpu_mutex. Just wake up | 6557 | * they didn't take sched_hotcpu_mutex. Just wake up |
6558 | * the requestors. | 6558 | * the requestors. |
6559 | */ | 6559 | */ |
6560 | spin_lock_irq(&rq->lock); | 6560 | spin_lock_irq(&rq->lock); |
6561 | while (!list_empty(&rq->migration_queue)) { | 6561 | while (!list_empty(&rq->migration_queue)) { |
6562 | struct migration_req *req; | 6562 | struct migration_req *req; |
6563 | 6563 | ||
6564 | req = list_entry(rq->migration_queue.next, | 6564 | req = list_entry(rq->migration_queue.next, |
6565 | struct migration_req, list); | 6565 | struct migration_req, list); |
6566 | list_del_init(&req->list); | 6566 | list_del_init(&req->list); |
6567 | spin_unlock_irq(&rq->lock); | 6567 | spin_unlock_irq(&rq->lock); |
6568 | complete(&req->done); | 6568 | complete(&req->done); |
6569 | spin_lock_irq(&rq->lock); | 6569 | spin_lock_irq(&rq->lock); |
6570 | } | 6570 | } |
6571 | spin_unlock_irq(&rq->lock); | 6571 | spin_unlock_irq(&rq->lock); |
6572 | break; | 6572 | break; |
6573 | 6573 | ||
6574 | case CPU_DYING: | 6574 | case CPU_DYING: |
6575 | case CPU_DYING_FROZEN: | 6575 | case CPU_DYING_FROZEN: |
6576 | /* Update our root-domain */ | 6576 | /* Update our root-domain */ |
6577 | rq = cpu_rq(cpu); | 6577 | rq = cpu_rq(cpu); |
6578 | spin_lock_irqsave(&rq->lock, flags); | 6578 | spin_lock_irqsave(&rq->lock, flags); |
6579 | if (rq->rd) { | 6579 | if (rq->rd) { |
6580 | BUG_ON(!cpu_isset(cpu, rq->rd->span)); | 6580 | BUG_ON(!cpu_isset(cpu, rq->rd->span)); |
6581 | set_rq_offline(rq); | 6581 | set_rq_offline(rq); |
6582 | } | 6582 | } |
6583 | spin_unlock_irqrestore(&rq->lock, flags); | 6583 | spin_unlock_irqrestore(&rq->lock, flags); |
6584 | break; | 6584 | break; |
6585 | #endif | 6585 | #endif |
6586 | } | 6586 | } |
6587 | return NOTIFY_OK; | 6587 | return NOTIFY_OK; |
6588 | } | 6588 | } |
6589 | 6589 | ||
6590 | /* Register at highest priority so that task migration (migrate_all_tasks) | 6590 | /* Register at highest priority so that task migration (migrate_all_tasks) |
6591 | * happens before everything else. | 6591 | * happens before everything else. |
6592 | */ | 6592 | */ |
6593 | static struct notifier_block __cpuinitdata migration_notifier = { | 6593 | static struct notifier_block __cpuinitdata migration_notifier = { |
6594 | .notifier_call = migration_call, | 6594 | .notifier_call = migration_call, |
6595 | .priority = 10 | 6595 | .priority = 10 |
6596 | }; | 6596 | }; |
6597 | 6597 | ||
6598 | static int __init migration_init(void) | 6598 | static int __init migration_init(void) |
6599 | { | 6599 | { |
6600 | void *cpu = (void *)(long)smp_processor_id(); | 6600 | void *cpu = (void *)(long)smp_processor_id(); |
6601 | int err; | 6601 | int err; |
6602 | 6602 | ||
6603 | /* Start one for the boot CPU: */ | 6603 | /* Start one for the boot CPU: */ |
6604 | err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); | 6604 | err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); |
6605 | BUG_ON(err == NOTIFY_BAD); | 6605 | BUG_ON(err == NOTIFY_BAD); |
6606 | migration_call(&migration_notifier, CPU_ONLINE, cpu); | 6606 | migration_call(&migration_notifier, CPU_ONLINE, cpu); |
6607 | register_cpu_notifier(&migration_notifier); | 6607 | register_cpu_notifier(&migration_notifier); |
6608 | 6608 | ||
6609 | return err; | 6609 | return err; |
6610 | } | 6610 | } |
6611 | early_initcall(migration_init); | 6611 | early_initcall(migration_init); |
6612 | #endif | 6612 | #endif |
6613 | 6613 | ||
6614 | #ifdef CONFIG_SMP | 6614 | #ifdef CONFIG_SMP |
6615 | 6615 | ||
6616 | #ifdef CONFIG_SCHED_DEBUG | 6616 | #ifdef CONFIG_SCHED_DEBUG |
6617 | 6617 | ||
6618 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, | 6618 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, |
6619 | cpumask_t *groupmask) | 6619 | cpumask_t *groupmask) |
6620 | { | 6620 | { |
6621 | struct sched_group *group = sd->groups; | 6621 | struct sched_group *group = sd->groups; |
6622 | char str[256]; | 6622 | char str[256]; |
6623 | 6623 | ||
6624 | cpulist_scnprintf(str, sizeof(str), sd->span); | 6624 | cpulist_scnprintf(str, sizeof(str), sd->span); |
6625 | cpus_clear(*groupmask); | 6625 | cpus_clear(*groupmask); |
6626 | 6626 | ||
6627 | printk(KERN_DEBUG "%*s domain %d: ", level, "", level); | 6627 | printk(KERN_DEBUG "%*s domain %d: ", level, "", level); |
6628 | 6628 | ||
6629 | if (!(sd->flags & SD_LOAD_BALANCE)) { | 6629 | if (!(sd->flags & SD_LOAD_BALANCE)) { |
6630 | printk("does not load-balance\n"); | 6630 | printk("does not load-balance\n"); |
6631 | if (sd->parent) | 6631 | if (sd->parent) |
6632 | printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" | 6632 | printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" |
6633 | " has parent"); | 6633 | " has parent"); |
6634 | return -1; | 6634 | return -1; |
6635 | } | 6635 | } |
6636 | 6636 | ||
6637 | printk(KERN_CONT "span %s level %s\n", str, sd->name); | 6637 | printk(KERN_CONT "span %s level %s\n", str, sd->name); |
6638 | 6638 | ||
6639 | if (!cpu_isset(cpu, sd->span)) { | 6639 | if (!cpu_isset(cpu, sd->span)) { |
6640 | printk(KERN_ERR "ERROR: domain->span does not contain " | 6640 | printk(KERN_ERR "ERROR: domain->span does not contain " |
6641 | "CPU%d\n", cpu); | 6641 | "CPU%d\n", cpu); |
6642 | } | 6642 | } |
6643 | if (!cpu_isset(cpu, group->cpumask)) { | 6643 | if (!cpu_isset(cpu, group->cpumask)) { |
6644 | printk(KERN_ERR "ERROR: domain->groups does not contain" | 6644 | printk(KERN_ERR "ERROR: domain->groups does not contain" |
6645 | " CPU%d\n", cpu); | 6645 | " CPU%d\n", cpu); |
6646 | } | 6646 | } |
6647 | 6647 | ||
6648 | printk(KERN_DEBUG "%*s groups:", level + 1, ""); | 6648 | printk(KERN_DEBUG "%*s groups:", level + 1, ""); |
6649 | do { | 6649 | do { |
6650 | if (!group) { | 6650 | if (!group) { |
6651 | printk("\n"); | 6651 | printk("\n"); |
6652 | printk(KERN_ERR "ERROR: group is NULL\n"); | 6652 | printk(KERN_ERR "ERROR: group is NULL\n"); |
6653 | break; | 6653 | break; |
6654 | } | 6654 | } |
6655 | 6655 | ||
6656 | if (!group->__cpu_power) { | 6656 | if (!group->__cpu_power) { |
6657 | printk(KERN_CONT "\n"); | 6657 | printk(KERN_CONT "\n"); |
6658 | printk(KERN_ERR "ERROR: domain->cpu_power not " | 6658 | printk(KERN_ERR "ERROR: domain->cpu_power not " |
6659 | "set\n"); | 6659 | "set\n"); |
6660 | break; | 6660 | break; |
6661 | } | 6661 | } |
6662 | 6662 | ||
6663 | if (!cpus_weight(group->cpumask)) { | 6663 | if (!cpus_weight(group->cpumask)) { |
6664 | printk(KERN_CONT "\n"); | 6664 | printk(KERN_CONT "\n"); |
6665 | printk(KERN_ERR "ERROR: empty group\n"); | 6665 | printk(KERN_ERR "ERROR: empty group\n"); |
6666 | break; | 6666 | break; |
6667 | } | 6667 | } |
6668 | 6668 | ||
6669 | if (cpus_intersects(*groupmask, group->cpumask)) { | 6669 | if (cpus_intersects(*groupmask, group->cpumask)) { |
6670 | printk(KERN_CONT "\n"); | 6670 | printk(KERN_CONT "\n"); |
6671 | printk(KERN_ERR "ERROR: repeated CPUs\n"); | 6671 | printk(KERN_ERR "ERROR: repeated CPUs\n"); |
6672 | break; | 6672 | break; |
6673 | } | 6673 | } |
6674 | 6674 | ||
6675 | cpus_or(*groupmask, *groupmask, group->cpumask); | 6675 | cpus_or(*groupmask, *groupmask, group->cpumask); |
6676 | 6676 | ||
6677 | cpulist_scnprintf(str, sizeof(str), group->cpumask); | 6677 | cpulist_scnprintf(str, sizeof(str), group->cpumask); |
6678 | printk(KERN_CONT " %s", str); | 6678 | printk(KERN_CONT " %s", str); |
6679 | 6679 | ||
6680 | group = group->next; | 6680 | group = group->next; |
6681 | } while (group != sd->groups); | 6681 | } while (group != sd->groups); |
6682 | printk(KERN_CONT "\n"); | 6682 | printk(KERN_CONT "\n"); |
6683 | 6683 | ||
6684 | if (!cpus_equal(sd->span, *groupmask)) | 6684 | if (!cpus_equal(sd->span, *groupmask)) |
6685 | printk(KERN_ERR "ERROR: groups don't span domain->span\n"); | 6685 | printk(KERN_ERR "ERROR: groups don't span domain->span\n"); |
6686 | 6686 | ||
6687 | if (sd->parent && !cpus_subset(*groupmask, sd->parent->span)) | 6687 | if (sd->parent && !cpus_subset(*groupmask, sd->parent->span)) |
6688 | printk(KERN_ERR "ERROR: parent span is not a superset " | 6688 | printk(KERN_ERR "ERROR: parent span is not a superset " |
6689 | "of domain->span\n"); | 6689 | "of domain->span\n"); |
6690 | return 0; | 6690 | return 0; |
6691 | } | 6691 | } |
6692 | 6692 | ||
6693 | static void sched_domain_debug(struct sched_domain *sd, int cpu) | 6693 | static void sched_domain_debug(struct sched_domain *sd, int cpu) |
6694 | { | 6694 | { |
6695 | cpumask_t *groupmask; | 6695 | cpumask_t *groupmask; |
6696 | int level = 0; | 6696 | int level = 0; |
6697 | 6697 | ||
6698 | if (!sd) { | 6698 | if (!sd) { |
6699 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | 6699 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); |
6700 | return; | 6700 | return; |
6701 | } | 6701 | } |
6702 | 6702 | ||
6703 | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); | 6703 | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); |
6704 | 6704 | ||
6705 | groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL); | 6705 | groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL); |
6706 | if (!groupmask) { | 6706 | if (!groupmask) { |
6707 | printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); | 6707 | printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); |
6708 | return; | 6708 | return; |
6709 | } | 6709 | } |
6710 | 6710 | ||
6711 | for (;;) { | 6711 | for (;;) { |
6712 | if (sched_domain_debug_one(sd, cpu, level, groupmask)) | 6712 | if (sched_domain_debug_one(sd, cpu, level, groupmask)) |
6713 | break; | 6713 | break; |
6714 | level++; | 6714 | level++; |
6715 | sd = sd->parent; | 6715 | sd = sd->parent; |
6716 | if (!sd) | 6716 | if (!sd) |
6717 | break; | 6717 | break; |
6718 | } | 6718 | } |
6719 | kfree(groupmask); | 6719 | kfree(groupmask); |
6720 | } | 6720 | } |
6721 | #else /* !CONFIG_SCHED_DEBUG */ | 6721 | #else /* !CONFIG_SCHED_DEBUG */ |
6722 | # define sched_domain_debug(sd, cpu) do { } while (0) | 6722 | # define sched_domain_debug(sd, cpu) do { } while (0) |
6723 | #endif /* CONFIG_SCHED_DEBUG */ | 6723 | #endif /* CONFIG_SCHED_DEBUG */ |
6724 | 6724 | ||
6725 | static int sd_degenerate(struct sched_domain *sd) | 6725 | static int sd_degenerate(struct sched_domain *sd) |
6726 | { | 6726 | { |
6727 | if (cpus_weight(sd->span) == 1) | 6727 | if (cpus_weight(sd->span) == 1) |
6728 | return 1; | 6728 | return 1; |
6729 | 6729 | ||
6730 | /* Following flags need at least 2 groups */ | 6730 | /* Following flags need at least 2 groups */ |
6731 | if (sd->flags & (SD_LOAD_BALANCE | | 6731 | if (sd->flags & (SD_LOAD_BALANCE | |
6732 | SD_BALANCE_NEWIDLE | | 6732 | SD_BALANCE_NEWIDLE | |
6733 | SD_BALANCE_FORK | | 6733 | SD_BALANCE_FORK | |
6734 | SD_BALANCE_EXEC | | 6734 | SD_BALANCE_EXEC | |
6735 | SD_SHARE_CPUPOWER | | 6735 | SD_SHARE_CPUPOWER | |
6736 | SD_SHARE_PKG_RESOURCES)) { | 6736 | SD_SHARE_PKG_RESOURCES)) { |
6737 | if (sd->groups != sd->groups->next) | 6737 | if (sd->groups != sd->groups->next) |
6738 | return 0; | 6738 | return 0; |
6739 | } | 6739 | } |
6740 | 6740 | ||
6741 | /* Following flags don't use groups */ | 6741 | /* Following flags don't use groups */ |
6742 | if (sd->flags & (SD_WAKE_IDLE | | 6742 | if (sd->flags & (SD_WAKE_IDLE | |
6743 | SD_WAKE_AFFINE | | 6743 | SD_WAKE_AFFINE | |
6744 | SD_WAKE_BALANCE)) | 6744 | SD_WAKE_BALANCE)) |
6745 | return 0; | 6745 | return 0; |
6746 | 6746 | ||
6747 | return 1; | 6747 | return 1; |
6748 | } | 6748 | } |
6749 | 6749 | ||
6750 | static int | 6750 | static int |
6751 | sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | 6751 | sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) |
6752 | { | 6752 | { |
6753 | unsigned long cflags = sd->flags, pflags = parent->flags; | 6753 | unsigned long cflags = sd->flags, pflags = parent->flags; |
6754 | 6754 | ||
6755 | if (sd_degenerate(parent)) | 6755 | if (sd_degenerate(parent)) |
6756 | return 1; | 6756 | return 1; |
6757 | 6757 | ||
6758 | if (!cpus_equal(sd->span, parent->span)) | 6758 | if (!cpus_equal(sd->span, parent->span)) |
6759 | return 0; | 6759 | return 0; |
6760 | 6760 | ||
6761 | /* Does parent contain flags not in child? */ | 6761 | /* Does parent contain flags not in child? */ |
6762 | /* WAKE_BALANCE is a subset of WAKE_AFFINE */ | 6762 | /* WAKE_BALANCE is a subset of WAKE_AFFINE */ |
6763 | if (cflags & SD_WAKE_AFFINE) | 6763 | if (cflags & SD_WAKE_AFFINE) |
6764 | pflags &= ~SD_WAKE_BALANCE; | 6764 | pflags &= ~SD_WAKE_BALANCE; |
6765 | /* Flags needing groups don't count if only 1 group in parent */ | 6765 | /* Flags needing groups don't count if only 1 group in parent */ |
6766 | if (parent->groups == parent->groups->next) { | 6766 | if (parent->groups == parent->groups->next) { |
6767 | pflags &= ~(SD_LOAD_BALANCE | | 6767 | pflags &= ~(SD_LOAD_BALANCE | |
6768 | SD_BALANCE_NEWIDLE | | 6768 | SD_BALANCE_NEWIDLE | |
6769 | SD_BALANCE_FORK | | 6769 | SD_BALANCE_FORK | |
6770 | SD_BALANCE_EXEC | | 6770 | SD_BALANCE_EXEC | |
6771 | SD_SHARE_CPUPOWER | | 6771 | SD_SHARE_CPUPOWER | |
6772 | SD_SHARE_PKG_RESOURCES); | 6772 | SD_SHARE_PKG_RESOURCES); |
6773 | if (nr_node_ids == 1) | 6773 | if (nr_node_ids == 1) |
6774 | pflags &= ~SD_SERIALIZE; | 6774 | pflags &= ~SD_SERIALIZE; |
6775 | } | 6775 | } |
6776 | if (~cflags & pflags) | 6776 | if (~cflags & pflags) |
6777 | return 0; | 6777 | return 0; |
6778 | 6778 | ||
6779 | return 1; | 6779 | return 1; |
6780 | } | 6780 | } |
6781 | 6781 | ||
6782 | static void rq_attach_root(struct rq *rq, struct root_domain *rd) | 6782 | static void rq_attach_root(struct rq *rq, struct root_domain *rd) |
6783 | { | 6783 | { |
6784 | unsigned long flags; | 6784 | unsigned long flags; |
6785 | 6785 | ||
6786 | spin_lock_irqsave(&rq->lock, flags); | 6786 | spin_lock_irqsave(&rq->lock, flags); |
6787 | 6787 | ||
6788 | if (rq->rd) { | 6788 | if (rq->rd) { |
6789 | struct root_domain *old_rd = rq->rd; | 6789 | struct root_domain *old_rd = rq->rd; |
6790 | 6790 | ||
6791 | if (cpu_isset(rq->cpu, old_rd->online)) | 6791 | if (cpu_isset(rq->cpu, old_rd->online)) |
6792 | set_rq_offline(rq); | 6792 | set_rq_offline(rq); |
6793 | 6793 | ||
6794 | cpu_clear(rq->cpu, old_rd->span); | 6794 | cpu_clear(rq->cpu, old_rd->span); |
6795 | 6795 | ||
6796 | if (atomic_dec_and_test(&old_rd->refcount)) | 6796 | if (atomic_dec_and_test(&old_rd->refcount)) |
6797 | kfree(old_rd); | 6797 | kfree(old_rd); |
6798 | } | 6798 | } |
6799 | 6799 | ||
6800 | atomic_inc(&rd->refcount); | 6800 | atomic_inc(&rd->refcount); |
6801 | rq->rd = rd; | 6801 | rq->rd = rd; |
6802 | 6802 | ||
6803 | cpu_set(rq->cpu, rd->span); | 6803 | cpu_set(rq->cpu, rd->span); |
6804 | if (cpu_isset(rq->cpu, cpu_online_map)) | 6804 | if (cpu_isset(rq->cpu, cpu_online_map)) |
6805 | set_rq_online(rq); | 6805 | set_rq_online(rq); |
6806 | 6806 | ||
6807 | spin_unlock_irqrestore(&rq->lock, flags); | 6807 | spin_unlock_irqrestore(&rq->lock, flags); |
6808 | } | 6808 | } |
6809 | 6809 | ||
6810 | static void init_rootdomain(struct root_domain *rd) | 6810 | static void init_rootdomain(struct root_domain *rd) |
6811 | { | 6811 | { |
6812 | memset(rd, 0, sizeof(*rd)); | 6812 | memset(rd, 0, sizeof(*rd)); |
6813 | 6813 | ||
6814 | cpus_clear(rd->span); | 6814 | cpus_clear(rd->span); |
6815 | cpus_clear(rd->online); | 6815 | cpus_clear(rd->online); |
6816 | 6816 | ||
6817 | cpupri_init(&rd->cpupri); | 6817 | cpupri_init(&rd->cpupri); |
6818 | } | 6818 | } |
6819 | 6819 | ||
6820 | static void init_defrootdomain(void) | 6820 | static void init_defrootdomain(void) |
6821 | { | 6821 | { |
6822 | init_rootdomain(&def_root_domain); | 6822 | init_rootdomain(&def_root_domain); |
6823 | atomic_set(&def_root_domain.refcount, 1); | 6823 | atomic_set(&def_root_domain.refcount, 1); |
6824 | } | 6824 | } |
6825 | 6825 | ||
6826 | static struct root_domain *alloc_rootdomain(void) | 6826 | static struct root_domain *alloc_rootdomain(void) |
6827 | { | 6827 | { |
6828 | struct root_domain *rd; | 6828 | struct root_domain *rd; |
6829 | 6829 | ||
6830 | rd = kmalloc(sizeof(*rd), GFP_KERNEL); | 6830 | rd = kmalloc(sizeof(*rd), GFP_KERNEL); |
6831 | if (!rd) | 6831 | if (!rd) |
6832 | return NULL; | 6832 | return NULL; |
6833 | 6833 | ||
6834 | init_rootdomain(rd); | 6834 | init_rootdomain(rd); |
6835 | 6835 | ||
6836 | return rd; | 6836 | return rd; |
6837 | } | 6837 | } |
6838 | 6838 | ||
6839 | /* | 6839 | /* |
6840 | * Attach the domain 'sd' to 'cpu' as its base domain. Callers must | 6840 | * Attach the domain 'sd' to 'cpu' as its base domain. Callers must |
6841 | * hold the hotplug lock. | 6841 | * hold the hotplug lock. |
6842 | */ | 6842 | */ |
6843 | static void | 6843 | static void |
6844 | cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) | 6844 | cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) |
6845 | { | 6845 | { |
6846 | struct rq *rq = cpu_rq(cpu); | 6846 | struct rq *rq = cpu_rq(cpu); |
6847 | struct sched_domain *tmp; | 6847 | struct sched_domain *tmp; |
6848 | 6848 | ||
6849 | /* Remove the sched domains which do not contribute to scheduling. */ | 6849 | /* Remove the sched domains which do not contribute to scheduling. */ |
6850 | for (tmp = sd; tmp; ) { | 6850 | for (tmp = sd; tmp; ) { |
6851 | struct sched_domain *parent = tmp->parent; | 6851 | struct sched_domain *parent = tmp->parent; |
6852 | if (!parent) | 6852 | if (!parent) |
6853 | break; | 6853 | break; |
6854 | 6854 | ||
6855 | if (sd_parent_degenerate(tmp, parent)) { | 6855 | if (sd_parent_degenerate(tmp, parent)) { |
6856 | tmp->parent = parent->parent; | 6856 | tmp->parent = parent->parent; |
6857 | if (parent->parent) | 6857 | if (parent->parent) |
6858 | parent->parent->child = tmp; | 6858 | parent->parent->child = tmp; |
6859 | } else | 6859 | } else |
6860 | tmp = tmp->parent; | 6860 | tmp = tmp->parent; |
6861 | } | 6861 | } |
6862 | 6862 | ||
6863 | if (sd && sd_degenerate(sd)) { | 6863 | if (sd && sd_degenerate(sd)) { |
6864 | sd = sd->parent; | 6864 | sd = sd->parent; |
6865 | if (sd) | 6865 | if (sd) |
6866 | sd->child = NULL; | 6866 | sd->child = NULL; |
6867 | } | 6867 | } |
6868 | 6868 | ||
6869 | sched_domain_debug(sd, cpu); | 6869 | sched_domain_debug(sd, cpu); |
6870 | 6870 | ||
6871 | rq_attach_root(rq, rd); | 6871 | rq_attach_root(rq, rd); |
6872 | rcu_assign_pointer(rq->sd, sd); | 6872 | rcu_assign_pointer(rq->sd, sd); |
6873 | } | 6873 | } |
6874 | 6874 | ||
6875 | /* cpus with isolated domains */ | 6875 | /* cpus with isolated domains */ |
6876 | static cpumask_t cpu_isolated_map = CPU_MASK_NONE; | 6876 | static cpumask_t cpu_isolated_map = CPU_MASK_NONE; |
6877 | 6877 | ||
6878 | /* Setup the mask of cpus configured for isolated domains */ | 6878 | /* Setup the mask of cpus configured for isolated domains */ |
6879 | static int __init isolated_cpu_setup(char *str) | 6879 | static int __init isolated_cpu_setup(char *str) |
6880 | { | 6880 | { |
6881 | static int __initdata ints[NR_CPUS]; | 6881 | static int __initdata ints[NR_CPUS]; |
6882 | int i; | 6882 | int i; |
6883 | 6883 | ||
6884 | str = get_options(str, ARRAY_SIZE(ints), ints); | 6884 | str = get_options(str, ARRAY_SIZE(ints), ints); |
6885 | cpus_clear(cpu_isolated_map); | 6885 | cpus_clear(cpu_isolated_map); |
6886 | for (i = 1; i <= ints[0]; i++) | 6886 | for (i = 1; i <= ints[0]; i++) |
6887 | if (ints[i] < NR_CPUS) | 6887 | if (ints[i] < NR_CPUS) |
6888 | cpu_set(ints[i], cpu_isolated_map); | 6888 | cpu_set(ints[i], cpu_isolated_map); |
6889 | return 1; | 6889 | return 1; |
6890 | } | 6890 | } |
6891 | 6891 | ||
6892 | __setup("isolcpus=", isolated_cpu_setup); | 6892 | __setup("isolcpus=", isolated_cpu_setup); |
6893 | 6893 | ||
6894 | /* | 6894 | /* |
6895 | * init_sched_build_groups takes the cpumask we wish to span, and a pointer | 6895 | * init_sched_build_groups takes the cpumask we wish to span, and a pointer |
6896 | * to a function which identifies what group(along with sched group) a CPU | 6896 | * to a function which identifies what group(along with sched group) a CPU |
6897 | * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS | 6897 | * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS |
6898 | * (due to the fact that we keep track of groups covered with a cpumask_t). | 6898 | * (due to the fact that we keep track of groups covered with a cpumask_t). |
6899 | * | 6899 | * |
6900 | * init_sched_build_groups will build a circular linked list of the groups | 6900 | * init_sched_build_groups will build a circular linked list of the groups |
6901 | * covered by the given span, and will set each group's ->cpumask correctly, | 6901 | * covered by the given span, and will set each group's ->cpumask correctly, |
6902 | * and ->cpu_power to 0. | 6902 | * and ->cpu_power to 0. |
6903 | */ | 6903 | */ |
6904 | static void | 6904 | static void |
6905 | init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map, | 6905 | init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map, |
6906 | int (*group_fn)(int cpu, const cpumask_t *cpu_map, | 6906 | int (*group_fn)(int cpu, const cpumask_t *cpu_map, |
6907 | struct sched_group **sg, | 6907 | struct sched_group **sg, |
6908 | cpumask_t *tmpmask), | 6908 | cpumask_t *tmpmask), |
6909 | cpumask_t *covered, cpumask_t *tmpmask) | 6909 | cpumask_t *covered, cpumask_t *tmpmask) |
6910 | { | 6910 | { |
6911 | struct sched_group *first = NULL, *last = NULL; | 6911 | struct sched_group *first = NULL, *last = NULL; |
6912 | int i; | 6912 | int i; |
6913 | 6913 | ||
6914 | cpus_clear(*covered); | 6914 | cpus_clear(*covered); |
6915 | 6915 | ||
6916 | for_each_cpu_mask_nr(i, *span) { | 6916 | for_each_cpu_mask_nr(i, *span) { |
6917 | struct sched_group *sg; | 6917 | struct sched_group *sg; |
6918 | int group = group_fn(i, cpu_map, &sg, tmpmask); | 6918 | int group = group_fn(i, cpu_map, &sg, tmpmask); |
6919 | int j; | 6919 | int j; |
6920 | 6920 | ||
6921 | if (cpu_isset(i, *covered)) | 6921 | if (cpu_isset(i, *covered)) |
