Commit f8a87d89304c1eea8e4a8dc02d134f57590913c6

Authored by Roel Kluin
Committed by Theodore Ts'o
1 parent 7c2f3d6f89

ext4: fix test ext_generic_write_end() copied return value

'copied' is unsigned, whereas 'ret2' is not. The test (copied < 0) fails

Signed-off-by: Roel Kluin <12o3l@tiscali.nl>
Signed-off-by: Mingming Cao <cmm@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>

Showing 1 changed file with 8 additions and 6 deletions Inline Diff

1 /* 1 /*
2 * linux/fs/ext4/inode.c 2 * linux/fs/ext4/inode.c
3 * 3 *
4 * Copyright (C) 1992, 1993, 1994, 1995 4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr) 5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal 6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI) 7 * Universite Pierre et Marie Curie (Paris VI)
8 * 8 *
9 * from 9 * from
10 * 10 *
11 * linux/fs/minix/inode.c 11 * linux/fs/minix/inode.c
12 * 12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds 13 * Copyright (C) 1991, 1992 Linus Torvalds
14 * 14 *
15 * Goal-directed block allocation by Stephen Tweedie 15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998 16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by 17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995 18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz) 20 * (jj@sunsite.ms.mff.cuni.cz)
21 * 21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */ 23 */
24 24
25 #include <linux/module.h> 25 #include <linux/module.h>
26 #include <linux/fs.h> 26 #include <linux/fs.h>
27 #include <linux/time.h> 27 #include <linux/time.h>
28 #include <linux/jbd2.h> 28 #include <linux/jbd2.h>
29 #include <linux/highuid.h> 29 #include <linux/highuid.h>
30 #include <linux/pagemap.h> 30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h> 31 #include <linux/quotaops.h>
32 #include <linux/string.h> 32 #include <linux/string.h>
33 #include <linux/buffer_head.h> 33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h> 34 #include <linux/writeback.h>
35 #include <linux/mpage.h> 35 #include <linux/mpage.h>
36 #include <linux/uio.h> 36 #include <linux/uio.h>
37 #include <linux/bio.h> 37 #include <linux/bio.h>
38 #include "ext4_jbd2.h" 38 #include "ext4_jbd2.h"
39 #include "xattr.h" 39 #include "xattr.h"
40 #include "acl.h" 40 #include "acl.h"
41 41
42 /* 42 /*
43 * Test whether an inode is a fast symlink. 43 * Test whether an inode is a fast symlink.
44 */ 44 */
45 static int ext4_inode_is_fast_symlink(struct inode *inode) 45 static int ext4_inode_is_fast_symlink(struct inode *inode)
46 { 46 {
47 int ea_blocks = EXT4_I(inode)->i_file_acl ? 47 int ea_blocks = EXT4_I(inode)->i_file_acl ?
48 (inode->i_sb->s_blocksize >> 9) : 0; 48 (inode->i_sb->s_blocksize >> 9) : 0;
49 49
50 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 50 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
51 } 51 }
52 52
53 /* 53 /*
54 * The ext4 forget function must perform a revoke if we are freeing data 54 * The ext4 forget function must perform a revoke if we are freeing data
55 * which has been journaled. Metadata (eg. indirect blocks) must be 55 * which has been journaled. Metadata (eg. indirect blocks) must be
56 * revoked in all cases. 56 * revoked in all cases.
57 * 57 *
58 * "bh" may be NULL: a metadata block may have been freed from memory 58 * "bh" may be NULL: a metadata block may have been freed from memory
59 * but there may still be a record of it in the journal, and that record 59 * but there may still be a record of it in the journal, and that record
60 * still needs to be revoked. 60 * still needs to be revoked.
61 */ 61 */
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode, 62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63 struct buffer_head *bh, ext4_fsblk_t blocknr) 63 struct buffer_head *bh, ext4_fsblk_t blocknr)
64 { 64 {
65 int err; 65 int err;
66 66
67 might_sleep(); 67 might_sleep();
68 68
69 BUFFER_TRACE(bh, "enter"); 69 BUFFER_TRACE(bh, "enter");
70 70
71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, " 71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72 "data mode %lx\n", 72 "data mode %lx\n",
73 bh, is_metadata, inode->i_mode, 73 bh, is_metadata, inode->i_mode,
74 test_opt(inode->i_sb, DATA_FLAGS)); 74 test_opt(inode->i_sb, DATA_FLAGS));
75 75
76 /* Never use the revoke function if we are doing full data 76 /* Never use the revoke function if we are doing full data
77 * journaling: there is no need to, and a V1 superblock won't 77 * journaling: there is no need to, and a V1 superblock won't
78 * support it. Otherwise, only skip the revoke on un-journaled 78 * support it. Otherwise, only skip the revoke on un-journaled
79 * data blocks. */ 79 * data blocks. */
80 80
81 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || 81 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82 (!is_metadata && !ext4_should_journal_data(inode))) { 82 (!is_metadata && !ext4_should_journal_data(inode))) {
83 if (bh) { 83 if (bh) {
84 BUFFER_TRACE(bh, "call jbd2_journal_forget"); 84 BUFFER_TRACE(bh, "call jbd2_journal_forget");
85 return ext4_journal_forget(handle, bh); 85 return ext4_journal_forget(handle, bh);
86 } 86 }
87 return 0; 87 return 0;
88 } 88 }
89 89
90 /* 90 /*
91 * data!=journal && (is_metadata || should_journal_data(inode)) 91 * data!=journal && (is_metadata || should_journal_data(inode))
92 */ 92 */
93 BUFFER_TRACE(bh, "call ext4_journal_revoke"); 93 BUFFER_TRACE(bh, "call ext4_journal_revoke");
94 err = ext4_journal_revoke(handle, blocknr, bh); 94 err = ext4_journal_revoke(handle, blocknr, bh);
95 if (err) 95 if (err)
96 ext4_abort(inode->i_sb, __func__, 96 ext4_abort(inode->i_sb, __func__,
97 "error %d when attempting revoke", err); 97 "error %d when attempting revoke", err);
98 BUFFER_TRACE(bh, "exit"); 98 BUFFER_TRACE(bh, "exit");
99 return err; 99 return err;
100 } 100 }
101 101
102 /* 102 /*
103 * Work out how many blocks we need to proceed with the next chunk of a 103 * Work out how many blocks we need to proceed with the next chunk of a
104 * truncate transaction. 104 * truncate transaction.
105 */ 105 */
106 static unsigned long blocks_for_truncate(struct inode *inode) 106 static unsigned long blocks_for_truncate(struct inode *inode)
107 { 107 {
108 ext4_lblk_t needed; 108 ext4_lblk_t needed;
109 109
110 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 110 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
111 111
112 /* Give ourselves just enough room to cope with inodes in which 112 /* Give ourselves just enough room to cope with inodes in which
113 * i_blocks is corrupt: we've seen disk corruptions in the past 113 * i_blocks is corrupt: we've seen disk corruptions in the past
114 * which resulted in random data in an inode which looked enough 114 * which resulted in random data in an inode which looked enough
115 * like a regular file for ext4 to try to delete it. Things 115 * like a regular file for ext4 to try to delete it. Things
116 * will go a bit crazy if that happens, but at least we should 116 * will go a bit crazy if that happens, but at least we should
117 * try not to panic the whole kernel. */ 117 * try not to panic the whole kernel. */
118 if (needed < 2) 118 if (needed < 2)
119 needed = 2; 119 needed = 2;
120 120
121 /* But we need to bound the transaction so we don't overflow the 121 /* But we need to bound the transaction so we don't overflow the
122 * journal. */ 122 * journal. */
123 if (needed > EXT4_MAX_TRANS_DATA) 123 if (needed > EXT4_MAX_TRANS_DATA)
124 needed = EXT4_MAX_TRANS_DATA; 124 needed = EXT4_MAX_TRANS_DATA;
125 125
126 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 126 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 } 127 }
128 128
129 /* 129 /*
130 * Truncate transactions can be complex and absolutely huge. So we need to 130 * Truncate transactions can be complex and absolutely huge. So we need to
131 * be able to restart the transaction at a conventient checkpoint to make 131 * be able to restart the transaction at a conventient checkpoint to make
132 * sure we don't overflow the journal. 132 * sure we don't overflow the journal.
133 * 133 *
134 * start_transaction gets us a new handle for a truncate transaction, 134 * start_transaction gets us a new handle for a truncate transaction,
135 * and extend_transaction tries to extend the existing one a bit. If 135 * and extend_transaction tries to extend the existing one a bit. If
136 * extend fails, we need to propagate the failure up and restart the 136 * extend fails, we need to propagate the failure up and restart the
137 * transaction in the top-level truncate loop. --sct 137 * transaction in the top-level truncate loop. --sct
138 */ 138 */
139 static handle_t *start_transaction(struct inode *inode) 139 static handle_t *start_transaction(struct inode *inode)
140 { 140 {
141 handle_t *result; 141 handle_t *result;
142 142
143 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 143 result = ext4_journal_start(inode, blocks_for_truncate(inode));
144 if (!IS_ERR(result)) 144 if (!IS_ERR(result))
145 return result; 145 return result;
146 146
147 ext4_std_error(inode->i_sb, PTR_ERR(result)); 147 ext4_std_error(inode->i_sb, PTR_ERR(result));
148 return result; 148 return result;
149 } 149 }
150 150
151 /* 151 /*
152 * Try to extend this transaction for the purposes of truncation. 152 * Try to extend this transaction for the purposes of truncation.
153 * 153 *
154 * Returns 0 if we managed to create more room. If we can't create more 154 * Returns 0 if we managed to create more room. If we can't create more
155 * room, and the transaction must be restarted we return 1. 155 * room, and the transaction must be restarted we return 1.
156 */ 156 */
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
158 { 158 {
159 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS) 159 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160 return 0; 160 return 0;
161 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 161 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162 return 0; 162 return 0;
163 return 1; 163 return 1;
164 } 164 }
165 165
166 /* 166 /*
167 * Restart the transaction associated with *handle. This does a commit, 167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against 168 * so before we call here everything must be consistently dirtied against
169 * this transaction. 169 * this transaction.
170 */ 170 */
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode) 171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 { 172 {
173 jbd_debug(2, "restarting handle %p\n", handle); 173 jbd_debug(2, "restarting handle %p\n", handle);
174 return ext4_journal_restart(handle, blocks_for_truncate(inode)); 174 return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 } 175 }
176 176
177 /* 177 /*
178 * Called at the last iput() if i_nlink is zero. 178 * Called at the last iput() if i_nlink is zero.
179 */ 179 */
180 void ext4_delete_inode (struct inode * inode) 180 void ext4_delete_inode (struct inode * inode)
181 { 181 {
182 handle_t *handle; 182 handle_t *handle;
183 183
184 truncate_inode_pages(&inode->i_data, 0); 184 truncate_inode_pages(&inode->i_data, 0);
185 185
186 if (is_bad_inode(inode)) 186 if (is_bad_inode(inode))
187 goto no_delete; 187 goto no_delete;
188 188
189 handle = start_transaction(inode); 189 handle = start_transaction(inode);
190 if (IS_ERR(handle)) { 190 if (IS_ERR(handle)) {
191 /* 191 /*
192 * If we're going to skip the normal cleanup, we still need to 192 * If we're going to skip the normal cleanup, we still need to
193 * make sure that the in-core orphan linked list is properly 193 * make sure that the in-core orphan linked list is properly
194 * cleaned up. 194 * cleaned up.
195 */ 195 */
196 ext4_orphan_del(NULL, inode); 196 ext4_orphan_del(NULL, inode);
197 goto no_delete; 197 goto no_delete;
198 } 198 }
199 199
200 if (IS_SYNC(inode)) 200 if (IS_SYNC(inode))
201 handle->h_sync = 1; 201 handle->h_sync = 1;
202 inode->i_size = 0; 202 inode->i_size = 0;
203 if (inode->i_blocks) 203 if (inode->i_blocks)
204 ext4_truncate(inode); 204 ext4_truncate(inode);
205 /* 205 /*
206 * Kill off the orphan record which ext4_truncate created. 206 * Kill off the orphan record which ext4_truncate created.
207 * AKPM: I think this can be inside the above `if'. 207 * AKPM: I think this can be inside the above `if'.
208 * Note that ext4_orphan_del() has to be able to cope with the 208 * Note that ext4_orphan_del() has to be able to cope with the
209 * deletion of a non-existent orphan - this is because we don't 209 * deletion of a non-existent orphan - this is because we don't
210 * know if ext4_truncate() actually created an orphan record. 210 * know if ext4_truncate() actually created an orphan record.
211 * (Well, we could do this if we need to, but heck - it works) 211 * (Well, we could do this if we need to, but heck - it works)
212 */ 212 */
213 ext4_orphan_del(handle, inode); 213 ext4_orphan_del(handle, inode);
214 EXT4_I(inode)->i_dtime = get_seconds(); 214 EXT4_I(inode)->i_dtime = get_seconds();
215 215
216 /* 216 /*
217 * One subtle ordering requirement: if anything has gone wrong 217 * One subtle ordering requirement: if anything has gone wrong
218 * (transaction abort, IO errors, whatever), then we can still 218 * (transaction abort, IO errors, whatever), then we can still
219 * do these next steps (the fs will already have been marked as 219 * do these next steps (the fs will already have been marked as
220 * having errors), but we can't free the inode if the mark_dirty 220 * having errors), but we can't free the inode if the mark_dirty
221 * fails. 221 * fails.
222 */ 222 */
223 if (ext4_mark_inode_dirty(handle, inode)) 223 if (ext4_mark_inode_dirty(handle, inode))
224 /* If that failed, just do the required in-core inode clear. */ 224 /* If that failed, just do the required in-core inode clear. */
225 clear_inode(inode); 225 clear_inode(inode);
226 else 226 else
227 ext4_free_inode(handle, inode); 227 ext4_free_inode(handle, inode);
228 ext4_journal_stop(handle); 228 ext4_journal_stop(handle);
229 return; 229 return;
230 no_delete: 230 no_delete:
231 clear_inode(inode); /* We must guarantee clearing of inode... */ 231 clear_inode(inode); /* We must guarantee clearing of inode... */
232 } 232 }
233 233
234 typedef struct { 234 typedef struct {
235 __le32 *p; 235 __le32 *p;
236 __le32 key; 236 __le32 key;
237 struct buffer_head *bh; 237 struct buffer_head *bh;
238 } Indirect; 238 } Indirect;
239 239
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
241 { 241 {
242 p->key = *(p->p = v); 242 p->key = *(p->p = v);
243 p->bh = bh; 243 p->bh = bh;
244 } 244 }
245 245
246 /** 246 /**
247 * ext4_block_to_path - parse the block number into array of offsets 247 * ext4_block_to_path - parse the block number into array of offsets
248 * @inode: inode in question (we are only interested in its superblock) 248 * @inode: inode in question (we are only interested in its superblock)
249 * @i_block: block number to be parsed 249 * @i_block: block number to be parsed
250 * @offsets: array to store the offsets in 250 * @offsets: array to store the offsets in
251 * @boundary: set this non-zero if the referred-to block is likely to be 251 * @boundary: set this non-zero if the referred-to block is likely to be
252 * followed (on disk) by an indirect block. 252 * followed (on disk) by an indirect block.
253 * 253 *
254 * To store the locations of file's data ext4 uses a data structure common 254 * To store the locations of file's data ext4 uses a data structure common
255 * for UNIX filesystems - tree of pointers anchored in the inode, with 255 * for UNIX filesystems - tree of pointers anchored in the inode, with
256 * data blocks at leaves and indirect blocks in intermediate nodes. 256 * data blocks at leaves and indirect blocks in intermediate nodes.
257 * This function translates the block number into path in that tree - 257 * This function translates the block number into path in that tree -
258 * return value is the path length and @offsets[n] is the offset of 258 * return value is the path length and @offsets[n] is the offset of
259 * pointer to (n+1)th node in the nth one. If @block is out of range 259 * pointer to (n+1)th node in the nth one. If @block is out of range
260 * (negative or too large) warning is printed and zero returned. 260 * (negative or too large) warning is printed and zero returned.
261 * 261 *
262 * Note: function doesn't find node addresses, so no IO is needed. All 262 * Note: function doesn't find node addresses, so no IO is needed. All
263 * we need to know is the capacity of indirect blocks (taken from the 263 * we need to know is the capacity of indirect blocks (taken from the
264 * inode->i_sb). 264 * inode->i_sb).
265 */ 265 */
266 266
267 /* 267 /*
268 * Portability note: the last comparison (check that we fit into triple 268 * Portability note: the last comparison (check that we fit into triple
269 * indirect block) is spelled differently, because otherwise on an 269 * indirect block) is spelled differently, because otherwise on an
270 * architecture with 32-bit longs and 8Kb pages we might get into trouble 270 * architecture with 32-bit longs and 8Kb pages we might get into trouble
271 * if our filesystem had 8Kb blocks. We might use long long, but that would 271 * if our filesystem had 8Kb blocks. We might use long long, but that would
272 * kill us on x86. Oh, well, at least the sign propagation does not matter - 272 * kill us on x86. Oh, well, at least the sign propagation does not matter -
273 * i_block would have to be negative in the very beginning, so we would not 273 * i_block would have to be negative in the very beginning, so we would not
274 * get there at all. 274 * get there at all.
275 */ 275 */
276 276
277 static int ext4_block_to_path(struct inode *inode, 277 static int ext4_block_to_path(struct inode *inode,
278 ext4_lblk_t i_block, 278 ext4_lblk_t i_block,
279 ext4_lblk_t offsets[4], int *boundary) 279 ext4_lblk_t offsets[4], int *boundary)
280 { 280 {
281 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 281 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 282 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283 const long direct_blocks = EXT4_NDIR_BLOCKS, 283 const long direct_blocks = EXT4_NDIR_BLOCKS,
284 indirect_blocks = ptrs, 284 indirect_blocks = ptrs,
285 double_blocks = (1 << (ptrs_bits * 2)); 285 double_blocks = (1 << (ptrs_bits * 2));
286 int n = 0; 286 int n = 0;
287 int final = 0; 287 int final = 0;
288 288
289 if (i_block < 0) { 289 if (i_block < 0) {
290 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0"); 290 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291 } else if (i_block < direct_blocks) { 291 } else if (i_block < direct_blocks) {
292 offsets[n++] = i_block; 292 offsets[n++] = i_block;
293 final = direct_blocks; 293 final = direct_blocks;
294 } else if ( (i_block -= direct_blocks) < indirect_blocks) { 294 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
295 offsets[n++] = EXT4_IND_BLOCK; 295 offsets[n++] = EXT4_IND_BLOCK;
296 offsets[n++] = i_block; 296 offsets[n++] = i_block;
297 final = ptrs; 297 final = ptrs;
298 } else if ((i_block -= indirect_blocks) < double_blocks) { 298 } else if ((i_block -= indirect_blocks) < double_blocks) {
299 offsets[n++] = EXT4_DIND_BLOCK; 299 offsets[n++] = EXT4_DIND_BLOCK;
300 offsets[n++] = i_block >> ptrs_bits; 300 offsets[n++] = i_block >> ptrs_bits;
301 offsets[n++] = i_block & (ptrs - 1); 301 offsets[n++] = i_block & (ptrs - 1);
302 final = ptrs; 302 final = ptrs;
303 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 303 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304 offsets[n++] = EXT4_TIND_BLOCK; 304 offsets[n++] = EXT4_TIND_BLOCK;
305 offsets[n++] = i_block >> (ptrs_bits * 2); 305 offsets[n++] = i_block >> (ptrs_bits * 2);
306 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 306 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307 offsets[n++] = i_block & (ptrs - 1); 307 offsets[n++] = i_block & (ptrs - 1);
308 final = ptrs; 308 final = ptrs;
309 } else { 309 } else {
310 ext4_warning(inode->i_sb, "ext4_block_to_path", 310 ext4_warning(inode->i_sb, "ext4_block_to_path",
311 "block %lu > max", 311 "block %lu > max",
312 i_block + direct_blocks + 312 i_block + direct_blocks +
313 indirect_blocks + double_blocks); 313 indirect_blocks + double_blocks);
314 } 314 }
315 if (boundary) 315 if (boundary)
316 *boundary = final - 1 - (i_block & (ptrs - 1)); 316 *boundary = final - 1 - (i_block & (ptrs - 1));
317 return n; 317 return n;
318 } 318 }
319 319
320 /** 320 /**
321 * ext4_get_branch - read the chain of indirect blocks leading to data 321 * ext4_get_branch - read the chain of indirect blocks leading to data
322 * @inode: inode in question 322 * @inode: inode in question
323 * @depth: depth of the chain (1 - direct pointer, etc.) 323 * @depth: depth of the chain (1 - direct pointer, etc.)
324 * @offsets: offsets of pointers in inode/indirect blocks 324 * @offsets: offsets of pointers in inode/indirect blocks
325 * @chain: place to store the result 325 * @chain: place to store the result
326 * @err: here we store the error value 326 * @err: here we store the error value
327 * 327 *
328 * Function fills the array of triples <key, p, bh> and returns %NULL 328 * Function fills the array of triples <key, p, bh> and returns %NULL
329 * if everything went OK or the pointer to the last filled triple 329 * if everything went OK or the pointer to the last filled triple
330 * (incomplete one) otherwise. Upon the return chain[i].key contains 330 * (incomplete one) otherwise. Upon the return chain[i].key contains
331 * the number of (i+1)-th block in the chain (as it is stored in memory, 331 * the number of (i+1)-th block in the chain (as it is stored in memory,
332 * i.e. little-endian 32-bit), chain[i].p contains the address of that 332 * i.e. little-endian 32-bit), chain[i].p contains the address of that
333 * number (it points into struct inode for i==0 and into the bh->b_data 333 * number (it points into struct inode for i==0 and into the bh->b_data
334 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 334 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335 * block for i>0 and NULL for i==0. In other words, it holds the block 335 * block for i>0 and NULL for i==0. In other words, it holds the block
336 * numbers of the chain, addresses they were taken from (and where we can 336 * numbers of the chain, addresses they were taken from (and where we can
337 * verify that chain did not change) and buffer_heads hosting these 337 * verify that chain did not change) and buffer_heads hosting these
338 * numbers. 338 * numbers.
339 * 339 *
340 * Function stops when it stumbles upon zero pointer (absent block) 340 * Function stops when it stumbles upon zero pointer (absent block)
341 * (pointer to last triple returned, *@err == 0) 341 * (pointer to last triple returned, *@err == 0)
342 * or when it gets an IO error reading an indirect block 342 * or when it gets an IO error reading an indirect block
343 * (ditto, *@err == -EIO) 343 * (ditto, *@err == -EIO)
344 * or when it reads all @depth-1 indirect blocks successfully and finds 344 * or when it reads all @depth-1 indirect blocks successfully and finds
345 * the whole chain, all way to the data (returns %NULL, *err == 0). 345 * the whole chain, all way to the data (returns %NULL, *err == 0).
346 * 346 *
347 * Need to be called with 347 * Need to be called with
348 * down_read(&EXT4_I(inode)->i_data_sem) 348 * down_read(&EXT4_I(inode)->i_data_sem)
349 */ 349 */
350 static Indirect *ext4_get_branch(struct inode *inode, int depth, 350 static Indirect *ext4_get_branch(struct inode *inode, int depth,
351 ext4_lblk_t *offsets, 351 ext4_lblk_t *offsets,
352 Indirect chain[4], int *err) 352 Indirect chain[4], int *err)
353 { 353 {
354 struct super_block *sb = inode->i_sb; 354 struct super_block *sb = inode->i_sb;
355 Indirect *p = chain; 355 Indirect *p = chain;
356 struct buffer_head *bh; 356 struct buffer_head *bh;
357 357
358 *err = 0; 358 *err = 0;
359 /* i_data is not going away, no lock needed */ 359 /* i_data is not going away, no lock needed */
360 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets); 360 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361 if (!p->key) 361 if (!p->key)
362 goto no_block; 362 goto no_block;
363 while (--depth) { 363 while (--depth) {
364 bh = sb_bread(sb, le32_to_cpu(p->key)); 364 bh = sb_bread(sb, le32_to_cpu(p->key));
365 if (!bh) 365 if (!bh)
366 goto failure; 366 goto failure;
367 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); 367 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368 /* Reader: end */ 368 /* Reader: end */
369 if (!p->key) 369 if (!p->key)
370 goto no_block; 370 goto no_block;
371 } 371 }
372 return NULL; 372 return NULL;
373 373
374 failure: 374 failure:
375 *err = -EIO; 375 *err = -EIO;
376 no_block: 376 no_block:
377 return p; 377 return p;
378 } 378 }
379 379
380 /** 380 /**
381 * ext4_find_near - find a place for allocation with sufficient locality 381 * ext4_find_near - find a place for allocation with sufficient locality
382 * @inode: owner 382 * @inode: owner
383 * @ind: descriptor of indirect block. 383 * @ind: descriptor of indirect block.
384 * 384 *
385 * This function returns the preferred place for block allocation. 385 * This function returns the preferred place for block allocation.
386 * It is used when heuristic for sequential allocation fails. 386 * It is used when heuristic for sequential allocation fails.
387 * Rules are: 387 * Rules are:
388 * + if there is a block to the left of our position - allocate near it. 388 * + if there is a block to the left of our position - allocate near it.
389 * + if pointer will live in indirect block - allocate near that block. 389 * + if pointer will live in indirect block - allocate near that block.
390 * + if pointer will live in inode - allocate in the same 390 * + if pointer will live in inode - allocate in the same
391 * cylinder group. 391 * cylinder group.
392 * 392 *
393 * In the latter case we colour the starting block by the callers PID to 393 * In the latter case we colour the starting block by the callers PID to
394 * prevent it from clashing with concurrent allocations for a different inode 394 * prevent it from clashing with concurrent allocations for a different inode
395 * in the same block group. The PID is used here so that functionally related 395 * in the same block group. The PID is used here so that functionally related
396 * files will be close-by on-disk. 396 * files will be close-by on-disk.
397 * 397 *
398 * Caller must make sure that @ind is valid and will stay that way. 398 * Caller must make sure that @ind is valid and will stay that way.
399 */ 399 */
400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
401 { 401 {
402 struct ext4_inode_info *ei = EXT4_I(inode); 402 struct ext4_inode_info *ei = EXT4_I(inode);
403 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data; 403 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404 __le32 *p; 404 __le32 *p;
405 ext4_fsblk_t bg_start; 405 ext4_fsblk_t bg_start;
406 ext4_fsblk_t last_block; 406 ext4_fsblk_t last_block;
407 ext4_grpblk_t colour; 407 ext4_grpblk_t colour;
408 408
409 /* Try to find previous block */ 409 /* Try to find previous block */
410 for (p = ind->p - 1; p >= start; p--) { 410 for (p = ind->p - 1; p >= start; p--) {
411 if (*p) 411 if (*p)
412 return le32_to_cpu(*p); 412 return le32_to_cpu(*p);
413 } 413 }
414 414
415 /* No such thing, so let's try location of indirect block */ 415 /* No such thing, so let's try location of indirect block */
416 if (ind->bh) 416 if (ind->bh)
417 return ind->bh->b_blocknr; 417 return ind->bh->b_blocknr;
418 418
419 /* 419 /*
420 * It is going to be referred to from the inode itself? OK, just put it 420 * It is going to be referred to from the inode itself? OK, just put it
421 * into the same cylinder group then. 421 * into the same cylinder group then.
422 */ 422 */
423 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group); 423 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
424 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 424 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
425 425
426 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 426 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
427 colour = (current->pid % 16) * 427 colour = (current->pid % 16) *
428 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 428 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
429 else 429 else
430 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 430 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
431 return bg_start + colour; 431 return bg_start + colour;
432 } 432 }
433 433
434 /** 434 /**
435 * ext4_find_goal - find a preferred place for allocation. 435 * ext4_find_goal - find a preferred place for allocation.
436 * @inode: owner 436 * @inode: owner
437 * @block: block we want 437 * @block: block we want
438 * @partial: pointer to the last triple within a chain 438 * @partial: pointer to the last triple within a chain
439 * 439 *
440 * Normally this function find the preferred place for block allocation, 440 * Normally this function find the preferred place for block allocation,
441 * returns it. 441 * returns it.
442 */ 442 */
443 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 443 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
444 Indirect *partial) 444 Indirect *partial)
445 { 445 {
446 struct ext4_block_alloc_info *block_i; 446 struct ext4_block_alloc_info *block_i;
447 447
448 block_i = EXT4_I(inode)->i_block_alloc_info; 448 block_i = EXT4_I(inode)->i_block_alloc_info;
449 449
450 /* 450 /*
451 * try the heuristic for sequential allocation, 451 * try the heuristic for sequential allocation,
452 * failing that at least try to get decent locality. 452 * failing that at least try to get decent locality.
