Blame view
kernel/futex.c
70.6 KB
1da177e4c
|
1 2 3 4 5 6 7 8 9 10 |
/* * Fast Userspace Mutexes (which I call "Futexes!"). * (C) Rusty Russell, IBM 2002 * * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar * (C) Copyright 2003 Red Hat Inc, All Rights Reserved * * Removed page pinning, fix privately mapped COW pages and other cleanups * (C) Copyright 2003, 2004 Jamie Lokier * |
0771dfefc
|
11 12 13 14 |
* Robust futex support started by Ingo Molnar * (C) Copyright 2006 Red Hat Inc, All Rights Reserved * Thanks to Thomas Gleixner for suggestions, analysis and fixes. * |
c87e2837b
|
15 16 17 18 |
* PI-futex support started by Ingo Molnar and Thomas Gleixner * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> * |
34f01cc1f
|
19 20 21 |
* PRIVATE futexes by Eric Dumazet * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com> * |
52400ba94
|
22 23 24 25 |
* Requeue-PI support by Darren Hart <dvhltc@us.ibm.com> * Copyright (C) IBM Corporation, 2009 * Thanks to Thomas Gleixner for conceptual design and careful reviews. * |
1da177e4c
|
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
* Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly * enough at me, Linus for the original (flawed) idea, Matthew * Kirkwood for proof-of-concept implementation. * * "The futexes are also cursed." * "But they come in a choice of three flavours!" * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/slab.h> #include <linux/poll.h> #include <linux/fs.h> #include <linux/file.h> #include <linux/jhash.h> #include <linux/init.h> #include <linux/futex.h> #include <linux/mount.h> #include <linux/pagemap.h> #include <linux/syscalls.h> |
7ed20e1ad
|
57 |
#include <linux/signal.h> |
9adef58b1
|
58 |
#include <linux/module.h> |
fd5eea421
|
59 |
#include <linux/magic.h> |
b488893a3
|
60 61 |
#include <linux/pid.h> #include <linux/nsproxy.h> |
4732efbeb
|
62 |
#include <asm/futex.h> |
1da177e4c
|
63 |
|
c87e2837b
|
64 |
#include "rtmutex_common.h" |
a0c1e9073
|
65 |
int __read_mostly futex_cmpxchg_enabled; |
1da177e4c
|
66 67 68 |
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8) /* |
b41277dc7
|
69 70 71 72 73 74 75 76 |
* Futex flags used to encode options to functions and preserve them across * restarts. */ #define FLAGS_SHARED 0x01 #define FLAGS_CLOCKRT 0x02 #define FLAGS_HAS_TIMEOUT 0x04 /* |
c87e2837b
|
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
* Priority Inheritance state: */ struct futex_pi_state { /* * list of 'owned' pi_state instances - these have to be * cleaned up in do_exit() if the task exits prematurely: */ struct list_head list; /* * The PI object: */ struct rt_mutex pi_mutex; struct task_struct *owner; atomic_t refcount; union futex_key key; }; |
d8d88fbb1
|
96 97 |
/** * struct futex_q - The hashed futex queue entry, one per waiting task |
fb62db2ba
|
98 |
* @list: priority-sorted list of tasks waiting on this futex |
d8d88fbb1
|
99 100 101 102 103 104 105 106 107 |
* @task: the task waiting on the futex * @lock_ptr: the hash bucket lock * @key: the key the futex is hashed on * @pi_state: optional priority inheritance state * @rt_waiter: rt_waiter storage for use with requeue_pi * @requeue_pi_key: the requeue_pi target futex key * @bitset: bitset for the optional bitmasked wakeup * * We use this hashed waitqueue, instead of a normal wait_queue_t, so |
1da177e4c
|
108 109 110 |
* we can wake only the relevant ones (hashed queues may be shared). * * A futex_q has a woken state, just like tasks have TASK_RUNNING. |
ec92d0829
|
111 |
* It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. |
fb62db2ba
|
112 |
* The order of wakeup is always to make the first condition true, then |
d8d88fbb1
|
113 114 115 116 |
* the second. * * PI futexes are typically woken before they are removed from the hash list via * the rt_mutex code. See unqueue_me_pi(). |
1da177e4c
|
117 118 |
*/ struct futex_q { |
ec92d0829
|
119 |
struct plist_node list; |
1da177e4c
|
120 |
|
d8d88fbb1
|
121 |
struct task_struct *task; |
1da177e4c
|
122 |
spinlock_t *lock_ptr; |
1da177e4c
|
123 |
union futex_key key; |
c87e2837b
|
124 |
struct futex_pi_state *pi_state; |
52400ba94
|
125 |
struct rt_mutex_waiter *rt_waiter; |
84bc4af59
|
126 |
union futex_key *requeue_pi_key; |
cd689985c
|
127 |
u32 bitset; |
1da177e4c
|
128 |
}; |
5bdb05f91
|
129 130 131 132 133 |
static const struct futex_q futex_q_init = { /* list gets initialized in queue_me()*/ .key = FUTEX_KEY_INIT, .bitset = FUTEX_BITSET_MATCH_ANY }; |
1da177e4c
|
134 |
/* |
b2d0994b1
|
135 136 137 |
* Hash buckets are shared by all the futex_keys that hash to the same * location. Each key may have multiple futex_q structures, one for each task * waiting on a futex. |
1da177e4c
|
138 139 |
*/ struct futex_hash_bucket { |
ec92d0829
|
140 141 |
spinlock_t lock; struct plist_head chain; |
1da177e4c
|
142 143 144 |
}; static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS]; |
1da177e4c
|
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
/* * We hash on the keys returned from get_futex_key (see below). */ static struct futex_hash_bucket *hash_futex(union futex_key *key) { u32 hash = jhash2((u32*)&key->both.word, (sizeof(key->both.word)+sizeof(key->both.ptr))/4, key->both.offset); return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)]; } /* * Return 1 if two futex_keys are equal, 0 otherwise. */ static inline int match_futex(union futex_key *key1, union futex_key *key2) { |
2bc872036
|
161 162 |
return (key1 && key2 && key1->both.word == key2->both.word |
1da177e4c
|
163 164 165 |
&& key1->both.ptr == key2->both.ptr && key1->both.offset == key2->both.offset); } |
38d47c1b7
|
166 167 168 169 170 171 172 173 174 175 176 177 |
/* * Take a reference to the resource addressed by a key. * Can be called while holding spinlocks. * */ static void get_futex_key_refs(union futex_key *key) { if (!key->both.ptr) return; switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { case FUT_OFF_INODE: |
7de9c6ee3
|
178 |
ihold(key->shared.inode); |
38d47c1b7
|
179 180 181 182 183 184 185 186 187 188 189 190 191 |
break; case FUT_OFF_MMSHARED: atomic_inc(&key->private.mm->mm_count); break; } } /* * Drop a reference to the resource addressed by a key. * The hash bucket spinlock must not be held. */ static void drop_futex_key_refs(union futex_key *key) { |
90621c40c
|
192 193 194 |
if (!key->both.ptr) { /* If we're here then we tried to put a key we failed to get */ WARN_ON_ONCE(1); |
38d47c1b7
|
195 |
return; |
90621c40c
|
196 |
} |
38d47c1b7
|
197 198 199 200 201 202 203 204 205 206 |
switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { case FUT_OFF_INODE: iput(key->shared.inode); break; case FUT_OFF_MMSHARED: mmdrop(key->private.mm); break; } } |
34f01cc1f
|
207 |
/** |
d96ee56ce
|
208 209 210 211 |
* get_futex_key() - Get parameters which are the keys for a futex * @uaddr: virtual address of the futex * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED * @key: address where result is stored. |
9ea71503a
|
212 213 |
* @rw: mapping needs to be read/write (values: VERIFY_READ, * VERIFY_WRITE) |
34f01cc1f
|
214 215 216 |
* * Returns a negative error code or 0 * The key words are stored in *key on success. |
1da177e4c
|
217 |
* |
f3a43f3f6
|
218 |
* For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode, |
1da177e4c
|
219 220 221 |
* offset_within_page). For private mappings, it's (uaddr, current->mm). * We can usually work out the index without swapping in the page. * |
b2d0994b1
|
222 |
* lock_page() might sleep, the caller should not hold a spinlock. |
1da177e4c
|
223 |
*/ |
64d1304a6
|
224 |
static int |
9ea71503a
|
225 |
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw) |
1da177e4c
|
226 |
{ |
e2970f2fb
|
227 |
unsigned long address = (unsigned long)uaddr; |
1da177e4c
|
228 |
struct mm_struct *mm = current->mm; |
a5b338f2b
|
229 |
struct page *page, *page_head; |
9ea71503a
|
230 |
int err, ro = 0; |
1da177e4c
|
231 232 233 234 |
/* * The futex address must be "naturally" aligned. */ |
e2970f2fb
|
235 |
key->both.offset = address % PAGE_SIZE; |
34f01cc1f
|
236 |
if (unlikely((address % sizeof(u32)) != 0)) |
1da177e4c
|
237 |
return -EINVAL; |
e2970f2fb
|
238 |
address -= key->both.offset; |
1da177e4c
|
239 240 |
/* |
34f01cc1f
|
241 242 243 244 245 246 247 |
* PROCESS_PRIVATE futexes are fast. * As the mm cannot disappear under us and the 'key' only needs * virtual address, we dont even have to find the underlying vma. * Note : We do have to check 'uaddr' is a valid user address, * but access_ok() should be faster than find_vma() */ if (!fshared) { |
7485d0d37
|
248 |
if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))) |
34f01cc1f
|
249 250 251 |
return -EFAULT; key->private.mm = mm; key->private.address = address; |
42569c399
|
252 |
get_futex_key_refs(key); |
34f01cc1f
|
253 254 |
return 0; } |
1da177e4c
|
255 |
|
38d47c1b7
|
256 |
again: |
7485d0d37
|
257 |
err = get_user_pages_fast(address, 1, 1, &page); |
9ea71503a
|
258 259 260 261 262 263 264 265 |
/* * If write access is not required (eg. FUTEX_WAIT), try * and get read-only access. */ if (err == -EFAULT && rw == VERIFY_READ) { err = get_user_pages_fast(address, 1, 0, &page); ro = 1; } |
38d47c1b7
|
266 267 |
if (err < 0) return err; |
9ea71503a
|
268 269 |
else err = 0; |
38d47c1b7
|
270 |
|
a5b338f2b
|
271 272 273 |
#ifdef CONFIG_TRANSPARENT_HUGEPAGE page_head = page; if (unlikely(PageTail(page))) { |
38d47c1b7
|
274 |
put_page(page); |
a5b338f2b
|
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
/* serialize against __split_huge_page_splitting() */ local_irq_disable(); if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) { page_head = compound_head(page); /* * page_head is valid pointer but we must pin * it before taking the PG_lock and/or * PG_compound_lock. The moment we re-enable * irqs __split_huge_page_splitting() can * return and the head page can be freed from * under us. We can't take the PG_lock and/or * PG_compound_lock on a page that could be * freed from under us. */ if (page != page_head) { get_page(page_head); put_page(page); } local_irq_enable(); } else { local_irq_enable(); goto again; } } #else page_head = compound_head(page); if (page != page_head) { get_page(page_head); put_page(page); } #endif lock_page(page_head); if (!page_head->mapping) { unlock_page(page_head); put_page(page_head); |
9ea71503a
|
311 312 313 314 315 316 317 |
/* * ZERO_PAGE pages don't have a mapping. Avoid a busy loop * trying to find one. RW mapping would have COW'd (and thus * have a mapping) so this page is RO and won't ever change. */ if ((page_head == ZERO_PAGE(address))) return -EFAULT; |
38d47c1b7
|
318 319 |
goto again; } |
1da177e4c
|
320 321 322 323 324 325 |
/* * Private mappings are handled in a simple way. * * NOTE: When userspace waits on a MAP_SHARED mapping, even if * it's a read-only handle, it's expected that futexes attach to |
38d47c1b7
|
326 |
* the object not the particular process. |
1da177e4c
|
327 |
*/ |
a5b338f2b
|
328 |
if (PageAnon(page_head)) { |
9ea71503a
|
329 330 331 332 333 334 335 336 |
/* * A RO anonymous page will never change and thus doesn't make * sense for futex operations. */ if (ro) { err = -EFAULT; goto out; } |
38d47c1b7
|
337 |
key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */ |
1da177e4c
|
338 |
key->private.mm = mm; |
e2970f2fb
|
339 |
key->private.address = address; |
38d47c1b7
|
340 341 |
} else { key->both.offset |= FUT_OFF_INODE; /* inode-based key */ |
a5b338f2b
|
342 343 |
key->shared.inode = page_head->mapping->host; key->shared.pgoff = page_head->index; |
1da177e4c
|
344 |
} |
38d47c1b7
|
345 |
get_futex_key_refs(key); |
1da177e4c
|
346 |
|
9ea71503a
|
347 |
out: |
a5b338f2b
|
348 349 |
unlock_page(page_head); put_page(page_head); |