6922 | continue; | 6922 | continue; |
6923 | 6923 | ||
6924 | cpus_clear(sg->cpumask); | 6924 | cpus_clear(sg->cpumask); |
6925 | sg->__cpu_power = 0; | 6925 | sg->__cpu_power = 0; |
6926 | 6926 | ||
6927 | for_each_cpu_mask_nr(j, *span) { | 6927 | for_each_cpu_mask_nr(j, *span) { |
6928 | if (group_fn(j, cpu_map, NULL, tmpmask) != group) | 6928 | if (group_fn(j, cpu_map, NULL, tmpmask) != group) |
6929 | continue; | 6929 | continue; |
6930 | 6930 | ||
6931 | cpu_set(j, *covered); | 6931 | cpu_set(j, *covered); |
6932 | cpu_set(j, sg->cpumask); | 6932 | cpu_set(j, sg->cpumask); |
6933 | } | 6933 | } |
6934 | if (!first) | 6934 | if (!first) |
6935 | first = sg; | 6935 | first = sg; |
6936 | if (last) | 6936 | if (last) |
6937 | last->next = sg; | 6937 | last->next = sg; |
6938 | last = sg; | 6938 | last = sg; |
6939 | } | 6939 | } |
6940 | last->next = first; | 6940 | last->next = first; |
6941 | } | 6941 | } |
6942 | 6942 | ||
6943 | #define SD_NODES_PER_DOMAIN 16 | 6943 | #define SD_NODES_PER_DOMAIN 16 |
6944 | 6944 | ||
6945 | #ifdef CONFIG_NUMA | 6945 | #ifdef CONFIG_NUMA |
6946 | 6946 | ||
6947 | /** | 6947 | /** |
6948 | * find_next_best_node - find the next node to include in a sched_domain | 6948 | * find_next_best_node - find the next node to include in a sched_domain |
6949 | * @node: node whose sched_domain we're building | 6949 | * @node: node whose sched_domain we're building |
6950 | * @used_nodes: nodes already in the sched_domain | 6950 | * @used_nodes: nodes already in the sched_domain |
6951 | * | 6951 | * |
6952 | * Find the next node to include in a given scheduling domain. Simply | 6952 | * Find the next node to include in a given scheduling domain. Simply |
6953 | * finds the closest node not already in the @used_nodes map. | 6953 | * finds the closest node not already in the @used_nodes map. |
6954 | * | 6954 | * |
6955 | * Should use nodemask_t. | 6955 | * Should use nodemask_t. |
6956 | */ | 6956 | */ |
6957 | static int find_next_best_node(int node, nodemask_t *used_nodes) | 6957 | static int find_next_best_node(int node, nodemask_t *used_nodes) |
6958 | { | 6958 | { |
6959 | int i, n, val, min_val, best_node = 0; | 6959 | int i, n, val, min_val, best_node = 0; |
6960 | 6960 | ||
6961 | min_val = INT_MAX; | 6961 | min_val = INT_MAX; |
6962 | 6962 | ||
6963 | for (i = 0; i < nr_node_ids; i++) { | 6963 | for (i = 0; i < nr_node_ids; i++) { |
6964 | /* Start at @node */ | 6964 | /* Start at @node */ |
6965 | n = (node + i) % nr_node_ids; | 6965 | n = (node + i) % nr_node_ids; |
6966 | 6966 | ||
6967 | if (!nr_cpus_node(n)) | 6967 | if (!nr_cpus_node(n)) |
6968 | continue; | 6968 | continue; |
6969 | 6969 | ||
6970 | /* Skip already used nodes */ | 6970 | /* Skip already used nodes */ |
6971 | if (node_isset(n, *used_nodes)) | 6971 | if (node_isset(n, *used_nodes)) |
6972 | continue; | 6972 | continue; |
6973 | 6973 | ||
6974 | /* Simple min distance search */ | 6974 | /* Simple min distance search */ |
6975 | val = node_distance(node, n); | 6975 | val = node_distance(node, n); |
6976 | 6976 | ||
6977 | if (val < min_val) { | 6977 | if (val < min_val) { |
6978 | min_val = val; | 6978 | min_val = val; |
6979 | best_node = n; | 6979 | best_node = n; |
6980 | } | 6980 | } |
6981 | } | 6981 | } |
6982 | 6982 | ||
6983 | node_set(best_node, *used_nodes); | 6983 | node_set(best_node, *used_nodes); |
6984 | return best_node; | 6984 | return best_node; |
6985 | } | 6985 | } |
6986 | 6986 | ||
6987 | /** | 6987 | /** |
6988 | * sched_domain_node_span - get a cpumask for a node's sched_domain | 6988 | * sched_domain_node_span - get a cpumask for a node's sched_domain |
6989 | * @node: node whose cpumask we're constructing | 6989 | * @node: node whose cpumask we're constructing |
6990 | * @span: resulting cpumask | 6990 | * @span: resulting cpumask |
6991 | * | 6991 | * |
6992 | * Given a node, construct a good cpumask for its sched_domain to span. It | 6992 | * Given a node, construct a good cpumask for its sched_domain to span. It |
6993 | * should be one that prevents unnecessary balancing, but also spreads tasks | 6993 | * should be one that prevents unnecessary balancing, but also spreads tasks |
6994 | * out optimally. | 6994 | * out optimally. |
6995 | */ | 6995 | */ |
6996 | static void sched_domain_node_span(int node, cpumask_t *span) | 6996 | static void sched_domain_node_span(int node, cpumask_t *span) |
6997 | { | 6997 | { |
6998 | nodemask_t used_nodes; | 6998 | nodemask_t used_nodes; |
6999 | node_to_cpumask_ptr(nodemask, node); | 6999 | node_to_cpumask_ptr(nodemask, node); |
7000 | int i; | 7000 | int i; |
7001 | 7001 | ||
7002 | cpus_clear(*span); | 7002 | cpus_clear(*span); |
7003 | nodes_clear(used_nodes); | 7003 | nodes_clear(used_nodes); |
7004 | 7004 | ||
7005 | cpus_or(*span, *span, *nodemask); | 7005 | cpus_or(*span, *span, *nodemask); |
7006 | node_set(node, used_nodes); | 7006 | node_set(node, used_nodes); |
7007 | 7007 | ||
7008 | for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { | 7008 | for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { |
7009 | int next_node = find_next_best_node(node, &used_nodes); | 7009 | int next_node = find_next_best_node(node, &used_nodes); |
7010 | 7010 | ||
7011 | node_to_cpumask_ptr_next(nodemask, next_node); | 7011 | node_to_cpumask_ptr_next(nodemask, next_node); |
7012 | cpus_or(*span, *span, *nodemask); | 7012 | cpus_or(*span, *span, *nodemask); |
7013 | } | 7013 | } |
7014 | } | 7014 | } |
7015 | #endif /* CONFIG_NUMA */ | 7015 | #endif /* CONFIG_NUMA */ |
7016 | 7016 | ||
7017 | int sched_smt_power_savings = 0, sched_mc_power_savings = 0; | 7017 | int sched_smt_power_savings = 0, sched_mc_power_savings = 0; |
7018 | 7018 | ||
7019 | /* | 7019 | /* |
7020 | * SMT sched-domains: | 7020 | * SMT sched-domains: |
7021 | */ | 7021 | */ |
7022 | #ifdef CONFIG_SCHED_SMT | 7022 | #ifdef CONFIG_SCHED_SMT |
7023 | static DEFINE_PER_CPU(struct sched_domain, cpu_domains); | 7023 | static DEFINE_PER_CPU(struct sched_domain, cpu_domains); |
7024 | static DEFINE_PER_CPU(struct sched_group, sched_group_cpus); | 7024 | static DEFINE_PER_CPU(struct sched_group, sched_group_cpus); |
7025 | 7025 | ||
7026 | static int | 7026 | static int |
7027 | cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, | 7027 | cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, |
7028 | cpumask_t *unused) | 7028 | cpumask_t *unused) |
7029 | { | 7029 | { |
7030 | if (sg) | 7030 | if (sg) |
7031 | *sg = &per_cpu(sched_group_cpus, cpu); | 7031 | *sg = &per_cpu(sched_group_cpus, cpu); |
7032 | return cpu; | 7032 | return cpu; |
7033 | } | 7033 | } |
7034 | #endif /* CONFIG_SCHED_SMT */ | 7034 | #endif /* CONFIG_SCHED_SMT */ |
7035 | 7035 | ||
7036 | /* | 7036 | /* |
7037 | * multi-core sched-domains: | 7037 | * multi-core sched-domains: |
7038 | */ | 7038 | */ |
7039 | #ifdef CONFIG_SCHED_MC | 7039 | #ifdef CONFIG_SCHED_MC |
7040 | static DEFINE_PER_CPU(struct sched_domain, core_domains); | 7040 | static DEFINE_PER_CPU(struct sched_domain, core_domains); |
7041 | static DEFINE_PER_CPU(struct sched_group, sched_group_core); | 7041 | static DEFINE_PER_CPU(struct sched_group, sched_group_core); |
7042 | #endif /* CONFIG_SCHED_MC */ | 7042 | #endif /* CONFIG_SCHED_MC */ |
7043 | 7043 | ||
7044 | #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) | 7044 | #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) |
7045 | static int | 7045 | static int |
7046 | cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, | 7046 | cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, |
7047 | cpumask_t *mask) | 7047 | cpumask_t *mask) |
7048 | { | 7048 | { |
7049 | int group; | 7049 | int group; |
7050 | 7050 | ||
7051 | *mask = per_cpu(cpu_sibling_map, cpu); | 7051 | *mask = per_cpu(cpu_sibling_map, cpu); |
7052 | cpus_and(*mask, *mask, *cpu_map); | 7052 | cpus_and(*mask, *mask, *cpu_map); |
7053 | group = first_cpu(*mask); | 7053 | group = first_cpu(*mask); |
7054 | if (sg) | 7054 | if (sg) |
7055 | *sg = &per_cpu(sched_group_core, group); | 7055 | *sg = &per_cpu(sched_group_core, group); |
7056 | return group; | 7056 | return group; |
7057 | } | 7057 | } |
7058 | #elif defined(CONFIG_SCHED_MC) | 7058 | #elif defined(CONFIG_SCHED_MC) |
7059 | static int | 7059 | static int |
7060 | cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, | 7060 | cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, |
7061 | cpumask_t *unused) | 7061 | cpumask_t *unused) |
7062 | { | 7062 | { |
7063 | if (sg) | 7063 | if (sg) |
7064 | *sg = &per_cpu(sched_group_core, cpu); | 7064 | *sg = &per_cpu(sched_group_core, cpu); |
7065 | return cpu; | 7065 | return cpu; |
7066 | } | 7066 | } |
7067 | #endif | 7067 | #endif |
7068 | 7068 | ||
7069 | static DEFINE_PER_CPU(struct sched_domain, phys_domains); | 7069 | static DEFINE_PER_CPU(struct sched_domain, phys_domains); |
7070 | static DEFINE_PER_CPU(struct sched_group, sched_group_phys); | 7070 | static DEFINE_PER_CPU(struct sched_group, sched_group_phys); |
7071 | 7071 | ||
7072 | static int | 7072 | static int |
7073 | cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, | 7073 | cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, |
7074 | cpumask_t *mask) | 7074 | cpumask_t *mask) |
7075 | { | 7075 | { |
7076 | int group; | 7076 | int group; |
7077 | #ifdef CONFIG_SCHED_MC | 7077 | #ifdef CONFIG_SCHED_MC |
7078 | *mask = cpu_coregroup_map(cpu); | 7078 | *mask = cpu_coregroup_map(cpu); |
7079 | cpus_and(*mask, *mask, *cpu_map); | 7079 | cpus_and(*mask, *mask, *cpu_map); |
7080 | group = first_cpu(*mask); | 7080 | group = first_cpu(*mask); |
7081 | #elif defined(CONFIG_SCHED_SMT) | 7081 | #elif defined(CONFIG_SCHED_SMT) |
7082 | *mask = per_cpu(cpu_sibling_map, cpu); | 7082 | *mask = per_cpu(cpu_sibling_map, cpu); |
7083 | cpus_and(*mask, *mask, *cpu_map); | 7083 | cpus_and(*mask, *mask, *cpu_map); |
7084 | group = first_cpu(*mask); | 7084 | group = first_cpu(*mask); |
7085 | #else | 7085 | #else |
7086 | group = cpu; | 7086 | group = cpu; |
7087 | #endif | 7087 | #endif |
7088 | if (sg) | 7088 | if (sg) |
7089 | *sg = &per_cpu(sched_group_phys, group); | 7089 | *sg = &per_cpu(sched_group_phys, group); |
7090 | return group; | 7090 | return group; |
7091 | } | 7091 | } |
7092 | 7092 | ||
7093 | #ifdef CONFIG_NUMA | 7093 | #ifdef CONFIG_NUMA |
7094 | /* | 7094 | /* |
7095 | * The init_sched_build_groups can't handle what we want to do with node | 7095 | * The init_sched_build_groups can't handle what we want to do with node |
7096 | * groups, so roll our own. Now each node has its own list of groups which | 7096 | * groups, so roll our own. Now each node has its own list of groups which |
7097 | * gets dynamically allocated. | 7097 | * gets dynamically allocated. |
7098 | */ | 7098 | */ |
7099 | static DEFINE_PER_CPU(struct sched_domain, node_domains); | 7099 | static DEFINE_PER_CPU(struct sched_domain, node_domains); |
7100 | static struct sched_group ***sched_group_nodes_bycpu; | 7100 | static struct sched_group ***sched_group_nodes_bycpu; |
7101 | 7101 | ||
7102 | static DEFINE_PER_CPU(struct sched_domain, allnodes_domains); | 7102 | static DEFINE_PER_CPU(struct sched_domain, allnodes_domains); |
7103 | static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes); | 7103 | static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes); |
7104 | 7104 | ||
7105 | static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map, | 7105 | static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map, |
7106 | struct sched_group **sg, cpumask_t *nodemask) | 7106 | struct sched_group **sg, cpumask_t *nodemask) |
7107 | { | 7107 | { |
7108 | int group; | 7108 | int group; |
7109 | 7109 | ||
7110 | *nodemask = node_to_cpumask(cpu_to_node(cpu)); | 7110 | *nodemask = node_to_cpumask(cpu_to_node(cpu)); |
7111 | cpus_and(*nodemask, *nodemask, *cpu_map); | 7111 | cpus_and(*nodemask, *nodemask, *cpu_map); |
7112 | group = first_cpu(*nodemask); | 7112 | group = first_cpu(*nodemask); |
7113 | 7113 | ||
7114 | if (sg) | 7114 | if (sg) |
7115 | *sg = &per_cpu(sched_group_allnodes, group); | 7115 | *sg = &per_cpu(sched_group_allnodes, group); |
7116 | return group; | 7116 | return group; |
7117 | } | 7117 | } |
7118 | 7118 | ||
7119 | static void init_numa_sched_groups_power(struct sched_group *group_head) | 7119 | static void init_numa_sched_groups_power(struct sched_group *group_head) |
7120 | { | 7120 | { |
7121 | struct sched_group *sg = group_head; | 7121 | struct sched_group *sg = group_head; |
7122 | int j; | 7122 | int j; |
7123 | 7123 | ||
7124 | if (!sg) | 7124 | if (!sg) |
7125 | return; | 7125 | return; |
7126 | do { | 7126 | do { |
7127 | for_each_cpu_mask_nr(j, sg->cpumask) { | 7127 | for_each_cpu_mask_nr(j, sg->cpumask) { |
7128 | struct sched_domain *sd; | 7128 | struct sched_domain *sd; |
7129 | 7129 | ||
7130 | sd = &per_cpu(phys_domains, j); | 7130 | sd = &per_cpu(phys_domains, j); |
7131 | if (j != first_cpu(sd->groups->cpumask)) { | 7131 | if (j != first_cpu(sd->groups->cpumask)) { |
7132 | /* | 7132 | /* |
7133 | * Only add "power" once for each | 7133 | * Only add "power" once for each |
7134 | * physical package. | 7134 | * physical package. |
7135 | */ | 7135 | */ |
7136 | continue; | 7136 | continue; |
7137 | } | 7137 | } |
7138 | 7138 | ||
7139 | sg_inc_cpu_power(sg, sd->groups->__cpu_power); | 7139 | sg_inc_cpu_power(sg, sd->groups->__cpu_power); |
7140 | } | 7140 | } |
7141 | sg = sg->next; | 7141 | sg = sg->next; |
7142 | } while (sg != group_head); | 7142 | } while (sg != group_head); |
7143 | } | 7143 | } |
7144 | #endif /* CONFIG_NUMA */ | 7144 | #endif /* CONFIG_NUMA */ |
7145 | 7145 | ||
7146 | #ifdef CONFIG_NUMA | 7146 | #ifdef CONFIG_NUMA |
7147 | /* Free memory allocated for various sched_group structures */ | 7147 | /* Free memory allocated for various sched_group structures */ |
7148 | static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) | 7148 | static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) |
7149 | { | 7149 | { |
7150 | int cpu, i; | 7150 | int cpu, i; |
7151 | 7151 | ||
7152 | for_each_cpu_mask_nr(cpu, *cpu_map) { | 7152 | for_each_cpu_mask_nr(cpu, *cpu_map) { |
7153 | struct sched_group **sched_group_nodes | 7153 | struct sched_group **sched_group_nodes |
7154 | = sched_group_nodes_bycpu[cpu]; | 7154 | = sched_group_nodes_bycpu[cpu]; |
7155 | 7155 | ||
7156 | if (!sched_group_nodes) | 7156 | if (!sched_group_nodes) |
7157 | continue; | 7157 | continue; |
7158 | 7158 | ||
7159 | for (i = 0; i < nr_node_ids; i++) { | 7159 | for (i = 0; i < nr_node_ids; i++) { |
7160 | struct sched_group *oldsg, *sg = sched_group_nodes[i]; | 7160 | struct sched_group *oldsg, *sg = sched_group_nodes[i]; |
7161 | 7161 | ||
7162 | *nodemask = node_to_cpumask(i); | 7162 | *nodemask = node_to_cpumask(i); |
7163 | cpus_and(*nodemask, *nodemask, *cpu_map); | 7163 | cpus_and(*nodemask, *nodemask, *cpu_map); |
7164 | if (cpus_empty(*nodemask)) | 7164 | if (cpus_empty(*nodemask)) |
7165 | continue; | 7165 | continue; |
7166 | 7166 | ||
7167 | if (sg == NULL) | 7167 | if (sg == NULL) |
7168 | continue; | 7168 | continue; |
7169 | sg = sg->next; | 7169 | sg = sg->next; |
7170 | next_sg: | 7170 | next_sg: |
7171 | oldsg = sg; | 7171 | oldsg = sg; |
7172 | sg = sg->next; | 7172 | sg = sg->next; |
7173 | kfree(oldsg); | 7173 | kfree(oldsg); |
7174 | if (oldsg != sched_group_nodes[i]) | 7174 | if (oldsg != sched_group_nodes[i]) |
7175 | goto next_sg; | 7175 | goto next_sg; |
7176 | } | 7176 | } |
7177 | kfree(sched_group_nodes); | 7177 | kfree(sched_group_nodes); |
7178 | sched_group_nodes_bycpu[cpu] = NULL; | 7178 | sched_group_nodes_bycpu[cpu] = NULL; |
7179 | } | 7179 | } |
7180 | } | 7180 | } |
7181 | #else /* !CONFIG_NUMA */ | 7181 | #else /* !CONFIG_NUMA */ |
7182 | static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) | 7182 | static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) |
7183 | { | 7183 | { |
7184 | } | 7184 | } |
7185 | #endif /* CONFIG_NUMA */ | 7185 | #endif /* CONFIG_NUMA */ |
7186 | 7186 | ||
7187 | /* | 7187 | /* |
7188 | * Initialize sched groups cpu_power. | 7188 | * Initialize sched groups cpu_power. |
7189 | * | 7189 | * |
7190 | * cpu_power indicates the capacity of sched group, which is used while | 7190 | * cpu_power indicates the capacity of sched group, which is used while |
7191 | * distributing the load between different sched groups in a sched domain. | 7191 | * distributing the load between different sched groups in a sched domain. |
7192 | * Typically cpu_power for all the groups in a sched domain will be same unless | 7192 | * Typically cpu_power for all the groups in a sched domain will be same unless |
7193 | * there are asymmetries in the topology. If there are asymmetries, group | 7193 | * there are asymmetries in the topology. If there are asymmetries, group |
7194 | * having more cpu_power will pickup more load compared to the group having | 7194 | * having more cpu_power will pickup more load compared to the group having |
7195 | * less cpu_power. | 7195 | * less cpu_power. |
7196 | * | 7196 | * |
7197 | * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents | 7197 | * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents |
7198 | * the maximum number of tasks a group can handle in the presence of other idle | 7198 | * the maximum number of tasks a group can handle in the presence of other idle |
7199 | * or lightly loaded groups in the same sched domain. | 7199 | * or lightly loaded groups in the same sched domain. |
7200 | */ | 7200 | */ |
7201 | static void init_sched_groups_power(int cpu, struct sched_domain *sd) | 7201 | static void init_sched_groups_power(int cpu, struct sched_domain *sd) |
7202 | { | 7202 | { |
7203 | struct sched_domain *child; | 7203 | struct sched_domain *child; |
7204 | struct sched_group *group; | 7204 | struct sched_group *group; |
7205 | 7205 | ||
7206 | WARN_ON(!sd || !sd->groups); | 7206 | WARN_ON(!sd || !sd->groups); |
7207 | 7207 | ||
7208 | if (cpu != first_cpu(sd->groups->cpumask)) | 7208 | if (cpu != first_cpu(sd->groups->cpumask)) |
7209 | return; | 7209 | return; |
7210 | 7210 | ||
7211 | child = sd->child; | 7211 | child = sd->child; |
7212 | 7212 | ||
7213 | sd->groups->__cpu_power = 0; | 7213 | sd->groups->__cpu_power = 0; |
7214 | 7214 | ||
7215 | /* | 7215 | /* |
7216 | * For perf policy, if the groups in child domain share resources | 7216 | * For perf policy, if the groups in child domain share resources |
7217 | * (for example cores sharing some portions of the cache hierarchy | 7217 | * (for example cores sharing some portions of the cache hierarchy |
7218 | * or SMT), then set this domain groups cpu_power such that each group | 7218 | * or SMT), then set this domain groups cpu_power such that each group |
7219 | * can handle only one task, when there are other idle groups in the | 7219 | * can handle only one task, when there are other idle groups in the |
7220 | * same sched domain. | 7220 | * same sched domain. |
7221 | */ | 7221 | */ |
7222 | if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) && | 7222 | if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) && |
7223 | (child->flags & | 7223 | (child->flags & |
7224 | (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) { | 7224 | (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) { |
7225 | sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE); | 7225 | sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE); |
7226 | return; | 7226 | return; |
7227 | } | 7227 | } |
7228 | 7228 | ||
7229 | /* | 7229 | /* |
7230 | * add cpu_power of each child group to this groups cpu_power | 7230 | * add cpu_power of each child group to this groups cpu_power |
7231 | */ | 7231 | */ |
7232 | group = child->groups; | 7232 | group = child->groups; |
7233 | do { | 7233 | do { |
7234 | sg_inc_cpu_power(sd->groups, group->__cpu_power); | 7234 | sg_inc_cpu_power(sd->groups, group->__cpu_power); |
7235 | group = group->next; | 7235 | group = group->next; |
7236 | } while (group != child->groups); | 7236 | } while (group != child->groups); |
7237 | } | 7237 | } |
7238 | 7238 | ||
7239 | /* | 7239 | /* |
7240 | * Initializers for schedule domains | 7240 | * Initializers for schedule domains |
7241 | * Non-inlined to reduce accumulated stack pressure in build_sched_domains() | 7241 | * Non-inlined to reduce accumulated stack pressure in build_sched_domains() |
7242 | */ | 7242 | */ |
7243 | 7243 | ||
7244 | #ifdef CONFIG_SCHED_DEBUG | 7244 | #ifdef CONFIG_SCHED_DEBUG |
7245 | # define SD_INIT_NAME(sd, type) sd->name = #type | 7245 | # define SD_INIT_NAME(sd, type) sd->name = #type |
7246 | #else | 7246 | #else |
7247 | # define SD_INIT_NAME(sd, type) do { } while (0) | 7247 | # define SD_INIT_NAME(sd, type) do { } while (0) |
7248 | #endif | 7248 | #endif |
7249 | 7249 | ||
7250 | #define SD_INIT(sd, type) sd_init_##type(sd) | 7250 | #define SD_INIT(sd, type) sd_init_##type(sd) |
7251 | 7251 | ||
7252 | #define SD_INIT_FUNC(type) \ | 7252 | #define SD_INIT_FUNC(type) \ |
7253 | static noinline void sd_init_##type(struct sched_domain *sd) \ | 7253 | static noinline void sd_init_##type(struct sched_domain *sd) \ |
7254 | { \ | 7254 | { \ |
7255 | memset(sd, 0, sizeof(*sd)); \ | 7255 | memset(sd, 0, sizeof(*sd)); \ |
7256 | *sd = SD_##type##_INIT; \ | 7256 | *sd = SD_##type##_INIT; \ |
7257 | sd->level = SD_LV_##type; \ | 7257 | sd->level = SD_LV_##type; \ |
7258 | SD_INIT_NAME(sd, type); \ | 7258 | SD_INIT_NAME(sd, type); \ |
7259 | } | 7259 | } |
7260 | 7260 | ||
7261 | SD_INIT_FUNC(CPU) | 7261 | SD_INIT_FUNC(CPU) |
7262 | #ifdef CONFIG_NUMA | 7262 | #ifdef CONFIG_NUMA |
7263 | SD_INIT_FUNC(ALLNODES) | 7263 | SD_INIT_FUNC(ALLNODES) |
7264 | SD_INIT_FUNC(NODE) | 7264 | SD_INIT_FUNC(NODE) |
7265 | #endif | 7265 | #endif |
7266 | #ifdef CONFIG_SCHED_SMT | 7266 | #ifdef CONFIG_SCHED_SMT |
7267 | SD_INIT_FUNC(SIBLING) | 7267 | SD_INIT_FUNC(SIBLING) |
