Blame view
lib/decompress_bunzip2.c
23.2 KB
bc22c17e1 bzip2/lzma: libra... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
/* vi: set sw = 4 ts = 4: */ /* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net). Based on bzip2 decompression code by Julian R Seward (jseward@acm.org), which also acknowledges contributions by Mike Burrows, David Wheeler, Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten, Robert Sedgewick, and Jon L. Bentley. This code is licensed under the LGPLv2: LGPL (http://www.gnu.org/copyleft/lgpl.html */ /* Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org). More efficient reading of Huffman codes, a streamlined read_bunzip() function, and various other tweaks. In (limited) tests, approximately 20% faster than bzcat on x86 and about 10% faster on arm. Note that about 2/3 of the time is spent in read_unzip() reversing the Burrows-Wheeler transformation. Much of that time is delay resulting from cache misses. I would ask that anyone benefiting from this work, especially those using it in commercial products, consider making a donation to my local non-profit hospice organization in the name of the woman I loved, who passed away Feb. 12, 2003. In memory of Toni W. Hagan Hospice of Acadiana, Inc. 2600 Johnston St., Suite 200 Lafayette, LA 70503-3240 Phone (337) 232-1234 or 1-800-738-2226 Fax (337) 232-1297 http://www.hospiceacadiana.com/ Manuel */ /* Made it fit for running in Linux Kernel by Alain Knaff (alain@knaff.lu) */ |
b1af4315d bzip2/lzma: remov... |
46 47 48 |
#ifdef STATIC #define PREBOOT #else |
bc22c17e1 bzip2/lzma: libra... |
49 |
#include <linux/decompress/bunzip2.h> |
9e5cf0ca2 lib/decompress_*:... |
50 |
#include <linux/slab.h> |
b1af4315d bzip2/lzma: remov... |
51 |
#endif /* STATIC */ |
bc22c17e1 bzip2/lzma: libra... |
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
#include <linux/decompress/mm.h> #ifndef INT_MAX #define INT_MAX 0x7fffffff #endif /* Constants for Huffman coding */ #define MAX_GROUPS 6 #define GROUP_SIZE 50 /* 64 would have been more efficient */ #define MAX_HUFCODE_BITS 20 /* Longest Huffman code allowed */ #define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */ #define SYMBOL_RUNA 0 #define SYMBOL_RUNB 1 /* Status return values */ #define RETVAL_OK 0 #define RETVAL_LAST_BLOCK (-1) #define RETVAL_NOT_BZIP_DATA (-2) #define RETVAL_UNEXPECTED_INPUT_EOF (-3) #define RETVAL_UNEXPECTED_OUTPUT_EOF (-4) #define RETVAL_DATA_ERROR (-5) #define RETVAL_OUT_OF_MEMORY (-6) #define RETVAL_OBSOLETE_INPUT (-7) /* Other housekeeping constants */ #define BZIP2_IOBUF_SIZE 4096 /* This is what we know about each Huffman coding group */ struct group_data { /* We have an extra slot at the end of limit[] for a sentinal value. */ int limit[MAX_HUFCODE_BITS+1]; int base[MAX_HUFCODE_BITS]; int permute[MAX_SYMBOLS]; int minLen, maxLen; }; /* Structure holding all the housekeeping data, including IO buffers and memory that persists between calls to bunzip */ struct bunzip_data { /* State for interrupting output loop */ int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent; /* I/O tracking data (file handles, buffers, positions, etc.) */ int (*fill)(void*, unsigned int); int inbufCount, inbufPos /*, outbufPos*/; unsigned char *inbuf /*,*outbuf*/; unsigned int inbufBitCount, inbufBits; /* The CRC values stored in the block header and calculated from the data */ unsigned int crc32Table[256], headerCRC, totalCRC, writeCRC; /* Intermediate buffer and its size (in bytes) */ unsigned int *dbuf, dbufSize; /* These things are a bit too big to go on the stack */ unsigned char selectors[32768]; /* nSelectors = 15 bits */ struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */ int io_error; /* non-zero if we have IO error */ }; /* Return