9ea71503a
|
350 |
return err; |
1da177e4c
|
351 |
} |
ae791a2d2
|
352 |
static inline void put_futex_key(union futex_key *key) |
1da177e4c
|
353 |
{ |
38d47c1b7
|
354 |
drop_futex_key_refs(key); |
1da177e4c
|
355 |
} |
d96ee56ce
|
356 357 |
/** * fault_in_user_writeable() - Fault in user address and verify RW access |
d0725992c
|
358 359 360 361 362 |
* @uaddr: pointer to faulting user space address * * Slow path to fixup the fault we just took in the atomic write * access to @uaddr. * |
fb62db2ba
|
363 |
* We have no generic implementation of a non-destructive write to the |
d0725992c
|
364 365 366 367 368 369 |
* user address. We know that we faulted in the atomic pagefault * disabled section so we can as well avoid the #PF overhead by * calling get_user_pages() right away. */ static int fault_in_user_writeable(u32 __user *uaddr) { |
722d01723
|
370 371 372 373 |
struct mm_struct *mm = current->mm; int ret; down_read(&mm->mmap_sem); |
2efaca927
|
374 375 |
ret = fixup_user_fault(current, mm, (unsigned long)uaddr, FAULT_FLAG_WRITE); |
722d01723
|
376 |
up_read(&mm->mmap_sem); |
d0725992c
|
377 378 |
return ret < 0 ? ret : 0; } |
4b1c486b3
|
379 380 |
/** * futex_top_waiter() - Return the highest priority waiter on a futex |
d96ee56ce
|
381 382 |
* @hb: the hash bucket the futex_q's reside in * @key: the futex key (to distinguish it from other futex futex_q's) |
4b1c486b3
|
383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
* * Must be called with the hb lock held. */ static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key) { struct futex_q *this; plist_for_each_entry(this, &hb->chain, list) { if (match_futex(&this->key, key)) return this; } return NULL; } |
37a9d912b
|
397 398 |
static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr, u32 uval, u32 newval) |
36cf3b5c3
|
399 |
{ |
37a9d912b
|
400 |
int ret; |
36cf3b5c3
|
401 402 |
pagefault_disable(); |
37a9d912b
|
403 |
ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval); |
36cf3b5c3
|
404 |
pagefault_enable(); |
37a9d912b
|
405 |
return ret; |
36cf3b5c3
|
406 407 408 |
} static int get_futex_value_locked(u32 *dest, u32 __user *from) |
1da177e4c
|
409 410 |
{ int ret; |
a866374ae
|
411 |
pagefault_disable(); |
e2970f2fb
|
412 |
ret = __copy_from_user_inatomic(dest, from, sizeof(u32)); |
a866374ae
|
413 |
pagefault_enable(); |
1da177e4c
|
414 415 416 |
return ret ? -EFAULT : 0; } |
c87e2837b
|
417 418 419 420 421 422 423 424 425 426 |
/* * PI code: */ static int refill_pi_state_cache(void) { struct futex_pi_state *pi_state; if (likely(current->pi_state_cache)) return 0; |
4668edc33
|
427 |
pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL); |
c87e2837b
|
428 429 430 |
if (!pi_state) return -ENOMEM; |
c87e2837b
|
431 432 433 434 |
INIT_LIST_HEAD(&pi_state->list); /* pi_mutex gets initialized later */ pi_state->owner = NULL; atomic_set(&pi_state->refcount, 1); |
38d47c1b7
|
435 |
pi_state->key = FUTEX_KEY_INIT; |
c87e2837b
|
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
current->pi_state_cache = pi_state; return 0; } static struct futex_pi_state * alloc_pi_state(void) { struct futex_pi_state *pi_state = current->pi_state_cache; WARN_ON(!pi_state); current->pi_state_cache = NULL; return pi_state; } static void free_pi_state(struct futex_pi_state *pi_state) { if (!atomic_dec_and_test(&pi_state->refcount)) return; /* * If pi_state->owner is NULL, the owner is most probably dying * and has cleaned up the pi_state already */ if (pi_state->owner) { |
1d6154825
|
462 |
raw_spin_lock_irq(&pi_state->owner->pi_lock); |
c87e2837b
|
463 |
list_del_init(&pi_state->list); |
1d6154825
|
464 |
raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
c87e2837b
|
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner); } if (current->pi_state_cache) kfree(pi_state); else { /* * pi_state->list is already empty. * clear pi_state->owner. * refcount is at 0 - put it back to 1. */ pi_state->owner = NULL; atomic_set(&pi_state->refcount, 1); current->pi_state_cache = pi_state; } } /* * Look up the task based on what TID userspace gave us. * We dont trust it. */ static struct task_struct * futex_find_get_task(pid_t pid) { struct task_struct *p; |
d359b549b
|
490 |
rcu_read_lock(); |
228ebcbe6
|
491 |
p = find_task_by_vpid(pid); |
7a0ea09ad
|
492 493 |
if (p) get_task_struct(p); |
a06381fec
|
494 |
|
d359b549b
|
495 |
rcu_read_unlock(); |
c87e2837b
|
496 497 498 499 500 501 502 503 504 505 506 |
return p; } /* * This task is holding PI mutexes at exit time => bad. * Kernel cleans up PI-state, but userspace is likely hosed. * (Robust-futex cleanup is separate and might save the day for userspace.) */ void exit_pi_state_list(struct task_struct *curr) { |
c87e2837b
|
507 508 |
struct list_head *next, *head = &curr->pi_state_list; struct futex_pi_state *pi_state; |
627371d73
|
509 |
struct futex_hash_bucket *hb; |
38d47c1b7
|
510 |
union futex_key key = FUTEX_KEY_INIT; |
c87e2837b
|
511 |
|
a0c1e9073
|
512 513 |
if (!futex_cmpxchg_enabled) return; |
c87e2837b
|
514 515 516 |
/* * We are a ZOMBIE and nobody can enqueue itself on * pi_state_list anymore, but we have to be careful |
627371d73
|
517 |
* versus waiters unqueueing themselves: |
c87e2837b
|
518 |
*/ |
1d6154825
|
519 |
raw_spin_lock_irq(&curr->pi_lock); |
c87e2837b
|
520 521 522 523 524 |
while (!list_empty(head)) { next = head->next; pi_state = list_entry(next, struct futex_pi_state, list); key = pi_state->key; |
627371d73
|
525 |
hb = hash_futex(&key); |
1d6154825
|
526 |
raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837b
|
527 |
|
c87e2837b
|
528 |
spin_lock(&hb->lock); |
1d6154825
|
529 |
raw_spin_lock_irq(&curr->pi_lock); |
627371d73
|
530 531 532 533 |
/* * We dropped the pi-lock, so re-check whether this * task still owns the PI-state: */ |
c87e2837b
|
534 535 536 537 |
if (head->next != next) { spin_unlock(&hb->lock); continue; } |
c87e2837b
|
538 |
WARN_ON(pi_state->owner != curr); |
627371d73
|
539 540 |
WARN_ON(list_empty(&pi_state->list)); list_del_init(&pi_state->list); |
c87e2837b
|
541 |
pi_state->owner = NULL; |
1d6154825
|
542 |
raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837b
|
543 544 545 546 |
rt_mutex_unlock(&pi_state->pi_mutex); spin_unlock(&hb->lock); |
1d6154825
|
547 |
raw_spin_lock_irq(&curr->pi_lock); |
c87e2837b
|
548 |
} |
1d6154825
|
549 |
raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837b
|
550 551 552 |
} static int |
d0aa7a70b
|
553 554 |
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, union futex_key *key, struct futex_pi_state **ps) |
c87e2837b
|
555 556 557 |
{ struct futex_pi_state *pi_state = NULL; struct futex_q *this, *next; |
ec92d0829
|
558 |
struct plist_head *head; |
c87e2837b
|
559 |
struct task_struct *p; |
778e9a9c3
|
560 |
pid_t pid = uval & FUTEX_TID_MASK; |
c87e2837b
|
561 562 |
head = &hb->chain; |
ec92d0829
|
563 |
plist_for_each_entry_safe(this, next, head, list) { |
d0aa7a70b
|
564 |
if (match_futex(&this->key, key)) { |
c87e2837b
|
565 566 567 568 569 |
/* * Another waiter already exists - bump up * the refcount and return its pi_state: */ pi_state = this->pi_state; |
06a9ec291
|
570 |
/* |
fb62db2ba
|
571 |
* Userspace might have messed up non-PI and PI futexes |
06a9ec291
|
572 573 574 |
*/ if (unlikely(!pi_state)) return -EINVAL; |
627371d73
|
575 |
WARN_ON(!atomic_read(&pi_state->refcount)); |
59647b6ac
|
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
/* * When pi_state->owner is NULL then the owner died * and another waiter is on the fly. pi_state->owner * is fixed up by the task which acquires * pi_state->rt_mutex. * * We do not check for pid == 0 which can happen when * the owner died and robust_list_exit() cleared the * TID. */ if (pid && pi_state->owner) { /* * Bail out if user space manipulated the * futex value. */ if (pid != task_pid_vnr(pi_state->owner)) return -EINVAL; } |
627371d73
|
595 |
|
c87e2837b
|
596 |
atomic_inc(&pi_state->refcount); |
d0aa7a70b
|
597 |
*ps = pi_state; |
c87e2837b
|
598 599 600 601 602 603 |
return 0; } } /* |
e3f2ddeac
|
604 |
* We are the first waiter - try to look up the real owner and attach |
778e9a9c3
|
605 |
* the new pi_state to it, but bail out when TID = 0 |
c87e2837b
|
606 |
*/ |
778e9a9c3
|
607 |
if (!pid) |
e3f2ddeac
|
608 |
return -ESRCH; |
c87e2837b
|
609 |
p = futex_find_get_task(pid); |
7a0ea09ad
|
610 611 |
if (!p) return -ESRCH; |
778e9a9c3
|
612 613 614 615 616 617 618 |
/* * We need to look at the task state flags to figure out, * whether the task is exiting. To protect against the do_exit * change of the task flags, we do this protected by * p->pi_lock: */ |
1d6154825
|
619 |
raw_spin_lock_irq(&p->pi_lock); |
778e9a9c3
|
620 621 622 623 624 625 626 |
if (unlikely(p->flags & PF_EXITING)) { /* * The task is on the way out. When PF_EXITPIDONE is * set, we know that the task has finished the * cleanup: */ int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN; |
1d6154825
|
627 |
raw_spin_unlock_irq(&p->pi_lock); |
778e9a9c3
|
628 629 630 |
put_task_struct(p); return ret; } |
c87e2837b
|
631 632 633 634 635 636 637 638 639 640 |
pi_state = alloc_pi_state(); /* * Initialize the pi_mutex in locked state and make 'p' * the owner of it: */ rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p); /* Store the key for possible exit cleanups: */ |
d0aa7a70b
|
641 |
pi_state->key = *key; |
c87e2837b
|
642 |
|
627371d73
|
643 |
WARN_ON(!list_empty(&pi_state->list)); |
c87e2837b
|
644 645 |
list_add(&pi_state->list, &p->pi_state_list); pi_state->owner = p; |
1d6154825
|
646 |
raw_spin_unlock_irq(&p->pi_lock); |
c87e2837b
|
647 648 |
put_task_struct(p); |
d0aa7a70b
|
649 |
*ps = pi_state; |
c87e2837b
|
650 651 652 |
return 0; } |
1a52084d0
|
653 |
/** |
d96ee56ce
|
654 |
* futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex |
bab5bc9e8
|
655 656 657 658 659 660 661 662 |
* @uaddr: the pi futex user address * @hb: the pi futex hash bucket * @key: the futex key associated with uaddr and hb * @ps: the pi_state pointer where we store the result of the * lookup * @task: the task to perform the atomic lock work for. This will * be "current" except in the case of requeue pi. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) |
1a52084d0
|
663 664 665 666 667 668 669 670 671 672 673 |
* * Returns: * 0 - ready to wait * 1 - acquired the lock * <0 - error * * The hb->lock and futex_key refs shall be held by the caller. */ static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb, union futex_key *key, struct futex_pi_state **ps, |
bab5bc9e8
|
674 |
struct task_struct *task, int set_waiters) |
1a52084d0
|
675 676 |
{ int lock_taken, ret, ownerdied = 0; |
c0c9ed150
|
677 |
u32 uval, newval, curval, vpid = task_pid_vnr(task); |
1a52084d0
|
678 679 680 681 682 683 684 685 686 |
retry: ret = lock_taken = 0; /* * To avoid races, we attempt to take the lock here again * (by doing a 0 -> TID atomic cmpxchg), while holding all * the locks. It will most likely not succeed. */ |
c0c9ed150
|
687 |
newval = vpid; |
bab5bc9e8
|
688 689 |
if (set_waiters) newval |= FUTEX_WAITERS; |
1a52084d0
|
690 |
|
37a9d912b
|
691 |
if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval))) |
1a52084d0
|
692 693 694 695 696 |
return -EFAULT; /* * Detect deadlocks. */ |
c0c9ed150
|
697 |
if ((unlikely((curval & FUTEX_TID_MASK) == vpid))) |
1a52084d0
|
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 |
return -EDEADLK; /* * Surprise - we got the lock. Just return to userspace: */ if (unlikely(!curval)) return 1; uval = curval; /* * Set the FUTEX_WAITERS flag, so the owner will know it has someone * to wake at the next unlock. */ newval = curval | FUTEX_WAITERS; /* * There are two cases, where a futex might have no owner (the * owner TID is 0): OWNER_DIED. We take over the futex in this * case. We also do an unconditional take over, when the owner * of the futex died. * * This is safe as we are protected by the hash bucket lock ! */ if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) { /* Keep the OWNER_DIED bit */ |