453 */ 453 */
454 if (block_i && (block == block_i->last_alloc_logical_block + 1) 454 if (block_i && (block == block_i->last_alloc_logical_block + 1)
455 && (block_i->last_alloc_physical_block != 0)) { 455 && (block_i->last_alloc_physical_block != 0)) {
456 return block_i->last_alloc_physical_block + 1; 456 return block_i->last_alloc_physical_block + 1;
457 } 457 }
458 458
459 return ext4_find_near(inode, partial); 459 return ext4_find_near(inode, partial);
460 } 460 }
461 461
462 /** 462 /**
463 * ext4_blks_to_allocate: Look up the block map and count the number 463 * ext4_blks_to_allocate: Look up the block map and count the number
464 * of direct blocks need to be allocated for the given branch. 464 * of direct blocks need to be allocated for the given branch.
465 * 465 *
466 * @branch: chain of indirect blocks 466 * @branch: chain of indirect blocks
467 * @k: number of blocks need for indirect blocks 467 * @k: number of blocks need for indirect blocks
468 * @blks: number of data blocks to be mapped. 468 * @blks: number of data blocks to be mapped.
469 * @blocks_to_boundary: the offset in the indirect block 469 * @blocks_to_boundary: the offset in the indirect block
470 * 470 *
471 * return the total number of blocks to be allocate, including the 471 * return the total number of blocks to be allocate, including the
472 * direct and indirect blocks. 472 * direct and indirect blocks.
473 */ 473 */
474 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks, 474 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
475 int blocks_to_boundary) 475 int blocks_to_boundary)
476 { 476 {
477 unsigned long count = 0; 477 unsigned long count = 0;
478 478
479 /* 479 /*
480 * Simple case, [t,d]Indirect block(s) has not allocated yet 480 * Simple case, [t,d]Indirect block(s) has not allocated yet
481 * then it's clear blocks on that path have not allocated 481 * then it's clear blocks on that path have not allocated
482 */ 482 */
483 if (k > 0) { 483 if (k > 0) {
484 /* right now we don't handle cross boundary allocation */ 484 /* right now we don't handle cross boundary allocation */
485 if (blks < blocks_to_boundary + 1) 485 if (blks < blocks_to_boundary + 1)
486 count += blks; 486 count += blks;
487 else 487 else
488 count += blocks_to_boundary + 1; 488 count += blocks_to_boundary + 1;
489 return count; 489 return count;
490 } 490 }
491 491
492 count++; 492 count++;
493 while (count < blks && count <= blocks_to_boundary && 493 while (count < blks && count <= blocks_to_boundary &&
494 le32_to_cpu(*(branch[0].p + count)) == 0) { 494 le32_to_cpu(*(branch[0].p + count)) == 0) {
495 count++; 495 count++;
496 } 496 }
497 return count; 497 return count;
498 } 498 }
499 499
500 /** 500 /**
501 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 501 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
502 * @indirect_blks: the number of blocks need to allocate for indirect 502 * @indirect_blks: the number of blocks need to allocate for indirect
503 * blocks 503 * blocks
504 * 504 *
505 * @new_blocks: on return it will store the new block numbers for 505 * @new_blocks: on return it will store the new block numbers for
506 * the indirect blocks(if needed) and the first direct block, 506 * the indirect blocks(if needed) and the first direct block,
507 * @blks: on return it will store the total number of allocated 507 * @blks: on return it will store the total number of allocated
508 * direct blocks 508 * direct blocks
509 */ 509 */
510 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 510 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
511 ext4_fsblk_t goal, int indirect_blks, int blks, 511 ext4_fsblk_t goal, int indirect_blks, int blks,
512 ext4_fsblk_t new_blocks[4], int *err) 512 ext4_fsblk_t new_blocks[4], int *err)
513 { 513 {
514 int target, i; 514 int target, i;
515 unsigned long count = 0; 515 unsigned long count = 0;
516 int index = 0; 516 int index = 0;
517 ext4_fsblk_t current_block = 0; 517 ext4_fsblk_t current_block = 0;
518 int ret = 0; 518 int ret = 0;
519 519
520 /* 520 /*
521 * Here we try to allocate the requested multiple blocks at once, 521 * Here we try to allocate the requested multiple blocks at once,
522 * on a best-effort basis. 522 * on a best-effort basis.
523 * To build a branch, we should allocate blocks for 523 * To build a branch, we should allocate blocks for
524 * the indirect blocks(if not allocated yet), and at least 524 * the indirect blocks(if not allocated yet), and at least
525 * the first direct block of this branch. That's the 525 * the first direct block of this branch. That's the
526 * minimum number of blocks need to allocate(required) 526 * minimum number of blocks need to allocate(required)
527 */ 527 */
528 target = blks + indirect_blks; 528 target = blks + indirect_blks;
529 529
530 while (1) { 530 while (1) {
531 count = target; 531 count = target;
532 /* allocating blocks for indirect blocks and direct blocks */ 532 /* allocating blocks for indirect blocks and direct blocks */
533 current_block = ext4_new_blocks(handle,inode,goal,&count,err); 533 current_block = ext4_new_blocks(handle,inode,goal,&count,err);
534 if (*err) 534 if (*err)
535 goto failed_out; 535 goto failed_out;
536 536
537 target -= count; 537 target -= count;
538 /* allocate blocks for indirect blocks */ 538 /* allocate blocks for indirect blocks */
539 while (index < indirect_blks && count) { 539 while (index < indirect_blks && count) {
540 new_blocks[index++] = current_block++; 540 new_blocks[index++] = current_block++;
541 count--; 541 count--;
542 } 542 }
543 543
544 if (count > 0) 544 if (count > 0)
545 break; 545 break;
546 } 546 }
547 547
548 /* save the new block number for the first direct block */ 548 /* save the new block number for the first direct block */
549 new_blocks[index] = current_block; 549 new_blocks[index] = current_block;
550 550
551 /* total number of blocks allocated for direct blocks */ 551 /* total number of blocks allocated for direct blocks */
552 ret = count; 552 ret = count;
553 *err = 0; 553 *err = 0;
554 return ret; 554 return ret;
555 failed_out: 555 failed_out:
556 for (i = 0; i <index; i++) 556 for (i = 0; i <index; i++)
557 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 557 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
558 return ret; 558 return ret;
559 } 559 }
560 560
561 /** 561 /**
562 * ext4_alloc_branch - allocate and set up a chain of blocks. 562 * ext4_alloc_branch - allocate and set up a chain of blocks.
563 * @inode: owner 563 * @inode: owner
564 * @indirect_blks: number of allocated indirect blocks 564 * @indirect_blks: number of allocated indirect blocks
565 * @blks: number of allocated direct blocks 565 * @blks: number of allocated direct blocks
566 * @offsets: offsets (in the blocks) to store the pointers to next. 566 * @offsets: offsets (in the blocks) to store the pointers to next.
567 * @branch: place to store the chain in. 567 * @branch: place to store the chain in.
568 * 568 *
569 * This function allocates blocks, zeroes out all but the last one, 569 * This function allocates blocks, zeroes out all but the last one,
570 * links them into chain and (if we are synchronous) writes them to disk. 570 * links them into chain and (if we are synchronous) writes them to disk.
571 * In other words, it prepares a branch that can be spliced onto the 571 * In other words, it prepares a branch that can be spliced onto the
572 * inode. It stores the information about that chain in the branch[], in 572 * inode. It stores the information about that chain in the branch[], in
573 * the same format as ext4_get_branch() would do. We are calling it after 573 * the same format as ext4_get_branch() would do. We are calling it after
574 * we had read the existing part of chain and partial points to the last 574 * we had read the existing part of chain and partial points to the last
575 * triple of that (one with zero ->key). Upon the exit we have the same 575 * triple of that (one with zero ->key). Upon the exit we have the same
576 * picture as after the successful ext4_get_block(), except that in one 576 * picture as after the successful ext4_get_block(), except that in one
577 * place chain is disconnected - *branch->p is still zero (we did not 577 * place chain is disconnected - *branch->p is still zero (we did not
578 * set the last link), but branch->key contains the number that should 578 * set the last link), but branch->key contains the number that should
579 * be placed into *branch->p to fill that gap. 579 * be placed into *branch->p to fill that gap.
580 * 580 *
581 * If allocation fails we free all blocks we've allocated (and forget 581 * If allocation fails we free all blocks we've allocated (and forget
582 * their buffer_heads) and return the error value the from failed 582 * their buffer_heads) and return the error value the from failed
583 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 583 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
584 * as described above and return 0. 584 * as described above and return 0.
585 */ 585 */
586 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 586 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
587 int indirect_blks, int *blks, ext4_fsblk_t goal, 587 int indirect_blks, int *blks, ext4_fsblk_t goal,
588 ext4_lblk_t *offsets, Indirect *branch) 588 ext4_lblk_t *offsets, Indirect *branch)
589 { 589 {
590 int blocksize = inode->i_sb->s_blocksize; 590 int blocksize = inode->i_sb->s_blocksize;
591 int i, n = 0; 591 int i, n = 0;
592 int err = 0; 592 int err = 0;
593 struct buffer_head *bh; 593 struct buffer_head *bh;
594 int num; 594 int num;
595 ext4_fsblk_t new_blocks[4]; 595 ext4_fsblk_t new_blocks[4];
596 ext4_fsblk_t current_block; 596 ext4_fsblk_t current_block;
597 597
598 num = ext4_alloc_blocks(handle, inode, goal, indirect_blks, 598 num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
599 *blks, new_blocks, &err); 599 *blks, new_blocks, &err);
600 if (err) 600 if (err)
601 return err; 601 return err;
602 602
603 branch[0].key = cpu_to_le32(new_blocks[0]); 603 branch[0].key = cpu_to_le32(new_blocks[0]);
604 /* 604 /*
605 * metadata blocks and data blocks are allocated. 605 * metadata blocks and data blocks are allocated.
606 */ 606 */
607 for (n = 1; n <= indirect_blks; n++) { 607 for (n = 1; n <= indirect_blks; n++) {
608 /* 608 /*
609 * Get buffer_head for parent block, zero it out 609 * Get buffer_head for parent block, zero it out
610 * and set the pointer to new one, then send 610 * and set the pointer to new one, then send
611 * parent to disk. 611 * parent to disk.
612 */ 612 */
613 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 613 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
614 branch[n].bh = bh; 614 branch[n].bh = bh;
615 lock_buffer(bh); 615 lock_buffer(bh);
616 BUFFER_TRACE(bh, "call get_create_access"); 616 BUFFER_TRACE(bh, "call get_create_access");
617 err = ext4_journal_get_create_access(handle, bh); 617 err = ext4_journal_get_create_access(handle, bh);
618 if (err) { 618 if (err) {
619 unlock_buffer(bh); 619 unlock_buffer(bh);
620 brelse(bh); 620 brelse(bh);
621 goto failed; 621 goto failed;
622 } 622 }
623 623
624 memset(bh->b_data, 0, blocksize); 624 memset(bh->b_data, 0, blocksize);
625 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 625 branch[n].p = (__le32 *) bh->b_data + offsets[n];
626 branch[n].key = cpu_to_le32(new_blocks[n]); 626 branch[n].key = cpu_to_le32(new_blocks[n]);
627 *branch[n].p = branch[n].key; 627 *branch[n].p = branch[n].key;
628 if ( n == indirect_blks) { 628 if ( n == indirect_blks) {
629 current_block = new_blocks[n]; 629 current_block = new_blocks[n];
630 /* 630 /*
631 * End of chain, update the last new metablock of 631 * End of chain, update the last new metablock of
632 * the chain to point to the new allocated 632 * the chain to point to the new allocated
633 * data blocks numbers 633 * data blocks numbers
634 */ 634 */
635 for (i=1; i < num; i++) 635 for (i=1; i < num; i++)
636 *(branch[n].p + i) = cpu_to_le32(++current_block); 636 *(branch[n].p + i) = cpu_to_le32(++current_block);
637 } 637 }
638 BUFFER_TRACE(bh, "marking uptodate"); 638 BUFFER_TRACE(bh, "marking uptodate");
639 set_buffer_uptodate(bh); 639 set_buffer_uptodate(bh);
640 unlock_buffer(bh); 640 unlock_buffer(bh);
641 641
642 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 642 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
643 err = ext4_journal_dirty_metadata(handle, bh); 643 err = ext4_journal_dirty_metadata(handle, bh);
644 if (err) 644 if (err)
645 goto failed; 645 goto failed;
646 } 646 }
647 *blks = num; 647 *blks = num;
648 return err; 648 return err;
649 failed: 649 failed:
650 /* Allocation failed, free what we already allocated */ 650 /* Allocation failed, free what we already allocated */
651 for (i = 1; i <= n ; i++) { 651 for (i = 1; i <= n ; i++) {
652 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget"); 652 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
653 ext4_journal_forget(handle, branch[i].bh); 653 ext4_journal_forget(handle, branch[i].bh);
654 } 654 }
655 for (i = 0; i <indirect_blks; i++) 655 for (i = 0; i <indirect_blks; i++)
656 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0); 656 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
657 657
658 ext4_free_blocks(handle, inode, new_blocks[i], num, 0); 658 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
659 659
660 return err; 660 return err;
661 } 661 }
662 662
663 /** 663 /**
664 * ext4_splice_branch - splice the allocated branch onto inode. 664 * ext4_splice_branch - splice the allocated branch onto inode.
665 * @inode: owner 665 * @inode: owner
666 * @block: (logical) number of block we are adding 666 * @block: (logical) number of block we are adding
667 * @chain: chain of indirect blocks (with a missing link - see 667 * @chain: chain of indirect blocks (with a missing link - see
668 * ext4_alloc_branch) 668 * ext4_alloc_branch)
669 * @where: location of missing link 669 * @where: location of missing link
670 * @num: number of indirect blocks we are adding 670 * @num: number of indirect blocks we are adding
671 * @blks: number of direct blocks we are adding 671 * @blks: number of direct blocks we are adding
672 * 672 *
673 * This function fills the missing link and does all housekeeping needed in 673 * This function fills the missing link and does all housekeeping needed in
674 * inode (->i_blocks, etc.). In case of success we end up with the full 674 * inode (->i_blocks, etc.). In case of success we end up with the full
675 * chain to new block and return 0. 675 * chain to new block and return 0.
676 */ 676 */
677 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 677 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
678 ext4_lblk_t block, Indirect *where, int num, int blks) 678 ext4_lblk_t block, Indirect *where, int num, int blks)
679 { 679 {
680 int i; 680 int i;
681 int err = 0; 681 int err = 0;
682 struct ext4_block_alloc_info *block_i; 682 struct ext4_block_alloc_info *block_i;
683 ext4_fsblk_t current_block; 683 ext4_fsblk_t current_block;
684 684
685 block_i = EXT4_I(inode)->i_block_alloc_info; 685 block_i = EXT4_I(inode)->i_block_alloc_info;
686 /* 686 /*
687 * If we're splicing into a [td]indirect block (as opposed to the 687 * If we're splicing into a [td]indirect block (as opposed to the
688 * inode) then we need to get write access to the [td]indirect block 688 * inode) then we need to get write access to the [td]indirect block
689 * before the splice. 689 * before the splice.
690 */ 690 */
691 if (where->bh) { 691 if (where->bh) {
692 BUFFER_TRACE(where->bh, "get_write_access"); 692 BUFFER_TRACE(where->bh, "get_write_access");
693 err = ext4_journal_get_write_access(handle, where->bh); 693 err = ext4_journal_get_write_access(handle, where->bh);
694 if (err) 694 if (err)
695 goto err_out; 695 goto err_out;
696 } 696 }
697 /* That's it */ 697 /* That's it */
698 698
699 *where->p = where->key; 699 *where->p = where->key;
700 700
701 /* 701 /*
702 * Update the host buffer_head or inode to point to more just allocated 702 * Update the host buffer_head or inode to point to more just allocated
703 * direct blocks blocks 703 * direct blocks blocks
704 */ 704 */
705 if (num == 0 && blks > 1) { 705 if (num == 0 && blks > 1) {
706 current_block = le32_to_cpu(where->key) + 1; 706 current_block = le32_to_cpu(where->key) + 1;
707 for (i = 1; i < blks; i++) 707 for (i = 1; i < blks; i++)
708 *(where->p + i ) = cpu_to_le32(current_block++); 708 *(where->p + i ) = cpu_to_le32(current_block++);
709 } 709 }
710 710
711 /* 711 /*
712 * update the most recently allocated logical & physical block 712 * update the most recently allocated logical & physical block
713 * in i_block_alloc_info, to assist find the proper goal block for next 713 * in i_block_alloc_info, to assist find the proper goal block for next
714 * allocation 714 * allocation
715 */ 715 */
716 if (block_i) { 716 if (block_i) {
717 block_i->last_alloc_logical_block = block + blks - 1; 717 block_i->last_alloc_logical_block = block + blks - 1;
718 block_i->last_alloc_physical_block = 718 block_i->last_alloc_physical_block =
719 le32_to_cpu(where[num].key) + blks - 1; 719 le32_to_cpu(where[num].key) + blks - 1;
720 } 720 }
721 721
722 /* We are done with atomic stuff, now do the rest of housekeeping */ 722 /* We are done with atomic stuff, now do the rest of housekeeping */
723 723
724 inode->i_ctime = ext4_current_time(inode); 724 inode->i_ctime = ext4_current_time(inode);
725 ext4_mark_inode_dirty(handle, inode); 725 ext4_mark_inode_dirty(handle, inode);
726 726
727 /* had we spliced it onto indirect block? */ 727 /* had we spliced it onto indirect block? */
728 if (where->bh) { 728 if (where->bh) {
729 /* 729 /*
730 * If we spliced it onto an indirect block, we haven't 730 * If we spliced it onto an indirect block, we haven't
731 * altered the inode. Note however that if it is being spliced 731 * altered the inode. Note however that if it is being spliced
732 * onto an indirect block at the very end of the file (the 732 * onto an indirect block at the very end of the file (the
733 * file is growing) then we *will* alter the inode to reflect 733 * file is growing) then we *will* alter the inode to reflect
734 * the new i_size. But that is not done here - it is done in 734 * the new i_size. But that is not done here - it is done in
735 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 735 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
736 */ 736 */
737 jbd_debug(5, "splicing indirect only\n"); 737 jbd_debug(5, "splicing indirect only\n");
738 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata"); 738 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
739 err = ext4_journal_dirty_metadata(handle, where->bh); 739 err = ext4_journal_dirty_metadata(handle, where->bh);
740 if (err) 740 if (err)
741 goto err_out; 741 goto err_out;
742 } else { 742 } else {
743 /* 743 /*
744 * OK, we spliced it into the inode itself on a direct block. 744 * OK, we spliced it into the inode itself on a direct block.
745 * Inode was dirtied above. 745 * Inode was dirtied above.
746 */ 746 */
747 jbd_debug(5, "splicing direct\n"); 747 jbd_debug(5, "splicing direct\n");
748 } 748 }
749 return err; 749 return err;
750 750
751 err_out: 751 err_out:
752 for (i = 1; i <= num; i++) { 752 for (i = 1; i <= num; i++) {
753 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget"); 753 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
754 ext4_journal_forget(handle, where[i].bh); 754 ext4_journal_forget(handle, where[i].bh);
755 ext4_free_blocks(handle, inode, 755 ext4_free_blocks(handle, inode,
756 le32_to_cpu(where[i-1].key), 1, 0); 756 le32_to_cpu(where[i-1].key), 1, 0);
757 } 757 }
758 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0); 758 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
759 759
760 return err; 760 return err;
761 } 761 }
762 762
763 /* 763 /*
764 * Allocation strategy is simple: if we have to allocate something, we will 764 * Allocation strategy is simple: if we have to allocate something, we will
765 * have to go the whole way to leaf. So let's do it before attaching anything 765 * have to go the whole way to leaf. So let's do it before attaching anything
766 * to tree, set linkage between the newborn blocks, write them if sync is 766 * to tree, set linkage between the newborn blocks, write them if sync is
767 * required, recheck the path, free and repeat if check fails, otherwise 767 * required, recheck the path, free and repeat if check fails, otherwise
768 * set the last missing link (that will protect us from any truncate-generated 768 * set the last missing link (that will protect us from any truncate-generated
769 * removals - all blocks on the path are immune now) and possibly force the 769 * removals - all blocks on the path are immune now) and possibly force the
770 * write on the parent block. 770 * write on the parent block.
771 * That has a nice additional property: no special recovery from the failed 771 * That has a nice additional property: no special recovery from the failed
772 * allocations is needed - we simply release blocks and do not touch anything 772 * allocations is needed - we simply release blocks and do not touch anything
773 * reachable from inode. 773 * reachable from inode.
774 * 774 *
775 * `handle' can be NULL if create == 0. 775 * `handle' can be NULL if create == 0.
776 * 776 *
777 * return > 0, # of blocks mapped or allocated. 777 * return > 0, # of blocks mapped or allocated.
778 * return = 0, if plain lookup failed. 778 * return = 0, if plain lookup failed.
779 * return < 0, error case. 779 * return < 0, error case.
780 * 780 *
781 * 781 *
782 * Need to be called with 782 * Need to be called with
783 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block 783 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
784 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) 784 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
785 */ 785 */
786 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode, 786 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
787 ext4_lblk_t iblock, unsigned long maxblocks, 787 ext4_lblk_t iblock, unsigned long maxblocks,
788 struct buffer_head *bh_result, 788 struct buffer_head *bh_result,
789 int create, int extend_disksize) 789 int create, int extend_disksize)
790 { 790 {
791 int err = -EIO; 791 int err = -EIO;
792 ext4_lblk_t offsets[4]; 792 ext4_lblk_t offsets[4];
793 Indirect chain[4]; 793 Indirect chain[4];
794 Indirect *partial; 794 Indirect *partial;
795 ext4_fsblk_t goal; 795 ext4_fsblk_t goal;
796 int indirect_blks; 796 int indirect_blks;
797 int blocks_to_boundary = 0; 797 int blocks_to_boundary = 0;
798 int depth; 798 int depth;
799 struct ext4_inode_info *ei = EXT4_I(inode); 799 struct ext4_inode_info *ei = EXT4_I(inode);
800 int count = 0; 800 int count = 0;
801 ext4_fsblk_t first_block = 0; 801 ext4_fsblk_t first_block = 0;
802 802
803 803
804 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)); 804 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
805 J_ASSERT(handle != NULL || create == 0); 805 J_ASSERT(handle != NULL || create == 0);
806 depth = ext4_block_to_path(inode, iblock, offsets, 806 depth = ext4_block_to_path(inode, iblock, offsets,
807 &blocks_to_boundary); 807 &blocks_to_boundary);
808 808
809 if (depth == 0) 809 if (depth == 0)
810 goto out; 810 goto out;
811 811
812 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 812 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
813 813
814 /* Simplest case - block found, no allocation needed */ 814 /* Simplest case - block found, no allocation needed */
815 if (!partial) { 815 if (!partial) {
816 first_block = le32_to_cpu(chain[depth - 1].key); 816 first_block = le32_to_cpu(chain[depth - 1].key);
817 clear_buffer_new(bh_result); 817 clear_buffer_new(bh_result);
818 count++; 818 count++;
819 /*map more blocks*/ 819 /*map more blocks*/
820 while (count < maxblocks && count <= blocks_to_boundary) { 820 while (count < maxblocks && count <= blocks_to_boundary) {
821 ext4_fsblk_t blk; 821 ext4_fsblk_t blk;
822 822
823 blk = le32_to_cpu(*(chain[depth-1].p + count)); 823 blk = le32_to_cpu(*(chain[depth-1].p + count));
824 824
825 if (blk == first_block + count) 825 if (blk == first_block + count)
826 count++; 826 count++;
827 else 827 else
828 break; 828 break;
829 } 829 }
830 goto got_it; 830 goto got_it;
831 } 831 }
832 832
833 /* Next simple case - plain lookup or failed read of indirect block */ 833 /* Next simple case - plain lookup or failed read of indirect block */
834 if (!create || err == -EIO) 834 if (!create || err == -EIO)
835 goto cleanup; 835 goto cleanup;
836 836
837 /* 837 /*
838 * Okay, we need to do block allocation. Lazily initialize the block 838 * Okay, we need to do block allocation. Lazily initialize the block
839 * allocation info here if necessary 839 * allocation info here if necessary
840 */ 840 */
841 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) 841 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
842 ext4_init_block_alloc_info(inode); 842 ext4_init_block_alloc_info(inode);
843 843
844 goal = ext4_find_goal(inode, iblock, partial); 844 goal = ext4_find_goal(inode, iblock, partial);
845 845
846 /* the number of blocks need to allocate for [d,t]indirect blocks */ 846 /* the number of blocks need to allocate for [d,t]indirect blocks */
847 indirect_blks = (chain + depth) - partial - 1; 847 indirect_blks = (chain + depth) - partial - 1;
848 848
849 /* 849 /*
850 * Next look up the indirect map to count the totoal number of 850 * Next look up the indirect map to count the totoal number of
851 * direct blocks to allocate for this branch. 851 * direct blocks to allocate for this branch.
852 */ 852 */
853 count = ext4_blks_to_allocate(partial, indirect_blks, 853 count = ext4_blks_to_allocate(partial, indirect_blks,
854 maxblocks, blocks_to_boundary); 854 maxblocks, blocks_to_boundary);
855 /* 855 /*
856 * Block out ext4_truncate while we alter the tree 856 * Block out ext4_truncate while we alter the tree
857 */ 857 */
858 err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal, 858 err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
859 offsets + (partial - chain), partial); 859 offsets + (partial - chain), partial);
860 860
861 /* 861 /*
862 * The ext4_splice_branch call will free and forget any buffers 862 * The ext4_splice_branch call will free and forget any buffers
863 * on the new chain if there is a failure, but that risks using 863 * on the new chain if there is a failure, but that risks using
864 * up transaction credits, especially for bitmaps where the 864 * up transaction credits, especially for bitmaps where the
865 * credits cannot be returned. Can we handle this somehow? We 865 * credits cannot be returned. Can we handle this somehow? We
866 * may need to return -EAGAIN upwards in the worst case. --sct 866 * may need to return -EAGAIN upwards in the worst case. --sct
867 */ 867 */
868 if (!err) 868 if (!err)
869 err = ext4_splice_branch(handle, inode, iblock, 869 err = ext4_splice_branch(handle, inode, iblock,
870 partial, indirect_blks, count); 870 partial, indirect_blks, count);
871 /* 871 /*
872 * i_disksize growing is protected by i_data_sem. Don't forget to 872 * i_disksize growing is protected by i_data_sem. Don't forget to
873 * protect it if you're about to implement concurrent 873 * protect it if you're about to implement concurrent
874 * ext4_get_block() -bzzz 874 * ext4_get_block() -bzzz
875 */ 875 */
876 if (!err && extend_disksize && inode->i_size > ei->i_disksize) 876 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
877 ei->i_disksize = inode->i_size; 877 ei->i_disksize = inode->i_size;
878 if (err) 878 if (err)
879 goto cleanup; 879 goto cleanup;
880 880
881 set_buffer_new(bh_result); 881 set_buffer_new(bh_result);
882 got_it: 882 got_it:
883 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); 883 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
884 if (count > blocks_to_boundary) 884 if (count > blocks_to_boundary)
885 set_buffer_boundary(bh_result); 885 set_buffer_boundary(bh_result);
886 err = count; 886 err = count;
887 /* Clean up and exit */ 887 /* Clean up and exit */
888 partial = chain + depth - 1; /* the whole chain */ 888 partial = chain + depth - 1; /* the whole chain */
889 cleanup: 889 cleanup:
890 while (partial > chain) { 890 while (partial > chain) {
891 BUFFER_TRACE(partial->bh, "call brelse"); 891 BUFFER_TRACE(partial->bh, "call brelse");
892 brelse(partial->bh); 892 brelse(partial->bh);
893 partial--; 893 partial--;
894 } 894 }
895 BUFFER_TRACE(bh_result, "returned"); 895 BUFFER_TRACE(bh_result, "returned");
896 out: 896 out:
897 return err; 897 return err;
898 } 898 }
899 899
900 /* Maximum number of blocks we map for direct IO at once. */ 900 /* Maximum number of blocks we map for direct IO at once. */
901 #define DIO_MAX_BLOCKS 4096 901 #define DIO_MAX_BLOCKS 4096
902 /* 902 /*
903 * Number of credits we need for writing DIO_MAX_BLOCKS: 903 * Number of credits we need for writing DIO_MAX_BLOCKS:
904 * We need sb + group descriptor + bitmap + inode -> 4 904 * We need sb + group descriptor + bitmap + inode -> 4
905 * For B blocks with A block pointers per block we need: 905 * For B blocks with A block pointers per block we need:
906 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect). 906 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
907 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25. 907 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
908 */ 908 */
909 #define DIO_CREDITS 25 909 #define DIO_CREDITS 25
910 910
911 911
912 /* 912 /*
913 * 913 *
914 * 914 *
915 * ext4_ext4 get_block() wrapper function 915 * ext4_ext4 get_block() wrapper function
916 * It will do a look up first, and returns if the blocks already mapped. 916 * It will do a look up first, and returns if the blocks already mapped.
