Commit f23c8af8ca2789eeb0ab9ea90c214f9694d96cc5

Authored by Ilya Dryomov
1 parent a90e8b6fb8

Btrfs: fix subvol_name leak on error in btrfs_mount()

btrfs_parse_early_options() can fail due to error while scanning devices
(-o device= option), but still strdup() subvol_name string:

mount -o subvol=SUBV,device=BAD_DEVICE <dev> <mnt>

So free subvol_name string on error.

Signed-off-by: Ilya Dryomov <idryomov@gmail.com>

Showing 1 changed file with 3 additions and 1 deletions Inline Diff

1 /* 1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved. 2 * Copyright (C) 2007 Oracle. All rights reserved.
3 * 3 *
4 * This program is free software; you can redistribute it and/or 4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public 5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation. 6 * License v2 as published by the Free Software Foundation.
7 * 7 *
8 * This program is distributed in the hope that it will be useful, 8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details. 11 * General Public License for more details.
12 * 12 *
13 * You should have received a copy of the GNU General Public 13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the 14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA. 16 * Boston, MA 021110-1307, USA.
17 */ 17 */
18 18
19 #include <linux/blkdev.h> 19 #include <linux/blkdev.h>
20 #include <linux/module.h> 20 #include <linux/module.h>
21 #include <linux/buffer_head.h> 21 #include <linux/buffer_head.h>
22 #include <linux/fs.h> 22 #include <linux/fs.h>
23 #include <linux/pagemap.h> 23 #include <linux/pagemap.h>
24 #include <linux/highmem.h> 24 #include <linux/highmem.h>
25 #include <linux/time.h> 25 #include <linux/time.h>
26 #include <linux/init.h> 26 #include <linux/init.h>
27 #include <linux/seq_file.h> 27 #include <linux/seq_file.h>
28 #include <linux/string.h> 28 #include <linux/string.h>
29 #include <linux/backing-dev.h> 29 #include <linux/backing-dev.h>
30 #include <linux/mount.h> 30 #include <linux/mount.h>
31 #include <linux/mpage.h> 31 #include <linux/mpage.h>
32 #include <linux/swap.h> 32 #include <linux/swap.h>
33 #include <linux/writeback.h> 33 #include <linux/writeback.h>
34 #include <linux/statfs.h> 34 #include <linux/statfs.h>
35 #include <linux/compat.h> 35 #include <linux/compat.h>
36 #include <linux/parser.h> 36 #include <linux/parser.h>
37 #include <linux/ctype.h> 37 #include <linux/ctype.h>
38 #include <linux/namei.h> 38 #include <linux/namei.h>
39 #include <linux/miscdevice.h> 39 #include <linux/miscdevice.h>
40 #include <linux/magic.h> 40 #include <linux/magic.h>
41 #include <linux/slab.h> 41 #include <linux/slab.h>
42 #include <linux/cleancache.h> 42 #include <linux/cleancache.h>
43 #include <linux/mnt_namespace.h> 43 #include <linux/mnt_namespace.h>
44 #include "compat.h" 44 #include "compat.h"
45 #include "delayed-inode.h" 45 #include "delayed-inode.h"
46 #include "ctree.h" 46 #include "ctree.h"
47 #include "disk-io.h" 47 #include "disk-io.h"
48 #include "transaction.h" 48 #include "transaction.h"
49 #include "btrfs_inode.h" 49 #include "btrfs_inode.h"
50 #include "ioctl.h" 50 #include "ioctl.h"
51 #include "print-tree.h" 51 #include "print-tree.h"
52 #include "xattr.h" 52 #include "xattr.h"
53 #include "volumes.h" 53 #include "volumes.h"
54 #include "version.h" 54 #include "version.h"
55 #include "export.h" 55 #include "export.h"
56 #include "compression.h" 56 #include "compression.h"
57 57
58 #define CREATE_TRACE_POINTS 58 #define CREATE_TRACE_POINTS
59 #include <trace/events/btrfs.h> 59 #include <trace/events/btrfs.h>
60 60
61 static const struct super_operations btrfs_super_ops; 61 static const struct super_operations btrfs_super_ops;
62 static struct file_system_type btrfs_fs_type; 62 static struct file_system_type btrfs_fs_type;
63 63
64 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno, 64 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
65 char nbuf[16]) 65 char nbuf[16])
66 { 66 {
67 char *errstr = NULL; 67 char *errstr = NULL;
68 68
69 switch (errno) { 69 switch (errno) {
70 case -EIO: 70 case -EIO:
71 errstr = "IO failure"; 71 errstr = "IO failure";
72 break; 72 break;
73 case -ENOMEM: 73 case -ENOMEM:
74 errstr = "Out of memory"; 74 errstr = "Out of memory";
75 break; 75 break;
76 case -EROFS: 76 case -EROFS:
77 errstr = "Readonly filesystem"; 77 errstr = "Readonly filesystem";
78 break; 78 break;
79 default: 79 default:
80 if (nbuf) { 80 if (nbuf) {
81 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 81 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
82 errstr = nbuf; 82 errstr = nbuf;
83 } 83 }
84 break; 84 break;
85 } 85 }
86 86
87 return errstr; 87 return errstr;
88 } 88 }
89 89
90 static void __save_error_info(struct btrfs_fs_info *fs_info) 90 static void __save_error_info(struct btrfs_fs_info *fs_info)
91 { 91 {
92 /* 92 /*
93 * today we only save the error info into ram. Long term we'll 93 * today we only save the error info into ram. Long term we'll
94 * also send it down to the disk 94 * also send it down to the disk
95 */ 95 */
96 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR; 96 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
97 } 97 }
98 98
99 /* NOTE: 99 /* NOTE:
100 * We move write_super stuff at umount in order to avoid deadlock 100 * We move write_super stuff at umount in order to avoid deadlock
101 * for umount hold all lock. 101 * for umount hold all lock.
102 */ 102 */
103 static void save_error_info(struct btrfs_fs_info *fs_info) 103 static void save_error_info(struct btrfs_fs_info *fs_info)
104 { 104 {
105 __save_error_info(fs_info); 105 __save_error_info(fs_info);
106 } 106 }
107 107
108 /* btrfs handle error by forcing the filesystem readonly */ 108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 { 110 {
111 struct super_block *sb = fs_info->sb; 111 struct super_block *sb = fs_info->sb;
112 112
113 if (sb->s_flags & MS_RDONLY) 113 if (sb->s_flags & MS_RDONLY)
114 return; 114 return;
115 115
116 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 116 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117 sb->s_flags |= MS_RDONLY; 117 sb->s_flags |= MS_RDONLY;
118 printk(KERN_INFO "btrfs is forced readonly\n"); 118 printk(KERN_INFO "btrfs is forced readonly\n");
119 } 119 }
120 } 120 }
121 121
122 /* 122 /*
123 * __btrfs_std_error decodes expected errors from the caller and 123 * __btrfs_std_error decodes expected errors from the caller and
124 * invokes the approciate error response. 124 * invokes the approciate error response.
125 */ 125 */
126 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 126 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
127 unsigned int line, int errno) 127 unsigned int line, int errno)
128 { 128 {
129 struct super_block *sb = fs_info->sb; 129 struct super_block *sb = fs_info->sb;
130 char nbuf[16]; 130 char nbuf[16];
131 const char *errstr; 131 const char *errstr;
132 132
133 /* 133 /*
134 * Special case: if the error is EROFS, and we're already 134 * Special case: if the error is EROFS, and we're already
135 * under MS_RDONLY, then it is safe here. 135 * under MS_RDONLY, then it is safe here.
136 */ 136 */
137 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 137 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
138 return; 138 return;
139 139
140 errstr = btrfs_decode_error(fs_info, errno, nbuf); 140 errstr = btrfs_decode_error(fs_info, errno, nbuf);
141 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n", 141 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
142 sb->s_id, function, line, errstr); 142 sb->s_id, function, line, errstr);
143 save_error_info(fs_info); 143 save_error_info(fs_info);
144 144
145 btrfs_handle_error(fs_info); 145 btrfs_handle_error(fs_info);
146 } 146 }
147 147
148 static void btrfs_put_super(struct super_block *sb) 148 static void btrfs_put_super(struct super_block *sb)
149 { 149 {
150 struct btrfs_root *root = btrfs_sb(sb); 150 struct btrfs_root *root = btrfs_sb(sb);
151 int ret; 151 int ret;
152 152
153 ret = close_ctree(root); 153 ret = close_ctree(root);
154 sb->s_fs_info = NULL; 154 sb->s_fs_info = NULL;
155 155
156 (void)ret; /* FIXME: need to fix VFS to return error? */ 156 (void)ret; /* FIXME: need to fix VFS to return error? */
157 } 157 }
158 158
159 enum { 159 enum {
160 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 160 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
161 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 161 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
162 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 162 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
163 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 163 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
164 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 164 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
165 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, 165 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
166 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, 166 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag,
167 Opt_inode_cache, Opt_no_space_cache, Opt_recovery, Opt_err, 167 Opt_inode_cache, Opt_no_space_cache, Opt_recovery, Opt_err,
168 }; 168 };
169 169
170 static match_table_t tokens = { 170 static match_table_t tokens = {
171 {Opt_degraded, "degraded"}, 171 {Opt_degraded, "degraded"},
172 {Opt_subvol, "subvol=%s"}, 172 {Opt_subvol, "subvol=%s"},
173 {Opt_subvolid, "subvolid=%d"}, 173 {Opt_subvolid, "subvolid=%d"},
174 {Opt_device, "device=%s"}, 174 {Opt_device, "device=%s"},
175 {Opt_nodatasum, "nodatasum"}, 175 {Opt_nodatasum, "nodatasum"},
176 {Opt_nodatacow, "nodatacow"}, 176 {Opt_nodatacow, "nodatacow"},
177 {Opt_nobarrier, "nobarrier"}, 177 {Opt_nobarrier, "nobarrier"},
178 {Opt_max_inline, "max_inline=%s"}, 178 {Opt_max_inline, "max_inline=%s"},
179 {Opt_alloc_start, "alloc_start=%s"}, 179 {Opt_alloc_start, "alloc_start=%s"},
180 {Opt_thread_pool, "thread_pool=%d"}, 180 {Opt_thread_pool, "thread_pool=%d"},
181 {Opt_compress, "compress"}, 181 {Opt_compress, "compress"},
182 {Opt_compress_type, "compress=%s"}, 182 {Opt_compress_type, "compress=%s"},
183 {Opt_compress_force, "compress-force"}, 183 {Opt_compress_force, "compress-force"},
184 {Opt_compress_force_type, "compress-force=%s"}, 184 {Opt_compress_force_type, "compress-force=%s"},
185 {Opt_ssd, "ssd"}, 185 {Opt_ssd, "ssd"},
186 {Opt_ssd_spread, "ssd_spread"}, 186 {Opt_ssd_spread, "ssd_spread"},
187 {Opt_nossd, "nossd"}, 187 {Opt_nossd, "nossd"},
188 {Opt_noacl, "noacl"}, 188 {Opt_noacl, "noacl"},
189 {Opt_notreelog, "notreelog"}, 189 {Opt_notreelog, "notreelog"},
190 {Opt_flushoncommit, "flushoncommit"}, 190 {Opt_flushoncommit, "flushoncommit"},
191 {Opt_ratio, "metadata_ratio=%d"}, 191 {Opt_ratio, "metadata_ratio=%d"},
192 {Opt_discard, "discard"}, 192 {Opt_discard, "discard"},
193 {Opt_space_cache, "space_cache"}, 193 {Opt_space_cache, "space_cache"},
194 {Opt_clear_cache, "clear_cache"}, 194 {Opt_clear_cache, "clear_cache"},
195 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 195 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
196 {Opt_enospc_debug, "enospc_debug"}, 196 {Opt_enospc_debug, "enospc_debug"},
197 {Opt_subvolrootid, "subvolrootid=%d"}, 197 {Opt_subvolrootid, "subvolrootid=%d"},
198 {Opt_defrag, "autodefrag"}, 198 {Opt_defrag, "autodefrag"},
199 {Opt_inode_cache, "inode_cache"}, 199 {Opt_inode_cache, "inode_cache"},
200 {Opt_no_space_cache, "no_space_cache"}, 200 {Opt_no_space_cache, "no_space_cache"},
201 {Opt_recovery, "recovery"}, 201 {Opt_recovery, "recovery"},
202 {Opt_err, NULL}, 202 {Opt_err, NULL},
203 }; 203 };
204 204
205 /* 205 /*
206 * Regular mount options parser. Everything that is needed only when 206 * Regular mount options parser. Everything that is needed only when
207 * reading in a new superblock is parsed here. 207 * reading in a new superblock is parsed here.