c0c9ed150
|
724 |
newval = (curval & ~FUTEX_TID_MASK) | vpid; |
1a52084d0
|
725 726 727 |
ownerdied = 0; lock_taken = 1; } |
37a9d912b
|
728 |
if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))) |
1a52084d0
|
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 |
return -EFAULT; if (unlikely(curval != uval)) goto retry; /* * We took the lock due to owner died take over. */ if (unlikely(lock_taken)) return 1; /* * We dont have the lock. Look up the PI state (or create it if * we are the first waiter): */ ret = lookup_pi_state(uval, hb, key, ps); if (unlikely(ret)) { switch (ret) { case -ESRCH: /* * No owner found for this futex. Check if the * OWNER_DIED bit is set to figure out whether * this is a robust futex or not. */ if (get_futex_value_locked(&curval, uaddr)) return -EFAULT; /* * We simply start over in case of a robust * futex. The code above will take the futex * and return happy. */ if (curval & FUTEX_OWNER_DIED) { ownerdied = 1; goto retry; } default: break; } } return ret; } |
2e12978a9
|
772 773 774 775 776 777 778 779 780 |
/** * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket * @q: The futex_q to unqueue * * The q->lock_ptr must not be NULL and must be held by the caller. */ static void __unqueue_futex(struct futex_q *q) { struct futex_hash_bucket *hb; |
290962021
|
781 782 |
if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr)) || WARN_ON(plist_node_empty(&q->list))) |
2e12978a9
|
783 784 785 786 787 |
return; hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock); plist_del(&q->list, &hb->chain); } |
c87e2837b
|
788 |
/* |
1da177e4c
|
789 790 791 792 793 |
* The hash bucket lock must be held when this is called. * Afterwards, the futex_q must not be accessed. */ static void wake_futex(struct futex_q *q) { |
f1a11e057
|
794 |
struct task_struct *p = q->task; |
1da177e4c
|
795 |
/* |
f1a11e057
|
796 |
* We set q->lock_ptr = NULL _before_ we wake up the task. If |
fb62db2ba
|
797 798 |
* a non-futex wake up happens on another CPU then the task * might exit and p would dereference a non-existing task |
f1a11e057
|
799 800 |
* struct. Prevent this by holding a reference on p across the * wake up. |
1da177e4c
|
801 |
*/ |
f1a11e057
|
802 |
get_task_struct(p); |
2e12978a9
|
803 |
__unqueue_futex(q); |
1da177e4c
|
804 |
/* |
f1a11e057
|
805 806 807 808 |
* The waiting task can free the futex_q as soon as * q->lock_ptr = NULL is written, without taking any locks. A * memory barrier is required here to prevent the following * store to lock_ptr from getting ahead of the plist_del. |
1da177e4c
|
809 |
*/ |
ccdea2f88
|
810 |
smp_wmb(); |
1da177e4c
|
811 |
q->lock_ptr = NULL; |
f1a11e057
|
812 813 814 |
wake_up_state(p, TASK_NORMAL); put_task_struct(p); |
1da177e4c
|
815 |
} |
c87e2837b
|
816 817 818 819 820 821 822 823 |
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this) { struct task_struct *new_owner; struct futex_pi_state *pi_state = this->pi_state; u32 curval, newval; if (!pi_state) return -EINVAL; |
51246bfd1
|
824 825 826 827 828 829 |
/* * If current does not own the pi_state then the futex is * inconsistent and user space fiddled with the futex value. */ if (pi_state->owner != current) return -EINVAL; |
d209d74d5
|
830 |
raw_spin_lock(&pi_state->pi_mutex.wait_lock); |
c87e2837b
|
831 832 833 |
new_owner = rt_mutex_next_owner(&pi_state->pi_mutex); /* |
f123c98e7
|
834 835 836 |
* It is possible that the next waiter (the one that brought * this owner to the kernel) timed out and is no longer * waiting on the lock. |
c87e2837b
|
837 838 839 840 841 842 843 844 845 |
*/ if (!new_owner) new_owner = this->task; /* * We pass it to the next owner. (The WAITERS bit is always * kept enabled while there is PI state around. We must also * preserve the owner died bit.) */ |
e3f2ddeac
|
846 |
if (!(uval & FUTEX_OWNER_DIED)) { |
778e9a9c3
|
847 |
int ret = 0; |
b488893a3
|
848 |
newval = FUTEX_WAITERS | task_pid_vnr(new_owner); |
e3f2ddeac
|
849 |
|
37a9d912b
|
850 |
if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) |
778e9a9c3
|
851 |
ret = -EFAULT; |
cde898fa8
|
852 |
else if (curval != uval) |
778e9a9c3
|
853 854 |
ret = -EINVAL; if (ret) { |
d209d74d5
|
855 |
raw_spin_unlock(&pi_state->pi_mutex.wait_lock); |
778e9a9c3
|
856 857 |
return ret; } |
e3f2ddeac
|
858 |
} |
c87e2837b
|
859 |
|
1d6154825
|
860 |
raw_spin_lock_irq(&pi_state->owner->pi_lock); |
627371d73
|
861 862 |
WARN_ON(list_empty(&pi_state->list)); list_del_init(&pi_state->list); |
1d6154825
|
863 |
raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
627371d73
|
864 |
|
1d6154825
|
865 |
raw_spin_lock_irq(&new_owner->pi_lock); |
627371d73
|
866 |
WARN_ON(!list_empty(&pi_state->list)); |
c87e2837b
|
867 868 |
list_add(&pi_state->list, &new_owner->pi_state_list); pi_state->owner = new_owner; |
1d6154825
|
869 |
raw_spin_unlock_irq(&new_owner->pi_lock); |
627371d73
|
870 |
|
d209d74d5
|
871 |
raw_spin_unlock(&pi_state->pi_mutex.wait_lock); |
c87e2837b
|
872 873 874 875 876 877 878 879 880 881 882 883 884 |
rt_mutex_unlock(&pi_state->pi_mutex); return 0; } static int unlock_futex_pi(u32 __user *uaddr, u32 uval) { u32 oldval; /* * There is no waiter, so we unlock the futex. The owner died * bit has not to be preserved here. We are the owner: */ |
37a9d912b
|
885 886 |
if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0)) return -EFAULT; |
c87e2837b
|
887 888 889 890 891 |
if (oldval != uval) return -EAGAIN; return 0; } |
1da177e4c
|
892 |
/* |
8b8f319fc
|
893 894 895 896 897 898 899 900 901 902 903 904 905 906 |
* Express the locking dependencies for lockdep: */ static inline void double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) { if (hb1 <= hb2) { spin_lock(&hb1->lock); if (hb1 < hb2) spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING); } else { /* hb1 > hb2 */ spin_lock(&hb2->lock); spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING); } } |
5eb3dc62f
|
907 908 909 |
static inline void double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) { |
f061d3515
|
910 |
spin_unlock(&hb1->lock); |
88f502fed
|
911 912 |
if (hb1 != hb2) spin_unlock(&hb2->lock); |
5eb3dc62f
|
913 |
} |
8b8f319fc
|
914 |
/* |
b2d0994b1
|
915 |
* Wake up waiters matching bitset queued on this futex (uaddr). |
1da177e4c
|
916 |
*/ |
b41277dc7
|
917 918 |
static int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset) |
1da177e4c
|
919 |
{ |
e2970f2fb
|
920 |
struct futex_hash_bucket *hb; |
1da177e4c
|
921 |
struct futex_q *this, *next; |
ec92d0829
|
922 |
struct plist_head *head; |
38d47c1b7
|
923 |
union futex_key key = FUTEX_KEY_INIT; |
1da177e4c
|
924 |
int ret; |
cd689985c
|
925 926 |
if (!bitset) return -EINVAL; |
9ea71503a
|
927 |
ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ); |
1da177e4c
|
928 929 |
if (unlikely(ret != 0)) goto out; |
e2970f2fb
|
930 931 932 |
hb = hash_futex(&key); spin_lock(&hb->lock); head = &hb->chain; |
1da177e4c
|
933 |
|
ec92d0829
|
934 |
plist_for_each_entry_safe(this, next, head, list) { |
1da177e4c
|
935 |
if (match_futex (&this->key, &key)) { |
52400ba94
|
936 |
if (this->pi_state || this->rt_waiter) { |
ed6f7b10e
|
937 938 939 |
ret = -EINVAL; break; } |
cd689985c
|
940 941 942 943 |
/* Check if one of the bits is set in both bitsets */ if (!(this->bitset & bitset)) continue; |
1da177e4c
|
944 945 946 947 948 |
wake_futex(this); if (++ret >= nr_wake) break; } } |
e2970f2fb
|
949 |
spin_unlock(&hb->lock); |
ae791a2d2
|
950 |
put_futex_key(&key); |
42d35d48c
|
951 |
out: |
1da177e4c
|
952 953 954 955 |
return ret; } /* |
4732efbeb
|
956 957 958 |
* Wake up all waiters hashed on the physical page that is mapped * to this virtual address: */ |
e2970f2fb
|
959 |
static int |
b41277dc7
|
960 |
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, |
e2970f2fb
|
961 |
int nr_wake, int nr_wake2, int op) |
4732efbeb
|
962 |
{ |
38d47c1b7
|
963 |
union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
e2970f2fb
|
964 |
struct futex_hash_bucket *hb1, *hb2; |
ec92d0829
|
965 |
struct plist_head *head; |
4732efbeb
|
966 |
struct futex_q *this, *next; |
e4dc5b7a3
|
967 |
int ret, op_ret; |
4732efbeb
|
968 |
|
e4dc5b7a3
|
969 |
retry: |
9ea71503a
|
970 |
ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ); |
4732efbeb
|
971 972 |
if (unlikely(ret != 0)) goto out; |
9ea71503a
|
973 |
ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE); |
4732efbeb
|
974 |
if (unlikely(ret != 0)) |
42d35d48c
|
975 |
goto out_put_key1; |
4732efbeb
|
976 |
|
e2970f2fb
|
977 978 |
hb1 = hash_futex(&key1); hb2 = hash_futex(&key2); |
4732efbeb
|
979 |
|
e4dc5b7a3
|
980 |
retry_private: |
eaaea8036
|
981 |
double_lock_hb(hb1, hb2); |
e2970f2fb
|
982 |
op_ret = futex_atomic_op_inuser(op, uaddr2); |
4732efbeb
|
983 |
if (unlikely(op_ret < 0)) { |
4732efbeb
|
984 |
|
5eb3dc62f
|
985 |
double_unlock_hb(hb1, hb2); |
4732efbeb
|
986 |
|
7ee1dd3fe
|
987 |
#ifndef CONFIG_MMU |
e2970f2fb
|
988 989 990 991 |
/* * we don't get EFAULT from MMU faults if we don't have an MMU, * but we might get them from range checking */ |
7ee1dd3fe
|
992 |
ret = op_ret; |
42d35d48c
|
993 |
goto out_put_keys; |
7ee1dd3fe
|
994 |
#endif |
796f8d9b9
|
995 996 |
if (unlikely(op_ret != -EFAULT)) { ret = op_ret; |
42d35d48c
|
997 |
goto out_put_keys; |
796f8d9b9
|
998 |
} |
d0725992c
|
999 |
ret = fault_in_user_writeable(uaddr2); |
4732efbeb
|
1000 |
if (ret) |
de87fcc12
|
1001 |
goto out_put_keys; |
4732efbeb
|
1002 |
|
b41277dc7
|
1003 |
if (!(flags & FLAGS_SHARED)) |
e4dc5b7a3
|
1004 |
goto retry_private; |
ae791a2d2
|
1005 1006 |
put_futex_key(&key2); put_futex_key(&key1); |
e4dc5b7a3
|
1007 |
goto retry; |
4732efbeb
|
1008 |
} |
e2970f2fb
|
1009 |
head = &hb1->chain; |
4732efbeb
|
1010 |
|
ec92d0829
|
1011 |
plist_for_each_entry_safe(this, next, head, list) { |
4732efbeb
|
1012 1013 1014 1015 1016 1017 1018 1019 |
if (match_futex (&this->key, &key1)) { wake_futex(this); if (++ret >= nr_wake) break; } } if (op_ret > 0) { |
e2970f2fb
|
1020 |
head = &hb2->chain; |
4732efbeb
|
1021 1022 |
op_ret = 0; |
ec92d0829
|
1023 |
plist_for_each_entry_safe(this, next, head, list) { |
4732efbeb
|
1024 1025 1026 1027 1028 1029 1030 1031 |
if (match_futex (&this->key, &key2)) { wake_futex(this); if (++op_ret >= nr_wake2) break; } } ret += op_ret; } |
5eb3dc62f
|
1032 |
double_unlock_hb(hb1, hb2); |
42d35d48c
|
1033 |
out_put_keys: |
ae791a2d2
|
1034 |
put_futex_key(&key2); |
42d35d48c
|
1035 |
out_put_key1: |
ae791a2d2
|
1036 |
put_futex_key(&key1); |
42d35d48c
|
1037 |
out: |
4732efbeb
|
1038 1039 |
return ret; } |
9121e4783
|
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 |
/** * requeue_futex() - Requeue a futex_q from one hb to another * @q: the futex_q to requeue * @hb1: the source hash_bucket * @hb2: the target hash_bucket * @key2: the new key for the requeued futex_q */ static inline void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2, union futex_key *key2) { /* * If key1 and key2 hash to the same bucket, no need to * requeue. */ if (likely(&hb1->chain != &hb2->chain)) { plist_del(&q->list, &hb1->chain); plist_add(&q->list, &hb2->chain); q->lock_ptr = &hb2->lock; |
9121e4783
|
1060 1061 1062 1063 |
} get_futex_key_refs(key2); q->key = *key2; } |
52400ba94
|
1064 1065 |
/** * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue |
d96ee56ce
|
1066 1067 1068 |
* @q: the futex_q * @key: the key of the requeue target futex * @hb: the hash_bucket of the requeue target futex |
52400ba94
|
1069 1070 1071 1072 1073 |