the next nnn bits of input. All reads from the compressed input are done through this function. All reads are big endian */ static unsigned int INIT get_bits(struct bunzip_data *bd, char bits_wanted) { unsigned int bits = 0; /* If we need to get more data from the byte buffer, do so. (Loop getting one byte at a time to enforce endianness and avoid unaligned access.) */ while (bd->inbufBitCount < bits_wanted) { /* If we need to read more data from file into byte buffer, do so */ if (bd->inbufPos == bd->inbufCount) { if (bd->io_error) return 0; bd->inbufCount = bd->fill(bd->inbuf, BZIP2_IOBUF_SIZE); if (bd->inbufCount <= 0) { bd->io_error = RETVAL_UNEXPECTED_INPUT_EOF; return 0; } bd->inbufPos = 0; } /* Avoid 32-bit overflow (dump bit buffer to top of output) */ if (bd->inbufBitCount >= 24) { bits = bd->inbufBits&((1 << bd->inbufBitCount)-1); bits_wanted -= bd->inbufBitCount; bits <<= bits_wanted; bd->inbufBitCount = 0; } /* Grab next 8 bits of input from buffer. */ bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++]; bd->inbufBitCount += 8; } /* Calculate result */ bd->inbufBitCount -= bits_wanted; bits |= (bd->inbufBits >> bd->inbufBitCount)&((1 << bits_wanted)-1); return bits; } /* Unpacks the next block and sets up for the inverse burrows-wheeler step. */ static int INIT get_next_block(struct bunzip_data *bd) { struct group_data *hufGroup = NULL; int *base = NULL; int *limit = NULL; int dbufCount, nextSym, dbufSize, groupCount, selector, i, j, k, t, runPos, symCount, symTotal, nSelectors, byteCount[256]; unsigned char uc, symToByte[256], mtfSymbol[256], *selectors; unsigned int *dbuf, origPtr; dbuf = bd->dbuf; dbufSize = bd->dbufSize; selectors = bd->selectors; /* Read in header signature and CRC, then validate signature. (last block signature means CRC is for whole file, return now) */ i = get_bits(bd, 24); j = get_bits(bd, 24); bd->headerCRC = get_bits(bd, 32); if ((i == 0x177245) && (j == 0x385090)) return RETVAL_LAST_BLOCK; if ((i != 0x314159) || (j != 0x265359)) return RETVAL_NOT_BZIP_DATA; /* We can add support for blockRandomised if anybody complains. There was some code for this in busybox 1.0.0-pre3, but nobody ever noticed that it didn't actually work. */ if (get_bits(bd, 1)) return RETVAL_OBSOLETE_INPUT; origPtr = get_bits(bd, 24); if (origPtr > dbufSize) return RETVAL_DATA_ERROR; /* mapping table: if some byte values are never used (encoding things like ascii text), the compression code removes the gaps to have fewer symbols to deal with, and writes a sparse bitfield indicating which values were present. We make a translation table to convert the symbols back to the corresponding bytes. */ t = get_bits(bd, 16); symTotal = 0; for (i = 0; i < 16; i++) { if (t&(1 << (15-i))) { k = get_bits(bd, 16); for (j = 0; j < 16; j++) if (k&(1 << (15-j))) symToByte[symTotal++] = (16*i)+j; } } /* How many different Huffman coding groups does this block use? */ groupCount = get_bits(bd, 3); if (groupCount < 2 || groupCount > MAX_GROUPS) return RETVAL_DATA_ERROR; /* nSelectors: Every GROUP_SIZE many symbols we select a new Huffman coding group. Read in the group selector list, which is stored as MTF encoded bit runs. (MTF = Move To Front, as each value is used it's moved to the start of the list.) */ nSelectors = get_bits(bd, 15); if (!nSelectors) return RETVAL_DATA_ERROR; for (i = 0; i < groupCount; i++) mtfSymbol[i] = i; for (i = 0; i < nSelectors; i++) { /* Get next value */ for (j = 0; get_bits(bd, 1); j++) if (j >= groupCount) return RETVAL_DATA_ERROR; /* Decode MTF to get the next selector */ uc = mtfSymbol[j]; for (; j; j--) mtfSymbol[j] = mtfSymbol[j-1]; mtfSymbol[0] = selectors[i] = uc; } /* Read the Huffman coding tables for each group, which code for symTotal literal