208 */ 208 */
209 int btrfs_parse_options(struct btrfs_root *root, char *options) 209 int btrfs_parse_options(struct btrfs_root *root, char *options)
210 { 210 {
211 struct btrfs_fs_info *info = root->fs_info; 211 struct btrfs_fs_info *info = root->fs_info;
212 substring_t args[MAX_OPT_ARGS]; 212 substring_t args[MAX_OPT_ARGS];
213 char *p, *num, *orig = NULL; 213 char *p, *num, *orig = NULL;
214 u64 cache_gen; 214 u64 cache_gen;
215 int intarg; 215 int intarg;
216 int ret = 0; 216 int ret = 0;
217 char *compress_type; 217 char *compress_type;
218 bool compress_force = false; 218 bool compress_force = false;
219 219
220 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 220 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
221 if (cache_gen) 221 if (cache_gen)
222 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 222 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
223 223
224 if (!options) 224 if (!options)
225 goto out; 225 goto out;
226 226
227 /* 227 /*
228 * strsep changes the string, duplicate it because parse_options 228 * strsep changes the string, duplicate it because parse_options
229 * gets called twice 229 * gets called twice
230 */ 230 */
231 options = kstrdup(options, GFP_NOFS); 231 options = kstrdup(options, GFP_NOFS);
232 if (!options) 232 if (!options)
233 return -ENOMEM; 233 return -ENOMEM;
234 234
235 orig = options; 235 orig = options;
236 236
237 while ((p = strsep(&options, ",")) != NULL) { 237 while ((p = strsep(&options, ",")) != NULL) {
238 int token; 238 int token;
239 if (!*p) 239 if (!*p)
240 continue; 240 continue;
241 241
242 token = match_token(p, tokens, args); 242 token = match_token(p, tokens, args);
243 switch (token) { 243 switch (token) {
244 case Opt_degraded: 244 case Opt_degraded:
245 printk(KERN_INFO "btrfs: allowing degraded mounts\n"); 245 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
246 btrfs_set_opt(info->mount_opt, DEGRADED); 246 btrfs_set_opt(info->mount_opt, DEGRADED);
247 break; 247 break;
248 case Opt_subvol: 248 case Opt_subvol:
249 case Opt_subvolid: 249 case Opt_subvolid:
250 case Opt_subvolrootid: 250 case Opt_subvolrootid:
251 case Opt_device: 251 case Opt_device:
252 /* 252 /*
253 * These are parsed by btrfs_parse_early_options 253 * These are parsed by btrfs_parse_early_options
254 * and can be happily ignored here. 254 * and can be happily ignored here.
255 */ 255 */
256 break; 256 break;
257 case Opt_nodatasum: 257 case Opt_nodatasum:
258 printk(KERN_INFO "btrfs: setting nodatasum\n"); 258 printk(KERN_INFO "btrfs: setting nodatasum\n");
259 btrfs_set_opt(info->mount_opt, NODATASUM); 259 btrfs_set_opt(info->mount_opt, NODATASUM);
260 break; 260 break;
261 case Opt_nodatacow: 261 case Opt_nodatacow:
262 printk(KERN_INFO "btrfs: setting nodatacow\n"); 262 printk(KERN_INFO "btrfs: setting nodatacow\n");
263 btrfs_set_opt(info->mount_opt, NODATACOW); 263 btrfs_set_opt(info->mount_opt, NODATACOW);
264 btrfs_set_opt(info->mount_opt, NODATASUM); 264 btrfs_set_opt(info->mount_opt, NODATASUM);
265 break; 265 break;
266 case Opt_compress_force: 266 case Opt_compress_force:
267 case Opt_compress_force_type: 267 case Opt_compress_force_type:
268 compress_force = true; 268 compress_force = true;
269 case Opt_compress: 269 case Opt_compress:
270 case Opt_compress_type: 270 case Opt_compress_type:
271 if (token == Opt_compress || 271 if (token == Opt_compress ||
272 token == Opt_compress_force || 272 token == Opt_compress_force ||
273 strcmp(args[0].from, "zlib") == 0) { 273 strcmp(args[0].from, "zlib") == 0) {
274 compress_type = "zlib"; 274 compress_type = "zlib";
275 info->compress_type = BTRFS_COMPRESS_ZLIB; 275 info->compress_type = BTRFS_COMPRESS_ZLIB;
276 } else if (strcmp(args[0].from, "lzo") == 0) { 276 } else if (strcmp(args[0].from, "lzo") == 0) {
277 compress_type = "lzo"; 277 compress_type = "lzo";
278 info->compress_type = BTRFS_COMPRESS_LZO; 278 info->compress_type = BTRFS_COMPRESS_LZO;
279 } else { 279 } else {
280 ret = -EINVAL; 280 ret = -EINVAL;
281 goto out; 281 goto out;
282 } 282 }
283 283
284 btrfs_set_opt(info->mount_opt, COMPRESS); 284 btrfs_set_opt(info->mount_opt, COMPRESS);
285 if (compress_force) { 285 if (compress_force) {
286 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 286 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
287 pr_info("btrfs: force %s compression\n", 287 pr_info("btrfs: force %s compression\n",
288 compress_type); 288 compress_type);
289 } else 289 } else
290 pr_info("btrfs: use %s compression\n", 290 pr_info("btrfs: use %s compression\n",
291 compress_type); 291 compress_type);
292 break; 292 break;
293 case Opt_ssd: 293 case Opt_ssd:
294 printk(KERN_INFO "btrfs: use ssd allocation scheme\n"); 294 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
295 btrfs_set_opt(info->mount_opt, SSD); 295 btrfs_set_opt(info->mount_opt, SSD);
296 break; 296 break;
297 case Opt_ssd_spread: 297 case Opt_ssd_spread:
298 printk(KERN_INFO "btrfs: use spread ssd " 298 printk(KERN_INFO "btrfs: use spread ssd "
299 "allocation scheme\n"); 299 "allocation scheme\n");
300 btrfs_set_opt(info->mount_opt, SSD); 300 btrfs_set_opt(info->mount_opt, SSD);
301 btrfs_set_opt(info->mount_opt, SSD_SPREAD); 301 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
302 break; 302 break;
303 case Opt_nossd: 303 case Opt_nossd:
304 printk(KERN_INFO "btrfs: not using ssd allocation " 304 printk(KERN_INFO "btrfs: not using ssd allocation "
305 "scheme\n"); 305 "scheme\n");
306 btrfs_set_opt(info->mount_opt, NOSSD); 306 btrfs_set_opt(info->mount_opt, NOSSD);
307 btrfs_clear_opt(info->mount_opt, SSD); 307 btrfs_clear_opt(info->mount_opt, SSD);
308 btrfs_clear_opt(info->mount_opt, SSD_SPREAD); 308 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
309 break; 309 break;
310 case Opt_nobarrier: 310 case Opt_nobarrier:
311 printk(KERN_INFO "btrfs: turning off barriers\n"); 311 printk(KERN_INFO "btrfs: turning off barriers\n");
312 btrfs_set_opt(info->mount_opt, NOBARRIER); 312 btrfs_set_opt(info->mount_opt, NOBARRIER);
313 break; 313 break;
314 case Opt_thread_pool: 314 case Opt_thread_pool:
315 intarg = 0; 315 intarg = 0;
316 match_int(&args[0], &intarg); 316 match_int(&args[0], &intarg);
317 if (intarg) { 317 if (intarg) {
318 info->thread_pool_size = intarg; 318 info->thread_pool_size = intarg;
319 printk(KERN_INFO "btrfs: thread pool %d\n", 319 printk(KERN_INFO "btrfs: thread pool %d\n",
320 info->thread_pool_size); 320 info->thread_pool_size);
321 } 321 }
322 break; 322 break;
323 case Opt_max_inline: 323 case Opt_max_inline:
324 num = match_strdup(&args[0]); 324 num = match_strdup(&args[0]);
325 if (num) { 325 if (num) {
326 info->max_inline = memparse(num, NULL); 326 info->max_inline = memparse(num, NULL);
327 kfree(num); 327 kfree(num);
328 328
329 if (info->max_inline) { 329 if (info->max_inline) {
330 info->max_inline = max_t(u64, 330 info->max_inline = max_t(u64,
331 info->max_inline, 331 info->max_inline,
332 root->sectorsize); 332 root->sectorsize);
333 } 333 }
334 printk(KERN_INFO "btrfs: max_inline at %llu\n", 334 printk(KERN_INFO "btrfs: max_inline at %llu\n",
335 (unsigned long long)info->max_inline); 335 (unsigned long long)info->max_inline);
336 } 336 }
337 break; 337 break;
338 case Opt_alloc_start: 338 case Opt_alloc_start:
339 num = match_strdup(&args[0]); 339 num = match_strdup(&args[0]);
340 if (num) { 340 if (num) {
341 info->alloc_start = memparse(num, NULL); 341 info->alloc_start = memparse(num, NULL);
342 kfree(num); 342 kfree(num);
343 printk(KERN_INFO 343 printk(KERN_INFO
344 "btrfs: allocations start at %llu\n", 344 "btrfs: allocations start at %llu\n",
345 (unsigned long long)info->alloc_start); 345 (unsigned long long)info->alloc_start);
346 } 346 }
347 break; 347 break;
348 case Opt_noacl: 348 case Opt_noacl:
349 root->fs_info->sb->s_flags &= ~MS_POSIXACL; 349 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
350 break; 350 break;
351 case Opt_notreelog: 351 case Opt_notreelog:
352 printk(KERN_INFO "btrfs: disabling tree log\n"); 352 printk(KERN_INFO "btrfs: disabling tree log\n");
353 btrfs_set_opt(info->mount_opt, NOTREELOG); 353 btrfs_set_opt(info->mount_opt, NOTREELOG);
354 break; 354 break;
355 case Opt_flushoncommit: 355 case Opt_flushoncommit:
356 printk(KERN_INFO "btrfs: turning on flush-on-commit\n"); 356 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
357 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT); 357 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
358 break; 358 break;
359 case Opt_ratio: 359 case Opt_ratio:
360 intarg = 0; 360 intarg = 0;
361 match_int(&args[0], &intarg); 361 match_int(&args[0], &intarg);
362 if (intarg) { 362 if (intarg) {
363 info->metadata_ratio = intarg; 363 info->metadata_ratio = intarg;