* * During futex_requeue, with requeue_pi=1, it is possible to acquire the * target futex if it is uncontended or via a lock steal. Set the futex_q key * to the requeue target futex so the waiter can detect the wakeup on the right * futex, but remove it from the hb and NULL the rt_waiter so it can detect |
beda2c7ea
|
1074 1075 1076 |
* atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock * to protect access to the pi_state to fixup the owner later. Must be called * with both q->lock_ptr and hb->lock held. |
52400ba94
|
1077 1078 |
*/ static inline |
beda2c7ea
|
1079 1080 |
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key, struct futex_hash_bucket *hb) |
52400ba94
|
1081 |
{ |
52400ba94
|
1082 1083 |
get_futex_key_refs(key); q->key = *key; |
2e12978a9
|
1084 |
__unqueue_futex(q); |
52400ba94
|
1085 1086 1087 |
WARN_ON(!q->rt_waiter); q->rt_waiter = NULL; |
beda2c7ea
|
1088 |
q->lock_ptr = &hb->lock; |
beda2c7ea
|
1089 |
|
f1a11e057
|
1090 |
wake_up_state(q->task, TASK_NORMAL); |
52400ba94
|
1091 1092 1093 1094 |
} /** * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter |
bab5bc9e8
|
1095 1096 1097 1098 1099 1100 1101 |
* @pifutex: the user address of the to futex * @hb1: the from futex hash bucket, must be locked by the caller * @hb2: the to futex hash bucket, must be locked by the caller * @key1: the from futex key * @key2: the to futex key * @ps: address to store the pi_state pointer * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) |
52400ba94
|
1102 1103 |
* * Try and get the lock on behalf of the top waiter if we can do it atomically. |
bab5bc9e8
|
1104 1105 1106 |
* Wake the top waiter if we succeed. If the caller specified set_waiters, * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit. * hb1 and hb2 must be held by the caller. |
52400ba94
|
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 |
* * Returns: * 0 - failed to acquire the lock atomicly * 1 - acquired the lock * <0 - error */ static int futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2, union futex_key *key1, union futex_key *key2, |
bab5bc9e8
|
1117 |
struct futex_pi_state **ps, int set_waiters) |
52400ba94
|
1118 |
{ |
bab5bc9e8
|
1119 |
struct futex_q *top_waiter = NULL; |
52400ba94
|
1120 1121 1122 1123 1124 |
u32 curval; int ret; if (get_futex_value_locked(&curval, pifutex)) return -EFAULT; |
bab5bc9e8
|
1125 1126 1127 1128 1129 1130 1131 1132 |
/* * Find the top_waiter and determine if there are additional waiters. * If the caller intends to requeue more than 1 waiter to pifutex, * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now, * as we have means to handle the possible fault. If not, don't set * the bit unecessarily as it will force the subsequent unlock to enter * the kernel. */ |
52400ba94
|
1133 1134 1135 1136 1137 |
top_waiter = futex_top_waiter(hb1, key1); /* There are no waiters, nothing for us to do. */ if (!top_waiter) return 0; |
84bc4af59
|
1138 1139 1140 |
/* Ensure we requeue to the expected futex. */ if (!match_futex(top_waiter->requeue_pi_key, key2)) return -EINVAL; |
52400ba94
|
1141 |
/* |
bab5bc9e8
|
1142 1143 1144 |
* Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in * the contended case or if set_waiters is 1. The pi_state is returned * in ps in contended cases. |
52400ba94
|
1145 |
*/ |
bab5bc9e8
|
1146 1147 |
ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task, set_waiters); |
52400ba94
|
1148 |
if (ret == 1) |
beda2c7ea
|
1149 |
requeue_pi_wake_futex(top_waiter, key2, hb2); |
52400ba94
|
1150 1151 1152 1153 1154 1155 |
return ret; } /** * futex_requeue() - Requeue waiters from uaddr1 to uaddr2 |
fb62db2ba
|
1156 |
* @uaddr1: source futex user address |
b41277dc7
|
1157 |
* @flags: futex flags (FLAGS_SHARED, etc.) |
fb62db2ba
|
1158 1159 1160 1161 1162 |
* @uaddr2: target futex user address * @nr_wake: number of waiters to wake (must be 1 for requeue_pi) * @nr_requeue: number of waiters to requeue (0-INT_MAX) * @cmpval: @uaddr1 expected value (or %NULL) * @requeue_pi: if we are attempting to requeue from a non-pi futex to a |
b41277dc7
|
1163 |
* pi futex (pi to pi requeue is not supported) |
52400ba94
|
1164 1165 1166 1167 1168 1169 1170 |
* * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire * uaddr2 atomically on behalf of the top waiter. * * Returns: * >=0 - on success, the number of tasks requeued or woken * <0 - on error |
1da177e4c
|
1171 |
*/ |
b41277dc7
|
1172 1173 1174 |
static int futex_requeue(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, int nr_wake, int nr_requeue, u32 *cmpval, int requeue_pi) |
1da177e4c
|
1175 |
{ |
38d47c1b7
|
1176 |
union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
52400ba94
|
1177 1178 |
int drop_count = 0, task_count = 0, ret; struct futex_pi_state *pi_state = NULL; |
e2970f2fb
|
1179 |
struct futex_hash_bucket *hb1, *hb2; |
ec92d0829
|
1180 |
struct plist_head *head1; |
1da177e4c
|
1181 |
struct futex_q *this, *next; |
52400ba94
|
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 |
u32 curval2; if (requeue_pi) { /* * requeue_pi requires a pi_state, try to allocate it now * without any locks in case it fails. */ if (refill_pi_state_cache()) return -ENOMEM; /* * requeue_pi must wake as many tasks as it can, up to nr_wake * + nr_requeue, since it acquires the rt_mutex prior to * returning to userspace, so as to not leave the rt_mutex with * waiters and no owner. However, second and third wake-ups * cannot be predicted as they involve race conditions with the * first wake and a fault while looking up the pi_state. Both * pthread_cond_signal() and pthread_cond_broadcast() should * use nr_wake=1. */ if (nr_wake != 1) return -EINVAL; } |
1da177e4c
|
1204 |
|
42d35d48c
|
1205 |
retry: |
52400ba94
|
1206 1207 1208 1209 1210 1211 1212 1213 |
if (pi_state != NULL) { /* * We will have to lookup the pi_state again, so free this one * to keep the accounting correct. */ free_pi_state(pi_state); pi_state = NULL; } |
9ea71503a
|
1214 |
ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ); |
1da177e4c
|
1215 1216 |
if (unlikely(ret != 0)) goto out; |
9ea71503a
|
1217 1218 |
ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, requeue_pi ? VERIFY_WRITE : VERIFY_READ); |
1da177e4c
|
1219 |
if (unlikely(ret != 0)) |
42d35d48c
|
1220 |
goto out_put_key1; |
1da177e4c
|
1221 |
|
e2970f2fb
|
1222 1223 |
hb1 = hash_futex(&key1); hb2 = hash_futex(&key2); |
1da177e4c
|
1224 |
|
e4dc5b7a3
|
1225 |
retry_private: |
8b8f319fc
|
1226 |
double_lock_hb(hb1, hb2); |
1da177e4c
|
1227 |
|
e2970f2fb
|
1228 1229 |
if (likely(cmpval != NULL)) { u32 curval; |
1da177e4c
|
1230 |
|
e2970f2fb
|
1231 |
ret = get_futex_value_locked(&curval, uaddr1); |
1da177e4c
|
1232 1233 |
if (unlikely(ret)) { |
5eb3dc62f
|
1234 |
double_unlock_hb(hb1, hb2); |
1da177e4c
|
1235 |
|
e2970f2fb
|
1236 |
ret = get_user(curval, uaddr1); |
e4dc5b7a3
|
1237 1238 |
if (ret) goto out_put_keys; |
1da177e4c
|
1239 |
|
b41277dc7
|
1240 |
if (!(flags & FLAGS_SHARED)) |
e4dc5b7a3
|
1241 |
goto retry_private; |
1da177e4c
|
1242 |
|
ae791a2d2
|
1243 1244 |
put_futex_key(&key2); put_futex_key(&key1); |
e4dc5b7a3
|
1245 |
goto retry; |
1da177e4c
|
1246 |
} |
e2970f2fb
|
1247 |
if (curval != *cmpval) { |
1da177e4c
|
1248 1249 1250 1251 |
ret = -EAGAIN; goto out_unlock; } } |
52400ba94
|
1252 |
if (requeue_pi && (task_count - nr_wake < nr_requeue)) { |
bab5bc9e8
|
1253 1254 1255 1256 1257 1258 |
/* * Attempt to acquire uaddr2 and wake the top waiter. If we * intend to requeue waiters, force setting the FUTEX_WAITERS * bit. We force this here where we are able to easily handle * faults rather in the requeue loop below. */ |
52400ba94
|
1259 |
ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1, |
bab5bc9e8
|
1260 |
&key2, &pi_state, nr_requeue); |
52400ba94
|
1261 1262 1263 1264 1265 1266 1267 1268 1269 |
/* * At this point the top_waiter has either taken uaddr2 or is * waiting on it. If the former, then the pi_state will not * exist yet, look it up one more time to ensure we have a * reference to it. */ if (ret == 1) { WARN_ON(pi_state); |
89061d3d5
|
1270 |
drop_count++; |
52400ba94
|
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 |
task_count++; ret = get_futex_value_locked(&curval2, uaddr2); if (!ret) ret = lookup_pi_state(curval2, hb2, &key2, &pi_state); } switch (ret) { case 0: break; case -EFAULT: double_unlock_hb(hb1, hb2); |
ae791a2d2
|
1283 1284 |
put_futex_key(&key2); put_futex_key(&key1); |
d0725992c
|
1285 |
ret = fault_in_user_writeable(uaddr2); |
52400ba94
|
1286 1287 1288 1289 1290 1291 |
if (!ret) goto retry; goto out; case -EAGAIN: /* The owner was exiting, try again. */ double_unlock_hb(hb1, hb2); |
ae791a2d2
|
1292 1293 |
put_futex_key(&key2); put_futex_key(&key1); |
52400ba94
|
1294 1295 1296 1297 1298 1299 |
cond_resched(); goto retry; default: goto out_unlock; } } |
e2970f2fb
|
1300 |
head1 = &hb1->chain; |
ec92d0829
|
1301 |
plist_for_each_entry_safe(this, next, head1, list) { |
52400ba94
|
1302 1303 1304 1305 |
if (task_count - nr_wake >= nr_requeue) break; if (!match_futex(&this->key, &key1)) |
1da177e4c
|
1306 |
continue; |
52400ba94
|
1307 |
|
392741e0a
|
1308 1309 1310 1311 1312 1313 1314 1315 1316 |
/* * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always * be paired with each other and no other futex ops. */ if ((requeue_pi && !this->rt_waiter) || (!requeue_pi && this->rt_waiter)) { ret = -EINVAL; break; } |
52400ba94
|
1317 1318 1319 1320 1321 1322 1323 |
/* * Wake nr_wake waiters. For requeue_pi, if we acquired the * lock, we already woke the top_waiter. If not, it will be * woken by futex_unlock_pi(). */ if (++task_count <= nr_wake && !requeue_pi) { |
1da177e4c
|
1324 |
wake_futex(this); |
52400ba94
|
1325 1326 |
continue; } |
1da177e4c
|
1327 |
|
84bc4af59
|
1328 1329 1330 1331 1332 |
/* Ensure we requeue to the expected futex for requeue_pi. */ if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) { ret = -EINVAL; break; } |
52400ba94
|
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 |
/* * Requeue nr_requeue waiters and possibly one more in the case * of requeue_pi if we couldn't acquire the lock atomically. */ if (requeue_pi) { /* Prepare the waiter to take the rt_mutex. */ atomic_inc(&pi_state->refcount); this->pi_state = pi_state; ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex, this->rt_waiter, this->task, 1); if (ret == 1) { /* We got the lock. */ |
beda2c7ea
|
1346 |
requeue_pi_wake_futex(this, &key2, hb2); |
89061d3d5
|
1347 |
drop_count++; |
52400ba94
|
1348 1349 1350 1351 1352 1353 1354 |
continue; } else if (ret) { /* -EDEADLK */ this->pi_state = NULL; free_pi_state(pi_state); goto out_unlock; } |
1da177e4c
|
1355 |
} |
52400ba94
|
1356 1357 |
requeue_futex(this, hb1, hb2, &key2); drop_count++; |
1da177e4c
|
1358 1359 1360 |
} out_unlock: |
5eb3dc62f
|
1361 |
double_unlock_hb(hb1, hb2); |
1da177e4c
|
1362 |
|
cd84a42f3
|
1363 1364 1365 1366 1367 1368 |
/* * drop_futex_key_refs() must be called outside the spinlocks. During * the requeue we moved futex_q's from the hash bucket at key1 to the * one at key2 and updated their key pointer. We no longer need to * hold the references to key1. */ |
1da177e4c
|
1369 |
while (--drop_count >= 0) |
9adef58b1
|
1370 |
drop_futex_key_refs(&key1); |
1da177e4c
|
1371 |
|
42d35d48c
|
1372 |
out_put_keys: |
ae791a2d2
|
1373 |
put_futex_key(&key2); |
42d35d48c
|
1374 |
out_put_key1: |
ae791a2d2
|
1375 |
put_futex_key(&key1); |
42d35d48c
|
1376 |
out: |
52400ba94
|
1377 1378 1379 |
if (pi_state != NULL) free_pi_state(pi_state); return ret ? ret : task_count; |
1da177e4c
|
1380 1381 1382 |
} /* The key must be already stored in q->key. */ |
82af7aca5
|
1383 |
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q) |
15e408cd6
|
