Blame view

Documentation/kasan.txt 8.09 KB
0295fd5d5   Andrey Konovalov   kasan: various fi...
1
2
  KernelAddressSanitizer (KASAN)
  ==============================
0b24becc8   Andrey Ryabinin   kasan: add kernel...
3
4
5
  
  0. Overview
  ===========
0295fd5d5   Andrey Konovalov   kasan: various fi...
6
  KernelAddressSANitizer (KASAN) is a dynamic memory error detector. It provides
0b24becc8   Andrey Ryabinin   kasan: add kernel...
7
8
  a fast and comprehensive solution for finding use-after-free and out-of-bounds
  bugs.
0295fd5d5   Andrey Konovalov   kasan: various fi...
9
10
11
  KASAN uses compile-time instrumentation for checking every memory access,
  therefore you will need a GCC version 4.9.2 or later. GCC 5.0 or later is
  required for detection of out-of-bounds accesses to stack or global variables.
0b24becc8   Andrey Ryabinin   kasan: add kernel...
12

7ed2f9e66   Alexander Potapenko   mm, kasan: SLAB s...
13
  Currently KASAN is supported only for x86_64 architecture.
0b24becc8   Andrey Ryabinin   kasan: add kernel...
14
15
  
  1. Usage
0295fd5d5   Andrey Konovalov   kasan: various fi...
16
  ========
0b24becc8   Andrey Ryabinin   kasan: add kernel...
17
18
19
20
  
  To enable KASAN configure kernel with:
  
  	  CONFIG_KASAN = y
0295fd5d5   Andrey Konovalov   kasan: various fi...
21
22
23
24
  and choose between CONFIG_KASAN_OUTLINE and CONFIG_KASAN_INLINE. Outline and
  inline are compiler instrumentation types. The former produces smaller binary
  the latter is 1.1 - 2 times faster. Inline instrumentation requires a GCC
  version 5.0 or later.
0b24becc8   Andrey Ryabinin   kasan: add kernel...
25

7ed2f9e66   Alexander Potapenko   mm, kasan: SLAB s...
26
  KASAN works with both SLUB and SLAB memory allocators.
89d3c87e2   Andrey Ryabinin   mm, slub, kasan: ...
27
  For better bug detection and nicer reporting, enable CONFIG_STACKTRACE.
0b24becc8   Andrey Ryabinin   kasan: add kernel...
28
29
30
31
32
33
34
35
36
37
38
  
  To disable instrumentation for specific files or directories, add a line
  similar to the following to the respective kernel Makefile:
  
          For a single file (e.g. main.o):
                  KASAN_SANITIZE_main.o := n
  
          For all files in one directory:
                  KASAN_SANITIZE := n
  
  1.1 Error reports
0295fd5d5   Andrey Konovalov   kasan: various fi...
39
  =================
0b24becc8   Andrey Ryabinin   kasan: add kernel...
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
  
  A typical out of bounds access report looks like this:
  
  ==================================================================
  BUG: AddressSanitizer: out of bounds access in kmalloc_oob_right+0x65/0x75 [test_kasan] at addr ffff8800693bc5d3
  Write of size 1 by task modprobe/1689
  =============================================================================
  BUG kmalloc-128 (Not tainted): kasan error
  -----------------------------------------------------------------------------
  
  Disabling lock debugging due to kernel taint
  INFO: Allocated in kmalloc_oob_right+0x3d/0x75 [test_kasan] age=0 cpu=0 pid=1689
   __slab_alloc+0x4b4/0x4f0
   kmem_cache_alloc_trace+0x10b/0x190
   kmalloc_oob_right+0x3d/0x75 [test_kasan]
   init_module+0x9/0x47 [test_kasan]
   do_one_initcall+0x99/0x200
   load_module+0x2cb3/0x3b20
   SyS_finit_module+0x76/0x80
   system_call_fastpath+0x12/0x17
  INFO: Slab 0xffffea0001a4ef00 objects=17 used=7 fp=0xffff8800693bd728 flags=0x100000000004080
  INFO: Object 0xffff8800693bc558 @offset=1368 fp=0xffff8800693bc720
  