364 printk(KERN_INFO "btrfs: metadata ratio %d\n", 364 printk(KERN_INFO "btrfs: metadata ratio %d\n",
365 info->metadata_ratio); 365 info->metadata_ratio);
366 } 366 }
367 break; 367 break;
368 case Opt_discard: 368 case Opt_discard:
369 btrfs_set_opt(info->mount_opt, DISCARD); 369 btrfs_set_opt(info->mount_opt, DISCARD);
370 break; 370 break;
371 case Opt_space_cache: 371 case Opt_space_cache:
372 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 372 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
373 break; 373 break;
374 case Opt_no_space_cache: 374 case Opt_no_space_cache:
375 printk(KERN_INFO "btrfs: disabling disk space caching\n"); 375 printk(KERN_INFO "btrfs: disabling disk space caching\n");
376 btrfs_clear_opt(info->mount_opt, SPACE_CACHE); 376 btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
377 break; 377 break;
378 case Opt_inode_cache: 378 case Opt_inode_cache:
379 printk(KERN_INFO "btrfs: enabling inode map caching\n"); 379 printk(KERN_INFO "btrfs: enabling inode map caching\n");
380 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE); 380 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
381 break; 381 break;
382 case Opt_clear_cache: 382 case Opt_clear_cache:
383 printk(KERN_INFO "btrfs: force clearing of disk cache\n"); 383 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
384 btrfs_set_opt(info->mount_opt, CLEAR_CACHE); 384 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
385 break; 385 break;
386 case Opt_user_subvol_rm_allowed: 386 case Opt_user_subvol_rm_allowed:
387 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 387 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
388 break; 388 break;
389 case Opt_enospc_debug: 389 case Opt_enospc_debug:
390 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 390 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
391 break; 391 break;
392 case Opt_defrag: 392 case Opt_defrag:
393 printk(KERN_INFO "btrfs: enabling auto defrag"); 393 printk(KERN_INFO "btrfs: enabling auto defrag");
394 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG); 394 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
395 break; 395 break;
396 case Opt_recovery: 396 case Opt_recovery:
397 printk(KERN_INFO "btrfs: enabling auto recovery"); 397 printk(KERN_INFO "btrfs: enabling auto recovery");
398 btrfs_set_opt(info->mount_opt, RECOVERY); 398 btrfs_set_opt(info->mount_opt, RECOVERY);
399 break; 399 break;
400 case Opt_err: 400 case Opt_err:
401 printk(KERN_INFO "btrfs: unrecognized mount option " 401 printk(KERN_INFO "btrfs: unrecognized mount option "
402 "'%s'\n", p); 402 "'%s'\n", p);
403 ret = -EINVAL; 403 ret = -EINVAL;
404 goto out; 404 goto out;
405 default: 405 default:
406 break; 406 break;
407 } 407 }
408 } 408 }
409 out: 409 out:
410 if (!ret && btrfs_test_opt(root, SPACE_CACHE)) 410 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
411 printk(KERN_INFO "btrfs: disk space caching is enabled\n"); 411 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
412 kfree(orig); 412 kfree(orig);
413 return ret; 413 return ret;
414 } 414 }
415 415
416 /* 416 /*
417 * Parse mount options that are required early in the mount process. 417 * Parse mount options that are required early in the mount process.
418 * 418 *
419 * All other options will be parsed on much later in the mount process and 419 * All other options will be parsed on much later in the mount process and
420 * only when we need to allocate a new super block. 420 * only when we need to allocate a new super block.
421 */ 421 */
422 static int btrfs_parse_early_options(const char *options, fmode_t flags, 422 static int btrfs_parse_early_options(const char *options, fmode_t flags,
423 void *holder, char **subvol_name, u64 *subvol_objectid, 423 void *holder, char **subvol_name, u64 *subvol_objectid,
424 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices) 424 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
425 { 425 {
426 substring_t args[MAX_OPT_ARGS]; 426 substring_t args[MAX_OPT_ARGS];
427 char *device_name, *opts, *orig, *p; 427 char *device_name, *opts, *orig, *p;
428 int error = 0; 428 int error = 0;
429 int intarg; 429 int intarg;
430 430
431 if (!options) 431 if (!options)
432 return 0; 432 return 0;
433 433
434 /* 434 /*
435 * strsep changes the string, duplicate it because parse_options 435 * strsep changes the string, duplicate it because parse_options
436 * gets called twice 436 * gets called twice
437 */ 437 */
438 opts = kstrdup(options, GFP_KERNEL); 438 opts = kstrdup(options, GFP_KERNEL);
439 if (!opts) 439 if (!opts)
440 return -ENOMEM; 440 return -ENOMEM;
441 orig = opts; 441 orig = opts;
442 442
443 while ((p = strsep(&opts, ",")) != NULL) { 443 while ((p = strsep(&opts, ",")) != NULL) {
444 int token; 444 int token;
445 if (!*p) 445 if (!*p)
446 continue; 446 continue;
447 447
448 token = match_token(p, tokens, args); 448 token = match_token(p, tokens, args);
449 switch (token) { 449 switch (token) {
450 case Opt_subvol: 450 case Opt_subvol:
451 kfree(*subvol_name); 451 kfree(*subvol_name);
452 *subvol_name = match_strdup(&args[0]); 452 *subvol_name = match_strdup(&args[0]);
453 break; 453 break;
454 case Opt_subvolid: 454 case Opt_subvolid:
455 intarg = 0; 455 intarg = 0;
456 error = match_int(&args[0], &intarg); 456 error = match_int(&args[0], &intarg);
457 if (!error) { 457 if (!error) {
458 /* we want the original fs_tree */ 458 /* we want the original fs_tree */
459 if (!intarg) 459 if (!intarg)
460 *subvol_objectid = 460 *subvol_objectid =
461 BTRFS_FS_TREE_OBJECTID; 461 BTRFS_FS_TREE_OBJECTID;
462 else 462 else
463 *subvol_objectid = intarg; 463 *subvol_objectid = intarg;
464 } 464 }
465 break; 465 break;
466 case Opt_subvolrootid: 466 case Opt_subvolrootid:
467 intarg = 0; 467 intarg = 0;
468 error = match_int(&args[0], &intarg); 468 error = match_int(&args[0], &intarg);
469 if (!error) { 469 if (!error) {
470 /* we want the original fs_tree */ 470 /* we want the original fs_tree */
471 if (!intarg) 471 if (!intarg)
472 *subvol_rootid = 472 *subvol_rootid =
473 BTRFS_FS_TREE_OBJECTID; 473 BTRFS_FS_TREE_OBJECTID;
474 else 474 else
475 *subvol_rootid = intarg; 475 *subvol_rootid = intarg;
476 } 476 }
477 break; 477 break;
478 case Opt_device: 478 case Opt_device:
479 device_name = match_strdup(&args[0]); 479 device_name = match_strdup(&args[0]);
480 if (!device_name) { 480 if (!device_name) {
481 error = -ENOMEM; 481 error = -ENOMEM;
482 goto out; 482 goto out;
483 } 483 }
484 error = btrfs_scan_one_device(device_name, 484 error = btrfs_scan_one_device(device_name,
485 flags, holder, fs_devices); 485 flags, holder, fs_devices);
486 kfree(device_name); 486 kfree(device_name);
487 if (error) 487 if (error)
488 goto out; 488 goto out;
489 break; 489 break;
490 default: 490 default:
491 break; 491 break;
492 } 492 }
493 } 493 }
494 494
495 out: 495 out:
496 kfree(orig); 496 kfree(orig);
497 return error; 497 return error;
498 } 498 }
499 499
500 static struct dentry *get_default_root(struct super_block *sb, 500 static struct dentry *get_default_root(struct super_block *sb,
501 u64 subvol_objectid) 501 u64 subvol_objectid)
502 { 502 {
503 struct btrfs_root *root = sb->s_fs_info; 503 struct btrfs_root *root = sb->s_fs_info;
504 struct btrfs_root *new_root; 504 struct btrfs_root *new_root;
505 struct btrfs_dir_item *di; 505 struct btrfs_dir_item *di;
506 struct btrfs_path *path; 506 struct btrfs_path *path;
507 struct btrfs_key location; 507 struct btrfs_key location;
508 struct inode *inode; 508 struct inode *inode;
509 u64 dir_id; 509 u64 dir_id;
510 int new = 0; 510 int new = 0;
511 511
512 /* 512 /*
513 * We have a specific subvol we want to mount, just setup location and 513 * We have a specific subvol we want to mount, just setup location and
514 * go look up the root. 514 * go look up the root.
515 */ 515 */
516 if (subvol_objectid) { 516 if (subvol_objectid) {
517 location.objectid = subvol_objectid; 517 location.objectid = subvol_objectid;
518 location.type = BTRFS_ROOT_ITEM_KEY; 518 location.type = BTRFS_ROOT_ITEM_KEY;
519 location.offset = (u64)-1; 519 location.offset = (u64)-1;
520 goto find_root; 520 goto find_root;
521 } 521 }
522 522
523 path = btrfs_alloc_path(); 523 path = btrfs_alloc_path();
524 if (!path) 524 if (!path)
525 return ERR_PTR(-ENOMEM); 525 return ERR_PTR(-ENOMEM);
526 path->leave_spinning = 1; 526 path->leave_spinning = 1;
527 527
528 /* 528 /*
529 * Find the "default" dir item which points to the root item that we 529 * Find the "default" dir item which points to the root item that we
530 * will mount by default if we haven't been given a specific subvolume 530 * will mount by default if we haven't been given a specific subvolume
531 * to mount. 531 * to mount.