1384 |
__acquires(&hb->lock) |
1da177e4c
|
1385 |
{ |
e2970f2fb
|
1386 |
struct futex_hash_bucket *hb; |
1da177e4c
|
1387 |
|
e2970f2fb
|
1388 1389 |
hb = hash_futex(&q->key); q->lock_ptr = &hb->lock; |
1da177e4c
|
1390 |
|
e2970f2fb
|
1391 1392 |
spin_lock(&hb->lock); return hb; |
1da177e4c
|
1393 |
} |
d40d65c8d
|
1394 1395 |
static inline void queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb) |
15e408cd6
|
1396 |
__releases(&hb->lock) |
d40d65c8d
|
1397 1398 |
{ spin_unlock(&hb->lock); |
d40d65c8d
|
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 |
} /** * queue_me() - Enqueue the futex_q on the futex_hash_bucket * @q: The futex_q to enqueue * @hb: The destination hash bucket * * The hb->lock must be held by the caller, and is released here. A call to * queue_me() is typically paired with exactly one call to unqueue_me(). The * exceptions involve the PI related operations, which may use unqueue_me_pi() * or nothing if the unqueue is done as part of the wake process and the unqueue * state is implicit in the state of woken task (see futex_wait_requeue_pi() for * an example). */ |
82af7aca5
|
1413 |
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb) |
15e408cd6
|
1414 |
__releases(&hb->lock) |
1da177e4c
|
1415 |
{ |
ec92d0829
|
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 |
int prio; /* * The priority used to register this element is * - either the real thread-priority for the real-time threads * (i.e. threads with a priority lower than MAX_RT_PRIO) * - or MAX_RT_PRIO for non-RT threads. * Thus, all RT-threads are woken first in priority order, and * the others are woken last, in FIFO order. */ prio = min(current->normal_prio, MAX_RT_PRIO); plist_node_init(&q->list, prio); |
ec92d0829
|
1429 |
plist_add(&q->list, &hb->chain); |
c87e2837b
|
1430 |
q->task = current; |
e2970f2fb
|
1431 |
spin_unlock(&hb->lock); |
1da177e4c
|
1432 |
} |
d40d65c8d
|
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 |
/** * unqueue_me() - Remove the futex_q from its futex_hash_bucket * @q: The futex_q to unqueue * * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must * be paired with exactly one earlier call to queue_me(). * * Returns: * 1 - if the futex_q was still queued (and we removed unqueued it) * 0 - if the futex_q was already removed by the waking thread |
1da177e4c
|
1443 |
*/ |
1da177e4c
|
1444 1445 |
static int unqueue_me(struct futex_q *q) { |
1da177e4c
|
1446 |
spinlock_t *lock_ptr; |
e2970f2fb
|
1447 |
int ret = 0; |
1da177e4c
|
1448 1449 |
/* In the common case we don't take the spinlock, which is nice. */ |
42d35d48c
|
1450 |
retry: |
1da177e4c
|
1451 |
lock_ptr = q->lock_ptr; |
e91467ecd
|
1452 |
barrier(); |
c80544dc0
|
1453 |
if (lock_ptr != NULL) { |
1da177e4c
|
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 |
spin_lock(lock_ptr); /* * q->lock_ptr can change between reading it and * spin_lock(), causing us to take the wrong lock. This * corrects the race condition. * * Reasoning goes like this: if we have the wrong lock, * q->lock_ptr must have changed (maybe several times) * between reading it and the spin_lock(). It can * change again after the spin_lock() but only if it was * already changed before the spin_lock(). It cannot, * however, change back to the original value. Therefore * we can detect whether we acquired the correct lock. */ if (unlikely(lock_ptr != q->lock_ptr)) { spin_unlock(lock_ptr); goto retry; } |
2e12978a9
|
1472 |
__unqueue_futex(q); |
c87e2837b
|
1473 1474 |
BUG_ON(q->pi_state); |
1da177e4c
|
1475 1476 1477 |
spin_unlock(lock_ptr); ret = 1; } |
9adef58b1
|
1478 |
drop_futex_key_refs(&q->key); |
1da177e4c
|
1479 1480 |
return ret; } |
c87e2837b
|
1481 1482 |
/* * PI futexes can not be requeued and must remove themself from the |
d0aa7a70b
|
1483 1484 |
* hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry * and dropped here. |
c87e2837b
|
1485 |
*/ |
d0aa7a70b
|
1486 |
static void unqueue_me_pi(struct futex_q *q) |
15e408cd6
|
1487 |
__releases(q->lock_ptr) |
c87e2837b
|
1488 |
{ |
2e12978a9
|
1489 |
__unqueue_futex(q); |
c87e2837b
|
1490 1491 1492 1493 |
BUG_ON(!q->pi_state); free_pi_state(q->pi_state); q->pi_state = NULL; |
d0aa7a70b
|
1494 |
spin_unlock(q->lock_ptr); |
c87e2837b
|
1495 |
} |
d0aa7a70b
|
1496 |
/* |
cdf71a10c
|
1497 |
* Fixup the pi_state owner with the new owner. |
d0aa7a70b
|
1498 |
* |
778e9a9c3
|
1499 1500 |
* Must be called with hash bucket lock held and mm->sem held for non * private futexes. |
d0aa7a70b
|
1501 |
*/ |
778e9a9c3
|
1502 |
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, |
ae791a2d2
|
1503 |
struct task_struct *newowner) |
d0aa7a70b
|
1504 |
{ |
cdf71a10c
|
1505 |
u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS; |
d0aa7a70b
|
1506 |
struct futex_pi_state *pi_state = q->pi_state; |
1b7558e45
|
1507 |
struct task_struct *oldowner = pi_state->owner; |
d0aa7a70b
|
1508 |
u32 uval, curval, newval; |
e4dc5b7a3
|
1509 |
int ret; |
d0aa7a70b
|
1510 1511 |
/* Owner died? */ |
1b7558e45
|
1512 1513 1514 1515 1516 |
if (!pi_state->owner) newtid |= FUTEX_OWNER_DIED; /* * We are here either because we stole the rtmutex from the |
8161239a8
|
1517 1518 1519 1520 |
* previous highest priority waiter or we are the highest priority * waiter but failed to get the rtmutex the first time. * We have to replace the newowner TID in the user space variable. * This must be atomic as we have to preserve the owner died bit here. |
1b7558e45
|
1521 |
* |
b2d0994b1
|
1522 1523 1524 |
* Note: We write the user space value _before_ changing the pi_state * because we can fault here. Imagine swapped out pages or a fork * that marked all the anonymous memory readonly for cow. |
1b7558e45
|
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 |
* * Modifying pi_state _before_ the user space value would * leave the pi_state in an inconsistent state when we fault * here, because we need to drop the hash bucket lock to * handle the fault. This might be observed in the PID check * in lookup_pi_state. */ retry: if (get_futex_value_locked(&uval, uaddr)) goto handle_fault; while (1) { newval = (uval & FUTEX_OWNER_DIED) | newtid; |
37a9d912b
|
1538 |
if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) |
1b7558e45
|
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 |
goto handle_fault; if (curval == uval) break; uval = curval; } /* * We fixed up user space. Now we need to fix the pi_state * itself. */ |
d0aa7a70b
|
1549 |
if (pi_state->owner != NULL) { |
1d6154825
|
1550 |
raw_spin_lock_irq(&pi_state->owner->pi_lock); |
d0aa7a70b
|
1551 1552 |
WARN_ON(list_empty(&pi_state->list)); list_del_init(&pi_state->list); |
1d6154825
|
1553 |
raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
1b7558e45
|
1554 |
} |
d0aa7a70b
|
1555 |
|
cdf71a10c
|
1556 |
pi_state->owner = newowner; |
d0aa7a70b
|
1557 |
|
1d6154825
|
1558 |
raw_spin_lock_irq(&newowner->pi_lock); |
d0aa7a70b
|
1559 |
WARN_ON(!list_empty(&pi_state->list)); |
cdf71a10c
|
1560 |
list_add(&pi_state->list, &newowner->pi_state_list); |
1d6154825
|
1561 |
raw_spin_unlock_irq(&newowner->pi_lock); |
1b7558e45
|
1562 |
return 0; |
d0aa7a70b
|
1563 |
|
d0aa7a70b
|
1564 |
/* |
1b7558e45
|
1565 |
* To handle the page fault we need to drop the hash bucket |
8161239a8
|
1566 1567 |
* lock here. That gives the other task (either the highest priority * waiter itself or the task which stole the rtmutex) the |
1b7558e45
|
1568 1569 1570 1571 1572 |
* chance to try the fixup of the pi_state. So once we are * back from handling the fault we need to check the pi_state * after reacquiring the hash bucket lock and before trying to * do another fixup. When the fixup has been done already we * simply return. |
d0aa7a70b
|
1573 |
*/ |
1b7558e45
|
1574 1575 |
handle_fault: spin_unlock(q->lock_ptr); |
778e9a9c3
|
1576 |
|
d0725992c
|
1577 |
ret = fault_in_user_writeable(uaddr); |
778e9a9c3
|
1578 |
|
1b7558e45
|
1579 |
spin_lock(q->lock_ptr); |
778e9a9c3
|
1580 |
|
1b7558e45
|
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 |
/* * Check if someone else fixed it for us: */ if (pi_state->owner != oldowner) return 0; if (ret) return ret; goto retry; |
d0aa7a70b
|
1591 |
} |
72c1bbf30
|
1592 |
static long futex_wait_restart(struct restart_block *restart); |
36cf3b5c3
|
1593 |
|
ca5f9524d
|
1594 |
/** |
dd9739980
|
1595 1596 |
* fixup_owner() - Post lock pi_state and corner case management * @uaddr: user address of the futex |
dd9739980
|
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 |
* @q: futex_q (contains pi_state and access to the rt_mutex) * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0) * * After attempting to lock an rt_mutex, this function is called to cleanup * the pi_state owner as well as handle race conditions that may allow us to * acquire the lock. Must be called with the hb lock held. * * Returns: * 1 - success, lock taken * 0 - success, lock not taken * <0 - on error (-EFAULT) */ |
ae791a2d2
|
1609 |
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked) |
dd9739980
|
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 |
{ struct task_struct *owner; int ret = 0; if (locked) { /* * Got the lock. We might not be the anticipated owner if we * did a lock-steal - fix up the PI-state in that case: */ if (q->pi_state->owner != current) |
ae791a2d2
|
1620 |
ret = fixup_pi_state_owner(uaddr, q, current); |
dd9739980
|
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 |
goto out; } /* * Catch the rare case, where the lock was released when we were on the * way back before we locked the hash bucket. */ if (q->pi_state->owner == current) { /* * Try to get the rt_mutex now. This might fail as some other * task acquired the rt_mutex after we removed ourself from the * rt_mutex waiters list. */ if (rt_mutex_trylock(&q->pi_state->pi_mutex)) { locked = 1; goto out; } /* * pi_state is incorrect, some other task did a lock steal and * we returned due to timeout or signal without taking the |
8161239a8
|
1642 |
* rt_mutex. Too late. |
dd9739980
|
1643 |
*/ |
8161239a8
|
1644 |
raw_spin_lock(&q->pi_state->pi_mutex.wait_lock); |
dd9739980
|
1645 |
owner = rt_mutex_owner(&q->pi_state->pi_mutex); |
8161239a8
|
1646 1647 1648 |
if (!owner) owner = rt_mutex_next_owner(&q->pi_state->pi_mutex); raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock); |
ae791a2d2
|
1649 |
ret = fixup_pi_state_owner(uaddr, q, owner); |
dd9739980
|
1650 1651 1652 1653 1654 |
goto out; } /* * Paranoia check. If we did not take the lock, then we should not be |
8161239a8
|
1655 |
* the owner of the rt_mutex. |
dd9739980
|
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 |
*/ if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p " "pi-state %p ", ret, q->pi_state->pi_mutex.owner, q->pi_state->owner); out: return ret ? ret : locked; } /** |
ca5f9524d
|
1669 1670 1671 1672 |
* futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal * @hb: the futex hash bucket, must be locked by the caller * @q: the futex_q to queue up on * @timeout: the prepared hrtimer_sleeper, or null for no timeout |
ca5f9524d
|
1673 1674 |
*/ static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, |
f1a11e057
|
1675 |
struct hrtimer_sleeper *timeout) |
ca5f9524d
|
1676 |
{ |
9beba3c54
|
1677 1678 1679 1680 1681 1682 |
/* * The task state is guaranteed to be set before another task can * wake it. set_current_state() is implemented using set_mb() and * queue_me() calls spin_unlock() upon completion, both serializing * access to the hash list and forcing another memory barrier. */ |
f1a11e057
|
1683 |
set_current_state(TASK_INTERRUPTIBLE); |
0729e1961
|
1684 |
queue_me(q, hb); |
ca5f9524d
|
1685 1686 1687 1688 1689 1690 1691 1692 1693 |