7268 | #endif | 7268 | #endif |
7269 | #ifdef CONFIG_SCHED_MC | 7269 | #ifdef CONFIG_SCHED_MC |
7270 | SD_INIT_FUNC(MC) | 7270 | SD_INIT_FUNC(MC) |
7271 | #endif | 7271 | #endif |
7272 | 7272 | ||
7273 | /* | 7273 | /* |
7274 | * To minimize stack usage kmalloc room for cpumasks and share the | 7274 | * To minimize stack usage kmalloc room for cpumasks and share the |
7275 | * space as the usage in build_sched_domains() dictates. Used only | 7275 | * space as the usage in build_sched_domains() dictates. Used only |
7276 | * if the amount of space is significant. | 7276 | * if the amount of space is significant. |
7277 | */ | 7277 | */ |
7278 | struct allmasks { | 7278 | struct allmasks { |
7279 | cpumask_t tmpmask; /* make this one first */ | 7279 | cpumask_t tmpmask; /* make this one first */ |
7280 | union { | 7280 | union { |
7281 | cpumask_t nodemask; | 7281 | cpumask_t nodemask; |
7282 | cpumask_t this_sibling_map; | 7282 | cpumask_t this_sibling_map; |
7283 | cpumask_t this_core_map; | 7283 | cpumask_t this_core_map; |
7284 | }; | 7284 | }; |
7285 | cpumask_t send_covered; | 7285 | cpumask_t send_covered; |
7286 | 7286 | ||
7287 | #ifdef CONFIG_NUMA | 7287 | #ifdef CONFIG_NUMA |
7288 | cpumask_t domainspan; | 7288 | cpumask_t domainspan; |
7289 | cpumask_t covered; | 7289 | cpumask_t covered; |
7290 | cpumask_t notcovered; | 7290 | cpumask_t notcovered; |
7291 | #endif | 7291 | #endif |
7292 | }; | 7292 | }; |
7293 | 7293 | ||
7294 | #if NR_CPUS > 128 | 7294 | #if NR_CPUS > 128 |
7295 | #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v | 7295 | #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v |
7296 | static inline void sched_cpumask_alloc(struct allmasks **masks) | 7296 | static inline void sched_cpumask_alloc(struct allmasks **masks) |
7297 | { | 7297 | { |
7298 | *masks = kmalloc(sizeof(**masks), GFP_KERNEL); | 7298 | *masks = kmalloc(sizeof(**masks), GFP_KERNEL); |
7299 | } | 7299 | } |
7300 | static inline void sched_cpumask_free(struct allmasks *masks) | 7300 | static inline void sched_cpumask_free(struct allmasks *masks) |
7301 | { | 7301 | { |
7302 | kfree(masks); | 7302 | kfree(masks); |
7303 | } | 7303 | } |
7304 | #else | 7304 | #else |
7305 | #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v | 7305 | #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v |
7306 | static inline void sched_cpumask_alloc(struct allmasks **masks) | 7306 | static inline void sched_cpumask_alloc(struct allmasks **masks) |
7307 | { } | 7307 | { } |
7308 | static inline void sched_cpumask_free(struct allmasks *masks) | 7308 | static inline void sched_cpumask_free(struct allmasks *masks) |
7309 | { } | 7309 | { } |
7310 | #endif | 7310 | #endif |
7311 | 7311 | ||
7312 | #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \ | 7312 | #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \ |
7313 | ((unsigned long)(a) + offsetof(struct allmasks, v)) | 7313 | ((unsigned long)(a) + offsetof(struct allmasks, v)) |
7314 | 7314 | ||
7315 | static int default_relax_domain_level = -1; | 7315 | static int default_relax_domain_level = -1; |
7316 | 7316 | ||
7317 | static int __init setup_relax_domain_level(char *str) | 7317 | static int __init setup_relax_domain_level(char *str) |
7318 | { | 7318 | { |
7319 | unsigned long val; | 7319 | unsigned long val; |
7320 | 7320 | ||
7321 | val = simple_strtoul(str, NULL, 0); | 7321 | val = simple_strtoul(str, NULL, 0); |
7322 | if (val < SD_LV_MAX) | 7322 | if (val < SD_LV_MAX) |
7323 | default_relax_domain_level = val; | 7323 | default_relax_domain_level = val; |
7324 | 7324 | ||
7325 | return 1; | 7325 | return 1; |
7326 | } | 7326 | } |
7327 | __setup("relax_domain_level=", setup_relax_domain_level); | 7327 | __setup("relax_domain_level=", setup_relax_domain_level); |
7328 | 7328 | ||
7329 | static void set_domain_attribute(struct sched_domain *sd, | 7329 | static void set_domain_attribute(struct sched_domain *sd, |
7330 | struct sched_domain_attr *attr) | 7330 | struct sched_domain_attr *attr) |
7331 | { | 7331 | { |
7332 | int request; | 7332 | int request; |
7333 | 7333 | ||
7334 | if (!attr || attr->relax_domain_level < 0) { | 7334 | if (!attr || attr->relax_domain_level < 0) { |
7335 | if (default_relax_domain_level < 0) | 7335 | if (default_relax_domain_level < 0) |
7336 | return; | 7336 | return; |
7337 | else | 7337 | else |
7338 | request = default_relax_domain_level; | 7338 | request = default_relax_domain_level; |
7339 | } else | 7339 | } else |
7340 | request = attr->relax_domain_level; | 7340 | request = attr->relax_domain_level; |
7341 | if (request < sd->level) { | 7341 | if (request < sd->level) { |
7342 | /* turn off idle balance on this domain */ | 7342 | /* turn off idle balance on this domain */ |
7343 | sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE); | 7343 | sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE); |
7344 | } else { | 7344 | } else { |
7345 | /* turn on idle balance on this domain */ | 7345 | /* turn on idle balance on this domain */ |
7346 | sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE); | 7346 | sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE); |
7347 | } | 7347 | } |
7348 | } | 7348 | } |
7349 | 7349 | ||
7350 | /* | 7350 | /* |
7351 | * Build sched domains for a given set of cpus and attach the sched domains | 7351 | * Build sched domains for a given set of cpus and attach the sched domains |
7352 | * to the individual cpus | 7352 | * to the individual cpus |
7353 | */ | 7353 | */ |
7354 | static int __build_sched_domains(const cpumask_t *cpu_map, | 7354 | static int __build_sched_domains(const cpumask_t *cpu_map, |
7355 | struct sched_domain_attr *attr) | 7355 | struct sched_domain_attr *attr) |
7356 | { | 7356 | { |
7357 | int i; | 7357 | int i; |
7358 | struct root_domain *rd; | 7358 | struct root_domain *rd; |
7359 | SCHED_CPUMASK_DECLARE(allmasks); | 7359 | SCHED_CPUMASK_DECLARE(allmasks); |
7360 | cpumask_t *tmpmask; | 7360 | cpumask_t *tmpmask; |
7361 | #ifdef CONFIG_NUMA | 7361 | #ifdef CONFIG_NUMA |
7362 | struct sched_group **sched_group_nodes = NULL; | 7362 | struct sched_group **sched_group_nodes = NULL; |
7363 | int sd_allnodes = 0; | 7363 | int sd_allnodes = 0; |
7364 | 7364 | ||
7365 | /* | 7365 | /* |
7366 | * Allocate the per-node list of sched groups | 7366 | * Allocate the per-node list of sched groups |
7367 | */ | 7367 | */ |
7368 | sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *), | 7368 | sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *), |
7369 | GFP_KERNEL); | 7369 | GFP_KERNEL); |
7370 | if (!sched_group_nodes) { | 7370 | if (!sched_group_nodes) { |
7371 | printk(KERN_WARNING "Can not alloc sched group node list\n"); | 7371 | printk(KERN_WARNING "Can not alloc sched group node list\n"); |
7372 | return -ENOMEM; | 7372 | return -ENOMEM; |
7373 | } | 7373 | } |
7374 | #endif | 7374 | #endif |
7375 | 7375 | ||
7376 | rd = alloc_rootdomain(); | 7376 | rd = alloc_rootdomain(); |
7377 | if (!rd) { | 7377 | if (!rd) { |
7378 | printk(KERN_WARNING "Cannot alloc root domain\n"); | 7378 | printk(KERN_WARNING "Cannot alloc root domain\n"); |
7379 | #ifdef CONFIG_NUMA | 7379 | #ifdef CONFIG_NUMA |
7380 | kfree(sched_group_nodes); | 7380 | kfree(sched_group_nodes); |
7381 | #endif | 7381 | #endif |
7382 | return -ENOMEM; | 7382 | return -ENOMEM; |
7383 | } | 7383 | } |
7384 | 7384 | ||
7385 | /* get space for all scratch cpumask variables */ | 7385 | /* get space for all scratch cpumask variables */ |
7386 | sched_cpumask_alloc(&allmasks); | 7386 | sched_cpumask_alloc(&allmasks); |
7387 | if (!allmasks) { | 7387 | if (!allmasks) { |
7388 | printk(KERN_WARNING "Cannot alloc cpumask array\n"); | 7388 | printk(KERN_WARNING "Cannot alloc cpumask array\n"); |
7389 | kfree(rd); | 7389 | kfree(rd); |
7390 | #ifdef CONFIG_NUMA | 7390 | #ifdef CONFIG_NUMA |
7391 | kfree(sched_group_nodes); | 7391 | kfree(sched_group_nodes); |
7392 | #endif | 7392 | #endif |
7393 | return -ENOMEM; | 7393 | return -ENOMEM; |
7394 | } | 7394 | } |
7395 | 7395 | ||
7396 | tmpmask = (cpumask_t *)allmasks; | 7396 | tmpmask = (cpumask_t *)allmasks; |
7397 | 7397 | ||
7398 | 7398 | ||
7399 | #ifdef CONFIG_NUMA | 7399 | #ifdef CONFIG_NUMA |
7400 | sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes; | 7400 | sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes; |
7401 | #endif | 7401 | #endif |
7402 | 7402 | ||
7403 | /* | 7403 | /* |
7404 | * Set up domains for cpus specified by the cpu_map. | 7404 | * Set up domains for cpus specified by the cpu_map. |
7405 | */ | 7405 | */ |
7406 | for_each_cpu_mask_nr(i, *cpu_map) { | 7406 | for_each_cpu_mask_nr(i, *cpu_map) { |
7407 | struct sched_domain *sd = NULL, *p; | 7407 | struct sched_domain *sd = NULL, *p; |
7408 | SCHED_CPUMASK_VAR(nodemask, allmasks); | 7408 | SCHED_CPUMASK_VAR(nodemask, allmasks); |
7409 | 7409 | ||
7410 | *nodemask = node_to_cpumask(cpu_to_node(i)); | 7410 | *nodemask = node_to_cpumask(cpu_to_node(i)); |
7411 | cpus_and(*nodemask, *nodemask, *cpu_map); | 7411 | cpus_and(*nodemask, *nodemask, *cpu_map); |
7412 | 7412 | ||
7413 | #ifdef CONFIG_NUMA | 7413 | #ifdef CONFIG_NUMA |
7414 | if (cpus_weight(*cpu_map) > | 7414 | if (cpus_weight(*cpu_map) > |
7415 | SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) { | 7415 | SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) { |
7416 | sd = &per_cpu(allnodes_domains, i); | 7416 | sd = &per_cpu(allnodes_domains, i); |
7417 | SD_INIT(sd, ALLNODES); | 7417 | SD_INIT(sd, ALLNODES); |
7418 | set_domain_attribute(sd, attr); | 7418 | set_domain_attribute(sd, attr); |
7419 | sd->span = *cpu_map; | 7419 | sd->span = *cpu_map; |
7420 | cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); | 7420 | cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); |
7421 | p = sd; | 7421 | p = sd; |
7422 | sd_allnodes = 1; | 7422 | sd_allnodes = 1; |
7423 | } else | 7423 | } else |
7424 | p = NULL; | 7424 | p = NULL; |
7425 | 7425 | ||
7426 | sd = &per_cpu(node_domains, i); | 7426 | sd = &per_cpu(node_domains, i); |
7427 | SD_INIT(sd, NODE); | 7427 | SD_INIT(sd, NODE); |
7428 | set_domain_attribute(sd, attr); | 7428 | set_domain_attribute(sd, attr); |
7429 | sched_domain_node_span(cpu_to_node(i), &sd->span); | 7429 | sched_domain_node_span(cpu_to_node(i), &sd->span); |
7430 | sd->parent = p; | 7430 | sd->parent = p; |
7431 | if (p) | 7431 | if (p) |
7432 | p->child = sd; | 7432 | p->child = sd; |
7433 | cpus_and(sd->span, sd->span, *cpu_map); | 7433 | cpus_and(sd->span, sd->span, *cpu_map); |
7434 | #endif | 7434 | #endif |
7435 | 7435 | ||
7436 | p = sd; | 7436 | p = sd; |
7437 | sd = &per_cpu(phys_domains, i); | 7437 | sd = &per_cpu(phys_domains, i); |
7438 | SD_INIT(sd, CPU); | 7438 | SD_INIT(sd, CPU); |
7439 | set_domain_attribute(sd, attr); | 7439 | set_domain_attribute(sd, attr); |
7440 | sd->span = *nodemask; | 7440 | sd->span = *nodemask; |
7441 | sd->parent = p; | 7441 | sd->parent = p; |
7442 | if (p) | 7442 | if (p) |
7443 | p->child = sd; | 7443 | p->child = sd; |
7444 | cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask); | 7444 | cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask); |
7445 | 7445 | ||
7446 | #ifdef CONFIG_SCHED_MC | 7446 | #ifdef CONFIG_SCHED_MC |
7447 | p = sd; | 7447 | p = sd; |
7448 | sd = &per_cpu(core_domains, i); | 7448 | sd = &per_cpu(core_domains, i); |
7449 | SD_INIT(sd, MC); | 7449 | SD_INIT(sd, MC); |
7450 | set_domain_attribute(sd, attr); | 7450 | set_domain_attribute(sd, attr); |
7451 | sd->span = cpu_coregroup_map(i); | 7451 | sd->span = cpu_coregroup_map(i); |
7452 | cpus_and(sd->span, sd->span, *cpu_map); | 7452 | cpus_and(sd->span, sd->span, *cpu_map); |
7453 | sd->parent = p; | 7453 | sd->parent = p; |
7454 | p->child = sd; | 7454 | p->child = sd; |
7455 | cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask); | 7455 | cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask); |
7456 | #endif | 7456 | #endif |
7457 | 7457 | ||
7458 | #ifdef CONFIG_SCHED_SMT | 7458 | #ifdef CONFIG_SCHED_SMT |
7459 | p = sd; | 7459 | p = sd; |
7460 | sd = &per_cpu(cpu_domains, i); | 7460 | sd = &per_cpu(cpu_domains, i); |
7461 | SD_INIT(sd, SIBLING); | 7461 | SD_INIT(sd, SIBLING); |
7462 | set_domain_attribute(sd, attr); | 7462 | set_domain_attribute(sd, attr); |
7463 | sd->span = per_cpu(cpu_sibling_map, i); | 7463 | sd->span = per_cpu(cpu_sibling_map, i); |
7464 | cpus_and(sd->span, sd->span, *cpu_map); | 7464 | cpus_and(sd->span, sd->span, *cpu_map); |
7465 | sd->parent = p; | 7465 | sd->parent = p; |
7466 | p->child = sd; | 7466 | p->child = sd; |
7467 | cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask); | 7467 | cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask); |
7468 | #endif | 7468 | #endif |
7469 | } | 7469 | } |
7470 | 7470 | ||
7471 | #ifdef CONFIG_SCHED_SMT | 7471 | #ifdef CONFIG_SCHED_SMT |
7472 | /* Set up CPU (sibling) groups */ | 7472 | /* Set up CPU (sibling) groups */ |
7473 | for_each_cpu_mask_nr(i, *cpu_map) { | 7473 | for_each_cpu_mask_nr(i, *cpu_map) { |
7474 | SCHED_CPUMASK_VAR(this_sibling_map, allmasks); | 7474 | SCHED_CPUMASK_VAR(this_sibling_map, allmasks); |
7475 | SCHED_CPUMASK_VAR(send_covered, allmasks); | 7475 | SCHED_CPUMASK_VAR(send_covered, allmasks); |
7476 | 7476 | ||
7477 | *this_sibling_map = per_cpu(cpu_sibling_map, i); | 7477 | *this_sibling_map = per_cpu(cpu_sibling_map, i); |
7478 | cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map); | 7478 | cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map); |
7479 | if (i != first_cpu(*this_sibling_map)) | 7479 | if (i != first_cpu(*this_sibling_map)) |
7480 | continue; | 7480 | continue; |
7481 | 7481 | ||
7482 | init_sched_build_groups(this_sibling_map, cpu_map, | 7482 | init_sched_build_groups(this_sibling_map, cpu_map, |
7483 | &cpu_to_cpu_group, | 7483 | &cpu_to_cpu_group, |
7484 | send_covered, tmpmask); | 7484 | send_covered, tmpmask); |
7485 | } | 7485 | } |
7486 | #endif | 7486 | #endif |
7487 | 7487 | ||
7488 | #ifdef CONFIG_SCHED_MC | 7488 | #ifdef CONFIG_SCHED_MC |
7489 | /* Set up multi-core groups */ | 7489 | /* Set up multi-core groups */ |
7490 | for_each_cpu_mask_nr(i, *cpu_map) { | 7490 | for_each_cpu_mask_nr(i, *cpu_map) { |
7491 | SCHED_CPUMASK_VAR(this_core_map, allmasks); | 7491 | SCHED_CPUMASK_VAR(this_core_map, allmasks); |
7492 | SCHED_CPUMASK_VAR(send_covered, allmasks); | 7492 | SCHED_CPUMASK_VAR(send_covered, allmasks); |
7493 | 7493 | ||
7494 | *this_core_map = cpu_coregroup_map(i); | 7494 | *this_core_map = cpu_coregroup_map(i); |
7495 | cpus_and(*this_core_map, *this_core_map, *cpu_map); | 7495 | cpus_and(*this_core_map, *this_core_map, *cpu_map); |
7496 | if (i != first_cpu(*this_core_map)) | 7496 | if (i != first_cpu(*this_core_map)) |
7497 | continue; | 7497 | continue; |
7498 | 7498 | ||
7499 | init_sched_build_groups(this_core_map, cpu_map, | 7499 | init_sched_build_groups(this_core_map, cpu_map, |
7500 | &cpu_to_core_group, | 7500 | &cpu_to_core_group, |
7501 | send_covered, tmpmask); | 7501 | send_covered, tmpmask); |
7502 | } | 7502 | } |
7503 | #endif | 7503 | #endif |
7504 | 7504 | ||
7505 | /* Set up physical groups */ | 7505 | /* Set up physical groups */ |
7506 | for (i = 0; i < nr_node_ids; i++) { | 7506 | for (i = 0; i < nr_node_ids; i++) { |
7507 | SCHED_CPUMASK_VAR(nodemask, allmasks); | 7507 | SCHED_CPUMASK_VAR(nodemask, allmasks); |
7508 | SCHED_CPUMASK_VAR(send_covered, allmasks); | 7508 | SCHED_CPUMASK_VAR(send_covered, allmasks); |
7509 | 7509 | ||
7510 | *nodemask = node_to_cpumask(i); | 7510 | *nodemask = node_to_cpumask(i); |
7511 | cpus_and(*nodemask, *nodemask, *cpu_map); | 7511 | cpus_and(*nodemask, *nodemask, *cpu_map); |
7512 | if (cpus_empty(*nodemask)) | 7512 | if (cpus_empty(*nodemask)) |
7513 | continue; | 7513 | continue; |
7514 | 7514 | ||
7515 | init_sched_build_groups(nodemask, cpu_map, | 7515 | init_sched_build_groups(nodemask, cpu_map, |
7516 | &cpu_to_phys_group, | 7516 | &cpu_to_phys_group, |
7517 | send_covered, tmpmask); | 7517 | send_covered, tmpmask); |
7518 | } | 7518 | } |
7519 | 7519 | ||
7520 | #ifdef CONFIG_NUMA | 7520 | #ifdef CONFIG_NUMA |
7521 | /* Set up node groups */ | 7521 | /* Set up node groups */ |
7522 | if (sd_allnodes) { | 7522 | if (sd_allnodes) { |
7523 | SCHED_CPUMASK_VAR(send_covered, allmasks); | 7523 | SCHED_CPUMASK_VAR(send_covered, allmasks); |
7524 | 7524 | ||
7525 | init_sched_build_groups(cpu_map, cpu_map, | 7525 | init_sched_build_groups(cpu_map, cpu_map, |
7526 | &cpu_to_allnodes_group, | 7526 | &cpu_to_allnodes_group, |
7527 | send_covered, tmpmask); | 7527 | send_covered, tmpmask); |
7528 | } | 7528 | } |
7529 | 7529 | ||
7530 | for (i = 0; i < nr_node_ids; i++) { | 7530 | for (i = 0; i < nr_node_ids; i++) { |
7531 | /* Set up node groups */ | 7531 | /* Set up node groups */ |
7532 | struct sched_group *sg, *prev; | 7532 | struct sched_group *sg, *prev; |
7533 | SCHED_CPUMASK_VAR(nodemask, allmasks); | 7533 | SCHED_CPUMASK_VAR(nodemask, allmasks); |
7534 | SCHED_CPUMASK_VAR(domainspan, allmasks); | 7534 | SCHED_CPUMASK_VAR(domainspan, allmasks); |
7535 | SCHED_CPUMASK_VAR(covered, allmasks); | 7535 | SCHED_CPUMASK_VAR(covered, allmasks); |
7536 | int j; | 7536 | int j; |
7537 | 7537 | ||
7538 | *nodemask = node_to_cpumask(i); | 7538 | *nodemask = node_to_cpumask(i); |
7539 | cpus_clear(*covered); | 7539 | cpus_clear(*covered); |
7540 | 7540 | ||
7541 | cpus_and(*nodemask, *nodemask, *cpu_map); | 7541 | cpus_and(*nodemask, *nodemask, *cpu_map); |
7542 | if (cpus_empty(*nodemask)) { | 7542 | if (cpus_empty(*nodemask)) { |
7543 | sched_group_nodes[i] = NULL; | 7543 | sched_group_nodes[i] = NULL; |
7544 | continue; | 7544 | continue; |
7545 | } | 7545 | } |
7546 | 7546 | ||
7547 | sched_domain_node_span(i, domainspan); | 7547 | sched_domain_node_span(i, domainspan); |
7548 | cpus_and(*domainspan, *domainspan, *cpu_map); | 7548 | cpus_and(*domainspan, *domainspan, *cpu_map); |
7549 | 7549 | ||
7550 | sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i); | 7550 | sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i); |
7551 | if (!sg) { | 7551 | if (!sg) { |
7552 | printk(KERN_WARNING "Can not alloc domain group for " | 7552 | printk(KERN_WARNING "Can not alloc domain group for " |
7553 | "node %d\n", i); | 7553 | "node %d\n", i); |
7554 | goto error; | 7554 | goto error; |
7555 | } | 7555 | } |
7556 | sched_group_nodes[i] = sg; | 7556 | sched_group_nodes[i] = sg; |
7557 | for_each_cpu_mask_nr(j, *nodemask) { | 7557 | for_each_cpu_mask_nr(j, *nodemask) { |
7558 | struct sched_domain *sd; | 7558 | struct sched_domain *sd; |
7559 | 7559 | ||
7560 | sd = &per_cpu(node_domains, j); | 7560 | sd = &per_cpu(node_domains, j); |
7561 | sd->groups = sg; | 7561 | sd->groups = sg; |
7562 | } | 7562 | } |
7563 | sg->__cpu_power = 0; | 7563 | sg->__cpu_power = 0; |
7564 | sg->cpumask = *nodemask; | 7564 | sg->cpumask = *nodemask; |
7565 | sg->next = sg; | 7565 | sg->next = sg; |
7566 | cpus_or(*covered, *covered, *nodemask); | 7566 | cpus_or(*covered, *covered, *nodemask); |
7567 | prev = sg; | 7567 | prev = sg; |
7568 | 7568 | ||
7569 | for (j = 0; j < nr_node_ids; j++) { | 7569 | for (j = 0; j < nr_node_ids; j++) { |
7570 | SCHED_CPUMASK_VAR(notcovered, allmasks); | 7570 | SCHED_CPUMASK_VAR(notcovered, allmasks); |
7571 | int n = (i + j) % nr_node_ids; | 7571 | int n = (i + j) % nr_node_ids; |
7572 | node_to_cpumask_ptr(pnodemask, n); | 7572 | node_to_cpumask_ptr(pnodemask, n); |
7573 | 7573 | ||
7574 | cpus_complement(*notcovered, *covered); | 7574 | cpus_complement(*notcovered, *covered); |
7575 | cpus_and(*tmpmask, *notcovered, *cpu_map); | 7575 | cpus_and(*tmpmask, *notcovered, *cpu_map); |
7576 | cpus_and(*tmpmask, *tmpmask, *domainspan); | 7576 | cpus_and(*tmpmask, *tmpmask, *domainspan); |
7577 | if (cpus_empty(*tmpmask)) | 7577 | if (cpus_empty(*tmpmask)) |
7578 | break; | 7578 | break; |
7579 | 7579 | ||
7580 | cpus_and(*tmpmask, *tmpmask, *pnodemask); | 7580 | cpus_and(*tmpmask, *tmpmask, *pnodemask); |
7581 | if (cpus_empty(*tmpmask)) | 7581 | if (cpus_empty(*tmpmask)) |
7582 | continue; | 7582 | continue; |
7583 | 7583 | ||
7584 | sg = kmalloc_node(sizeof(struct sched_group), | 7584 | sg = kmalloc_node(sizeof(struct sched_group), |
7585 | GFP_KERNEL, i); | 7585 | GFP_KERNEL, i); |
7586 | if (!sg) { | 7586 | if (!sg) { |
7587 | printk(KERN_WARNING | 7587 | printk(KERN_WARNING |
7588 | "Can not alloc domain group for node %d\n", j); | 7588 | "Can not alloc domain group for node %d\n", j); |
7589 | goto error; | 7589 | goto error; |
7590 | } | 7590 | } |
7591 | sg->__cpu_power = 0; | 7591 | sg->__cpu_power = 0; |
7592 | sg->cpumask = *tmpmask; | 7592 | sg->cpumask = *tmpmask; |
7593 | sg->next = prev->next; | 7593 | sg->next = prev->next; |
7594 | cpus_or(*covered, *covered, *tmpmask); | 7594 | cpus_or(*covered, *covered, *tmpmask); |
7595 | prev->next = sg; | 7595 | prev->next = sg; |
7596 | prev = sg; | 7596 | prev = sg; |
7597 | } | 7597 | } |
7598 | } | 7598 | } |
7599 | #endif | 7599 | #endif |
7600 | 7600 | ||
7601 | /* Calculate CPU power for physical packages and nodes */ | 7601 | /* Calculate CPU power for physical packages and nodes */ |
7602 | #ifdef CONFIG_SCHED_SMT | 7602 | #ifdef CONFIG_SCHED_SMT |
7603 | for_each_cpu_mask_nr(i, *cpu_map) { | 7603 | for_each_cpu_mask_nr(i, *cpu_map) { |
7604 | struct sched_domain *sd = &per_cpu(cpu_domains, i); | 7604 | struct sched_domain *sd = &per_cpu(cpu_domains, i); |
7605 | 7605 | ||
7606 | init_sched_groups_power(i, sd); | 7606 | init_sched_groups_power(i, sd); |
7607 | } | 7607 | } |
7608 | #endif | 7608 | #endif |
7609 | #ifdef CONFIG_SCHED_MC | 7609 | #ifdef CONFIG_SCHED_MC |
7610 | for_each_cpu_mask_nr(i, *cpu_map) { | 7610 | for_each_cpu_mask_nr(i, *cpu_map) { |
7611 | struct sched_domain *sd = &per_cpu(core_domains, i); | 7611 | struct sched_domain *sd = &per_cpu(core_domains, i); |
7612 | 7612 | ||