532 */ 532 */
533 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 533 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
534 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 534 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
535 if (IS_ERR(di)) { 535 if (IS_ERR(di)) {
536 btrfs_free_path(path); 536 btrfs_free_path(path);
537 return ERR_CAST(di); 537 return ERR_CAST(di);
538 } 538 }
539 if (!di) { 539 if (!di) {
540 /* 540 /*
541 * Ok the default dir item isn't there. This is weird since 541 * Ok the default dir item isn't there. This is weird since
542 * it's always been there, but don't freak out, just try and 542 * it's always been there, but don't freak out, just try and
543 * mount to root most subvolume. 543 * mount to root most subvolume.
544 */ 544 */
545 btrfs_free_path(path); 545 btrfs_free_path(path);
546 dir_id = BTRFS_FIRST_FREE_OBJECTID; 546 dir_id = BTRFS_FIRST_FREE_OBJECTID;
547 new_root = root->fs_info->fs_root; 547 new_root = root->fs_info->fs_root;
548 goto setup_root; 548 goto setup_root;
549 } 549 }
550 550
551 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 551 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
552 btrfs_free_path(path); 552 btrfs_free_path(path);
553 553
554 find_root: 554 find_root:
555 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 555 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
556 if (IS_ERR(new_root)) 556 if (IS_ERR(new_root))
557 return ERR_CAST(new_root); 557 return ERR_CAST(new_root);
558 558
559 if (btrfs_root_refs(&new_root->root_item) == 0) 559 if (btrfs_root_refs(&new_root->root_item) == 0)
560 return ERR_PTR(-ENOENT); 560 return ERR_PTR(-ENOENT);
561 561
562 dir_id = btrfs_root_dirid(&new_root->root_item); 562 dir_id = btrfs_root_dirid(&new_root->root_item);
563 setup_root: 563 setup_root:
564 location.objectid = dir_id; 564 location.objectid = dir_id;
565 location.type = BTRFS_INODE_ITEM_KEY; 565 location.type = BTRFS_INODE_ITEM_KEY;
566 location.offset = 0; 566 location.offset = 0;
567 567
568 inode = btrfs_iget(sb, &location, new_root, &new); 568 inode = btrfs_iget(sb, &location, new_root, &new);
569 if (IS_ERR(inode)) 569 if (IS_ERR(inode))
570 return ERR_CAST(inode); 570 return ERR_CAST(inode);
571 571
572 /* 572 /*
573 * If we're just mounting the root most subvol put the inode and return 573 * If we're just mounting the root most subvol put the inode and return
574 * a reference to the dentry. We will have already gotten a reference 574 * a reference to the dentry. We will have already gotten a reference
575 * to the inode in btrfs_fill_super so we're good to go. 575 * to the inode in btrfs_fill_super so we're good to go.
576 */ 576 */
577 if (!new && sb->s_root->d_inode == inode) { 577 if (!new && sb->s_root->d_inode == inode) {
578 iput(inode); 578 iput(inode);
579 return dget(sb->s_root); 579 return dget(sb->s_root);
580 } 580 }
581 581
582 return d_obtain_alias(inode); 582 return d_obtain_alias(inode);
583 } 583 }
584 584
585 static int btrfs_fill_super(struct super_block *sb, 585 static int btrfs_fill_super(struct super_block *sb,
586 struct btrfs_fs_devices *fs_devices, 586 struct btrfs_fs_devices *fs_devices,
587 void *data, int silent) 587 void *data, int silent)
588 { 588 {
589 struct inode *inode; 589 struct inode *inode;
590 struct dentry *root_dentry; 590 struct dentry *root_dentry;
591 struct btrfs_root *tree_root; 591 struct btrfs_root *tree_root;
592 struct btrfs_key key; 592 struct btrfs_key key;
593 int err; 593 int err;
594 594
595 sb->s_maxbytes = MAX_LFS_FILESIZE; 595 sb->s_maxbytes = MAX_LFS_FILESIZE;
596 sb->s_magic = BTRFS_SUPER_MAGIC; 596 sb->s_magic = BTRFS_SUPER_MAGIC;
597 sb->s_op = &btrfs_super_ops; 597 sb->s_op = &btrfs_super_ops;
598 sb->s_d_op = &btrfs_dentry_operations; 598 sb->s_d_op = &btrfs_dentry_operations;
599 sb->s_export_op = &btrfs_export_ops; 599 sb->s_export_op = &btrfs_export_ops;
600 sb->s_xattr = btrfs_xattr_handlers; 600 sb->s_xattr = btrfs_xattr_handlers;
601 sb->s_time_gran = 1; 601 sb->s_time_gran = 1;
602 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 602 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
603 sb->s_flags |= MS_POSIXACL; 603 sb->s_flags |= MS_POSIXACL;
604 #endif 604 #endif
605 605
606 tree_root = open_ctree(sb, fs_devices, (char *)data); 606 tree_root = open_ctree(sb, fs_devices, (char *)data);
607 607
608 if (IS_ERR(tree_root)) { 608 if (IS_ERR(tree_root)) {
609 printk("btrfs: open_ctree failed\n"); 609 printk("btrfs: open_ctree failed\n");
610 return PTR_ERR(tree_root); 610 return PTR_ERR(tree_root);
611 } 611 }
612 sb->s_fs_info = tree_root; 612 sb->s_fs_info = tree_root;
613 613
614 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 614 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
615 key.type = BTRFS_INODE_ITEM_KEY; 615 key.type = BTRFS_INODE_ITEM_KEY;
616 key.offset = 0; 616 key.offset = 0;
617 inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL); 617 inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
618 if (IS_ERR(inode)) { 618 if (IS_ERR(inode)) {
619 err = PTR_ERR(inode); 619 err = PTR_ERR(inode);
620 goto fail_close; 620 goto fail_close;
621 } 621 }
622 622
623 root_dentry = d_alloc_root(inode); 623 root_dentry = d_alloc_root(inode);
624 if (!root_dentry) { 624 if (!root_dentry) {
625 iput(inode); 625 iput(inode);
626 err = -ENOMEM; 626 err = -ENOMEM;
627 goto fail_close; 627 goto fail_close;
628 } 628 }
629 629
630 sb->s_root = root_dentry; 630 sb->s_root = root_dentry;
631 631
632 save_mount_options(sb, data); 632 save_mount_options(sb, data);
633 cleancache_init_fs(sb); 633 cleancache_init_fs(sb);
634 return 0; 634 return 0;
635 635
636 fail_close: 636 fail_close:
637 close_ctree(tree_root); 637 close_ctree(tree_root);
638 return err; 638 return err;
639 } 639 }
640 640
641 int btrfs_sync_fs(struct super_block *sb, int wait) 641 int btrfs_sync_fs(struct super_block *sb, int wait)
642 { 642 {
643 struct btrfs_trans_handle *trans; 643 struct btrfs_trans_handle *trans;
644 struct btrfs_root *root = btrfs_sb(sb); 644 struct btrfs_root *root = btrfs_sb(sb);
645 int ret; 645 int ret;
646 646
647 trace_btrfs_sync_fs(wait); 647 trace_btrfs_sync_fs(wait);
648 648
649 if (!wait) { 649 if (!wait) {
650 filemap_flush(root->fs_info->btree_inode->i_mapping); 650 filemap_flush(root->fs_info->btree_inode->i_mapping);
651 return 0; 651 return 0;
652 } 652 }
653 653
654 btrfs_start_delalloc_inodes(root, 0); 654 btrfs_start_delalloc_inodes(root, 0);
655 btrfs_wait_ordered_extents(root, 0, 0); 655 btrfs_wait_ordered_extents(root, 0, 0);
656 656
657 trans = btrfs_start_transaction(root, 0); 657 trans = btrfs_start_transaction(root, 0);
658 if (IS_ERR(trans)) 658 if (IS_ERR(trans))
659 return PTR_ERR(trans); 659 return PTR_ERR(trans);
660 ret = btrfs_commit_transaction(trans, root); 660 ret = btrfs_commit_transaction(trans, root);
661 return ret; 661 return ret;
662 } 662 }
663 663
664 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs) 664 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
665 { 665 {
666 struct btrfs_root *root = btrfs_sb(vfs->mnt_sb); 666 struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
667 struct btrfs_fs_info *info = root->fs_info; 667 struct btrfs_fs_info *info = root->fs_info;
668 char *compress_type; 668 char *compress_type;
669 669
670 if (btrfs_test_opt(root, DEGRADED)) 670 if (btrfs_test_opt(root, DEGRADED))
671 seq_puts(seq, ",degraded"); 671 seq_puts(seq, ",degraded");
672 if (btrfs_test_opt(root, NODATASUM)) 672 if (btrfs_test_opt(root, NODATASUM))
673 seq_puts(seq, ",nodatasum"); 673 seq_puts(seq, ",nodatasum");
674 if (btrfs_test_opt(root, NODATACOW)) 674 if (btrfs_test_opt(root, NODATACOW))
675 seq_puts(seq, ",nodatacow"); 675 seq_puts(seq, ",nodatacow");
676 if (btrfs_test_opt(root, NOBARRIER)) 676 if (btrfs_test_opt(root, NOBARRIER))
677 seq_puts(seq, ",nobarrier"); 677 seq_puts(seq, ",nobarrier");
678 if (info->max_inline != 8192 * 1024) 678 if (info->max_inline != 8192 * 1024)
679 seq_printf(seq, ",max_inline=%llu", 679 seq_printf(seq, ",max_inline=%llu",
680 (unsigned long long)info->max_inline); 680 (unsigned long long)info->max_inline);
681 if (info->alloc_start != 0) 681 if (info->alloc_start != 0)
682 seq_printf(seq, ",alloc_start=%llu", 682 seq_printf(seq, ",alloc_start=%llu",
683 (unsigned long long)info->alloc_start); 683 (unsigned long long)info->alloc_start);
684 if (info->thread_pool_size != min_t(unsigned long, 684 if (info->thread_pool_size != min_t(unsigned long,
685 num_online_cpus() + 2, 8)) 685 num_online_cpus() + 2, 8))
686 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 686 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
687 if (btrfs_test_opt(root, COMPRESS)) { 687 if (btrfs_test_opt(root, COMPRESS)) {
688 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 688 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
689 compress_type = "zlib"; 689 compress_type = "zlib";
690 else 690 else
691 compress_type = "lzo"; 691 compress_type = "lzo";
692 if (btrfs_test_opt(root, FORCE_COMPRESS)) 692 if (btrfs_test_opt(root, FORCE_COMPRESS))
693 seq_printf(seq, ",compress-force=%s", compress_type); 693 seq_printf(seq, ",compress-force=%s", compress_type);
694 else 694 else
695 seq_printf(seq, ",compress=%s", compress_type); 695 seq_printf(seq, ",compress=%s", compress_type);
696 } 696 }
697 if (btrfs_test_opt(root, NOSSD)) 697 if (btrfs_test_opt(root, NOSSD))
698 seq_puts(seq, ",nossd"); 698 seq_puts(seq, ",nossd");
699 if (btrfs_test_opt(root, SSD_SPREAD)) 699 if (btrfs_test_opt(root, SSD_SPREAD))
700 seq_puts(seq, ",ssd_spread"); 700 seq_puts(seq, ",ssd_spread");
701 else if (btrfs_test_opt(root, SSD)) 701 else if (btrfs_test_opt(root, SSD))
702 seq_puts(seq, ",ssd"); 702 seq_puts(seq, ",ssd");
703 if (btrfs_test_opt(root, NOTREELOG)) 703 if (btrfs_test_opt(root, NOTREELOG))
704 seq_puts(seq, ",notreelog"); 704 seq_puts(seq, ",notreelog");
705 if (btrfs_test_opt(root, FLUSHONCOMMIT)) 705 if (btrfs_test_opt(root, FLUSHONCOMMIT))
706 seq_puts(seq, ",flushoncommit"); 706 seq_puts(seq, ",flushoncommit");
707 if (btrfs_test_opt(root, DISCARD)) 707 if (btrfs_test_opt(root, DISCARD))
708 seq_puts(seq, ",discard"); 708 seq_puts(seq, ",discard");
709 if (!(root->fs_info->sb->s_flags & MS_POSIXACL)) 709 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
710 seq_puts(seq, ",noacl"); 710 seq_puts(seq, ",noacl");
711 if (btrfs_test_opt(root, SPACE_CACHE)) 711 if (btrfs_test_opt(root, SPACE_CACHE))
712 seq_puts(seq, ",space_cache"); 712 seq_puts(seq, ",space_cache");
713 else 713 else
714 seq_puts(seq, ",no_space_cache"); 714 seq_puts(seq, ",no_space_cache");
715 if (btrfs_test_opt(root, CLEAR_CACHE)) 715 if (btrfs_test_opt(root, CLEAR_CACHE))
716 seq_puts(seq, ",clear_cache"); 716 seq_puts(seq, ",clear_cache");
717 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 717 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
718 seq_puts(seq, ",user_subvol_rm_allowed"); 718 seq_puts(seq, ",user_subvol_rm_allowed");
719 if (btrfs_test_opt(root, ENOSPC_DEBUG)) 719 if (btrfs_test_opt(root, ENOSPC_DEBUG))
720 seq_puts(seq, ",enospc_debug"); 720 seq_puts(seq, ",enospc_debug");
721 if (btrfs_test_opt(root, AUTO_DEFRAG)) 721 if (btrfs_test_opt(root, AUTO_DEFRAG))
722 seq_puts(seq, ",autodefrag"); 722 seq_puts(seq, ",autodefrag");
723 if (btrfs_test_opt(root, INODE_MAP_CACHE)) 723 if (btrfs_test_opt(root, INODE_MAP_CACHE))
724 seq_puts(seq, ",inode_cache"); 724 seq_puts(seq, ",inode_cache");
725 return 0; 725 return 0;
726 } 726 }
727 727
728 static int btrfs_test_super(struct super_block *s, void *data) 728 static int btrfs_test_super(struct super_block *s, void *data)
729 { 729 {
730 struct btrfs_root *test_root = data; 730 struct btrfs_root *test_root = data;
731 struct btrfs_root *root = btrfs_sb(s); 731 struct btrfs_root *root = btrfs_sb(s);
732 732
733 /* 733 /*
734 * If this super block is going away, return false as it 734 * If this super block is going away, return false as it
735 * can't match as an existing super block. 735 * can't match as an existing super block.