/* Arm the timer */ if (timeout) { hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); if (!hrtimer_active(&timeout->timer)) timeout->task = NULL; } /* |
0729e1961
|
1694 1695 |
* If we have been removed from the hash list, then another task * has tried to wake us, and we can skip the call to schedule(). |
ca5f9524d
|
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 |
*/ if (likely(!plist_node_empty(&q->list))) { /* * If the timer has already expired, current will already be * flagged for rescheduling. Only call schedule if there * is no timeout, or if it has yet to expire. */ if (!timeout || timeout->task) schedule(); } __set_current_state(TASK_RUNNING); } |
f801073f8
|
1708 1709 1710 1711 |
/** * futex_wait_setup() - Prepare to wait on a futex * @uaddr: the futex userspace address * @val: the expected value |
b41277dc7
|
1712 |
* @flags: futex flags (FLAGS_SHARED, etc.) |
f801073f8
|
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 |
* @q: the associated futex_q * @hb: storage for hash_bucket pointer to be returned to caller * * Setup the futex_q and locate the hash_bucket. Get the futex value and * compare it with the expected value. Handle atomic faults internally. * Return with the hb lock held and a q.key reference on success, and unlocked * with no q.key reference on failure. * * Returns: * 0 - uaddr contains val and hb has been locked * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked */ |
b41277dc7
|
1725 |
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags, |
f801073f8
|
1726 |
struct futex_q *q, struct futex_hash_bucket **hb) |
1da177e4c
|
1727 |
{ |
e2970f2fb
|
1728 1729 |
u32 uval; int ret; |
1da177e4c
|
1730 |
|
1da177e4c
|
1731 |
/* |
b2d0994b1
|
1732 |
* Access the page AFTER the hash-bucket is locked. |
1da177e4c
|
1733 1734 1735 1736 1737 1738 1739 |
* Order is important: * * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } * * The basic logical guarantee of a futex is that it blocks ONLY * if cond(var) is known to be true at the time of blocking, for |
8fe8f545c
|
1740 1741 |
* any cond. If we locked the hash-bucket after testing *uaddr, that * would open a race condition where we could block indefinitely with |
1da177e4c
|
1742 1743 |
* cond(var) false, which would violate the guarantee. * |
8fe8f545c
|
1744 1745 1746 1747 |
* On the other hand, we insert q and release the hash-bucket only * after testing *uaddr. This guarantees that futex_wait() will NOT * absorb a wakeup if *uaddr does not match the desired values * while the syscall executes. |
1da177e4c
|
1748 |
*/ |
f801073f8
|
1749 |
retry: |
9ea71503a
|
1750 |
ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ); |
f801073f8
|
1751 |
if (unlikely(ret != 0)) |
a5a2a0c7f
|
1752 |
return ret; |
f801073f8
|
1753 1754 1755 |
retry_private: *hb = queue_lock(q); |
e2970f2fb
|
1756 |
ret = get_futex_value_locked(&uval, uaddr); |
1da177e4c
|
1757 |
|
f801073f8
|
1758 1759 |
if (ret) { queue_unlock(q, *hb); |
1da177e4c
|
1760 |
|
e2970f2fb
|
1761 |
ret = get_user(uval, uaddr); |
e4dc5b7a3
|
1762 |
if (ret) |
f801073f8
|
1763 |
goto out; |
1da177e4c
|
1764 |
|
b41277dc7
|
1765 |
if (!(flags & FLAGS_SHARED)) |
e4dc5b7a3
|
1766 |
goto retry_private; |
ae791a2d2
|
1767 |
put_futex_key(&q->key); |
e4dc5b7a3
|
1768 |
goto retry; |
1da177e4c
|
1769 |
} |
ca5f9524d
|
1770 |
|
f801073f8
|
1771 1772 1773 |
if (uval != val) { queue_unlock(q, *hb); ret = -EWOULDBLOCK; |
2fff78c78
|
1774 |
} |
1da177e4c
|
1775 |
|
f801073f8
|
1776 1777 |
out: if (ret) |
ae791a2d2
|
1778 |
put_futex_key(&q->key); |
f801073f8
|
1779 1780 |
return ret; } |
b41277dc7
|
1781 1782 |
static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset) |
f801073f8
|
1783 1784 |
{ struct hrtimer_sleeper timeout, *to = NULL; |
f801073f8
|
1785 1786 |
struct restart_block *restart; struct futex_hash_bucket *hb; |
5bdb05f91
|
1787 |
struct futex_q q = futex_q_init; |
f801073f8
|
1788 1789 1790 1791 |
int ret; if (!bitset) return -EINVAL; |
f801073f8
|
1792 1793 1794 1795 |
q.bitset = bitset; if (abs_time) { to = &timeout; |
b41277dc7
|
1796 1797 1798 |
hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ? CLOCK_REALTIME : CLOCK_MONOTONIC, HRTIMER_MODE_ABS); |
f801073f8
|
1799 1800 1801 1802 |
hrtimer_init_sleeper(to, current); hrtimer_set_expires_range_ns(&to->timer, *abs_time, current->timer_slack_ns); } |
d58e6576b
|
1803 |
retry: |
7ada876a8
|
1804 1805 1806 1807 |
/* * Prepare to wait on uaddr. On success, holds hb lock and increments * q.key refs. */ |
b41277dc7
|
1808 |
ret = futex_wait_setup(uaddr, val, flags, &q, &hb); |
f801073f8
|
1809 1810 |
if (ret) goto out; |
ca5f9524d
|
1811 |
/* queue_me and wait for wakeup, timeout, or a signal. */ |
f1a11e057
|
1812 |
futex_wait_queue_me(hb, &q, to); |
1da177e4c
|
1813 1814 |
/* If we were woken (and unqueued), we succeeded, whatever. */ |
2fff78c78
|
1815 |
ret = 0; |
7ada876a8
|
1816 |
/* unqueue_me() drops q.key ref */ |
1da177e4c
|
1817 |
if (!unqueue_me(&q)) |
7ada876a8
|
1818 |
goto out; |
2fff78c78
|
1819 |
ret = -ETIMEDOUT; |
ca5f9524d
|
1820 |
if (to && !to->task) |
7ada876a8
|
1821 |
goto out; |
72c1bbf30
|
1822 |
|
e2970f2fb
|
1823 |
/* |
d58e6576b
|
1824 1825 |
* We expect signal_pending(current), but we might be the * victim of a spurious wakeup as well. |
e2970f2fb
|
1826 |
*/ |
7ada876a8
|
1827 |
if (!signal_pending(current)) |
d58e6576b
|
1828 |
goto retry; |
d58e6576b
|
1829 |
|
2fff78c78
|
1830 |
ret = -ERESTARTSYS; |
c19384b5b
|
1831 |
if (!abs_time) |
7ada876a8
|
1832 |
goto out; |
1da177e4c
|
1833 |
|
2fff78c78
|
1834 1835 |
restart = ¤t_thread_info()->restart_block; restart->fn = futex_wait_restart; |
a3c74c525
|
1836 |
restart->futex.uaddr = uaddr; |
2fff78c78
|
1837 1838 1839 |
restart->futex.val = val; restart->futex.time = abs_time->tv64; restart->futex.bitset = bitset; |
0cd9c6494
|
1840 |
restart->futex.flags = flags | FLAGS_HAS_TIMEOUT; |
42d35d48c
|
1841 |
|
2fff78c78
|
1842 |
ret = -ERESTART_RESTARTBLOCK; |
42d35d48c
|
1843 |
out: |
ca5f9524d
|
1844 1845 1846 1847 |
if (to) { hrtimer_cancel(&to->timer); destroy_hrtimer_on_stack(&to->timer); } |
c87e2837b
|
1848 1849 |
return ret; } |
72c1bbf30
|
1850 1851 1852 |
static long futex_wait_restart(struct restart_block *restart) { |
a3c74c525
|
1853 |
u32 __user *uaddr = restart->futex.uaddr; |
a72188d8a
|
1854 |
ktime_t t, *tp = NULL; |
72c1bbf30
|
1855 |
|
a72188d8a
|
1856 1857 1858 1859 |
if (restart->futex.flags & FLAGS_HAS_TIMEOUT) { t.tv64 = restart->futex.time; tp = &t; } |
72c1bbf30
|
1860 |
restart->fn = do_no_restart_syscall; |
b41277dc7
|
1861 1862 1863 |
return (long)futex_wait(uaddr, restart->futex.flags, restart->futex.val, tp, restart->futex.bitset); |
72c1bbf30
|
1864 |
} |
c87e2837b
|
1865 1866 1867 1868 1869 1870 |
/* * Userspace tried a 0 -> TID atomic transition of the futex value * and failed. The kernel side here does the whole locking operation: * if there are waiters then it will block, it does PI, etc. (Due to * races the kernel might see a 0 value of the futex too.) */ |
b41277dc7
|
1871 1872 |
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect, ktime_t *time, int trylock) |
c87e2837b
|
1873 |
{ |
c5780e976
|
1874 |
struct hrtimer_sleeper timeout, *to = NULL; |
c87e2837b
|
1875 |
struct futex_hash_bucket *hb; |
5bdb05f91
|
1876 |
struct futex_q q = futex_q_init; |
dd9739980
|
1877 |
int res, ret; |
c87e2837b
|
1878 1879 1880 |
if (refill_pi_state_cache()) return -ENOMEM; |
c19384b5b
|
1881 |
if (time) { |
c5780e976
|
1882 |
to = &timeout; |
237fc6e7a
|
1883 1884 |
hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME, HRTIMER_MODE_ABS); |
c5780e976
|
1885 |
hrtimer_init_sleeper(to, current); |
cc584b213
|
1886 |
hrtimer_set_expires(&to->timer, *time); |
c5780e976
|
1887 |
} |
42d35d48c
|
1888 |
retry: |
9ea71503a
|
1889 |
ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE); |
c87e2837b
|
1890 |
if (unlikely(ret != 0)) |
42d35d48c
|
1891 |
goto out; |
c87e2837b
|
1892 |
|
e4dc5b7a3
|
1893 |
retry_private: |
82af7aca5
|
1894 |
hb = queue_lock(&q); |
c87e2837b
|
1895 |
|
bab5bc9e8
|
1896 |
ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0); |
c87e2837b
|
1897 |
if (unlikely(ret)) { |
778e9a9c3
|
1898 |
switch (ret) { |
1a52084d0
|
1899 1900 1901 1902 1903 1904 |
case 1: /* We got the lock. */ ret = 0; goto out_unlock_put_key; case -EFAULT: goto uaddr_faulted; |
778e9a9c3
|
1905 1906 1907 1908 1909 1910 |
case -EAGAIN: /* * Task is exiting and we just wait for the * exit to complete. */ queue_unlock(&q, hb); |
ae791a2d2
|
1911 |
put_futex_key(&q.key); |
778e9a9c3
|
1912 1913 |
cond_resched(); goto retry; |
778e9a9c3
|
1914 |
default: |
42d35d48c
|
1915 |
goto out_unlock_put_key; |
c87e2837b
|
1916 |
} |
c87e2837b
|
1917 1918 1919 1920 1921 |
} /* * Only actually queue now that the atomic ops are done: */ |
82af7aca5
|
1922 |
queue_me(&q, hb); |
c87e2837b
|
1923 |
|
c87e2837b
|
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 |
WARN_ON(!q.pi_state); /* * Block on the PI mutex: */ if (!trylock) ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1); else { ret = rt_mutex_trylock(&q.pi_state->pi_mutex); /* Fixup the trylock return value: */ ret = ret ? 0 : -EWOULDBLOCK; } |
a99e4e413
|
1935 |
spin_lock(q.lock_ptr); |
dd9739980
|
1936 1937 1938 1939 |
/* * Fixup the pi_state owner and possibly acquire the lock if we * haven't already. */ |
ae791a2d2
|
1940 |
res = fixup_owner(uaddr, &q, !ret); |
dd9739980
|
1941 1942 1943 1944 1945 1946 |
/* * If fixup_owner() returned an error, proprogate that. If it acquired * the lock, clear our -ETIMEDOUT or -EINTR. */ if (res) ret = (res < 0) ? res : 0; |
c87e2837b
|
1947 |
|
e8f6386c0
|
1948 |
/* |
dd9739980
|
1949 1950 |
* If fixup_owner() faulted and was unable to handle the fault, unlock * it and return the fault to userspace. |
e8f6386c0
|
1951 1952 1953 |
*/ if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) rt_mutex_unlock(&q.pi_state->pi_mutex); |
778e9a9c3
|
1954 1955 |
/* Unqueue and drop the lock */ unqueue_me_pi(&q); |
c87e2837b
|
1956 |
|
5ecb01cfd
|
1957 |
goto out_put_key; |
c87e2837b
|
1958 |
|
42d35d48c
|
1959 |
out_unlock_put_key: |
c87e2837b
|
1960 |
queue_unlock(&q, hb); |
42d35d48c
|
1961 |
out_put_key: |
ae791a2d2
|
1962 |
put_futex_key(&q.key); |
42d35d48c
|
1963 |
out: |
237fc6e7a
|
1964 1965 |
if (to) destroy_hrtimer_on_stack(&to->timer); |
dd9739980
|
1966 |
return ret != -EINTR ? ret : -ERESTARTNOINTR; |
c87e2837b
|
1967 |
|
42d35d48c
|
1968 |
uaddr_faulted: |
778e9a9c3
|
1969 |
queue_unlock(&q, hb); |
d0725992c
|
1970 |
ret = fault_in_user_writeable(uaddr); |
e4dc5b7a3
|
1971 1972 |
if (ret) goto out_put_key; |
c87e2837b
|
1973 |
|
b41277dc7
|
1974 |
if (!(flags & FLAGS_SHARED)) |
e4dc5b7a3
|
1975 |
goto retry_private; |
ae791a2d2
|
1976 |
put_futex_key(&q.key); |
e4dc5b7a3
|
1977 |
goto retry; |
c87e2837b
|
1978 1979 1980 |
} /* |
c87e2837b
|
1981 1982 1983 1984 |
* Userspace attempted a TID -> 0 atomic transition, and failed. * This is the in-kernel slowpath: we look up the PI state (if any), * and do the rt-mutex unlock. */ |
b41277dc7
|
1985 |
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags) |
c87e2837b
|
1986 1987 1988 |
{ struct futex_hash_bucket *hb; struct futex_q *this, *next; |
ec92d0829
|
1989 |
struct plist_head *head; |
38d47c1b7
|
1990 |
union futex_key key = FUTEX_KEY_INIT; |
c0c9ed150
|
1991 |
u32 uval, vpid = task_pid_vnr(current); |
e4dc5b7a3
|
1992 |
int ret; |
c87e2837b
|
1993 1994 1995 1996 1997 1998 1999 |
retry: if (get_user(uval, uaddr)) return -EFAULT; /* * We release only a lock we actually own: */ |
c0c9ed150
|
2000 |
if ((uval & FUTEX_TID_MASK) != vpid) |
c87e2837b
|
2001 |
return -EPERM; |
c87e2837b
|
2002 |
|
9ea71503a
|
2003 |
ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE); |
c87e2837b
|
2004 2005 2006 2007 2008 |