917 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 917 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
918 * and store the allocated blocks in the result buffer head and mark it 918 * and store the allocated blocks in the result buffer head and mark it
919 * mapped. 919 * mapped.
920 * 920 *
921 * If file type is extents based, it will call ext4_ext_get_blocks(), 921 * If file type is extents based, it will call ext4_ext_get_blocks(),
922 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping 922 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
923 * based files 923 * based files
924 * 924 *
925 * On success, it returns the number of blocks being mapped or allocate. 925 * On success, it returns the number of blocks being mapped or allocate.
926 * if create==0 and the blocks are pre-allocated and uninitialized block, 926 * if create==0 and the blocks are pre-allocated and uninitialized block,
927 * the result buffer head is unmapped. If the create ==1, it will make sure 927 * the result buffer head is unmapped. If the create ==1, it will make sure
928 * the buffer head is mapped. 928 * the buffer head is mapped.
929 * 929 *
930 * It returns 0 if plain look up failed (blocks have not been allocated), in 930 * It returns 0 if plain look up failed (blocks have not been allocated), in
931 * that casem, buffer head is unmapped 931 * that casem, buffer head is unmapped
932 * 932 *
933 * It returns the error in case of allocation failure. 933 * It returns the error in case of allocation failure.
934 */ 934 */
935 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block, 935 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
936 unsigned long max_blocks, struct buffer_head *bh, 936 unsigned long max_blocks, struct buffer_head *bh,
937 int create, int extend_disksize) 937 int create, int extend_disksize)
938 { 938 {
939 int retval; 939 int retval;
940 940
941 clear_buffer_mapped(bh); 941 clear_buffer_mapped(bh);
942 942
943 /* 943 /*
944 * Try to see if we can get the block without requesting 944 * Try to see if we can get the block without requesting
945 * for new file system block. 945 * for new file system block.
946 */ 946 */
947 down_read((&EXT4_I(inode)->i_data_sem)); 947 down_read((&EXT4_I(inode)->i_data_sem));
948 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 948 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
949 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 949 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
950 bh, 0, 0); 950 bh, 0, 0);
951 } else { 951 } else {
952 retval = ext4_get_blocks_handle(handle, 952 retval = ext4_get_blocks_handle(handle,
953 inode, block, max_blocks, bh, 0, 0); 953 inode, block, max_blocks, bh, 0, 0);
954 } 954 }
955 up_read((&EXT4_I(inode)->i_data_sem)); 955 up_read((&EXT4_I(inode)->i_data_sem));
956 956
957 /* If it is only a block(s) look up */ 957 /* If it is only a block(s) look up */
958 if (!create) 958 if (!create)
959 return retval; 959 return retval;
960 960
961 /* 961 /*
962 * Returns if the blocks have already allocated 962 * Returns if the blocks have already allocated
963 * 963 *
964 * Note that if blocks have been preallocated 964 * Note that if blocks have been preallocated
965 * ext4_ext_get_block() returns th create = 0 965 * ext4_ext_get_block() returns th create = 0
966 * with buffer head unmapped. 966 * with buffer head unmapped.
967 */ 967 */
968 if (retval > 0 && buffer_mapped(bh)) 968 if (retval > 0 && buffer_mapped(bh))
969 return retval; 969 return retval;
970 970
971 /* 971 /*
972 * New blocks allocate and/or writing to uninitialized extent 972 * New blocks allocate and/or writing to uninitialized extent
973 * will possibly result in updating i_data, so we take 973 * will possibly result in updating i_data, so we take
974 * the write lock of i_data_sem, and call get_blocks() 974 * the write lock of i_data_sem, and call get_blocks()
975 * with create == 1 flag. 975 * with create == 1 flag.
976 */ 976 */
977 down_write((&EXT4_I(inode)->i_data_sem)); 977 down_write((&EXT4_I(inode)->i_data_sem));
978 /* 978 /*
979 * We need to check for EXT4 here because migrate 979 * We need to check for EXT4 here because migrate
980 * could have changed the inode type in between 980 * could have changed the inode type in between
981 */ 981 */
982 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 982 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
983 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks, 983 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
984 bh, create, extend_disksize); 984 bh, create, extend_disksize);
985 } else { 985 } else {
986 retval = ext4_get_blocks_handle(handle, inode, block, 986 retval = ext4_get_blocks_handle(handle, inode, block,
987 max_blocks, bh, create, extend_disksize); 987 max_blocks, bh, create, extend_disksize);
988 988
989 if (retval > 0 && buffer_new(bh)) { 989 if (retval > 0 && buffer_new(bh)) {
990 /* 990 /*
991 * We allocated new blocks which will result in 991 * We allocated new blocks which will result in
992 * i_data's format changing. Force the migrate 992 * i_data's format changing. Force the migrate
993 * to fail by clearing migrate flags 993 * to fail by clearing migrate flags
994 */ 994 */
995 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags & 995 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
996 ~EXT4_EXT_MIGRATE; 996 ~EXT4_EXT_MIGRATE;
997 } 997 }
998 } 998 }
999 up_write((&EXT4_I(inode)->i_data_sem)); 999 up_write((&EXT4_I(inode)->i_data_sem));
1000 return retval; 1000 return retval;
1001 } 1001 }
1002 1002
1003 static int ext4_get_block(struct inode *inode, sector_t iblock, 1003 static int ext4_get_block(struct inode *inode, sector_t iblock,
1004 struct buffer_head *bh_result, int create) 1004 struct buffer_head *bh_result, int create)
1005 { 1005 {
1006 handle_t *handle = ext4_journal_current_handle(); 1006 handle_t *handle = ext4_journal_current_handle();
1007 int ret = 0, started = 0; 1007 int ret = 0, started = 0;
1008 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; 1008 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1009 1009
1010 if (create && !handle) { 1010 if (create && !handle) {
1011 /* Direct IO write... */ 1011 /* Direct IO write... */
1012 if (max_blocks > DIO_MAX_BLOCKS) 1012 if (max_blocks > DIO_MAX_BLOCKS)
1013 max_blocks = DIO_MAX_BLOCKS; 1013 max_blocks = DIO_MAX_BLOCKS;
1014 handle = ext4_journal_start(inode, DIO_CREDITS + 1014 handle = ext4_journal_start(inode, DIO_CREDITS +
1015 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb)); 1015 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
1016 if (IS_ERR(handle)) { 1016 if (IS_ERR(handle)) {
1017 ret = PTR_ERR(handle); 1017 ret = PTR_ERR(handle);
1018 goto out; 1018 goto out;
1019 } 1019 }
1020 started = 1; 1020 started = 1;
1021 } 1021 }
1022 1022
1023 ret = ext4_get_blocks_wrap(handle, inode, iblock, 1023 ret = ext4_get_blocks_wrap(handle, inode, iblock,
1024 max_blocks, bh_result, create, 0); 1024 max_blocks, bh_result, create, 0);
1025 if (ret > 0) { 1025 if (ret > 0) {
1026 bh_result->b_size = (ret << inode->i_blkbits); 1026 bh_result->b_size = (ret << inode->i_blkbits);
1027 ret = 0; 1027 ret = 0;
1028 } 1028 }
1029 if (started) 1029 if (started)
1030 ext4_journal_stop(handle); 1030 ext4_journal_stop(handle);
1031 out: 1031 out:
1032 return ret; 1032 return ret;
1033 } 1033 }
1034 1034
1035 /* 1035 /*
1036 * `handle' can be NULL if create is zero 1036 * `handle' can be NULL if create is zero
1037 */ 1037 */
1038 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1038 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1039 ext4_lblk_t block, int create, int *errp) 1039 ext4_lblk_t block, int create, int *errp)
1040 { 1040 {
1041 struct buffer_head dummy; 1041 struct buffer_head dummy;
1042 int fatal = 0, err; 1042 int fatal = 0, err;
1043 1043
1044 J_ASSERT(handle != NULL || create == 0); 1044 J_ASSERT(handle != NULL || create == 0);
1045 1045
1046 dummy.b_state = 0; 1046 dummy.b_state = 0;
1047 dummy.b_blocknr = -1000; 1047 dummy.b_blocknr = -1000;
1048 buffer_trace_init(&dummy.b_history); 1048 buffer_trace_init(&dummy.b_history);
1049 err = ext4_get_blocks_wrap(handle, inode, block, 1, 1049 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1050 &dummy, create, 1); 1050 &dummy, create, 1);
1051 /* 1051 /*
1052 * ext4_get_blocks_handle() returns number of blocks 1052 * ext4_get_blocks_handle() returns number of blocks
1053 * mapped. 0 in case of a HOLE. 1053 * mapped. 0 in case of a HOLE.
1054 */ 1054 */
1055 if (err > 0) { 1055 if (err > 0) {
1056 if (err > 1) 1056 if (err > 1)
1057 WARN_ON(1); 1057 WARN_ON(1);
1058 err = 0; 1058 err = 0;
1059 } 1059 }
1060 *errp = err; 1060 *errp = err;
1061 if (!err && buffer_mapped(&dummy)) { 1061 if (!err && buffer_mapped(&dummy)) {
1062 struct buffer_head *bh; 1062 struct buffer_head *bh;
1063 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 1063 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1064 if (!bh) { 1064 if (!bh) {
1065 *errp = -EIO; 1065 *errp = -EIO;
1066 goto err; 1066 goto err;
1067 } 1067 }
1068 if (buffer_new(&dummy)) { 1068 if (buffer_new(&dummy)) {
1069 J_ASSERT(create != 0); 1069 J_ASSERT(create != 0);
1070 J_ASSERT(handle != NULL); 1070 J_ASSERT(handle != NULL);
1071 1071
1072 /* 1072 /*
1073 * Now that we do not always journal data, we should 1073 * Now that we do not always journal data, we should
1074 * keep in mind whether this should always journal the 1074 * keep in mind whether this should always journal the
1075 * new buffer as metadata. For now, regular file 1075 * new buffer as metadata. For now, regular file
1076 * writes use ext4_get_block instead, so it's not a 1076 * writes use ext4_get_block instead, so it's not a
1077 * problem. 1077 * problem.
1078 */ 1078 */
1079 lock_buffer(bh); 1079 lock_buffer(bh);
1080 BUFFER_TRACE(bh, "call get_create_access"); 1080 BUFFER_TRACE(bh, "call get_create_access");
1081 fatal = ext4_journal_get_create_access(handle, bh); 1081 fatal = ext4_journal_get_create_access(handle, bh);
1082 if (!fatal && !buffer_uptodate(bh)) { 1082 if (!fatal && !buffer_uptodate(bh)) {
1083 memset(bh->b_data,0,inode->i_sb->s_blocksize); 1083 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1084 set_buffer_uptodate(bh); 1084 set_buffer_uptodate(bh);
1085 } 1085 }
1086 unlock_buffer(bh); 1086 unlock_buffer(bh);
1087 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 1087 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1088 err = ext4_journal_dirty_metadata(handle, bh); 1088 err = ext4_journal_dirty_metadata(handle, bh);
1089 if (!fatal) 1089 if (!fatal)
1090 fatal = err; 1090 fatal = err;
1091 } else { 1091 } else {
1092 BUFFER_TRACE(bh, "not a new buffer"); 1092 BUFFER_TRACE(bh, "not a new buffer");
1093 } 1093 }
1094 if (fatal) { 1094 if (fatal) {
1095 *errp = fatal; 1095 *errp = fatal;
1096 brelse(bh); 1096 brelse(bh);
1097 bh = NULL; 1097 bh = NULL;
1098 } 1098 }
1099 return bh; 1099 return bh;
1100 } 1100 }
1101 err: 1101 err:
1102 return NULL; 1102 return NULL;
1103 } 1103 }
1104 1104
1105 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1105 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1106 ext4_lblk_t block, int create, int *err) 1106 ext4_lblk_t block, int create, int *err)
1107 { 1107 {
1108 struct buffer_head * bh; 1108 struct buffer_head * bh;
1109 1109
1110 bh = ext4_getblk(handle, inode, block, create, err); 1110 bh = ext4_getblk(handle, inode, block, create, err);
1111 if (!bh) 1111 if (!bh)
1112 return bh; 1112 return bh;
1113 if (buffer_uptodate(bh)) 1113 if (buffer_uptodate(bh))
1114 return bh; 1114 return bh;
1115 ll_rw_block(READ_META, 1, &bh); 1115 ll_rw_block(READ_META, 1, &bh);
1116 wait_on_buffer(bh); 1116 wait_on_buffer(bh);
1117 if (buffer_uptodate(bh)) 1117 if (buffer_uptodate(bh))
1118 return bh; 1118 return bh;
1119 put_bh(bh); 1119 put_bh(bh);
1120 *err = -EIO; 1120 *err = -EIO;
1121 return NULL; 1121 return NULL;
1122 } 1122 }
1123 1123
1124 static int walk_page_buffers( handle_t *handle, 1124 static int walk_page_buffers( handle_t *handle,
1125 struct buffer_head *head, 1125 struct buffer_head *head,
1126 unsigned from, 1126 unsigned from,
1127 unsigned to, 1127 unsigned to,
1128 int *partial, 1128 int *partial,
1129 int (*fn)( handle_t *handle, 1129 int (*fn)( handle_t *handle,
1130 struct buffer_head *bh)) 1130 struct buffer_head *bh))
1131 { 1131 {
1132 struct buffer_head *bh; 1132 struct buffer_head *bh;
1133 unsigned block_start, block_end; 1133 unsigned block_start, block_end;
1134 unsigned blocksize = head->b_size; 1134 unsigned blocksize = head->b_size;
1135 int err, ret = 0; 1135 int err, ret = 0;
1136 struct buffer_head *next; 1136 struct buffer_head *next;
1137 1137
1138 for ( bh = head, block_start = 0; 1138 for ( bh = head, block_start = 0;
1139 ret == 0 && (bh != head || !block_start); 1139 ret == 0 && (bh != head || !block_start);
1140 block_start = block_end, bh = next) 1140 block_start = block_end, bh = next)
1141 { 1141 {
1142 next = bh->b_this_page; 1142 next = bh->b_this_page;
1143 block_end = block_start + blocksize; 1143 block_end = block_start + blocksize;
1144 if (block_end <= from || block_start >= to) { 1144 if (block_end <= from || block_start >= to) {
1145 if (partial && !buffer_uptodate(bh)) 1145 if (partial && !buffer_uptodate(bh))
1146 *partial = 1; 1146 *partial = 1;
1147 continue; 1147 continue;
1148 } 1148 }
1149 err = (*fn)(handle, bh); 1149 err = (*fn)(handle, bh);
1150 if (!ret) 1150 if (!ret)
1151 ret = err; 1151 ret = err;
1152 } 1152 }
1153 return ret; 1153 return ret;
1154 } 1154 }
1155 1155
1156 /* 1156 /*
1157 * To preserve ordering, it is essential that the hole instantiation and 1157 * To preserve ordering, it is essential that the hole instantiation and
1158 * the data write be encapsulated in a single transaction. We cannot 1158 * the data write be encapsulated in a single transaction. We cannot
1159 * close off a transaction and start a new one between the ext4_get_block() 1159 * close off a transaction and start a new one between the ext4_get_block()
1160 * and the commit_write(). So doing the jbd2_journal_start at the start of 1160 * and the commit_write(). So doing the jbd2_journal_start at the start of
1161 * prepare_write() is the right place. 1161 * prepare_write() is the right place.
1162 * 1162 *
1163 * Also, this function can nest inside ext4_writepage() -> 1163 * Also, this function can nest inside ext4_writepage() ->
1164 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1164 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1165 * has generated enough buffer credits to do the whole page. So we won't 1165 * has generated enough buffer credits to do the whole page. So we won't
1166 * block on the journal in that case, which is good, because the caller may 1166 * block on the journal in that case, which is good, because the caller may
1167 * be PF_MEMALLOC. 1167 * be PF_MEMALLOC.
1168 * 1168 *
1169 * By accident, ext4 can be reentered when a transaction is open via 1169 * By accident, ext4 can be reentered when a transaction is open via
1170 * quota file writes. If we were to commit the transaction while thus 1170 * quota file writes. If we were to commit the transaction while thus
1171 * reentered, there can be a deadlock - we would be holding a quota 1171 * reentered, there can be a deadlock - we would be holding a quota
1172 * lock, and the commit would never complete if another thread had a 1172 * lock, and the commit would never complete if another thread had a
1173 * transaction open and was blocking on the quota lock - a ranking 1173 * transaction open and was blocking on the quota lock - a ranking
1174 * violation. 1174 * violation.
1175 * 1175 *
1176 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1176 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1177 * will _not_ run commit under these circumstances because handle->h_ref 1177 * will _not_ run commit under these circumstances because handle->h_ref
1178 * is elevated. We'll still have enough credits for the tiny quotafile 1178 * is elevated. We'll still have enough credits for the tiny quotafile
1179 * write. 1179 * write.
1180 */ 1180 */
1181 static int do_journal_get_write_access(handle_t *handle, 1181 static int do_journal_get_write_access(handle_t *handle,
1182 struct buffer_head *bh) 1182 struct buffer_head *bh)
1183 { 1183 {
1184 if (!buffer_mapped(bh) || buffer_freed(bh)) 1184 if (!buffer_mapped(bh) || buffer_freed(bh))
1185 return 0; 1185 return 0;
1186 return ext4_journal_get_write_access(handle, bh); 1186 return ext4_journal_get_write_access(handle, bh);
1187 } 1187 }
1188 1188
1189 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1189 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1190 loff_t pos, unsigned len, unsigned flags, 1190 loff_t pos, unsigned len, unsigned flags,
1191 struct page **pagep, void **fsdata) 1191 struct page **pagep, void **fsdata)
1192 { 1192 {
1193 struct inode *inode = mapping->host; 1193 struct inode *inode = mapping->host;
1194 int ret, needed_blocks = ext4_writepage_trans_blocks(inode); 1194 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1195 handle_t *handle; 1195 handle_t *handle;
1196 int retries = 0; 1196 int retries = 0;
1197 struct page *page; 1197 struct page *page;
1198 pgoff_t index; 1198 pgoff_t index;
1199 unsigned from, to; 1199 unsigned from, to;
1200 1200
1201 index = pos >> PAGE_CACHE_SHIFT; 1201 index = pos >> PAGE_CACHE_SHIFT;
1202 from = pos & (PAGE_CACHE_SIZE - 1); 1202 from = pos & (PAGE_CACHE_SIZE - 1);
1203 to = from + len; 1203 to = from + len;
1204 1204
1205 retry: 1205 retry:
1206 page = __grab_cache_page(mapping, index); 1206 page = __grab_cache_page(mapping, index);
1207 if (!page) 1207 if (!page)
1208 return -ENOMEM; 1208 return -ENOMEM;
1209 *pagep = page; 1209 *pagep = page;
1210 1210
1211 handle = ext4_journal_start(inode, needed_blocks); 1211 handle = ext4_journal_start(inode, needed_blocks);
1212 if (IS_ERR(handle)) { 1212 if (IS_ERR(handle)) {
1213 unlock_page(page); 1213 unlock_page(page);
1214 page_cache_release(page); 1214 page_cache_release(page);
1215 ret = PTR_ERR(handle); 1215 ret = PTR_ERR(handle);
1216 goto out; 1216 goto out;
1217 } 1217 }
1218 1218
1219 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 1219 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1220 ext4_get_block); 1220 ext4_get_block);
1221 1221
1222 if (!ret && ext4_should_journal_data(inode)) { 1222 if (!ret && ext4_should_journal_data(inode)) {
1223 ret = walk_page_buffers(handle, page_buffers(page), 1223 ret = walk_page_buffers(handle, page_buffers(page),
1224 from, to, NULL, do_journal_get_write_access); 1224 from, to, NULL, do_journal_get_write_access);
1225 } 1225 }
1226 1226
1227 if (ret) { 1227 if (ret) {
1228 ext4_journal_stop(handle); 1228 ext4_journal_stop(handle);
1229 unlock_page(page); 1229 unlock_page(page);
1230 page_cache_release(page); 1230 page_cache_release(page);
1231 } 1231 }
1232 1232
1233 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1233 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1234 goto retry; 1234 goto retry;
1235 out: 1235 out:
1236 return ret; 1236 return ret;
1237 } 1237 }
1238 1238
1239 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh) 1239 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1240 { 1240 {
1241 int err = jbd2_journal_dirty_data(handle, bh); 1241 int err = jbd2_journal_dirty_data(handle, bh);
1242 if (err) 1242 if (err)
1243 ext4_journal_abort_handle(__func__, __func__, 1243 ext4_journal_abort_handle(__func__, __func__,
1244 bh, handle, err); 1244 bh, handle, err);
1245 return err; 1245 return err;
1246 } 1246 }
1247 1247
1248 /* For write_end() in data=journal mode */ 1248 /* For write_end() in data=journal mode */
1249 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1249 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1250 { 1250 {
1251 if (!buffer_mapped(bh) || buffer_freed(bh)) 1251 if (!buffer_mapped(bh) || buffer_freed(bh))
1252 return 0; 1252 return 0;
1253 set_buffer_uptodate(bh); 1253 set_buffer_uptodate(bh);
1254 return ext4_journal_dirty_metadata(handle, bh); 1254 return ext4_journal_dirty_metadata(handle, bh);
1255 } 1255 }
1256 1256
1257 /* 1257 /*
1258 * Generic write_end handler for ordered and writeback ext4 journal modes. 1258 * Generic write_end handler for ordered and writeback ext4 journal modes.
1259 * We can't use generic_write_end, because that unlocks the page and we need to 1259 * We can't use generic_write_end, because that unlocks the page and we need to
1260 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run 1260 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1261 * after block_write_end. 1261 * after block_write_end.
1262 */ 1262 */
1263 static int ext4_generic_write_end(struct file *file, 1263 static int ext4_generic_write_end(struct file *file,
1264 struct address_space *mapping, 1264 struct address_space *mapping,
1265 loff_t pos, unsigned len, unsigned copied, 1265 loff_t pos, unsigned len, unsigned copied,
1266 struct page *page, void *fsdata) 1266 struct page *page, void *fsdata)
1267 { 1267 {
1268 struct inode *inode = file->f_mapping->host; 1268 struct inode *inode = file->f_mapping->host;
1269 1269
1270 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1270 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1271 1271
1272 if (pos+copied > inode->i_size) { 1272 if (pos+copied > inode->i_size) {
1273 i_size_write(inode, pos+copied); 1273 i_size_write(inode, pos+copied);
1274 mark_inode_dirty(inode); 1274 mark_inode_dirty(inode);
1275 } 1275 }
1276 1276
1277 return copied; 1277 return copied;
1278 } 1278 }
1279 1279
1280 /* 1280 /*
1281 * We need to pick up the new inode size which generic_commit_write gave us 1281 * We need to pick up the new inode size which generic_commit_write gave us
1282 * `file' can be NULL - eg, when called from page_symlink(). 1282 * `file' can be NULL - eg, when called from page_symlink().
1283 * 1283 *
1284 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1284 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1285 * buffers are managed internally. 1285 * buffers are managed internally.
1286 */ 1286 */
1287 static int ext4_ordered_write_end(struct file *file, 1287 static int ext4_ordered_write_end(struct file *file,
1288 struct address_space *mapping, 1288 struct address_space *mapping,
1289 loff_t pos, unsigned len, unsigned copied, 1289 loff_t pos, unsigned len, unsigned copied,
1290 struct page *page, void *fsdata) 1290 struct page *page, void *fsdata)
1291 { 1291 {
1292 handle_t *handle = ext4_journal_current_handle(); 1292 handle_t *handle = ext4_journal_current_handle();
1293 struct inode *inode = file->f_mapping->host; 1293 struct inode *inode = file->f_mapping->host;
1294 unsigned from, to; 1294 unsigned from, to;
1295 int ret = 0, ret2; 1295 int ret = 0, ret2;
1296 1296
1297 from = pos & (PAGE_CACHE_SIZE - 1); 1297 from = pos & (PAGE_CACHE_SIZE - 1);
1298 to = from + len; 1298 to = from + len;
1299 1299
1300 ret = walk_page_buffers(handle, page_buffers(page), 1300 ret = walk_page_buffers(handle, page_buffers(page),
1301 from, to, NULL, ext4_journal_dirty_data); 1301 from, to, NULL, ext4_journal_dirty_data);
1302 1302
1303 if (ret == 0) { 1303 if (ret == 0) {
1304 /* 1304 /*
1305 * generic_write_end() will run mark_inode_dirty() if i_size 1305 * generic_write_end() will run mark_inode_dirty() if i_size
1306 * changes. So let's piggyback the i_disksize mark_inode_dirty 1306 * changes. So let's piggyback the i_disksize mark_inode_dirty
1307 * into that. 1307 * into that.
1308 */ 1308 */
1309 loff_t new_i_size; 1309 loff_t new_i_size;
1310 1310
1311 new_i_size = pos + copied; 1311 new_i_size = pos + copied;
1312 if (new_i_size > EXT4_I(inode)->i_disksize) 1312 if (new_i_size > EXT4_I(inode)->i_disksize)
1313 EXT4_I(inode)->i_disksize = new_i_size; 1313 EXT4_I(inode)->i_disksize = new_i_size;
1314 copied = ext4_generic_write_end(file, mapping, pos, len, copied, 1314 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1315 page, fsdata); 1315 page, fsdata);
1316 if (copied < 0) 1316 copied = ret2;
1317 ret = copied; 1317 if (ret2 < 0)
1318 ret = ret2;
1318 } 1319 }
1319 ret2 = ext4_journal_stop(handle); 1320 ret2 = ext4_journal_stop(handle);
1320 if (!ret) 1321 if (!ret)
1321 ret = ret2; 1322 ret = ret2;
1322 unlock_page(page); 1323 unlock_page(page);
1323 page_cache_release(page); 1324 page_cache_release(page);
1324 1325
1325 return ret ? ret : copied; 1326 return ret ? ret : copied;
1326 } 1327 }
1327 1328
1328 static int ext4_writeback_write_end(struct file *file, 1329 static int ext4_writeback_write_end(struct file *file,
1329 struct address_space *mapping, 1330 struct address_space *mapping,
1330 loff_t pos, unsigned len, unsigned copied, 1331 loff_t pos, unsigned len, unsigned copied,
1331 struct page *page, void *fsdata) 1332 struct page *page, void *fsdata)
1332 { 1333 {
1333 handle_t *handle = ext4_journal_current_handle(); 1334 handle_t *handle = ext4_journal_current_handle();
1334 struct inode *inode = file->f_mapping->host; 1335 struct inode *inode = file->f_mapping->host;
1335 int ret = 0, ret2; 1336 int ret = 0, ret2;
1336 loff_t new_i_size; 1337 loff_t new_i_size;
1337 1338
1338 new_i_size = pos + copied; 1339 new_i_size = pos + copied;
1339 if (new_i_size > EXT4_I(inode)->i_disksize) 1340 if (new_i_size > EXT4_I(inode)->i_disksize)
1340 EXT4_I(inode)->i_disksize = new_i_size; 1341 EXT4_I(inode)->i_disksize = new_i_size;
1341 1342
1342 copied = ext4_generic_write_end(file, mapping, pos, len, copied, 1343 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1343 page, fsdata); 1344 page, fsdata);
1344 if (copied < 0) 1345 copied = ret2;
1345 ret = copied; 1346 if (ret2 < 0)
1347 ret = ret2;
1346 1348
1347 ret2 = ext4_journal_stop(handle); 1349 ret2 = ext4_journal_stop(handle);
1348 if (!ret) 1350 if (!ret)
1349 ret = ret2; 1351 ret = ret2;
1350 unlock_page(page); 1352 unlock_page(page);
1351 page_cache_release(page); 1353 page_cache_release(page);
1352 1354
1353 return ret ? ret : copied; 1355 return ret ? ret : copied;
1354 } 1356 }
1355 1357
1356 static int ext4_journalled_write_end(struct file *file, 1358 static int ext4_journalled_write_end(struct file *file,
1357 struct address_space *mapping, 1359 struct address_space *mapping,
1358 loff_t pos, unsigned len, unsigned copied, 1360 loff_t pos, unsigned len, unsigned copied,
1359 struct page *page, void *fsdata) 1361 struct page *page, void *fsdata)
1360 { 1362 {
1361 handle_t *handle = ext4_journal_current_handle(); 1363 handle_t *handle = ext4_journal_current_handle();
1362 struct inode *inode = mapping->host; 1364 struct inode *inode = mapping->host;
1363 int ret = 0, ret2; 1365 int ret = 0, ret2;
1364 int partial = 0; 1366 int partial = 0;
1365 unsigned from, to; 1367 unsigned from, to;
1366 1368
1367 from = pos & (PAGE_CACHE_SIZE - 1); 1369 from = pos & (PAGE_CACHE_SIZE - 1);
1368 to = from + len; 1370 to = from + len;
1369 1371
1370 if (copied < len) { 1372 if (copied < len) {
1371 if (!PageUptodate(page)) 1373 if (!PageUptodate(page))
1372 copied = 0; 1374 copied = 0;
1373 page_zero_new_buffers(page, from+copied, to); 1375 page_zero_new_buffers(page, from+copied, to);
1374 } 1376 }
1375 1377
1376 ret = walk_page_buffers(handle, page_buffers(page), from, 1378 ret = walk_page_buffers(handle, page_buffers(page), from,
1377 to, &partial, write_end_fn); 1379 to, &partial, write_end_fn);
1378 if (!partial) 1380 if (!partial)
1379 SetPageUptodate(page); 1381 SetPageUptodate(page);
1380 if (pos+copied > inode->i_size) 1382 if (pos+copied > inode->i_size)
1381 i_size_write(inode, pos+copied); 1383 i_size_write(inode, pos+copied);
1382 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1384 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1383 if (inode->i_size > EXT4_I(inode)->i_disksize) { 1385 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1384 EXT4_I(inode)->i_disksize = inode->i_size; 1386 EXT4_I(inode)->i_disksize = inode->i_size;
1385 ret2 = ext4_mark_inode_dirty(handle, inode); 1387 ret2 = ext4_mark_inode_dirty(handle, inode);
1386 if (!ret) 1388 if (!ret)
1387 ret = ret2; 1389 ret = ret2;
1388 } 1390 }
1389 1391
1390 ret2 = ext4_journal_stop(handle); 1392 ret2 = ext4_journal_stop(handle);
1391 if (!ret) 1393 if (!ret)
1392 ret = ret2; 1394 ret = ret2;
1393 unlock_page(page); 1395 unlock_page(page);
1394 page_cache_release(page); 1396 page_cache_release(page);
1395 1397
1396 return ret ? ret : copied; 1398 return ret ? ret : copied;
1397 } 1399 }
1398 1400
1399 /* 1401 /*
1400 * bmap() is special. It gets used by applications such as lilo and by 1402 * bmap() is special. It gets used by applications such as lilo and by
1401 * the swapper to find the on-disk block of a specific piece of data. 1403 * the swapper to find the on-disk block of a specific piece of data.