symbols, plus two run symbols (RUNA, RUNB) */ symCount = symTotal+2; for (j = 0; j < groupCount; j++) { unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1]; int minLen, maxLen, pp; /* Read Huffman code lengths for each symbol. They're stored in a way similar to mtf; record a starting value for the first symbol, and an offset from the previous value for everys symbol after that. (Subtracting 1 before the loop and then adding it back at the end is an optimization that makes the test inside the loop simpler: symbol length 0 becomes negative, so an unsigned inequality catches it.) */ t = get_bits(bd, 5)-1; for (i = 0; i < symCount; i++) { for (;;) { if (((unsigned)t) > (MAX_HUFCODE_BITS-1)) return RETVAL_DATA_ERROR; /* If first bit is 0, stop. Else second bit indicates whether to increment or decrement the value. Optimization: grab 2 bits and unget the second if the first was 0. */ k = get_bits(bd, 2); if (k < 2) { bd->inbufBitCount++; break; } /* Add one if second bit 1, else * subtract 1. Avoids if/else */ t += (((k+1)&2)-1); } /* Correct for the initial -1, to get the * final symbol length */ length[i] = t+1; } /* Find largest and smallest lengths in this group */ minLen = maxLen = length[0]; for (i = 1; i < symCount; i++) { if (length[i] > maxLen) maxLen = length[i]; else if (length[i] < minLen) minLen = length[i]; } /* Calculate permute[], base[], and limit[] tables from * length[]. * * permute[] is the lookup table for converting * Huffman coded symbols into decoded symbols. base[] * is the amount to subtract from the value of a * Huffman symbol of a given length when using * permute[]. * * limit[] indicates the largest numerical value a * symbol with a given number of bits can have. This * is how the Huffman codes can vary in length: each * code with a value > limit[length] needs another * bit. */ hufGroup = bd->groups+j; hufGroup->minLen = minLen; hufGroup->maxLen = maxLen; /* Note that minLen can't be smaller than 1, so we adjust the base and limit array pointers so we're not always wasting the first entry. We do this again when using them (during symbol decoding).*/ base = hufGroup->base-1; limit = hufGroup->limit-1; /* Calculate permute[]. Concurently, initialize * temp[] and limit[]. */ pp = 0; for (i = minLen; i <= maxLen; i++) { temp[i] = limit[i] = 0; for (t = 0; t < symCount; t++) if (length[t] == i) hufGroup->permute[pp++] = t; } /* Count symbols coded for at each bit length */ for (i = 0; i < symCount; i++) temp[length[i]]++; /* Calculate limit[] (the largest symbol-coding value *at each bit length, which is (previous limit << *1)+symbols at this level), and base[] (number of *symbols to ignore at each bit length, which is limit *minus the cumulative count of symbols coded for *already). */ pp = t = 0; for (i = minLen; i < maxLen; i++) { pp += temp[i]; /* We read the largest possible symbol size and then unget bits after determining how many we need, and those extra bits could be set to anything. (They're noise from future symbols.) At each level we're really only interested in the first few bits, so here we set all the trailing to-be-ignored bits to 1 so they don't affect the value > limit[length] comparison. */ limit[i] = (pp << (maxLen - i)) - 1; pp <<= 1; base[i+1] = pp-(t += temp[i]); } limit[maxLen+1] = INT_MAX; /* Sentinal value for * reading next sym. */ limit[maxLen] = pp+temp[maxLen]-1; base[minLen] = 0; } /* We've finished reading and digesting the block header. Now read this block's Huffman coded symbols from the file and undo the Huffman coding and run length encoding, saving the result into dbuf[dbufCount++] = uc */ /* Initialize symbol occurrence counters and symbol Move To * Front table */ for (i = 0; i < 256; i++) { byteCount[i] = 0; mtfSymbol[i] = (unsigned char)i; } /* Loop through compressed symbols. */ runPos = dbufCount = symCount = selector = 0; for (;;) { /* Determine which Huffman coding group to use. */ if (!