if (unlikely(ret != 0)) goto out; hb = hash_futex(&key); spin_lock(&hb->lock); |
c87e2837b
|
2009 2010 2011 2012 2013 |
/* * To avoid races, try to do the TID -> 0 atomic transition * again. If it succeeds then we can return without waking * anyone else up: */ |
37a9d912b
|
2014 2015 |
if (!(uval & FUTEX_OWNER_DIED) && cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0)) |
c87e2837b
|
2016 2017 2018 2019 2020 |
goto pi_faulted; /* * Rare case: we managed to release the lock atomically, * no need to wake anyone else up: */ |
c0c9ed150
|
2021 |
if (unlikely(uval == vpid)) |
c87e2837b
|
2022 2023 2024 2025 2026 2027 2028 |
goto out_unlock; /* * Ok, other tasks may need to be woken up - check waiters * and do the wakeup if necessary: */ head = &hb->chain; |
ec92d0829
|
2029 |
plist_for_each_entry_safe(this, next, head, list) { |
c87e2837b
|
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 |
if (!match_futex (&this->key, &key)) continue; ret = wake_futex_pi(uaddr, uval, this); /* * The atomic access to the futex value * generated a pagefault, so retry the * user-access and the wakeup: */ if (ret == -EFAULT) goto pi_faulted; goto out_unlock; } /* * No waiters - kernel unlocks the futex: */ |
e3f2ddeac
|
2045 2046 2047 2048 2049 |
if (!(uval & FUTEX_OWNER_DIED)) { ret = unlock_futex_pi(uaddr, uval); if (ret == -EFAULT) goto pi_faulted; } |
c87e2837b
|
2050 2051 2052 |
out_unlock: spin_unlock(&hb->lock); |
ae791a2d2
|
2053 |
put_futex_key(&key); |
c87e2837b
|
2054 |
|
42d35d48c
|
2055 |
out: |
c87e2837b
|
2056 2057 2058 |
return ret; pi_faulted: |
778e9a9c3
|
2059 |
spin_unlock(&hb->lock); |
ae791a2d2
|
2060 |
put_futex_key(&key); |
c87e2837b
|
2061 |
|
d0725992c
|
2062 |
ret = fault_in_user_writeable(uaddr); |
b56863630
|
2063 |
if (!ret) |
c87e2837b
|
2064 |
goto retry; |
1da177e4c
|
2065 2066 |
return ret; } |
52400ba94
|
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 |
/** * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex * @hb: the hash_bucket futex_q was original enqueued on * @q: the futex_q woken while waiting to be requeued * @key2: the futex_key of the requeue target futex * @timeout: the timeout associated with the wait (NULL if none) * * Detect if the task was woken on the initial futex as opposed to the requeue * target futex. If so, determine if it was a timeout or a signal that caused * the wakeup and return the appropriate error code to the caller. Must be * called with the hb lock held. * * Returns * 0 - no early wakeup detected |
1c840c149
|
2081 |
* <0 - -ETIMEDOUT or -ERESTARTNOINTR |
52400ba94
|
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 |
*/ static inline int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb, struct futex_q *q, union futex_key *key2, struct hrtimer_sleeper *timeout) { int ret = 0; /* * With the hb lock held, we avoid races while we process the wakeup. * We only need to hold hb (and not hb2) to ensure atomicity as the * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb. * It can't be requeued from uaddr2 to something else since we don't * support a PI aware source futex for requeue. */ if (!match_futex(&q->key, key2)) { WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr)); /* * We were woken prior to requeue by a timeout or a signal. * Unqueue the futex_q and determine which it was. */ |
2e12978a9
|
2103 |
plist_del(&q->list, &hb->chain); |
52400ba94
|
2104 |
|
d58e6576b
|
2105 |
/* Handle spurious wakeups gracefully */ |
11df6dddc
|
2106 |
ret = -EWOULDBLOCK; |
52400ba94
|
2107 2108 |
if (timeout && !timeout->task) ret = -ETIMEDOUT; |
d58e6576b
|
2109 |
else if (signal_pending(current)) |
1c840c149
|
2110 |
ret = -ERESTARTNOINTR; |
52400ba94
|
2111 2112 2113 2114 2115 2116 |
} return ret; } /** * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2 |
56ec1607b
|
2117 |
* @uaddr: the futex we initially wait on (non-pi) |
b41277dc7
|
2118 |
* @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be |
52400ba94
|
2119 2120 2121 |
* the same type, no requeueing from private to shared, etc. * @val: the expected value of uaddr * @abs_time: absolute timeout |
56ec1607b
|
2122 |
* @bitset: 32 bit wakeup bitset set by userspace, defaults to all |
52400ba94
|
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 |
* @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0) * @uaddr2: the pi futex we will take prior to returning to user-space * * The caller will wait on uaddr and will be requeued by futex_requeue() to * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and * complete the acquisition of the rt_mutex prior to returning to userspace. * This ensures the rt_mutex maintains an owner when it has waiters; without * one, the pi logic wouldn't know which task to boost/deboost, if there was a * need to. * * We call schedule in futex_wait_queue_me() when we enqueue and return there * via the following: * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue() |
cc6db4e60
|
2136 2137 2138 |
* 2) wakeup on uaddr2 after a requeue * 3) signal * 4) timeout |
52400ba94
|
2139 |
* |
cc6db4e60
|
2140 |
* If 3, cleanup and return -ERESTARTNOINTR. |
52400ba94
|
2141 2142 2143 2144 2145 2146 2147 |
* * If 2, we may then block on trying to take the rt_mutex and return via: * 5) successful lock * 6) signal * 7) timeout * 8) other lock acquisition failure * |
cc6db4e60
|
2148 |
* If 6, return -EWOULDBLOCK (restarting the syscall would do the same). |
52400ba94
|
2149 2150 2151 2152 2153 2154 2155 |
* * If 4 or 7, we cleanup and return with -ETIMEDOUT. * * Returns: * 0 - On success * <0 - On error */ |
b41277dc7
|
2156 |
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, |
52400ba94
|
2157 |
u32 val, ktime_t *abs_time, u32 bitset, |
b41277dc7
|
2158 |
u32 __user *uaddr2) |
52400ba94
|
2159 2160 2161 2162 |
{ struct hrtimer_sleeper timeout, *to = NULL; struct rt_mutex_waiter rt_waiter; struct rt_mutex *pi_mutex = NULL; |
52400ba94
|
2163 |
struct futex_hash_bucket *hb; |
5bdb05f91
|
2164 2165 |
union futex_key key2 = FUTEX_KEY_INIT; struct futex_q q = futex_q_init; |
52400ba94
|
2166 |
int res, ret; |
52400ba94
|
2167 2168 2169 2170 2171 2172 |
if (!bitset) return -EINVAL; if (abs_time) { to = &timeout; |
b41277dc7
|
2173 2174 2175 |
hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ? CLOCK_REALTIME : CLOCK_MONOTONIC, HRTIMER_MODE_ABS); |
52400ba94
|
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 |
hrtimer_init_sleeper(to, current); hrtimer_set_expires_range_ns(&to->timer, *abs_time, current->timer_slack_ns); } /* * The waiter is allocated on our stack, manipulated by the requeue * code while we sleep on uaddr. */ debug_rt_mutex_init_waiter(&rt_waiter); rt_waiter.task = NULL; |
9ea71503a
|
2187 |
ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE); |
52400ba94
|
2188 2189 |
if (unlikely(ret != 0)) goto out; |
84bc4af59
|
2190 2191 2192 |
q.bitset = bitset; q.rt_waiter = &rt_waiter; q.requeue_pi_key = &key2; |
7ada876a8
|
2193 2194 2195 2196 |
/* * Prepare to wait on uaddr. On success, increments q.key (key1) ref * count. */ |
b41277dc7
|
2197 |
ret = futex_wait_setup(uaddr, val, flags, &q, &hb); |
c8b15a706
|
2198 2199 |
if (ret) goto out_key2; |
52400ba94
|
2200 2201 |
/* Queue the futex_q, drop the hb lock, wait for wakeup. */ |
f1a11e057
|
2202 |
futex_wait_queue_me(hb, &q, to); |
52400ba94
|
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 |
spin_lock(&hb->lock); ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to); spin_unlock(&hb->lock); if (ret) goto out_put_keys; /* * In order for us to be here, we know our q.key == key2, and since * we took the hb->lock above, we also know that futex_requeue() has * completed and we no longer have to concern ourselves with a wakeup |
7ada876a8
|
2214 2215 2216 |
* race with the atomic proxy lock acquisition by the requeue code. The * futex_requeue dropped our key1 reference and incremented our key2 * reference count. |
52400ba94
|
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 |
*/ /* Check if the requeue code acquired the second futex for us. */ if (!q.rt_waiter) { /* * Got the lock. We might not be the anticipated owner if we * did a lock-steal - fix up the PI-state in that case. */ if (q.pi_state && (q.pi_state->owner != current)) { spin_lock(q.lock_ptr); |
ae791a2d2
|
2227 |
ret = fixup_pi_state_owner(uaddr2, &q, current); |
52400ba94
|
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 |
spin_unlock(q.lock_ptr); } } else { /* * We have been woken up by futex_unlock_pi(), a timeout, or a * signal. futex_unlock_pi() will not destroy the lock_ptr nor * the pi_state. */ WARN_ON(!&q.pi_state); pi_mutex = &q.pi_state->pi_mutex; ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1); debug_rt_mutex_free_waiter(&rt_waiter); spin_lock(q.lock_ptr); /* * Fixup the pi_state owner and possibly acquire the lock if we * haven't already. */ |
ae791a2d2
|
2246 |
res = fixup_owner(uaddr2, &q, !ret); |
52400ba94
|
2247 2248 |
/* * If fixup_owner() returned an error, proprogate that. If it |
56ec1607b
|
2249 |
* acquired the lock, clear -ETIMEDOUT or -EINTR. |
52400ba94
|
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 |
*/ if (res) ret = (res < 0) ? res : 0; /* Unqueue and drop the lock. */ unqueue_me_pi(&q); } /* * If fixup_pi_state_owner() faulted and was unable to handle the * fault, unlock the rt_mutex and return the fault to userspace. */ if (ret == -EFAULT) { if (rt_mutex_owner(pi_mutex) == current) rt_mutex_unlock(pi_mutex); } else if (ret == -EINTR) { |
52400ba94
|
2266 |
/* |
cc6db4e60
|
2267 2268 2269 2270 2271 |
* We've already been requeued, but cannot restart by calling * futex_lock_pi() directly. We could restart this syscall, but * it would detect that the user space "val" changed and return * -EWOULDBLOCK. Save the overhead of the restart and return * -EWOULDBLOCK directly. |
52400ba94
|
2272 |
*/ |
2070887fd
|
2273 |
ret = -EWOULDBLOCK; |
52400ba94
|
2274 2275 2276 |
} out_put_keys: |
ae791a2d2
|
2277 |
put_futex_key(&q.key); |
c8b15a706
|
2278 |
out_key2: |
ae791a2d2
|
2279 |
put_futex_key(&key2); |
52400ba94
|
2280 2281 2282 2283 2284 2285 2286 2287 |
out: if (to) { hrtimer_cancel(&to->timer); destroy_hrtimer_on_stack(&to->timer); } return ret; } |
0771dfefc
|
2288 2289 2290 2291 2292 2293 2294 |
/* * Support for robust futexes: the kernel cleans up held futexes at * thread exit time. * * Implementation: user-space maintains a per-thread list of locks it * is holding. Upon do_exit(), the kernel carefully walks this list, * and marks all locks that are owned by this thread with the |
c87e2837b
|
2295 |
* FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is |
0771dfefc
|
2296 2297 2298 2299 2300 2301 2302 2303 |
* always manipulated with the lock held, so the list is private and * per-thread. Userspace also maintains a per-thread 'list_op_pending' * field, to allow the kernel to clean up if the thread dies after * acquiring the lock, but just before it could have added itself to * the list. There can only be one such pending lock. */ /** |
d96ee56ce
|
2304 2305 2306 |
* sys_set_robust_list() - Set the robust-futex list head of a task * @head: pointer to the list-head * @len: length of the list-head, as userspace expects |
0771dfefc
|
2307 |
*/ |
836f92adf
|
2308 2309 |
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, size_t, len) |
0771dfefc
|
2310 |
{ |
a0c1e9073
|
2311 2312 |
if (!futex_cmpxchg_enabled) return -ENOSYS; |
0771dfefc
|
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 |
/* * The kernel knows only one size for now: */ if (unlikely(len != sizeof(*head))) return -EINVAL; current->robust_list = head; return 0; } /** |
d96ee56ce
|
2325 2326 2327 2328 |