7613 | init_sched_groups_power(i, sd); | 7613 | init_sched_groups_power(i, sd); |
7614 | } | 7614 | } |
7615 | #endif | 7615 | #endif |
7616 | 7616 | ||
7617 | for_each_cpu_mask_nr(i, *cpu_map) { | 7617 | for_each_cpu_mask_nr(i, *cpu_map) { |
7618 | struct sched_domain *sd = &per_cpu(phys_domains, i); | 7618 | struct sched_domain *sd = &per_cpu(phys_domains, i); |
7619 | 7619 | ||
7620 | init_sched_groups_power(i, sd); | 7620 | init_sched_groups_power(i, sd); |
7621 | } | 7621 | } |
7622 | 7622 | ||
7623 | #ifdef CONFIG_NUMA | 7623 | #ifdef CONFIG_NUMA |
7624 | for (i = 0; i < nr_node_ids; i++) | 7624 | for (i = 0; i < nr_node_ids; i++) |
7625 | init_numa_sched_groups_power(sched_group_nodes[i]); | 7625 | init_numa_sched_groups_power(sched_group_nodes[i]); |
7626 | 7626 | ||
7627 | if (sd_allnodes) { | 7627 | if (sd_allnodes) { |
7628 | struct sched_group *sg; | 7628 | struct sched_group *sg; |
7629 | 7629 | ||
7630 | cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg, | 7630 | cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg, |
7631 | tmpmask); | 7631 | tmpmask); |
7632 | init_numa_sched_groups_power(sg); | 7632 | init_numa_sched_groups_power(sg); |
7633 | } | 7633 | } |
7634 | #endif | 7634 | #endif |
7635 | 7635 | ||
7636 | /* Attach the domains */ | 7636 | /* Attach the domains */ |
7637 | for_each_cpu_mask_nr(i, *cpu_map) { | 7637 | for_each_cpu_mask_nr(i, *cpu_map) { |
7638 | struct sched_domain *sd; | 7638 | struct sched_domain *sd; |
7639 | #ifdef CONFIG_SCHED_SMT | 7639 | #ifdef CONFIG_SCHED_SMT |
7640 | sd = &per_cpu(cpu_domains, i); | 7640 | sd = &per_cpu(cpu_domains, i); |
7641 | #elif defined(CONFIG_SCHED_MC) | 7641 | #elif defined(CONFIG_SCHED_MC) |
7642 | sd = &per_cpu(core_domains, i); | 7642 | sd = &per_cpu(core_domains, i); |
7643 | #else | 7643 | #else |
7644 | sd = &per_cpu(phys_domains, i); | 7644 | sd = &per_cpu(phys_domains, i); |
7645 | #endif | 7645 | #endif |
7646 | cpu_attach_domain(sd, rd, i); | 7646 | cpu_attach_domain(sd, rd, i); |
7647 | } | 7647 | } |
7648 | 7648 | ||
7649 | sched_cpumask_free(allmasks); | 7649 | sched_cpumask_free(allmasks); |
7650 | return 0; | 7650 | return 0; |
7651 | 7651 | ||
7652 | #ifdef CONFIG_NUMA | 7652 | #ifdef CONFIG_NUMA |
7653 | error: | 7653 | error: |
7654 | free_sched_groups(cpu_map, tmpmask); | 7654 | free_sched_groups(cpu_map, tmpmask); |
7655 | sched_cpumask_free(allmasks); | 7655 | sched_cpumask_free(allmasks); |
7656 | kfree(rd); | 7656 | kfree(rd); |
7657 | return -ENOMEM; | 7657 | return -ENOMEM; |
7658 | #endif | 7658 | #endif |
7659 | } | 7659 | } |
7660 | 7660 | ||
7661 | static int build_sched_domains(const cpumask_t *cpu_map) | 7661 | static int build_sched_domains(const cpumask_t *cpu_map) |
7662 | { | 7662 | { |
7663 | return __build_sched_domains(cpu_map, NULL); | 7663 | return __build_sched_domains(cpu_map, NULL); |
7664 | } | 7664 | } |
7665 | 7665 | ||
7666 | static cpumask_t *doms_cur; /* current sched domains */ | 7666 | static cpumask_t *doms_cur; /* current sched domains */ |
7667 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ | 7667 | static int ndoms_cur; /* number of sched domains in 'doms_cur' */ |
7668 | static struct sched_domain_attr *dattr_cur; | 7668 | static struct sched_domain_attr *dattr_cur; |
7669 | /* attribues of custom domains in 'doms_cur' */ | 7669 | /* attribues of custom domains in 'doms_cur' */ |
7670 | 7670 | ||
7671 | /* | 7671 | /* |
7672 | * Special case: If a kmalloc of a doms_cur partition (array of | 7672 | * Special case: If a kmalloc of a doms_cur partition (array of |
7673 | * cpumask_t) fails, then fallback to a single sched domain, | 7673 | * cpumask_t) fails, then fallback to a single sched domain, |
7674 | * as determined by the single cpumask_t fallback_doms. | 7674 | * as determined by the single cpumask_t fallback_doms. |
7675 | */ | 7675 | */ |
7676 | static cpumask_t fallback_doms; | 7676 | static cpumask_t fallback_doms; |
7677 | 7677 | ||
7678 | void __attribute__((weak)) arch_update_cpu_topology(void) | 7678 | /* |
7679 | * arch_update_cpu_topology lets virtualized architectures update the | ||
7680 | * cpu core maps. It is supposed to return 1 if the topology changed | ||
7681 | * or 0 if it stayed the same. | ||
7682 | */ | ||
7683 | int __attribute__((weak)) arch_update_cpu_topology(void) | ||
7679 | { | 7684 | { |
7685 | return 0; | ||
7680 | } | 7686 | } |
7681 | 7687 | ||
7682 | /* | 7688 | /* |
7683 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. | 7689 | * Set up scheduler domains and groups. Callers must hold the hotplug lock. |
7684 | * For now this just excludes isolated cpus, but could be used to | 7690 | * For now this just excludes isolated cpus, but could be used to |
7685 | * exclude other special cases in the future. | 7691 | * exclude other special cases in the future. |
7686 | */ | 7692 | */ |
7687 | static int arch_init_sched_domains(const cpumask_t *cpu_map) | 7693 | static int arch_init_sched_domains(const cpumask_t *cpu_map) |
7688 | { | 7694 | { |
7689 | int err; | 7695 | int err; |
7690 | 7696 | ||
7691 | arch_update_cpu_topology(); | 7697 | arch_update_cpu_topology(); |
7692 | ndoms_cur = 1; | 7698 | ndoms_cur = 1; |
7693 | doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL); | 7699 | doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL); |
7694 | if (!doms_cur) | 7700 | if (!doms_cur) |
7695 | doms_cur = &fallback_doms; | 7701 | doms_cur = &fallback_doms; |
7696 | cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map); | 7702 | cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map); |
7697 | dattr_cur = NULL; | 7703 | dattr_cur = NULL; |
7698 | err = build_sched_domains(doms_cur); | 7704 | err = build_sched_domains(doms_cur); |
7699 | register_sched_domain_sysctl(); | 7705 | register_sched_domain_sysctl(); |
7700 | 7706 | ||
7701 | return err; | 7707 | return err; |
7702 | } | 7708 | } |
7703 | 7709 | ||
7704 | static void arch_destroy_sched_domains(const cpumask_t *cpu_map, | 7710 | static void arch_destroy_sched_domains(const cpumask_t *cpu_map, |
7705 | cpumask_t *tmpmask) | 7711 | cpumask_t *tmpmask) |
7706 | { | 7712 | { |
7707 | free_sched_groups(cpu_map, tmpmask); | 7713 | free_sched_groups(cpu_map, tmpmask); |
7708 | } | 7714 | } |
7709 | 7715 | ||
7710 | /* | 7716 | /* |
7711 | * Detach sched domains from a group of cpus specified in cpu_map | 7717 | * Detach sched domains from a group of cpus specified in cpu_map |
7712 | * These cpus will now be attached to the NULL domain | 7718 | * These cpus will now be attached to the NULL domain |
7713 | */ | 7719 | */ |
7714 | static void detach_destroy_domains(const cpumask_t *cpu_map) | 7720 | static void detach_destroy_domains(const cpumask_t *cpu_map) |
7715 | { | 7721 | { |
7716 | cpumask_t tmpmask; | 7722 | cpumask_t tmpmask; |
7717 | int i; | 7723 | int i; |
7718 | 7724 | ||
7719 | for_each_cpu_mask_nr(i, *cpu_map) | 7725 | for_each_cpu_mask_nr(i, *cpu_map) |
7720 | cpu_attach_domain(NULL, &def_root_domain, i); | 7726 | cpu_attach_domain(NULL, &def_root_domain, i); |
7721 | synchronize_sched(); | 7727 | synchronize_sched(); |
7722 | arch_destroy_sched_domains(cpu_map, &tmpmask); | 7728 | arch_destroy_sched_domains(cpu_map, &tmpmask); |
7723 | } | 7729 | } |
7724 | 7730 | ||
7725 | /* handle null as "default" */ | 7731 | /* handle null as "default" */ |
7726 | static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | 7732 | static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, |
7727 | struct sched_domain_attr *new, int idx_new) | 7733 | struct sched_domain_attr *new, int idx_new) |
7728 | { | 7734 | { |
7729 | struct sched_domain_attr tmp; | 7735 | struct sched_domain_attr tmp; |
7730 | 7736 | ||
7731 | /* fast path */ | 7737 | /* fast path */ |
7732 | if (!new && !cur) | 7738 | if (!new && !cur) |
7733 | return 1; | 7739 | return 1; |
7734 | 7740 | ||
7735 | tmp = SD_ATTR_INIT; | 7741 | tmp = SD_ATTR_INIT; |
7736 | return !memcmp(cur ? (cur + idx_cur) : &tmp, | 7742 | return !memcmp(cur ? (cur + idx_cur) : &tmp, |
7737 | new ? (new + idx_new) : &tmp, | 7743 | new ? (new + idx_new) : &tmp, |
7738 | sizeof(struct sched_domain_attr)); | 7744 | sizeof(struct sched_domain_attr)); |
7739 | } | 7745 | } |
7740 | 7746 | ||
7741 | /* | 7747 | /* |
7742 | * Partition sched domains as specified by the 'ndoms_new' | 7748 | * Partition sched domains as specified by the 'ndoms_new' |
7743 | * cpumasks in the array doms_new[] of cpumasks. This compares | 7749 | * cpumasks in the array doms_new[] of cpumasks. This compares |
7744 | * doms_new[] to the current sched domain partitioning, doms_cur[]. | 7750 | * doms_new[] to the current sched domain partitioning, doms_cur[]. |
7745 | * It destroys each deleted domain and builds each new domain. | 7751 | * It destroys each deleted domain and builds each new domain. |
7746 | * | 7752 | * |
7747 | * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'. | 7753 | * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'. |
7748 | * The masks don't intersect (don't overlap.) We should setup one | 7754 | * The masks don't intersect (don't overlap.) We should setup one |
7749 | * sched domain for each mask. CPUs not in any of the cpumasks will | 7755 | * sched domain for each mask. CPUs not in any of the cpumasks will |
7750 | * not be load balanced. If the same cpumask appears both in the | 7756 | * not be load balanced. If the same cpumask appears both in the |
7751 | * current 'doms_cur' domains and in the new 'doms_new', we can leave | 7757 | * current 'doms_cur' domains and in the new 'doms_new', we can leave |
7752 | * it as it is. | 7758 | * it as it is. |
7753 | * | 7759 | * |
7754 | * The passed in 'doms_new' should be kmalloc'd. This routine takes | 7760 | * The passed in 'doms_new' should be kmalloc'd. This routine takes |
7755 | * ownership of it and will kfree it when done with it. If the caller | 7761 | * ownership of it and will kfree it when done with it. If the caller |
7756 | * failed the kmalloc call, then it can pass in doms_new == NULL && | 7762 | * failed the kmalloc call, then it can pass in doms_new == NULL && |
7757 | * ndoms_new == 1, and partition_sched_domains() will fallback to | 7763 | * ndoms_new == 1, and partition_sched_domains() will fallback to |
7758 | * the single partition 'fallback_doms', it also forces the domains | 7764 | * the single partition 'fallback_doms', it also forces the domains |
7759 | * to be rebuilt. | 7765 | * to be rebuilt. |
7760 | * | 7766 | * |
7761 | * If doms_new == NULL it will be replaced with cpu_online_map. | 7767 | * If doms_new == NULL it will be replaced with cpu_online_map. |
7762 | * ndoms_new == 0 is a special case for destroying existing domains, | 7768 | * ndoms_new == 0 is a special case for destroying existing domains, |
7763 | * and it will not create the default domain. | 7769 | * and it will not create the default domain. |
7764 | * | 7770 | * |
7765 | * Call with hotplug lock held | 7771 | * Call with hotplug lock held |
7766 | */ | 7772 | */ |
7767 | void partition_sched_domains(int ndoms_new, cpumask_t *doms_new, | 7773 | void partition_sched_domains(int ndoms_new, cpumask_t *doms_new, |
7768 | struct sched_domain_attr *dattr_new) | 7774 | struct sched_domain_attr *dattr_new) |
7769 | { | 7775 | { |
7770 | int i, j, n; | 7776 | int i, j, n; |
7771 | 7777 | ||
7772 | mutex_lock(&sched_domains_mutex); | 7778 | mutex_lock(&sched_domains_mutex); |
7773 | 7779 | ||
7774 | /* always unregister in case we don't destroy any domains */ | 7780 | /* always unregister in case we don't destroy any domains */ |
7775 | unregister_sched_domain_sysctl(); | 7781 | unregister_sched_domain_sysctl(); |
7776 | 7782 | ||
7777 | n = doms_new ? ndoms_new : 0; | 7783 | n = doms_new ? ndoms_new : 0; |
7778 | 7784 | ||
7779 | /* Destroy deleted domains */ | 7785 | /* Destroy deleted domains */ |
7780 | for (i = 0; i < ndoms_cur; i++) { | 7786 | for (i = 0; i < ndoms_cur; i++) { |
7781 | for (j = 0; j < n; j++) { | 7787 | for (j = 0; j < n; j++) { |
7782 | if (cpus_equal(doms_cur[i], doms_new[j]) | 7788 | if (cpus_equal(doms_cur[i], doms_new[j]) |
7783 | && dattrs_equal(dattr_cur, i, dattr_new, j)) | 7789 | && dattrs_equal(dattr_cur, i, dattr_new, j)) |
7784 | goto match1; | 7790 | goto match1; |
7785 | } | 7791 | } |
7786 | /* no match - a current sched domain not in new doms_new[] */ | 7792 | /* no match - a current sched domain not in new doms_new[] */ |
7787 | detach_destroy_domains(doms_cur + i); | 7793 | detach_destroy_domains(doms_cur + i); |
7788 | match1: | 7794 | match1: |
7789 | ; | 7795 | ; |
7790 | } | 7796 | } |
7791 | 7797 | ||
7792 | if (doms_new == NULL) { | 7798 | if (doms_new == NULL) { |
7793 | ndoms_cur = 0; | 7799 | ndoms_cur = 0; |
7794 | doms_new = &fallback_doms; | 7800 | doms_new = &fallback_doms; |
7795 | cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map); | 7801 | cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map); |
7796 | WARN_ON_ONCE(dattr_new); | 7802 | WARN_ON_ONCE(dattr_new); |
7797 | } | 7803 | } |
7798 | 7804 | ||
7799 | /* Build new domains */ | 7805 | /* Build new domains */ |
7800 | for (i = 0; i < ndoms_new; i++) { | 7806 | for (i = 0; i < ndoms_new; i++) { |
7801 | for (j = 0; j < ndoms_cur; j++) { | 7807 | for (j = 0; j < ndoms_cur; j++) { |
7802 | if (cpus_equal(doms_new[i], doms_cur[j]) | 7808 | if (cpus_equal(doms_new[i], doms_cur[j]) |
7803 | && dattrs_equal(dattr_new, i, dattr_cur, j)) | 7809 | && dattrs_equal(dattr_new, i, dattr_cur, j)) |
7804 | goto match2; | 7810 | goto match2; |
7805 | } | 7811 | } |
7806 | /* no match - add a new doms_new */ | 7812 | /* no match - add a new doms_new */ |
7807 | __build_sched_domains(doms_new + i, | 7813 | __build_sched_domains(doms_new + i, |
7808 | dattr_new ? dattr_new + i : NULL); | 7814 | dattr_new ? dattr_new + i : NULL); |
7809 | match2: | 7815 | match2: |
7810 | ; | 7816 | ; |
7811 | } | 7817 | } |
7812 | 7818 | ||
7813 | /* Remember the new sched domains */ | 7819 | /* Remember the new sched domains */ |
7814 | if (doms_cur != &fallback_doms) | 7820 | if (doms_cur != &fallback_doms) |
7815 | kfree(doms_cur); | 7821 | kfree(doms_cur); |
7816 | kfree(dattr_cur); /* kfree(NULL) is safe */ | 7822 | kfree(dattr_cur); /* kfree(NULL) is safe */ |
7817 | doms_cur = doms_new; | 7823 | doms_cur = doms_new; |
7818 | dattr_cur = dattr_new; | 7824 | dattr_cur = dattr_new; |
7819 | ndoms_cur = ndoms_new; | 7825 | ndoms_cur = ndoms_new; |
7820 | 7826 | ||
7821 | register_sched_domain_sysctl(); | 7827 | register_sched_domain_sysctl(); |
7822 | 7828 | ||
7823 | mutex_unlock(&sched_domains_mutex); | 7829 | mutex_unlock(&sched_domains_mutex); |
7824 | } | 7830 | } |
7825 | 7831 | ||
7826 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 7832 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
7827 | int arch_reinit_sched_domains(void) | 7833 | int arch_reinit_sched_domains(void) |
7828 | { | 7834 | { |
7829 | get_online_cpus(); | 7835 | get_online_cpus(); |
7830 | 7836 | ||
7831 | /* Destroy domains first to force the rebuild */ | 7837 | /* Destroy domains first to force the rebuild */ |
7832 | partition_sched_domains(0, NULL, NULL); | 7838 | partition_sched_domains(0, NULL, NULL); |
7833 | 7839 | ||
7834 | rebuild_sched_domains(); | 7840 | rebuild_sched_domains(); |
7835 | put_online_cpus(); | 7841 | put_online_cpus(); |
7836 | 7842 | ||
7837 | return 0; | 7843 | return 0; |
7838 | } | 7844 | } |
7839 | 7845 | ||
7840 | static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) | 7846 | static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) |
7841 | { | 7847 | { |
7842 | int ret; | 7848 | int ret; |
7843 | 7849 | ||
7844 | if (buf[0] != '0' && buf[0] != '1') | 7850 | if (buf[0] != '0' && buf[0] != '1') |
7845 | return -EINVAL; | 7851 | return -EINVAL; |
7846 | 7852 | ||
7847 | if (smt) | 7853 | if (smt) |
7848 | sched_smt_power_savings = (buf[0] == '1'); | 7854 | sched_smt_power_savings = (buf[0] == '1'); |
7849 | else | 7855 | else |
7850 | sched_mc_power_savings = (buf[0] == '1'); | 7856 | sched_mc_power_savings = (buf[0] == '1'); |
7851 | 7857 | ||
7852 | ret = arch_reinit_sched_domains(); | 7858 | ret = arch_reinit_sched_domains(); |
7853 | 7859 | ||
7854 | return ret ? ret : count; | 7860 | return ret ? ret : count; |
7855 | } | 7861 | } |
7856 | 7862 | ||
7857 | #ifdef CONFIG_SCHED_MC | 7863 | #ifdef CONFIG_SCHED_MC |
7858 | static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, | 7864 | static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, |
7859 | char *page) | 7865 | char *page) |
7860 | { | 7866 | { |
7861 | return sprintf(page, "%u\n", sched_mc_power_savings); | 7867 | return sprintf(page, "%u\n", sched_mc_power_savings); |
7862 | } | 7868 | } |
7863 | static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, | 7869 | static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, |
7864 | const char *buf, size_t count) | 7870 | const char *buf, size_t count) |
7865 | { | 7871 | { |
7866 | return sched_power_savings_store(buf, count, 0); | 7872 | return sched_power_savings_store(buf, count, 0); |
7867 | } | 7873 | } |
7868 | static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, | 7874 | static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, |
7869 | sched_mc_power_savings_show, | 7875 | sched_mc_power_savings_show, |
7870 | sched_mc_power_savings_store); | 7876 | sched_mc_power_savings_store); |
7871 | #endif | 7877 | #endif |
7872 | 7878 | ||
7873 | #ifdef CONFIG_SCHED_SMT | 7879 | #ifdef CONFIG_SCHED_SMT |
7874 | static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, | 7880 | static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, |
7875 | char *page) | 7881 | char *page) |
7876 | { | 7882 | { |
7877 | return sprintf(page, "%u\n", sched_smt_power_savings); | 7883 | return sprintf(page, "%u\n", sched_smt_power_savings); |
7878 | } | 7884 | } |
7879 | static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, | 7885 | static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, |
7880 | const char *buf, size_t count) | 7886 | const char *buf, size_t count) |
7881 | { | 7887 | { |
7882 | return sched_power_savings_store(buf, count, 1); | 7888 | return sched_power_savings_store(buf, count, 1); |
7883 | } | 7889 | } |
7884 | static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, | 7890 | static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, |
7885 | sched_smt_power_savings_show, | 7891 | sched_smt_power_savings_show, |
7886 | sched_smt_power_savings_store); | 7892 | sched_smt_power_savings_store); |
7887 | #endif | 7893 | #endif |
7888 | 7894 | ||
7889 | int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) | 7895 | int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) |
7890 | { | 7896 | { |
7891 | int err = 0; | 7897 | int err = 0; |
7892 | 7898 | ||
7893 | #ifdef CONFIG_SCHED_SMT | 7899 | #ifdef CONFIG_SCHED_SMT |
7894 | if (smt_capable()) | 7900 | if (smt_capable()) |
7895 | err = sysfs_create_file(&cls->kset.kobj, | 7901 | err = sysfs_create_file(&cls->kset.kobj, |
7896 | &attr_sched_smt_power_savings.attr); | 7902 | &attr_sched_smt_power_savings.attr); |
7897 | #endif | 7903 | #endif |
7898 | #ifdef CONFIG_SCHED_MC | 7904 | #ifdef CONFIG_SCHED_MC |
7899 | if (!err && mc_capable()) | 7905 | if (!err && mc_capable()) |
7900 | err = sysfs_create_file(&cls->kset.kobj, | 7906 | err = sysfs_create_file(&cls->kset.kobj, |
7901 | &attr_sched_mc_power_savings.attr); | 7907 | &attr_sched_mc_power_savings.attr); |
7902 | #endif | 7908 | #endif |
7903 | return err; | 7909 | return err; |
7904 | } | 7910 | } |
7905 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | 7911 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ |
7906 | 7912 | ||
7907 | #ifndef CONFIG_CPUSETS | 7913 | #ifndef CONFIG_CPUSETS |
7908 | /* | 7914 | /* |
7909 | * Add online and remove offline CPUs from the scheduler domains. | 7915 | * Add online and remove offline CPUs from the scheduler domains. |
7910 | * When cpusets are enabled they take over this function. | 7916 | * When cpusets are enabled they take over this function. |
7911 | */ | 7917 | */ |
7912 | static int update_sched_domains(struct notifier_block *nfb, | 7918 | static int update_sched_domains(struct notifier_block *nfb, |
7913 | unsigned long action, void *hcpu) | 7919 | unsigned long action, void *hcpu) |
7914 | { | 7920 | { |
7915 | switch (action) { | 7921 | switch (action) { |
7916 | case CPU_ONLINE: | 7922 | case CPU_ONLINE: |
7917 | case CPU_ONLINE_FROZEN: | 7923 | case CPU_ONLINE_FROZEN: |
7918 | case CPU_DEAD: | 7924 | case CPU_DEAD: |
7919 | case CPU_DEAD_FROZEN: | 7925 | case CPU_DEAD_FROZEN: |
7920 | partition_sched_domains(1, NULL, NULL); | 7926 | partition_sched_domains(1, NULL, NULL); |
7921 | return NOTIFY_OK; | 7927 | return NOTIFY_OK; |
7922 | 7928 | ||
7923 | default: | 7929 | default: |
7924 | return NOTIFY_DONE; | 7930 | return NOTIFY_DONE; |
7925 | } | 7931 | } |
7926 | } | 7932 | } |
7927 | #endif | 7933 | #endif |
7928 | 7934 | ||
7929 | static int update_runtime(struct notifier_block *nfb, | 7935 | static int update_runtime(struct notifier_block *nfb, |
7930 | unsigned long action, void *hcpu) | 7936 | unsigned long action, void *hcpu) |
7931 | { | 7937 | { |
7932 | int cpu = (int)(long)hcpu; | 7938 | int cpu = (int)(long)hcpu; |
7933 | 7939 | ||
7934 | switch (action) { | 7940 | switch (action) { |
7935 | case CPU_DOWN_PREPARE: | 7941 | case CPU_DOWN_PREPARE: |
7936 | case CPU_DOWN_PREPARE_FROZEN: | 7942 | case CPU_DOWN_PREPARE_FROZEN: |
7937 | disable_runtime(cpu_rq(cpu)); | 7943 | disable_runtime(cpu_rq(cpu)); |
7938 | return NOTIFY_OK; | 7944 | return NOTIFY_OK; |
7939 | 7945 | ||
7940 | case CPU_DOWN_FAILED: | 7946 | case CPU_DOWN_FAILED: |
7941 | case CPU_DOWN_FAILED_FROZEN: | 7947 | case CPU_DOWN_FAILED_FROZEN: |
7942 | case CPU_ONLINE: | 7948 | case CPU_ONLINE: |
7943 | case CPU_ONLINE_FROZEN: | 7949 | case CPU_ONLINE_FROZEN: |