736 */ 736 */
737 if (!atomic_read(&s->s_active)) 737 if (!atomic_read(&s->s_active))
738 return 0; 738 return 0;
739 return root->fs_info->fs_devices == test_root->fs_info->fs_devices; 739 return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
740 } 740 }
741 741
742 static int btrfs_set_super(struct super_block *s, void *data) 742 static int btrfs_set_super(struct super_block *s, void *data)
743 { 743 {
744 s->s_fs_info = data; 744 s->s_fs_info = data;
745 745
746 return set_anon_super(s, data); 746 return set_anon_super(s, data);
747 } 747 }
748 748
749 /* 749 /*
750 * subvolumes are identified by ino 256 750 * subvolumes are identified by ino 256
751 */ 751 */
752 static inline int is_subvolume_inode(struct inode *inode) 752 static inline int is_subvolume_inode(struct inode *inode)
753 { 753 {
754 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 754 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
755 return 1; 755 return 1;
756 return 0; 756 return 0;
757 } 757 }
758 758
759 /* 759 /*
760 * This will strip out the subvol=%s argument for an argument string and add 760 * This will strip out the subvol=%s argument for an argument string and add
761 * subvolid=0 to make sure we get the actual tree root for path walking to the 761 * subvolid=0 to make sure we get the actual tree root for path walking to the
762 * subvol we want. 762 * subvol we want.
763 */ 763 */
764 static char *setup_root_args(char *args) 764 static char *setup_root_args(char *args)
765 { 765 {
766 unsigned copied = 0; 766 unsigned copied = 0;
767 unsigned len = strlen(args) + 2; 767 unsigned len = strlen(args) + 2;
768 char *pos; 768 char *pos;
769 char *ret; 769 char *ret;
770 770
771 /* 771 /*
772 * We need the same args as before, but minus 772 * We need the same args as before, but minus
773 * 773 *
774 * subvol=a 774 * subvol=a
775 * 775 *
776 * and add 776 * and add
777 * 777 *
778 * subvolid=0 778 * subvolid=0
779 * 779 *
780 * which is a difference of 2 characters, so we allocate strlen(args) + 780 * which is a difference of 2 characters, so we allocate strlen(args) +
781 * 2 characters. 781 * 2 characters.
782 */ 782 */
783 ret = kzalloc(len * sizeof(char), GFP_NOFS); 783 ret = kzalloc(len * sizeof(char), GFP_NOFS);
784 if (!ret) 784 if (!ret)
785 return NULL; 785 return NULL;
786 pos = strstr(args, "subvol="); 786 pos = strstr(args, "subvol=");
787 787
788 /* This shouldn't happen, but just in case.. */ 788 /* This shouldn't happen, but just in case.. */
789 if (!pos) { 789 if (!pos) {
790 kfree(ret); 790 kfree(ret);
791 return NULL; 791 return NULL;
792 } 792 }
793 793
794 /* 794 /*
795 * The subvol=<> arg is not at the front of the string, copy everybody 795 * The subvol=<> arg is not at the front of the string, copy everybody
796 * up to that into ret. 796 * up to that into ret.
797 */ 797 */
798 if (pos != args) { 798 if (pos != args) {
799 *pos = '\0'; 799 *pos = '\0';
800 strcpy(ret, args); 800 strcpy(ret, args);
801 copied += strlen(args); 801 copied += strlen(args);
802 pos++; 802 pos++;
803 } 803 }
804 804
805 strncpy(ret + copied, "subvolid=0", len - copied); 805 strncpy(ret + copied, "subvolid=0", len - copied);
806 806
807 /* Length of subvolid=0 */ 807 /* Length of subvolid=0 */
808 copied += 10; 808 copied += 10;
809 809
810 /* 810 /*
811 * If there is no , after the subvol= option then we know there's no 811 * If there is no , after the subvol= option then we know there's no
812 * other options and we can just return. 812 * other options and we can just return.
813 */ 813 */
814 pos = strchr(pos, ','); 814 pos = strchr(pos, ',');
815 if (!pos) 815 if (!pos)
816 return ret; 816 return ret;
817 817
818 /* Copy the rest of the arguments into our buffer */ 818 /* Copy the rest of the arguments into our buffer */
819 strncpy(ret + copied, pos, len - copied); 819 strncpy(ret + copied, pos, len - copied);
820 copied += strlen(pos); 820 copied += strlen(pos);
821 821
822 return ret; 822 return ret;
823 } 823 }
824 824
825 static struct dentry *mount_subvol(const char *subvol_name, int flags, 825 static struct dentry *mount_subvol(const char *subvol_name, int flags,
826 const char *device_name, char *data) 826 const char *device_name, char *data)
827 { 827 {
828 struct super_block *s; 828 struct super_block *s;
829 struct dentry *root; 829 struct dentry *root;
830 struct vfsmount *mnt; 830 struct vfsmount *mnt;
831 struct mnt_namespace *ns_private; 831 struct mnt_namespace *ns_private;
832 char *newargs; 832 char *newargs;
833 struct path path; 833 struct path path;
834 int error; 834 int error;
835 835
836 newargs = setup_root_args(data); 836 newargs = setup_root_args(data);
837 if (!newargs) 837 if (!newargs)
838 return ERR_PTR(-ENOMEM); 838 return ERR_PTR(-ENOMEM);
839 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, 839 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
840 newargs); 840 newargs);
841 kfree(newargs); 841 kfree(newargs);
842 if (IS_ERR(mnt)) 842 if (IS_ERR(mnt))
843 return ERR_CAST(mnt); 843 return ERR_CAST(mnt);
844 844
845 ns_private = create_mnt_ns(mnt); 845 ns_private = create_mnt_ns(mnt);
846 if (IS_ERR(ns_private)) { 846 if (IS_ERR(ns_private)) {
847 mntput(mnt); 847 mntput(mnt);
848 return ERR_CAST(ns_private); 848 return ERR_CAST(ns_private);
849 } 849 }
850 850
851 /* 851 /*
852 * This will trigger the automount of the subvol so we can just 852 * This will trigger the automount of the subvol so we can just
853 * drop the mnt we have here and return the dentry that we 853 * drop the mnt we have here and return the dentry that we
854 * found. 854 * found.
855 */ 855 */
856 error = vfs_path_lookup(mnt->mnt_root, mnt, subvol_name, 856 error = vfs_path_lookup(mnt->mnt_root, mnt, subvol_name,
857 LOOKUP_FOLLOW, &path); 857 LOOKUP_FOLLOW, &path);
858 put_mnt_ns(ns_private); 858 put_mnt_ns(ns_private);
859 if (error) 859 if (error)
860 return ERR_PTR(error); 860 return ERR_PTR(error);
861 861
862 if (!is_subvolume_inode(path.dentry->d_inode)) { 862 if (!is_subvolume_inode(path.dentry->d_inode)) {
863 path_put(&path); 863 path_put(&path);
864 mntput(mnt); 864 mntput(mnt);
865 error = -EINVAL; 865 error = -EINVAL;
866 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n", 866 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
867 subvol_name); 867 subvol_name);
868 return ERR_PTR(-EINVAL); 868 return ERR_PTR(-EINVAL);
869 } 869 }
870 870
871 /* Get a ref to the sb and the dentry we found and return it */ 871 /* Get a ref to the sb and the dentry we found and return it */
872 s = path.mnt->mnt_sb; 872 s = path.mnt->mnt_sb;
873 atomic_inc(&s->s_active); 873 atomic_inc(&s->s_active);
874 root = dget(path.dentry); 874 root = dget(path.dentry);
875 path_put(&path); 875 path_put(&path);
876 down_write(&s->s_umount); 876 down_write(&s->s_umount);
877 877
878 return root; 878 return root;
879 } 879 }
880 880
881 /* 881 /*
882 * Find a superblock for the given device / mount point. 882 * Find a superblock for the given device / mount point.