1402 * 1404 *
1403 * Naturally, this is dangerous if the block concerned is still in the 1405 * Naturally, this is dangerous if the block concerned is still in the
1404 * journal. If somebody makes a swapfile on an ext4 data-journaling 1406 * journal. If somebody makes a swapfile on an ext4 data-journaling
1405 * filesystem and enables swap, then they may get a nasty shock when the 1407 * filesystem and enables swap, then they may get a nasty shock when the
1406 * data getting swapped to that swapfile suddenly gets overwritten by 1408 * data getting swapped to that swapfile suddenly gets overwritten by
1407 * the original zero's written out previously to the journal and 1409 * the original zero's written out previously to the journal and
1408 * awaiting writeback in the kernel's buffer cache. 1410 * awaiting writeback in the kernel's buffer cache.
1409 * 1411 *
1410 * So, if we see any bmap calls here on a modified, data-journaled file, 1412 * So, if we see any bmap calls here on a modified, data-journaled file,
1411 * take extra steps to flush any blocks which might be in the cache. 1413 * take extra steps to flush any blocks which might be in the cache.
1412 */ 1414 */
1413 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 1415 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1414 { 1416 {
1415 struct inode *inode = mapping->host; 1417 struct inode *inode = mapping->host;
1416 journal_t *journal; 1418 journal_t *journal;
1417 int err; 1419 int err;
1418 1420
1419 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) { 1421 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1420 /* 1422 /*
1421 * This is a REALLY heavyweight approach, but the use of 1423 * This is a REALLY heavyweight approach, but the use of
1422 * bmap on dirty files is expected to be extremely rare: 1424 * bmap on dirty files is expected to be extremely rare:
1423 * only if we run lilo or swapon on a freshly made file 1425 * only if we run lilo or swapon on a freshly made file
1424 * do we expect this to happen. 1426 * do we expect this to happen.
1425 * 1427 *
1426 * (bmap requires CAP_SYS_RAWIO so this does not 1428 * (bmap requires CAP_SYS_RAWIO so this does not
1427 * represent an unprivileged user DOS attack --- we'd be 1429 * represent an unprivileged user DOS attack --- we'd be
1428 * in trouble if mortal users could trigger this path at 1430 * in trouble if mortal users could trigger this path at
1429 * will.) 1431 * will.)
1430 * 1432 *
1431 * NB. EXT4_STATE_JDATA is not set on files other than 1433 * NB. EXT4_STATE_JDATA is not set on files other than
1432 * regular files. If somebody wants to bmap a directory 1434 * regular files. If somebody wants to bmap a directory
1433 * or symlink and gets confused because the buffer 1435 * or symlink and gets confused because the buffer
1434 * hasn't yet been flushed to disk, they deserve 1436 * hasn't yet been flushed to disk, they deserve
1435 * everything they get. 1437 * everything they get.
1436 */ 1438 */
1437 1439
1438 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA; 1440 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1439 journal = EXT4_JOURNAL(inode); 1441 journal = EXT4_JOURNAL(inode);
1440 jbd2_journal_lock_updates(journal); 1442 jbd2_journal_lock_updates(journal);
1441 err = jbd2_journal_flush(journal); 1443 err = jbd2_journal_flush(journal);
1442 jbd2_journal_unlock_updates(journal); 1444 jbd2_journal_unlock_updates(journal);
1443 1445
1444 if (err) 1446 if (err)
1445 return 0; 1447 return 0;
1446 } 1448 }
1447 1449
1448 return generic_block_bmap(mapping,block,ext4_get_block); 1450 return generic_block_bmap(mapping,block,ext4_get_block);
1449 } 1451 }
1450 1452
1451 static int bget_one(handle_t *handle, struct buffer_head *bh) 1453 static int bget_one(handle_t *handle, struct buffer_head *bh)
1452 { 1454 {
1453 get_bh(bh); 1455 get_bh(bh);
1454 return 0; 1456 return 0;
1455 } 1457 }
1456 1458
1457 static int bput_one(handle_t *handle, struct buffer_head *bh) 1459 static int bput_one(handle_t *handle, struct buffer_head *bh)
1458 { 1460 {
1459 put_bh(bh); 1461 put_bh(bh);
1460 return 0; 1462 return 0;
1461 } 1463 }
1462 1464
1463 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh) 1465 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1464 { 1466 {
1465 if (buffer_mapped(bh)) 1467 if (buffer_mapped(bh))
1466 return ext4_journal_dirty_data(handle, bh); 1468 return ext4_journal_dirty_data(handle, bh);
1467 return 0; 1469 return 0;
1468 } 1470 }
1469 1471
1470 /* 1472 /*
1471 * Note that we always start a transaction even if we're not journalling 1473 * Note that we always start a transaction even if we're not journalling
1472 * data. This is to preserve ordering: any hole instantiation within 1474 * data. This is to preserve ordering: any hole instantiation within
1473 * __block_write_full_page -> ext4_get_block() should be journalled 1475 * __block_write_full_page -> ext4_get_block() should be journalled
1474 * along with the data so we don't crash and then get metadata which 1476 * along with the data so we don't crash and then get metadata which
1475 * refers to old data. 1477 * refers to old data.
1476 * 1478 *
1477 * In all journalling modes block_write_full_page() will start the I/O. 1479 * In all journalling modes block_write_full_page() will start the I/O.
1478 * 1480 *
1479 * Problem: 1481 * Problem:
1480 * 1482 *
1481 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1483 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1482 * ext4_writepage() 1484 * ext4_writepage()
1483 * 1485 *
1484 * Similar for: 1486 * Similar for:
1485 * 1487 *
1486 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ... 1488 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1487 * 1489 *
1488 * Same applies to ext4_get_block(). We will deadlock on various things like 1490 * Same applies to ext4_get_block(). We will deadlock on various things like
1489 * lock_journal and i_data_sem 1491 * lock_journal and i_data_sem
1490 * 1492 *
1491 * Setting PF_MEMALLOC here doesn't work - too many internal memory 1493 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1492 * allocations fail. 1494 * allocations fail.
1493 * 1495 *
1494 * 16May01: If we're reentered then journal_current_handle() will be 1496 * 16May01: If we're reentered then journal_current_handle() will be
1495 * non-zero. We simply *return*. 1497 * non-zero. We simply *return*.
1496 * 1498 *
1497 * 1 July 2001: @@@ FIXME: 1499 * 1 July 2001: @@@ FIXME:
1498 * In journalled data mode, a data buffer may be metadata against the 1500 * In journalled data mode, a data buffer may be metadata against the
1499 * current transaction. But the same file is part of a shared mapping 1501 * current transaction. But the same file is part of a shared mapping
1500 * and someone does a writepage() on it. 1502 * and someone does a writepage() on it.
1501 * 1503 *
1502 * We will move the buffer onto the async_data list, but *after* it has 1504 * We will move the buffer onto the async_data list, but *after* it has
1503 * been dirtied. So there's a small window where we have dirty data on 1505 * been dirtied. So there's a small window where we have dirty data on
1504 * BJ_Metadata. 1506 * BJ_Metadata.
1505 * 1507 *
1506 * Note that this only applies to the last partial page in the file. The 1508 * Note that this only applies to the last partial page in the file. The
1507 * bit which block_write_full_page() uses prepare/commit for. (That's 1509 * bit which block_write_full_page() uses prepare/commit for. (That's
1508 * broken code anyway: it's wrong for msync()). 1510 * broken code anyway: it's wrong for msync()).
1509 * 1511 *
1510 * It's a rare case: affects the final partial page, for journalled data 1512 * It's a rare case: affects the final partial page, for journalled data
1511 * where the file is subject to bith write() and writepage() in the same 1513 * where the file is subject to bith write() and writepage() in the same
1512 * transction. To fix it we'll need a custom block_write_full_page(). 1514 * transction. To fix it we'll need a custom block_write_full_page().
1513 * We'll probably need that anyway for journalling writepage() output. 1515 * We'll probably need that anyway for journalling writepage() output.
1514 * 1516 *
1515 * We don't honour synchronous mounts for writepage(). That would be 1517 * We don't honour synchronous mounts for writepage(). That would be
1516 * disastrous. Any write() or metadata operation will sync the fs for 1518 * disastrous. Any write() or metadata operation will sync the fs for
1517 * us. 1519 * us.
1518 * 1520 *
1519 * AKPM2: if all the page's buffers are mapped to disk and !data=journal, 1521 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1520 * we don't need to open a transaction here. 1522 * we don't need to open a transaction here.
1521 */ 1523 */
1522 static int ext4_ordered_writepage(struct page *page, 1524 static int ext4_ordered_writepage(struct page *page,
1523 struct writeback_control *wbc) 1525 struct writeback_control *wbc)
1524 { 1526 {
1525 struct inode *inode = page->mapping->host; 1527 struct inode *inode = page->mapping->host;
1526 struct buffer_head *page_bufs; 1528 struct buffer_head *page_bufs;
1527 handle_t *handle = NULL; 1529 handle_t *handle = NULL;
1528 int ret = 0; 1530 int ret = 0;
1529 int err; 1531 int err;
1530 1532
1531 J_ASSERT(PageLocked(page)); 1533 J_ASSERT(PageLocked(page));
1532 1534
1533 /* 1535 /*
1534 * We give up here if we're reentered, because it might be for a 1536 * We give up here if we're reentered, because it might be for a
1535 * different filesystem. 1537 * different filesystem.
1536 */ 1538 */
1537 if (ext4_journal_current_handle()) 1539 if (ext4_journal_current_handle())
1538 goto out_fail; 1540 goto out_fail;
1539 1541
1540 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1542 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1541 1543
1542 if (IS_ERR(handle)) { 1544 if (IS_ERR(handle)) {
1543 ret = PTR_ERR(handle); 1545 ret = PTR_ERR(handle);
1544 goto out_fail; 1546 goto out_fail;
1545 } 1547 }
1546 1548
1547 if (!page_has_buffers(page)) { 1549 if (!page_has_buffers(page)) {
1548 create_empty_buffers(page, inode->i_sb->s_blocksize, 1550 create_empty_buffers(page, inode->i_sb->s_blocksize,
1549 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1551 (1 << BH_Dirty)|(1 << BH_Uptodate));
1550 } 1552 }
1551 page_bufs = page_buffers(page); 1553 page_bufs = page_buffers(page);
1552 walk_page_buffers(handle, page_bufs, 0, 1554 walk_page_buffers(handle, page_bufs, 0,
1553 PAGE_CACHE_SIZE, NULL, bget_one); 1555 PAGE_CACHE_SIZE, NULL, bget_one);
1554 1556
1555 ret = block_write_full_page(page, ext4_get_block, wbc); 1557 ret = block_write_full_page(page, ext4_get_block, wbc);
1556 1558
1557 /* 1559 /*
1558 * The page can become unlocked at any point now, and 1560 * The page can become unlocked at any point now, and
1559 * truncate can then come in and change things. So we 1561 * truncate can then come in and change things. So we
1560 * can't touch *page from now on. But *page_bufs is 1562 * can't touch *page from now on. But *page_bufs is
1561 * safe due to elevated refcount. 1563 * safe due to elevated refcount.
1562 */ 1564 */
1563 1565
1564 /* 1566 /*
1565 * And attach them to the current transaction. But only if 1567 * And attach them to the current transaction. But only if
1566 * block_write_full_page() succeeded. Otherwise they are unmapped, 1568 * block_write_full_page() succeeded. Otherwise they are unmapped,
1567 * and generally junk. 1569 * and generally junk.
1568 */ 1570 */
1569 if (ret == 0) { 1571 if (ret == 0) {
1570 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, 1572 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1571 NULL, jbd2_journal_dirty_data_fn); 1573 NULL, jbd2_journal_dirty_data_fn);
1572 if (!ret) 1574 if (!ret)
1573 ret = err; 1575 ret = err;
1574 } 1576 }
1575 walk_page_buffers(handle, page_bufs, 0, 1577 walk_page_buffers(handle, page_bufs, 0,
1576 PAGE_CACHE_SIZE, NULL, bput_one); 1578 PAGE_CACHE_SIZE, NULL, bput_one);
1577 err = ext4_journal_stop(handle); 1579 err = ext4_journal_stop(handle);
1578 if (!ret) 1580 if (!ret)
1579 ret = err; 1581 ret = err;
1580 return ret; 1582 return ret;
1581 1583
1582 out_fail: 1584 out_fail:
1583 redirty_page_for_writepage(wbc, page); 1585 redirty_page_for_writepage(wbc, page);
1584 unlock_page(page); 1586 unlock_page(page);
1585 return ret; 1587 return ret;
1586 } 1588 }
1587 1589
1588 static int ext4_writeback_writepage(struct page *page, 1590 static int ext4_writeback_writepage(struct page *page,
1589 struct writeback_control *wbc) 1591 struct writeback_control *wbc)
1590 { 1592 {
1591 struct inode *inode = page->mapping->host; 1593 struct inode *inode = page->mapping->host;
1592 handle_t *handle = NULL; 1594 handle_t *handle = NULL;
1593 int ret = 0; 1595 int ret = 0;
1594 int err; 1596 int err;
1595 1597
1596 if (ext4_journal_current_handle()) 1598 if (ext4_journal_current_handle())
1597 goto out_fail; 1599 goto out_fail;
1598 1600
1599 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1601 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1600 if (IS_ERR(handle)) { 1602 if (IS_ERR(handle)) {
1601 ret = PTR_ERR(handle); 1603 ret = PTR_ERR(handle);
1602 goto out_fail; 1604 goto out_fail;
1603 } 1605 }
1604 1606
1605 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode)) 1607 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1606 ret = nobh_writepage(page, ext4_get_block, wbc); 1608 ret = nobh_writepage(page, ext4_get_block, wbc);
1607 else 1609 else
1608 ret = block_write_full_page(page, ext4_get_block, wbc); 1610 ret = block_write_full_page(page, ext4_get_block, wbc);
1609 1611
1610 err = ext4_journal_stop(handle); 1612 err = ext4_journal_stop(handle);
1611 if (!ret) 1613 if (!ret)
1612 ret = err; 1614 ret = err;
1613 return ret; 1615 return ret;
1614 1616
1615 out_fail: 1617 out_fail:
1616 redirty_page_for_writepage(wbc, page); 1618 redirty_page_for_writepage(wbc, page);
1617 unlock_page(page); 1619 unlock_page(page);
1618 return ret; 1620 return ret;
1619 } 1621 }
1620 1622
1621 static int ext4_journalled_writepage(struct page *page, 1623 static int ext4_journalled_writepage(struct page *page,
1622 struct writeback_control *wbc) 1624 struct writeback_control *wbc)
1623 { 1625 {
1624 struct inode *inode = page->mapping->host; 1626 struct inode *inode = page->mapping->host;
1625 handle_t *handle = NULL; 1627 handle_t *handle = NULL;
1626 int ret = 0; 1628 int ret = 0;
1627 int err; 1629 int err;
1628 1630
1629 if (ext4_journal_current_handle()) 1631 if (ext4_journal_current_handle())
1630 goto no_write; 1632 goto no_write;
1631 1633
1632 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 1634 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1633 if (IS_ERR(handle)) { 1635 if (IS_ERR(handle)) {
1634 ret = PTR_ERR(handle); 1636 ret = PTR_ERR(handle);
1635 goto no_write; 1637 goto no_write;
1636 } 1638 }
1637 1639
1638 if (!page_has_buffers(page) || PageChecked(page)) { 1640 if (!page_has_buffers(page) || PageChecked(page)) {
1639 /* 1641 /*
1640 * It's mmapped pagecache. Add buffers and journal it. There 1642 * It's mmapped pagecache. Add buffers and journal it. There
1641 * doesn't seem much point in redirtying the page here. 1643 * doesn't seem much point in redirtying the page here.
1642 */ 1644 */
1643 ClearPageChecked(page); 1645 ClearPageChecked(page);
1644 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, 1646 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1645 ext4_get_block); 1647 ext4_get_block);
1646 if (ret != 0) { 1648 if (ret != 0) {
1647 ext4_journal_stop(handle); 1649 ext4_journal_stop(handle);
1648 goto out_unlock; 1650 goto out_unlock;
1649 } 1651 }
1650 ret = walk_page_buffers(handle, page_buffers(page), 0, 1652 ret = walk_page_buffers(handle, page_buffers(page), 0,
1651 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access); 1653 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1652 1654
1653 err = walk_page_buffers(handle, page_buffers(page), 0, 1655 err = walk_page_buffers(handle, page_buffers(page), 0,
1654 PAGE_CACHE_SIZE, NULL, write_end_fn); 1656 PAGE_CACHE_SIZE, NULL, write_end_fn);
1655 if (ret == 0) 1657 if (ret == 0)
1656 ret = err; 1658 ret = err;
1657 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA; 1659 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1658 unlock_page(page); 1660 unlock_page(page);
1659 } else { 1661 } else {
1660 /* 1662 /*
1661 * It may be a page full of checkpoint-mode buffers. We don't 1663 * It may be a page full of checkpoint-mode buffers. We don't
1662 * really know unless we go poke around in the buffer_heads. 1664 * really know unless we go poke around in the buffer_heads.
1663 * But block_write_full_page will do the right thing. 1665 * But block_write_full_page will do the right thing.
1664 */ 1666 */
1665 ret = block_write_full_page(page, ext4_get_block, wbc); 1667 ret = block_write_full_page(page, ext4_get_block, wbc);
1666 } 1668 }
1667 err = ext4_journal_stop(handle); 1669 err = ext4_journal_stop(handle);
1668 if (!ret) 1670 if (!ret)
1669 ret = err; 1671 ret = err;
1670 out: 1672 out:
1671 return ret; 1673 return ret;
1672 1674
1673 no_write: 1675 no_write:
1674 redirty_page_for_writepage(wbc, page); 1676 redirty_page_for_writepage(wbc, page);
1675 out_unlock: 1677 out_unlock:
1676 unlock_page(page); 1678 unlock_page(page);
1677 goto out; 1679 goto out;
1678 } 1680 }
1679 1681
1680 static int ext4_readpage(struct file *file, struct page *page) 1682 static int ext4_readpage(struct file *file, struct page *page)
1681 { 1683 {
1682 return mpage_readpage(page, ext4_get_block); 1684 return mpage_readpage(page, ext4_get_block);
1683 } 1685 }
1684 1686
1685 static int 1687 static int
1686 ext4_readpages(struct file *file, struct address_space *mapping, 1688 ext4_readpages(struct file *file, struct address_space *mapping,
1687 struct list_head *pages, unsigned nr_pages) 1689 struct list_head *pages, unsigned nr_pages)
1688 { 1690 {
1689 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 1691 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1690 } 1692 }
1691 1693
1692 static void ext4_invalidatepage(struct page *page, unsigned long offset) 1694 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1693 { 1695 {
1694 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 1696 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1695 1697
1696 /* 1698 /*
1697 * If it's a full truncate we just forget about the pending dirtying 1699 * If it's a full truncate we just forget about the pending dirtying
1698 */ 1700 */
1699 if (offset == 0) 1701 if (offset == 0)
1700 ClearPageChecked(page); 1702 ClearPageChecked(page);
1701 1703
1702 jbd2_journal_invalidatepage(journal, page, offset); 1704 jbd2_journal_invalidatepage(journal, page, offset);
1703 } 1705 }
1704 1706
1705 static int ext4_releasepage(struct page *page, gfp_t wait) 1707 static int ext4_releasepage(struct page *page, gfp_t wait)
1706 { 1708 {
1707 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 1709 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1708 1710
1709 WARN_ON(PageChecked(page)); 1711 WARN_ON(PageChecked(page));
1710 if (!page_has_buffers(page)) 1712 if (!page_has_buffers(page))
1711 return 0; 1713 return 0;
1712 return jbd2_journal_try_to_free_buffers(journal, page, wait); 1714 return jbd2_journal_try_to_free_buffers(journal, page, wait);
1713 } 1715 }
1714 1716
1715 /* 1717 /*
1716 * If the O_DIRECT write will extend the file then add this inode to the 1718 * If the O_DIRECT write will extend the file then add this inode to the
1717 * orphan list. So recovery will truncate it back to the original size 1719 * orphan list. So recovery will truncate it back to the original size
1718 * if the machine crashes during the write. 1720 * if the machine crashes during the write.
1719 * 1721 *
1720 * If the O_DIRECT write is intantiating holes inside i_size and the machine 1722 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1721 * crashes then stale disk data _may_ be exposed inside the file. But current 1723 * crashes then stale disk data _may_ be exposed inside the file. But current
1722 * VFS code falls back into buffered path in that case so we are safe. 1724 * VFS code falls back into buffered path in that case so we are safe.
1723 */ 1725 */
1724 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 1726 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1725 const struct iovec *iov, loff_t offset, 1727 const struct iovec *iov, loff_t offset,
1726 unsigned long nr_segs) 1728 unsigned long nr_segs)
1727 { 1729 {
1728 struct file *file = iocb->ki_filp; 1730 struct file *file = iocb->ki_filp;
1729 struct inode *inode = file->f_mapping->host; 1731 struct inode *inode = file->f_mapping->host;
1730 struct ext4_inode_info *ei = EXT4_I(inode); 1732 struct ext4_inode_info *ei = EXT4_I(inode);
1731 handle_t *handle; 1733 handle_t *handle;
1732 ssize_t ret; 1734 ssize_t ret;
1733 int orphan = 0; 1735 int orphan = 0;
1734 size_t count = iov_length(iov, nr_segs); 1736 size_t count = iov_length(iov, nr_segs);
1735 1737
1736 if (rw == WRITE) { 1738 if (rw == WRITE) {
1737 loff_t final_size = offset + count; 1739 loff_t final_size = offset + count;
1738 1740
1739 if (final_size > inode->i_size) { 1741 if (final_size > inode->i_size) {
1740 /* Credits for sb + inode write */ 1742 /* Credits for sb + inode write */
1741 handle = ext4_journal_start(inode, 2); 1743 handle = ext4_journal_start(inode, 2);
1742 if (IS_ERR(handle)) { 1744 if (IS_ERR(handle)) {
1743 ret = PTR_ERR(handle); 1745 ret = PTR_ERR(handle);
1744 goto out; 1746 goto out;
1745 } 1747 }
1746 ret = ext4_orphan_add(handle, inode); 1748 ret = ext4_orphan_add(handle, inode);
1747 if (ret) { 1749 if (ret) {
1748 ext4_journal_stop(handle); 1750 ext4_journal_stop(handle);
1749 goto out; 1751 goto out;
1750 } 1752 }
1751 orphan = 1; 1753 orphan = 1;
1752 ei->i_disksize = inode->i_size; 1754 ei->i_disksize = inode->i_size;
1753 ext4_journal_stop(handle); 1755 ext4_journal_stop(handle);
1754 } 1756 }
1755 } 1757 }
1756 1758
1757 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 1759 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1758 offset, nr_segs, 1760 offset, nr_segs,
1759 ext4_get_block, NULL); 1761 ext4_get_block, NULL);
1760 1762
1761 if (orphan) { 1763 if (orphan) {
1762 int err; 1764 int err;
1763 1765
1764 /* Credits for sb + inode write */ 1766 /* Credits for sb + inode write */
1765 handle = ext4_journal_start(inode, 2); 1767 handle = ext4_journal_start(inode, 2);
1766 if (IS_ERR(handle)) { 1768 if (IS_ERR(handle)) {
1767 /* This is really bad luck. We've written the data 1769 /* This is really bad luck. We've written the data
1768 * but cannot extend i_size. Bail out and pretend 1770 * but cannot extend i_size. Bail out and pretend
1769 * the write failed... */ 1771 * the write failed... */
1770 ret = PTR_ERR(handle); 1772 ret = PTR_ERR(handle);
1771 goto out; 1773 goto out;
1772 } 1774 }
1773 if (inode->i_nlink) 1775 if (inode->i_nlink)
1774 ext4_orphan_del(handle, inode); 1776 ext4_orphan_del(handle, inode);
1775 if (ret > 0) { 1777 if (ret > 0) {
1776 loff_t end = offset + ret; 1778 loff_t end = offset + ret;
1777 if (end > inode->i_size) { 1779 if (end > inode->i_size) {
1778 ei->i_disksize = end; 1780 ei->i_disksize = end;
1779 i_size_write(inode, end); 1781 i_size_write(inode, end);
1780 /* 1782 /*
1781 * We're going to return a positive `ret' 1783 * We're going to return a positive `ret'
1782 * here due to non-zero-length I/O, so there's 1784 * here due to non-zero-length I/O, so there's
1783 * no way of reporting error returns from 1785 * no way of reporting error returns from
1784 * ext4_mark_inode_dirty() to userspace. So 1786 * ext4_mark_inode_dirty() to userspace. So
1785 * ignore it. 1787 * ignore it.
1786 */ 1788 */
1787 ext4_mark_inode_dirty(handle, inode); 1789 ext4_mark_inode_dirty(handle, inode);
1788 } 1790 }
1789 } 1791 }
1790 err = ext4_journal_stop(handle); 1792 err = ext4_journal_stop(handle);
1791 if (ret == 0) 1793 if (ret == 0)
1792 ret = err; 1794 ret = err;
1793 } 1795 }
1794 out: 1796 out:
1795 return ret; 1797 return ret;
1796 } 1798 }
1797 1799
1798 /* 1800 /*
1799 * Pages can be marked dirty completely asynchronously from ext4's journalling 1801 * Pages can be marked dirty completely asynchronously from ext4's journalling
1800 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 1802 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1801 * much here because ->set_page_dirty is called under VFS locks. The page is 1803 * much here because ->set_page_dirty is called under VFS locks. The page is
1802 * not necessarily locked. 1804 * not necessarily locked.
1803 * 1805 *
1804 * We cannot just dirty the page and leave attached buffers clean, because the 1806 * We cannot just dirty the page and leave attached buffers clean, because the
1805 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 1807 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1806 * or jbddirty because all the journalling code will explode. 1808 * or jbddirty because all the journalling code will explode.