7944 | enable_runtime(cpu_rq(cpu)); | 7950 | enable_runtime(cpu_rq(cpu)); |
7945 | return NOTIFY_OK; | 7951 | return NOTIFY_OK; |
7946 | 7952 | ||
7947 | default: | 7953 | default: |
7948 | return NOTIFY_DONE; | 7954 | return NOTIFY_DONE; |
7949 | } | 7955 | } |
7950 | } | 7956 | } |
7951 | 7957 | ||
7952 | void __init sched_init_smp(void) | 7958 | void __init sched_init_smp(void) |
7953 | { | 7959 | { |
7954 | cpumask_t non_isolated_cpus; | 7960 | cpumask_t non_isolated_cpus; |
7955 | 7961 | ||
7956 | #if defined(CONFIG_NUMA) | 7962 | #if defined(CONFIG_NUMA) |
7957 | sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), | 7963 | sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), |
7958 | GFP_KERNEL); | 7964 | GFP_KERNEL); |
7959 | BUG_ON(sched_group_nodes_bycpu == NULL); | 7965 | BUG_ON(sched_group_nodes_bycpu == NULL); |
7960 | #endif | 7966 | #endif |
7961 | get_online_cpus(); | 7967 | get_online_cpus(); |
7962 | mutex_lock(&sched_domains_mutex); | 7968 | mutex_lock(&sched_domains_mutex); |
7963 | arch_init_sched_domains(&cpu_online_map); | 7969 | arch_init_sched_domains(&cpu_online_map); |
7964 | cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map); | 7970 | cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map); |
7965 | if (cpus_empty(non_isolated_cpus)) | 7971 | if (cpus_empty(non_isolated_cpus)) |
7966 | cpu_set(smp_processor_id(), non_isolated_cpus); | 7972 | cpu_set(smp_processor_id(), non_isolated_cpus); |
7967 | mutex_unlock(&sched_domains_mutex); | 7973 | mutex_unlock(&sched_domains_mutex); |
7968 | put_online_cpus(); | 7974 | put_online_cpus(); |
7969 | 7975 | ||
7970 | #ifndef CONFIG_CPUSETS | 7976 | #ifndef CONFIG_CPUSETS |
7971 | /* XXX: Theoretical race here - CPU may be hotplugged now */ | 7977 | /* XXX: Theoretical race here - CPU may be hotplugged now */ |
7972 | hotcpu_notifier(update_sched_domains, 0); | 7978 | hotcpu_notifier(update_sched_domains, 0); |
7973 | #endif | 7979 | #endif |
7974 | 7980 | ||
7975 | /* RT runtime code needs to handle some hotplug events */ | 7981 | /* RT runtime code needs to handle some hotplug events */ |
7976 | hotcpu_notifier(update_runtime, 0); | 7982 | hotcpu_notifier(update_runtime, 0); |
7977 | 7983 | ||
7978 | init_hrtick(); | 7984 | init_hrtick(); |
7979 | 7985 | ||
7980 | /* Move init over to a non-isolated CPU */ | 7986 | /* Move init over to a non-isolated CPU */ |
7981 | if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0) | 7987 | if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0) |
7982 | BUG(); | 7988 | BUG(); |
7983 | sched_init_granularity(); | 7989 | sched_init_granularity(); |
7984 | } | 7990 | } |
7985 | #else | 7991 | #else |
7986 | void __init sched_init_smp(void) | 7992 | void __init sched_init_smp(void) |
7987 | { | 7993 | { |
7988 | sched_init_granularity(); | 7994 | sched_init_granularity(); |
7989 | } | 7995 | } |
7990 | #endif /* CONFIG_SMP */ | 7996 | #endif /* CONFIG_SMP */ |
7991 | 7997 | ||
7992 | int in_sched_functions(unsigned long addr) | 7998 | int in_sched_functions(unsigned long addr) |
7993 | { | 7999 | { |
7994 | return in_lock_functions(addr) || | 8000 | return in_lock_functions(addr) || |
7995 | (addr >= (unsigned long)__sched_text_start | 8001 | (addr >= (unsigned long)__sched_text_start |
7996 | && addr < (unsigned long)__sched_text_end); | 8002 | && addr < (unsigned long)__sched_text_end); |
7997 | } | 8003 | } |
7998 | 8004 | ||
7999 | static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) | 8005 | static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) |
8000 | { | 8006 | { |
8001 | cfs_rq->tasks_timeline = RB_ROOT; | 8007 | cfs_rq->tasks_timeline = RB_ROOT; |
8002 | INIT_LIST_HEAD(&cfs_rq->tasks); | 8008 | INIT_LIST_HEAD(&cfs_rq->tasks); |
8003 | #ifdef CONFIG_FAIR_GROUP_SCHED | 8009 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8004 | cfs_rq->rq = rq; | 8010 | cfs_rq->rq = rq; |
8005 | #endif | 8011 | #endif |
8006 | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); | 8012 | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); |
8007 | } | 8013 | } |
8008 | 8014 | ||
8009 | static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) | 8015 | static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) |
8010 | { | 8016 | { |
8011 | struct rt_prio_array *array; | 8017 | struct rt_prio_array *array; |
8012 | int i; | 8018 | int i; |
8013 | 8019 | ||
8014 | array = &rt_rq->active; | 8020 | array = &rt_rq->active; |
8015 | for (i = 0; i < MAX_RT_PRIO; i++) { | 8021 | for (i = 0; i < MAX_RT_PRIO; i++) { |
8016 | INIT_LIST_HEAD(array->queue + i); | 8022 | INIT_LIST_HEAD(array->queue + i); |
8017 | __clear_bit(i, array->bitmap); | 8023 | __clear_bit(i, array->bitmap); |
8018 | } | 8024 | } |
8019 | /* delimiter for bitsearch: */ | 8025 | /* delimiter for bitsearch: */ |
8020 | __set_bit(MAX_RT_PRIO, array->bitmap); | 8026 | __set_bit(MAX_RT_PRIO, array->bitmap); |
8021 | 8027 | ||
8022 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 8028 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
8023 | rt_rq->highest_prio = MAX_RT_PRIO; | 8029 | rt_rq->highest_prio = MAX_RT_PRIO; |
8024 | #endif | 8030 | #endif |
8025 | #ifdef CONFIG_SMP | 8031 | #ifdef CONFIG_SMP |
8026 | rt_rq->rt_nr_migratory = 0; | 8032 | rt_rq->rt_nr_migratory = 0; |
8027 | rt_rq->overloaded = 0; | 8033 | rt_rq->overloaded = 0; |
8028 | #endif | 8034 | #endif |
8029 | 8035 | ||
8030 | rt_rq->rt_time = 0; | 8036 | rt_rq->rt_time = 0; |
8031 | rt_rq->rt_throttled = 0; | 8037 | rt_rq->rt_throttled = 0; |
8032 | rt_rq->rt_runtime = 0; | 8038 | rt_rq->rt_runtime = 0; |
8033 | spin_lock_init(&rt_rq->rt_runtime_lock); | 8039 | spin_lock_init(&rt_rq->rt_runtime_lock); |
8034 | 8040 | ||
8035 | #ifdef CONFIG_RT_GROUP_SCHED | 8041 | #ifdef CONFIG_RT_GROUP_SCHED |
8036 | rt_rq->rt_nr_boosted = 0; | 8042 | rt_rq->rt_nr_boosted = 0; |
8037 | rt_rq->rq = rq; | 8043 | rt_rq->rq = rq; |
8038 | #endif | 8044 | #endif |
8039 | } | 8045 | } |
8040 | 8046 | ||
8041 | #ifdef CONFIG_FAIR_GROUP_SCHED | 8047 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8042 | static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | 8048 | static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, |
8043 | struct sched_entity *se, int cpu, int add, | 8049 | struct sched_entity *se, int cpu, int add, |
8044 | struct sched_entity *parent) | 8050 | struct sched_entity *parent) |
8045 | { | 8051 | { |
8046 | struct rq *rq = cpu_rq(cpu); | 8052 | struct rq *rq = cpu_rq(cpu); |
8047 | tg->cfs_rq[cpu] = cfs_rq; | 8053 | tg->cfs_rq[cpu] = cfs_rq; |
8048 | init_cfs_rq(cfs_rq, rq); | 8054 | init_cfs_rq(cfs_rq, rq); |
8049 | cfs_rq->tg = tg; | 8055 | cfs_rq->tg = tg; |
8050 | if (add) | 8056 | if (add) |
8051 | list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); | 8057 | list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); |
8052 | 8058 | ||
8053 | tg->se[cpu] = se; | 8059 | tg->se[cpu] = se; |
8054 | /* se could be NULL for init_task_group */ | 8060 | /* se could be NULL for init_task_group */ |
8055 | if (!se) | 8061 | if (!se) |
8056 | return; | 8062 | return; |
8057 | 8063 | ||
8058 | if (!parent) | 8064 | if (!parent) |
8059 | se->cfs_rq = &rq->cfs; | 8065 | se->cfs_rq = &rq->cfs; |
8060 | else | 8066 | else |
8061 | se->cfs_rq = parent->my_q; | 8067 | se->cfs_rq = parent->my_q; |
8062 | 8068 | ||
8063 | se->my_q = cfs_rq; | 8069 | se->my_q = cfs_rq; |
8064 | se->load.weight = tg->shares; | 8070 | se->load.weight = tg->shares; |
8065 | se->load.inv_weight = 0; | 8071 | se->load.inv_weight = 0; |
8066 | se->parent = parent; | 8072 | se->parent = parent; |
8067 | } | 8073 | } |
8068 | #endif | 8074 | #endif |
8069 | 8075 | ||
8070 | #ifdef CONFIG_RT_GROUP_SCHED | 8076 | #ifdef CONFIG_RT_GROUP_SCHED |
8071 | static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | 8077 | static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, |
8072 | struct sched_rt_entity *rt_se, int cpu, int add, | 8078 | struct sched_rt_entity *rt_se, int cpu, int add, |
8073 | struct sched_rt_entity *parent) | 8079 | struct sched_rt_entity *parent) |
8074 | { | 8080 | { |
8075 | struct rq *rq = cpu_rq(cpu); | 8081 | struct rq *rq = cpu_rq(cpu); |
8076 | 8082 | ||
8077 | tg->rt_rq[cpu] = rt_rq; | 8083 | tg->rt_rq[cpu] = rt_rq; |
8078 | init_rt_rq(rt_rq, rq); | 8084 | init_rt_rq(rt_rq, rq); |
8079 | rt_rq->tg = tg; | 8085 | rt_rq->tg = tg; |
8080 | rt_rq->rt_se = rt_se; | 8086 | rt_rq->rt_se = rt_se; |
8081 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; | 8087 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; |
8082 | if (add) | 8088 | if (add) |
8083 | list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); | 8089 | list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); |
8084 | 8090 | ||
8085 | tg->rt_se[cpu] = rt_se; | 8091 | tg->rt_se[cpu] = rt_se; |
8086 | if (!rt_se) | 8092 | if (!rt_se) |
8087 | return; | 8093 | return; |
8088 | 8094 | ||
8089 | if (!parent) | 8095 | if (!parent) |
8090 | rt_se->rt_rq = &rq->rt; | 8096 | rt_se->rt_rq = &rq->rt; |
8091 | else | 8097 | else |
8092 | rt_se->rt_rq = parent->my_q; | 8098 | rt_se->rt_rq = parent->my_q; |
8093 | 8099 | ||
8094 | rt_se->my_q = rt_rq; | 8100 | rt_se->my_q = rt_rq; |
8095 | rt_se->parent = parent; | 8101 | rt_se->parent = parent; |
8096 | INIT_LIST_HEAD(&rt_se->run_list); | 8102 | INIT_LIST_HEAD(&rt_se->run_list); |
8097 | } | 8103 | } |
8098 | #endif | 8104 | #endif |
8099 | 8105 | ||
8100 | void __init sched_init(void) | 8106 | void __init sched_init(void) |
8101 | { | 8107 | { |
8102 | int i, j; | 8108 | int i, j; |
8103 | unsigned long alloc_size = 0, ptr; | 8109 | unsigned long alloc_size = 0, ptr; |
8104 | 8110 | ||
8105 | #ifdef CONFIG_FAIR_GROUP_SCHED | 8111 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8106 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | 8112 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); |
8107 | #endif | 8113 | #endif |
8108 | #ifdef CONFIG_RT_GROUP_SCHED | 8114 | #ifdef CONFIG_RT_GROUP_SCHED |
8109 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | 8115 | alloc_size += 2 * nr_cpu_ids * sizeof(void **); |
8110 | #endif | 8116 | #endif |
8111 | #ifdef CONFIG_USER_SCHED | 8117 | #ifdef CONFIG_USER_SCHED |
8112 | alloc_size *= 2; | 8118 | alloc_size *= 2; |
8113 | #endif | 8119 | #endif |
8114 | /* | 8120 | /* |
8115 | * As sched_init() is called before page_alloc is setup, | 8121 | * As sched_init() is called before page_alloc is setup, |
8116 | * we use alloc_bootmem(). | 8122 | * we use alloc_bootmem(). |
8117 | */ | 8123 | */ |
8118 | if (alloc_size) { | 8124 | if (alloc_size) { |
8119 | ptr = (unsigned long)alloc_bootmem(alloc_size); | 8125 | ptr = (unsigned long)alloc_bootmem(alloc_size); |
8120 | 8126 | ||
8121 | #ifdef CONFIG_FAIR_GROUP_SCHED | 8127 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8122 | init_task_group.se = (struct sched_entity **)ptr; | 8128 | init_task_group.se = (struct sched_entity **)ptr; |
8123 | ptr += nr_cpu_ids * sizeof(void **); | 8129 | ptr += nr_cpu_ids * sizeof(void **); |
8124 | 8130 | ||
8125 | init_task_group.cfs_rq = (struct cfs_rq **)ptr; | 8131 | init_task_group.cfs_rq = (struct cfs_rq **)ptr; |
8126 | ptr += nr_cpu_ids * sizeof(void **); | 8132 | ptr += nr_cpu_ids * sizeof(void **); |
8127 | 8133 | ||
8128 | #ifdef CONFIG_USER_SCHED | 8134 | #ifdef CONFIG_USER_SCHED |
8129 | root_task_group.se = (struct sched_entity **)ptr; | 8135 | root_task_group.se = (struct sched_entity **)ptr; |
8130 | ptr += nr_cpu_ids * sizeof(void **); | 8136 | ptr += nr_cpu_ids * sizeof(void **); |
8131 | 8137 | ||
8132 | root_task_group.cfs_rq = (struct cfs_rq **)ptr; | 8138 | root_task_group.cfs_rq = (struct cfs_rq **)ptr; |
8133 | ptr += nr_cpu_ids * sizeof(void **); | 8139 | ptr += nr_cpu_ids * sizeof(void **); |
8134 | #endif /* CONFIG_USER_SCHED */ | 8140 | #endif /* CONFIG_USER_SCHED */ |
8135 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 8141 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
8136 | #ifdef CONFIG_RT_GROUP_SCHED | 8142 | #ifdef CONFIG_RT_GROUP_SCHED |
8137 | init_task_group.rt_se = (struct sched_rt_entity **)ptr; | 8143 | init_task_group.rt_se = (struct sched_rt_entity **)ptr; |
8138 | ptr += nr_cpu_ids * sizeof(void **); | 8144 | ptr += nr_cpu_ids * sizeof(void **); |
8139 | 8145 | ||
8140 | init_task_group.rt_rq = (struct rt_rq **)ptr; | 8146 | init_task_group.rt_rq = (struct rt_rq **)ptr; |
8141 | ptr += nr_cpu_ids * sizeof(void **); | 8147 | ptr += nr_cpu_ids * sizeof(void **); |
8142 | 8148 | ||
8143 | #ifdef CONFIG_USER_SCHED | 8149 | #ifdef CONFIG_USER_SCHED |
8144 | root_task_group.rt_se = (struct sched_rt_entity **)ptr; | 8150 | root_task_group.rt_se = (struct sched_rt_entity **)ptr; |
8145 | ptr += nr_cpu_ids * sizeof(void **); | 8151 | ptr += nr_cpu_ids * sizeof(void **); |
8146 | 8152 | ||
8147 | root_task_group.rt_rq = (struct rt_rq **)ptr; | 8153 | root_task_group.rt_rq = (struct rt_rq **)ptr; |
8148 | ptr += nr_cpu_ids * sizeof(void **); | 8154 | ptr += nr_cpu_ids * sizeof(void **); |
8149 | #endif /* CONFIG_USER_SCHED */ | 8155 | #endif /* CONFIG_USER_SCHED */ |
8150 | #endif /* CONFIG_RT_GROUP_SCHED */ | 8156 | #endif /* CONFIG_RT_GROUP_SCHED */ |
8151 | } | 8157 | } |
8152 | 8158 | ||
8153 | #ifdef CONFIG_SMP | 8159 | #ifdef CONFIG_SMP |
8154 | init_defrootdomain(); | 8160 | init_defrootdomain(); |
8155 | #endif | 8161 | #endif |
8156 | 8162 | ||
8157 | init_rt_bandwidth(&def_rt_bandwidth, | 8163 | init_rt_bandwidth(&def_rt_bandwidth, |
8158 | global_rt_period(), global_rt_runtime()); | 8164 | global_rt_period(), global_rt_runtime()); |
8159 | 8165 | ||
8160 | #ifdef CONFIG_RT_GROUP_SCHED | 8166 | #ifdef CONFIG_RT_GROUP_SCHED |
8161 | init_rt_bandwidth(&init_task_group.rt_bandwidth, | 8167 | init_rt_bandwidth(&init_task_group.rt_bandwidth, |
8162 | global_rt_period(), global_rt_runtime()); | 8168 | global_rt_period(), global_rt_runtime()); |
8163 | #ifdef CONFIG_USER_SCHED | 8169 | #ifdef CONFIG_USER_SCHED |
8164 | init_rt_bandwidth(&root_task_group.rt_bandwidth, | 8170 | init_rt_bandwidth(&root_task_group.rt_bandwidth, |
8165 | global_rt_period(), RUNTIME_INF); | 8171 | global_rt_period(), RUNTIME_INF); |
8166 | #endif /* CONFIG_USER_SCHED */ | 8172 | #endif /* CONFIG_USER_SCHED */ |
8167 | #endif /* CONFIG_RT_GROUP_SCHED */ | 8173 | #endif /* CONFIG_RT_GROUP_SCHED */ |
8168 | 8174 | ||
8169 | #ifdef CONFIG_GROUP_SCHED | 8175 | #ifdef CONFIG_GROUP_SCHED |
8170 | list_add(&init_task_group.list, &task_groups); | 8176 | list_add(&init_task_group.list, &task_groups); |
8171 | INIT_LIST_HEAD(&init_task_group.children); | 8177 | INIT_LIST_HEAD(&init_task_group.children); |
8172 | 8178 | ||
8173 | #ifdef CONFIG_USER_SCHED | 8179 | #ifdef CONFIG_USER_SCHED |
8174 | INIT_LIST_HEAD(&root_task_group.children); | 8180 | INIT_LIST_HEAD(&root_task_group.children); |
8175 | init_task_group.parent = &root_task_group; | 8181 | init_task_group.parent = &root_task_group; |
8176 | list_add(&init_task_group.siblings, &root_task_group.children); | 8182 | list_add(&init_task_group.siblings, &root_task_group.children); |
8177 | #endif /* CONFIG_USER_SCHED */ | 8183 | #endif /* CONFIG_USER_SCHED */ |
8178 | #endif /* CONFIG_GROUP_SCHED */ | 8184 | #endif /* CONFIG_GROUP_SCHED */ |
8179 | 8185 | ||
8180 | for_each_possible_cpu(i) { | 8186 | for_each_possible_cpu(i) { |
8181 | struct rq *rq; | 8187 | struct rq *rq; |
8182 | 8188 | ||
8183 | rq = cpu_rq(i); | 8189 | rq = cpu_rq(i); |
8184 | spin_lock_init(&rq->lock); | 8190 | spin_lock_init(&rq->lock); |
8185 | rq->nr_running = 0; | 8191 | rq->nr_running = 0; |
8186 | init_cfs_rq(&rq->cfs, rq); | 8192 | init_cfs_rq(&rq->cfs, rq); |
8187 | init_rt_rq(&rq->rt, rq); | 8193 | init_rt_rq(&rq->rt, rq); |
8188 | #ifdef CONFIG_FAIR_GROUP_SCHED | 8194 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8189 | init_task_group.shares = init_task_group_load; | 8195 | init_task_group.shares = init_task_group_load; |
8190 | INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); | 8196 | INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); |
8191 | #ifdef CONFIG_CGROUP_SCHED | 8197 | #ifdef CONFIG_CGROUP_SCHED |
8192 | /* | 8198 | /* |
8193 | * How much cpu bandwidth does init_task_group get? | 8199 | * How much cpu bandwidth does init_task_group get? |
8194 | * | 8200 | * |
8195 | * In case of task-groups formed thr' the cgroup filesystem, it | 8201 | * In case of task-groups formed thr' the cgroup filesystem, it |
8196 | * gets 100% of the cpu resources in the system. This overall | 8202 | * gets 100% of the cpu resources in the system. This overall |
8197 | * system cpu resource is divided among the tasks of | 8203 | * system cpu resource is divided among the tasks of |
8198 | * init_task_group and its child task-groups in a fair manner, | 8204 | * init_task_group and its child task-groups in a fair manner, |
8199 | * based on each entity's (task or task-group's) weight | 8205 | * based on each entity's (task or task-group's) weight |
8200 | * (se->load.weight). | 8206 | * (se->load.weight). |
8201 | * | 8207 | * |
8202 | * In other words, if init_task_group has 10 tasks of weight | 8208 | * In other words, if init_task_group has 10 tasks of weight |
8203 | * 1024) and two child groups A0 and A1 (of weight 1024 each), | 8209 | * 1024) and two child groups A0 and A1 (of weight 1024 each), |
8204 | * then A0's share of the cpu resource is: | 8210 | * then A0's share of the cpu resource is: |
8205 | * | 8211 | * |
8206 | * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% | 8212 | * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% |
8207 | * | 8213 | * |
8208 | * We achieve this by letting init_task_group's tasks sit | 8214 | * We achieve this by letting init_task_group's tasks sit |
8209 | * directly in rq->cfs (i.e init_task_group->se[] = NULL). | 8215 | * directly in rq->cfs (i.e init_task_group->se[] = NULL). |
8210 | */ | 8216 | */ |
8211 | init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); | 8217 | init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); |
8212 | #elif defined CONFIG_USER_SCHED | 8218 | #elif defined CONFIG_USER_SCHED |
8213 | root_task_group.shares = NICE_0_LOAD; | 8219 | root_task_group.shares = NICE_0_LOAD; |
8214 | init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL); | 8220 | init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL); |
8215 | /* | 8221 | /* |
8216 | * In case of task-groups formed thr' the user id of tasks, | 8222 | * In case of task-groups formed thr' the user id of tasks, |
8217 | * init_task_group represents tasks belonging to root user. | 8223 | * init_task_group represents tasks belonging to root user. |
8218 | * Hence it forms a sibling of all subsequent groups formed. | 8224 | * Hence it forms a sibling of all subsequent groups formed. |
8219 | * In this case, init_task_group gets only a fraction of overall | 8225 | * In this case, init_task_group gets only a fraction of overall |
8220 | * system cpu resource, based on the weight assigned to root | 8226 | * system cpu resource, based on the weight assigned to root |
8221 | * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished | 8227 | * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished |
8222 | * by letting tasks of init_task_group sit in a separate cfs_rq | 8228 | * by letting tasks of init_task_group sit in a separate cfs_rq |
8223 | * (init_cfs_rq) and having one entity represent this group of | 8229 | * (init_cfs_rq) and having one entity represent this group of |
8224 | * tasks in rq->cfs (i.e init_task_group->se[] != NULL). | 8230 | * tasks in rq->cfs (i.e init_task_group->se[] != NULL). |
8225 | */ | 8231 | */ |
8226 | init_tg_cfs_entry(&init_task_group, | 8232 | init_tg_cfs_entry(&init_task_group, |
8227 | &per_cpu(init_cfs_rq, i), | 8233 | &per_cpu(init_cfs_rq, i), |
8228 | &per_cpu(init_sched_entity, i), i, 1, | 8234 | &per_cpu(init_sched_entity, i), i, 1, |
8229 | root_task_group.se[i]); | 8235 | root_task_group.se[i]); |
8230 | 8236 | ||
8231 | #endif | 8237 | #endif |
8232 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 8238 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
8233 | 8239 | ||
8234 | rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; | 8240 | rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; |
8235 | #ifdef CONFIG_RT_GROUP_SCHED | 8241 | #ifdef CONFIG_RT_GROUP_SCHED |
8236 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); | 8242 | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); |
8237 | #ifdef CONFIG_CGROUP_SCHED | 8243 | #ifdef CONFIG_CGROUP_SCHED |
8238 | init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); | 8244 | init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); |
8239 | #elif defined CONFIG_USER_SCHED | 8245 | #elif defined CONFIG_USER_SCHED |
8240 | init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); | 8246 | init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); |
8241 | init_tg_rt_entry(&init_task_group, | 8247 | init_tg_rt_entry(&init_task_group, |
8242 | &per_cpu(init_rt_rq, i), | 8248 | &per_cpu(init_rt_rq, i), |
8243 | &per_cpu(init_sched_rt_entity, i), i, 1, | 8249 | &per_cpu(init_sched_rt_entity, i), i, 1, |
8244 | root_task_group.rt_se[i]); | 8250 | root_task_group.rt_se[i]); |
8245 | #endif | 8251 | #endif |
8246 | #endif | 8252 | #endif |
8247 | 8253 | ||
8248 | for (j = 0; j < CPU_LOAD_IDX_MAX; j++) | 8254 | for (j = 0; j < CPU_LOAD_IDX_MAX; j++) |
8249 | rq->cpu_load[j] = 0; | 8255 | rq->cpu_load[j] = 0; |
8250 | #ifdef CONFIG_SMP | 8256 | #ifdef CONFIG_SMP |
8251 | rq->sd = NULL; | 8257 | rq->sd = NULL; |
8252 | rq->rd = NULL; | 8258 | rq->rd = NULL; |
8253 | rq->active_balance = 0; | 8259 | rq->active_balance = 0; |
8254 | rq->next_balance = jiffies; | 8260 | rq->next_balance = jiffies; |
8255 | rq->push_cpu = 0; | 8261 | rq->push_cpu = 0; |
8256 | rq->cpu = i; | 8262 | rq->cpu = i; |
8257 | rq->online = 0; | 8263 | rq->online = 0; |