883 * 883 *
884 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 884 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
885 * for multiple device setup. Make sure to keep it in sync. 885 * for multiple device setup. Make sure to keep it in sync.
886 */ 886 */
887 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 887 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
888 const char *device_name, void *data) 888 const char *device_name, void *data)
889 { 889 {
890 struct block_device *bdev = NULL; 890 struct block_device *bdev = NULL;
891 struct super_block *s; 891 struct super_block *s;
892 struct dentry *root; 892 struct dentry *root;
893 struct btrfs_fs_devices *fs_devices = NULL; 893 struct btrfs_fs_devices *fs_devices = NULL;
894 struct btrfs_root *tree_root = NULL; 894 struct btrfs_root *tree_root = NULL;
895 struct btrfs_fs_info *fs_info = NULL; 895 struct btrfs_fs_info *fs_info = NULL;
896 fmode_t mode = FMODE_READ; 896 fmode_t mode = FMODE_READ;
897 char *subvol_name = NULL; 897 char *subvol_name = NULL;
898 u64 subvol_objectid = 0; 898 u64 subvol_objectid = 0;
899 u64 subvol_rootid = 0; 899 u64 subvol_rootid = 0;
900 int error = 0; 900 int error = 0;
901 901
902 if (!(flags & MS_RDONLY)) 902 if (!(flags & MS_RDONLY))
903 mode |= FMODE_WRITE; 903 mode |= FMODE_WRITE;
904 904
905 error = btrfs_parse_early_options(data, mode, fs_type, 905 error = btrfs_parse_early_options(data, mode, fs_type,
906 &subvol_name, &subvol_objectid, 906 &subvol_name, &subvol_objectid,
907 &subvol_rootid, &fs_devices); 907 &subvol_rootid, &fs_devices);
908 if (error) 908 if (error) {
909 kfree(subvol_name);
909 return ERR_PTR(error); 910 return ERR_PTR(error);
911 }
910 912
911 if (subvol_name) { 913 if (subvol_name) {
912 root = mount_subvol(subvol_name, flags, device_name, data); 914 root = mount_subvol(subvol_name, flags, device_name, data);
913 kfree(subvol_name); 915 kfree(subvol_name);
914 return root; 916 return root;
915 } 917 }
916 918
917 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 919 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
918 if (error) 920 if (error)
919 return ERR_PTR(error); 921 return ERR_PTR(error);
920 922
921 error = btrfs_open_devices(fs_devices, mode, fs_type); 923 error = btrfs_open_devices(fs_devices, mode, fs_type);
922 if (error) 924 if (error)
923 return ERR_PTR(error); 925 return ERR_PTR(error);
924 926
925 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 927 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
926 error = -EACCES; 928 error = -EACCES;
927 goto error_close_devices; 929 goto error_close_devices;
928 } 930 }
929 931
930 /* 932 /*
931 * Setup a dummy root and fs_info for test/set super. This is because 933 * Setup a dummy root and fs_info for test/set super. This is because
932 * we don't actually fill this stuff out until open_ctree, but we need 934 * we don't actually fill this stuff out until open_ctree, but we need
933 * it for searching for existing supers, so this lets us do that and 935 * it for searching for existing supers, so this lets us do that and
934 * then open_ctree will properly initialize everything later. 936 * then open_ctree will properly initialize everything later.
935 */ 937 */
936 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 938 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
937 if (!fs_info) { 939 if (!fs_info) {
938 error = -ENOMEM; 940 error = -ENOMEM;
939 goto error_close_devices; 941 goto error_close_devices;
940 } 942 }
941 tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS); 943 tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
942 if (!tree_root) { 944 if (!tree_root) {
943 error = -ENOMEM; 945 error = -ENOMEM;
944 goto error_close_devices; 946 goto error_close_devices;
945 } 947 }
946 fs_info->tree_root = tree_root; 948 fs_info->tree_root = tree_root;
947 fs_info->fs_devices = fs_devices; 949 fs_info->fs_devices = fs_devices;
948 tree_root->fs_info = fs_info; 950 tree_root->fs_info = fs_info;
949 951
950 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 952 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
951 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 953 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
952 if (!fs_info->super_copy || !fs_info->super_for_commit) { 954 if (!fs_info->super_copy || !fs_info->super_for_commit) {
953 error = -ENOMEM; 955 error = -ENOMEM;
954 goto error_close_devices; 956 goto error_close_devices;
955 } 957 }
956 958
957 bdev = fs_devices->latest_bdev; 959 bdev = fs_devices->latest_bdev;
958 s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root); 960 s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
959 if (IS_ERR(s)) { 961 if (IS_ERR(s)) {
960 error = PTR_ERR(s); 962 error = PTR_ERR(s);
961 goto error_close_devices; 963 goto error_close_devices;
962 } 964 }
963 965
964 if (s->s_root) { 966 if (s->s_root) {
965 if ((flags ^ s->s_flags) & MS_RDONLY) { 967 if ((flags ^ s->s_flags) & MS_RDONLY) {
966 deactivate_locked_super(s); 968 deactivate_locked_super(s);
967 return ERR_PTR(-EBUSY); 969 return ERR_PTR(-EBUSY);
968 } 970 }
969 971
970 btrfs_close_devices(fs_devices); 972 btrfs_close_devices(fs_devices);
971 free_fs_info(fs_info); 973 free_fs_info(fs_info);
972 } else { 974 } else {
973 char b[BDEVNAME_SIZE]; 975 char b[BDEVNAME_SIZE];
974 976
975 s->s_flags = flags | MS_NOSEC; 977 s->s_flags = flags | MS_NOSEC;
976 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id)); 978 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
977 btrfs_sb(s)->fs_info->bdev_holder = fs_type; 979 btrfs_sb(s)->fs_info->bdev_holder = fs_type;
978 error = btrfs_fill_super(s, fs_devices, data, 980 error = btrfs_fill_super(s, fs_devices, data,
979 flags & MS_SILENT ? 1 : 0); 981 flags & MS_SILENT ? 1 : 0);
980 if (error) { 982 if (error) {
981 deactivate_locked_super(s); 983 deactivate_locked_super(s);
982 return ERR_PTR(error); 984 return ERR_PTR(error);
983 } 985 }
984 986
985 s->s_flags |= MS_ACTIVE; 987 s->s_flags |= MS_ACTIVE;
986 } 988 }
987 989
988 root = get_default_root(s, subvol_objectid); 990 root = get_default_root(s, subvol_objectid);
989 if (IS_ERR(root)) { 991 if (IS_ERR(root)) {
990 deactivate_locked_super(s); 992 deactivate_locked_super(s);
991 return root; 993 return root;
992 } 994 }
993 995
994 return root; 996 return root;
995 997
996 error_close_devices: 998 error_close_devices:
997 btrfs_close_devices(fs_devices); 999 btrfs_close_devices(fs_devices);
998 free_fs_info(fs_info); 1000 free_fs_info(fs_info);
999 return ERR_PTR(error); 1001 return ERR_PTR(error);
1000 } 1002 }
1001 1003
1002 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1004 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1003 { 1005 {
1004 struct btrfs_root *root = btrfs_sb(sb); 1006 struct btrfs_root *root = btrfs_sb(sb);
1005 int ret; 1007 int ret;
1006 1008
1007 ret = btrfs_parse_options(root, data); 1009 ret = btrfs_parse_options(root, data);
1008 if (ret) 1010 if (ret)
1009 return -EINVAL; 1011 return -EINVAL;
1010 1012
1011 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1013 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1012 return 0; 1014 return 0;
1013 1015
1014 if (*flags & MS_RDONLY) { 1016 if (*flags & MS_RDONLY) {
1015 sb->s_flags |= MS_RDONLY; 1017 sb->s_flags |= MS_RDONLY;
1016 1018
1017 ret = btrfs_commit_super(root); 1019 ret = btrfs_commit_super(root);
1018 WARN_ON(ret); 1020 WARN_ON(ret);
1019 } else { 1021 } else {
1020 if (root->fs_info->fs_devices->rw_devices == 0) 1022 if (root->fs_info->fs_devices->rw_devices == 0)
1021 return -EACCES; 1023 return -EACCES;
1022 1024
1023 if (btrfs_super_log_root(root->fs_info->super_copy) != 0) 1025 if (btrfs_super_log_root(root->fs_info->super_copy) != 0)
1024 return -EINVAL; 1026 return -EINVAL;
1025 1027
1026 ret = btrfs_cleanup_fs_roots(root->fs_info); 1028 ret = btrfs_cleanup_fs_roots(root->fs_info);
1027 WARN_ON(ret); 1029 WARN_ON(ret);
1028 1030
1029 /* recover relocation */ 1031 /* recover relocation */
1030 ret = btrfs_recover_relocation(root); 1032 ret = btrfs_recover_relocation(root);
1031 WARN_ON(ret); 1033 WARN_ON(ret);
1032 1034
1033 sb->s_flags &= ~MS_RDONLY; 1035 sb->s_flags &= ~MS_RDONLY;
1034 } 1036 }
1035 1037
1036 return 0; 1038 return 0;
1037 } 1039 }
1038 1040
1039 /* Used to sort the devices by max_avail(descending sort) */ 1041 /* Used to sort the devices by max_avail(descending sort) */
1040 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1042 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1041 const void *dev_info2) 1043 const void *dev_info2)
1042 { 1044 {
1043 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1045 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1044 ((struct btrfs_device_info *)dev_info2)->max_avail) 1046 ((struct btrfs_device_info *)dev_info2)->max_avail)
1045 return -1; 1047 return -1;
1046 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1048 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1047 ((struct btrfs_device_info *)dev_info2)->max_avail) 1049 ((struct btrfs_device_info *)dev_info2)->max_avail)
1048 return 1; 1050 return 1;
1049 else 1051 else
1050 return 0; 1052 return 0;
1051 } 1053 }
1052 1054
1053 /* 1055 /*
1054 * sort the devices by max_avail, in which max free extent size of each device 1056 * sort the devices by max_avail, in which max free extent size of each device
1055 * is stored.(Descending Sort) 1057 * is stored.(Descending Sort)
1056 */ 1058 */
1057 static inline void btrfs_descending_sort_devices( 1059 static inline void btrfs_descending_sort_devices(
1058 struct btrfs_device_info *devices, 1060 struct btrfs_device_info *devices,
1059 size_t nr_devices) 1061 size_t nr_devices)
1060 { 1062 {
1061 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1063 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1062 btrfs_cmp_device_free_bytes, NULL); 1064 btrfs_cmp_device_free_bytes, NULL);
1063 } 1065 }
1064 1066
1065 /* 1067 /*
1066 * The helper to calc the free space on the devices that can be used to store 1068 * The helper to calc the free space on the devices that can be used to store
1067 * file data. 1069 * file data.