1807 * 1809 *
1808 * So what we do is to mark the page "pending dirty" and next time writepage 1810 * So what we do is to mark the page "pending dirty" and next time writepage
1809 * is called, propagate that into the buffers appropriately. 1811 * is called, propagate that into the buffers appropriately.
1810 */ 1812 */
1811 static int ext4_journalled_set_page_dirty(struct page *page) 1813 static int ext4_journalled_set_page_dirty(struct page *page)
1812 { 1814 {
1813 SetPageChecked(page); 1815 SetPageChecked(page);
1814 return __set_page_dirty_nobuffers(page); 1816 return __set_page_dirty_nobuffers(page);
1815 } 1817 }
1816 1818
1817 static const struct address_space_operations ext4_ordered_aops = { 1819 static const struct address_space_operations ext4_ordered_aops = {
1818 .readpage = ext4_readpage, 1820 .readpage = ext4_readpage,
1819 .readpages = ext4_readpages, 1821 .readpages = ext4_readpages,
1820 .writepage = ext4_ordered_writepage, 1822 .writepage = ext4_ordered_writepage,
1821 .sync_page = block_sync_page, 1823 .sync_page = block_sync_page,
1822 .write_begin = ext4_write_begin, 1824 .write_begin = ext4_write_begin,
1823 .write_end = ext4_ordered_write_end, 1825 .write_end = ext4_ordered_write_end,
1824 .bmap = ext4_bmap, 1826 .bmap = ext4_bmap,
1825 .invalidatepage = ext4_invalidatepage, 1827 .invalidatepage = ext4_invalidatepage,
1826 .releasepage = ext4_releasepage, 1828 .releasepage = ext4_releasepage,
1827 .direct_IO = ext4_direct_IO, 1829 .direct_IO = ext4_direct_IO,
1828 .migratepage = buffer_migrate_page, 1830 .migratepage = buffer_migrate_page,
1829 }; 1831 };
1830 1832
1831 static const struct address_space_operations ext4_writeback_aops = { 1833 static const struct address_space_operations ext4_writeback_aops = {
1832 .readpage = ext4_readpage, 1834 .readpage = ext4_readpage,
1833 .readpages = ext4_readpages, 1835 .readpages = ext4_readpages,
1834 .writepage = ext4_writeback_writepage, 1836 .writepage = ext4_writeback_writepage,
1835 .sync_page = block_sync_page, 1837 .sync_page = block_sync_page,
1836 .write_begin = ext4_write_begin, 1838 .write_begin = ext4_write_begin,
1837 .write_end = ext4_writeback_write_end, 1839 .write_end = ext4_writeback_write_end,
1838 .bmap = ext4_bmap, 1840 .bmap = ext4_bmap,
1839 .invalidatepage = ext4_invalidatepage, 1841 .invalidatepage = ext4_invalidatepage,
1840 .releasepage = ext4_releasepage, 1842 .releasepage = ext4_releasepage,
1841 .direct_IO = ext4_direct_IO, 1843 .direct_IO = ext4_direct_IO,
1842 .migratepage = buffer_migrate_page, 1844 .migratepage = buffer_migrate_page,
1843 }; 1845 };
1844 1846
1845 static const struct address_space_operations ext4_journalled_aops = { 1847 static const struct address_space_operations ext4_journalled_aops = {
1846 .readpage = ext4_readpage, 1848 .readpage = ext4_readpage,
1847 .readpages = ext4_readpages, 1849 .readpages = ext4_readpages,
1848 .writepage = ext4_journalled_writepage, 1850 .writepage = ext4_journalled_writepage,
1849 .sync_page = block_sync_page, 1851 .sync_page = block_sync_page,
1850 .write_begin = ext4_write_begin, 1852 .write_begin = ext4_write_begin,
1851 .write_end = ext4_journalled_write_end, 1853 .write_end = ext4_journalled_write_end,
1852 .set_page_dirty = ext4_journalled_set_page_dirty, 1854 .set_page_dirty = ext4_journalled_set_page_dirty,
1853 .bmap = ext4_bmap, 1855 .bmap = ext4_bmap,
1854 .invalidatepage = ext4_invalidatepage, 1856 .invalidatepage = ext4_invalidatepage,
1855 .releasepage = ext4_releasepage, 1857 .releasepage = ext4_releasepage,
1856 }; 1858 };
1857 1859
1858 void ext4_set_aops(struct inode *inode) 1860 void ext4_set_aops(struct inode *inode)
1859 { 1861 {
1860 if (ext4_should_order_data(inode)) 1862 if (ext4_should_order_data(inode))
1861 inode->i_mapping->a_ops = &ext4_ordered_aops; 1863 inode->i_mapping->a_ops = &ext4_ordered_aops;
1862 else if (ext4_should_writeback_data(inode)) 1864 else if (ext4_should_writeback_data(inode))
1863 inode->i_mapping->a_ops = &ext4_writeback_aops; 1865 inode->i_mapping->a_ops = &ext4_writeback_aops;
1864 else 1866 else
1865 inode->i_mapping->a_ops = &ext4_journalled_aops; 1867 inode->i_mapping->a_ops = &ext4_journalled_aops;
1866 } 1868 }
1867 1869
1868 /* 1870 /*
1869 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 1871 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1870 * up to the end of the block which corresponds to `from'. 1872 * up to the end of the block which corresponds to `from'.
1871 * This required during truncate. We need to physically zero the tail end 1873 * This required during truncate. We need to physically zero the tail end
1872 * of that block so it doesn't yield old data if the file is later grown. 1874 * of that block so it doesn't yield old data if the file is later grown.
1873 */ 1875 */
1874 int ext4_block_truncate_page(handle_t *handle, struct page *page, 1876 int ext4_block_truncate_page(handle_t *handle, struct page *page,
1875 struct address_space *mapping, loff_t from) 1877 struct address_space *mapping, loff_t from)
1876 { 1878 {
1877 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 1879 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1878 unsigned offset = from & (PAGE_CACHE_SIZE-1); 1880 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1879 unsigned blocksize, length, pos; 1881 unsigned blocksize, length, pos;
1880 ext4_lblk_t iblock; 1882 ext4_lblk_t iblock;
1881 struct inode *inode = mapping->host; 1883 struct inode *inode = mapping->host;
1882 struct buffer_head *bh; 1884 struct buffer_head *bh;
1883 int err = 0; 1885 int err = 0;
1884 1886
1885 blocksize = inode->i_sb->s_blocksize; 1887 blocksize = inode->i_sb->s_blocksize;
1886 length = blocksize - (offset & (blocksize - 1)); 1888 length = blocksize - (offset & (blocksize - 1));
1887 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 1889 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1888 1890
1889 /* 1891 /*
1890 * For "nobh" option, we can only work if we don't need to 1892 * For "nobh" option, we can only work if we don't need to
1891 * read-in the page - otherwise we create buffers to do the IO. 1893 * read-in the page - otherwise we create buffers to do the IO.
1892 */ 1894 */
1893 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) && 1895 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1894 ext4_should_writeback_data(inode) && PageUptodate(page)) { 1896 ext4_should_writeback_data(inode) && PageUptodate(page)) {
1895 zero_user(page, offset, length); 1897 zero_user(page, offset, length);
1896 set_page_dirty(page); 1898 set_page_dirty(page);
1897 goto unlock; 1899 goto unlock;
1898 } 1900 }
1899 1901
1900 if (!page_has_buffers(page)) 1902 if (!page_has_buffers(page))
1901 create_empty_buffers(page, blocksize, 0); 1903 create_empty_buffers(page, blocksize, 0);
1902 1904
1903 /* Find the buffer that contains "offset" */ 1905 /* Find the buffer that contains "offset" */
1904 bh = page_buffers(page); 1906 bh = page_buffers(page);
1905 pos = blocksize; 1907 pos = blocksize;
1906 while (offset >= pos) { 1908 while (offset >= pos) {
1907 bh = bh->b_this_page; 1909 bh = bh->b_this_page;
1908 iblock++; 1910 iblock++;
1909 pos += blocksize; 1911 pos += blocksize;
1910 } 1912 }
1911 1913
1912 err = 0; 1914 err = 0;
1913 if (buffer_freed(bh)) { 1915 if (buffer_freed(bh)) {
1914 BUFFER_TRACE(bh, "freed: skip"); 1916 BUFFER_TRACE(bh, "freed: skip");
1915 goto unlock; 1917 goto unlock;
1916 } 1918 }
1917 1919
1918 if (!buffer_mapped(bh)) { 1920 if (!buffer_mapped(bh)) {
1919 BUFFER_TRACE(bh, "unmapped"); 1921 BUFFER_TRACE(bh, "unmapped");
1920 ext4_get_block(inode, iblock, bh, 0); 1922 ext4_get_block(inode, iblock, bh, 0);
1921 /* unmapped? It's a hole - nothing to do */ 1923 /* unmapped? It's a hole - nothing to do */
1922 if (!buffer_mapped(bh)) { 1924 if (!buffer_mapped(bh)) {
1923 BUFFER_TRACE(bh, "still unmapped"); 1925 BUFFER_TRACE(bh, "still unmapped");
1924 goto unlock; 1926 goto unlock;
1925 } 1927 }
1926 } 1928 }
1927 1929
1928 /* Ok, it's mapped. Make sure it's up-to-date */ 1930 /* Ok, it's mapped. Make sure it's up-to-date */
1929 if (PageUptodate(page)) 1931 if (PageUptodate(page))
1930 set_buffer_uptodate(bh); 1932 set_buffer_uptodate(bh);
1931 1933
1932 if (!buffer_uptodate(bh)) { 1934 if (!buffer_uptodate(bh)) {
1933 err = -EIO; 1935 err = -EIO;
1934 ll_rw_block(READ, 1, &bh); 1936 ll_rw_block(READ, 1, &bh);
1935 wait_on_buffer(bh); 1937 wait_on_buffer(bh);
1936 /* Uhhuh. Read error. Complain and punt. */ 1938 /* Uhhuh. Read error. Complain and punt. */
1937 if (!buffer_uptodate(bh)) 1939 if (!buffer_uptodate(bh))
1938 goto unlock; 1940 goto unlock;
1939 } 1941 }
1940 1942
1941 if (ext4_should_journal_data(inode)) { 1943 if (ext4_should_journal_data(inode)) {
1942 BUFFER_TRACE(bh, "get write access"); 1944 BUFFER_TRACE(bh, "get write access");
1943 err = ext4_journal_get_write_access(handle, bh); 1945 err = ext4_journal_get_write_access(handle, bh);
1944 if (err) 1946 if (err)
1945 goto unlock; 1947 goto unlock;
1946 } 1948 }
1947 1949
1948 zero_user(page, offset, length); 1950 zero_user(page, offset, length);
1949 1951
1950 BUFFER_TRACE(bh, "zeroed end of block"); 1952 BUFFER_TRACE(bh, "zeroed end of block");
1951 1953
1952 err = 0; 1954 err = 0;
1953 if (ext4_should_journal_data(inode)) { 1955 if (ext4_should_journal_data(inode)) {
1954 err = ext4_journal_dirty_metadata(handle, bh); 1956 err = ext4_journal_dirty_metadata(handle, bh);
1955 } else { 1957 } else {
1956 if (ext4_should_order_data(inode)) 1958 if (ext4_should_order_data(inode))
1957 err = ext4_journal_dirty_data(handle, bh); 1959 err = ext4_journal_dirty_data(handle, bh);
1958 mark_buffer_dirty(bh); 1960 mark_buffer_dirty(bh);
1959 } 1961 }
1960 1962
1961 unlock: 1963 unlock:
1962 unlock_page(page); 1964 unlock_page(page);
1963 page_cache_release(page); 1965 page_cache_release(page);
1964 return err; 1966 return err;
1965 } 1967 }
1966 1968
1967 /* 1969 /*
1968 * Probably it should be a library function... search for first non-zero word 1970 * Probably it should be a library function... search for first non-zero word
1969 * or memcmp with zero_page, whatever is better for particular architecture. 1971 * or memcmp with zero_page, whatever is better for particular architecture.
1970 * Linus? 1972 * Linus?
1971 */ 1973 */
1972 static inline int all_zeroes(__le32 *p, __le32 *q) 1974 static inline int all_zeroes(__le32 *p, __le32 *q)
1973 { 1975 {
1974 while (p < q) 1976 while (p < q)
1975 if (*p++) 1977 if (*p++)
1976 return 0; 1978 return 0;
1977 return 1; 1979 return 1;
1978 } 1980 }
1979 1981
1980 /** 1982 /**
1981 * ext4_find_shared - find the indirect blocks for partial truncation. 1983 * ext4_find_shared - find the indirect blocks for partial truncation.
1982 * @inode: inode in question 1984 * @inode: inode in question
1983 * @depth: depth of the affected branch 1985 * @depth: depth of the affected branch
1984 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 1986 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
1985 * @chain: place to store the pointers to partial indirect blocks 1987 * @chain: place to store the pointers to partial indirect blocks
1986 * @top: place to the (detached) top of branch 1988 * @top: place to the (detached) top of branch
1987 * 1989 *
1988 * This is a helper function used by ext4_truncate(). 1990 * This is a helper function used by ext4_truncate().
1989 * 1991 *
1990 * When we do truncate() we may have to clean the ends of several 1992 * When we do truncate() we may have to clean the ends of several
1991 * indirect blocks but leave the blocks themselves alive. Block is 1993 * indirect blocks but leave the blocks themselves alive. Block is
1992 * partially truncated if some data below the new i_size is refered 1994 * partially truncated if some data below the new i_size is refered
1993 * from it (and it is on the path to the first completely truncated 1995 * from it (and it is on the path to the first completely truncated
1994 * data block, indeed). We have to free the top of that path along 1996 * data block, indeed). We have to free the top of that path along
1995 * with everything to the right of the path. Since no allocation 1997 * with everything to the right of the path. Since no allocation
1996 * past the truncation point is possible until ext4_truncate() 1998 * past the truncation point is possible until ext4_truncate()
1997 * finishes, we may safely do the latter, but top of branch may 1999 * finishes, we may safely do the latter, but top of branch may
1998 * require special attention - pageout below the truncation point 2000 * require special attention - pageout below the truncation point
1999 * might try to populate it. 2001 * might try to populate it.
2000 * 2002 *
2001 * We atomically detach the top of branch from the tree, store the 2003 * We atomically detach the top of branch from the tree, store the
2002 * block number of its root in *@top, pointers to buffer_heads of 2004 * block number of its root in *@top, pointers to buffer_heads of
2003 * partially truncated blocks - in @chain[].bh and pointers to 2005 * partially truncated blocks - in @chain[].bh and pointers to
2004 * their last elements that should not be removed - in 2006 * their last elements that should not be removed - in
2005 * @chain[].p. Return value is the pointer to last filled element 2007 * @chain[].p. Return value is the pointer to last filled element
2006 * of @chain. 2008 * of @chain.
2007 * 2009 *
2008 * The work left to caller to do the actual freeing of subtrees: 2010 * The work left to caller to do the actual freeing of subtrees:
2009 * a) free the subtree starting from *@top 2011 * a) free the subtree starting from *@top
2010 * b) free the subtrees whose roots are stored in 2012 * b) free the subtrees whose roots are stored in
2011 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 2013 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2012 * c) free the subtrees growing from the inode past the @chain[0]. 2014 * c) free the subtrees growing from the inode past the @chain[0].
2013 * (no partially truncated stuff there). */ 2015 * (no partially truncated stuff there). */
2014 2016
2015 static Indirect *ext4_find_shared(struct inode *inode, int depth, 2017 static Indirect *ext4_find_shared(struct inode *inode, int depth,
2016 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top) 2018 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
2017 { 2019 {
2018 Indirect *partial, *p; 2020 Indirect *partial, *p;
2019 int k, err; 2021 int k, err;
2020 2022
2021 *top = 0; 2023 *top = 0;
2022 /* Make k index the deepest non-null offest + 1 */ 2024 /* Make k index the deepest non-null offest + 1 */
2023 for (k = depth; k > 1 && !offsets[k-1]; k--) 2025 for (k = depth; k > 1 && !offsets[k-1]; k--)
2024 ; 2026 ;
2025 partial = ext4_get_branch(inode, k, offsets, chain, &err); 2027 partial = ext4_get_branch(inode, k, offsets, chain, &err);
2026 /* Writer: pointers */ 2028 /* Writer: pointers */
2027 if (!partial) 2029 if (!partial)
2028 partial = chain + k-1; 2030 partial = chain + k-1;
2029 /* 2031 /*
2030 * If the branch acquired continuation since we've looked at it - 2032 * If the branch acquired continuation since we've looked at it -
2031 * fine, it should all survive and (new) top doesn't belong to us. 2033 * fine, it should all survive and (new) top doesn't belong to us.
2032 */ 2034 */
2033 if (!partial->key && *partial->p) 2035 if (!partial->key && *partial->p)
2034 /* Writer: end */ 2036 /* Writer: end */
2035 goto no_top; 2037 goto no_top;
2036 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) 2038 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2037 ; 2039 ;
2038 /* 2040 /*
2039 * OK, we've found the last block that must survive. The rest of our 2041 * OK, we've found the last block that must survive. The rest of our
2040 * branch should be detached before unlocking. However, if that rest 2042 * branch should be detached before unlocking. However, if that rest
2041 * of branch is all ours and does not grow immediately from the inode 2043 * of branch is all ours and does not grow immediately from the inode
2042 * it's easier to cheat and just decrement partial->p. 2044 * it's easier to cheat and just decrement partial->p.
2043 */ 2045 */
2044 if (p == chain + k - 1 && p > chain) { 2046 if (p == chain + k - 1 && p > chain) {
2045 p->p--; 2047 p->p--;
2046 } else { 2048 } else {
2047 *top = *p->p; 2049 *top = *p->p;
2048 /* Nope, don't do this in ext4. Must leave the tree intact */ 2050 /* Nope, don't do this in ext4. Must leave the tree intact */
2049 #if 0 2051 #if 0
2050 *p->p = 0; 2052 *p->p = 0;
2051 #endif 2053 #endif
2052 } 2054 }
2053 /* Writer: end */ 2055 /* Writer: end */
2054 2056
2055 while(partial > p) { 2057 while(partial > p) {
2056 brelse(partial->bh); 2058 brelse(partial->bh);
2057 partial--; 2059 partial--;
2058 } 2060 }
2059 no_top: 2061 no_top:
2060 return partial; 2062 return partial;
2061 } 2063 }
2062 2064
2063 /* 2065 /*
2064 * Zero a number of block pointers in either an inode or an indirect block. 2066 * Zero a number of block pointers in either an inode or an indirect block.
2065 * If we restart the transaction we must again get write access to the 2067 * If we restart the transaction we must again get write access to the
2066 * indirect block for further modification. 2068 * indirect block for further modification.
2067 * 2069 *
2068 * We release `count' blocks on disk, but (last - first) may be greater 2070 * We release `count' blocks on disk, but (last - first) may be greater
2069 * than `count' because there can be holes in there. 2071 * than `count' because there can be holes in there.
2070 */ 2072 */
2071 static void ext4_clear_blocks(handle_t *handle, struct inode *inode, 2073 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2072 struct buffer_head *bh, ext4_fsblk_t block_to_free, 2074 struct buffer_head *bh, ext4_fsblk_t block_to_free,
2073 unsigned long count, __le32 *first, __le32 *last) 2075 unsigned long count, __le32 *first, __le32 *last)
2074 { 2076 {
2075 __le32 *p; 2077 __le32 *p;
2076 if (try_to_extend_transaction(handle, inode)) { 2078 if (try_to_extend_transaction(handle, inode)) {
2077 if (bh) { 2079 if (bh) {
2078 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 2080 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2079 ext4_journal_dirty_metadata(handle, bh); 2081 ext4_journal_dirty_metadata(handle, bh);
2080 } 2082 }
2081 ext4_mark_inode_dirty(handle, inode); 2083 ext4_mark_inode_dirty(handle, inode);
2082 ext4_journal_test_restart(handle, inode); 2084 ext4_journal_test_restart(handle, inode);
2083 if (bh) { 2085 if (bh) {
2084 BUFFER_TRACE(bh, "retaking write access"); 2086 BUFFER_TRACE(bh, "retaking write access");
2085 ext4_journal_get_write_access(handle, bh); 2087 ext4_journal_get_write_access(handle, bh);
2086 } 2088 }
2087 } 2089 }
2088 2090
2089 /* 2091 /*
2090 * Any buffers which are on the journal will be in memory. We find 2092 * Any buffers which are on the journal will be in memory. We find
2091 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget() 2093 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2092 * on them. We've already detached each block from the file, so 2094 * on them. We've already detached each block from the file, so
2093 * bforget() in jbd2_journal_forget() should be safe. 2095 * bforget() in jbd2_journal_forget() should be safe.
2094 * 2096 *
2095 * AKPM: turn on bforget in jbd2_journal_forget()!!! 2097 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2096 */ 2098 */
2097 for (p = first; p < last; p++) { 2099 for (p = first; p < last; p++) {
2098 u32 nr = le32_to_cpu(*p); 2100 u32 nr = le32_to_cpu(*p);
2099 if (nr) { 2101 if (nr) {
2100 struct buffer_head *tbh; 2102 struct buffer_head *tbh;
2101 2103
2102 *p = 0; 2104 *p = 0;
2103 tbh = sb_find_get_block(inode->i_sb, nr); 2105 tbh = sb_find_get_block(inode->i_sb, nr);
2104 ext4_forget(handle, 0, inode, tbh, nr); 2106 ext4_forget(handle, 0, inode, tbh, nr);
2105 } 2107 }
2106 } 2108 }
2107 2109
2108 ext4_free_blocks(handle, inode, block_to_free, count, 0); 2110 ext4_free_blocks(handle, inode, block_to_free, count, 0);
2109 } 2111 }
2110 2112
2111 /** 2113 /**
2112 * ext4_free_data - free a list of data blocks 2114 * ext4_free_data - free a list of data blocks
2113 * @handle: handle for this transaction 2115 * @handle: handle for this transaction
2114 * @inode: inode we are dealing with 2116 * @inode: inode we are dealing with
2115 * @this_bh: indirect buffer_head which contains *@first and *@last 2117 * @this_bh: indirect buffer_head which contains *@first and *@last
2116 * @first: array of block numbers 2118 * @first: array of block numbers
2117 * @last: points immediately past the end of array 2119 * @last: points immediately past the end of array
2118 * 2120 *
2119 * We are freeing all blocks refered from that array (numbers are stored as 2121 * We are freeing all blocks refered from that array (numbers are stored as
2120 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 2122 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2121 * 2123 *
2122 * We accumulate contiguous runs of blocks to free. Conveniently, if these 2124 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2123 * blocks are contiguous then releasing them at one time will only affect one 2125 * blocks are contiguous then releasing them at one time will only affect one
2124 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 2126 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2125 * actually use a lot of journal space. 2127 * actually use a lot of journal space.
2126 * 2128 *
2127 * @this_bh will be %NULL if @first and @last point into the inode's direct 2129 * @this_bh will be %NULL if @first and @last point into the inode's direct
2128 * block pointers. 2130 * block pointers.
2129 */ 2131 */
2130 static void ext4_free_data(handle_t *handle, struct inode *inode, 2132 static void ext4_free_data(handle_t *handle, struct inode *inode,
2131 struct buffer_head *this_bh, 2133 struct buffer_head *this_bh,
2132 __le32 *first, __le32 *last) 2134 __le32 *first, __le32 *last)
2133 { 2135 {
2134 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 2136 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
2135 unsigned long count = 0; /* Number of blocks in the run */ 2137 unsigned long count = 0; /* Number of blocks in the run */
2136 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 2138 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2137 corresponding to 2139 corresponding to
2138 block_to_free */ 2140 block_to_free */
2139 ext4_fsblk_t nr; /* Current block # */ 2141 ext4_fsblk_t nr; /* Current block # */
2140 __le32 *p; /* Pointer into inode/ind 2142 __le32 *p; /* Pointer into inode/ind
2141 for current block */ 2143 for current block */
2142 int err; 2144 int err;
2143 2145
2144 if (this_bh) { /* For indirect block */ 2146 if (this_bh) { /* For indirect block */
2145 BUFFER_TRACE(this_bh, "get_write_access"); 2147 BUFFER_TRACE(this_bh, "get_write_access");
2146 err = ext4_journal_get_write_access(handle, this_bh); 2148 err = ext4_journal_get_write_access(handle, this_bh);
2147 /* Important: if we can't update the indirect pointers 2149 /* Important: if we can't update the indirect pointers
2148 * to the blocks, we can't free them. */ 2150 * to the blocks, we can't free them. */
2149 if (err) 2151 if (err)
2150 return; 2152 return;
2151 } 2153 }
2152 2154
2153 for (p = first; p < last; p++) { 2155 for (p = first; p < last; p++) {
2154 nr = le32_to_cpu(*p); 2156 nr = le32_to_cpu(*p);
2155 if (nr) { 2157 if (nr) {
2156 /* accumulate blocks to free if they're contiguous */ 2158 /* accumulate blocks to free if they're contiguous */
2157 if (count == 0) { 2159 if (count == 0) {
2158 block_to_free = nr; 2160 block_to_free = nr;
2159 block_to_free_p = p; 2161 block_to_free_p = p;
2160 count = 1; 2162 count = 1;
2161 } else if (nr == block_to_free + count) { 2163 } else if (nr == block_to_free + count) {
2162 count++; 2164 count++;
2163 } else { 2165 } else {
2164 ext4_clear_blocks(handle, inode, this_bh, 2166 ext4_clear_blocks(handle, inode, this_bh,
2165 block_to_free, 2167 block_to_free,
2166 count, block_to_free_p, p); 2168 count, block_to_free_p, p);
2167 block_to_free = nr; 2169 block_to_free = nr;
2168 block_to_free_p = p; 2170 block_to_free_p = p;
2169 count = 1; 2171 count = 1;
2170 } 2172 }
2171 } 2173 }
2172 } 2174 }
2173 2175
2174 if (count > 0) 2176 if (count > 0)
2175 ext4_clear_blocks(handle, inode, this_bh, block_to_free, 2177 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2176 count, block_to_free_p, p); 2178 count, block_to_free_p, p);
2177 2179
2178 if (this_bh) { 2180 if (this_bh) {
2179 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata"); 2181 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2180 ext4_journal_dirty_metadata(handle, this_bh); 2182 ext4_journal_dirty_metadata(handle, this_bh);
2181 } 2183 }
2182 } 2184 }
2183 2185
2184 /** 2186 /**
2185 * ext4_free_branches - free an array of branches 2187 * ext4_free_branches - free an array of branches
2186 * @handle: JBD handle for this transaction 2188 * @handle: JBD handle for this transaction
2187 * @inode: inode we are dealing with 2189 * @inode: inode we are dealing with
2188 * @parent_bh: the buffer_head which contains *@first and *@last 2190 * @parent_bh: the buffer_head which contains *@first and *@last
2189 * @first: array of block numbers 2191 * @first: array of block numbers
2190 * @last: pointer immediately past the end of array 2192 * @last: pointer immediately past the end of array
2191 * @depth: depth of the branches to free 2193 * @depth: depth of the branches to free
2192 * 2194 *
2193 * We are freeing all blocks refered from these branches (numbers are 2195 * We are freeing all blocks refered from these branches (numbers are
2194 * stored as little-endian 32-bit) and updating @inode->i_blocks 2196 * stored as little-endian 32-bit) and updating @inode->i_blocks
2195 * appropriately. 2197 * appropriately.
2196 */ 2198 */
2197 static void ext4_free_branches(handle_t *handle, struct inode *inode, 2199 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2198 struct buffer_head *parent_bh, 2200 struct buffer_head *parent_bh,
2199 __le32 *first, __le32 *last, int depth) 2201 __le32 *first, __le32 *last, int depth)
2200 { 2202 {
2201 ext4_fsblk_t nr; 2203 ext4_fsblk_t nr;
2202 __le32 *p; 2204 __le32 *p;
2203 2205
2204 if (is_handle_aborted(handle)) 2206 if (is_handle_aborted(handle))
2205 return; 2207 return;
2206 2208
2207 if (depth--) { 2209 if (depth--) {
2208 struct buffer_head *bh; 2210 struct buffer_head *bh;
2209 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 2211 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2210 p = last; 2212 p = last;
2211 while (--p >= first) { 2213 while (--p >= first) {
2212 nr = le32_to_cpu(*p); 2214 nr = le32_to_cpu(*p);
2213 if (!nr) 2215 if (!nr)
2214 continue; /* A hole */ 2216 continue; /* A hole */
2215 2217
2216 /* Go read the buffer for the next level down */ 2218 /* Go read the buffer for the next level down */
2217 bh = sb_bread(inode->i_sb, nr); 2219 bh = sb_bread(inode->i_sb, nr);
2218 2220
2219 /* 2221 /*
2220 * A read failure? Report error and clear slot 2222 * A read failure? Report error and clear slot
2221 * (should be rare). 2223 * (should be rare).
