Blame view

Documentation/nfsroot.txt 7.83 KB
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
  Mounting the root filesystem via NFS (nfsroot)
  ===============================================
  
  Written 1996 by Gero Kuhlmann <gero@gkminix.han.de>
  Updated 1997 by Martin Mares <mj@atrey.karlin.mff.cuni.cz>
  
  
  
  If you want to use a diskless system, as an X-terminal or printer
  server for example, you have to put your root filesystem onto a
  non-disk device. This can either be a ramdisk (see initrd.txt in
  this directory for further information) or a filesystem mounted
  via NFS. The following text describes on how to use NFS for the
  root filesystem. For the rest of this text 'client' means the
  diskless system, and 'server' means the NFS server.
  
  
  
  
  1.) Enabling nfsroot capabilities
      -----------------------------
  
  In order to use nfsroot you have to select support for NFS during
  kernel configuration. Note that NFS cannot be loaded as a module
  in this case. The configuration script will then ask you whether
  you want to use nfsroot, and if yes what kind of auto configuration
  system you want to use. Selecting both BOOTP and RARP is safe.
  
  
  
  
  2.) Kernel command line
      -------------------
  
  When the kernel has been loaded by a boot loader (either by loadlin,
  LILO or a network boot program) it has to be told what root fs device
  to use, and where to find the server and the name of the directory
  on the server to mount as root. This can be established by a couple
  of kernel command line parameters:
  
  
  root=/dev/nfs
  
    This is necessary to enable the pseudo-NFS-device. Note that it's not a
    real device but just a synonym to tell the kernel to use NFS instead of
    a real device.
  
  
  nfsroot=[<server-ip>:]<root-dir>[,<nfs-options>]
  
    If the `nfsroot' parameter is NOT given on the command line, the default
    "/tftpboot/%s" will be used.
  
    <server-ip>	Specifies the IP address of the NFS server. If this field
  		is not given, the default address as determined by the
  		`ip' variable (see below) is used. One use of this
  		parameter is for example to allow using different servers
  		for RARP and NFS. Usually you can leave this blank.
  
    <root-dir>	Name of the directory on the server to mount as root. If
  		there is a "%s" token in the string, the token will be
  		replaced by the ASCII-representation of the client's IP
  		address.
  
    <nfs-options>	Standard NFS options. All options are separated by commas.
  		If the options field is not given, the following defaults
  		will be used:
  			port		= as given by server portmap daemon
  			rsize		= 1024
  			wsize		= 1024
  			timeo		= 7
  			retrans		= 3
  			acregmin	= 3
  			acregmax	= 60
  			acdirmin	= 30
  			acdirmax	= 60
  			flags		= hard, nointr, noposix, cto, ac
  
  
  ip=<client-ip>:<server-ip>:<gw-ip>:<netmask>:<hostname>:<device>:<autoconf>
  
    This parameter tells the kernel how to configure IP addresses of devices
    and also how to set up the IP routing table. It was originally called `nfsaddrs',
    but now the boot-time IP configuration works independently of NFS, so it
    was renamed to `ip' and the old name remained as an alias for compatibility
    reasons.
  
    If this parameter is missing from the kernel command line, all fields are
    assumed to be empty, and the defaults mentioned below apply. In general
    this means that the kernel tries to configure everything using both
    RARP and BOOTP (depending on what has been enabled during kernel confi-
    guration, and if both what protocol answer got in first).
  
    <client-ip>	IP address of the client. If empty, the address will either
  		be determined by RARP or BOOTP. What protocol is used de-
  		pends on what has been enabled during kernel configuration
  		and on the <autoconf> parameter. If this parameter is not
  		empty, neither RARP nor BOOTP will be used.
  
    <server-ip>	IP address of the NFS server. If RARP is used to determine
  		the client address and this parameter is NOT empty only
  		replies from the specified server are accepted. To use
  		different RARP and NFS server, specify your RARP server
  		here (or leave it blank), and specify your NFS server in
  		the `nfsroot' parameter (see above). If this entry is blank
  		the address of the server is used which answered the RARP
  		or BOOTP request.
  