8258 | rq->migration_thread = NULL; | 8264 | rq->migration_thread = NULL; |
8259 | INIT_LIST_HEAD(&rq->migration_queue); | 8265 | INIT_LIST_HEAD(&rq->migration_queue); |
8260 | rq_attach_root(rq, &def_root_domain); | 8266 | rq_attach_root(rq, &def_root_domain); |
8261 | #endif | 8267 | #endif |
8262 | init_rq_hrtick(rq); | 8268 | init_rq_hrtick(rq); |
8263 | atomic_set(&rq->nr_iowait, 0); | 8269 | atomic_set(&rq->nr_iowait, 0); |
8264 | } | 8270 | } |
8265 | 8271 | ||
8266 | set_load_weight(&init_task); | 8272 | set_load_weight(&init_task); |
8267 | 8273 | ||
8268 | #ifdef CONFIG_PREEMPT_NOTIFIERS | 8274 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
8269 | INIT_HLIST_HEAD(&init_task.preempt_notifiers); | 8275 | INIT_HLIST_HEAD(&init_task.preempt_notifiers); |
8270 | #endif | 8276 | #endif |
8271 | 8277 | ||
8272 | #ifdef CONFIG_SMP | 8278 | #ifdef CONFIG_SMP |
8273 | open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); | 8279 | open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); |
8274 | #endif | 8280 | #endif |
8275 | 8281 | ||
8276 | #ifdef CONFIG_RT_MUTEXES | 8282 | #ifdef CONFIG_RT_MUTEXES |
8277 | plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); | 8283 | plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); |
8278 | #endif | 8284 | #endif |
8279 | 8285 | ||
8280 | /* | 8286 | /* |
8281 | * The boot idle thread does lazy MMU switching as well: | 8287 | * The boot idle thread does lazy MMU switching as well: |
8282 | */ | 8288 | */ |
8283 | atomic_inc(&init_mm.mm_count); | 8289 | atomic_inc(&init_mm.mm_count); |
8284 | enter_lazy_tlb(&init_mm, current); | 8290 | enter_lazy_tlb(&init_mm, current); |
8285 | 8291 | ||
8286 | /* | 8292 | /* |
8287 | * Make us the idle thread. Technically, schedule() should not be | 8293 | * Make us the idle thread. Technically, schedule() should not be |
8288 | * called from this thread, however somewhere below it might be, | 8294 | * called from this thread, however somewhere below it might be, |
8289 | * but because we are the idle thread, we just pick up running again | 8295 | * but because we are the idle thread, we just pick up running again |
8290 | * when this runqueue becomes "idle". | 8296 | * when this runqueue becomes "idle". |
8291 | */ | 8297 | */ |
8292 | init_idle(current, smp_processor_id()); | 8298 | init_idle(current, smp_processor_id()); |
8293 | /* | 8299 | /* |
8294 | * During early bootup we pretend to be a normal task: | 8300 | * During early bootup we pretend to be a normal task: |
8295 | */ | 8301 | */ |
8296 | current->sched_class = &fair_sched_class; | 8302 | current->sched_class = &fair_sched_class; |
8297 | 8303 | ||
8298 | scheduler_running = 1; | 8304 | scheduler_running = 1; |
8299 | } | 8305 | } |
8300 | 8306 | ||
8301 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 8307 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP |
8302 | void __might_sleep(char *file, int line) | 8308 | void __might_sleep(char *file, int line) |
8303 | { | 8309 | { |
8304 | #ifdef in_atomic | 8310 | #ifdef in_atomic |
8305 | static unsigned long prev_jiffy; /* ratelimiting */ | 8311 | static unsigned long prev_jiffy; /* ratelimiting */ |
8306 | 8312 | ||
8307 | if ((!in_atomic() && !irqs_disabled()) || | 8313 | if ((!in_atomic() && !irqs_disabled()) || |
8308 | system_state != SYSTEM_RUNNING || oops_in_progress) | 8314 | system_state != SYSTEM_RUNNING || oops_in_progress) |
8309 | return; | 8315 | return; |
8310 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | 8316 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) |
8311 | return; | 8317 | return; |
8312 | prev_jiffy = jiffies; | 8318 | prev_jiffy = jiffies; |
8313 | 8319 | ||
8314 | printk(KERN_ERR | 8320 | printk(KERN_ERR |
8315 | "BUG: sleeping function called from invalid context at %s:%d\n", | 8321 | "BUG: sleeping function called from invalid context at %s:%d\n", |
8316 | file, line); | 8322 | file, line); |
8317 | printk(KERN_ERR | 8323 | printk(KERN_ERR |
8318 | "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", | 8324 | "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", |
8319 | in_atomic(), irqs_disabled(), | 8325 | in_atomic(), irqs_disabled(), |
8320 | current->pid, current->comm); | 8326 | current->pid, current->comm); |
8321 | 8327 | ||
8322 | debug_show_held_locks(current); | 8328 | debug_show_held_locks(current); |
8323 | if (irqs_disabled()) | 8329 | if (irqs_disabled()) |
8324 | print_irqtrace_events(current); | 8330 | print_irqtrace_events(current); |
8325 | dump_stack(); | 8331 | dump_stack(); |
8326 | #endif | 8332 | #endif |
8327 | } | 8333 | } |
8328 | EXPORT_SYMBOL(__might_sleep); | 8334 | EXPORT_SYMBOL(__might_sleep); |
8329 | #endif | 8335 | #endif |
8330 | 8336 | ||
8331 | #ifdef CONFIG_MAGIC_SYSRQ | 8337 | #ifdef CONFIG_MAGIC_SYSRQ |
8332 | static void normalize_task(struct rq *rq, struct task_struct *p) | 8338 | static void normalize_task(struct rq *rq, struct task_struct *p) |
8333 | { | 8339 | { |
8334 | int on_rq; | 8340 | int on_rq; |
8335 | 8341 | ||
8336 | update_rq_clock(rq); | 8342 | update_rq_clock(rq); |
8337 | on_rq = p->se.on_rq; | 8343 | on_rq = p->se.on_rq; |
8338 | if (on_rq) | 8344 | if (on_rq) |
8339 | deactivate_task(rq, p, 0); | 8345 | deactivate_task(rq, p, 0); |
8340 | __setscheduler(rq, p, SCHED_NORMAL, 0); | 8346 | __setscheduler(rq, p, SCHED_NORMAL, 0); |
8341 | if (on_rq) { | 8347 | if (on_rq) { |
8342 | activate_task(rq, p, 0); | 8348 | activate_task(rq, p, 0); |
8343 | resched_task(rq->curr); | 8349 | resched_task(rq->curr); |
8344 | } | 8350 | } |
8345 | } | 8351 | } |
8346 | 8352 | ||
8347 | void normalize_rt_tasks(void) | 8353 | void normalize_rt_tasks(void) |
8348 | { | 8354 | { |
8349 | struct task_struct *g, *p; | 8355 | struct task_struct *g, *p; |
8350 | unsigned long flags; | 8356 | unsigned long flags; |
8351 | struct rq *rq; | 8357 | struct rq *rq; |
8352 | 8358 | ||
8353 | read_lock_irqsave(&tasklist_lock, flags); | 8359 | read_lock_irqsave(&tasklist_lock, flags); |
8354 | do_each_thread(g, p) { | 8360 | do_each_thread(g, p) { |
8355 | /* | 8361 | /* |
8356 | * Only normalize user tasks: | 8362 | * Only normalize user tasks: |
8357 | */ | 8363 | */ |
8358 | if (!p->mm) | 8364 | if (!p->mm) |
8359 | continue; | 8365 | continue; |
8360 | 8366 | ||
8361 | p->se.exec_start = 0; | 8367 | p->se.exec_start = 0; |
8362 | #ifdef CONFIG_SCHEDSTATS | 8368 | #ifdef CONFIG_SCHEDSTATS |
8363 | p->se.wait_start = 0; | 8369 | p->se.wait_start = 0; |
8364 | p->se.sleep_start = 0; | 8370 | p->se.sleep_start = 0; |
8365 | p->se.block_start = 0; | 8371 | p->se.block_start = 0; |
8366 | #endif | 8372 | #endif |
8367 | 8373 | ||
8368 | if (!rt_task(p)) { | 8374 | if (!rt_task(p)) { |
8369 | /* | 8375 | /* |
8370 | * Renice negative nice level userspace | 8376 | * Renice negative nice level userspace |
8371 | * tasks back to 0: | 8377 | * tasks back to 0: |
8372 | */ | 8378 | */ |
8373 | if (TASK_NICE(p) < 0 && p->mm) | 8379 | if (TASK_NICE(p) < 0 && p->mm) |
8374 | set_user_nice(p, 0); | 8380 | set_user_nice(p, 0); |
8375 | continue; | 8381 | continue; |
8376 | } | 8382 | } |
8377 | 8383 | ||
8378 | spin_lock(&p->pi_lock); | 8384 | spin_lock(&p->pi_lock); |
8379 | rq = __task_rq_lock(p); | 8385 | rq = __task_rq_lock(p); |
8380 | 8386 | ||
8381 | normalize_task(rq, p); | 8387 | normalize_task(rq, p); |
8382 | 8388 | ||
8383 | __task_rq_unlock(rq); | 8389 | __task_rq_unlock(rq); |
8384 | spin_unlock(&p->pi_lock); | 8390 | spin_unlock(&p->pi_lock); |
8385 | } while_each_thread(g, p); | 8391 | } while_each_thread(g, p); |
8386 | 8392 | ||
8387 | read_unlock_irqrestore(&tasklist_lock, flags); | 8393 | read_unlock_irqrestore(&tasklist_lock, flags); |
8388 | } | 8394 | } |
8389 | 8395 | ||
8390 | #endif /* CONFIG_MAGIC_SYSRQ */ | 8396 | #endif /* CONFIG_MAGIC_SYSRQ */ |
8391 | 8397 | ||
8392 | #ifdef CONFIG_IA64 | 8398 | #ifdef CONFIG_IA64 |
8393 | /* | 8399 | /* |
8394 | * These functions are only useful for the IA64 MCA handling. | 8400 | * These functions are only useful for the IA64 MCA handling. |
8395 | * | 8401 | * |
8396 | * They can only be called when the whole system has been | 8402 | * They can only be called when the whole system has been |
8397 | * stopped - every CPU needs to be quiescent, and no scheduling | 8403 | * stopped - every CPU needs to be quiescent, and no scheduling |
8398 | * activity can take place. Using them for anything else would | 8404 | * activity can take place. Using them for anything else would |
8399 | * be a serious bug, and as a result, they aren't even visible | 8405 | * be a serious bug, and as a result, they aren't even visible |
8400 | * under any other configuration. | 8406 | * under any other configuration. |
8401 | */ | 8407 | */ |
8402 | 8408 | ||
8403 | /** | 8409 | /** |
8404 | * curr_task - return the current task for a given cpu. | 8410 | * curr_task - return the current task for a given cpu. |
8405 | * @cpu: the processor in question. | 8411 | * @cpu: the processor in question. |
8406 | * | 8412 | * |
8407 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 8413 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! |
8408 | */ | 8414 | */ |
8409 | struct task_struct *curr_task(int cpu) | 8415 | struct task_struct *curr_task(int cpu) |
8410 | { | 8416 | { |
8411 | return cpu_curr(cpu); | 8417 | return cpu_curr(cpu); |
8412 | } | 8418 | } |
8413 | 8419 | ||
8414 | /** | 8420 | /** |
8415 | * set_curr_task - set the current task for a given cpu. | 8421 | * set_curr_task - set the current task for a given cpu. |
8416 | * @cpu: the processor in question. | 8422 | * @cpu: the processor in question. |
8417 | * @p: the task pointer to set. | 8423 | * @p: the task pointer to set. |
8418 | * | 8424 | * |
8419 | * Description: This function must only be used when non-maskable interrupts | 8425 | * Description: This function must only be used when non-maskable interrupts |
8420 | * are serviced on a separate stack. It allows the architecture to switch the | 8426 | * are serviced on a separate stack. It allows the architecture to switch the |
8421 | * notion of the current task on a cpu in a non-blocking manner. This function | 8427 | * notion of the current task on a cpu in a non-blocking manner. This function |
8422 | * must be called with all CPU's synchronized, and interrupts disabled, the | 8428 | * must be called with all CPU's synchronized, and interrupts disabled, the |
8423 | * and caller must save the original value of the current task (see | 8429 | * and caller must save the original value of the current task (see |
8424 | * curr_task() above) and restore that value before reenabling interrupts and | 8430 | * curr_task() above) and restore that value before reenabling interrupts and |
8425 | * re-starting the system. | 8431 | * re-starting the system. |
8426 | * | 8432 | * |
8427 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 8433 | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! |
8428 | */ | 8434 | */ |
8429 | void set_curr_task(int cpu, struct task_struct *p) | 8435 | void set_curr_task(int cpu, struct task_struct *p) |
8430 | { | 8436 | { |
8431 | cpu_curr(cpu) = p; | 8437 | cpu_curr(cpu) = p; |
8432 | } | 8438 | } |
8433 | 8439 | ||
8434 | #endif | 8440 | #endif |
8435 | 8441 | ||
8436 | #ifdef CONFIG_FAIR_GROUP_SCHED | 8442 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8437 | static void free_fair_sched_group(struct task_group *tg) | 8443 | static void free_fair_sched_group(struct task_group *tg) |
8438 | { | 8444 | { |
8439 | int i; | 8445 | int i; |
8440 | 8446 | ||
8441 | for_each_possible_cpu(i) { | 8447 | for_each_possible_cpu(i) { |
8442 | if (tg->cfs_rq) | 8448 | if (tg->cfs_rq) |
8443 | kfree(tg->cfs_rq[i]); | 8449 | kfree(tg->cfs_rq[i]); |
8444 | if (tg->se) | 8450 | if (tg->se) |
8445 | kfree(tg->se[i]); | 8451 | kfree(tg->se[i]); |
8446 | } | 8452 | } |
8447 | 8453 | ||
8448 | kfree(tg->cfs_rq); | 8454 | kfree(tg->cfs_rq); |
8449 | kfree(tg->se); | 8455 | kfree(tg->se); |
8450 | } | 8456 | } |
8451 | 8457 | ||
8452 | static | 8458 | static |
8453 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | 8459 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) |
8454 | { | 8460 | { |
8455 | struct cfs_rq *cfs_rq; | 8461 | struct cfs_rq *cfs_rq; |
8456 | struct sched_entity *se; | 8462 | struct sched_entity *se; |
8457 | struct rq *rq; | 8463 | struct rq *rq; |
8458 | int i; | 8464 | int i; |
8459 | 8465 | ||
8460 | tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); | 8466 | tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); |
8461 | if (!tg->cfs_rq) | 8467 | if (!tg->cfs_rq) |
8462 | goto err; | 8468 | goto err; |
8463 | tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); | 8469 | tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); |
8464 | if (!tg->se) | 8470 | if (!tg->se) |
8465 | goto err; | 8471 | goto err; |
8466 | 8472 | ||
8467 | tg->shares = NICE_0_LOAD; | 8473 | tg->shares = NICE_0_LOAD; |
8468 | 8474 | ||
8469 | for_each_possible_cpu(i) { | 8475 | for_each_possible_cpu(i) { |
8470 | rq = cpu_rq(i); | 8476 | rq = cpu_rq(i); |
8471 | 8477 | ||
8472 | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), | 8478 | cfs_rq = kzalloc_node(sizeof(struct cfs_rq), |
8473 | GFP_KERNEL, cpu_to_node(i)); | 8479 | GFP_KERNEL, cpu_to_node(i)); |
8474 | if (!cfs_rq) | 8480 | if (!cfs_rq) |
8475 | goto err; | 8481 | goto err; |
8476 | 8482 | ||
8477 | se = kzalloc_node(sizeof(struct sched_entity), | 8483 | se = kzalloc_node(sizeof(struct sched_entity), |
8478 | GFP_KERNEL, cpu_to_node(i)); | 8484 | GFP_KERNEL, cpu_to_node(i)); |
8479 | if (!se) | 8485 | if (!se) |
8480 | goto err; | 8486 | goto err; |
8481 | 8487 | ||
8482 | init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); | 8488 | init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); |
8483 | } | 8489 | } |
8484 | 8490 | ||
8485 | return 1; | 8491 | return 1; |
8486 | 8492 | ||
8487 | err: | 8493 | err: |
8488 | return 0; | 8494 | return 0; |
8489 | } | 8495 | } |
8490 | 8496 | ||
8491 | static inline void register_fair_sched_group(struct task_group *tg, int cpu) | 8497 | static inline void register_fair_sched_group(struct task_group *tg, int cpu) |
8492 | { | 8498 | { |
8493 | list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list, | 8499 | list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list, |
8494 | &cpu_rq(cpu)->leaf_cfs_rq_list); | 8500 | &cpu_rq(cpu)->leaf_cfs_rq_list); |
8495 | } | 8501 | } |
8496 | 8502 | ||
8497 | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) | 8503 | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) |
8498 | { | 8504 | { |
8499 | list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list); | 8505 | list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list); |
8500 | } | 8506 | } |
8501 | #else /* !CONFG_FAIR_GROUP_SCHED */ | 8507 | #else /* !CONFG_FAIR_GROUP_SCHED */ |
8502 | static inline void free_fair_sched_group(struct task_group *tg) | 8508 | static inline void free_fair_sched_group(struct task_group *tg) |
8503 | { | 8509 | { |
8504 | } | 8510 | } |
8505 | 8511 | ||
8506 | static inline | 8512 | static inline |
8507 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | 8513 | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) |
8508 | { | 8514 | { |
8509 | return 1; | 8515 | return 1; |
8510 | } | 8516 | } |
8511 | 8517 | ||
8512 | static inline void register_fair_sched_group(struct task_group *tg, int cpu) | 8518 | static inline void register_fair_sched_group(struct task_group *tg, int cpu) |
8513 | { | 8519 | { |
8514 | } | 8520 | } |
8515 | 8521 | ||
8516 | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) | 8522 | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) |
8517 | { | 8523 | { |
8518 | } | 8524 | } |
8519 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 8525 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
8520 | 8526 | ||
8521 | #ifdef CONFIG_RT_GROUP_SCHED | 8527 | #ifdef CONFIG_RT_GROUP_SCHED |
8522 | static void free_rt_sched_group(struct task_group *tg) | 8528 | static void free_rt_sched_group(struct task_group *tg) |
8523 | { | 8529 | { |
8524 | int i; | 8530 | int i; |
8525 | 8531 | ||
8526 | destroy_rt_bandwidth(&tg->rt_bandwidth); | 8532 | destroy_rt_bandwidth(&tg->rt_bandwidth); |
8527 | 8533 | ||
8528 | for_each_possible_cpu(i) { | 8534 | for_each_possible_cpu(i) { |
8529 | if (tg->rt_rq) | 8535 | if (tg->rt_rq) |
8530 | kfree(tg->rt_rq[i]); | 8536 | kfree(tg->rt_rq[i]); |
8531 | if (tg->rt_se) | 8537 | if (tg->rt_se) |
8532 | kfree(tg->rt_se[i]); | 8538 | kfree(tg->rt_se[i]); |
8533 | } | 8539 | } |
8534 | 8540 | ||
8535 | kfree(tg->rt_rq); | 8541 | kfree(tg->rt_rq); |
8536 | kfree(tg->rt_se); | 8542 | kfree(tg->rt_se); |
8537 | } | 8543 | } |
8538 | 8544 | ||
8539 | static | 8545 | static |
8540 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | 8546 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) |
8541 | { | 8547 | { |
8542 | struct rt_rq *rt_rq; | 8548 | struct rt_rq *rt_rq; |
8543 | struct sched_rt_entity *rt_se; | 8549 | struct sched_rt_entity *rt_se; |
8544 | struct rq *rq; | 8550 | struct rq *rq; |
8545 | int i; | 8551 | int i; |
8546 | 8552 | ||
8547 | tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); | 8553 | tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); |
8548 | if (!tg->rt_rq) | 8554 | if (!tg->rt_rq) |
8549 | goto err; | 8555 | goto err; |
8550 | tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); | 8556 | tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); |
8551 | if (!tg->rt_se) | 8557 | if (!tg->rt_se) |
8552 | goto err; | 8558 | goto err; |
8553 | 8559 | ||
8554 | init_rt_bandwidth(&tg->rt_bandwidth, | 8560 | init_rt_bandwidth(&tg->rt_bandwidth, |
8555 | ktime_to_ns(def_rt_bandwidth.rt_period), 0); | 8561 | ktime_to_ns(def_rt_bandwidth.rt_period), 0); |
8556 | 8562 | ||
8557 | for_each_possible_cpu(i) { | 8563 | for_each_possible_cpu(i) { |
8558 | rq = cpu_rq(i); | 8564 | rq = cpu_rq(i); |
8559 | 8565 | ||
8560 | rt_rq = kzalloc_node(sizeof(struct rt_rq), | 8566 | rt_rq = kzalloc_node(sizeof(struct rt_rq), |
8561 | GFP_KERNEL, cpu_to_node(i)); | 8567 | GFP_KERNEL, cpu_to_node(i)); |
8562 | if (!rt_rq) | 8568 | if (!rt_rq) |
8563 | goto err; | 8569 | goto err; |
8564 | 8570 | ||
8565 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), | 8571 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), |
8566 | GFP_KERNEL, cpu_to_node(i)); | 8572 | GFP_KERNEL, cpu_to_node(i)); |
8567 | if (!rt_se) | 8573 | if (!rt_se) |
8568 | goto err; | 8574 | goto err; |
8569 | 8575 | ||
8570 | init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); | 8576 | init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); |
8571 | } | 8577 | } |
8572 | 8578 | ||
8573 | return 1; | 8579 | return 1; |
8574 | 8580 | ||
8575 | err: | 8581 | err: |
8576 | return 0; | 8582 | return 0; |
8577 | } | 8583 | } |
8578 | 8584 | ||
8579 | static inline void register_rt_sched_group(struct task_group *tg, int cpu) | 8585 | static inline void register_rt_sched_group(struct task_group *tg, int cpu) |
8580 | { | 8586 | { |
8581 | list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list, | 8587 | list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list, |
8582 | &cpu_rq(cpu)->leaf_rt_rq_list); | 8588 | &cpu_rq(cpu)->leaf_rt_rq_list); |
8583 | } | 8589 | } |
8584 | 8590 | ||
8585 | static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | 8591 | static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) |
8586 | { | 8592 | { |
8587 | list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list); | 8593 | list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list); |
8588 | } | 8594 | } |
8589 | #else /* !CONFIG_RT_GROUP_SCHED */ | 8595 | #else /* !CONFIG_RT_GROUP_SCHED */ |
8590 | static inline void free_rt_sched_group(struct task_group *tg) | 8596 | static inline void free_rt_sched_group(struct task_group *tg) |
8591 | { | 8597 | { |
8592 | } | 8598 | } |
8593 | 8599 | ||
8594 | static inline | 8600 | static inline |
8595 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | 8601 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) |
8596 | { | 8602 | { |
8597 | return 1; | 8603 | return 1; |
8598 | } | 8604 | } |
8599 | 8605 | ||
8600 | static inline void register_rt_sched_group(struct task_group *tg, int cpu) | 8606 | static inline void register_rt_sched_group(struct task_group *tg, int cpu) |
8601 | { | 8607 | { |
8602 | } | 8608 | } |
8603 | 8609 | ||
8604 | static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | 8610 | static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) |
8605 | { | 8611 | { |
8606 | } | 8612 | } |
8607 | #endif /* CONFIG_RT_GROUP_SCHED */ | 8613 | #endif /* CONFIG_RT_GROUP_SCHED */ |
8608 | 8614 | ||
8609 | #ifdef CONFIG_GROUP_SCHED | 8615 | #ifdef CONFIG_GROUP_SCHED |
8610 | static void free_sched_group(struct task_group *tg) | 8616 | static void free_sched_group(struct task_group *tg) |
8611 | { | 8617 | { |
8612 | free_fair_sched_group(tg); | 8618 | free_fair_sched_group(tg); |
8613 | free_rt_sched_group(tg); | 8619 | free_rt_sched_group(tg); |
8614 | kfree(tg); | 8620 | kfree(tg); |
8615 | } | 8621 | } |
8616 | 8622 | ||
8617 | /* allocate runqueue etc for a new task group */ | 8623 | /* allocate runqueue etc for a new task group */ |
8618 | struct task_group *sched_create_group(struct task_group *parent) | 8624 | struct task_group *sched_create_group(struct task_group *parent) |
8619 | { | 8625 | { |
8620 | struct task_group *tg; | 8626 | struct task_group *tg; |
8621 | unsigned long flags; | 8627 | unsigned long flags; |
8622 | int i; | 8628 | int i; |
8623 | 8629 | ||
8624 | tg = kzalloc(sizeof(*tg), GFP_KERNEL); | 8630 | tg = kzalloc(sizeof(*tg), GFP_KERNEL); |
8625 | if (!tg) | 8631 | if (!tg) |
8626 | return ERR_PTR(-ENOMEM); | 8632 | return ERR_PTR(-ENOMEM); |
8627 | 8633 | ||
8628 | if (!alloc_fair_sched_group(tg, parent)) | 8634 | if (!alloc_fair_sched_group(tg, parent)) |
8629 | goto err; | 8635 | goto err; |
8630 | 8636 | ||
8631 | if (!alloc_rt_sched_group(tg, parent)) | 8637 | if (!alloc_rt_sched_group(tg, parent)) |
8632 | goto err; | 8638 | goto err; |
8633 | 8639 | ||
8634 | spin_lock_irqsave(&task_group_lock, flags); | 8640 | spin_lock_irqsave(&task_group_lock, flags); |
8635 | for_each_possible_cpu(i) { | 8641 | for_each_possible_cpu(i) { |
8636 | register_fair_sched_group(tg, i); | 8642 | register_fair_sched_group(tg, i); |
8637 | register_rt_sched_group(tg, i); | 8643 | register_rt_sched_group(tg, i); |
8638 | } | 8644 | } |
8639 | list_add_rcu(&tg->list, &task_groups); | 8645 | list_add_rcu(&tg->list, &task_groups); |
8640 | 8646 | ||
8641 | WARN_ON(!parent); /* root should already exist */ | 8647 | WARN_ON(!parent); /* root should already exist */ |
8642 | 8648 | ||
8643 | tg->parent = parent; | 8649 | tg->parent = parent; |
8644 | INIT_LIST_HEAD(&tg->children); | 8650 | INIT_LIST_HEAD(&tg->children); |
8645 | list_add_rcu(&tg->siblings, &parent->children); | 8651 | list_add_rcu(&tg->siblings, &parent->children); |
8646 | spin_unlock_irqrestore(&task_group_lock, flags); | 8652 | spin_unlock_irqrestore(&task_group_lock, flags); |
8647 | 8653 | ||
8648 | return tg; | 8654 | return tg; |
8649 | 8655 | ||
8650 | err: | 8656 | err: |
8651 | free_sched_group(tg); | 8657 | free_sched_group(tg); |
8652 | return ERR_PTR(-ENOMEM); | 8658 | return ERR_PTR(-ENOMEM); |
8653 | } | 8659 | } |
8654 | 8660 | ||
8655 | /* rcu callback to free various structures associated with a task group */ | 8661 | /* rcu callback to free various structures associated with a task group */ |
8656 | static void free_sched_group_rcu(struct rcu_head *rhp) | 8662 | static void free_sched_group_rcu(struct rcu_head *rhp) |
8657 | { | 8663 | { |
8658 | /* now it should be safe to free those cfs_rqs */ | 8664 | /* now it should be safe to free those cfs_rqs */ |
8659 | free_sched_group(container_of(rhp, struct task_group, rcu)); | 8665 | free_sched_group(container_of(rhp, struct task_group, rcu)); |
8660 | } | 8666 | } |
8661 | 8667 | ||
8662 | /* Destroy runqueue etc associated with a task group */ | 8668 | /* Destroy runqueue etc associated with a task group */ |
8663 | void sched_destroy_group(struct task_group *tg) | 8669 | void sched_destroy_group(struct task_group *tg) |
8664 | { | 8670 | { |
8665 | unsigned long flags; | 8671 | unsigned long flags; |
8666 | int i; | 8672 | int i; |
8667 | 8673 | ||
8668 | spin_lock_irqsave(&task_group_lock, flags); | 8674 | spin_lock_irqsave(&task_group_lock, flags); |
8669 | for_each_possible_cpu(i) { | 8675 | for_each_possible_cpu(i) { |
8670 | unregister_fair_sched_group(tg, i); | 8676 | unregister_fair_sched_group(tg, i); |
8671 | unregister_rt_sched_group(tg, i); | 8677 | unregister_rt_sched_group(tg, i); |
8672 | } | 8678 | } |
8673 | list_del_rcu(&tg->list); | 8679 | list_del_rcu(&tg->list); |
8674 | list_del_rcu(&tg->siblings); | 8680 | list_del_rcu(&tg->siblings); |
8675 | spin_unlock_irqrestore(&task_group_lock, flags); | 8681 | spin_unlock_irqrestore(&task_group_lock, flags); |
8676 | 8682 | ||
8677 | /* wait for possible concurrent references to cfs_rqs complete */ | 8683 | /* wait for possible concurrent references to cfs_rqs complete */ |
8678 | call_rcu(&tg->rcu, free_sched_group_rcu); | 8684 | call_rcu(&tg->rcu, free_sched_group_rcu); |
8679 | } | 8685 | } |
8680 | 8686 | ||
8681 | /* change task's runqueue when it moves between groups. | 8687 | /* change task's runqueue when it moves between groups. |
8682 | * The caller of this function should have put the task in its new group | 8688 | * The caller of this function should have put the task in its new group |
8683 | * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to | 8689 | * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to |
8684 | * reflect its new group. | 8690 | * reflect its new group. |
8685 | */ | 8691 | */ |
8686 | void sched_move_task(struct task_struct *tsk) | 8692 | void sched_move_task(struct task_struct *tsk) |
8687 | { | 8693 | { |
8688 | int on_rq, running; | 8694 | int on_rq, running; |
8689 | unsigned long flags; | 8695 | unsigned long flags; |
8690 | struct rq *rq; | 8696 | struct rq *rq; |
8691 | 8697 | ||
8692 | rq = task_rq_lock(tsk, &flags); | 8698 | rq = task_rq_lock(tsk, &flags); |
8693 | 8699 | ||
8694 | update_rq_clock(rq); | 8700 | update_rq_clock(rq); |
8695 | 8701 | ||
8696 | running = task_current(rq, tsk); | 8702 | running = task_current(rq, tsk); |
8697 | on_rq = tsk->se.on_rq; | 8703 | on_rq = tsk->se.on_rq; |
8698 | 8704 | ||
8699 | if (on_rq) | 8705 | if (on_rq) |
8700 | dequeue_task(rq, tsk, 0); | 8706 | dequeue_task(rq, tsk, 0); |
8701 | if (unlikely(running)) | 8707 | if (unlikely(running)) |
8702 | tsk->sched_class->put_prev_task(rq, tsk); | 8708 | tsk->sched_class->put_prev_task(rq, tsk); |
8703 | 8709 | ||
8704 | set_task_rq(tsk, task_cpu(tsk)); | 8710 | set_task_rq(tsk, task_cpu(tsk)); |
8705 | 8711 | ||
8706 | #ifdef CONFIG_FAIR_GROUP_SCHED | 8712 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8707 | if (tsk->sched_class->moved_group) | 8713 | if (tsk->sched_class->moved_group) |
8708 | tsk->sched_class->moved_group(tsk); | 8714 | tsk->sched_class->moved_group(tsk); |
8709 | #endif | 8715 | #endif |
8710 | 8716 | ||
8711 | if (unlikely(running)) | 8717 | if (unlikely(running)) |
8712 | tsk->sched_class->set_curr_task(rq); | 8718 | tsk->sched_class->set_curr_task(rq); |
8713 | if (on_rq) | 8719 | if (on_rq) |
8714 | enqueue_task(rq, tsk, 0); | 8720 | enqueue_task(rq, tsk, 0); |
8715 | 8721 | ||
8716 | task_rq_unlock(rq, &flags); | 8722 | task_rq_unlock(rq, &flags); |
8717 | } | 8723 | } |
8718 | #endif /* CONFIG_GROUP_SCHED */ | 8724 | #endif /* CONFIG_GROUP_SCHED */ |
8719 | 8725 | ||
8720 | #ifdef CONFIG_FAIR_GROUP_SCHED | 8726 | #ifdef CONFIG_FAIR_GROUP_SCHED |
8721 | static void __set_se_shares(struct sched_entity *se, unsigned long shares) | 8727 | static void __set_se_shares(struct sched_entity *se, unsigned long shares) |
8722 | { | 8728 | { |
8723 | struct cfs_rq *cfs_rq = se->cfs_rq; | 8729 | struct cfs_rq *cfs_rq = se->cfs_rq; |
8724 | int on_rq; | 8730 | int on_rq; |
8725 | 8731 | ||
8726 | on_rq = se->on_rq; | 8732 | on_rq = se->on_rq; |
8727 | if (on_rq) | 8733 | if (on_rq) |
8728 | dequeue_entity(cfs_rq, se, 0); | 8734 | dequeue_entity(cfs_rq, se, 0); |
8729 | 8735 | ||
8730 | se->load.weight = shares; | 8736 | se->load.weight = shares; |
8731 | se->load.inv_weight = 0; | 8737 | se->load.inv_weight = 0; |
8732 | 8738 | ||
8733 | if (on_rq) | 8739 | if (on_rq) |
8734 | enqueue_entity(cfs_rq, se, 0); | 8740 | enqueue_entity(cfs_rq, se, 0); |
8735 | } | 8741 | } |
8736 | 8742 | ||
8737 | static void set_se_shares(struct sched_entity *se, unsigned long shares) | 8743 | static void set_se_shares(struct sched_entity *se, unsigned long shares) |
8738 | { | 8744 | { |
8739 | struct cfs_rq *cfs_rq = se->cfs_rq; | 8745 | struct cfs_rq *cfs_rq = se->cfs_rq; |
8740 | struct rq *rq = cfs_rq->rq; | 8746 | struct rq *rq = cfs_rq->rq; |
8741 | unsigned long flags; | 8747 | unsigned long flags; |
8742 | 8748 | ||
8743 | spin_lock_irqsave(&rq->lock, flags); | 8749 | spin_lock_irqsave(&rq->lock, flags); |
8744 | __set_se_shares(se, shares); | 8750 | __set_se_shares(se, shares); |
8745 | spin_unlock_irqrestore(&rq->lock, flags); | 8751 | spin_unlock_irqrestore(&rq->lock, flags); |
8746 | } | 8752 | } |
8747 | 8753 | ||
8748 | static DEFINE_MUTEX(shares_mutex); | 8754 | static DEFINE_MUTEX(shares_mutex); |
8749 | 8755 | ||
8750 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) | 8756 | int sched_group_set_shares(struct task_group *tg, unsigned long shares) |
8751 | { | 8757 | { |
8752 | int i; | 8758 | int i; |
8753 | unsigned long flags; | 8759 | unsigned long flags; |
8754 | 8760 | ||
8755 | /* | 8761 | /* |
8756 | * We can't change the weight of the root cgroup. | 8762 | * We can't change the weight of the root cgroup. |
8757 | */ | 8763 | */ |
8758 | if (!tg->se[0]) | 8764 | if (!tg->se[0]) |
8759 | return -EINVAL; | 8765 | return -EINVAL; |
8760 | 8766 | ||
8761 | if (shares < MIN_SHARES) | 8767 | if (shares < MIN_SHARES) |
8762 | shares = MIN_SHARES; | 8768 | shares = MIN_SHARES; |
8763 | else if (shares > MAX_SHARES) | 8769 | else if (shares > MAX_SHARES) |
8764 | shares = MAX_SHARES; | 8770 | shares = MAX_SHARES; |
8765 | 8771 | ||
8766 | mutex_lock(&shares_mutex); | 8772 | mutex_lock(&shares_mutex); |
8767 | if (tg->shares == shares) | 8773 | if (tg->shares == shares) |
8768 | goto done; | 8774 | goto done; |
8769 | 8775 | ||
8770 | spin_lock_irqsave(&task_group_lock, flags); | 8776 | spin_lock_irqsave(&task_group_lock, flags); |
8771 | for_each_possible_cpu(i) | 8777 | for_each_possible_cpu(i) |
8772 | unregister_fair_sched_group(tg, i); | 8778 | unregister_fair_sched_group(tg, i); |
8773 | list_del_rcu(&tg->siblings); | 8779 | list_del_rcu(&tg->siblings); |
8774 | spin_unlock_irqrestore(&task_group_lock, flags); | 8780 | spin_unlock_irqrestore(&task_group_lock, flags); |
8775 | 8781 | ||
8776 | /* wait for any ongoing reference to this group to finish */ | 8782 | /* wait for any ongoing reference to this group to finish */ |
8777 | synchronize_sched(); | 8783 | synchronize_sched(); |
8778 | 8784 | ||
8779 | /* | 8785 | /* |
8780 | * Now we are free to modify the group's share on each cpu | 8786 | * Now we are free to modify the group's share on each cpu |
8781 | * w/o tripping rebalance_share or load_balance_fair. | 8787 | * w/o tripping rebalance_share or load_balance_fair. |
8782 | */ | 8788 | */ |
8783 | tg->shares = shares; | 8789 | tg->shares = shares; |
8784 | for_each_possible_cpu(i) { | 8790 | for_each_possible_cpu(i) { |
8785 | /* | 8791 | /* |
8786 | * force a rebalance | 8792 | * force a rebalance |
8787 | */ | 8793 | */ |
8788 | cfs_rq_set_shares(tg->cfs_rq[i], 0); | 8794 | cfs_rq_set_shares(tg->cfs_rq[i], 0); |
8789 | set_se_shares(tg->se[i], shares); | 8795 | set_se_shares(tg->se[i], shares); |
8790 | } | 8796 | } |
8791 | 8797 | ||
8792 | /* | 8798 | /* |
8793 | * Enable load balance activity on this group, by inserting it back on | 8799 | * Enable load balance activity on this group, by inserting it back on |
8794 | * each cpu's rq->leaf_cfs_rq_list. | 8800 | * each cpu's rq->leaf_cfs_rq_list. |
8795 | */ | 8801 | */ |
8796 | spin_lock_irqsave(&task_group_lock, flags); | 8802 | spin_lock_irqsave(&task_group_lock, flags); |
8797 | for_each_possible_cpu(i) | 8803 | for_each_possible_cpu(i) |
8798 | register_fair_sched_group(tg, i); | 8804 | register_fair_sched_group(tg, i); |
8799 | list_add_rcu(&tg->siblings, &tg->parent->children); | 8805 | list_add_rcu(&tg->siblings, &tg->parent->children); |
8800 | spin_unlock_irqrestore(&task_group_lock, flags); | 8806 | spin_unlock_irqrestore(&task_group_lock, flags); |
8801 | done: | 8807 | done: |
8802 | mutex_unlock(&shares_mutex); | 8808 | mutex_unlock(&shares_mutex); |
8803 | return 0; | 8809 | return 0; |
8804 | } | 8810 | } |
8805 | 8811 | ||
8806 | unsigned long sched_group_shares(struct task_group *tg) | 8812 | unsigned long sched_group_shares(struct task_group *tg) |
8807 | { | 8813 | { |
8808 | return tg->shares; | 8814 | return tg->shares; |
8809 | } | 8815 | } |
8810 | #endif | 8816 | #endif |
8811 | 8817 | ||
8812 | #ifdef CONFIG_RT_GROUP_SCHED | 8818 | #ifdef CONFIG_RT_GROUP_SCHED |
8813 | /* | 8819 | /* |
8814 | * Ensure that the real time constraints are schedulable. | 8820 | * Ensure that the real time constraints are schedulable. |
8815 | */ | 8821 | */ |
8816 | static DEFINE_MUTEX(rt_constraints_mutex); | 8822 | static DEFINE_MUTEX(rt_constraints_mutex); |
8817 | 8823 | ||
8818 | static unsigned long to_ratio(u64 period, u64 runtime) | 8824 | static unsigned long to_ratio(u64 period, u64 runtime) |
8819 | { | 8825 | { |
8820 | if (runtime == RUNTIME_INF) | 8826 | if (runtime == RUNTIME_INF) |
8821 | return 1ULL << 20; | 8827 | return 1ULL << 20; |
8822 | 8828 | ||
8823 | return div64_u64(runtime << 20, period); | 8829 | return div64_u64(runtime << 20, period); |
8824 | } | 8830 | } |
8825 | 8831 | ||
8826 | /* Must be called with tasklist_lock held */ | 8832 | /* Must be called with tasklist_lock held */ |
8827 | static inline int tg_has_rt_tasks(struct task_group *tg) | 8833 | static inline int tg_has_rt_tasks(struct task_group *tg) |
8828 | { | 8834 | { |
8829 | struct task_struct *g, *p; | 8835 | struct task_struct *g, *p; |
8830 | 8836 | ||
8831 | do_each_thread(g, p) { | 8837 | do_each_thread(g, p) { |
8832 | if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) | 8838 | if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) |
8833 | return 1; | 8839 | return 1; |
8834 | } while_each_thread(g, p); | 8840 | } while_each_thread(g, p); |
8835 | 8841 | ||
8836 | return 0; | 8842 | return 0; |
8837 | } | 8843 | } |
8838 | 8844 | ||
8839 | struct rt_schedulable_data { | 8845 | struct rt_schedulable_data { |
8840 | struct task_group *tg; | 8846 | struct task_group *tg; |
8841 | u64 rt_period; | 8847 | u64 rt_period; |
8842 | u64 rt_runtime; | 8848 | u64 rt_runtime; |
8843 | }; | 8849 | }; |
8844 | 8850 | ||
8845 | static int tg_schedulable(struct task_group *tg, void *data) | 8851 | static int tg_schedulable(struct task_group *tg, void *data) |
8846 | { | 8852 | { |
8847 | struct rt_schedulable_data *d = data; | 8853 | struct rt_schedulable_data *d = data; |
8848 | struct task_group *child; | 8854 | struct task_group *child; |
8849 | unsigned long total, sum = 0; | 8855 | unsigned long total, sum = 0; |
8850 | u64 period, runtime; | 8856 | u64 period, runtime; |
8851 | 8857 | ||
8852 | period = ktime_to_ns(tg->rt_bandwidth.rt_period); | 8858 | period = ktime_to_ns(tg->rt_bandwidth.rt_period); |
8853 | runtime = tg->rt_bandwidth.rt_runtime; | 8859 | runtime = tg->rt_bandwidth.rt_runtime; |
8854 | 8860 | ||
8855 | if (tg == d->tg) { | 8861 | if (tg == d->tg) { |
8856 | period = d->rt_period; | 8862 | period = d->rt_period; |
8857 | runtime = d->rt_runtime; | 8863 | runtime = d->rt_runtime; |
8858 | } | 8864 | } |
8859 | 8865 | ||
8860 | /* | 8866 | /* |
8861 | * Cannot have more runtime than the period. | 8867 | * Cannot have more runtime than the period. |
8862 | */ | 8868 | */ |
8863 | if (runtime > period && runtime != RUNTIME_INF) | 8869 | if (runtime > period && runtime != RUNTIME_INF) |
8864 | return -EINVAL; | 8870 | return -EINVAL; |
8865 | 8871 | ||
8866 | /* | 8872 | /* |
8867 | * Ensure we don't starve existing RT tasks. | 8873 | * Ensure we don't starve existing RT tasks. |
8868 | */ | 8874 | */ |
8869 | if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) | 8875 | if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) |
8870 | return -EBUSY; | 8876 | return -EBUSY; |
8871 | 8877 | ||
8872 | total = to_ratio(period, runtime); | 8878 | total = to_ratio(period, runtime); |
8873 | 8879 | ||
8874 | /* | 8880 | /* |
8875 | * Nobody can have more than the global setting allows. | 8881 | * Nobody can have more than the global setting allows. |
8876 | */ | 8882 | */ |
8877 | if (total > to_ratio(global_rt_period(), global_rt_runtime())) | 8883 | if (total > to_ratio(global_rt_period(), global_rt_runtime())) |
8878 | return -EINVAL; | 8884 | return -EINVAL; |
8879 | 8885 | ||
8880 | /* | 8886 | /* |
8881 | * The sum of our children's runtime should not exceed our own. | 8887 | * The sum of our children's runtime should not exceed our own. |
8882 | */ | 8888 | */ |
8883 | list_for_each_entry_rcu(child, &tg->children, siblings) { | 8889 | list_for_each_entry_rcu(child, &tg->children, siblings) { |
8884 | period = ktime_to_ns(child->rt_bandwidth.rt_period); | 8890 | period = ktime_to_ns(child->rt_bandwidth.rt_period); |
8885 | runtime = child->rt_bandwidth.rt_runtime; | 8891 | runtime = child->rt_bandwidth.rt_runtime; |
8886 | 8892 | ||
8887 | if (child == d->tg) { | 8893 | if (child == d->tg) { |
8888 | period = d->rt_period; | 8894 | period = d->rt_period; |
8889 | runtime = d->rt_runtime; | 8895 | runtime = d->rt_runtime; |
8890 | } | 8896 | } |
8891 | 8897 | ||
8892 | sum += to_ratio(period, runtime); | 8898 | sum += to_ratio(period, runtime); |
8893 | } | 8899 | } |
8894 | 8900 | ||
8895 | if (sum > total) | 8901 | if (sum > total) |
8896 | return -EINVAL; | 8902 | return -EINVAL; |
8897 | 8903 | ||
8898 | return 0; | 8904 | return 0; |
8899 | } | 8905 | } |
8900 | 8906 | ||
8901 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) | 8907 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) |
8902 | { | 8908 | { |
8903 | struct rt_schedulable_data data = { | 8909 | struct rt_schedulable_data data = { |
8904 | .tg = tg, | 8910 | .tg = tg, |
8905 | .rt_period = period, | 8911 | .rt_period = period, |
8906 | .rt_runtime = runtime, | 8912 | .rt_runtime = runtime, |
8907 | }; | 8913 | }; |
8908 | 8914 | ||
8909 | return walk_tg_tree(tg_schedulable, tg_nop, &data); | 8915 | return walk_tg_tree(tg_schedulable, tg_nop, &data); |
8910 | } | 8916 | } |
8911 | 8917 | ||
8912 | static int tg_set_bandwidth(struct task_group *tg, | 8918 | static int tg_set_bandwidth(struct task_group *tg, |
8913 | u64 rt_period, u64 rt_runtime) | 8919 | u64 rt_period, u64 rt_runtime) |
8914 | { | 8920 | { |
8915 | int i, err = 0; | 8921 | int i, err = 0; |
8916 | 8922 | ||
8917 | mutex_lock(&rt_constraints_mutex); | 8923 | mutex_lock(&rt_constraints_mutex); |
8918 | read_lock(&tasklist_lock); | 8924 | read_lock(&tasklist_lock); |
8919 | err = __rt_schedulable(tg, rt_period, rt_runtime); | 8925 | err = __rt_schedulable(tg, rt_period, rt_runtime); |
8920 | if (err) | 8926 | if (err) |
8921 | goto unlock; | 8927 | goto unlock; |
8922 | 8928 | ||
8923 | spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); | 8929 | spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); |
8924 | tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); | 8930 | tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); |
8925 | tg->rt_bandwidth.rt_runtime = rt_runtime; | 8931 | tg->rt_bandwidth.rt_runtime = rt_runtime; |
8926 | 8932 | ||
8927 | for_each_possible_cpu(i) { | 8933 | for_each_possible_cpu(i) { |
8928 | struct rt_rq *rt_rq = tg->rt_rq[i]; | 8934 | struct rt_rq *rt_rq = tg->rt_rq[i]; |
8929 | 8935 | ||
8930 | spin_lock(&rt_rq->rt_runtime_lock); | 8936 | spin_lock(&rt_rq->rt_runtime_lock); |
8931 | rt_rq->rt_runtime = rt_runtime; | 8937 | rt_rq->rt_runtime = rt_runtime; |
8932 | spin_unlock(&rt_rq->rt_runtime_lock); | 8938 | spin_unlock(&rt_rq->rt_runtime_lock); |
8933 | } | 8939 | } |
8934 | spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); | 8940 | spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); |
8935 | unlock: | 8941 | unlock: |
8936 | read_unlock(&tasklist_lock); | 8942 | read_unlock(&tasklist_lock); |
8937 | mutex_unlock(&rt_constraints_mutex); | 8943 | mutex_unlock(&rt_constraints_mutex); |
8938 | 8944 | ||
8939 | return err; | 8945 | return err; |
8940 | } | 8946 | } |
8941 | 8947 | ||
8942 | int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) | 8948 | int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) |
8943 | { | 8949 | { |
8944 | u64 rt_runtime, rt_period; | 8950 | u64 rt_runtime, rt_period; |
8945 | 8951 | ||
8946 | rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); | 8952 | rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); |
8947 | rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; | 8953 | rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; |
8948 | if (rt_runtime_us < 0) | 8954 | if (rt_runtime_us < 0) |
8949 | rt_runtime = RUNTIME_INF; | 8955 | rt_runtime = RUNTIME_INF; |
8950 | 8956 | ||
8951 | return tg_set_bandwidth(tg, rt_period, rt_runtime); | 8957 | return tg_set_bandwidth(tg, rt_period, rt_runtime); |
8952 | } | 8958 | } |
8953 | 8959 | ||
8954 | long sched_group_rt_runtime(struct task_group *tg) | 8960 | long sched_group_rt_runtime(struct task_group *tg) |
8955 | { | 8961 | { |
8956 | u64 rt_runtime_us; | 8962 | u64 rt_runtime_us; |
8957 | 8963 | ||
8958 | if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) | 8964 | if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) |
8959 | return -1; | 8965 | return -1; |
8960 | 8966 | ||
8961 | rt_runtime_us = tg->rt_bandwidth.rt_runtime; | 8967 | rt_runtime_us = tg->rt_bandwidth.rt_runtime; |
8962 | do_div(rt_runtime_us, NSEC_PER_USEC); | 8968 | do_div(rt_runtime_us, NSEC_PER_USEC); |
8963 | return rt_runtime_us; | 8969 | return rt_runtime_us; |
8964 | } | 8970 | } |
8965 | 8971 | ||
8966 | int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) | 8972 | int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) |
8967 | { | 8973 | { |
8968 | u64 rt_runtime, rt_period; | 8974 | u64 rt_runtime, rt_period; |
8969 | 8975 | ||
8970 | rt_period = (u64)rt_period_us * NSEC_PER_USEC; | 8976 | rt_period = (u64)rt_period_us * NSEC_PER_USEC; |
8971 | rt_runtime = tg->rt_bandwidth.rt_runtime; | 8977 | rt_runtime = tg->rt_bandwidth.rt_runtime; |
8972 | 8978 | ||
8973 | if (rt_period == 0) | 8979 | if (rt_period == 0) |
8974 | return -EINVAL; | 8980 | return -EINVAL; |
8975 | 8981 | ||
8976 | return tg_set_bandwidth(tg, rt_period, rt_runtime); | 8982 | return tg_set_bandwidth(tg, rt_period, rt_runtime); |
8977 | } | 8983 | } |
8978 | 8984 | ||
8979 | long sched_group_rt_period(struct task_group *tg) | 8985 | long sched_group_rt_period(struct task_group *tg) |
8980 | { | 8986 | { |
8981 | u64 rt_period_us; | 8987 | u64 rt_period_us; |
8982 | 8988 | ||
8983 | rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); | 8989 | rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); |
8984 | do_div(rt_period_us, NSEC_PER_USEC); | 8990 | do_div(rt_period_us, NSEC_PER_USEC); |
8985 | return rt_period_us; | 8991 | return rt_period_us; |
8986 | } | 8992 | } |
8987 | 8993 | ||
8988 | static int sched_rt_global_constraints(void) | 8994 | static int sched_rt_global_constraints(void) |
8989 | { | 8995 | { |
8990 | u64 runtime, period; | 8996 | u64 runtime, period; |