1068 */ 1070 */
1069 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes) 1071 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1070 { 1072 {
1071 struct btrfs_fs_info *fs_info = root->fs_info; 1073 struct btrfs_fs_info *fs_info = root->fs_info;
1072 struct btrfs_device_info *devices_info; 1074 struct btrfs_device_info *devices_info;
1073 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1075 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1074 struct btrfs_device *device; 1076 struct btrfs_device *device;
1075 u64 skip_space; 1077 u64 skip_space;
1076 u64 type; 1078 u64 type;
1077 u64 avail_space; 1079 u64 avail_space;
1078 u64 used_space; 1080 u64 used_space;
1079 u64 min_stripe_size; 1081 u64 min_stripe_size;
1080 int min_stripes = 1; 1082 int min_stripes = 1;
1081 int i = 0, nr_devices; 1083 int i = 0, nr_devices;
1082 int ret; 1084 int ret;
1083 1085
1084 nr_devices = fs_info->fs_devices->rw_devices; 1086 nr_devices = fs_info->fs_devices->rw_devices;
1085 BUG_ON(!nr_devices); 1087 BUG_ON(!nr_devices);
1086 1088
1087 devices_info = kmalloc(sizeof(*devices_info) * nr_devices, 1089 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1088 GFP_NOFS); 1090 GFP_NOFS);
1089 if (!devices_info) 1091 if (!devices_info)
1090 return -ENOMEM; 1092 return -ENOMEM;
1091 1093
1092 /* calc min stripe number for data space alloction */ 1094 /* calc min stripe number for data space alloction */
1093 type = btrfs_get_alloc_profile(root, 1); 1095 type = btrfs_get_alloc_profile(root, 1);
1094 if (type & BTRFS_BLOCK_GROUP_RAID0) 1096 if (type & BTRFS_BLOCK_GROUP_RAID0)
1095 min_stripes = 2; 1097 min_stripes = 2;
1096 else if (type & BTRFS_BLOCK_GROUP_RAID1) 1098 else if (type & BTRFS_BLOCK_GROUP_RAID1)
1097 min_stripes = 2; 1099 min_stripes = 2;
1098 else if (type & BTRFS_BLOCK_GROUP_RAID10) 1100 else if (type & BTRFS_BLOCK_GROUP_RAID10)
1099 min_stripes = 4; 1101 min_stripes = 4;
1100 1102
1101 if (type & BTRFS_BLOCK_GROUP_DUP) 1103 if (type & BTRFS_BLOCK_GROUP_DUP)
1102 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1104 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1103 else 1105 else
1104 min_stripe_size = BTRFS_STRIPE_LEN; 1106 min_stripe_size = BTRFS_STRIPE_LEN;
1105 1107
1106 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 1108 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
1107 if (!device->in_fs_metadata) 1109 if (!device->in_fs_metadata)
1108 continue; 1110 continue;
1109 1111
1110 avail_space = device->total_bytes - device->bytes_used; 1112 avail_space = device->total_bytes - device->bytes_used;
1111 1113
1112 /* align with stripe_len */ 1114 /* align with stripe_len */
1113 do_div(avail_space, BTRFS_STRIPE_LEN); 1115 do_div(avail_space, BTRFS_STRIPE_LEN);
1114 avail_space *= BTRFS_STRIPE_LEN; 1116 avail_space *= BTRFS_STRIPE_LEN;
1115 1117
1116 /* 1118 /*
1117 * In order to avoid overwritting the superblock on the drive, 1119 * In order to avoid overwritting the superblock on the drive,
1118 * btrfs starts at an offset of at least 1MB when doing chunk 1120 * btrfs starts at an offset of at least 1MB when doing chunk
1119 * allocation. 1121 * allocation.
1120 */ 1122 */
1121 skip_space = 1024 * 1024; 1123 skip_space = 1024 * 1024;
1122 1124
1123 /* user can set the offset in fs_info->alloc_start. */ 1125 /* user can set the offset in fs_info->alloc_start. */
1124 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <= 1126 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1125 device->total_bytes) 1127 device->total_bytes)
1126 skip_space = max(fs_info->alloc_start, skip_space); 1128 skip_space = max(fs_info->alloc_start, skip_space);
1127 1129
1128 /* 1130 /*
1129 * btrfs can not use the free space in [0, skip_space - 1], 1131 * btrfs can not use the free space in [0, skip_space - 1],
1130 * we must subtract it from the total. In order to implement 1132 * we must subtract it from the total. In order to implement
1131 * it, we account the used space in this range first. 1133 * it, we account the used space in this range first.
1132 */ 1134 */
1133 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1, 1135 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1134 &used_space); 1136 &used_space);
1135 if (ret) { 1137 if (ret) {
1136 kfree(devices_info); 1138 kfree(devices_info);
1137 return ret; 1139 return ret;
1138 } 1140 }
1139 1141
1140 /* calc the free space in [0, skip_space - 1] */ 1142 /* calc the free space in [0, skip_space - 1] */
1141 skip_space -= used_space; 1143 skip_space -= used_space;
1142 1144
1143 /* 1145 /*
1144 * we can use the free space in [0, skip_space - 1], subtract 1146 * we can use the free space in [0, skip_space - 1], subtract
1145 * it from the total. 1147 * it from the total.
1146 */ 1148 */
1147 if (avail_space && avail_space >= skip_space) 1149 if (avail_space && avail_space >= skip_space)
1148 avail_space -= skip_space; 1150 avail_space -= skip_space;
1149 else 1151 else
1150 avail_space = 0; 1152 avail_space = 0;
1151 1153
1152 if (avail_space < min_stripe_size) 1154 if (avail_space < min_stripe_size)
1153 continue; 1155 continue;
1154 1156
1155 devices_info[i].dev = device; 1157 devices_info[i].dev = device;
1156 devices_info[i].max_avail = avail_space; 1158 devices_info[i].max_avail = avail_space;
1157 1159
1158 i++; 1160 i++;
1159 } 1161 }
1160 1162
1161 nr_devices = i; 1163 nr_devices = i;
1162 1164
1163 btrfs_descending_sort_devices(devices_info, nr_devices); 1165 btrfs_descending_sort_devices(devices_info, nr_devices);
1164 1166
1165 i = nr_devices - 1; 1167 i = nr_devices - 1;
1166 avail_space = 0; 1168 avail_space = 0;
1167 while (nr_devices >= min_stripes) { 1169 while (nr_devices >= min_stripes) {
1168 if (devices_info[i].max_avail >= min_stripe_size) { 1170 if (devices_info[i].max_avail >= min_stripe_size) {
1169 int j; 1171 int j;
1170 u64 alloc_size; 1172 u64 alloc_size;
1171 1173
1172 avail_space += devices_info[i].max_avail * min_stripes; 1174 avail_space += devices_info[i].max_avail * min_stripes;
1173 alloc_size = devices_info[i].max_avail; 1175 alloc_size = devices_info[i].max_avail;
1174 for (j = i + 1 - min_stripes; j <= i; j++) 1176 for (j = i + 1 - min_stripes; j <= i; j++)
1175 devices_info[j].max_avail -= alloc_size; 1177 devices_info[j].max_avail -= alloc_size;
1176 } 1178 }
1177 i--; 1179 i--;
1178 nr_devices--; 1180 nr_devices--;
1179 } 1181 }
1180 1182
1181 kfree(devices_info); 1183 kfree(devices_info);
1182 *free_bytes = avail_space; 1184 *free_bytes = avail_space;
1183 return 0; 1185 return 0;
1184 } 1186 }
1185 1187
1186 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1188 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1187 { 1189 {
1188 struct btrfs_root *root = btrfs_sb(dentry->d_sb); 1190 struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1189 struct btrfs_super_block *disk_super = root->fs_info->super_copy; 1191 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1190 struct list_head *head = &root->fs_info->space_info; 1192 struct list_head *head = &root->fs_info->space_info;
1191 struct btrfs_space_info *found; 1193 struct btrfs_space_info *found;
1192 u64 total_used = 0; 1194 u64 total_used = 0;
1193 u64 total_free_data = 0; 1195 u64 total_free_data = 0;
1194 int bits = dentry->d_sb->s_blocksize_bits; 1196 int bits = dentry->d_sb->s_blocksize_bits;
1195 __be32 *fsid = (__be32 *)root->fs_info->fsid; 1197 __be32 *fsid = (__be32 *)root->fs_info->fsid;
1196 int ret; 1198 int ret;
1197 1199
1198 /* holding chunk_muext to avoid allocating new chunks */ 1200 /* holding chunk_muext to avoid allocating new chunks */
1199 mutex_lock(&root->fs_info->chunk_mutex); 1201 mutex_lock(&root->fs_info->chunk_mutex);
1200 rcu_read_lock(); 1202 rcu_read_lock();
1201 list_for_each_entry_rcu(found, head, list) { 1203 list_for_each_entry_rcu(found, head, list) {
1202 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 1204 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1203 total_free_data += found->disk_total - found->disk_used; 1205 total_free_data += found->disk_total - found->disk_used;
1204 total_free_data -= 1206 total_free_data -=
1205 btrfs_account_ro_block_groups_free_space(found); 1207 btrfs_account_ro_block_groups_free_space(found);
1206 } 1208 }
1207 1209
1208 total_used += found->disk_used; 1210 total_used += found->disk_used;
1209 } 1211 }
1210 rcu_read_unlock(); 1212 rcu_read_unlock();
1211 1213
1212 buf->f_namelen = BTRFS_NAME_LEN; 1214 buf->f_namelen = BTRFS_NAME_LEN;
1213 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits; 1215 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1214 buf->f_bfree = buf->f_blocks - (total_used >> bits); 1216 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1215 buf->f_bsize = dentry->d_sb->s_blocksize; 1217 buf->f_bsize = dentry->d_sb->s_blocksize;
1216 buf->f_type = BTRFS_SUPER_MAGIC; 1218 buf->f_type = BTRFS_SUPER_MAGIC;
1217 buf->f_bavail = total_free_data; 1219 buf->f_bavail = total_free_data;
1218 ret = btrfs_calc_avail_data_space(root, &total_free_data); 1220 ret = btrfs_calc_avail_data_space(root, &total_free_data);
1219 if (ret) { 1221 if (ret) {
1220 mutex_unlock(&root->fs_info->chunk_mutex); 1222 mutex_unlock(&root->fs_info->chunk_mutex);
1221 return ret; 1223 return ret;
1222 } 1224 }
1223 buf->f_bavail += total_free_data; 1225 buf->f_bavail += total_free_data;
1224 buf->f_bavail = buf->f_bavail >> bits; 1226 buf->f_bavail = buf->f_bavail >> bits;
1225 mutex_unlock(&root->fs_info->chunk_mutex); 1227 mutex_unlock(&root->fs_info->chunk_mutex);
