Blame view

Documentation/driver-api/vme.rst 10.4 KB
81f7e3824   Eric Lee   Initial Release, ...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
  VME Device Drivers
  ==================
  
  Driver registration
  -------------------
  
  As with other subsystems within the Linux kernel, VME device drivers register
  with the VME subsystem, typically called from the devices init routine.  This is
  achieved via a call to :c:func:`vme_register_driver`.
  
  A pointer to a structure of type :c:type:`struct vme_driver <vme_driver>` must
  be provided to the registration function. Along with the maximum number of
  devices your driver is able to support.
  
  At the minimum, the '.name', '.match' and '.probe' elements of
  :c:type:`struct vme_driver <vme_driver>` should be correctly set. The '.name'
  element is a pointer to a string holding the device driver's name.
  
  The '.match' function allows control over which VME devices should be registered
  with the driver. The match function should return 1 if a device should be
  probed and 0 otherwise. This example match function (from vme_user.c) limits
  the number of devices probed to one:
  
  .. code-block:: c
  
  	#define USER_BUS_MAX	1
  	...
  	static int vme_user_match(struct vme_dev *vdev)
  	{
  		if (vdev->id.num >= USER_BUS_MAX)
  			return 0;
  		return 1;
  	}
  
  The '.probe' element should contain a pointer to the probe routine. The
  probe routine is passed a :c:type:`struct vme_dev <vme_dev>` pointer as an
  argument.
  
  Here, the 'num' field refers to the sequential device ID for this specific
  driver. The bridge number (or bus number) can be accessed using
  dev->bridge->num.
  
  A function is also provided to unregister the driver from the VME core called
  :c:func:`vme_unregister_driver` and should usually be called from the device
  driver's exit routine.
  
  
  Resource management
  -------------------
  
  Once a driver has registered with the VME core the provided match routine will
  be called the number of times specified during the registration. If a match
  succeeds, a non-zero value should be returned. A zero return value indicates
  failure. For all successful matches, the probe routine of the corresponding
  driver is called. The probe routine is passed a pointer to the devices
  device structure. This pointer should be saved, it will be required for
  requesting VME resources.
  
  The driver can request ownership of one or more master windows
  (:c:func:`vme_master_request`), slave windows (:c:func:`vme_slave_request`)
  and/or dma channels (:c:func:`vme_dma_request`). Rather than allowing the device
  driver to request a specific window or DMA channel (which may be used by a
  different driver) the API allows a resource to be assigned based on the required
  attributes of the driver in question. For slave windows these attributes are
  split into the VME address spaces that need to be accessed in 'aspace' and VME
  bus cycle types required in 'cycle'. Master windows add a further set of
  attributes in 'width' specifying the required data transfer widths. These
  attributes are defined as bitmasks and as such any combination of the
  attributes can be requested for a single window, the core will assign a window
  that meets the requirements, returning a pointer of type vme_resource that
  should be used to identify the allocated resource when it is used. For DMA
  controllers, the request function requires the potential direction of any
  transfers to be provided in the route attributes. This is typically VME-to-MEM
  and/or MEM-to-VME, though some hardware can support VME-to-VME and MEM-to-MEM
  transfers as well as test pattern generation. If an unallocated window fitting
  the requirements can not be found a NULL pointer will be returned.
  
  Functions are also provided to free window allocations once they are no longer
  required. These functions (:c:func:`vme_master_free`, :c:func:`vme_slave_free`
  and :c:func:`vme_dma_free`) should be passed the pointer to the resource
  provided during resource allocation.
  
  
  Master windows
  --------------
  
  Master windows provide access from the local processor[s] out onto the VME bus.
  The number of windows available and the available access modes is dependent on
  the underlying chipset. A window must be configured before it can be used.
  
  
  Master window configuration
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~
  
  Once a master window has been assigned :c:func:`vme_master_set` can be used to
  configure it and :c:func:`vme_master_get` to retrieve the current settings. The
  address spaces, transfer widths and cycle types are the same as described
  under resource management, however some of the options are mutually exclusive.
  For example, only one address space may be specified.
  
  
  Master window access
  ~~~~~~~~~~~~~~~~~~~~
  
  The function :c:func:`vme_master_read` can be used to read from and
  :c:func:`vme_master_write` used to write to configured master windows.
  
  In addition to simple reads and writes, :c:func:`vme_master_rmw` is provided to
  do a read-modify-write transaction. Parts of a VME window can also be mapped
  into user space memory using :c:func:`vme_master_mmap`.
  
  
  Slave windows
  -------------
  
  Slave windows provide devices on the VME bus access into mapped portions of the
  local memory. The number of windows available and the access modes that can be
  used is dependent on the underlying chipset. A window must be configured before
  it can be used.
  
  
  Slave window configuration
  ~~~~~~~~~~~~~~~~~~~~~~~~~~
  
  Once a slave window has been assigned :c:func:`vme_slave_set` can be used to
  configure it and :c:func:`vme_slave_get` to retrieve the current settings.
  
  The address spaces, transfer widths and cycle types are the same as described
  under resource management, however some of the options are mutually exclusive.
  For example, only one address space may be specified.
  