    <gw-ip>	IP address of a gateway if the server is on a different
  		subnet. If this entry is empty no gateway is used and the
  		server is assumed to be on the local network, unless a
  		value has been received by BOOTP.
  
    <netmask>	Netmask for local network interface. If this is empty,
  		the netmask is derived from the client IP address assuming
  		classful addressing, unless overridden in BOOTP reply.
  
    <hostname>	Name of the client. If empty, the client IP address is
  		used in ASCII notation, or the value received by BOOTP.
  
    <device>	Name of network device to use. If this is empty, all
  		devices are used for RARP and BOOTP requests, and the
  		first one we receive a reply on is configured. If you have
  		only one device, you can safely leave this blank.
  
    <autoconf>	Method to use for autoconfiguration. If this is either
  		'rarp' or 'bootp', the specified protocol is used.
  		If the value is 'both' or empty, both protocols are used
  		so far as they have been enabled during kernel configura-
  		tion. 'off' means no autoconfiguration.
  
    The <autoconf> parameter can appear alone as the value to the `ip'
    parameter (without all the ':' characters before) in which case auto-
    configuration is used.
  
  
  
  
  3.) Kernel loader
      -------------
  
  To get the kernel into memory different approaches can be used. They
  depend on what facilities are available:
  
  
  3.1)  Writing the kernel onto a floppy using dd:
  	As always you can just write the kernel onto a floppy using dd,
  	but then it's not possible to use kernel command lines at all.
  	To substitute the 'root=' parameter, create a dummy device on any
  	linux system with major number 0 and minor number 255 using mknod:
  
  		mknod /dev/boot255 c 0 255
  
  	Then copy the kernel zImage file onto a floppy using dd:
  
  		dd if=/usr/src/linux/arch/i386/boot/zImage of=/dev/fd0
  
  	And finally use rdev to set the root device:
  
  		rdev /dev/fd0 /dev/boot255
  
  	You can then remove the dummy device /dev/boot255 again. There
  	is no real device available for it.
  	The other two kernel command line parameters cannot be substi-
  	tuted with rdev. Therefore, using this method the kernel will
  	by default use RARP and/or BOOTP, and if it gets an answer via
  	RARP will mount the directory /tftpboot/<client-ip>/ as its
  	root. If it got a BOOTP answer the directory name in that answer
  	is used.
  
  
  3.2) Using LILO
  	When using LILO you can specify all necessary command line
  	parameters with the 'append=' command in the LILO configuration
  	file. However, to use the 'root=' command you also need to
  	set up a dummy device as described in 3.1 above. For how to use
  	LILO and its 'append=' command please refer to the LILO
  	documentation.
  
  3.3) Using loadlin
  	When you want to boot Linux from a DOS command prompt without
  	having a local hard disk to mount as root, you can use loadlin.
  	I was told that it works, but haven't used it myself yet. In
  	general you should be able to create a kernel command line simi-
  	lar to how LILO is doing it. Please refer to the loadlin docu-
  	mentation for further information.
  
  3.4) Using a boot ROM
  	This is probably the most elegant way of booting a diskless
  	client. With a boot ROM the kernel gets loaded using the TFTP
  	protocol. As far as I know, no commercial boot ROMs yet
  	support booting Linux over the network, but there are two
  	free implementations of a boot ROM available on sunsite.unc.edu
  	and its mirrors. They are called 'netboot-nfs' and 'etherboot'.
  	Both contain everything you need to boot a diskless Linux client.
  
  
  
  
  4.) Credits
      -------
  
    The nfsroot code in the kernel and the RARP support have been written
    by Gero Kuhlmann <gero@gkminix.han.de>.
  
    The rest of the IP layer autoconfiguration code has been written
    by Martin Mares <mj@atrey.karlin.mff.cuni.cz>.
  
    In order to write the initial version of nfsroot I would like to thank
    Jens-Uwe Mager <jum@anubis.han.de> for his help.