* sys_get_robust_list() - Get the robust-futex list head of a task * @pid: pid of the process [zero for current task] * @head_ptr: pointer to a list-head pointer, the kernel fills it in * @len_ptr: pointer to a length field, the kernel fills in the header size |
0771dfefc
|
2329 |
*/ |
836f92adf
|
2330 2331 2332 |
SYSCALL_DEFINE3(get_robust_list, int, pid, struct robust_list_head __user * __user *, head_ptr, size_t __user *, len_ptr) |
0771dfefc
|
2333 |
{ |
ba46df984
|
2334 |
struct robust_list_head __user *head; |
0771dfefc
|
2335 |
unsigned long ret; |
c69e8d9c0
|
2336 |
const struct cred *cred = current_cred(), *pcred; |
0771dfefc
|
2337 |
|
a0c1e9073
|
2338 2339 |
if (!futex_cmpxchg_enabled) return -ENOSYS; |
0771dfefc
|
2340 2341 2342 2343 2344 2345 |
if (!pid) head = current->robust_list; else { struct task_struct *p; ret = -ESRCH; |
aaa2a97eb
|
2346 |
rcu_read_lock(); |
228ebcbe6
|
2347 |
p = find_task_by_vpid(pid); |
0771dfefc
|
2348 2349 2350 |
if (!p) goto err_unlock; ret = -EPERM; |
c69e8d9c0
|
2351 |
pcred = __task_cred(p); |
b0e77598f
|
2352 2353 2354 2355 2356 2357 2358 2359 |
/* If victim is in different user_ns, then uids are not comparable, so we must have CAP_SYS_PTRACE */ if (cred->user->user_ns != pcred->user->user_ns) { if (!ns_capable(pcred->user->user_ns, CAP_SYS_PTRACE)) goto err_unlock; goto ok; } /* If victim is in same user_ns, then uids are comparable */ |
c69e8d9c0
|
2360 2361 |
if (cred->euid != pcred->euid && cred->euid != pcred->uid && |
b0e77598f
|
2362 |
!ns_capable(pcred->user->user_ns, CAP_SYS_PTRACE)) |
0771dfefc
|
2363 |
goto err_unlock; |
b0e77598f
|
2364 |
ok: |
0771dfefc
|
2365 |
head = p->robust_list; |
aaa2a97eb
|
2366 |
rcu_read_unlock(); |
0771dfefc
|
2367 2368 2369 2370 2371 2372 2373 |
} if (put_user(sizeof(*head), len_ptr)) return -EFAULT; return put_user(head, head_ptr); err_unlock: |
aaa2a97eb
|
2374 |
rcu_read_unlock(); |
0771dfefc
|
2375 2376 2377 2378 2379 2380 2381 2382 |
return ret; } /* * Process a futex-list entry, check whether it's owned by the * dying task, and do notification if so: */ |
e3f2ddeac
|
2383 |
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi) |
0771dfefc
|
2384 |
{ |
e3f2ddeac
|
2385 |
u32 uval, nval, mval; |
0771dfefc
|
2386 |
|
8f17d3a50
|
2387 2388 |
retry: if (get_user(uval, uaddr)) |
0771dfefc
|
2389 |
return -1; |
b488893a3
|
2390 |
if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) { |
0771dfefc
|
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 |
/* * Ok, this dying thread is truly holding a futex * of interest. Set the OWNER_DIED bit atomically * via cmpxchg, and if the value had FUTEX_WAITERS * set, wake up a waiter (if any). (We have to do a * futex_wake() even if OWNER_DIED is already set - * to handle the rare but possible case of recursive * thread-death.) The rest of the cleanup is done in * userspace. */ |
e3f2ddeac
|
2401 |
mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED; |
6e0aa9f8a
|
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 |
/* * We are not holding a lock here, but we want to have * the pagefault_disable/enable() protection because * we want to handle the fault gracefully. If the * access fails we try to fault in the futex with R/W * verification via get_user_pages. get_user() above * does not guarantee R/W access. If that fails we * give up and leave the futex locked. */ if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) { if (fault_in_user_writeable(uaddr)) return -1; goto retry; } |
c87e2837b
|
2416 |
if (nval != uval) |
8f17d3a50
|
2417 |
goto retry; |
0771dfefc
|
2418 |
|
e3f2ddeac
|
2419 2420 2421 2422 |
/* * Wake robust non-PI futexes here. The wakeup of * PI futexes happens in exit_pi_state(): */ |
36cf3b5c3
|
2423 |
if (!pi && (uval & FUTEX_WAITERS)) |
c2f9f2015
|
2424 |
futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY); |
0771dfefc
|
2425 2426 2427 2428 2429 |
} return 0; } /* |
e3f2ddeac
|
2430 2431 2432 |
* Fetch a robust-list pointer. Bit 0 signals PI futexes: */ static inline int fetch_robust_entry(struct robust_list __user **entry, |
ba46df984
|
2433 |
struct robust_list __user * __user *head, |
1dcc41bb0
|
2434 |
unsigned int *pi) |
e3f2ddeac
|
2435 2436 |
{ unsigned long uentry; |
ba46df984
|
2437 |
if (get_user(uentry, (unsigned long __user *)head)) |
e3f2ddeac
|
2438 |
return -EFAULT; |
ba46df984
|
2439 |
*entry = (void __user *)(uentry & ~1UL); |
e3f2ddeac
|
2440 2441 2442 2443 2444 2445 |
*pi = uentry & 1; return 0; } /* |
0771dfefc
|
2446 2447 2448 2449 2450 2451 2452 2453 |
* Walk curr->robust_list (very carefully, it's a userspace list!) * and mark any locks found there dead, and notify any waiters. * * We silently return on any sign of list-walking problem. */ void exit_robust_list(struct task_struct *curr) { struct robust_list_head __user *head = curr->robust_list; |
9f96cb1e8
|
2454 |
struct robust_list __user *entry, *next_entry, *pending; |
4c115e951
|
2455 2456 |
unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; unsigned int uninitialized_var(next_pi); |
0771dfefc
|
2457 |
unsigned long futex_offset; |
9f96cb1e8
|
2458 |
int rc; |
0771dfefc
|
2459 |
|
a0c1e9073
|
2460 2461 |
if (!futex_cmpxchg_enabled) return; |
0771dfefc
|
2462 2463 2464 2465 |
/* * Fetch the list head (which was registered earlier, via * sys_set_robust_list()): */ |
e3f2ddeac
|
2466 |
if (fetch_robust_entry(&entry, &head->list.next, &pi)) |
0771dfefc
|
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 |
return; /* * Fetch the relative futex offset: */ if (get_user(futex_offset, &head->futex_offset)) return; /* * Fetch any possibly pending lock-add first, and handle it * if it exists: */ |
e3f2ddeac
|
2477 |
if (fetch_robust_entry(&pending, &head->list_op_pending, &pip)) |
0771dfefc
|
2478 |
return; |
e3f2ddeac
|
2479 |
|
9f96cb1e8
|
2480 |
next_entry = NULL; /* avoid warning with gcc */ |
0771dfefc
|
2481 2482 |
while (entry != &head->list) { /* |
9f96cb1e8
|
2483 2484 2485 2486 2487 |
* Fetch the next entry in the list before calling * handle_futex_death: */ rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi); /* |
0771dfefc
|
2488 |
* A pending lock might already be on the list, so |
c87e2837b
|
2489 |
* don't process it twice: |
0771dfefc
|
2490 2491 |
*/ if (entry != pending) |
ba46df984
|
2492 |
if (handle_futex_death((void __user *)entry + futex_offset, |
e3f2ddeac
|
2493 |
curr, pi)) |
0771dfefc
|
2494 |
return; |
9f96cb1e8
|
2495 |
if (rc) |
0771dfefc
|
2496 |
return; |
9f96cb1e8
|
2497 2498 |
entry = next_entry; pi = next_pi; |
0771dfefc
|
2499 2500 2501 2502 2503 2504 2505 2506 |
/* * Avoid excessively long or circular lists: */ if (!--limit) break; cond_resched(); } |
9f96cb1e8
|
2507 2508 2509 2510 |
if (pending) handle_futex_death((void __user *)pending + futex_offset, curr, pip); |
0771dfefc
|
2511 |
} |
c19384b5b
|
2512 |
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout, |
e2970f2fb
|
2513 |
u32 __user *uaddr2, u32 val2, u32 val3) |
1da177e4c
|
2514 |
{ |
b41277dc7
|
2515 2516 |
int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK; unsigned int flags = 0; |
34f01cc1f
|
2517 2518 |
if (!(op & FUTEX_PRIVATE_FLAG)) |
b41277dc7
|
2519 |
flags |= FLAGS_SHARED; |
1da177e4c
|
2520 |
|
b41277dc7
|
2521 2522 2523 2524 2525 |
if (op & FUTEX_CLOCK_REALTIME) { flags |= FLAGS_CLOCKRT; if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI) return -ENOSYS; } |
1da177e4c
|
2526 |
|
34f01cc1f
|
2527 |
switch (cmd) { |
1da177e4c
|
2528 |
case FUTEX_WAIT: |
cd689985c
|
2529 2530 |
val3 = FUTEX_BITSET_MATCH_ANY; case FUTEX_WAIT_BITSET: |
b41277dc7
|
2531 |
ret = futex_wait(uaddr, flags, val, timeout, val3); |
1da177e4c
|
2532 2533 |
break; case FUTEX_WAKE: |
cd689985c
|
2534 2535 |
val3 = FUTEX_BITSET_MATCH_ANY; case FUTEX_WAKE_BITSET: |
b41277dc7
|
2536 |
ret = futex_wake(uaddr, flags, val, val3); |
1da177e4c
|
2537 |
break; |
1da177e4c
|
2538 |
case FUTEX_REQUEUE: |
b41277dc7
|
2539 |
ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0); |
1da177e4c
|
2540 2541 |
break; case FUTEX_CMP_REQUEUE: |
b41277dc7
|
2542 |
ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0); |
1da177e4c
|
2543 |
break; |
4732efbeb
|
2544 |
case FUTEX_WAKE_OP: |
b41277dc7
|
2545 |
ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3); |
4732efbeb
|
2546 |
break; |
c87e2837b
|
2547 |
case FUTEX_LOCK_PI: |
a0c1e9073
|
2548 |
if (futex_cmpxchg_enabled) |
b41277dc7
|
2549 |
ret = futex_lock_pi(uaddr, flags, val, timeout, 0); |
c87e2837b
|
2550 2551 |
break; case FUTEX_UNLOCK_PI: |
a0c1e9073
|
2552 |
if (futex_cmpxchg_enabled) |
b41277dc7
|
2553 |
ret = futex_unlock_pi(uaddr, flags); |
c87e2837b
|
2554 2555 |
break; case FUTEX_TRYLOCK_PI: |
a0c1e9073
|
2556 |
if (futex_cmpxchg_enabled) |
b41277dc7
|
2557 |
ret = futex_lock_pi(uaddr, flags, 0, timeout, 1); |
c87e2837b
|
2558 |
break; |
52400ba94
|
2559 2560 |
case FUTEX_WAIT_REQUEUE_PI: val3 = FUTEX_BITSET_MATCH_ANY; |
b41277dc7
|
2561 2562 |
ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3, uaddr2); |
52400ba94
|
2563 |
break; |
52400ba94
|
2564 |
case FUTEX_CMP_REQUEUE_PI: |
b41277dc7
|
2565 |
ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1); |
52400ba94
|
2566 |
break; |
1da177e4c
|
2567 2568 2569 2570 2571 |
default: ret = -ENOSYS; } return ret; } |
17da2bd90
|
2572 2573 2574 |
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val, struct timespec __user *, utime, u32 __user *, uaddr2, u32, val3) |
1da177e4c
|
2575 |
{ |
c19384b5b
|
2576 2577 |
struct timespec ts; ktime_t t, *tp = NULL; |
e2970f2fb
|
2578 |
u32 val2 = 0; |
34f01cc1f
|
2579 |
int cmd = op & FUTEX_CMD_MASK; |
1da177e4c
|
2580 |
|
cd689985c
|
2581 |
if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI || |
52400ba94
|
2582 2583 |
cmd == FUTEX_WAIT_BITSET || cmd == FUTEX_WAIT_REQUEUE_PI)) { |
c19384b5b
|
2584 |
if (copy_from_user(&ts, utime, sizeof(ts)) != 0) |
1da177e4c
|
2585 |
return -EFAULT; |
c19384b5b
|
2586 |
if (!timespec_valid(&ts)) |
9741ef964
|
2587 |
return -EINVAL; |
c19384b5b
|
2588 2589 |
t = timespec_to_ktime(ts); |
34f01cc1f
|
2590 |
if (cmd == FUTEX_WAIT) |
5a7780e72
|
2591 |
t = ktime_add_safe(ktime_get(), t); |
c19384b5b
|
2592 |
tp = &t; |
1da177e4c
|
2593 2594 |
} /* |
52400ba94
|
2595 |
* requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*. |
f54f09861
|
2596 |
* number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP. |
1da177e4c
|
2597 |
*/ |
f54f09861
|
2598 |
if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE || |
ba9c22f2c
|
2599 |
cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP) |
e2970f2fb
|
2600 |
val2 = (u32) (unsigned long) utime; |
1da177e4c
|
2601 |
|
c19384b5b
|
2602 |
return do_futex(uaddr, op, val, tp, uaddr2, val2, val3); |
1da177e4c
|
2603 |
} |
f6d107fb1
|
2604 |
static int __init futex_init(void) |
1da177e4c
|
2605 |
{ |
a0c1e9073
|
2606 |
u32 curval; |
3e4ab747e
|
2607 |
int i; |
95362fa90
|
2608 |
|
a0c1e9073
|
2609 2610 2611 2612 2613 2614 2615 |
/* * This will fail and we want it. Some arch implementations do * runtime detection of the futex_atomic_cmpxchg_inatomic() * functionality. We want to know that before we call in any * of the complex code paths. Also we want to prevent * registration of robust lists in that case. NULL is * guaranteed to fault and we get -EFAULT on functional |
fb62db2ba
|
2616 |
* implementation, the non-functional ones will return |
a0c1e9073
|
2617 2618 |
* -ENOSYS. */ |
37a9d912b
|
2619 |
if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT) |
a0c1e9073
|
2620 |
futex_cmpxchg_enabled = 1; |
3e4ab747e
|
2621 |
for (i = 0; i < ARRAY_SIZE(futex_queues); i++) { |
732375c6a
|
2622 |
plist_head_init(&futex_queues[i].chain); |
3e4ab747e
|
2623 2624 |
spin_lock_init(&futex_queues[i].lock); } |
1da177e4c
|
2625 2626 |
return 0; } |
f6d107fb1
|
2627 |
__initcall(futex_init); |