  
  Slave window buffer allocation
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  
  Functions are provided to allow the user to allocate
  (:c:func:`vme_alloc_consistent`) and free (:c:func:`vme_free_consistent`)
  contiguous buffers which will be accessible by the VME bridge. These functions
  do not have to be used, other methods can be used to allocate a buffer, though
  care must be taken to ensure that they are contiguous and accessible by the VME
  bridge.
  
  
  Slave window access
  ~~~~~~~~~~~~~~~~~~~
  
  Slave windows map local memory onto the VME bus, the standard methods for
  accessing memory should be used.
  
  
  DMA channels
  ------------
  
  The VME DMA transfer provides the ability to run link-list DMA transfers. The
  API introduces the concept of DMA lists. Each DMA list is a link-list which can
  be passed to a DMA controller. Multiple lists can be created, extended,
  executed, reused and destroyed.
  
  
  List Management
  ~~~~~~~~~~~~~~~
  
  The function :c:func:`vme_new_dma_list` is provided to create and
  :c:func:`vme_dma_list_free` to destroy DMA lists. Execution of a list will not
  automatically destroy the list, thus enabling a list to be reused for repetitive
  tasks.
  
  
  List Population
  ~~~~~~~~~~~~~~~
  
  An item can be added to a list using :c:func:`vme_dma_list_add` (the source and
  destination attributes need to be created before calling this function, this is
  covered under "Transfer Attributes").
  
  .. note::
  
  	The detailed attributes of the transfers source and destination
  	are not checked until an entry is added to a DMA list, the request
  	for a DMA channel purely checks the directions in which the
  	controller is expected to transfer data. As a result it is
  	possible for this call to return an error, for example if the
  	source or destination is in an unsupported VME address space.
  
  Transfer Attributes
  ~~~~~~~~~~~~~~~~~~~
  
  The attributes for the source and destination are handled separately from adding
  an item to a list. This is due to the diverse attributes required for each type
  of source and destination. There are functions to create attributes for PCI, VME
  and pattern sources and destinations (where appropriate):
  
   - PCI source or destination: :c:func:`vme_dma_pci_attribute`
   - VME source or destination: :c:func:`vme_dma_vme_attribute`
   - Pattern source: :c:func:`vme_dma_pattern_attribute`
  
  The function :c:func:`vme_dma_free_attribute` should be used to free an
  attribute.
  
  
  List Execution
  ~~~~~~~~~~~~~~
  
  The function :c:func:`vme_dma_list_exec` queues a list for execution and will
  return once the list has been executed.
  
  
  Interrupts
  ----------
  
  The VME API provides functions to attach and detach callbacks to specific VME
  level and status ID combinations and for the generation of VME interrupts with
  specific VME level and status IDs.
  
  
  Attaching Interrupt Handlers
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  
  The function :c:func:`vme_irq_request` can be used to attach and
  :c:func:`vme_irq_free` to free a specific VME level and status ID combination.
  Any given combination can only be assigned a single callback function. A void
  pointer parameter is provided, the value of which is passed to the callback
  function, the use of this pointer is user undefined. The callback parameters are
  as follows. Care must be taken in writing a callback function, callback
  functions run in interrupt context:
  
  .. code-block:: c
  
  	void callback(int level, int statid, void *priv);
  
  
  Interrupt Generation
  ~~~~~~~~~~~~~~~~~~~~
  
  The function :c:func:`vme_irq_generate` can be used to generate a VME interrupt
  at a given VME level and VME status ID.
  
  
  Location monitors
  -----------------
  
  The VME API provides the following functionality to configure the location
  monitor.
  
  
  Location Monitor Management
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~
  
  The function :c:func:`vme_lm_request` is provided to request the use of a block
  of location monitors and :c:func:`vme_lm_free` to free them after they are no
  longer required. Each block may provide a number of location monitors,
  monitoring adjacent locations. The function :c:func:`vme_lm_count` can be used
  to determine how many locations are provided.
  
  
  Location Monitor Configuration
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  
  Once a bank of location monitors has been allocated, the function
  :c:func:`vme_lm_set` is provided to configure the location and mode of the
  location monitor. The function :c:func:`vme_lm_get` can be used to retrieve
  existing settings.
  
  
  Location Monitor Use
  ~~~~~~~~~~~~~~~~~~~~
  
  The function :c:func:`vme_lm_attach` enables a callback to be attached and
  :c:func:`vme_lm_detach` allows on to be detached from each location monitor
  location. Each location monitor can monitor a number of adjacent locations. The
  callback function is declared as follows.
  
  .. code-block:: c
  
  	void callback(void *data);
  
  
  Slot Detection
  --------------
  
  The function :c:func:`vme_slot_num` returns the slot ID of the provided bridge.
  
  
  Bus Detection
  -------------
  
  The function :c:func:`vme_bus_num` returns the bus ID of the provided bridge.
  
  
  VME API
  -------
  
  .. kernel-doc:: include/linux/vme.h
     :internal:
  
  .. kernel-doc:: drivers/vme/vme.c
     :export: