Blame view
kernel/hrtimer.c
46.1 KB
c0a313296
|
1 2 3 |
/* * linux/kernel/hrtimer.c * |
3c8aa39d7
|
4 |
* Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> |
79bf2bb33
|
5 |
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
54cdfdb47
|
6 |
* Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner |
c0a313296
|
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
* * High-resolution kernel timers * * In contrast to the low-resolution timeout API implemented in * kernel/timer.c, hrtimers provide finer resolution and accuracy * depending on system configuration and capabilities. * * These timers are currently used for: * - itimers * - POSIX timers * - nanosleep * - precise in-kernel timing * * Started by: Thomas Gleixner and Ingo Molnar * * Credits: * based on kernel/timer.c * |
66188fae3
|
25 26 27 28 29 30 |
* Help, testing, suggestions, bugfixes, improvements were * provided by: * * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel * et. al. * |
c0a313296
|
31 32 33 34 35 36 37 38 39 |
* For licencing details see kernel-base/COPYING */ #include <linux/cpu.h> #include <linux/module.h> #include <linux/percpu.h> #include <linux/hrtimer.h> #include <linux/notifier.h> #include <linux/syscalls.h> |
54cdfdb47
|
40 |
#include <linux/kallsyms.h> |
c0a313296
|
41 |
#include <linux/interrupt.h> |
79bf2bb33
|
42 |
#include <linux/tick.h> |
54cdfdb47
|
43 44 |
#include <linux/seq_file.h> #include <linux/err.h> |
237fc6e7a
|
45 |
#include <linux/debugobjects.h> |
eea08f32a
|
46 47 |
#include <linux/sched.h> #include <linux/timer.h> |
c0a313296
|
48 49 |
#include <asm/uaccess.h> |
c6a2a1770
|
50 |
#include <trace/events/timer.h> |
c0a313296
|
51 52 |
/* * The timer bases: |
7978672c4
|
53 |
* |
e06383db9
|
54 55 56 57 |
* There are more clockids then hrtimer bases. Thus, we index * into the timer bases by the hrtimer_base_type enum. When trying * to reach a base using a clockid, hrtimer_clockid_to_base() * is used to convert from clockid to the proper hrtimer_base_type. |
c0a313296
|
58 |
*/ |
54cdfdb47
|
59 |
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = |
c0a313296
|
60 |
{ |
3c8aa39d7
|
61 62 |
.clock_base = |
c0a313296
|
63 |
{ |
3c8aa39d7
|
64 65 66 |
{ .index = CLOCK_REALTIME, .get_time = &ktime_get_real, |
54cdfdb47
|
67 |
.resolution = KTIME_LOW_RES, |
3c8aa39d7
|
68 69 70 71 |
}, { .index = CLOCK_MONOTONIC, .get_time = &ktime_get, |
54cdfdb47
|
72 |
.resolution = KTIME_LOW_RES, |
3c8aa39d7
|
73 |
}, |
70a08cca1
|
74 75 76 77 78 |
{ .index = CLOCK_BOOTTIME, .get_time = &ktime_get_boottime, .resolution = KTIME_LOW_RES, }, |
3c8aa39d7
|
79 |
} |
c0a313296
|
80 |
}; |
942c3c5c3
|
81 |
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { |
ce31332d3
|
82 83 84 85 |
[CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, }; |
e06383db9
|
86 87 88 89 90 |
static inline int hrtimer_clockid_to_base(clockid_t clock_id) { return hrtimer_clock_to_base_table[clock_id]; } |
c0a313296
|
91 |
/* |
92127c7a4
|
92 93 94 |
* Get the coarse grained time at the softirq based on xtime and * wall_to_monotonic. */ |
3c8aa39d7
|
95 |
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base) |
92127c7a4
|
96 |
{ |
70a08cca1
|
97 |
ktime_t xtim, mono, boot; |
314ac3715
|
98 |
struct timespec xts, tom, slp; |
92127c7a4
|
99 |
|
314ac3715
|
100 |
get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp); |
92127c7a4
|
101 |
|
f4304ab21
|
102 |
xtim = timespec_to_ktime(xts); |
70a08cca1
|
103 104 |
mono = ktime_add(xtim, timespec_to_ktime(tom)); boot = ktime_add(mono, timespec_to_ktime(slp)); |
e06383db9
|
105 |
base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim; |
70a08cca1
|
106 107 |
base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono; base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot; |
92127c7a4
|
108 109 110 |
} /* |
c0a313296
|
111 112 113 114 |
* Functions and macros which are different for UP/SMP systems are kept in a * single place */ #ifdef CONFIG_SMP |
c0a313296
|
115 116 117 118 119 120 121 122 123 124 125 126 |
/* * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock * means that all timers which are tied to this base via timer->base are * locked, and the base itself is locked too. * * So __run_timers/migrate_timers can safely modify all timers which could * be found on the lists/queues. * * When the timer's base is locked, and the timer removed from list, it is * possible to set timer->base = NULL and drop the lock: the timer remains * locked. */ |
3c8aa39d7
|
127 128 129 |
static struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
c0a313296
|
130 |
{ |
3c8aa39d7
|
131 |
struct hrtimer_clock_base *base; |
c0a313296
|
132 133 134 135 |
for (;;) { base = timer->base; if (likely(base != NULL)) { |
ecb49d1a6
|
136 |
raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
c0a313296
|
137 138 139 |
if (likely(base == timer->base)) return base; /* The timer has migrated to another CPU: */ |
ecb49d1a6
|
140 |
raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); |
c0a313296
|
141 142 143 144 |
} cpu_relax(); } } |
6ff7041db
|
145 146 147 148 149 150 151 |
/* * Get the preferred target CPU for NOHZ */ static int hrtimer_get_target(int this_cpu, int pinned) { #ifdef CONFIG_NO_HZ |
83cd4fe27
|
152 153 |
if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) return get_nohz_timer_target(); |
6ff7041db
|
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
#endif return this_cpu; } /* * With HIGHRES=y we do not migrate the timer when it is expiring * before the next event on the target cpu because we cannot reprogram * the target cpu hardware and we would cause it to fire late. * * Called with cpu_base->lock of target cpu held. */ static int hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) { #ifdef CONFIG_HIGH_RES_TIMERS ktime_t expires; if (!new_base->cpu_base->hres_active) return 0; expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); return expires.tv64 <= new_base->cpu_base->expires_next.tv64; #else return 0; #endif } |
c0a313296
|
180 181 182 |
/* * Switch the timer base to the current CPU when possible. */ |
3c8aa39d7
|
183 |
static inline struct hrtimer_clock_base * |
597d02757
|
184 185 |
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, int pinned) |
c0a313296
|
186 |
{ |
3c8aa39d7
|
187 188 |
struct hrtimer_clock_base *new_base; struct hrtimer_cpu_base *new_cpu_base; |
6ff7041db
|
189 190 |
int this_cpu = smp_processor_id(); int cpu = hrtimer_get_target(this_cpu, pinned); |
e06383db9
|
191 |
int basenum = hrtimer_clockid_to_base(base->index); |
c0a313296
|
192 |
|
eea08f32a
|
193 194 |
again: new_cpu_base = &per_cpu(hrtimer_bases, cpu); |
e06383db9
|
195 |
new_base = &new_cpu_base->clock_base[basenum]; |
c0a313296
|
196 197 198 |
if (base != new_base) { /* |
6ff7041db
|
199 |
* We are trying to move timer to new_base. |
c0a313296
|
200 201 202 203 204 205 206 |
* However we can't change timer's base while it is running, * so we keep it on the same CPU. No hassle vs. reprogramming * the event source in the high resolution case. The softirq * code will take care of this when the timer function has * completed. There is no conflict as we hold the lock until * the timer is enqueued. */ |
54cdfdb47
|
207 |
if (unlikely(hrtimer_callback_running(timer))) |
c0a313296
|
208 209 210 211 |
return base; /* See the comment in lock_timer_base() */ timer->base = NULL; |
ecb49d1a6
|
212 213 |
raw_spin_unlock(&base->cpu_base->lock); raw_spin_lock(&new_base->cpu_base->lock); |
eea08f32a
|
214 |
|
6ff7041db
|
215 216 |
if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { cpu = this_cpu; |
ecb49d1a6
|
217 218 |
raw_spin_unlock(&new_base->cpu_base->lock); raw_spin_lock(&base->cpu_base->lock); |
6ff7041db
|
219 220 |
timer->base = base; goto again; |
eea08f32a
|
221 |
} |
c0a313296
|
222 223 224 225 226 227 |
timer->base = new_base; } return new_base; } #else /* CONFIG_SMP */ |
3c8aa39d7
|
228 |
static inline struct hrtimer_clock_base * |
c0a313296
|
229 230 |
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) { |
3c8aa39d7
|
231 |
struct hrtimer_clock_base *base = timer->base; |
c0a313296
|
232 |
|
ecb49d1a6
|
233 |
raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
c0a313296
|
234 235 236 |
return base; } |
eea08f32a
|
237 |
# define switch_hrtimer_base(t, b, p) (b) |
c0a313296
|
238 239 240 241 242 243 244 245 246 247 248 |
#endif /* !CONFIG_SMP */ /* * Functions for the union type storage format of ktime_t which are * too large for inlining: */ #if BITS_PER_LONG < 64 # ifndef CONFIG_KTIME_SCALAR /** * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable |
c0a313296
|
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
* @kt: addend * @nsec: the scalar nsec value to add * * Returns the sum of kt and nsec in ktime_t format */ ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) { ktime_t tmp; if (likely(nsec < NSEC_PER_SEC)) { tmp.tv64 = nsec; } else { unsigned long rem = do_div(nsec, NSEC_PER_SEC); tmp = ktime_set((long)nsec, rem); } return ktime_add(kt, tmp); } |
b8b8fd2dc
|
268 269 |
EXPORT_SYMBOL_GPL(ktime_add_ns); |
a272378d1
|
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
/** * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable * @kt: minuend * @nsec: the scalar nsec value to subtract * * Returns the subtraction of @nsec from @kt in ktime_t format */ ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec) { ktime_t tmp; if (likely(nsec < NSEC_PER_SEC)) { tmp.tv64 = nsec; } else { unsigned long rem = do_div(nsec, NSEC_PER_SEC); tmp = ktime_set((long)nsec, rem); } return ktime_sub(kt, tmp); } EXPORT_SYMBOL_GPL(ktime_sub_ns); |
c0a313296
|
294 295 296 297 298 |
# endif /* !CONFIG_KTIME_SCALAR */ /* * Divide a ktime value by a nanosecond value */ |
4d672e7ac
|
299 |
u64 ktime_divns(const ktime_t kt, s64 div) |
c0a313296
|
300 |
{ |
900cfa461
|
301 |
u64 dclc; |
c0a313296
|
302 |
int sft = 0; |
900cfa461
|
303 |
dclc = ktime_to_ns(kt); |
c0a313296
|
304 305 306 307 308 309 310 |
/* Make sure the divisor is less than 2^32: */ while (div >> 32) { sft++; div >>= 1; } dclc >>= sft; do_div(dclc, (unsigned long) div); |
4d672e7ac
|
311 |
return dclc; |
c0a313296
|
312 |
} |
c0a313296
|
313 |
#endif /* BITS_PER_LONG >= 64 */ |
d3d74453c
|
314 |
/* |
5a7780e72
|
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
* Add two ktime values and do a safety check for overflow: */ ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) { ktime_t res = ktime_add(lhs, rhs); /* * We use KTIME_SEC_MAX here, the maximum timeout which we can * return to user space in a timespec: */ if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64) res = ktime_set(KTIME_SEC_MAX, 0); return res; } |
8daa21e61
|
330 |
EXPORT_SYMBOL_GPL(ktime_add_safe); |
237fc6e7a
|
331 332 333 |
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS static struct debug_obj_descr hrtimer_debug_descr; |
997772884
|
334 335 336 337 |
static void *hrtimer_debug_hint(void *addr) { return ((struct hrtimer *) addr)->function; } |
237fc6e7a
|
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
/* * fixup_init is called when: * - an active object is initialized */ static int hrtimer_fixup_init(void *addr, enum debug_obj_state state) { struct hrtimer *timer = addr; switch (state) { case ODEBUG_STATE_ACTIVE: hrtimer_cancel(timer); debug_object_init(timer, &hrtimer_debug_descr); return 1; default: return 0; } } /* * fixup_activate is called when: * - an active object is activated * - an unknown object is activated (might be a statically initialized object) */ static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state) { switch (state) { case ODEBUG_STATE_NOTAVAILABLE: WARN_ON_ONCE(1); return 0; case ODEBUG_STATE_ACTIVE: WARN_ON(1); default: return 0; } } /* * fixup_free is called when: * - an active object is freed */ static int hrtimer_fixup_free(void *addr, enum debug_obj_state state) { struct hrtimer *timer = addr; switch (state) { case ODEBUG_STATE_ACTIVE: hrtimer_cancel(timer); debug_object_free(timer, &hrtimer_debug_descr); return 1; default: return 0; } } static struct debug_obj_descr hrtimer_debug_descr = { .name = "hrtimer", |
997772884
|
397 |
.debug_hint = hrtimer_debug_hint, |
237fc6e7a
|
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
.fixup_init = hrtimer_fixup_init, .fixup_activate = hrtimer_fixup_activate, .fixup_free = hrtimer_fixup_free, }; static inline void debug_hrtimer_init(struct hrtimer *timer) { debug_object_init(timer, &hrtimer_debug_descr); } static inline void debug_hrtimer_activate(struct hrtimer *timer) { debug_object_activate(timer, &hrtimer_debug_descr); } static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { debug_object_deactivate(timer, &hrtimer_debug_descr); } static inline void debug_hrtimer_free(struct hrtimer *timer) { debug_object_free(timer, &hrtimer_debug_descr); } static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, enum hrtimer_mode mode); void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, enum hrtimer_mode mode) { debug_object_init_on_stack(timer, &hrtimer_debug_descr); __hrtimer_init(timer, clock_id, mode); } |
2bc481cf4
|
432 |
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); |
237fc6e7a
|
433 434 435 436 437 438 439 440 441 442 443 |
void destroy_hrtimer_on_stack(struct hrtimer *timer) { debug_object_free(timer, &hrtimer_debug_descr); } #else static inline void debug_hrtimer_init(struct hrtimer *timer) { } static inline void debug_hrtimer_activate(struct hrtimer *timer) { } static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } #endif |
c6a2a1770
|
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
static inline void debug_init(struct hrtimer *timer, clockid_t clockid, enum hrtimer_mode mode) { debug_hrtimer_init(timer); trace_hrtimer_init(timer, clockid, mode); } static inline void debug_activate(struct hrtimer *timer) { debug_hrtimer_activate(timer); trace_hrtimer_start(timer); } static inline void debug_deactivate(struct hrtimer *timer) { debug_hrtimer_deactivate(timer); trace_hrtimer_cancel(timer); } |
54cdfdb47
|
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
/* High resolution timer related functions */ #ifdef CONFIG_HIGH_RES_TIMERS /* * High resolution timer enabled ? */ static int hrtimer_hres_enabled __read_mostly = 1; /* * Enable / Disable high resolution mode */ static int __init setup_hrtimer_hres(char *str) { if (!strcmp(str, "off")) hrtimer_hres_enabled = 0; else if (!strcmp(str, "on")) hrtimer_hres_enabled = 1; else return 0; return 1; } __setup("highres=", setup_hrtimer_hres); /* * hrtimer_high_res_enabled - query, if the highres mode is enabled */ static inline int hrtimer_is_hres_enabled(void) { return hrtimer_hres_enabled; } /* * Is the high resolution mode active ? */ static inline int hrtimer_hres_active(void) { |
909ea9646
|
500 |
return __this_cpu_read(hrtimer_bases.hres_active); |
54cdfdb47
|
501 502 503 504 505 506 507 |
} /* * Reprogram the event source with checking both queues for the * next event * Called with interrupts disabled and base->lock held */ |
7403f41f1
|
508 509 |
static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) |
54cdfdb47
|
510 511 512 |
{ int i; struct hrtimer_clock_base *base = cpu_base->clock_base; |
7403f41f1
|
513 |
ktime_t expires, expires_next; |
54cdfdb47
|
514 |
|
7403f41f1
|
515 |
expires_next.tv64 = KTIME_MAX; |
54cdfdb47
|
516 517 518 |
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { struct hrtimer *timer; |
998adc3dd
|
519 |
struct timerqueue_node *next; |
54cdfdb47
|
520 |
|
998adc3dd
|
521 522 |
next = timerqueue_getnext(&base->active); if (!next) |
54cdfdb47
|
523 |
continue; |
998adc3dd
|
524 |
timer = container_of(next, struct hrtimer, node); |
cc584b213
|
525 |
expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
b0a9b5111
|
526 527 528 529 530 531 532 |
/* * clock_was_set() has changed base->offset so the * result might be negative. Fix it up to prevent a * false positive in clockevents_program_event() */ if (expires.tv64 < 0) expires.tv64 = 0; |
7403f41f1
|
533 534 |
if (expires.tv64 < expires_next.tv64) expires_next = expires; |
54cdfdb47
|
535 |
} |
7403f41f1
|
536 537 538 539 |
if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64) return; cpu_base->expires_next.tv64 = expires_next.tv64; |
54cdfdb47
|
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
if (cpu_base->expires_next.tv64 != KTIME_MAX) tick_program_event(cpu_base->expires_next, 1); } /* * Shared reprogramming for clock_realtime and clock_monotonic * * When a timer is enqueued and expires earlier than the already enqueued * timers, we have to check, whether it expires earlier than the timer for * which the clock event device was armed. * * Called with interrupts disabled and base->cpu_base.lock held */ static int hrtimer_reprogram(struct hrtimer *timer, struct hrtimer_clock_base *base) { |
41d2e4949
|
556 |
struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); |
cc584b213
|
557 |
ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
54cdfdb47
|
558 |
int res; |
cc584b213
|
559 |
WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); |
63070a79b
|
560 |
|
54cdfdb47
|
561 562 563 |
/* * When the callback is running, we do not reprogram the clock event * device. The timer callback is either running on a different CPU or |
3a4fa0a25
|
564 |
* the callback is executed in the hrtimer_interrupt context. The |
54cdfdb47
|
565 566 567 568 569 |
* reprogramming is handled either by the softirq, which called the * callback or at the end of the hrtimer_interrupt. */ if (hrtimer_callback_running(timer)) return 0; |
63070a79b
|
570 571 572 573 574 575 576 577 |
/* * CLOCK_REALTIME timer might be requested with an absolute * expiry time which is less than base->offset. Nothing wrong * about that, just avoid to call into the tick code, which * has now objections against negative expiry values. */ if (expires.tv64 < 0) return -ETIME; |
41d2e4949
|
578 579 580 581 582 583 584 585 586 587 |
if (expires.tv64 >= cpu_base->expires_next.tv64) return 0; /* * If a hang was detected in the last timer interrupt then we * do not schedule a timer which is earlier than the expiry * which we enforced in the hang detection. We want the system * to make progress. */ if (cpu_base->hang_detected) |
54cdfdb47
|
588 589 590 591 592 593 594 |
return 0; /* * Clockevents returns -ETIME, when the event was in the past. */ res = tick_program_event(expires, 0); if (!IS_ERR_VALUE(res)) |
41d2e4949
|
595 |
cpu_base->expires_next = expires; |
54cdfdb47
|
596 597 598 599 600 601 602 603 604 605 606 607 |
return res; } /* * Retrigger next event is called after clock was set * * Called with interrupts disabled via on_each_cpu() */ static void retrigger_next_event(void *arg) { struct hrtimer_cpu_base *base; |
314ac3715
|
608 |
struct timespec realtime_offset, wtm, sleep; |
54cdfdb47
|
609 610 611 |
if (!hrtimer_hres_active()) return; |
314ac3715
|
612 613 |
get_xtime_and_monotonic_and_sleep_offset(&realtime_offset, &wtm, &sleep); |
8ab4351a4
|
614 |
set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec); |
54cdfdb47
|
615 616 617 618 |
base = &__get_cpu_var(hrtimer_bases); /* Adjust CLOCK_REALTIME offset */ |
ecb49d1a6
|
619 |
raw_spin_lock(&base->lock); |
e06383db9
|
620 |
base->clock_base[HRTIMER_BASE_REALTIME].offset = |
54cdfdb47
|
621 |
timespec_to_ktime(realtime_offset); |
5cd10e794
|
622 623 |
base->clock_base[HRTIMER_BASE_BOOTTIME].offset = timespec_to_ktime(sleep); |
54cdfdb47
|
624 |
|
7403f41f1
|
625 |
hrtimer_force_reprogram(base, 0); |
ecb49d1a6
|
626 |
raw_spin_unlock(&base->lock); |
54cdfdb47
|
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
} /* * Clock realtime was set * * Change the offset of the realtime clock vs. the monotonic * clock. * * We might have to reprogram the high resolution timer interrupt. On * SMP we call the architecture specific code to retrigger _all_ high * resolution timer interrupts. On UP we just disable interrupts and * call the high resolution interrupt code. */ void clock_was_set(void) { /* Retrigger the CPU local events everywhere */ |
15c8b6c1a
|
643 |
on_each_cpu(retrigger_next_event, NULL, 1); |
54cdfdb47
|
644 645 646 |
} /* |
995f054f2
|
647 648 649 650 651 |
* During resume we might have to reprogram the high resolution timer * interrupt (on the local CPU): */ void hres_timers_resume(void) { |
1d4a7f1c4
|
652 653 |
WARN_ONCE(!irqs_disabled(), KERN_INFO "hres_timers_resume() called with IRQs enabled!"); |
995f054f2
|
654 655 656 657 |
retrigger_next_event(NULL); } /* |
54cdfdb47
|
658 659 660 661 662 663 |
* Initialize the high resolution related parts of cpu_base */ static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { base->expires_next.tv64 = KTIME_MAX; base->hres_active = 0; |
54cdfdb47
|
664 665 666 |
} /* |
54cdfdb47
|
667 668 669 670 671 672 |
* When High resolution timers are active, try to reprogram. Note, that in case * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry * check happens. The timer gets enqueued into the rbtree. The reprogramming * and expiry check is done in the hrtimer_interrupt or in the softirq. */ static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, |
7f1e2ca9f
|
673 674 |
struct hrtimer_clock_base *base, int wakeup) |
54cdfdb47
|
675 676 |
{ if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) { |
7f1e2ca9f
|
677 |
if (wakeup) { |
ecb49d1a6
|
678 |
raw_spin_unlock(&base->cpu_base->lock); |
7f1e2ca9f
|
679 |
raise_softirq_irqoff(HRTIMER_SOFTIRQ); |
ecb49d1a6
|
680 |
raw_spin_lock(&base->cpu_base->lock); |
7f1e2ca9f
|
681 682 |
} else __raise_softirq_irqoff(HRTIMER_SOFTIRQ); |
ca109491f
|
683 |
return 1; |
54cdfdb47
|
684 |
} |
7f1e2ca9f
|
685 |
|
54cdfdb47
|
686 687 688 689 690 691 |
return 0; } /* * Switch to high resolution mode */ |
f8953856e
|
692 |
static int hrtimer_switch_to_hres(void) |
54cdfdb47
|
693 |
{ |
820de5c39
|
694 695 |
int cpu = smp_processor_id(); struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu); |
54cdfdb47
|
696 697 698 |
unsigned long flags; if (base->hres_active) |
f8953856e
|
699 |
return 1; |
54cdfdb47
|
700 701 702 703 704 |
local_irq_save(flags); if (tick_init_highres()) { local_irq_restore(flags); |
820de5c39
|
705 706 707 |
printk(KERN_WARNING "Could not switch to high resolution " "mode on CPU %d ", cpu); |
f8953856e
|
708 |
return 0; |
54cdfdb47
|
709 710 |
} base->hres_active = 1; |
e06383db9
|
711 712 |
base->clock_base[HRTIMER_BASE_REALTIME].resolution = KTIME_HIGH_RES; base->clock_base[HRTIMER_BASE_MONOTONIC].resolution = KTIME_HIGH_RES; |
70a08cca1
|
713 |
base->clock_base[HRTIMER_BASE_BOOTTIME].resolution = KTIME_HIGH_RES; |
54cdfdb47
|
714 715 716 717 718 719 |
tick_setup_sched_timer(); /* "Retrigger" the interrupt to get things going */ retrigger_next_event(NULL); local_irq_restore(flags); |
f8953856e
|
720 |
return 1; |
54cdfdb47
|
721 722 723 724 725 726 |
} #else static inline int hrtimer_hres_active(void) { return 0; } static inline int hrtimer_is_hres_enabled(void) { return 0; } |
f8953856e
|
727 |
static inline int hrtimer_switch_to_hres(void) { return 0; } |
7403f41f1
|
728 729 |
static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } |
54cdfdb47
|
730 |
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, |
7f1e2ca9f
|
731 732 |
struct hrtimer_clock_base *base, int wakeup) |
54cdfdb47
|
733 734 735 |
{ return 0; } |
54cdfdb47
|
736 |
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } |
54cdfdb47
|
737 738 |
#endif /* CONFIG_HIGH_RES_TIMERS */ |
5f201907d
|
739 |
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer) |
82f67cd9f
|
740 |
{ |
5f201907d
|
741 |
#ifdef CONFIG_TIMER_STATS |
82f67cd9f
|
742 743 |
if (timer->start_site) return; |
5f201907d
|
744 |
timer->start_site = __builtin_return_address(0); |
82f67cd9f
|
745 746 |
memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); timer->start_pid = current->pid; |
5f201907d
|
747 748 749 750 751 752 753 754 |
#endif } static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer) { #ifdef CONFIG_TIMER_STATS timer->start_site = NULL; #endif |
82f67cd9f
|
755 |
} |
5f201907d
|
756 757 758 759 760 761 762 763 |
static inline void timer_stats_account_hrtimer(struct hrtimer *timer) { #ifdef CONFIG_TIMER_STATS if (likely(!timer_stats_active)) return; timer_stats_update_stats(timer, timer->start_pid, timer->start_site, timer->function, timer->start_comm, 0); |
82f67cd9f
|
764 |
#endif |
5f201907d
|
765 |
} |
82f67cd9f
|
766 |
|
c0a313296
|
767 |
/* |
6506f2aa6
|
768 |
* Counterpart to lock_hrtimer_base above: |
c0a313296
|
769 770 771 772 |
*/ static inline void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) { |
ecb49d1a6
|
773 |
raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); |
c0a313296
|
774 775 776 777 |
} /** * hrtimer_forward - forward the timer expiry |
c0a313296
|
778 |
* @timer: hrtimer to forward |
44f214755
|
779 |
* @now: forward past this time |
c0a313296
|
780 781 782 |
* @interval: the interval to forward * * Forward the timer expiry so it will expire in the future. |
8dca6f33f
|
783 |
* Returns the number of overruns. |
c0a313296
|
784 |
*/ |
4d672e7ac
|
785 |
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) |
c0a313296
|
786 |
{ |
4d672e7ac
|
787 |
u64 orun = 1; |
44f214755
|
788 |
ktime_t delta; |
c0a313296
|
789 |
|
cc584b213
|
790 |
delta = ktime_sub(now, hrtimer_get_expires(timer)); |
c0a313296
|
791 792 793 |
if (delta.tv64 < 0) return 0; |
c9db4fa11
|
794 795 |
if (interval.tv64 < timer->base->resolution.tv64) interval.tv64 = timer->base->resolution.tv64; |
c0a313296
|
796 |
if (unlikely(delta.tv64 >= interval.tv64)) { |
df869b630
|
797 |
s64 incr = ktime_to_ns(interval); |
c0a313296
|
798 799 |
orun = ktime_divns(delta, incr); |
cc584b213
|
800 801 |
hrtimer_add_expires_ns(timer, incr * orun); if (hrtimer_get_expires_tv64(timer) > now.tv64) |
c0a313296
|
802 803 804 805 806 807 808 |
return orun; /* * This (and the ktime_add() below) is the * correction for exact: */ orun++; } |
cc584b213
|
809 |
hrtimer_add_expires(timer, interval); |
c0a313296
|
810 811 812 |
return orun; } |
6bdb6b620
|
813 |
EXPORT_SYMBOL_GPL(hrtimer_forward); |
c0a313296
|
814 815 816 817 818 819 |
/* * enqueue_hrtimer - internal function to (re)start a timer * * The timer is inserted in expiry order. Insertion into the * red black tree is O(log(n)). Must hold the base lock. |
a6037b61c
|
820 821 |
* * Returns 1 when the new timer is the leftmost timer in the tree. |
c0a313296
|
822 |
*/ |
a6037b61c
|
823 824 |
static int enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) |
c0a313296
|
825 |
{ |
c6a2a1770
|
826 |
debug_activate(timer); |
237fc6e7a
|
827 |
|
998adc3dd
|
828 |
timerqueue_add(&base->active, &timer->node); |
54cdfdb47
|
829 |
|
303e967ff
|
830 831 832 833 834 |
/* * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the * state of a possibly running callback. */ timer->state |= HRTIMER_STATE_ENQUEUED; |
a6037b61c
|
835 |
|
998adc3dd
|
836 |
return (&timer->node == base->active.next); |
288867ec5
|
837 |
} |
c0a313296
|
838 839 840 841 842 |
/* * __remove_hrtimer - internal function to remove a timer * * Caller must hold the base lock. |
54cdfdb47
|
843 844 845 846 847 |
* * High resolution timer mode reprograms the clock event device when the * timer is the one which expires next. The caller can disable this by setting * reprogram to zero. This is useful, when the context does a reprogramming * anyway (e.g. timer interrupt) |
c0a313296
|
848 |
*/ |
3c8aa39d7
|
849 |
static void __remove_hrtimer(struct hrtimer *timer, |
303e967ff
|
850 |
struct hrtimer_clock_base *base, |
54cdfdb47
|
851 |
unsigned long newstate, int reprogram) |
c0a313296
|
852 |
{ |
7403f41f1
|
853 854 |
if (!(timer->state & HRTIMER_STATE_ENQUEUED)) goto out; |
998adc3dd
|
855 |
if (&timer->node == timerqueue_getnext(&base->active)) { |
7403f41f1
|
856 857 858 859 860 861 862 863 864 |
#ifdef CONFIG_HIGH_RES_TIMERS /* Reprogram the clock event device. if enabled */ if (reprogram && hrtimer_hres_active()) { ktime_t expires; expires = ktime_sub(hrtimer_get_expires(timer), base->offset); if (base->cpu_base->expires_next.tv64 == expires.tv64) hrtimer_force_reprogram(base->cpu_base, 1); |
54cdfdb47
|
865 |
} |
7403f41f1
|
866 |
#endif |
54cdfdb47
|
867 |
} |
998adc3dd
|
868 |
timerqueue_del(&base->active, &timer->node); |
7403f41f1
|
869 |
out: |
303e967ff
|
870 |
timer->state = newstate; |
c0a313296
|
871 872 873 874 875 876 |
} /* * remove hrtimer, called with base lock held */ static inline int |
3c8aa39d7
|
877 |
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) |
c0a313296
|
878 |
{ |
303e967ff
|
879 |
if (hrtimer_is_queued(timer)) { |
f13d4f979
|
880 |
unsigned long state; |
54cdfdb47
|
881 882 883 884 885 886 887 888 889 890 |
int reprogram; /* * Remove the timer and force reprogramming when high * resolution mode is active and the timer is on the current * CPU. If we remove a timer on another CPU, reprogramming is * skipped. The interrupt event on this CPU is fired and * reprogramming happens in the interrupt handler. This is a * rare case and less expensive than a smp call. */ |
c6a2a1770
|
891 |
debug_deactivate(timer); |
82f67cd9f
|
892 |
timer_stats_hrtimer_clear_start_info(timer); |
54cdfdb47
|
893 |
reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); |
f13d4f979
|
894 895 896 897 898 899 900 |
/* * We must preserve the CALLBACK state flag here, * otherwise we could move the timer base in * switch_hrtimer_base. */ state = timer->state & HRTIMER_STATE_CALLBACK; __remove_hrtimer(timer, base, state, reprogram); |
c0a313296
|
901 902 903 904 |
return 1; } return 0; } |
7f1e2ca9f
|
905 906 907 |
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_ns, const enum hrtimer_mode mode, int wakeup) |
c0a313296
|
908 |
{ |
3c8aa39d7
|
909 |
struct hrtimer_clock_base *base, *new_base; |
c0a313296
|
910 |
unsigned long flags; |
a6037b61c
|
911 |
int ret, leftmost; |
c0a313296
|
912 913 914 915 916 917 918 |
base = lock_hrtimer_base(timer, &flags); /* Remove an active timer from the queue: */ ret = remove_hrtimer(timer, base); /* Switch the timer base, if necessary: */ |
597d02757
|
919 |
new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); |
c0a313296
|
920 |
|
597d02757
|
921 |
if (mode & HRTIMER_MODE_REL) { |
5a7780e72
|
922 |
tim = ktime_add_safe(tim, new_base->get_time()); |
06027bdd2
|
923 924 925 926 927 928 929 930 |
/* * CONFIG_TIME_LOW_RES is a temporary way for architectures * to signal that they simply return xtime in * do_gettimeoffset(). In this case we want to round up by * resolution when starting a relative timer, to avoid short * timeouts. This will go away with the GTOD framework. */ #ifdef CONFIG_TIME_LOW_RES |
5a7780e72
|
931 |
tim = ktime_add_safe(tim, base->resolution); |
06027bdd2
|
932 933 |
#endif } |
237fc6e7a
|
934 |
|
da8f2e170
|
935 |
hrtimer_set_expires_range_ns(timer, tim, delta_ns); |
c0a313296
|
936 |
|
82f67cd9f
|
937 |
timer_stats_hrtimer_set_start_info(timer); |
a6037b61c
|
938 |
leftmost = enqueue_hrtimer(timer, new_base); |
935c631db
|
939 940 941 |
/* * Only allow reprogramming if the new base is on this CPU. * (it might still be on another CPU if the timer was pending) |
a6037b61c
|
942 943 |
* * XXX send_remote_softirq() ? |
935c631db
|
944 |
*/ |
a6037b61c
|
945 |
if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)) |
7f1e2ca9f
|
946 |
hrtimer_enqueue_reprogram(timer, new_base, wakeup); |
c0a313296
|
947 948 949 950 951 |
unlock_hrtimer_base(timer, &flags); return ret; } |
7f1e2ca9f
|
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 |
/** * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU * @timer: the timer to be added * @tim: expiry time * @delta_ns: "slack" range for the timer * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) * * Returns: * 0 on success * 1 when the timer was active */ int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_ns, const enum hrtimer_mode mode) { return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1); } |
da8f2e170
|
969 970 971 |
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); /** |
e1dd7bc58
|
972 |
* hrtimer_start - (re)start an hrtimer on the current CPU |
da8f2e170
|
973 974 975 976 977 978 979 980 981 982 983 |
* @timer: the timer to be added * @tim: expiry time * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) * * Returns: * 0 on success * 1 when the timer was active */ int hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) { |
7f1e2ca9f
|
984 |
return __hrtimer_start_range_ns(timer, tim, 0, mode, 1); |
da8f2e170
|
985 |
} |
8d16b7642
|
986 |
EXPORT_SYMBOL_GPL(hrtimer_start); |
c0a313296
|
987 |
|
da8f2e170
|
988 |
|
c0a313296
|
989 990 |
/** * hrtimer_try_to_cancel - try to deactivate a timer |
c0a313296
|
991 992 993 994 995 996 |
* @timer: hrtimer to stop * * Returns: * 0 when the timer was not active * 1 when the timer was active * -1 when the timer is currently excuting the callback function and |
fa9799e33
|
997 |
* cannot be stopped |
c0a313296
|
998 999 1000 |
*/ int hrtimer_try_to_cancel(struct hrtimer *timer) { |
3c8aa39d7
|
1001 |
struct hrtimer_clock_base *base; |
c0a313296
|
1002 1003 1004 1005 |
unsigned long flags; int ret = -1; base = lock_hrtimer_base(timer, &flags); |
303e967ff
|
1006 |
if (!hrtimer_callback_running(timer)) |
c0a313296
|
1007 1008 1009 1010 1011 1012 1013 |
ret = remove_hrtimer(timer, base); unlock_hrtimer_base(timer, &flags); return ret; } |
8d16b7642
|
1014 |
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); |
c0a313296
|
1015 1016 1017 |
/** * hrtimer_cancel - cancel a timer and wait for the handler to finish. |
c0a313296
|
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 |
* @timer: the timer to be cancelled * * Returns: * 0 when the timer was not active * 1 when the timer was active */ int hrtimer_cancel(struct hrtimer *timer) { for (;;) { int ret = hrtimer_try_to_cancel(timer); if (ret >= 0) return ret; |
5ef37b196
|
1031 |
cpu_relax(); |
c0a313296
|
1032 1033 |
} } |
8d16b7642
|
1034 |
EXPORT_SYMBOL_GPL(hrtimer_cancel); |
c0a313296
|
1035 1036 1037 |
/** * hrtimer_get_remaining - get remaining time for the timer |
c0a313296
|
1038 1039 1040 1041 |
* @timer: the timer to read */ ktime_t hrtimer_get_remaining(const struct hrtimer *timer) { |
c0a313296
|
1042 1043 |
unsigned long flags; ktime_t rem; |
b3bd3de66
|
1044 |
lock_hrtimer_base(timer, &flags); |
cc584b213
|
1045 |
rem = hrtimer_expires_remaining(timer); |
c0a313296
|
1046 1047 1048 1049 |
unlock_hrtimer_base(timer, &flags); return rem; } |
8d16b7642
|
1050 |
EXPORT_SYMBOL_GPL(hrtimer_get_remaining); |
c0a313296
|
1051 |
|
ee9c57852
|
1052 |
#ifdef CONFIG_NO_HZ |
69239749e
|
1053 1054 1055 1056 1057 1058 1059 1060 |
/** * hrtimer_get_next_event - get the time until next expiry event * * Returns the delta to the next expiry event or KTIME_MAX if no timer * is pending. */ ktime_t hrtimer_get_next_event(void) { |
3c8aa39d7
|
1061 1062 |
struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); struct hrtimer_clock_base *base = cpu_base->clock_base; |
69239749e
|
1063 1064 1065 |
ktime_t delta, mindelta = { .tv64 = KTIME_MAX }; unsigned long flags; int i; |
ecb49d1a6
|
1066 |
raw_spin_lock_irqsave(&cpu_base->lock, flags); |
3c8aa39d7
|
1067 |
|
54cdfdb47
|
1068 1069 1070 |
if (!hrtimer_hres_active()) { for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { struct hrtimer *timer; |
998adc3dd
|
1071 |
struct timerqueue_node *next; |
69239749e
|
1072 |
|
998adc3dd
|
1073 1074 |
next = timerqueue_getnext(&base->active); if (!next) |
54cdfdb47
|
1075 |
continue; |
3c8aa39d7
|
1076 |
|
998adc3dd
|
1077 |
timer = container_of(next, struct hrtimer, node); |
cc584b213
|
1078 |
delta.tv64 = hrtimer_get_expires_tv64(timer); |
54cdfdb47
|
1079 1080 1081 1082 |
delta = ktime_sub(delta, base->get_time()); if (delta.tv64 < mindelta.tv64) mindelta.tv64 = delta.tv64; } |
69239749e
|
1083 |
} |
3c8aa39d7
|
1084 |
|
ecb49d1a6
|
1085 |
raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
3c8aa39d7
|
1086 |
|
69239749e
|
1087 1088 1089 1090 1091 |
if (mindelta.tv64 < 0) mindelta.tv64 = 0; return mindelta; } #endif |
237fc6e7a
|
1092 1093 |
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, enum hrtimer_mode mode) |
c0a313296
|
1094 |
{ |
3c8aa39d7
|
1095 |
struct hrtimer_cpu_base *cpu_base; |
e06383db9
|
1096 |
int base; |
c0a313296
|
1097 |
|
7978672c4
|
1098 |
memset(timer, 0, sizeof(struct hrtimer)); |
3c8aa39d7
|
1099 |
cpu_base = &__raw_get_cpu_var(hrtimer_bases); |
c0a313296
|
1100 |
|
c9cb2e3d7
|
1101 |
if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) |
7978672c4
|
1102 |
clock_id = CLOCK_MONOTONIC; |
e06383db9
|
1103 1104 |
base = hrtimer_clockid_to_base(clock_id); timer->base = &cpu_base->clock_base[base]; |
998adc3dd
|
1105 |
timerqueue_init(&timer->node); |
82f67cd9f
|
1106 1107 1108 1109 1110 1111 |
#ifdef CONFIG_TIMER_STATS timer->start_site = NULL; timer->start_pid = -1; memset(timer->start_comm, 0, TASK_COMM_LEN); #endif |
c0a313296
|
1112 |
} |
237fc6e7a
|
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 |
/** * hrtimer_init - initialize a timer to the given clock * @timer: the timer to be initialized * @clock_id: the clock to be used * @mode: timer mode abs/rel */ void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, enum hrtimer_mode mode) { |
c6a2a1770
|
1123 |
debug_init(timer, clock_id, mode); |
237fc6e7a
|
1124 1125 |
__hrtimer_init(timer, clock_id, mode); } |
8d16b7642
|
1126 |
EXPORT_SYMBOL_GPL(hrtimer_init); |
c0a313296
|
1127 1128 1129 |
/** * hrtimer_get_res - get the timer resolution for a clock |
c0a313296
|
1130 1131 1132 |
* @which_clock: which clock to query * @tp: pointer to timespec variable to store the resolution * |
72fd4a35a
|
1133 1134 |
* Store the resolution of the clock selected by @which_clock in the * variable pointed to by @tp. |
c0a313296
|
1135 1136 1137 |
*/ int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) { |
3c8aa39d7
|
1138 |
struct hrtimer_cpu_base *cpu_base; |
e06383db9
|
1139 |
int base = hrtimer_clockid_to_base(which_clock); |
c0a313296
|
1140 |
|
3c8aa39d7
|
1141 |
cpu_base = &__raw_get_cpu_var(hrtimer_bases); |
e06383db9
|
1142 |
*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution); |
c0a313296
|
1143 1144 1145 |
return 0; } |
8d16b7642
|
1146 |
EXPORT_SYMBOL_GPL(hrtimer_get_res); |
c0a313296
|
1147 |
|
c6a2a1770
|
1148 |
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now) |
d3d74453c
|
1149 1150 1151 1152 1153 |
{ struct hrtimer_clock_base *base = timer->base; struct hrtimer_cpu_base *cpu_base = base->cpu_base; enum hrtimer_restart (*fn)(struct hrtimer *); int restart; |
ca109491f
|
1154 |
WARN_ON(!irqs_disabled()); |
c6a2a1770
|
1155 |
debug_deactivate(timer); |
d3d74453c
|
1156 1157 |
__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); timer_stats_account_hrtimer(timer); |
d3d74453c
|
1158 |
fn = timer->function; |
ca109491f
|
1159 1160 1161 1162 1163 1164 |
/* * Because we run timers from hardirq context, there is no chance * they get migrated to another cpu, therefore its safe to unlock * the timer base. */ |
ecb49d1a6
|
1165 |
raw_spin_unlock(&cpu_base->lock); |
c6a2a1770
|
1166 |
trace_hrtimer_expire_entry(timer, now); |
ca109491f
|
1167 |
restart = fn(timer); |
c6a2a1770
|
1168 |
trace_hrtimer_expire_exit(timer); |
ecb49d1a6
|
1169 |
raw_spin_lock(&cpu_base->lock); |
d3d74453c
|
1170 1171 |
/* |
e3f1d8837
|
1172 1173 1174 |
* Note: We clear the CALLBACK bit after enqueue_hrtimer and * we do not reprogramm the event hardware. Happens either in * hrtimer_start_range_ns() or in hrtimer_interrupt() |
d3d74453c
|
1175 1176 1177 |
*/ if (restart != HRTIMER_NORESTART) { BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); |
a6037b61c
|
1178 |
enqueue_hrtimer(timer, base); |
d3d74453c
|
1179 |
} |
f13d4f979
|
1180 1181 |
WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK)); |
d3d74453c
|
1182 1183 |
timer->state &= ~HRTIMER_STATE_CALLBACK; } |
54cdfdb47
|
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 |
#ifdef CONFIG_HIGH_RES_TIMERS /* * High resolution timer interrupt * Called with interrupts disabled */ void hrtimer_interrupt(struct clock_event_device *dev) { struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); struct hrtimer_clock_base *base; |
41d2e4949
|
1194 1195 |
ktime_t expires_next, now, entry_time, delta; int i, retries = 0; |
54cdfdb47
|
1196 1197 1198 1199 |
BUG_ON(!cpu_base->hres_active); cpu_base->nr_events++; dev->next_event.tv64 = KTIME_MAX; |
41d2e4949
|
1200 1201 |
entry_time = now = ktime_get(); retry: |
54cdfdb47
|
1202 |
expires_next.tv64 = KTIME_MAX; |
ecb49d1a6
|
1203 |
raw_spin_lock(&cpu_base->lock); |
6ff7041db
|
1204 1205 1206 1207 1208 1209 1210 1211 |
/* * We set expires_next to KTIME_MAX here with cpu_base->lock * held to prevent that a timer is enqueued in our queue via * the migration code. This does not affect enqueueing of * timers which run their callback and need to be requeued on * this CPU. */ cpu_base->expires_next.tv64 = KTIME_MAX; |
54cdfdb47
|
1212 1213 1214 1215 |
base = cpu_base->clock_base; for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { ktime_t basenow; |
998adc3dd
|
1216 |
struct timerqueue_node *node; |
54cdfdb47
|
1217 |
|
54cdfdb47
|
1218 |
basenow = ktime_add(now, base->offset); |
998adc3dd
|
1219 |
while ((node = timerqueue_getnext(&base->active))) { |
54cdfdb47
|
1220 |
struct hrtimer *timer; |
998adc3dd
|
1221 |
timer = container_of(node, struct hrtimer, node); |
54cdfdb47
|
1222 |
|
654c8e0b1
|
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 |
/* * The immediate goal for using the softexpires is * minimizing wakeups, not running timers at the * earliest interrupt after their soft expiration. * This allows us to avoid using a Priority Search * Tree, which can answer a stabbing querry for * overlapping intervals and instead use the simple * BST we already have. * We don't add extra wakeups by delaying timers that * are right-of a not yet expired timer, because that * timer will have to trigger a wakeup anyway. */ if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) { |
54cdfdb47
|
1237 |
ktime_t expires; |
cc584b213
|
1238 |
expires = ktime_sub(hrtimer_get_expires(timer), |
54cdfdb47
|
1239 1240 1241 1242 1243 |
base->offset); if (expires.tv64 < expires_next.tv64) expires_next = expires; break; } |
c6a2a1770
|
1244 |
__run_hrtimer(timer, &basenow); |
54cdfdb47
|
1245 |
} |
54cdfdb47
|
1246 1247 |
base++; } |
6ff7041db
|
1248 1249 1250 1251 |
/* * Store the new expiry value so the migration code can verify * against it. */ |
54cdfdb47
|
1252 |
cpu_base->expires_next = expires_next; |
ecb49d1a6
|
1253 |
raw_spin_unlock(&cpu_base->lock); |
54cdfdb47
|
1254 1255 |
/* Reprogramming necessary ? */ |
41d2e4949
|
1256 1257 1258 1259 |
if (expires_next.tv64 == KTIME_MAX || !tick_program_event(expires_next, 0)) { cpu_base->hang_detected = 0; return; |
54cdfdb47
|
1260 |
} |
41d2e4949
|
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 |
/* * The next timer was already expired due to: * - tracing * - long lasting callbacks * - being scheduled away when running in a VM * * We need to prevent that we loop forever in the hrtimer * interrupt routine. We give it 3 attempts to avoid * overreacting on some spurious event. */ now = ktime_get(); cpu_base->nr_retries++; if (++retries < 3) goto retry; /* * Give the system a chance to do something else than looping * here. We stored the entry time, so we know exactly how long * we spent here. We schedule the next event this amount of * time away. */ cpu_base->nr_hangs++; cpu_base->hang_detected = 1; delta = ktime_sub(now, entry_time); if (delta.tv64 > cpu_base->max_hang_time.tv64) cpu_base->max_hang_time = delta; /* * Limit it to a sensible value as we enforce a longer * delay. Give the CPU at least 100ms to catch up. */ if (delta.tv64 > 100 * NSEC_PER_MSEC) expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); else expires_next = ktime_add(now, delta); tick_program_event(expires_next, 1); printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns ", ktime_to_ns(delta)); |
54cdfdb47
|
1299 |
} |
8bdec955b
|
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 |
/* * local version of hrtimer_peek_ahead_timers() called with interrupts * disabled. */ static void __hrtimer_peek_ahead_timers(void) { struct tick_device *td; if (!hrtimer_hres_active()) return; td = &__get_cpu_var(tick_cpu_device); if (td && td->evtdev) hrtimer_interrupt(td->evtdev); } |
2e94d1f71
|
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 |
/** * hrtimer_peek_ahead_timers -- run soft-expired timers now * * hrtimer_peek_ahead_timers will peek at the timer queue of * the current cpu and check if there are any timers for which * the soft expires time has passed. If any such timers exist, * they are run immediately and then removed from the timer queue. * */ void hrtimer_peek_ahead_timers(void) { |
643bdf68f
|
1326 |
unsigned long flags; |
dc4304f7d
|
1327 |
|
2e94d1f71
|
1328 |
local_irq_save(flags); |
8bdec955b
|
1329 |
__hrtimer_peek_ahead_timers(); |
2e94d1f71
|
1330 1331 |
local_irq_restore(flags); } |
a6037b61c
|
1332 1333 1334 1335 |
static void run_hrtimer_softirq(struct softirq_action *h) { hrtimer_peek_ahead_timers(); } |
82c5b7b52
|
1336 1337 1338 1339 1340 |
#else /* CONFIG_HIGH_RES_TIMERS */ static inline void __hrtimer_peek_ahead_timers(void) { } #endif /* !CONFIG_HIGH_RES_TIMERS */ |
82f67cd9f
|
1341 |
|
d3d74453c
|
1342 1343 1344 1345 1346 1347 1348 1349 1350 |
/* * Called from timer softirq every jiffy, expire hrtimers: * * For HRT its the fall back code to run the softirq in the timer * softirq context in case the hrtimer initialization failed or has * not been done yet. */ void hrtimer_run_pending(void) { |
d3d74453c
|
1351 1352 |
if (hrtimer_hres_active()) return; |
54cdfdb47
|
1353 |
|
d3d74453c
|
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 |
/* * This _is_ ugly: We have to check in the softirq context, * whether we can switch to highres and / or nohz mode. The * clocksource switch happens in the timer interrupt with * xtime_lock held. Notification from there only sets the * check bit in the tick_oneshot code, otherwise we might * deadlock vs. xtime_lock. */ if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) hrtimer_switch_to_hres(); |
54cdfdb47
|
1364 |
} |
c0a313296
|
1365 |
/* |
d3d74453c
|
1366 |
* Called from hardirq context every jiffy |
c0a313296
|
1367 |
*/ |
833883d9a
|
1368 |
void hrtimer_run_queues(void) |
c0a313296
|
1369 |
{ |
998adc3dd
|
1370 |
struct timerqueue_node *node; |
833883d9a
|
1371 1372 1373 |
struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); struct hrtimer_clock_base *base; int index, gettime = 1; |
c0a313296
|
1374 |
|
833883d9a
|
1375 |
if (hrtimer_hres_active()) |
3055addad
|
1376 |
return; |
833883d9a
|
1377 1378 |
for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) { base = &cpu_base->clock_base[index]; |
b007c389d
|
1379 |
if (!timerqueue_getnext(&base->active)) |
d3d74453c
|
1380 |
continue; |
833883d9a
|
1381 |
|
d7cfb60c5
|
1382 |
if (gettime) { |
833883d9a
|
1383 1384 |
hrtimer_get_softirq_time(cpu_base); gettime = 0; |
b75f7a51c
|
1385 |
} |
d3d74453c
|
1386 |
|
ecb49d1a6
|
1387 |
raw_spin_lock(&cpu_base->lock); |
c0a313296
|
1388 |
|
b007c389d
|
1389 |
while ((node = timerqueue_getnext(&base->active))) { |
833883d9a
|
1390 |
struct hrtimer *timer; |
54cdfdb47
|
1391 |
|
998adc3dd
|
1392 |
timer = container_of(node, struct hrtimer, node); |
cc584b213
|
1393 1394 |
if (base->softirq_time.tv64 <= hrtimer_get_expires_tv64(timer)) |
833883d9a
|
1395 |
break; |
c6a2a1770
|
1396 |
__run_hrtimer(timer, &base->softirq_time); |
833883d9a
|
1397 |
} |
ecb49d1a6
|
1398 |
raw_spin_unlock(&cpu_base->lock); |
833883d9a
|
1399 |
} |
c0a313296
|
1400 1401 1402 |
} /* |
10c94ec16
|
1403 1404 |
* Sleep related functions: */ |
c9cb2e3d7
|
1405 |
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) |
00362e33f
|
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 |
{ struct hrtimer_sleeper *t = container_of(timer, struct hrtimer_sleeper, timer); struct task_struct *task = t->task; t->task = NULL; if (task) wake_up_process(task); return HRTIMER_NORESTART; } |
36c8b5868
|
1417 |
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) |
00362e33f
|
1418 1419 1420 1421 |
{ sl->timer.function = hrtimer_wakeup; sl->task = task; } |
2bc481cf4
|
1422 |
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); |
00362e33f
|
1423 |
|
669d7868a
|
1424 |
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) |
432569bb9
|
1425 |
{ |
669d7868a
|
1426 |
hrtimer_init_sleeper(t, current); |
10c94ec16
|
1427 |
|
432569bb9
|
1428 1429 |
do { set_current_state(TASK_INTERRUPTIBLE); |
cc584b213
|
1430 |
hrtimer_start_expires(&t->timer, mode); |
37bb6cb40
|
1431 1432 |
if (!hrtimer_active(&t->timer)) t->task = NULL; |
432569bb9
|
1433 |
|
54cdfdb47
|
1434 1435 |
if (likely(t->task)) schedule(); |
432569bb9
|
1436 |
|
669d7868a
|
1437 |
hrtimer_cancel(&t->timer); |
c9cb2e3d7
|
1438 |
mode = HRTIMER_MODE_ABS; |
669d7868a
|
1439 1440 |
} while (t->task && !signal_pending(current)); |
432569bb9
|
1441 |
|
3588a085c
|
1442 |
__set_current_state(TASK_RUNNING); |
669d7868a
|
1443 |
return t->task == NULL; |
10c94ec16
|
1444 |
} |
080344b98
|
1445 1446 1447 1448 |
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) { struct timespec rmt; ktime_t rem; |
cc584b213
|
1449 |
rem = hrtimer_expires_remaining(timer); |
080344b98
|
1450 1451 1452 1453 1454 1455 1456 1457 1458 |
if (rem.tv64 <= 0) return 0; rmt = ktime_to_timespec(rem); if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) return -EFAULT; return 1; } |
1711ef386
|
1459 |
long __sched hrtimer_nanosleep_restart(struct restart_block *restart) |
10c94ec16
|
1460 |
{ |
669d7868a
|
1461 |
struct hrtimer_sleeper t; |
080344b98
|
1462 |
struct timespec __user *rmtp; |
237fc6e7a
|
1463 |
int ret = 0; |
10c94ec16
|
1464 |
|
237fc6e7a
|
1465 1466 |
hrtimer_init_on_stack(&t.timer, restart->nanosleep.index, HRTIMER_MODE_ABS); |
cc584b213
|
1467 |
hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); |
10c94ec16
|
1468 |
|
c9cb2e3d7
|
1469 |
if (do_nanosleep(&t, HRTIMER_MODE_ABS)) |
237fc6e7a
|
1470 |
goto out; |
10c94ec16
|
1471 |
|
029a07e03
|
1472 |
rmtp = restart->nanosleep.rmtp; |
432569bb9
|
1473 |
if (rmtp) { |
237fc6e7a
|
1474 |
ret = update_rmtp(&t.timer, rmtp); |
080344b98
|
1475 |
if (ret <= 0) |
237fc6e7a
|
1476 |
goto out; |
432569bb9
|
1477 |
} |
10c94ec16
|
1478 |
|
10c94ec16
|
1479 |
/* The other values in restart are already filled in */ |
237fc6e7a
|
1480 1481 1482 1483 |
ret = -ERESTART_RESTARTBLOCK; out: destroy_hrtimer_on_stack(&t.timer); return ret; |
10c94ec16
|
1484 |
} |
080344b98
|
1485 |
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, |
10c94ec16
|
1486 1487 1488 |
const enum hrtimer_mode mode, const clockid_t clockid) { struct restart_block *restart; |
669d7868a
|
1489 |
struct hrtimer_sleeper t; |
237fc6e7a
|
1490 |
int ret = 0; |
3bd012060
|
1491 1492 1493 1494 1495 |
unsigned long slack; slack = current->timer_slack_ns; if (rt_task(current)) slack = 0; |
10c94ec16
|
1496 |
|
237fc6e7a
|
1497 |
hrtimer_init_on_stack(&t.timer, clockid, mode); |
3bd012060
|
1498 |
hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack); |
432569bb9
|
1499 |
if (do_nanosleep(&t, mode)) |
237fc6e7a
|
1500 |
goto out; |
10c94ec16
|
1501 |
|
7978672c4
|
1502 |
/* Absolute timers do not update the rmtp value and restart: */ |
237fc6e7a
|
1503 1504 1505 1506 |
if (mode == HRTIMER_MODE_ABS) { ret = -ERESTARTNOHAND; goto out; } |
10c94ec16
|
1507 |
|
432569bb9
|
1508 |
if (rmtp) { |
237fc6e7a
|
1509 |
ret = update_rmtp(&t.timer, rmtp); |
080344b98
|
1510 |
if (ret <= 0) |
237fc6e7a
|
1511 |
goto out; |
432569bb9
|
1512 |
} |
10c94ec16
|
1513 1514 |
restart = ¤t_thread_info()->restart_block; |
1711ef386
|
1515 |
restart->fn = hrtimer_nanosleep_restart; |
029a07e03
|
1516 1517 |
restart->nanosleep.index = t.timer.base->index; restart->nanosleep.rmtp = rmtp; |
