Blame view

lib/win_minmax.c 3.36 KB
81f7e3824   Eric Lee   Initial Release, ...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
  // SPDX-License-Identifier: GPL-2.0
  /**
   * lib/minmax.c: windowed min/max tracker
   *
   * Kathleen Nichols' algorithm for tracking the minimum (or maximum)
   * value of a data stream over some fixed time interval.  (E.g.,
   * the minimum RTT over the past five minutes.) It uses constant
   * space and constant time per update yet almost always delivers
   * the same minimum as an implementation that has to keep all the
   * data in the window.
   *
   * The algorithm keeps track of the best, 2nd best & 3rd best min
   * values, maintaining an invariant that the measurement time of
   * the n'th best >= n-1'th best. It also makes sure that the three
   * values are widely separated in the time window since that bounds
   * the worse case error when that data is monotonically increasing
   * over the window.
   *
   * Upon getting a new min, we can forget everything earlier because
   * it has no value - the new min is <= everything else in the window
   * by definition and it's the most recent. So we restart fresh on
   * every new min and overwrites 2nd & 3rd choices. The same property
   * holds for 2nd & 3rd best.
   */
  #include <linux/module.h>
  #include <linux/win_minmax.h>
  
  /* As time advances, update the 1st, 2nd, and 3rd choices. */
  static u32 minmax_subwin_update(struct minmax *m, u32 win,
  				const struct minmax_sample *val)
  {
  	u32 dt = val->t - m->s[0].t;
  
  	if (unlikely(dt > win)) {
  		/*
  		 * Passed entire window without a new val so make 2nd
  		 * choice the new val & 3rd choice the new 2nd choice.
  		 * we may have to iterate this since our 2nd choice
  		 * may also be outside the window (we checked on entry
  		 * that the third choice was in the window).
  		 */
  		m->s[0] = m->s[1];
  		m->s[1] = m->s[2];
  		m->s[2] = *val;
  		if (unlikely(val->t - m->s[0].t > win)) {
  			m->s[0] = m->s[1];
  			m->s[1] = m->s[2];
  			m->s[2] = *val;
  		}
  	} else if (unlikely(m->s[1].t == m->s[0].t) && dt > win/4) {
  		/*
  		 * We've passed a quarter of the window without a new val
  		 * so take a 2nd choice from the 2nd quarter of the window.
  		 */
  		m->s[2] = m->s[1] = *val;
  	} else if (unlikely(m->s[2].t == m->s[1].t) && dt > win/2) {
  		/*
  		 * We've passed half the window without finding a new val
  		 * so take a 3rd choice from the last half of the window
  		 */
  		m->s[2] = *val;
  	}
  	return m->s[0].v;
  }
  
  /* Check if new measurement updates the 1st, 2nd or 3rd choice max. */
  u32 minmax_running_max(struct minmax *m, u32 win, u32 t, u32 meas)
  {
  	struct minmax_sample val = { .t = t, .v = meas };
  
  	if (unlikely(val.v >= m->s[0].v) ||	  /* found new max? */
  	    unlikely(val.t - m->s[2].t > win))	  /* nothing left in window? */
  		return minmax_reset(m, t, meas);  /* forget earlier samples */
  
  	if (unlikely(val.v >= m->s[1].v))
  		m->s[2] = m->s[1] = val;
  	else if (unlikely(val.v >= m->s[2].v))
  		m->s[2] = val;
  
  	return minmax_subwin_update(m, win, &val);
  }
  EXPORT_SYMBOL(minmax_running_max);
  
  /* Check if new measurement updates the 1st, 2nd or 3rd choice min. */
  u32 minmax_running_min(struct minmax *m, u32 win, u32 t, u32 meas)
  {
  	struct minmax_sample val = { .t = t, .v = meas };
  
  	if (unlikely(val.v <= m->s[0].v) ||	  /* found new min? */
  	    unlikely(val.t - m->s[2].t > win))	  /* nothing left in window? */
  		return minmax_reset(m, t, meas);  /* forget earlier samples */
  
  	if (unlikely(val.v <= m->s[1].v))
  		m->s[2] = m->s[1] = val;
  	else if (unlikely(val.v <= m->s[2].v))
  		m->s[2] = val;
  
  	return minmax_subwin_update(m, win, &val);
  }