2222 */ 2224 */
2223 if (!bh) { 2225 if (!bh) {
2224 ext4_error(inode->i_sb, "ext4_free_branches", 2226 ext4_error(inode->i_sb, "ext4_free_branches",
2225 "Read failure, inode=%lu, block=%llu", 2227 "Read failure, inode=%lu, block=%llu",
2226 inode->i_ino, nr); 2228 inode->i_ino, nr);
2227 continue; 2229 continue;
2228 } 2230 }
2229 2231
2230 /* This zaps the entire block. Bottom up. */ 2232 /* This zaps the entire block. Bottom up. */
2231 BUFFER_TRACE(bh, "free child branches"); 2233 BUFFER_TRACE(bh, "free child branches");
2232 ext4_free_branches(handle, inode, bh, 2234 ext4_free_branches(handle, inode, bh,
2233 (__le32*)bh->b_data, 2235 (__le32*)bh->b_data,
2234 (__le32*)bh->b_data + addr_per_block, 2236 (__le32*)bh->b_data + addr_per_block,
2235 depth); 2237 depth);
2236 2238
2237 /* 2239 /*
2238 * We've probably journalled the indirect block several 2240 * We've probably journalled the indirect block several
2239 * times during the truncate. But it's no longer 2241 * times during the truncate. But it's no longer
2240 * needed and we now drop it from the transaction via 2242 * needed and we now drop it from the transaction via
2241 * jbd2_journal_revoke(). 2243 * jbd2_journal_revoke().
2242 * 2244 *
2243 * That's easy if it's exclusively part of this 2245 * That's easy if it's exclusively part of this
2244 * transaction. But if it's part of the committing 2246 * transaction. But if it's part of the committing
2245 * transaction then jbd2_journal_forget() will simply 2247 * transaction then jbd2_journal_forget() will simply
2246 * brelse() it. That means that if the underlying 2248 * brelse() it. That means that if the underlying
2247 * block is reallocated in ext4_get_block(), 2249 * block is reallocated in ext4_get_block(),
2248 * unmap_underlying_metadata() will find this block 2250 * unmap_underlying_metadata() will find this block
2249 * and will try to get rid of it. damn, damn. 2251 * and will try to get rid of it. damn, damn.
2250 * 2252 *
2251 * If this block has already been committed to the 2253 * If this block has already been committed to the
2252 * journal, a revoke record will be written. And 2254 * journal, a revoke record will be written. And
2253 * revoke records must be emitted *before* clearing 2255 * revoke records must be emitted *before* clearing
2254 * this block's bit in the bitmaps. 2256 * this block's bit in the bitmaps.
2255 */ 2257 */
2256 ext4_forget(handle, 1, inode, bh, bh->b_blocknr); 2258 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2257 2259
2258 /* 2260 /*
2259 * Everything below this this pointer has been 2261 * Everything below this this pointer has been
2260 * released. Now let this top-of-subtree go. 2262 * released. Now let this top-of-subtree go.
2261 * 2263 *
2262 * We want the freeing of this indirect block to be 2264 * We want the freeing of this indirect block to be
2263 * atomic in the journal with the updating of the 2265 * atomic in the journal with the updating of the
2264 * bitmap block which owns it. So make some room in 2266 * bitmap block which owns it. So make some room in
2265 * the journal. 2267 * the journal.
2266 * 2268 *
2267 * We zero the parent pointer *after* freeing its 2269 * We zero the parent pointer *after* freeing its
2268 * pointee in the bitmaps, so if extend_transaction() 2270 * pointee in the bitmaps, so if extend_transaction()
2269 * for some reason fails to put the bitmap changes and 2271 * for some reason fails to put the bitmap changes and
2270 * the release into the same transaction, recovery 2272 * the release into the same transaction, recovery
2271 * will merely complain about releasing a free block, 2273 * will merely complain about releasing a free block,
2272 * rather than leaking blocks. 2274 * rather than leaking blocks.
2273 */ 2275 */
2274 if (is_handle_aborted(handle)) 2276 if (is_handle_aborted(handle))
2275 return; 2277 return;
2276 if (try_to_extend_transaction(handle, inode)) { 2278 if (try_to_extend_transaction(handle, inode)) {
2277 ext4_mark_inode_dirty(handle, inode); 2279 ext4_mark_inode_dirty(handle, inode);
2278 ext4_journal_test_restart(handle, inode); 2280 ext4_journal_test_restart(handle, inode);
2279 } 2281 }
2280 2282
2281 ext4_free_blocks(handle, inode, nr, 1, 1); 2283 ext4_free_blocks(handle, inode, nr, 1, 1);
2282 2284
2283 if (parent_bh) { 2285 if (parent_bh) {
2284 /* 2286 /*
2285 * The block which we have just freed is 2287 * The block which we have just freed is
2286 * pointed to by an indirect block: journal it 2288 * pointed to by an indirect block: journal it
2287 */ 2289 */
2288 BUFFER_TRACE(parent_bh, "get_write_access"); 2290 BUFFER_TRACE(parent_bh, "get_write_access");
2289 if (!ext4_journal_get_write_access(handle, 2291 if (!ext4_journal_get_write_access(handle,
2290 parent_bh)){ 2292 parent_bh)){
2291 *p = 0; 2293 *p = 0;
2292 BUFFER_TRACE(parent_bh, 2294 BUFFER_TRACE(parent_bh,
2293 "call ext4_journal_dirty_metadata"); 2295 "call ext4_journal_dirty_metadata");
2294 ext4_journal_dirty_metadata(handle, 2296 ext4_journal_dirty_metadata(handle,
2295 parent_bh); 2297 parent_bh);
2296 } 2298 }
2297 } 2299 }
2298 } 2300 }
2299 } else { 2301 } else {
2300 /* We have reached the bottom of the tree. */ 2302 /* We have reached the bottom of the tree. */
2301 BUFFER_TRACE(parent_bh, "free data blocks"); 2303 BUFFER_TRACE(parent_bh, "free data blocks");
2302 ext4_free_data(handle, inode, parent_bh, first, last); 2304 ext4_free_data(handle, inode, parent_bh, first, last);
2303 } 2305 }
2304 } 2306 }
2305 2307
2306 /* 2308 /*
2307 * ext4_truncate() 2309 * ext4_truncate()
2308 * 2310 *
2309 * We block out ext4_get_block() block instantiations across the entire 2311 * We block out ext4_get_block() block instantiations across the entire
2310 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 2312 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2311 * simultaneously on behalf of the same inode. 2313 * simultaneously on behalf of the same inode.
2312 * 2314 *
2313 * As we work through the truncate and commmit bits of it to the journal there 2315 * As we work through the truncate and commmit bits of it to the journal there
2314 * is one core, guiding principle: the file's tree must always be consistent on 2316 * is one core, guiding principle: the file's tree must always be consistent on
2315 * disk. We must be able to restart the truncate after a crash. 2317 * disk. We must be able to restart the truncate after a crash.
2316 * 2318 *
2317 * The file's tree may be transiently inconsistent in memory (although it 2319 * The file's tree may be transiently inconsistent in memory (although it
2318 * probably isn't), but whenever we close off and commit a journal transaction, 2320 * probably isn't), but whenever we close off and commit a journal transaction,
2319 * the contents of (the filesystem + the journal) must be consistent and 2321 * the contents of (the filesystem + the journal) must be consistent and
2320 * restartable. It's pretty simple, really: bottom up, right to left (although 2322 * restartable. It's pretty simple, really: bottom up, right to left (although
2321 * left-to-right works OK too). 2323 * left-to-right works OK too).
2322 * 2324 *
2323 * Note that at recovery time, journal replay occurs *before* the restart of 2325 * Note that at recovery time, journal replay occurs *before* the restart of
2324 * truncate against the orphan inode list. 2326 * truncate against the orphan inode list.
2325 * 2327 *
2326 * The committed inode has the new, desired i_size (which is the same as 2328 * The committed inode has the new, desired i_size (which is the same as
2327 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 2329 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
2328 * that this inode's truncate did not complete and it will again call 2330 * that this inode's truncate did not complete and it will again call
2329 * ext4_truncate() to have another go. So there will be instantiated blocks 2331 * ext4_truncate() to have another go. So there will be instantiated blocks
2330 * to the right of the truncation point in a crashed ext4 filesystem. But 2332 * to the right of the truncation point in a crashed ext4 filesystem. But
2331 * that's fine - as long as they are linked from the inode, the post-crash 2333 * that's fine - as long as they are linked from the inode, the post-crash
2332 * ext4_truncate() run will find them and release them. 2334 * ext4_truncate() run will find them and release them.
2333 */ 2335 */
2334 void ext4_truncate(struct inode *inode) 2336 void ext4_truncate(struct inode *inode)
2335 { 2337 {
2336 handle_t *handle; 2338 handle_t *handle;
2337 struct ext4_inode_info *ei = EXT4_I(inode); 2339 struct ext4_inode_info *ei = EXT4_I(inode);
2338 __le32 *i_data = ei->i_data; 2340 __le32 *i_data = ei->i_data;
2339 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 2341 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2340 struct address_space *mapping = inode->i_mapping; 2342 struct address_space *mapping = inode->i_mapping;
2341 ext4_lblk_t offsets[4]; 2343 ext4_lblk_t offsets[4];
2342 Indirect chain[4]; 2344 Indirect chain[4];
2343 Indirect *partial; 2345 Indirect *partial;
2344 __le32 nr = 0; 2346 __le32 nr = 0;
2345 int n; 2347 int n;
2346 ext4_lblk_t last_block; 2348 ext4_lblk_t last_block;
2347 unsigned blocksize = inode->i_sb->s_blocksize; 2349 unsigned blocksize = inode->i_sb->s_blocksize;
2348 struct page *page; 2350 struct page *page;
2349 2351
2350 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 2352 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2351 S_ISLNK(inode->i_mode))) 2353 S_ISLNK(inode->i_mode)))
2352 return; 2354 return;
2353 if (ext4_inode_is_fast_symlink(inode)) 2355 if (ext4_inode_is_fast_symlink(inode))
2354 return; 2356 return;
2355 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2357 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2356 return; 2358 return;
2357 2359
2358 /* 2360 /*
2359 * We have to lock the EOF page here, because lock_page() nests 2361 * We have to lock the EOF page here, because lock_page() nests
2360 * outside jbd2_journal_start(). 2362 * outside jbd2_journal_start().
2361 */ 2363 */
2362 if ((inode->i_size & (blocksize - 1)) == 0) { 2364 if ((inode->i_size & (blocksize - 1)) == 0) {
2363 /* Block boundary? Nothing to do */ 2365 /* Block boundary? Nothing to do */
2364 page = NULL; 2366 page = NULL;
2365 } else { 2367 } else {
2366 page = grab_cache_page(mapping, 2368 page = grab_cache_page(mapping,
2367 inode->i_size >> PAGE_CACHE_SHIFT); 2369 inode->i_size >> PAGE_CACHE_SHIFT);
2368 if (!page) 2370 if (!page)
2369 return; 2371 return;
2370 } 2372 }
2371 2373
2372 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) { 2374 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2373 ext4_ext_truncate(inode, page); 2375 ext4_ext_truncate(inode, page);
2374 return; 2376 return;
2375 } 2377 }
2376 2378
2377 handle = start_transaction(inode); 2379 handle = start_transaction(inode);
2378 if (IS_ERR(handle)) { 2380 if (IS_ERR(handle)) {
2379 if (page) { 2381 if (page) {
2380 clear_highpage(page); 2382 clear_highpage(page);
2381 flush_dcache_page(page); 2383 flush_dcache_page(page);
2382 unlock_page(page); 2384 unlock_page(page);
2383 page_cache_release(page); 2385 page_cache_release(page);
2384 } 2386 }
2385 return; /* AKPM: return what? */ 2387 return; /* AKPM: return what? */
2386 } 2388 }
2387 2389
2388 last_block = (inode->i_size + blocksize-1) 2390 last_block = (inode->i_size + blocksize-1)
2389 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 2391 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2390 2392
2391 if (page) 2393 if (page)
2392 ext4_block_truncate_page(handle, page, mapping, inode->i_size); 2394 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2393 2395
2394 n = ext4_block_to_path(inode, last_block, offsets, NULL); 2396 n = ext4_block_to_path(inode, last_block, offsets, NULL);
2395 if (n == 0) 2397 if (n == 0)
2396 goto out_stop; /* error */ 2398 goto out_stop; /* error */
2397 2399
2398 /* 2400 /*
2399 * OK. This truncate is going to happen. We add the inode to the 2401 * OK. This truncate is going to happen. We add the inode to the
2400 * orphan list, so that if this truncate spans multiple transactions, 2402 * orphan list, so that if this truncate spans multiple transactions,
2401 * and we crash, we will resume the truncate when the filesystem 2403 * and we crash, we will resume the truncate when the filesystem
2402 * recovers. It also marks the inode dirty, to catch the new size. 2404 * recovers. It also marks the inode dirty, to catch the new size.
2403 * 2405 *
2404 * Implication: the file must always be in a sane, consistent 2406 * Implication: the file must always be in a sane, consistent
2405 * truncatable state while each transaction commits. 2407 * truncatable state while each transaction commits.
2406 */ 2408 */
2407 if (ext4_orphan_add(handle, inode)) 2409 if (ext4_orphan_add(handle, inode))
2408 goto out_stop; 2410 goto out_stop;
2409 2411
2410 /* 2412 /*
2411 * The orphan list entry will now protect us from any crash which 2413 * The orphan list entry will now protect us from any crash which
2412 * occurs before the truncate completes, so it is now safe to propagate 2414 * occurs before the truncate completes, so it is now safe to propagate
2413 * the new, shorter inode size (held for now in i_size) into the 2415 * the new, shorter inode size (held for now in i_size) into the
2414 * on-disk inode. We do this via i_disksize, which is the value which 2416 * on-disk inode. We do this via i_disksize, which is the value which
2415 * ext4 *really* writes onto the disk inode. 2417 * ext4 *really* writes onto the disk inode.
2416 */ 2418 */
2417 ei->i_disksize = inode->i_size; 2419 ei->i_disksize = inode->i_size;
2418 2420
2419 /* 2421 /*
2420 * From here we block out all ext4_get_block() callers who want to 2422 * From here we block out all ext4_get_block() callers who want to
2421 * modify the block allocation tree. 2423 * modify the block allocation tree.
2422 */ 2424 */
2423 down_write(&ei->i_data_sem); 2425 down_write(&ei->i_data_sem);
2424 2426
2425 if (n == 1) { /* direct blocks */ 2427 if (n == 1) { /* direct blocks */
2426 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 2428 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2427 i_data + EXT4_NDIR_BLOCKS); 2429 i_data + EXT4_NDIR_BLOCKS);
2428 goto do_indirects; 2430 goto do_indirects;
2429 } 2431 }
2430 2432
2431 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 2433 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2432 /* Kill the top of shared branch (not detached) */ 2434 /* Kill the top of shared branch (not detached) */
2433 if (nr) { 2435 if (nr) {
2434 if (partial == chain) { 2436 if (partial == chain) {
2435 /* Shared branch grows from the inode */ 2437 /* Shared branch grows from the inode */
2436 ext4_free_branches(handle, inode, NULL, 2438 ext4_free_branches(handle, inode, NULL,
2437 &nr, &nr+1, (chain+n-1) - partial); 2439 &nr, &nr+1, (chain+n-1) - partial);
2438 *partial->p = 0; 2440 *partial->p = 0;
2439 /* 2441 /*
2440 * We mark the inode dirty prior to restart, 2442 * We mark the inode dirty prior to restart,
2441 * and prior to stop. No need for it here. 2443 * and prior to stop. No need for it here.
2442 */ 2444 */
2443 } else { 2445 } else {
2444 /* Shared branch grows from an indirect block */ 2446 /* Shared branch grows from an indirect block */
2445 BUFFER_TRACE(partial->bh, "get_write_access"); 2447 BUFFER_TRACE(partial->bh, "get_write_access");
2446 ext4_free_branches(handle, inode, partial->bh, 2448 ext4_free_branches(handle, inode, partial->bh,
2447 partial->p, 2449 partial->p,
2448 partial->p+1, (chain+n-1) - partial); 2450 partial->p+1, (chain+n-1) - partial);
2449 } 2451 }
2450 } 2452 }
2451 /* Clear the ends of indirect blocks on the shared branch */ 2453 /* Clear the ends of indirect blocks on the shared branch */
2452 while (partial > chain) { 2454 while (partial > chain) {
2453 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 2455 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2454 (__le32*)partial->bh->b_data+addr_per_block, 2456 (__le32*)partial->bh->b_data+addr_per_block,
2455 (chain+n-1) - partial); 2457 (chain+n-1) - partial);
2456 BUFFER_TRACE(partial->bh, "call brelse"); 2458 BUFFER_TRACE(partial->bh, "call brelse");
2457 brelse (partial->bh); 2459 brelse (partial->bh);
2458 partial--; 2460 partial--;
2459 } 2461 }
2460 do_indirects: 2462 do_indirects:
2461 /* Kill the remaining (whole) subtrees */ 2463 /* Kill the remaining (whole) subtrees */
2462 switch (offsets[0]) { 2464 switch (offsets[0]) {
2463 default: 2465 default:
2464 nr = i_data[EXT4_IND_BLOCK]; 2466 nr = i_data[EXT4_IND_BLOCK];
2465 if (nr) { 2467 if (nr) {
2466 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 2468 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2467 i_data[EXT4_IND_BLOCK] = 0; 2469 i_data[EXT4_IND_BLOCK] = 0;
2468 } 2470 }
2469 case EXT4_IND_BLOCK: 2471 case EXT4_IND_BLOCK:
2470 nr = i_data[EXT4_DIND_BLOCK]; 2472 nr = i_data[EXT4_DIND_BLOCK];
2471 if (nr) { 2473 if (nr) {
2472 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 2474 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2473 i_data[EXT4_DIND_BLOCK] = 0; 2475 i_data[EXT4_DIND_BLOCK] = 0;
2474 } 2476 }
2475 case EXT4_DIND_BLOCK: 2477 case EXT4_DIND_BLOCK:
2476 nr = i_data[EXT4_TIND_BLOCK]; 2478 nr = i_data[EXT4_TIND_BLOCK];
2477 if (nr) { 2479 if (nr) {
2478 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 2480 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2479 i_data[EXT4_TIND_BLOCK] = 0; 2481 i_data[EXT4_TIND_BLOCK] = 0;
2480 } 2482 }
2481 case EXT4_TIND_BLOCK: 2483 case EXT4_TIND_BLOCK:
2482 ; 2484 ;
2483 } 2485 }
2484 2486
2485 ext4_discard_reservation(inode); 2487 ext4_discard_reservation(inode);
2486 2488
2487 up_write(&ei->i_data_sem); 2489 up_write(&ei->i_data_sem);
2488 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 2490 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2489 ext4_mark_inode_dirty(handle, inode); 2491 ext4_mark_inode_dirty(handle, inode);
2490 2492
2491 /* 2493 /*
2492 * In a multi-transaction truncate, we only make the final transaction 2494 * In a multi-transaction truncate, we only make the final transaction
2493 * synchronous 2495 * synchronous
2494 */ 2496 */
2495 if (IS_SYNC(inode)) 2497 if (IS_SYNC(inode))
2496 handle->h_sync = 1; 2498 handle->h_sync = 1;
2497 out_stop: 2499 out_stop:
2498 /* 2500 /*
2499 * If this was a simple ftruncate(), and the file will remain alive 2501 * If this was a simple ftruncate(), and the file will remain alive
2500 * then we need to clear up the orphan record which we created above. 2502 * then we need to clear up the orphan record which we created above.
2501 * However, if this was a real unlink then we were called by 2503 * However, if this was a real unlink then we were called by
2502 * ext4_delete_inode(), and we allow that function to clean up the 2504 * ext4_delete_inode(), and we allow that function to clean up the
2503 * orphan info for us. 2505 * orphan info for us.
2504 */ 2506 */
2505 if (inode->i_nlink) 2507 if (inode->i_nlink)
2506 ext4_orphan_del(handle, inode); 2508 ext4_orphan_del(handle, inode);
2507 2509
2508 ext4_journal_stop(handle); 2510 ext4_journal_stop(handle);
2509 } 2511 }
2510 2512
2511 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb, 2513 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2512 unsigned long ino, struct ext4_iloc *iloc) 2514 unsigned long ino, struct ext4_iloc *iloc)
2513 { 2515 {
2514 ext4_group_t block_group; 2516 ext4_group_t block_group;
2515 unsigned long offset; 2517 unsigned long offset;
2516 ext4_fsblk_t block; 2518 ext4_fsblk_t block;
2517 struct ext4_group_desc *gdp; 2519 struct ext4_group_desc *gdp;
2518 2520
2519 if (!ext4_valid_inum(sb, ino)) { 2521 if (!ext4_valid_inum(sb, ino)) {
2520 /* 2522 /*
2521 * This error is already checked for in namei.c unless we are 2523 * This error is already checked for in namei.c unless we are
2522 * looking at an NFS filehandle, in which case no error 2524 * looking at an NFS filehandle, in which case no error
2523 * report is needed 2525 * report is needed
2524 */ 2526 */
2525 return 0; 2527 return 0;
2526 } 2528 }
2527 2529
2528 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 2530 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2529 gdp = ext4_get_group_desc(sb, block_group, NULL); 2531 gdp = ext4_get_group_desc(sb, block_group, NULL);
2530 if (!gdp) 2532 if (!gdp)
2531 return 0; 2533 return 0;
2532 2534
2533 /* 2535 /*
2534 * Figure out the offset within the block group inode table 2536 * Figure out the offset within the block group inode table
2535 */ 2537 */
2536 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) * 2538 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2537 EXT4_INODE_SIZE(sb); 2539 EXT4_INODE_SIZE(sb);
2538 block = ext4_inode_table(sb, gdp) + 2540 block = ext4_inode_table(sb, gdp) +
2539 (offset >> EXT4_BLOCK_SIZE_BITS(sb)); 2541 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
2540 2542
2541 iloc->block_group = block_group; 2543 iloc->block_group = block_group;
2542 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1); 2544 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2543 return block; 2545 return block;
2544 } 2546 }
2545 2547
2546 /* 2548 /*
2547 * ext4_get_inode_loc returns with an extra refcount against the inode's 2549 * ext4_get_inode_loc returns with an extra refcount against the inode's
2548 * underlying buffer_head on success. If 'in_mem' is true, we have all 2550 * underlying buffer_head on success. If 'in_mem' is true, we have all
2549 * data in memory that is needed to recreate the on-disk version of this 2551 * data in memory that is needed to recreate the on-disk version of this
2550 * inode. 2552 * inode.
2551 */ 2553 */
2552 static int __ext4_get_inode_loc(struct inode *inode, 2554 static int __ext4_get_inode_loc(struct inode *inode,
2553 struct ext4_iloc *iloc, int in_mem) 2555 struct ext4_iloc *iloc, int in_mem)
2554 { 2556 {
2555 ext4_fsblk_t block; 2557 ext4_fsblk_t block;
2556 struct buffer_head *bh; 2558 struct buffer_head *bh;
2557 2559
2558 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc); 2560 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2559 if (!block) 2561 if (!block)
2560 return -EIO; 2562 return -EIO;
2561 2563
2562 bh = sb_getblk(inode->i_sb, block); 2564 bh = sb_getblk(inode->i_sb, block);
2563 if (!bh) { 2565 if (!bh) {
2564 ext4_error (inode->i_sb, "ext4_get_inode_loc", 2566 ext4_error (inode->i_sb, "ext4_get_inode_loc",
2565 "unable to read inode block - " 2567 "unable to read inode block - "
2566 "inode=%lu, block=%llu", 2568 "inode=%lu, block=%llu",
2567 inode->i_ino, block); 2569 inode->i_ino, block);
2568 return -EIO; 2570 return -EIO;
2569 } 2571 }
2570 if (!buffer_uptodate(bh)) { 2572 if (!buffer_uptodate(bh)) {
2571 lock_buffer(bh); 2573 lock_buffer(bh);
2572 if (buffer_uptodate(bh)) { 2574 if (buffer_uptodate(bh)) {
2573 /* someone brought it uptodate while we waited */ 2575 /* someone brought it uptodate while we waited */
2574 unlock_buffer(bh); 2576 unlock_buffer(bh);
2575 goto has_buffer; 2577 goto has_buffer;
2576 } 2578 }
2577 2579
2578 /* 2580 /*
2579 * If we have all information of the inode in memory and this 2581 * If we have all information of the inode in memory and this
2580 * is the only valid inode in the block, we need not read the 2582 * is the only valid inode in the block, we need not read the
2581 * block. 2583 * block.
2582 */ 2584 */
2583 if (in_mem) { 2585 if (in_mem) {
2584 struct buffer_head *bitmap_bh; 2586 struct buffer_head *bitmap_bh;
2585 struct ext4_group_desc *desc; 2587 struct ext4_group_desc *desc;
2586 int inodes_per_buffer; 2588 int inodes_per_buffer;
2587 int inode_offset, i; 2589 int inode_offset, i;
2588 ext4_group_t block_group; 2590 ext4_group_t block_group;
2589 int start; 2591 int start;
2590 2592
2591 block_group = (inode->i_ino - 1) / 2593 block_group = (inode->i_ino - 1) /
2592 EXT4_INODES_PER_GROUP(inode->i_sb); 2594 EXT4_INODES_PER_GROUP(inode->i_sb);
2593 inodes_per_buffer = bh->b_size / 2595 inodes_per_buffer = bh->b_size /
2594 EXT4_INODE_SIZE(inode->i_sb); 2596 EXT4_INODE_SIZE(inode->i_sb);
2595 inode_offset = ((inode->i_ino - 1) % 2597 inode_offset = ((inode->i_ino - 1) %
2596 EXT4_INODES_PER_GROUP(inode->i_sb)); 2598 EXT4_INODES_PER_GROUP(inode->i_sb));
2597 start = inode_offset & ~(inodes_per_buffer - 1); 2599 start = inode_offset & ~(inodes_per_buffer - 1);
2598 2600
2599 /* Is the inode bitmap in cache? */ 2601 /* Is the inode bitmap in cache? */
2600 desc = ext4_get_group_desc(inode->i_sb, 2602 desc = ext4_get_group_desc(inode->i_sb,
2601 block_group, NULL); 2603 block_group, NULL);
2602 if (!desc) 2604 if (!desc)
2603 goto make_io; 2605 goto make_io;
2604 2606
2605 bitmap_bh = sb_getblk(inode->i_sb, 2607 bitmap_bh = sb_getblk(inode->i_sb,
2606 ext4_inode_bitmap(inode->i_sb, desc)); 2608 ext4_inode_bitmap(inode->i_sb, desc));
2607 if (!bitmap_bh) 2609 if (!bitmap_bh)
2608 goto make_io; 2610 goto make_io;
2609 2611
2610 /* 2612 /*
2611 * If the inode bitmap isn't in cache then the 2613 * If the inode bitmap isn't in cache then the
2612 * optimisation may end up performing two reads instead 2614 * optimisation may end up performing two reads instead
2613 * of one, so skip it. 2615 * of one, so skip it.
2614 */ 2616 */
2615 if (!buffer_uptodate(bitmap_bh)) { 2617 if (!buffer_uptodate(bitmap_bh)) {
2616 brelse(bitmap_bh); 2618 brelse(bitmap_bh);
2617 goto make_io; 2619 goto make_io;
2618 } 2620 }
2619 for (i = start; i < start + inodes_per_buffer; i++) { 2621 for (i = start; i < start + inodes_per_buffer; i++) {
2620 if (i == inode_offset) 2622 if (i == inode_offset)
2621 continue; 2623 continue;
2622 if (ext4_test_bit(i, bitmap_bh->b_data)) 2624 if (ext4_test_bit(i, bitmap_bh->b_data))
2623 break; 2625 break;
2624 } 2626 }
2625 brelse(bitmap_bh); 2627 brelse(bitmap_bh);
2626 if (i == start + inodes_per_buffer) { 2628 if (i == start + inodes_per_buffer) {
2627 /* all other inodes are free, so skip I/O */ 2629 /* all other inodes are free, so skip I/O */
2628 memset(bh->b_data, 0, bh->b_size); 2630 memset(bh->b_data, 0, bh->b_size);
2629 set_buffer_uptodate(bh); 2631 set_buffer_uptodate(bh);
2630 unlock_buffer(bh); 2632 unlock_buffer(bh);
2631 goto has_buffer; 2633 goto has_buffer;
2632 } 2634 }
2633 } 2635 }
2634 2636
2635 make_io: 2637 make_io:
2636 /* 2638 /*
2637 * There are other valid inodes in the buffer, this inode 2639 * There are other valid inodes in the buffer, this inode
2638 * has in-inode xattrs, or we don't have this inode in memory. 2640 * has in-inode xattrs, or we don't have this inode in memory.
2639 * Read the block from disk. 2641 * Read the block from disk.
2640 */ 2642 */
2641 get_bh(bh); 2643 get_bh(bh);
2642 bh->b_end_io = end_buffer_read_sync; 2644 bh->b_end_io = end_buffer_read_sync;
2643 submit_bh(READ_META, bh); 2645 submit_bh(READ_META, bh);
2644 wait_on_buffer(bh); 2646 wait_on_buffer(bh);
2645 if (!buffer_uptodate(bh)) { 2647 if (!buffer_uptodate(bh)) {
2646 ext4_error(inode->i_sb, "ext4_get_inode_loc", 2648 ext4_error(inode->i_sb, "ext4_get_inode_loc",
2647 "unable to read inode block - " 2649 "unable to read inode block - "
2648 "inode=%lu, block=%llu", 2650 "inode=%lu, block=%llu",
2649 inode->i_ino, block); 2651 inode->i_ino, block);
2650 brelse(bh); 2652 brelse(bh);
2651 return -EIO; 2653 return -EIO;
2652 } 2654 }
2653 } 2655 }
2654 has_buffer: 2656 has_buffer:
2655 iloc->bh = bh; 2657 iloc->bh = bh;
2656 return 0; 2658 return 0;
2657 } 2659 }
2658 2660
2659 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 2661 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2660 { 2662 {
2661 /* We have all inode data except xattrs in memory here. */ 2663 /* We have all inode data except xattrs in memory here. */
2662 return __ext4_get_inode_loc(inode, iloc, 2664 return __ext4_get_inode_loc(inode, iloc,
2663 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR)); 2665 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2664 } 2666 }
2665 2667
2666 void ext4_set_inode_flags(struct inode *inode) 2668 void ext4_set_inode_flags(struct inode *inode)
2667 { 2669 {
2668 unsigned int flags = EXT4_I(inode)->i_flags; 2670 unsigned int flags = EXT4_I(inode)->i_flags;
2669 2671
2670 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 2672 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2671 if (flags & EXT4_SYNC_FL) 2673 if (flags & EXT4_SYNC_FL)
2672 inode->i_flags |= S_SYNC; 2674 inode->i_flags |= S_SYNC;
2673 if (flags & EXT4_APPEND_FL) 2675 if (flags & EXT4_APPEND_FL)
2674 inode->i_flags |= S_APPEND; 2676 inode->i_flags |= S_APPEND;
2675 if (flags & EXT4_IMMUTABLE_FL) 2677 if (flags & EXT4_IMMUTABLE_FL)
2676 inode->i_flags |= S_IMMUTABLE; 2678 inode->i_flags |= S_IMMUTABLE;
2677 if (flags & EXT4_NOATIME_FL) 2679 if (flags & EXT4_NOATIME_FL)
2678 inode->i_flags |= S_NOATIME; 2680 inode->i_flags |= S_NOATIME;
2679 if (flags & EXT4_DIRSYNC_FL) 2681 if (flags & EXT4_DIRSYNC_FL)
2680 inode->i_flags |= S_DIRSYNC; 2682 inode->i_flags |= S_DIRSYNC;
2681 } 2683 }
2682 2684
2683 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 2685 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2684 void ext4_get_inode_flags(struct ext4_inode_info *ei) 2686 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2685 { 2687 {
2686 unsigned int flags = ei->vfs_inode.i_flags; 2688 unsigned int flags = ei->vfs_inode.i_flags;
2687 2689
2688 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 2690 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2689 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL); 2691 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2690 if (flags & S_SYNC) 2692 if (flags & S_SYNC)
2691 ei->i_flags |= EXT4_SYNC_FL; 2693 ei->i_flags |= EXT4_SYNC_FL;
2692 if (flags & S_APPEND) 2694 if (flags & S_APPEND)
2693 ei->i_flags |= EXT4_APPEND_FL; 2695 ei->i_flags |= EXT4_APPEND_FL;
2694 if (flags & S_IMMUTABLE) 2696 if (flags & S_IMMUTABLE)
2695 ei->i_flags |= EXT4_IMMUTABLE_FL; 2697 ei->i_flags |= EXT4_IMMUTABLE_FL;
2696 if (flags & S_NOATIME) 2698 if (flags & S_NOATIME)
2697 ei->i_flags |= EXT4_NOATIME_FL; 2699 ei->i_flags |= EXT4_NOATIME_FL;
2698 if (flags & S_DIRSYNC) 2700 if (flags & S_DIRSYNC)
2699 ei->i_flags |= EXT4_DIRSYNC_FL; 2701 ei->i_flags |= EXT4_DIRSYNC_FL;
2700 } 2702 }
2701 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 2703 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2702 struct ext4_inode_info *ei) 2704 struct ext4_inode_info *ei)
2703 { 2705 {
2704 blkcnt_t i_blocks ; 2706 blkcnt_t i_blocks ;
2705 struct inode *inode = &(ei->vfs_inode); 2707 struct inode *inode = &(ei->vfs_inode);
2706 struct super_block *sb = inode->i_sb; 2708 struct super_block *sb = inode->i_sb;
2707 2709
2708 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 2710 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2709 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2711 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2710 /* we are using combined 48 bit field */ 2712 /* we are using combined 48 bit field */
2711 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 2713 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2712 le32_to_cpu(raw_inode->i_blocks_lo); 2714 le32_to_cpu(raw_inode->i_blocks_lo);
2713 if (ei->i_flags & EXT4_HUGE_FILE_FL) { 2715 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2714 /* i_blocks represent file system block size */ 2716 /* i_blocks represent file system block size */
2715 return i_blocks << (inode->i_blkbits - 9); 2717 return i_blocks << (inode->i_blkbits - 9);
2716 } else { 2718 } else {
2717 return i_blocks; 2719 return i_blocks;
2718 } 2720 }
2719 } else { 2721 } else {
2720 return le32_to_cpu(raw_inode->i_blocks_lo); 2722 return le32_to_cpu(raw_inode->i_blocks_lo);
2721 } 2723 }
2722 } 2724 }
2723 2725
2724 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 2726 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
2725 { 2727 {
2726 struct ext4_iloc iloc; 2728 struct ext4_iloc iloc;
2727 struct ext4_inode *raw_inode; 2729 struct ext4_inode *raw_inode;
2728 struct ext4_inode_info *ei; 2730 struct ext4_inode_info *ei;
2729 struct buffer_head *bh; 2731 struct buffer_head *bh;
2730 struct inode *inode; 2732 struct inode *inode;
2731 long ret; 2733 long ret;
2732 int block; 2734 int block;
2733 2735
2734 inode = iget_locked(sb, ino); 2736 inode = iget_locked(sb, ino);
2735 if (!inode) 2737 if (!inode)
2736 return ERR_PTR(-ENOMEM); 2738 return ERR_PTR(-ENOMEM);
2737 if (!(inode->i_state & I_NEW)) 2739 if (!(inode->i_state & I_NEW))
2738 return inode; 2740 return inode;
2739 2741
2740 ei = EXT4_I(inode); 2742 ei = EXT4_I(inode);
2741 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL 2743 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2742 ei->i_acl = EXT4_ACL_NOT_CACHED; 2744 ei->i_acl = EXT4_ACL_NOT_CACHED;
2743 ei->i_default_acl = EXT4_ACL_NOT_CACHED; 2745 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2744 #endif 2746 #endif
2745 ei->i_block_alloc_info = NULL; 2747 ei->i_block_alloc_info = NULL;
2746 2748
2747 ret = __ext4_get_inode_loc(inode, &iloc, 0); 2749 ret = __ext4_get_inode_loc(inode, &iloc, 0);
2748 if (ret < 0) 2750 if (ret < 0)
2749 goto bad_inode; 2751 goto bad_inode;
2750 bh = iloc.bh; 2752 bh = iloc.bh;
2751 raw_inode = ext4_raw_inode(&iloc); 2753 raw_inode = ext4_raw_inode(&iloc);
2752 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 2754 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2753 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 2755 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2754 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 2756 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2755 if(!(test_opt (inode->i_sb, NO_UID32))) { 2757 if(!(test_opt (inode->i_sb, NO_UID32))) {
2756 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 2758 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2757 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 2759 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2758 } 2760 }
2759 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 2761 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2760 2762
2761 ei->i_state = 0; 2763 ei->i_state = 0;
2762 ei->i_dir_start_lookup = 0; 2764 ei->i_dir_start_lookup = 0;
2763 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 2765 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2764 /* We now have enough fields to check if the inode was active or not. 2766 /* We now have enough fields to check if the inode was active or not.
2765 * This is needed because nfsd might try to access dead inodes 2767 * This is needed because nfsd might try to access dead inodes
2766 * the test is that same one that e2fsck uses 2768 * the test is that same one that e2fsck uses
2767 * NeilBrown 1999oct15 2769 * NeilBrown 1999oct15
2768 */ 2770 */
2769 if (inode->i_nlink == 0) { 2771 if (inode->i_nlink == 0) {
2770 if (inode->i_mode == 0 || 2772 if (inode->i_mode == 0 ||
2771 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 2773 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2772 /* this inode is deleted */ 2774 /* this inode is deleted */
2773 brelse (bh); 2775 brelse (bh);
2774 ret = -ESTALE; 2776 ret = -ESTALE;
2775 goto bad_inode; 2777 goto bad_inode;
2776 } 2778 }
2777 /* The only unlinked inodes we let through here have 2779 /* The only unlinked inodes we let through here have
2778 * valid i_mode and are being read by the orphan 2780 * valid i_mode and are being read by the orphan
2779 * recovery code: that's fine, we're about to complete 2781 * recovery code: that's fine, we're about to complete
2780 * the process of deleting those. */ 2782 * the process of deleting those. */
2781 } 2783 }
2782 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 2784 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2783 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 2785 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2784 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 2786 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2785 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 2787 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2786 cpu_to_le32(EXT4_OS_HURD)) { 2788 cpu_to_le32(EXT4_OS_HURD)) {
2787 ei->i_file_acl |= 2789 ei->i_file_acl |=
2788 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 2790 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2789 } 2791 }
2790 inode->i_size = ext4_isize(raw_inode); 2792 inode->i_size = ext4_isize(raw_inode);
2791 ei->i_disksize = inode->i_size; 2793 ei->i_disksize = inode->i_size;
2792 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 2794 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2793 ei->i_block_group = iloc.block_group; 2795 ei->i_block_group = iloc.block_group;
2794 /* 2796 /*
2795 * NOTE! The in-memory inode i_data array is in little-endian order 2797 * NOTE! The in-memory inode i_data array is in little-endian order
2796 * even on big-endian machines: we do NOT byteswap the block numbers! 2798 * even on big-endian machines: we do NOT byteswap the block numbers!
2797 */ 2799 */
2798 for (block = 0; block < EXT4_N_BLOCKS; block++) 2800 for (block = 0; block < EXT4_N_BLOCKS; block++)
2799 ei->i_data[block] = raw_inode->i_block[block]; 2801 ei->i_data[block] = raw_inode->i_block[block];
2800 INIT_LIST_HEAD(&ei->i_orphan); 2802 INIT_LIST_HEAD(&ei->i_orphan);
2801 2803
2802 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 2804 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2803 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 2805 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2804 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 2806 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2805 EXT4_INODE_SIZE(inode->i_sb)) { 2807 EXT4_INODE_SIZE(inode->i_sb)) {
2806 brelse (bh); 2808 brelse (bh);
2807 ret = -EIO; 2809 ret = -EIO;
2808 goto bad_inode; 2810 goto bad_inode;
2809 } 2811 }
2810 if (ei->i_extra_isize == 0) { 2812 if (ei->i_extra_isize == 0) {
2811 /* The extra space is currently unused. Use it. */ 2813 /* The extra space is currently unused. Use it. */
2812 ei->i_extra_isize = sizeof(struct ext4_inode) - 2814 ei->i_extra_isize = sizeof(struct ext4_inode) -
2813 EXT4_GOOD_OLD_INODE_SIZE; 2815 EXT4_GOOD_OLD_INODE_SIZE;
2814 } else { 2816 } else {
2815 __le32 *magic = (void *)raw_inode + 2817 __le32 *magic = (void *)raw_inode +
2816 EXT4_GOOD_OLD_INODE_SIZE + 2818 EXT4_GOOD_OLD_INODE_SIZE +
2817 ei->i_extra_isize; 2819 ei->i_extra_isize;
2818 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 2820 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2819 ei->i_state |= EXT4_STATE_XATTR; 2821 ei->i_state |= EXT4_STATE_XATTR;
2820 } 2822 }
2821 } else 2823 } else
2822 ei->i_extra_isize = 0; 2824 ei->i_extra_isize = 0;
2823 2825
2824 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 2826 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2825 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 2827 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2826 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 2828 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2827 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 2829 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2828 2830
2829 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 2831 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
2830 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 2832 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2831 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 2833 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2832 inode->i_version |= 2834 inode->i_version |=
2833 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 2835 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
2834 } 2836 }
2835 2837
2836 if (S_ISREG(inode->i_mode)) { 2838 if (S_ISREG(inode->i_mode)) {
2837 inode->i_op = &ext4_file_inode_operations; 2839 inode->i_op = &ext4_file_inode_operations;
2838 inode->i_fop = &ext4_file_operations; 2840 inode->i_fop = &ext4_file_operations;
2839 ext4_set_aops(inode); 2841 ext4_set_aops(inode);
2840 } else if (S_ISDIR(inode->i_mode)) { 2842 } else if (S_ISDIR(inode->i_mode)) {
2841 inode->i_op = &ext4_dir_inode_operations; 2843 inode->i_op = &ext4_dir_inode_operations;
2842 inode->i_fop = &ext4_dir_operations; 2844 inode->i_fop = &ext4_dir_operations;
2843 } else if (S_ISLNK(inode->i_mode)) { 2845 } else if (S_ISLNK(inode->i_mode)) {
2844 if (ext4_inode_is_fast_symlink(inode)) 2846 if (ext4_inode_is_fast_symlink(inode))
2845 inode->i_op = &ext4_fast_symlink_inode_operations; 2847 inode->i_op = &ext4_fast_symlink_inode_operations;
2846 else { 2848 else {
2847 inode->i_op = &ext4_symlink_inode_operations; 2849 inode->i_op = &ext4_symlink_inode_operations;
2848 ext4_set_aops(inode); 2850 ext4_set_aops(inode);
2849 } 2851 }
2850 } else { 2852 } else {
2851 inode->i_op = &ext4_special_inode_operations; 2853 inode->i_op = &ext4_special_inode_operations;
2852 if (raw_inode->i_block[0]) 2854 if (raw_inode->i_block[0])
2853 init_special_inode(inode, inode->i_mode, 2855 init_special_inode(inode, inode->i_mode,
2854 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 2856 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2855 else 2857 else
2856 init_special_inode(inode, inode->i_mode, 2858 init_special_inode(inode, inode->i_mode,
2857 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 2859 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2858 } 2860 }
2859 brelse (iloc.bh); 2861 brelse (iloc.bh);
2860 ext4_set_inode_flags(inode); 2862 ext4_set_inode_flags(inode);
2861 unlock_new_inode(inode); 2863 unlock_new_inode(inode);
2862 return inode; 2864 return inode;
2863 2865
2864 bad_inode: 2866 bad_inode:
2865 iget_failed(inode); 2867 iget_failed(inode);
2866 return ERR_PTR(ret); 2868 return ERR_PTR(ret);
2867 } 2869 }
2868 2870
2869 static int ext4_inode_blocks_set(handle_t *handle, 2871 static int ext4_inode_blocks_set(handle_t *handle,
2870 struct ext4_inode *raw_inode, 2872 struct ext4_inode *raw_inode,
2871 struct ext4_inode_info *ei) 2873 struct ext4_inode_info *ei)
2872 { 2874 {
2873 struct inode *inode = &(ei->vfs_inode); 2875 struct inode *inode = &(ei->vfs_inode);
2874 u64 i_blocks = inode->i_blocks; 2876 u64 i_blocks = inode->i_blocks;
2875 struct super_block *sb = inode->i_sb; 2877 struct super_block *sb = inode->i_sb;
2876 int err = 0; 2878 int err = 0;
2877 2879
2878 if (i_blocks <= ~0U) { 2880 if (i_blocks <= ~0U) {
2879 /* 2881 /*
2880 * i_blocks can be represnted in a 32 bit variable 2882 * i_blocks can be represnted in a 32 bit variable
2881 * as multiple of 512 bytes 2883 * as multiple of 512 bytes
2882 */ 2884 */
2883 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 2885 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2884 raw_inode->i_blocks_high = 0; 2886 raw_inode->i_blocks_high = 0;
2885 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 2887 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2886 } else if (i_blocks <= 0xffffffffffffULL) { 2888 } else if (i_blocks <= 0xffffffffffffULL) {
2887 /* 2889 /*
2888 * i_blocks can be represented in a 48 bit variable 2890 * i_blocks can be represented in a 48 bit variable
2889 * as multiple of 512 bytes 2891 * as multiple of 512 bytes
2890 */ 2892 */
2891 err = ext4_update_rocompat_feature(handle, sb, 2893 err = ext4_update_rocompat_feature(handle, sb,
2892 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 2894 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2893 if (err) 2895 if (err)
2894 goto err_out; 2896 goto err_out;
2895 /* i_block is stored in the split 48 bit fields */ 2897 /* i_block is stored in the split 48 bit fields */
2896 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 2898 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2897 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 2899 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2898 ei->i_flags &= ~EXT4_HUGE_FILE_FL; 2900 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2899 } else { 2901 } else {
2900 /* 2902 /*
2901 * i_blocks should be represented in a 48 bit variable 2903 * i_blocks should be represented in a 48 bit variable
2902 * as multiple of file system block size 2904 * as multiple of file system block size
2903 */ 2905 */
2904 err = ext4_update_rocompat_feature(handle, sb, 2906 err = ext4_update_rocompat_feature(handle, sb,
2905 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 2907 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2906 if (err) 2908 if (err)
2907 goto err_out; 2909 goto err_out;
2908 ei->i_flags |= EXT4_HUGE_FILE_FL; 2910 ei->i_flags |= EXT4_HUGE_FILE_FL;
2909 /* i_block is stored in file system block size */ 2911 /* i_block is stored in file system block size */
2910 i_blocks = i_blocks >> (inode->i_blkbits - 9); 2912 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2911 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 2913 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2912 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 2914 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2913 } 2915 }
2914 err_out: 2916 err_out:
2915 return err; 2917 return err;
2916 } 2918 }
2917 2919
2918 /* 2920 /*
2919 * Post the struct inode info into an on-disk inode location in the 2921 * Post the struct inode info into an on-disk inode location in the
2920 * buffer-cache. This gobbles the caller's reference to the 2922 * buffer-cache. This gobbles the caller's reference to the
2921 * buffer_head in the inode location struct. 2923 * buffer_head in the inode location struct.
2922 * 2924 *
2923 * The caller must have write access to iloc->bh. 2925 * The caller must have write access to iloc->bh.
2924 */ 2926 */
2925 static int ext4_do_update_inode(handle_t *handle, 2927 static int ext4_do_update_inode(handle_t *handle,
2926 struct inode *inode, 2928 struct inode *inode,
2927 struct ext4_iloc *iloc) 2929 struct ext4_iloc *iloc)
2928 { 2930 {
2929 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 2931 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2930 struct ext4_inode_info *ei = EXT4_I(inode); 2932 struct ext4_inode_info *ei = EXT4_I(inode);
2931 struct buffer_head *bh = iloc->bh; 2933 struct buffer_head *bh = iloc->bh;
2932 int err = 0, rc, block; 2934 int err = 0, rc, block;
2933 2935
2934 /* For fields not not tracking in the in-memory inode, 2936 /* For fields not not tracking in the in-memory inode,
2935 * initialise them to zero for new inodes. */ 2937 * initialise them to zero for new inodes. */
2936 if (ei->i_state & EXT4_STATE_NEW) 2938 if (ei->i_state & EXT4_STATE_NEW)
2937 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 2939 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2938 2940
2939 ext4_get_inode_flags(ei); 2941 ext4_get_inode_flags(ei);
2940 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 2942 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2941 if(!(test_opt(inode->i_sb, NO_UID32))) { 2943 if(!(test_opt(inode->i_sb, NO_UID32))) {
2942 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 2944 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2943 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 2945 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2944 /* 2946 /*
2945 * Fix up interoperability with old kernels. Otherwise, old inodes get 2947 * Fix up interoperability with old kernels. Otherwise, old inodes get
2946 * re-used with the upper 16 bits of the uid/gid intact 2948 * re-used with the upper 16 bits of the uid/gid intact
2947 */ 2949 */
2948 if(!ei->i_dtime) { 2950 if(!ei->i_dtime) {
2949 raw_inode->i_uid_high = 2951 raw_inode->i_uid_high =
2950 cpu_to_le16(high_16_bits(inode->i_uid)); 2952 cpu_to_le16(high_16_bits(inode->i_uid));
2951 raw_inode->i_gid_high = 2953 raw_inode->i_gid_high =
2952 cpu_to_le16(high_16_bits(inode->i_gid)); 2954 cpu_to_le16(high_16_bits(inode->i_gid));
2953 } else { 2955 } else {
2954 raw_inode->i_uid_high = 0; 2956 raw_inode->i_uid_high = 0;
2955 raw_inode->i_gid_high = 0; 2957 raw_inode->i_gid_high = 0;
2956 } 2958 }
2957 } else { 2959 } else {
2958 raw_inode->i_uid_low = 2960 raw_inode->i_uid_low =
2959 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 2961 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2960 raw_inode->i_gid_low = 2962 raw_inode->i_gid_low =
2961 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 2963 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2962 raw_inode->i_uid_high = 0; 2964 raw_inode->i_uid_high = 0;
2963 raw_inode->i_gid_high = 0; 2965 raw_inode->i_gid_high = 0;
2964 } 2966 }
2965 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 2967 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2966 2968
2967 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 2969 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2968 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 2970 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2969 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 2971 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2970 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 2972 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2971 2973
2972 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 2974 if (ext4_inode_blocks_set(handle, raw_inode, ei))
2973 goto out_brelse; 2975 goto out_brelse;
2974 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 2976 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2975 /* clear the migrate flag in the raw_inode */ 2977 /* clear the migrate flag in the raw_inode */
2976 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE); 2978 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
2977 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 2979 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2978 cpu_to_le32(EXT4_OS_HURD)) 2980 cpu_to_le32(EXT4_OS_HURD))
2979 raw_inode->i_file_acl_high = 2981 raw_inode->i_file_acl_high =
2980 cpu_to_le16(ei->i_file_acl >> 32); 2982 cpu_to_le16(ei->i_file_acl >> 32);
2981 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 2983 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2982 ext4_isize_set(raw_inode, ei->i_disksize); 2984 ext4_isize_set(raw_inode, ei->i_disksize);
2983 if (ei->i_disksize > 0x7fffffffULL) { 2985 if (ei->i_disksize > 0x7fffffffULL) {
2984 struct super_block *sb = inode->i_sb; 2986 struct super_block *sb = inode->i_sb;
2985 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 2987 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2986 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 2988 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2987 EXT4_SB(sb)->s_es->s_rev_level == 2989 EXT4_SB(sb)->s_es->s_rev_level ==
2988 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 2990 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2989 /* If this is the first large file 2991 /* If this is the first large file
2990 * created, add a flag to the superblock. 2992 * created, add a flag to the superblock.
2991 */ 2993 */
2992 err = ext4_journal_get_write_access(handle, 2994 err = ext4_journal_get_write_access(handle,
2993 EXT4_SB(sb)->s_sbh); 2995 EXT4_SB(sb)->s_sbh);
2994 if (err) 2996 if (err)
2995 goto out_brelse; 2997 goto out_brelse;
2996 ext4_update_dynamic_rev(sb); 2998 ext4_update_dynamic_rev(sb);
2997 EXT4_SET_RO_COMPAT_FEATURE(sb, 2999 EXT4_SET_RO_COMPAT_FEATURE(sb,
2998 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 3000 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2999 sb->s_dirt = 1; 3001 sb->s_dirt = 1;
3000 handle->h_sync = 1; 3002 handle->h_sync = 1;
3001 err = ext4_journal_dirty_metadata(handle, 3003 err = ext4_journal_dirty_metadata(handle,
3002 EXT4_SB(sb)->s_sbh); 3004 EXT4_SB(sb)->s_sbh);
3003 } 3005 }
3004 } 3006 }
3005 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 3007 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3006 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 3008 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3007 if (old_valid_dev(inode->i_rdev)) { 3009 if (old_valid_dev(inode->i_rdev)) {
3008 raw_inode->i_block[0] = 3010 raw_inode->i_block[0] =
3009 cpu_to_le32(old_encode_dev(inode->i_rdev)); 3011 cpu_to_le32(old_encode_dev(inode->i_rdev));
3010 raw_inode->i_block[1] = 0; 3012 raw_inode->i_block[1] = 0;
3011 } else { 3013 } else {
3012 raw_inode->i_block[0] = 0; 3014 raw_inode->i_block[0] = 0;
3013 raw_inode->i_block[1] = 3015 raw_inode->i_block[1] =
3014 cpu_to_le32(new_encode_dev(inode->i_rdev)); 3016 cpu_to_le32(new_encode_dev(inode->i_rdev));
3015 raw_inode->i_block[2] = 0; 3017 raw_inode->i_block[2] = 0;
3016 } 3018 }
3017 } else for (block = 0; block < EXT4_N_BLOCKS; block++) 3019 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
3018 raw_inode->i_block[block] = ei->i_data[block]; 3020 raw_inode->i_block[block] = ei->i_data[block];
3019 3021
3020 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 3022 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3021 if (ei->i_extra_isize) { 3023 if (ei->i_extra_isize) {
3022 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 3024 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3023 raw_inode->i_version_hi = 3025 raw_inode->i_version_hi =
3024 cpu_to_le32(inode->i_version >> 32); 3026 cpu_to_le32(inode->i_version >> 32);
3025 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 3027 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3026 } 3028 }
3027 3029
3028 3030
3029 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata"); 3031 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3030 rc = ext4_journal_dirty_metadata(handle, bh); 3032 rc = ext4_journal_dirty_metadata(handle, bh);
3031 if (!err) 3033 if (!err)
3032 err = rc; 3034 err = rc;
3033 ei->i_state &= ~EXT4_STATE_NEW; 3035 ei->i_state &= ~EXT4_STATE_NEW;
3034 3036
3035 out_brelse: 3037 out_brelse:
3036 brelse (bh); 3038 brelse (bh);
3037 ext4_std_error(inode->i_sb, err); 3039 ext4_std_error(inode->i_sb, err);
3038 return err; 3040 return err;
3039 } 3041 }
3040 3042
3041 /* 3043 /*
3042 * ext4_write_inode() 3044 * ext4_write_inode()
3043 * 3045 *
3044 * We are called from a few places: 3046 * We are called from a few places:
3045 * 3047 *
3046 * - Within generic_file_write() for O_SYNC files. 3048 * - Within generic_file_write() for O_SYNC files.
3047 * Here, there will be no transaction running. We wait for any running 3049 * Here, there will be no transaction running. We wait for any running
3048 * trasnaction to commit. 3050 * trasnaction to commit.
3049 * 3051 *
3050 * - Within sys_sync(), kupdate and such. 3052 * - Within sys_sync(), kupdate and such.
3051 * We wait on commit, if tol to. 3053 * We wait on commit, if tol to.
3052 * 3054 *
3053 * - Within prune_icache() (PF_MEMALLOC == true) 3055 * - Within prune_icache() (PF_MEMALLOC == true)
3054 * Here we simply return. We can't afford to block kswapd on the 3056 * Here we simply return. We can't afford to block kswapd on the
3055 * journal commit. 3057 * journal commit.
3056 * 3058 *
3057 * In all cases it is actually safe for us to return without doing anything, 3059 * In all cases it is actually safe for us to return without doing anything,
3058 * because the inode has been copied into a raw inode buffer in 3060 * because the inode has been copied into a raw inode buffer in
3059 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 3061 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3060 * knfsd. 3062 * knfsd.