8991 | int ret = 0; | 8997 | int ret = 0; |
8992 | 8998 | ||
8993 | if (sysctl_sched_rt_period <= 0) | 8999 | if (sysctl_sched_rt_period <= 0) |
8994 | return -EINVAL; | 9000 | return -EINVAL; |
8995 | 9001 | ||
8996 | runtime = global_rt_runtime(); | 9002 | runtime = global_rt_runtime(); |
8997 | period = global_rt_period(); | 9003 | period = global_rt_period(); |
8998 | 9004 | ||
8999 | /* | 9005 | /* |
9000 | * Sanity check on the sysctl variables. | 9006 | * Sanity check on the sysctl variables. |
9001 | */ | 9007 | */ |
9002 | if (runtime > period && runtime != RUNTIME_INF) | 9008 | if (runtime > period && runtime != RUNTIME_INF) |
9003 | return -EINVAL; | 9009 | return -EINVAL; |
9004 | 9010 | ||
9005 | mutex_lock(&rt_constraints_mutex); | 9011 | mutex_lock(&rt_constraints_mutex); |
9006 | read_lock(&tasklist_lock); | 9012 | read_lock(&tasklist_lock); |
9007 | ret = __rt_schedulable(NULL, 0, 0); | 9013 | ret = __rt_schedulable(NULL, 0, 0); |
9008 | read_unlock(&tasklist_lock); | 9014 | read_unlock(&tasklist_lock); |
9009 | mutex_unlock(&rt_constraints_mutex); | 9015 | mutex_unlock(&rt_constraints_mutex); |
9010 | 9016 | ||
9011 | return ret; | 9017 | return ret; |
9012 | } | 9018 | } |
9013 | #else /* !CONFIG_RT_GROUP_SCHED */ | 9019 | #else /* !CONFIG_RT_GROUP_SCHED */ |
9014 | static int sched_rt_global_constraints(void) | 9020 | static int sched_rt_global_constraints(void) |
9015 | { | 9021 | { |
9016 | unsigned long flags; | 9022 | unsigned long flags; |
9017 | int i; | 9023 | int i; |
9018 | 9024 | ||
9019 | if (sysctl_sched_rt_period <= 0) | 9025 | if (sysctl_sched_rt_period <= 0) |
9020 | return -EINVAL; | 9026 | return -EINVAL; |
9021 | 9027 | ||
9022 | spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); | 9028 | spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); |
9023 | for_each_possible_cpu(i) { | 9029 | for_each_possible_cpu(i) { |
9024 | struct rt_rq *rt_rq = &cpu_rq(i)->rt; | 9030 | struct rt_rq *rt_rq = &cpu_rq(i)->rt; |
9025 | 9031 | ||
9026 | spin_lock(&rt_rq->rt_runtime_lock); | 9032 | spin_lock(&rt_rq->rt_runtime_lock); |
9027 | rt_rq->rt_runtime = global_rt_runtime(); | 9033 | rt_rq->rt_runtime = global_rt_runtime(); |
9028 | spin_unlock(&rt_rq->rt_runtime_lock); | 9034 | spin_unlock(&rt_rq->rt_runtime_lock); |
9029 | } | 9035 | } |
9030 | spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); | 9036 | spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); |
9031 | 9037 | ||
9032 | return 0; | 9038 | return 0; |
9033 | } | 9039 | } |
9034 | #endif /* CONFIG_RT_GROUP_SCHED */ | 9040 | #endif /* CONFIG_RT_GROUP_SCHED */ |
9035 | 9041 | ||
9036 | int sched_rt_handler(struct ctl_table *table, int write, | 9042 | int sched_rt_handler(struct ctl_table *table, int write, |
9037 | struct file *filp, void __user *buffer, size_t *lenp, | 9043 | struct file *filp, void __user *buffer, size_t *lenp, |
9038 | loff_t *ppos) | 9044 | loff_t *ppos) |
9039 | { | 9045 | { |
9040 | int ret; | 9046 | int ret; |
9041 | int old_period, old_runtime; | 9047 | int old_period, old_runtime; |
9042 | static DEFINE_MUTEX(mutex); | 9048 | static DEFINE_MUTEX(mutex); |
9043 | 9049 | ||
9044 | mutex_lock(&mutex); | 9050 | mutex_lock(&mutex); |
9045 | old_period = sysctl_sched_rt_period; | 9051 | old_period = sysctl_sched_rt_period; |
9046 | old_runtime = sysctl_sched_rt_runtime; | 9052 | old_runtime = sysctl_sched_rt_runtime; |
9047 | 9053 | ||
9048 | ret = proc_dointvec(table, write, filp, buffer, lenp, ppos); | 9054 | ret = proc_dointvec(table, write, filp, buffer, lenp, ppos); |
9049 | 9055 | ||
9050 | if (!ret && write) { | 9056 | if (!ret && write) { |
9051 | ret = sched_rt_global_constraints(); | 9057 | ret = sched_rt_global_constraints(); |
9052 | if (ret) { | 9058 | if (ret) { |
9053 | sysctl_sched_rt_period = old_period; | 9059 | sysctl_sched_rt_period = old_period; |
9054 | sysctl_sched_rt_runtime = old_runtime; | 9060 | sysctl_sched_rt_runtime = old_runtime; |
9055 | } else { | 9061 | } else { |
9056 | def_rt_bandwidth.rt_runtime = global_rt_runtime(); | 9062 | def_rt_bandwidth.rt_runtime = global_rt_runtime(); |
9057 | def_rt_bandwidth.rt_period = | 9063 | def_rt_bandwidth.rt_period = |
9058 | ns_to_ktime(global_rt_period()); | 9064 | ns_to_ktime(global_rt_period()); |
9059 | } | 9065 | } |
9060 | } | 9066 | } |
9061 | mutex_unlock(&mutex); | 9067 | mutex_unlock(&mutex); |
9062 | 9068 | ||
9063 | return ret; | 9069 | return ret; |
9064 | } | 9070 | } |
9065 | 9071 | ||
9066 | #ifdef CONFIG_CGROUP_SCHED | 9072 | #ifdef CONFIG_CGROUP_SCHED |
9067 | 9073 | ||
9068 | /* return corresponding task_group object of a cgroup */ | 9074 | /* return corresponding task_group object of a cgroup */ |
9069 | static inline struct task_group *cgroup_tg(struct cgroup *cgrp) | 9075 | static inline struct task_group *cgroup_tg(struct cgroup *cgrp) |
9070 | { | 9076 | { |
9071 | return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), | 9077 | return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), |
9072 | struct task_group, css); | 9078 | struct task_group, css); |
9073 | } | 9079 | } |
9074 | 9080 | ||
9075 | static struct cgroup_subsys_state * | 9081 | static struct cgroup_subsys_state * |
9076 | cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) | 9082 | cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) |
9077 | { | 9083 | { |
9078 | struct task_group *tg, *parent; | 9084 | struct task_group *tg, *parent; |
9079 | 9085 | ||
9080 | if (!cgrp->parent) { | 9086 | if (!cgrp->parent) { |
9081 | /* This is early initialization for the top cgroup */ | 9087 | /* This is early initialization for the top cgroup */ |
9082 | return &init_task_group.css; | 9088 | return &init_task_group.css; |
9083 | } | 9089 | } |
9084 | 9090 | ||
9085 | parent = cgroup_tg(cgrp->parent); | 9091 | parent = cgroup_tg(cgrp->parent); |
9086 | tg = sched_create_group(parent); | 9092 | tg = sched_create_group(parent); |
9087 | if (IS_ERR(tg)) | 9093 | if (IS_ERR(tg)) |
9088 | return ERR_PTR(-ENOMEM); | 9094 | return ERR_PTR(-ENOMEM); |
9089 | 9095 | ||
9090 | return &tg->css; | 9096 | return &tg->css; |
9091 | } | 9097 | } |
9092 | 9098 | ||
9093 | static void | 9099 | static void |
9094 | cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | 9100 | cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) |
9095 | { | 9101 | { |
9096 | struct task_group *tg = cgroup_tg(cgrp); | 9102 | struct task_group *tg = cgroup_tg(cgrp); |
9097 | 9103 | ||
9098 | sched_destroy_group(tg); | 9104 | sched_destroy_group(tg); |
9099 | } | 9105 | } |
9100 | 9106 | ||
9101 | static int | 9107 | static int |
9102 | cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | 9108 | cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, |
9103 | struct task_struct *tsk) | 9109 | struct task_struct *tsk) |
9104 | { | 9110 | { |
9105 | #ifdef CONFIG_RT_GROUP_SCHED | 9111 | #ifdef CONFIG_RT_GROUP_SCHED |
9106 | /* Don't accept realtime tasks when there is no way for them to run */ | 9112 | /* Don't accept realtime tasks when there is no way for them to run */ |
9107 | if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0) | 9113 | if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0) |
9108 | return -EINVAL; | 9114 | return -EINVAL; |
9109 | #else | 9115 | #else |
9110 | /* We don't support RT-tasks being in separate groups */ | 9116 | /* We don't support RT-tasks being in separate groups */ |
9111 | if (tsk->sched_class != &fair_sched_class) | 9117 | if (tsk->sched_class != &fair_sched_class) |
9112 | return -EINVAL; | 9118 | return -EINVAL; |
9113 | #endif | 9119 | #endif |
9114 | 9120 | ||
9115 | return 0; | 9121 | return 0; |
9116 | } | 9122 | } |
9117 | 9123 | ||
9118 | static void | 9124 | static void |
9119 | cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | 9125 | cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, |
9120 | struct cgroup *old_cont, struct task_struct *tsk) | 9126 | struct cgroup *old_cont, struct task_struct *tsk) |
9121 | { | 9127 | { |
9122 | sched_move_task(tsk); | 9128 | sched_move_task(tsk); |
9123 | } | 9129 | } |
9124 | 9130 | ||
9125 | #ifdef CONFIG_FAIR_GROUP_SCHED | 9131 | #ifdef CONFIG_FAIR_GROUP_SCHED |
9126 | static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, | 9132 | static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, |
9127 | u64 shareval) | 9133 | u64 shareval) |
9128 | { | 9134 | { |
9129 | return sched_group_set_shares(cgroup_tg(cgrp), shareval); | 9135 | return sched_group_set_shares(cgroup_tg(cgrp), shareval); |
9130 | } | 9136 | } |
9131 | 9137 | ||
9132 | static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) | 9138 | static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) |
9133 | { | 9139 | { |
9134 | struct task_group *tg = cgroup_tg(cgrp); | 9140 | struct task_group *tg = cgroup_tg(cgrp); |
9135 | 9141 | ||
9136 | return (u64) tg->shares; | 9142 | return (u64) tg->shares; |
9137 | } | 9143 | } |
9138 | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 9144 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
9139 | 9145 | ||
9140 | #ifdef CONFIG_RT_GROUP_SCHED | 9146 | #ifdef CONFIG_RT_GROUP_SCHED |
9141 | static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, | 9147 | static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, |
9142 | s64 val) | 9148 | s64 val) |
9143 | { | 9149 | { |
9144 | return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); | 9150 | return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); |
9145 | } | 9151 | } |
9146 | 9152 | ||
9147 | static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) | 9153 | static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) |
9148 | { | 9154 | { |
9149 | return sched_group_rt_runtime(cgroup_tg(cgrp)); | 9155 | return sched_group_rt_runtime(cgroup_tg(cgrp)); |
9150 | } | 9156 | } |
9151 | 9157 | ||
9152 | static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, | 9158 | static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, |
9153 | u64 rt_period_us) | 9159 | u64 rt_period_us) |
9154 | { | 9160 | { |
9155 | return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); | 9161 | return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); |
9156 | } | 9162 | } |
9157 | 9163 | ||
9158 | static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) | 9164 | static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) |
9159 | { | 9165 | { |
9160 | return sched_group_rt_period(cgroup_tg(cgrp)); | 9166 | return sched_group_rt_period(cgroup_tg(cgrp)); |
9161 | } | 9167 | } |
9162 | #endif /* CONFIG_RT_GROUP_SCHED */ | 9168 | #endif /* CONFIG_RT_GROUP_SCHED */ |
9163 | 9169 | ||
9164 | static struct cftype cpu_files[] = { | 9170 | static struct cftype cpu_files[] = { |
9165 | #ifdef CONFIG_FAIR_GROUP_SCHED | 9171 | #ifdef CONFIG_FAIR_GROUP_SCHED |
9166 | { | 9172 | { |
9167 | .name = "shares", | 9173 | .name = "shares", |
9168 | .read_u64 = cpu_shares_read_u64, | 9174 | .read_u64 = cpu_shares_read_u64, |
9169 | .write_u64 = cpu_shares_write_u64, | 9175 | .write_u64 = cpu_shares_write_u64, |
9170 | }, | 9176 | }, |
9171 | #endif | 9177 | #endif |
9172 | #ifdef CONFIG_RT_GROUP_SCHED | 9178 | #ifdef CONFIG_RT_GROUP_SCHED |
9173 | { | 9179 | { |
9174 | .name = "rt_runtime_us", | 9180 | .name = "rt_runtime_us", |
9175 | .read_s64 = cpu_rt_runtime_read, | 9181 | .read_s64 = cpu_rt_runtime_read, |
9176 | .write_s64 = cpu_rt_runtime_write, | 9182 | .write_s64 = cpu_rt_runtime_write, |
9177 | }, | 9183 | }, |
9178 | { | 9184 | { |
9179 | .name = "rt_period_us", | 9185 | .name = "rt_period_us", |
9180 | .read_u64 = cpu_rt_period_read_uint, | 9186 | .read_u64 = cpu_rt_period_read_uint, |
9181 | .write_u64 = cpu_rt_period_write_uint, | 9187 | .write_u64 = cpu_rt_period_write_uint, |
9182 | }, | 9188 | }, |
9183 | #endif | 9189 | #endif |
9184 | }; | 9190 | }; |
9185 | 9191 | ||
9186 | static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) | 9192 | static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) |
9187 | { | 9193 | { |
9188 | return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); | 9194 | return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); |
9189 | } | 9195 | } |
9190 | 9196 | ||
9191 | struct cgroup_subsys cpu_cgroup_subsys = { | 9197 | struct cgroup_subsys cpu_cgroup_subsys = { |
9192 | .name = "cpu", | 9198 | .name = "cpu", |
9193 | .create = cpu_cgroup_create, | 9199 | .create = cpu_cgroup_create, |
9194 | .destroy = cpu_cgroup_destroy, | 9200 | .destroy = cpu_cgroup_destroy, |
9195 | .can_attach = cpu_cgroup_can_attach, | 9201 | .can_attach = cpu_cgroup_can_attach, |
9196 | .attach = cpu_cgroup_attach, | 9202 | .attach = cpu_cgroup_attach, |
9197 | .populate = cpu_cgroup_populate, | 9203 | .populate = cpu_cgroup_populate, |
9198 | .subsys_id = cpu_cgroup_subsys_id, | 9204 | .subsys_id = cpu_cgroup_subsys_id, |
9199 | .early_init = 1, | 9205 | .early_init = 1, |
9200 | }; | 9206 | }; |
9201 | 9207 | ||
9202 | #endif /* CONFIG_CGROUP_SCHED */ | 9208 | #endif /* CONFIG_CGROUP_SCHED */ |
9203 | 9209 | ||
9204 | #ifdef CONFIG_CGROUP_CPUACCT | 9210 | #ifdef CONFIG_CGROUP_CPUACCT |
9205 | 9211 | ||
9206 | /* | 9212 | /* |
9207 | * CPU accounting code for task groups. | 9213 | * CPU accounting code for task groups. |
9208 | * | 9214 | * |
9209 | * Based on the work by Paul Menage (menage@google.com) and Balbir Singh | 9215 | * Based on the work by Paul Menage (menage@google.com) and Balbir Singh |
9210 | * (balbir@in.ibm.com). | 9216 | * (balbir@in.ibm.com). |
9211 | */ | 9217 | */ |
9212 | 9218 | ||
9213 | /* track cpu usage of a group of tasks and its child groups */ | 9219 | /* track cpu usage of a group of tasks and its child groups */ |
9214 | struct cpuacct { | 9220 | struct cpuacct { |
9215 | struct cgroup_subsys_state css; | 9221 | struct cgroup_subsys_state css; |
9216 | /* cpuusage holds pointer to a u64-type object on every cpu */ | 9222 | /* cpuusage holds pointer to a u64-type object on every cpu */ |
9217 | u64 *cpuusage; | 9223 | u64 *cpuusage; |
9218 | struct cpuacct *parent; | 9224 | struct cpuacct *parent; |
9219 | }; | 9225 | }; |
9220 | 9226 | ||
9221 | struct cgroup_subsys cpuacct_subsys; | 9227 | struct cgroup_subsys cpuacct_subsys; |
9222 | 9228 | ||
9223 | /* return cpu accounting group corresponding to this container */ | 9229 | /* return cpu accounting group corresponding to this container */ |
9224 | static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) | 9230 | static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) |
9225 | { | 9231 | { |
9226 | return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), | 9232 | return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), |
9227 | struct cpuacct, css); | 9233 | struct cpuacct, css); |
9228 | } | 9234 | } |
9229 | 9235 | ||
9230 | /* return cpu accounting group to which this task belongs */ | 9236 | /* return cpu accounting group to which this task belongs */ |
9231 | static inline struct cpuacct *task_ca(struct task_struct *tsk) | 9237 | static inline struct cpuacct *task_ca(struct task_struct *tsk) |
9232 | { | 9238 | { |
9233 | return container_of(task_subsys_state(tsk, cpuacct_subsys_id), | 9239 | return container_of(task_subsys_state(tsk, cpuacct_subsys_id), |
9234 | struct cpuacct, css); | 9240 | struct cpuacct, css); |
9235 | } | 9241 | } |
9236 | 9242 | ||
9237 | /* create a new cpu accounting group */ | 9243 | /* create a new cpu accounting group */ |
9238 | static struct cgroup_subsys_state *cpuacct_create( | 9244 | static struct cgroup_subsys_state *cpuacct_create( |
9239 | struct cgroup_subsys *ss, struct cgroup *cgrp) | 9245 | struct cgroup_subsys *ss, struct cgroup *cgrp) |
9240 | { | 9246 | { |
9241 | struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); | 9247 | struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); |
9242 | 9248 | ||
9243 | if (!ca) | 9249 | if (!ca) |
9244 | return ERR_PTR(-ENOMEM); | 9250 | return ERR_PTR(-ENOMEM); |
9245 | 9251 | ||
9246 | ca->cpuusage = alloc_percpu(u64); | 9252 | ca->cpuusage = alloc_percpu(u64); |
9247 | if (!ca->cpuusage) { | 9253 | if (!ca->cpuusage) { |
9248 | kfree(ca); | 9254 | kfree(ca); |
9249 | return ERR_PTR(-ENOMEM); | 9255 | return ERR_PTR(-ENOMEM); |
9250 | } | 9256 | } |
9251 | 9257 | ||
9252 | if (cgrp->parent) | 9258 | if (cgrp->parent) |
9253 | ca->parent = cgroup_ca(cgrp->parent); | 9259 | ca->parent = cgroup_ca(cgrp->parent); |
9254 | 9260 | ||
9255 | return &ca->css; | 9261 | return &ca->css; |
9256 | } | 9262 | } |
9257 | 9263 | ||
9258 | /* destroy an existing cpu accounting group */ | 9264 | /* destroy an existing cpu accounting group */ |
9259 | static void | 9265 | static void |
9260 | cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | 9266 | cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) |
9261 | { | 9267 | { |
9262 | struct cpuacct *ca = cgroup_ca(cgrp); | 9268 | struct cpuacct *ca = cgroup_ca(cgrp); |
9263 | 9269 | ||
9264 | free_percpu(ca->cpuusage); | 9270 | free_percpu(ca->cpuusage); |
9265 | kfree(ca); | 9271 | kfree(ca); |
9266 | } | 9272 | } |
9267 | 9273 | ||
9268 | /* return total cpu usage (in nanoseconds) of a group */ | 9274 | /* return total cpu usage (in nanoseconds) of a group */ |
9269 | static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) | 9275 | static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) |
9270 | { | 9276 | { |
9271 | struct cpuacct *ca = cgroup_ca(cgrp); | 9277 | struct cpuacct *ca = cgroup_ca(cgrp); |
9272 | u64 totalcpuusage = 0; | 9278 | u64 totalcpuusage = 0; |
9273 | int i; | 9279 | int i; |
9274 | 9280 | ||
9275 | for_each_possible_cpu(i) { | 9281 | for_each_possible_cpu(i) { |
9276 | u64 *cpuusage = percpu_ptr(ca->cpuusage, i); | 9282 | u64 *cpuusage = percpu_ptr(ca->cpuusage, i); |
9277 | 9283 | ||
9278 | /* | 9284 | /* |
9279 | * Take rq->lock to make 64-bit addition safe on 32-bit | 9285 | * Take rq->lock to make 64-bit addition safe on 32-bit |
9280 | * platforms. | 9286 | * platforms. |
9281 | */ | 9287 | */ |
9282 | spin_lock_irq(&cpu_rq(i)->lock); | 9288 | spin_lock_irq(&cpu_rq(i)->lock); |
9283 | totalcpuusage += *cpuusage; | 9289 | totalcpuusage += *cpuusage; |
9284 | spin_unlock_irq(&cpu_rq(i)->lock); | 9290 | spin_unlock_irq(&cpu_rq(i)->lock); |
9285 | } | 9291 | } |
9286 | 9292 | ||
9287 | return totalcpuusage; | 9293 | return totalcpuusage; |
9288 | } | 9294 | } |
9289 | 9295 | ||
9290 | static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, | 9296 | static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, |
9291 | u64 reset) | 9297 | u64 reset) |
9292 | { | 9298 | { |
9293 | struct cpuacct *ca = cgroup_ca(cgrp); | 9299 | struct cpuacct *ca = cgroup_ca(cgrp); |
9294 | int err = 0; | 9300 | int err = 0; |
9295 | int i; | 9301 | int i; |
9296 | 9302 | ||
9297 | if (reset) { | 9303 | if (reset) { |
9298 | err = -EINVAL; | 9304 | err = -EINVAL; |
9299 | goto out; | 9305 | goto out; |
9300 | } | 9306 | } |
9301 | 9307 | ||
9302 | for_each_possible_cpu(i) { | 9308 | for_each_possible_cpu(i) { |
9303 | u64 *cpuusage = percpu_ptr(ca->cpuusage, i); | 9309 | u64 *cpuusage = percpu_ptr(ca->cpuusage, i); |
9304 | 9310 | ||
9305 | spin_lock_irq(&cpu_rq(i)->lock); | 9311 | spin_lock_irq(&cpu_rq(i)->lock); |
9306 | *cpuusage = 0; | 9312 | *cpuusage = 0; |
9307 | spin_unlock_irq(&cpu_rq(i)->lock); | 9313 | spin_unlock_irq(&cpu_rq(i)->lock); |
9308 | } | 9314 | } |
9309 | out: | 9315 | out: |
9310 | return err; | 9316 | return err; |
9311 | } | 9317 | } |
9312 | 9318 | ||
9313 | static struct cftype files[] = { | 9319 | static struct cftype files[] = { |
9314 | { | 9320 | { |
9315 | .name = "usage", | 9321 | .name = "usage", |
9316 | .read_u64 = cpuusage_read, | 9322 | .read_u64 = cpuusage_read, |
9317 | .write_u64 = cpuusage_write, | 9323 | .write_u64 = cpuusage_write, |
9318 | }, | 9324 | }, |
9319 | }; | 9325 | }; |
9320 | 9326 | ||
9321 | static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) | 9327 | static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) |
9322 | { | 9328 | { |
9323 | return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); | 9329 | return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); |
9324 | } | 9330 | } |
9325 | 9331 | ||
9326 | /* | 9332 | /* |
9327 | * charge this task's execution time to its accounting group. | 9333 | * charge this task's execution time to its accounting group. |
9328 | * | 9334 | * |
9329 | * called with rq->lock held. | 9335 | * called with rq->lock held. |
9330 | */ | 9336 | */ |
9331 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | 9337 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime) |
9332 | { | 9338 | { |
9333 | struct cpuacct *ca; | 9339 | struct cpuacct *ca; |
9334 | int cpu; | 9340 | int cpu; |
9335 | 9341 | ||
9336 | if (!cpuacct_subsys.active) | 9342 | if (!cpuacct_subsys.active) |
9337 | return; | 9343 | return; |
9338 | 9344 | ||
9339 | cpu = task_cpu(tsk); | 9345 | cpu = task_cpu(tsk); |
9340 | ca = task_ca(tsk); | 9346 | ca = task_ca(tsk); |
9341 | 9347 | ||
9342 | for (; ca; ca = ca->parent) { | 9348 | for (; ca; ca = ca->parent) { |
9343 | u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); | 9349 | u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu); |
9344 | *cpuusage += cputime; | 9350 | *cpuusage += cputime; |
9345 | } | 9351 | } |
9346 | } | 9352 | } |
9347 | 9353 | ||
9348 | struct cgroup_subsys cpuacct_subsys = { | 9354 | struct cgroup_subsys cpuacct_subsys = { |
9349 | .name = "cpuacct", | 9355 | .name = "cpuacct", |
9350 | .create = cpuacct_create, | 9356 | .create = cpuacct_create, |
9351 | .destroy = cpuacct_destroy, | 9357 | .destroy = cpuacct_destroy, |
9352 | .populate = cpuacct_populate, | 9358 | .populate = cpuacct_populate, |
9353 | .subsys_id = cpuacct_subsys_id, | 9359 | .subsys_id = cpuacct_subsys_id, |
9354 | }; | 9360 | }; |
9355 | #endif /* CONFIG_CGROUP_CPUACCT */ | 9361 | #endif /* CONFIG_CGROUP_CPUACCT */ |
9356 | 9362 |