(symCount--)) { symCount = GROUP_SIZE-1; if (selector >= nSelectors) return RETVAL_DATA_ERROR; hufGroup = bd->groups+selectors[selector++]; base = hufGroup->base-1; limit = hufGroup->limit-1; } /* Read next Huffman-coded symbol. */ /* Note: It is far cheaper to read maxLen bits and back up than it is to read minLen bits and then an additional bit at a time, testing as we go. Because there is a trailing last block (with file CRC), there is no danger of the overread causing an unexpected EOF for a valid compressed file. As a further optimization, we do the read inline (falling back to a call to get_bits if the buffer runs dry). The following (up to got_huff_bits:) is equivalent to j = get_bits(bd, hufGroup->maxLen); */ while (bd->inbufBitCount < hufGroup->maxLen) { if (bd->inbufPos == bd->inbufCount) { j = get_bits(bd, hufGroup->maxLen); goto got_huff_bits; } bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++]; bd->inbufBitCount += 8; }; bd->inbufBitCount -= hufGroup->maxLen; j = (bd->inbufBits >> bd->inbufBitCount)& ((1 << hufGroup->maxLen)-1); got_huff_bits: /* Figure how how many bits are in next symbol and * unget extras */ i = hufGroup->minLen; while (j > limit[i]) ++i; bd->inbufBitCount += (hufGroup->maxLen - i); /* Huffman decode value to get nextSym (with bounds checking) */ if ((i > hufGroup->maxLen) || (((unsigned)(j = (j>>(hufGroup->maxLen-i))-base[i])) >= MAX_SYMBOLS)) return RETVAL_DATA_ERROR; nextSym = hufGroup->permute[j]; /* We have now decoded the symbol, which indicates either a new literal byte, or a repeated run of the most recent literal byte. First, check if nextSym indicates a repeated run, and if so loop collecting how many times to repeat the last literal. */ if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */ /* If this is the start of a new run, zero out * counter */ if (!runPos) { runPos = 1; t = 0; } /* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at each bit position, add 1 or 2 instead. For example, 1011 is 1 << 0 + 1 << 1 + 2 << 2. 1010 is 2 << 0 + 2 << 1 + 1 << 2. You can make any bit pattern that way using 1 less symbol than the basic or 0/1 method (except all bits 0, which would use no symbols, but a run of length 0 doesn't mean anything in this context). Thus space is saved. */ t += (runPos << nextSym); /* +runPos if RUNA; +2*runPos if RUNB */ runPos <<= 1; continue; } /* When we hit the first non-run symbol after a run, we now know how many times to repeat the last literal, so append that many copies to our buffer of decoded symbols (dbuf) now. (The last literal used is the one at the head of the mtfSymbol array.) */ if (runPos) { runPos = 0; if (dbufCount+t >= dbufSize) return RETVAL_DATA_ERROR; uc = symToByte[mtfSymbol[0]]; byteCount[uc] += t; while (t--) dbuf[dbufCount++] = uc; } /* Is this the terminating symbol? */ if (nextSym > symTotal) break; /* At this point, nextSym indicates a new literal character. Subtract one to get the position in the MTF array at which this literal is currently to be found. (Note that the result can't be -1 or 0, because 0 and 1 are RUNA and RUNB. But another instance of the first symbol in the mtf array, position 0, would have been handled as part of a run above. Therefore 1 unused mtf position minus 2 non-literal nextSym values equals -1.) */ if (dbufCount >= dbufSize) return RETVAL_DATA_ERROR; i = nextSym - 1; uc = mtfSymbol[i]; /* Adjust the MTF array. Since we typically expect to *move only a small number of symbols, and are bound *by 256 in any case, using memmove here would *typically be bigger and slower due to function call *overhead and other assorted setup costs. */ do { mtfSymbol[i] = mtfSymbol[i-1]; } while (--i); mtfSymbol[0] = uc; uc = symToByte[uc]; /* We have our literal byte. Save it into dbuf. */ byteCount[uc]++; dbuf[dbufCount++] = (unsigned int)uc; } /* At this point, we've read all the Huffman-coded symbols (and repeated runs) for this block from the input stream, and decoded them into the intermediate buffer. There are dbufCount many decoded bytes in dbuf[]. Now undo the Burrows-Wheeler transform on dbuf. See http://dogma.net/markn/articles/bwt/bwt.htm */ /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */ j = 0; for (i = 0; i < 256; i++) { k = j+byteCount[i]; byteCount[i] = j; j = k; } /* Figure out what order dbuf would be in if we sorted it. */ for (i = 0; i < dbufCount; i++) { uc = (unsigned char)(dbuf[i] & 0xff); dbuf[byteCount[uc]] |= (i << 8); byteCount[uc]++; } /* Decode first byte by hand to initialize "previous" byte. Note that it doesn't get output, and if the first three characters are identical it doesn't qualify as a run (hence writeRunCountdown = 5). */ if (dbufCount) { if (origPtr >= dbufCount) return RETVAL_DATA_ERROR; bd->writePos = dbuf[origPtr]; bd->writeCurrent = (unsigned char)(bd->writePos&0xff); bd->writePos >>= 8; bd->writeRunCountdown = 5; } bd->writeCount = dbufCount; return RETVAL_OK; } /* Undo burrows-wheeler transform on intermediate buffer to produce output. If start_bunzip was initialized with out_fd =-1, then up to len bytes of data are written to outbuf. Return value is number of bytes written or error (all errors are negative numbers). If out_fd!=-1, outbuf and len are ignored, data is written to out_fd and return is RETVAL_OK or error. */ static int INIT read_bunzip(struct bunzip_data *bd, char *outbuf, int len) { const unsigned int *dbuf; int pos, xcurrent, previous, gotcount; /* If last read was short due to end of file, return last block now */ if (bd->writeCount < 0) return bd->writeCount; gotcount = 0; dbuf = bd->dbuf; pos = bd->writePos; xcurrent = bd->writeCurrent; /* We will always have pending decoded data to write into the output buffer unless this is the very first call (in which case we haven't Huffman-decoded a block into the intermediate buffer yet). */ if (bd->writeCopies) { /* Inside the loop, writeCopies means extra copies (beyond 1) */ --bd->writeCopies; /* Loop outputting bytes */ for (;;) { /* If the output buffer is full, snapshot * state and return */ if (gotcount >= len) { bd->writePos = pos; bd->writeCurrent = xcurrent; bd->writeCopies++; return len; } /* Write next byte into output buffer, updating CRC */ outbuf[gotcount++] = xcurrent; bd->writeCRC = (((bd->writeCRC) << 8) ^bd->crc32Table[((bd->writeCRC) >> 24) ^xcurrent]); /* Loop now if we're outputting multiple * copies of this byte */ if (bd->writeCopies) { --bd->writeCopies; continue; } decode_next_byte: if (!bd->writeCount--) break; /* Follow sequence vector to undo * Burrows-Wheeler transform */ previous = xcurrent; pos = dbuf[pos]; xcurrent = pos&0xff; pos >>= 8; /* After 3 consecutive copies of the same byte, the 4th is a repeat count. We count down from 4 instead *of counting up because testing for non-zero is faster */ if (--bd->writeRunCountdown) { if (xcurrent != previous) bd->writeRunCountdown = 4; } else { /* We have a repeated run, this byte * indicates the count */ bd->writeCopies = xcurrent; xcurrent = previous; bd->writeRunCountdown = 5; /* Sometimes there are just 3 bytes * (run length 0) */ if (!bd->writeCopies) goto decode_next_byte; /* Subtract the 1 copy we'd output * anyway to get extras */ --bd->writeCopies; } } /* Decompression of this block completed successfully */ bd->writeCRC = ~bd->writeCRC; bd->totalCRC = ((bd->totalCRC << 1) | (bd->totalCRC >> 