3061 * 3063 *
3062 * Note that we are absolutely dependent upon all inode dirtiers doing the 3064 * Note that we are absolutely dependent upon all inode dirtiers doing the
3063 * right thing: they *must* call mark_inode_dirty() after dirtying info in 3065 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3064 * which we are interested. 3066 * which we are interested.
3065 * 3067 *
3066 * It would be a bug for them to not do this. The code: 3068 * It would be a bug for them to not do this. The code:
3067 * 3069 *
3068 * mark_inode_dirty(inode) 3070 * mark_inode_dirty(inode)
3069 * stuff(); 3071 * stuff();
3070 * inode->i_size = expr; 3072 * inode->i_size = expr;
3071 * 3073 *
3072 * is in error because a kswapd-driven write_inode() could occur while 3074 * is in error because a kswapd-driven write_inode() could occur while
3073 * `stuff()' is running, and the new i_size will be lost. Plus the inode 3075 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3074 * will no longer be on the superblock's dirty inode list. 3076 * will no longer be on the superblock's dirty inode list.
3075 */ 3077 */
3076 int ext4_write_inode(struct inode *inode, int wait) 3078 int ext4_write_inode(struct inode *inode, int wait)
3077 { 3079 {
3078 if (current->flags & PF_MEMALLOC) 3080 if (current->flags & PF_MEMALLOC)
3079 return 0; 3081 return 0;
3080 3082
3081 if (ext4_journal_current_handle()) { 3083 if (ext4_journal_current_handle()) {
3082 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 3084 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3083 dump_stack(); 3085 dump_stack();
3084 return -EIO; 3086 return -EIO;
3085 } 3087 }
3086 3088
3087 if (!wait) 3089 if (!wait)
3088 return 0; 3090 return 0;
3089 3091
3090 return ext4_force_commit(inode->i_sb); 3092 return ext4_force_commit(inode->i_sb);
3091 } 3093 }
3092 3094
3093 /* 3095 /*
3094 * ext4_setattr() 3096 * ext4_setattr()
3095 * 3097 *
3096 * Called from notify_change. 3098 * Called from notify_change.
3097 * 3099 *
3098 * We want to trap VFS attempts to truncate the file as soon as 3100 * We want to trap VFS attempts to truncate the file as soon as
3099 * possible. In particular, we want to make sure that when the VFS 3101 * possible. In particular, we want to make sure that when the VFS
3100 * shrinks i_size, we put the inode on the orphan list and modify 3102 * shrinks i_size, we put the inode on the orphan list and modify
3101 * i_disksize immediately, so that during the subsequent flushing of 3103 * i_disksize immediately, so that during the subsequent flushing of
3102 * dirty pages and freeing of disk blocks, we can guarantee that any 3104 * dirty pages and freeing of disk blocks, we can guarantee that any
3103 * commit will leave the blocks being flushed in an unused state on 3105 * commit will leave the blocks being flushed in an unused state on
3104 * disk. (On recovery, the inode will get truncated and the blocks will 3106 * disk. (On recovery, the inode will get truncated and the blocks will
3105 * be freed, so we have a strong guarantee that no future commit will 3107 * be freed, so we have a strong guarantee that no future commit will
3106 * leave these blocks visible to the user.) 3108 * leave these blocks visible to the user.)
3107 * 3109 *
3108 * Called with inode->sem down. 3110 * Called with inode->sem down.
3109 */ 3111 */
3110 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 3112 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3111 { 3113 {
3112 struct inode *inode = dentry->d_inode; 3114 struct inode *inode = dentry->d_inode;
3113 int error, rc = 0; 3115 int error, rc = 0;
3114 const unsigned int ia_valid = attr->ia_valid; 3116 const unsigned int ia_valid = attr->ia_valid;
3115 3117
3116 error = inode_change_ok(inode, attr); 3118 error = inode_change_ok(inode, attr);
3117 if (error) 3119 if (error)
3118 return error; 3120 return error;
3119 3121
3120 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 3122 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3121 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 3123 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3122 handle_t *handle; 3124 handle_t *handle;
3123 3125
3124 /* (user+group)*(old+new) structure, inode write (sb, 3126 /* (user+group)*(old+new) structure, inode write (sb,
3125 * inode block, ? - but truncate inode update has it) */ 3127 * inode block, ? - but truncate inode update has it) */
3126 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+ 3128 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3127 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3); 3129 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3128 if (IS_ERR(handle)) { 3130 if (IS_ERR(handle)) {
3129 error = PTR_ERR(handle); 3131 error = PTR_ERR(handle);
3130 goto err_out; 3132 goto err_out;
3131 } 3133 }
3132 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 3134 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3133 if (error) { 3135 if (error) {
3134 ext4_journal_stop(handle); 3136 ext4_journal_stop(handle);
3135 return error; 3137 return error;
3136 } 3138 }
3137 /* Update corresponding info in inode so that everything is in 3139 /* Update corresponding info in inode so that everything is in
3138 * one transaction */ 3140 * one transaction */
3139 if (attr->ia_valid & ATTR_UID) 3141 if (attr->ia_valid & ATTR_UID)
3140 inode->i_uid = attr->ia_uid; 3142 inode->i_uid = attr->ia_uid;
3141 if (attr->ia_valid & ATTR_GID) 3143 if (attr->ia_valid & ATTR_GID)
3142 inode->i_gid = attr->ia_gid; 3144 inode->i_gid = attr->ia_gid;
3143 error = ext4_mark_inode_dirty(handle, inode); 3145 error = ext4_mark_inode_dirty(handle, inode);
3144 ext4_journal_stop(handle); 3146 ext4_journal_stop(handle);
3145 } 3147 }
3146 3148
3147 if (attr->ia_valid & ATTR_SIZE) { 3149 if (attr->ia_valid & ATTR_SIZE) {
3148 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) { 3150 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3149 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3151 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3150 3152
3151 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 3153 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3152 error = -EFBIG; 3154 error = -EFBIG;
3153 goto err_out; 3155 goto err_out;
3154 } 3156 }
3155 } 3157 }
3156 } 3158 }
3157 3159
3158 if (S_ISREG(inode->i_mode) && 3160 if (S_ISREG(inode->i_mode) &&
3159 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) { 3161 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3160 handle_t *handle; 3162 handle_t *handle;
3161 3163
3162 handle = ext4_journal_start(inode, 3); 3164 handle = ext4_journal_start(inode, 3);
3163 if (IS_ERR(handle)) { 3165 if (IS_ERR(handle)) {
3164 error = PTR_ERR(handle); 3166 error = PTR_ERR(handle);
3165 goto err_out; 3167 goto err_out;
3166 } 3168 }
3167 3169
3168 error = ext4_orphan_add(handle, inode); 3170 error = ext4_orphan_add(handle, inode);
3169 EXT4_I(inode)->i_disksize = attr->ia_size; 3171 EXT4_I(inode)->i_disksize = attr->ia_size;
3170 rc = ext4_mark_inode_dirty(handle, inode); 3172 rc = ext4_mark_inode_dirty(handle, inode);
3171 if (!error) 3173 if (!error)
3172 error = rc; 3174 error = rc;
3173 ext4_journal_stop(handle); 3175 ext4_journal_stop(handle);
3174 } 3176 }
3175 3177
3176 rc = inode_setattr(inode, attr); 3178 rc = inode_setattr(inode, attr);
3177 3179
3178 /* If inode_setattr's call to ext4_truncate failed to get a 3180 /* If inode_setattr's call to ext4_truncate failed to get a
3179 * transaction handle at all, we need to clean up the in-core 3181 * transaction handle at all, we need to clean up the in-core
3180 * orphan list manually. */ 3182 * orphan list manually. */
3181 if (inode->i_nlink) 3183 if (inode->i_nlink)
3182 ext4_orphan_del(NULL, inode); 3184 ext4_orphan_del(NULL, inode);
3183 3185
3184 if (!rc && (ia_valid & ATTR_MODE)) 3186 if (!rc && (ia_valid & ATTR_MODE))
3185 rc = ext4_acl_chmod(inode); 3187 rc = ext4_acl_chmod(inode);
3186 3188
3187 err_out: 3189 err_out:
3188 ext4_std_error(inode->i_sb, error); 3190 ext4_std_error(inode->i_sb, error);
3189 if (!error) 3191 if (!error)
3190 error = rc; 3192 error = rc;
3191 return error; 3193 return error;
3192 } 3194 }
3193 3195
3194 3196
3195 /* 3197 /*
3196 * How many blocks doth make a writepage()? 3198 * How many blocks doth make a writepage()?
3197 * 3199 *
3198 * With N blocks per page, it may be: 3200 * With N blocks per page, it may be:
3199 * N data blocks 3201 * N data blocks
3200 * 2 indirect block 3202 * 2 indirect block
3201 * 2 dindirect 3203 * 2 dindirect
3202 * 1 tindirect 3204 * 1 tindirect
3203 * N+5 bitmap blocks (from the above) 3205 * N+5 bitmap blocks (from the above)
3204 * N+5 group descriptor summary blocks 3206 * N+5 group descriptor summary blocks
3205 * 1 inode block 3207 * 1 inode block
3206 * 1 superblock. 3208 * 1 superblock.
3207 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files 3209 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3208 * 3210 *
3209 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS 3211 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3210 * 3212 *
3211 * With ordered or writeback data it's the same, less the N data blocks. 3213 * With ordered or writeback data it's the same, less the N data blocks.
3212 * 3214 *
3213 * If the inode's direct blocks can hold an integral number of pages then a 3215 * If the inode's direct blocks can hold an integral number of pages then a
3214 * page cannot straddle two indirect blocks, and we can only touch one indirect 3216 * page cannot straddle two indirect blocks, and we can only touch one indirect
3215 * and dindirect block, and the "5" above becomes "3". 3217 * and dindirect block, and the "5" above becomes "3".
3216 * 3218 *
3217 * This still overestimates under most circumstances. If we were to pass the 3219 * This still overestimates under most circumstances. If we were to pass the
3218 * start and end offsets in here as well we could do block_to_path() on each 3220 * start and end offsets in here as well we could do block_to_path() on each
3219 * block and work out the exact number of indirects which are touched. Pah. 3221 * block and work out the exact number of indirects which are touched. Pah.
3220 */ 3222 */
3221 3223
3222 int ext4_writepage_trans_blocks(struct inode *inode) 3224 int ext4_writepage_trans_blocks(struct inode *inode)
3223 { 3225 {
3224 int bpp = ext4_journal_blocks_per_page(inode); 3226 int bpp = ext4_journal_blocks_per_page(inode);
3225 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3; 3227 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3226 int ret; 3228 int ret;
3227 3229
3228 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) 3230 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3229 return ext4_ext_writepage_trans_blocks(inode, bpp); 3231 return ext4_ext_writepage_trans_blocks(inode, bpp);
3230 3232
3231 if (ext4_should_journal_data(inode)) 3233 if (ext4_should_journal_data(inode))
3232 ret = 3 * (bpp + indirects) + 2; 3234 ret = 3 * (bpp + indirects) + 2;
3233 else 3235 else
3234 ret = 2 * (bpp + indirects) + 2; 3236 ret = 2 * (bpp + indirects) + 2;
3235 3237
3236 #ifdef CONFIG_QUOTA 3238 #ifdef CONFIG_QUOTA
3237 /* We know that structure was already allocated during DQUOT_INIT so 3239 /* We know that structure was already allocated during DQUOT_INIT so
3238 * we will be updating only the data blocks + inodes */ 3240 * we will be updating only the data blocks + inodes */
3239 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb); 3241 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3240 #endif 3242 #endif
3241 3243
3242 return ret; 3244 return ret;
3243 } 3245 }
3244 3246
3245 /* 3247 /*
3246 * The caller must have previously called ext4_reserve_inode_write(). 3248 * The caller must have previously called ext4_reserve_inode_write().
3247 * Give this, we know that the caller already has write access to iloc->bh. 3249 * Give this, we know that the caller already has write access to iloc->bh.
3248 */ 3250 */
3249 int ext4_mark_iloc_dirty(handle_t *handle, 3251 int ext4_mark_iloc_dirty(handle_t *handle,
3250 struct inode *inode, struct ext4_iloc *iloc) 3252 struct inode *inode, struct ext4_iloc *iloc)
3251 { 3253 {
3252 int err = 0; 3254 int err = 0;
3253 3255
3254 if (test_opt(inode->i_sb, I_VERSION)) 3256 if (test_opt(inode->i_sb, I_VERSION))
3255 inode_inc_iversion(inode); 3257 inode_inc_iversion(inode);
3256 3258
3257 /* the do_update_inode consumes one bh->b_count */ 3259 /* the do_update_inode consumes one bh->b_count */
3258 get_bh(iloc->bh); 3260 get_bh(iloc->bh);
3259 3261
3260 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 3262 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3261 err = ext4_do_update_inode(handle, inode, iloc); 3263 err = ext4_do_update_inode(handle, inode, iloc);
3262 put_bh(iloc->bh); 3264 put_bh(iloc->bh);
3263 return err; 3265 return err;
3264 } 3266 }
3265 3267
3266 /* 3268 /*
3267 * On success, We end up with an outstanding reference count against 3269 * On success, We end up with an outstanding reference count against
3268 * iloc->bh. This _must_ be cleaned up later. 3270 * iloc->bh. This _must_ be cleaned up later.
3269 */ 3271 */
3270 3272
3271 int 3273 int
3272 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 3274 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3273 struct ext4_iloc *iloc) 3275 struct ext4_iloc *iloc)
3274 { 3276 {
3275 int err = 0; 3277 int err = 0;
3276 if (handle) { 3278 if (handle) {
3277 err = ext4_get_inode_loc(inode, iloc); 3279 err = ext4_get_inode_loc(inode, iloc);
3278 if (!err) { 3280 if (!err) {
3279 BUFFER_TRACE(iloc->bh, "get_write_access"); 3281 BUFFER_TRACE(iloc->bh, "get_write_access");
3280 err = ext4_journal_get_write_access(handle, iloc->bh); 3282 err = ext4_journal_get_write_access(handle, iloc->bh);
3281 if (err) { 3283 if (err) {
3282 brelse(iloc->bh); 3284 brelse(iloc->bh);
3283 iloc->bh = NULL; 3285 iloc->bh = NULL;
3284 } 3286 }
3285 } 3287 }
3286 } 3288 }
3287 ext4_std_error(inode->i_sb, err); 3289 ext4_std_error(inode->i_sb, err);
3288 return err; 3290 return err;
3289 } 3291 }
3290 3292
3291 /* 3293 /*
3292 * Expand an inode by new_extra_isize bytes. 3294 * Expand an inode by new_extra_isize bytes.
3293 * Returns 0 on success or negative error number on failure. 3295 * Returns 0 on success or negative error number on failure.
3294 */ 3296 */
3295 static int ext4_expand_extra_isize(struct inode *inode, 3297 static int ext4_expand_extra_isize(struct inode *inode,
3296 unsigned int new_extra_isize, 3298 unsigned int new_extra_isize,
3297 struct ext4_iloc iloc, 3299 struct ext4_iloc iloc,
3298 handle_t *handle) 3300 handle_t *handle)
3299 { 3301 {
3300 struct ext4_inode *raw_inode; 3302 struct ext4_inode *raw_inode;
3301 struct ext4_xattr_ibody_header *header; 3303 struct ext4_xattr_ibody_header *header;
3302 struct ext4_xattr_entry *entry; 3304 struct ext4_xattr_entry *entry;
3303 3305
3304 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 3306 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3305 return 0; 3307 return 0;
3306 3308
3307 raw_inode = ext4_raw_inode(&iloc); 3309 raw_inode = ext4_raw_inode(&iloc);
3308 3310
3309 header = IHDR(inode, raw_inode); 3311 header = IHDR(inode, raw_inode);
3310 entry = IFIRST(header); 3312 entry = IFIRST(header);
3311 3313
3312 /* No extended attributes present */ 3314 /* No extended attributes present */
3313 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) || 3315 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3314 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 3316 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3315 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 3317 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3316 new_extra_isize); 3318 new_extra_isize);
3317 EXT4_I(inode)->i_extra_isize = new_extra_isize; 3319 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3318 return 0; 3320 return 0;
3319 } 3321 }
3320 3322
3321 /* try to expand with EAs present */ 3323 /* try to expand with EAs present */
3322 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 3324 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3323 raw_inode, handle); 3325 raw_inode, handle);
3324 } 3326 }
3325 3327
3326 /* 3328 /*
3327 * What we do here is to mark the in-core inode as clean with respect to inode 3329 * What we do here is to mark the in-core inode as clean with respect to inode
3328 * dirtiness (it may still be data-dirty). 3330 * dirtiness (it may still be data-dirty).
3329 * This means that the in-core inode may be reaped by prune_icache 3331 * This means that the in-core inode may be reaped by prune_icache
3330 * without having to perform any I/O. This is a very good thing, 3332 * without having to perform any I/O. This is a very good thing,
3331 * because *any* task may call prune_icache - even ones which 3333 * because *any* task may call prune_icache - even ones which
3332 * have a transaction open against a different journal. 3334 * have a transaction open against a different journal.
3333 * 3335 *
3334 * Is this cheating? Not really. Sure, we haven't written the 3336 * Is this cheating? Not really. Sure, we haven't written the
3335 * inode out, but prune_icache isn't a user-visible syncing function. 3337 * inode out, but prune_icache isn't a user-visible syncing function.
3336 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 3338 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3337 * we start and wait on commits. 3339 * we start and wait on commits.
3338 * 3340 *
3339 * Is this efficient/effective? Well, we're being nice to the system 3341 * Is this efficient/effective? Well, we're being nice to the system
3340 * by cleaning up our inodes proactively so they can be reaped 3342 * by cleaning up our inodes proactively so they can be reaped
3341 * without I/O. But we are potentially leaving up to five seconds' 3343 * without I/O. But we are potentially leaving up to five seconds'
3342 * worth of inodes floating about which prune_icache wants us to 3344 * worth of inodes floating about which prune_icache wants us to
3343 * write out. One way to fix that would be to get prune_icache() 3345 * write out. One way to fix that would be to get prune_icache()
3344 * to do a write_super() to free up some memory. It has the desired 3346 * to do a write_super() to free up some memory. It has the desired
3345 * effect. 3347 * effect.
3346 */ 3348 */
3347 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 3349 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3348 { 3350 {
3349 struct ext4_iloc iloc; 3351 struct ext4_iloc iloc;
3350 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3352 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3351 static unsigned int mnt_count; 3353 static unsigned int mnt_count;
3352 int err, ret; 3354 int err, ret;
3353 3355
3354 might_sleep(); 3356 might_sleep();
3355 err = ext4_reserve_inode_write(handle, inode, &iloc); 3357 err = ext4_reserve_inode_write(handle, inode, &iloc);
3356 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 3358 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3357 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) { 3359 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3358 /* 3360 /*
3359 * We need extra buffer credits since we may write into EA block 3361 * We need extra buffer credits since we may write into EA block
3360 * with this same handle. If journal_extend fails, then it will 3362 * with this same handle. If journal_extend fails, then it will
3361 * only result in a minor loss of functionality for that inode. 3363 * only result in a minor loss of functionality for that inode.
3362 * If this is felt to be critical, then e2fsck should be run to 3364 * If this is felt to be critical, then e2fsck should be run to
3363 * force a large enough s_min_extra_isize. 3365 * force a large enough s_min_extra_isize.
3364 */ 3366 */
3365 if ((jbd2_journal_extend(handle, 3367 if ((jbd2_journal_extend(handle,
3366 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 3368 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3367 ret = ext4_expand_extra_isize(inode, 3369 ret = ext4_expand_extra_isize(inode,
3368 sbi->s_want_extra_isize, 3370 sbi->s_want_extra_isize,
3369 iloc, handle); 3371 iloc, handle);
3370 if (ret) { 3372 if (ret) {
3371 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND; 3373 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3372 if (mnt_count != 3374 if (mnt_count !=
3373 le16_to_cpu(sbi->s_es->s_mnt_count)) { 3375 le16_to_cpu(sbi->s_es->s_mnt_count)) {
3374 ext4_warning(inode->i_sb, __func__, 3376 ext4_warning(inode->i_sb, __func__,
3375 "Unable to expand inode %lu. Delete" 3377 "Unable to expand inode %lu. Delete"
3376 " some EAs or run e2fsck.", 3378 " some EAs or run e2fsck.",
3377 inode->i_ino); 3379 inode->i_ino);
3378 mnt_count = 3380 mnt_count =
3379 le16_to_cpu(sbi->s_es->s_mnt_count); 3381 le16_to_cpu(sbi->s_es->s_mnt_count);
3380 } 3382 }
3381 } 3383 }
3382 } 3384 }
3383 } 3385 }
3384 if (!err) 3386 if (!err)
3385 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 3387 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3386 return err; 3388 return err;
3387 } 3389 }
3388 3390
3389 /* 3391 /*
3390 * ext4_dirty_inode() is called from __mark_inode_dirty() 3392 * ext4_dirty_inode() is called from __mark_inode_dirty()
3391 * 3393 *
3392 * We're really interested in the case where a file is being extended. 3394 * We're really interested in the case where a file is being extended.
3393 * i_size has been changed by generic_commit_write() and we thus need 3395 * i_size has been changed by generic_commit_write() and we thus need
3394 * to include the updated inode in the current transaction. 3396 * to include the updated inode in the current transaction.
3395 * 3397 *
3396 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks 3398 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3397 * are allocated to the file. 3399 * are allocated to the file.
3398 * 3400 *
3399 * If the inode is marked synchronous, we don't honour that here - doing 3401 * If the inode is marked synchronous, we don't honour that here - doing
3400 * so would cause a commit on atime updates, which we don't bother doing. 3402 * so would cause a commit on atime updates, which we don't bother doing.
3401 * We handle synchronous inodes at the highest possible level. 3403 * We handle synchronous inodes at the highest possible level.
3402 */ 3404 */
3403 void ext4_dirty_inode(struct inode *inode) 3405 void ext4_dirty_inode(struct inode *inode)
3404 { 3406 {
3405 handle_t *current_handle = ext4_journal_current_handle(); 3407 handle_t *current_handle = ext4_journal_current_handle();
3406 handle_t *handle; 3408 handle_t *handle;
3407 3409
3408 handle = ext4_journal_start(inode, 2); 3410 handle = ext4_journal_start(inode, 2);
3409 if (IS_ERR(handle)) 3411 if (IS_ERR(handle))
3410 goto out; 3412 goto out;
3411 if (current_handle && 3413 if (current_handle &&
3412 current_handle->h_transaction != handle->h_transaction) { 3414 current_handle->h_transaction != handle->h_transaction) {
3413 /* This task has a transaction open against a different fs */ 3415 /* This task has a transaction open against a different fs */
3414 printk(KERN_EMERG "%s: transactions do not match!\n", 3416 printk(KERN_EMERG "%s: transactions do not match!\n",
3415 __func__); 3417 __func__);
3416 } else { 3418 } else {
3417 jbd_debug(5, "marking dirty. outer handle=%p\n", 3419 jbd_debug(5, "marking dirty. outer handle=%p\n",
3418 current_handle); 3420 current_handle);
3419 ext4_mark_inode_dirty(handle, inode); 3421 ext4_mark_inode_dirty(handle, inode);
3420 } 3422 }
3421 ext4_journal_stop(handle); 3423 ext4_journal_stop(handle);
3422 out: 3424 out:
3423 return; 3425 return;
3424 } 3426 }
3425 3427
3426 #if 0 3428 #if 0
3427 /* 3429 /*
3428 * Bind an inode's backing buffer_head into this transaction, to prevent 3430 * Bind an inode's backing buffer_head into this transaction, to prevent
3429 * it from being flushed to disk early. Unlike 3431 * it from being flushed to disk early. Unlike
3430 * ext4_reserve_inode_write, this leaves behind no bh reference and 3432 * ext4_reserve_inode_write, this leaves behind no bh reference and
3431 * returns no iloc structure, so the caller needs to repeat the iloc 3433 * returns no iloc structure, so the caller needs to repeat the iloc
3432 * lookup to mark the inode dirty later. 3434 * lookup to mark the inode dirty later.
3433 */ 3435 */
3434 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 3436 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3435 { 3437 {
3436 struct ext4_iloc iloc; 3438 struct ext4_iloc iloc;
3437 3439
3438 int err = 0; 3440 int err = 0;
3439 if (handle) { 3441 if (handle) {
3440 err = ext4_get_inode_loc(inode, &iloc); 3442 err = ext4_get_inode_loc(inode, &iloc);
3441 if (!err) { 3443 if (!err) {
3442 BUFFER_TRACE(iloc.bh, "get_write_access"); 3444 BUFFER_TRACE(iloc.bh, "get_write_access");
3443 err = jbd2_journal_get_write_access(handle, iloc.bh); 3445 err = jbd2_journal_get_write_access(handle, iloc.bh);
3444 if (!err) 3446 if (!err)
3445 err = ext4_journal_dirty_metadata(handle, 3447 err = ext4_journal_dirty_metadata(handle,
3446 iloc.bh); 3448 iloc.bh);
3447 brelse(iloc.bh); 3449 brelse(iloc.bh);
3448 } 3450 }
3449 } 3451 }
3450 ext4_std_error(inode->i_sb, err); 3452 ext4_std_error(inode->i_sb, err);
3451 return err; 3453 return err;
3452 } 3454 }
3453 #endif 3455 #endif
3454 3456
3455 int ext4_change_inode_journal_flag(struct inode *inode, int val) 3457 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3456 { 3458 {
3457 journal_t *journal; 3459 journal_t *journal;
3458 handle_t *handle; 3460 handle_t *handle;
3459 int err; 3461 int err;
3460 3462
3461 /* 3463 /*
3462 * We have to be very careful here: changing a data block's 3464 * We have to be very careful here: changing a data block's
3463 * journaling status dynamically is dangerous. If we write a 3465 * journaling status dynamically is dangerous. If we write a
3464 * data block to the journal, change the status and then delete 3466 * data block to the journal, change the status and then delete
3465 * that block, we risk forgetting to revoke the old log record 3467 * that block, we risk forgetting to revoke the old log record
3466 * from the journal and so a subsequent replay can corrupt data. 3468 * from the journal and so a subsequent replay can corrupt data.
3467 * So, first we make sure that the journal is empty and that 3469 * So, first we make sure that the journal is empty and that
3468 * nobody is changing anything. 3470 * nobody is changing anything.
3469 */ 3471 */
3470 3472
3471 journal = EXT4_JOURNAL(inode); 3473 journal = EXT4_JOURNAL(inode);
3472 if (is_journal_aborted(journal)) 3474 if (is_journal_aborted(journal))
3473 return -EROFS; 3475 return -EROFS;
3474 3476
3475 jbd2_journal_lock_updates(journal); 3477 jbd2_journal_lock_updates(journal);
3476 jbd2_journal_flush(journal); 3478 jbd2_journal_flush(journal);
3477 3479
3478 /* 3480 /*
3479 * OK, there are no updates running now, and all cached data is 3481 * OK, there are no updates running now, and all cached data is
3480 * synced to disk. We are now in a completely consistent state 3482 * synced to disk. We are now in a completely consistent state
3481 * which doesn't have anything in the journal, and we know that 3483 * which doesn't have anything in the journal, and we know that
3482 * no filesystem updates are running, so it is safe to modify 3484 * no filesystem updates are running, so it is safe to modify
3483 * the inode's in-core data-journaling state flag now. 3485 * the inode's in-core data-journaling state flag now.
3484 */ 3486 */
3485 3487
3486 if (val) 3488 if (val)
3487 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL; 3489 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3488 else 3490 else
3489 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL; 3491 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3490 ext4_set_aops(inode); 3492 ext4_set_aops(inode);
3491 3493
3492 jbd2_journal_unlock_updates(journal); 3494 jbd2_journal_unlock_updates(journal);
3493 3495
3494 /* Finally we can mark the inode as dirty. */ 3496 /* Finally we can mark the inode as dirty. */
3495 3497
3496 handle = ext4_journal_start(inode, 1); 3498 handle = ext4_journal_start(inode, 1);
3497 if (IS_ERR(handle)) 3499 if (IS_ERR(handle))
3498 return PTR_ERR(handle); 3500 return PTR_ERR(handle);
3499 3501
3500 err = ext4_mark_inode_dirty(handle, inode); 3502 err = ext4_mark_inode_dirty(handle, inode);
3501 handle->h_sync = 1; 3503 handle->h_sync = 1;
3502 ext4_journal_stop(handle); 3504 ext4_journal_stop(handle);
3503 ext4_std_error(inode->i_sb, err); 3505 ext4_std_error(inode->i_sb, err);
3504 3506
3505 return err; 3507 return err;
3506 } 3508 }
3507 3509