1226 1228
1227 /* We treat it as constant endianness (it doesn't matter _which_) 1229 /* We treat it as constant endianness (it doesn't matter _which_)
1228 because we want the fsid to come out the same whether mounted 1230 because we want the fsid to come out the same whether mounted
1229 on a big-endian or little-endian host */ 1231 on a big-endian or little-endian host */
1230 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 1232 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1231 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 1233 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1232 /* Mask in the root object ID too, to disambiguate subvols */ 1234 /* Mask in the root object ID too, to disambiguate subvols */
1233 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32; 1235 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1234 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid; 1236 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1235 1237
1236 return 0; 1238 return 0;
1237 } 1239 }
1238 1240
1239 static struct file_system_type btrfs_fs_type = { 1241 static struct file_system_type btrfs_fs_type = {
1240 .owner = THIS_MODULE, 1242 .owner = THIS_MODULE,
1241 .name = "btrfs", 1243 .name = "btrfs",
1242 .mount = btrfs_mount, 1244 .mount = btrfs_mount,
1243 .kill_sb = kill_anon_super, 1245 .kill_sb = kill_anon_super,
1244 .fs_flags = FS_REQUIRES_DEV, 1246 .fs_flags = FS_REQUIRES_DEV,
1245 }; 1247 };
1246 1248
1247 /* 1249 /*
1248 * used by btrfsctl to scan devices when no FS is mounted 1250 * used by btrfsctl to scan devices when no FS is mounted
1249 */ 1251 */
1250 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 1252 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1251 unsigned long arg) 1253 unsigned long arg)
1252 { 1254 {
1253 struct btrfs_ioctl_vol_args *vol; 1255 struct btrfs_ioctl_vol_args *vol;
1254 struct btrfs_fs_devices *fs_devices; 1256 struct btrfs_fs_devices *fs_devices;
1255 int ret = -ENOTTY; 1257 int ret = -ENOTTY;
1256 1258
1257 if (!capable(CAP_SYS_ADMIN)) 1259 if (!capable(CAP_SYS_ADMIN))
1258 return -EPERM; 1260 return -EPERM;
1259 1261
1260 vol = memdup_user((void __user *)arg, sizeof(*vol)); 1262 vol = memdup_user((void __user *)arg, sizeof(*vol));
1261 if (IS_ERR(vol)) 1263 if (IS_ERR(vol))
1262 return PTR_ERR(vol); 1264 return PTR_ERR(vol);
1263 1265
1264 switch (cmd) { 1266 switch (cmd) {
1265 case BTRFS_IOC_SCAN_DEV: 1267 case BTRFS_IOC_SCAN_DEV:
1266 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 1268 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1267 &btrfs_fs_type, &fs_devices); 1269 &btrfs_fs_type, &fs_devices);
1268 break; 1270 break;
1269 } 1271 }
1270 1272
1271 kfree(vol); 1273 kfree(vol);
1272 return ret; 1274 return ret;
1273 } 1275 }
1274 1276
1275 static int btrfs_freeze(struct super_block *sb) 1277 static int btrfs_freeze(struct super_block *sb)
1276 { 1278 {
1277 struct btrfs_root *root = btrfs_sb(sb); 1279 struct btrfs_root *root = btrfs_sb(sb);
1278 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1280 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1279 mutex_lock(&root->fs_info->cleaner_mutex); 1281 mutex_lock(&root->fs_info->cleaner_mutex);
1280 return 0; 1282 return 0;
1281 } 1283 }
1282 1284
1283 static int btrfs_unfreeze(struct super_block *sb) 1285 static int btrfs_unfreeze(struct super_block *sb)
1284 { 1286 {
1285 struct btrfs_root *root = btrfs_sb(sb); 1287 struct btrfs_root *root = btrfs_sb(sb);
1286 mutex_unlock(&root->fs_info->cleaner_mutex); 1288 mutex_unlock(&root->fs_info->cleaner_mutex);
1287 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1289 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1288 return 0; 1290 return 0;
1289 } 1291 }
1290 1292
1291 static const struct super_operations btrfs_super_ops = { 1293 static const struct super_operations btrfs_super_ops = {
1292 .drop_inode = btrfs_drop_inode, 1294 .drop_inode = btrfs_drop_inode,
1293 .evict_inode = btrfs_evict_inode, 1295 .evict_inode = btrfs_evict_inode,
1294 .put_super = btrfs_put_super, 1296 .put_super = btrfs_put_super,
1295 .sync_fs = btrfs_sync_fs, 1297 .sync_fs = btrfs_sync_fs,
1296 .show_options = btrfs_show_options, 1298 .show_options = btrfs_show_options,
1297 .write_inode = btrfs_write_inode, 1299 .write_inode = btrfs_write_inode,
1298 .dirty_inode = btrfs_dirty_inode, 1300 .dirty_inode = btrfs_dirty_inode,
1299 .alloc_inode = btrfs_alloc_inode, 1301 .alloc_inode = btrfs_alloc_inode,
1300 .destroy_inode = btrfs_destroy_inode, 1302 .destroy_inode = btrfs_destroy_inode,
1301 .statfs = btrfs_statfs, 1303 .statfs = btrfs_statfs,
1302 .remount_fs = btrfs_remount, 1304 .remount_fs = btrfs_remount,
1303 .freeze_fs = btrfs_freeze, 1305 .freeze_fs = btrfs_freeze,
1304 .unfreeze_fs = btrfs_unfreeze, 1306 .unfreeze_fs = btrfs_unfreeze,
1305 }; 1307 };
1306 1308
1307 static const struct file_operations btrfs_ctl_fops = { 1309 static const struct file_operations btrfs_ctl_fops = {
1308 .unlocked_ioctl = btrfs_control_ioctl, 1310 .unlocked_ioctl = btrfs_control_ioctl,
1309 .compat_ioctl = btrfs_control_ioctl, 1311 .compat_ioctl = btrfs_control_ioctl,
1310 .owner = THIS_MODULE, 1312 .owner = THIS_MODULE,
1311 .llseek = noop_llseek, 1313 .llseek = noop_llseek,
1312 }; 1314 };
1313 1315
1314 static struct miscdevice btrfs_misc = { 1316 static struct miscdevice btrfs_misc = {
1315 .minor = BTRFS_MINOR, 1317 .minor = BTRFS_MINOR,
1316 .name = "btrfs-control", 1318 .name = "btrfs-control",
1317 .fops = &btrfs_ctl_fops 1319 .fops = &btrfs_ctl_fops
1318 }; 1320 };
1319 1321
1320 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 1322 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1321 MODULE_ALIAS("devname:btrfs-control"); 1323 MODULE_ALIAS("devname:btrfs-control");
1322 1324
1323 static int btrfs_interface_init(void) 1325 static int btrfs_interface_init(void)
1324 { 1326 {
1325 return misc_register(&btrfs_misc); 1327 return misc_register(&btrfs_misc);
1326 } 1328 }
1327 1329
1328 static void btrfs_interface_exit(void) 1330 static void btrfs_interface_exit(void)
1329 { 1331 {
1330 if (misc_deregister(&btrfs_misc) < 0) 1332 if (misc_deregister(&btrfs_misc) < 0)
1331 printk(KERN_INFO "misc_deregister failed for control device"); 1333 printk(KERN_INFO "misc_deregister failed for control device");
1332 } 1334 }
1333 1335
1334 static int __init init_btrfs_fs(void) 1336 static int __init init_btrfs_fs(void)
1335 { 1337 {
1336 int err; 1338 int err;
1337 1339
1338 err = btrfs_init_sysfs(); 1340 err = btrfs_init_sysfs();
1339 if (err) 1341 if (err)
1340 return err; 1342 return err;
1341 1343
1342 err = btrfs_init_compress(); 1344 err = btrfs_init_compress();
1343 if (err) 1345 if (err)
1344 goto free_sysfs; 1346 goto free_sysfs;
1345 1347
1346 err = btrfs_init_cachep(); 1348 err = btrfs_init_cachep();
1347 if (err) 1349 if (err)
1348 goto free_compress; 1350 goto free_compress;
1349 1351
1350 err = extent_io_init(); 1352 err = extent_io_init();
1351 if (err) 1353 if (err)
1352 goto free_cachep; 1354 goto free_cachep;
1353 1355
1354 err = extent_map_init(); 1356 err = extent_map_init();
1355 if (err) 1357 if (err)
1356 goto free_extent_io; 1358 goto free_extent_io;
1357 1359
1358 err = btrfs_delayed_inode_init(); 1360 err = btrfs_delayed_inode_init();
1359 if (err) 1361 if (err)
1360 goto free_extent_map; 1362 goto free_extent_map;
1361 1363
1362 err = btrfs_interface_init(); 1364 err = btrfs_interface_init();
1363 if (err) 1365 if (err)
1364 goto free_delayed_inode; 1366 goto free_delayed_inode;
1365 1367
1366 err = register_filesystem(&btrfs_fs_type); 1368 err = register_filesystem(&btrfs_fs_type);
1367 if (err) 1369 if (err)
1368 goto unregister_ioctl; 1370 goto unregister_ioctl;
1369 1371
1370 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION); 1372 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1371 return 0; 1373 return 0;
1372 1374
1373 unregister_ioctl: 1375 unregister_ioctl:
1374 btrfs_interface_exit(); 1376 btrfs_interface_exit();
1375 free_delayed_inode: 1377 free_delayed_inode:
1376 btrfs_delayed_inode_exit(); 1378 btrfs_delayed_inode_exit();
1377 free_extent_map: 1379 free_extent_map:
1378 extent_map_exit(); 1380 extent_map_exit();
1379 free_extent_io: 1381 free_extent_io:
1380 extent_io_exit(); 1382 extent_io_exit();
1381 free_cachep: 1383 free_cachep:
1382 btrfs_destroy_cachep(); 1384 btrfs_destroy_cachep();
1383 free_compress: 1385 free_compress:
1384 btrfs_exit_compress(); 1386 btrfs_exit_compress();
1385 free_sysfs: 1387 free_sysfs:
1386 btrfs_exit_sysfs(); 1388 btrfs_exit_sysfs();
1387 return err; 1389 return err;
1388 } 1390 }
1389 1391
1390 static void __exit exit_btrfs_fs(void) 1392 static void __exit exit_btrfs_fs(void)
1391 { 1393 {
1392 btrfs_destroy_cachep(); 1394 btrfs_destroy_cachep();
1393 btrfs_delayed_inode_exit(); 1395 btrfs_delayed_inode_exit();
1394 extent_map_exit(); 1396 extent_map_exit();
1395 extent_io_exit(); 1397 extent_io_exit();
1396 btrfs_interface_exit(); 1398 btrfs_interface_exit();
1397 unregister_filesystem(&btrfs_fs_type); 1399 unregister_filesystem(&btrfs_fs_type);
1398 btrfs_exit_sysfs(); 1400 btrfs_exit_sysfs();
1399 btrfs_cleanup_fs_uuids(); 1401 btrfs_cleanup_fs_uuids();
1400 btrfs_exit_compress(); 1402 btrfs_exit_compress();
1401 } 1403 }
1402 1404
1403 module_init(init_btrfs_fs) 1405 module_init(init_btrfs_fs)
1404 module_exit(exit_btrfs_fs) 1406 module_exit(exit_btrfs_fs)
1405 1407
1406 MODULE_LICENSE("GPL"); 1408 MODULE_LICENSE("GPL");
1407 1409