31)) ^ bd->writeCRC; /* If this block had a CRC error, force file level CRC error. */ if (bd->writeCRC != bd->headerCRC) { bd->totalCRC = bd->headerCRC+1; return RETVAL_LAST_BLOCK; } } /* Refill the intermediate buffer by Huffman-decoding next * block of input */ /* (previous is just a convenient unused temp variable here) */ previous = get_next_block(bd); if (previous) { bd->writeCount = previous; return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount; } bd->writeCRC = 0xffffffffUL; pos = bd->writePos; xcurrent = bd->writeCurrent; goto decode_next_byte; } static int INIT nofill(void *buf, unsigned int len) { return -1; } /* Allocate the structure, read file header. If in_fd ==-1, inbuf must contain a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are ignored, and data is read from file handle into temporary buffer. */ static int INIT start_bunzip(struct bunzip_data **bdp, void *inbuf, int len, int (*fill)(void*, unsigned int)) { struct bunzip_data *bd; unsigned int i, j, c; const unsigned int BZh0 = (((unsigned int)'B') << 24)+(((unsigned int)'Z') << 16) +(((unsigned int)'h') << 8)+(unsigned int)'0'; /* Figure out how much data to allocate */ i = sizeof(struct bunzip_data); /* Allocate bunzip_data. Most fields initialize to zero. */ bd = *bdp = malloc(i); memset(bd, 0, sizeof(struct bunzip_data)); /* Setup input buffer */ bd->inbuf = inbuf; bd->inbufCount = len; if (fill != NULL) bd->fill = fill; else bd->fill = nofill; /* Init the CRC32 table (big endian) */ for (i = 0; i < 256; i++) { c = i << 24; for (j = 8; j; j--) c = c&0x80000000 ? (c << 1)^0x04c11db7 : (c << 1); bd->crc32Table[i] = c; } /* Ensure that file starts with "BZh['1'-'9']." */ i = get_bits(bd, 32); if (((unsigned int)(i-BZh0-1)) >= 9) return RETVAL_NOT_BZIP_DATA; /* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of uncompressed data. Allocate intermediate buffer for block. */ bd->dbufSize = 100000*(i-BZh0); bd->dbuf = large_malloc(bd->dbufSize * sizeof(int)); return RETVAL_OK; } /* Example usage: decompress src_fd to dst_fd. (Stops at end of bzip2 data, not end of file.) */ STATIC int INIT bunzip2(unsigned char *buf, int len, int(*fill)(void*, unsigned int), int(*flush)(void*, unsigned int), unsigned char *outbuf, int *pos, void(*error_fn)(char *x)) { struct bunzip_data *bd; int i = -1; unsigned char *inbuf; set_error_fn(error_fn); if (flush) outbuf = malloc(BZIP2_IOBUF_SIZE); |
b1af4315d bzip2/lzma: remov... |
684 |
|
bc22c17e1 bzip2/lzma: libra... |
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 |
if (!outbuf) { error("Could not allocate output bufer"); return -1; } if (buf) inbuf = buf; else inbuf = malloc(BZIP2_IOBUF_SIZE); if (!inbuf) { error("Could not allocate input bufer"); goto exit_0; } i = start_bunzip(&bd, inbuf, len, fill); if (!i) { for (;;) { i = read_bunzip(bd, outbuf, BZIP2_IOBUF_SIZE); if (i <= 0) break; if (!flush) outbuf += i; else if (i != flush(outbuf, i)) { i = RETVAL_UNEXPECTED_OUTPUT_EOF; break; } } } /* Check CRC and release memory */ if (i == RETVAL_LAST_BLOCK) { if (bd->headerCRC != bd->totalCRC) error("Data integrity error when decompressing."); else i = RETVAL_OK; } else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) { error("Compressed file ends unexpectedly"); } if (bd->dbuf) large_free(bd->dbuf); if (pos) *pos = bd->inbufPos; free(bd); if (!buf) free(inbuf); exit_0: if (flush) free(outbuf); return i; } |
b1af4315d bzip2/lzma: remov... |
733 734 735 736 737 738 739 740 741 742 743 |
#ifdef PREBOOT STATIC int INIT decompress(unsigned char *buf, int len, int(*fill)(void*, unsigned int), int(*flush)(void*, unsigned int), unsigned char *outbuf, int *pos, void(*error_fn)(char *x)) { return bunzip2(buf, len - 4, fill, flush, outbuf, pos, error_fn); } #endif |