  Bytes b4 ffff8800693bc548: 00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a  ........ZZZZZZZZ
  Object ffff8800693bc558: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b  kkkkkkkkkkkkkkkk
  Object ffff8800693bc568: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b  kkkkkkkkkkkkkkkk
  Object ffff8800693bc578: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b  kkkkkkkkkkkkkkkk
  Object ffff8800693bc588: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b  kkkkkkkkkkkkkkkk
  Object ffff8800693bc598: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b  kkkkkkkkkkkkkkkk
  Object ffff8800693bc5a8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b  kkkkkkkkkkkkkkkk
  Object ffff8800693bc5b8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b  kkkkkkkkkkkkkkkk
  Object ffff8800693bc5c8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b a5  kkkkkkkkkkkkkkk.
  Redzone ffff8800693bc5d8: cc cc cc cc cc cc cc cc                          ........
  Padding ffff8800693bc718: 5a 5a 5a 5a 5a 5a 5a 5a                          ZZZZZZZZ
  CPU: 0 PID: 1689 Comm: modprobe Tainted: G    B          3.18.0-rc1-mm1+ #98
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
   ffff8800693bc000 0000000000000000 ffff8800693bc558 ffff88006923bb78
   ffffffff81cc68ae 00000000000000f3 ffff88006d407600 ffff88006923bba8
   ffffffff811fd848 ffff88006d407600 ffffea0001a4ef00 ffff8800693bc558
  Call Trace:
   [<ffffffff81cc68ae>] dump_stack+0x46/0x58
   [<ffffffff811fd848>] print_trailer+0xf8/0x160
   [<ffffffffa00026a7>] ? kmem_cache_oob+0xc3/0xc3 [test_kasan]
   [<ffffffff811ff0f5>] object_err+0x35/0x40
   [<ffffffffa0002065>] ? kmalloc_oob_right+0x65/0x75 [test_kasan]
   [<ffffffff8120b9fa>] kasan_report_error+0x38a/0x3f0
   [<ffffffff8120a79f>] ? kasan_poison_shadow+0x2f/0x40
   [<ffffffff8120b344>] ? kasan_unpoison_shadow+0x14/0x40
   [<ffffffff8120a79f>] ? kasan_poison_shadow+0x2f/0x40
   [<ffffffffa00026a7>] ? kmem_cache_oob+0xc3/0xc3 [test_kasan]
   [<ffffffff8120a995>] __asan_store1+0x75/0xb0
   [<ffffffffa0002601>] ? kmem_cache_oob+0x1d/0xc3 [test_kasan]
   [<ffffffffa0002065>] ? kmalloc_oob_right+0x65/0x75 [test_kasan]
   [<ffffffffa0002065>] kmalloc_oob_right+0x65/0x75 [test_kasan]
   [<ffffffffa00026b0>] init_module+0x9/0x47 [test_kasan]
   [<ffffffff810002d9>] do_one_initcall+0x99/0x200
   [<ffffffff811e4e5c>] ? __vunmap+0xec/0x160
   [<ffffffff81114f63>] load_module+0x2cb3/0x3b20
   [<ffffffff8110fd70>] ? m_show+0x240/0x240
   [<ffffffff81115f06>] SyS_finit_module+0x76/0x80
   [<ffffffff81cd3129>] system_call_fastpath+0x12/0x17
  Memory state around the buggy address:
   ffff8800693bc300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
   ffff8800693bc380: fc fc 00 00 00 00 00 00 00 00 00 00 00 00 00 fc
   ffff8800693bc400: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
   ffff8800693bc480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
   ffff8800693bc500: fc fc fc fc fc fc fc fc fc fc fc 00 00 00 00 00
  >ffff8800693bc580: 00 00 00 00 00 00 00 00 00 00 03 fc fc fc fc fc
                                                   ^
   ffff8800693bc600: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
   ffff8800693bc680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
   ffff8800693bc700: fc fc fc fc fb fb fb fb fb fb fb fb fb fb fb fb
   ffff8800693bc780: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
   ffff8800693bc800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
  ==================================================================
0295fd5d5   Andrey Konovalov   kasan: various fi...
115
116
117
118
  The header of the report discribe what kind of bug happened and what kind of
  access caused it. It's followed by the description of the accessed slub object
  (see 'SLUB Debug output' section in Documentation/vm/slub.txt for details) and
  the description of the accessed memory page.
0b24becc8   Andrey Ryabinin   kasan: add kernel...
119
120
  
  In the last section the report shows memory state around the accessed address.
0295fd5d5   Andrey Konovalov   kasan: various fi...
121
  Reading this part requires some understanding of how KASAN works.
0b24becc8   Andrey Ryabinin   kasan: add kernel...
122

0295fd5d5   Andrey Konovalov   kasan: various fi...
123
124
  The state of each 8 aligned bytes of memory is encoded in one shadow byte.
  Those 8 bytes can be accessible, partially accessible, freed or be a redzone.
0b24becc8   Andrey Ryabinin   kasan: add kernel...
125
126
127
128
129
130
131
132
133
134
135
136
  We use the following encoding for each shadow byte: 0 means that all 8 bytes
  of the corresponding memory region are accessible; number N (1 <= N <= 7) means
  that the first N bytes are accessible, and other (8 - N) bytes are not;
  any negative value indicates that the entire 8-byte word is inaccessible.
  We use different negative values to distinguish between different kinds of
  inaccessible memory like redzones or freed memory (see mm/kasan/kasan.h).
  
  In the report above the arrows point to the shadow byte 03, which means that
  the accessed address is partially accessible.
  
  
  2. Implementation details
0295fd5d5   Andrey Konovalov   kasan: various fi...
137
  =========================
0b24becc8   Andrey Ryabinin   kasan: add kernel...
138
139
140
141
142
143
144
145
146
  
  From a high level, our approach to memory error detection is similar to that
  of kmemcheck: use shadow memory to record whether each byte of memory is safe
  to access, and use compile-time instrumentation to check shadow memory on each
  memory access.
  
  AddressSanitizer dedicates 1/8 of kernel memory to its shadow memory
  (e.g. 16TB to cover 128TB on x86_64) and uses direct mapping with a scale and
  offset to translate a memory address to its corresponding shadow address.
f66fa08bf   Wang Long   Documentation: ka...
147
  Here is the function which translates an address to its corresponding shadow
0b24becc8   Andrey Ryabinin   kasan: add kernel...
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
  address:
  
  static inline void *kasan_mem_to_shadow(const void *addr)
  {
  	return ((unsigned long)addr >> KASAN_SHADOW_SCALE_SHIFT)
  		+ KASAN_SHADOW_OFFSET;
  }
  
  where KASAN_SHADOW_SCALE_SHIFT = 3.
  
  Compile-time instrumentation used for checking memory accesses. Compiler inserts
  function calls (__asan_load*(addr), __asan_store*(addr)) before each memory
  access of size 1, 2, 4, 8 or 16. These functions check whether memory access is
  valid or not by checking corresponding shadow memory.
  
  GCC 5.0 has possibility to perform inline instrumentation. Instead of making
  function calls GCC directly inserts the code to check the shadow memory.
  This option significantly enlarges kernel but it gives x1.1-x2 performance
  boost over outline instrumented kernel.