cc584b213
|
1518 |
restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); |
10c94ec16
|
1519 |
|
237fc6e7a
|
1520 1521 1522 1523 |
ret = -ERESTART_RESTARTBLOCK; out: destroy_hrtimer_on_stack(&t.timer); return ret; |
10c94ec16
|
1524 |
} |
58fd3aa28
|
1525 1526 |
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, struct timespec __user *, rmtp) |
6ba1b9121
|
1527 |
{ |
080344b98
|
1528 |
struct timespec tu; |
6ba1b9121
|
1529 1530 1531 1532 1533 1534 |
if (copy_from_user(&tu, rqtp, sizeof(tu))) return -EFAULT; if (!timespec_valid(&tu)) return -EINVAL; |
080344b98
|
1535 |
return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); |
6ba1b9121
|
1536 |
} |
10c94ec16
|
1537 |
/* |
c0a313296
|
1538 1539 |
* Functions related to boot-time initialization: */ |
0ec160dd4
|
1540 |
static void __cpuinit init_hrtimers_cpu(int cpu) |
c0a313296
|
1541 |
{ |
3c8aa39d7
|
1542 |
struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); |
c0a313296
|
1543 |
int i; |
ecb49d1a6
|
1544 |
raw_spin_lock_init(&cpu_base->lock); |
3c8aa39d7
|
1545 |
|
998adc3dd
|
1546 |
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
3c8aa39d7
|
1547 |
cpu_base->clock_base[i].cpu_base = cpu_base; |
998adc3dd
|
1548 1549 |
timerqueue_init_head(&cpu_base->clock_base[i].active); } |
3c8aa39d7
|
1550 |
|
54cdfdb47
|
1551 |
hrtimer_init_hres(cpu_base); |
c0a313296
|
1552 1553 1554 |
} #ifdef CONFIG_HOTPLUG_CPU |
ca109491f
|
1555 |
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, |
37810659e
|
1556 |
struct hrtimer_clock_base *new_base) |
c0a313296
|
1557 1558 |
{ struct hrtimer *timer; |
998adc3dd
|
1559 |
struct timerqueue_node *node; |
c0a313296
|
1560 |
|
998adc3dd
|
1561 1562 |
while ((node = timerqueue_getnext(&old_base->active))) { timer = container_of(node, struct hrtimer, node); |
54cdfdb47
|
1563 |
BUG_ON(hrtimer_callback_running(timer)); |
c6a2a1770
|
1564 |
debug_deactivate(timer); |
b00c1a99e
|
1565 1566 1567 1568 1569 1570 1571 |
/* * Mark it as STATE_MIGRATE not INACTIVE otherwise the * timer could be seen as !active and just vanish away * under us on another CPU */ __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0); |
c0a313296
|
1572 |
timer->base = new_base; |
54cdfdb47
|
1573 |
/* |
e3f1d8837
|
1574 1575 1576 1577 1578 1579 |
* Enqueue the timers on the new cpu. This does not * reprogram the event device in case the timer * expires before the earliest on this CPU, but we run * hrtimer_interrupt after we migrated everything to * sort out already expired timers and reprogram the * event device. |
54cdfdb47
|
1580 |
*/ |
a6037b61c
|
1581 |
enqueue_hrtimer(timer, new_base); |
41e1022ea
|
1582 |
|
b00c1a99e
|
1583 1584 |
/* Clear the migration state bit */ timer->state &= ~HRTIMER_STATE_MIGRATE; |
c0a313296
|
1585 1586 |
} } |
d5fd43c4a
|
1587 |
static void migrate_hrtimers(int scpu) |
c0a313296
|
1588 |
{ |
3c8aa39d7
|
1589 |
struct hrtimer_cpu_base *old_base, *new_base; |
731a55ba0
|
1590 |
int i; |
c0a313296
|
1591 |
|
37810659e
|
1592 |
BUG_ON(cpu_online(scpu)); |
37810659e
|
1593 |
tick_cancel_sched_timer(scpu); |
731a55ba0
|
1594 1595 1596 1597 |
local_irq_disable(); old_base = &per_cpu(hrtimer_bases, scpu); new_base = &__get_cpu_var(hrtimer_bases); |
d82f0b0f6
|
1598 1599 1600 1601 |
/* * The caller is globally serialized and nobody else * takes two locks at once, deadlock is not possible. */ |
ecb49d1a6
|
1602 1603 |
raw_spin_lock(&new_base->lock); raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); |
c0a313296
|
1604 |
|
3c8aa39d7
|
1605 |
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
ca109491f
|
1606 |
migrate_hrtimer_list(&old_base->clock_base[i], |
37810659e
|
1607 |
&new_base->clock_base[i]); |
c0a313296
|
1608 |
} |
ecb49d1a6
|
1609 1610 |
raw_spin_unlock(&old_base->lock); raw_spin_unlock(&new_base->lock); |
37810659e
|
1611 |
|
731a55ba0
|
1612 1613 1614 |
/* Check, if we got expired work to do */ __hrtimer_peek_ahead_timers(); local_irq_enable(); |
c0a313296
|
1615 |
} |
37810659e
|
1616 |
|
c0a313296
|
1617 |
#endif /* CONFIG_HOTPLUG_CPU */ |
8c78f3075
|
1618 |
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self, |
c0a313296
|
1619 1620 |
unsigned long action, void *hcpu) { |
b2e3c0ade
|
1621 |
int scpu = (long)hcpu; |
c0a313296
|
1622 1623 1624 1625 |
switch (action) { case CPU_UP_PREPARE: |
8bb784428
|
1626 |
case CPU_UP_PREPARE_FROZEN: |
37810659e
|
1627 |
init_hrtimers_cpu(scpu); |
c0a313296
|
1628 1629 1630 |
break; #ifdef CONFIG_HOTPLUG_CPU |
94df7de02
|
1631 1632 1633 1634 |
case CPU_DYING: case CPU_DYING_FROZEN: clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu); break; |
c0a313296
|
1635 |
case CPU_DEAD: |
8bb784428
|
1636 |
case CPU_DEAD_FROZEN: |
b2e3c0ade
|
1637 |
{ |
37810659e
|
1638 |
clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu); |
d5fd43c4a
|
1639 |
migrate_hrtimers(scpu); |
c0a313296
|
1640 |
break; |
b2e3c0ade
|
1641 |
} |
c0a313296
|
1642 1643 1644 1645 1646 1647 1648 1649 |
#endif default: break; } return NOTIFY_OK; } |
8c78f3075
|
1650 |
static struct notifier_block __cpuinitdata hrtimers_nb = { |
c0a313296
|
1651 1652 1653 1654 1655 1656 1657 1658 |
.notifier_call = hrtimer_cpu_notify, }; void __init hrtimers_init(void) { hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, (void *)(long)smp_processor_id()); register_cpu_notifier(&hrtimers_nb); |
a6037b61c
|
1659 1660 1661 |
#ifdef CONFIG_HIGH_RES_TIMERS open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq); #endif |
c0a313296
|
1662 |
} |
7bb67439b
|
1663 |
/** |
351b3f7a2
|
1664 |
* schedule_hrtimeout_range_clock - sleep until timeout |
7bb67439b
|
1665 |
* @expires: timeout value (ktime_t) |
654c8e0b1
|
1666 |
* @delta: slack in expires timeout (ktime_t) |
7bb67439b
|
1667 |
* @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL |
351b3f7a2
|
1668 |
* @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME |
7bb67439b
|
1669 |
*/ |
351b3f7a2
|
1670 1671 1672 |
int __sched schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta, const enum hrtimer_mode mode, int clock) |
7bb67439b
|
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 |
{ struct hrtimer_sleeper t; /* * Optimize when a zero timeout value is given. It does not * matter whether this is an absolute or a relative time. */ if (expires && !expires->tv64) { __set_current_state(TASK_RUNNING); return 0; } /* |
43b210139
|
1686 |
* A NULL parameter means "infinite" |
7bb67439b
|
1687 1688 1689 1690 1691 1692 |
*/ if (!expires) { schedule(); __set_current_state(TASK_RUNNING); return -EINTR; } |
351b3f7a2
|
1693 |
hrtimer_init_on_stack(&t.timer, clock, mode); |
654c8e0b1
|
1694 |
hrtimer_set_expires_range_ns(&t.timer, *expires, delta); |
7bb67439b
|
1695 1696 |
hrtimer_init_sleeper(&t, current); |
cc584b213
|
1697 |
hrtimer_start_expires(&t.timer, mode); |
7bb67439b
|
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 |
if (!hrtimer_active(&t.timer)) t.task = NULL; if (likely(t.task)) schedule(); hrtimer_cancel(&t.timer); destroy_hrtimer_on_stack(&t.timer); __set_current_state(TASK_RUNNING); return !t.task ? 0 : -EINTR; } |
351b3f7a2
|
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 |
/** * schedule_hrtimeout_range - sleep until timeout * @expires: timeout value (ktime_t) * @delta: slack in expires timeout (ktime_t) * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL * * Make the current task sleep until the given expiry time has * elapsed. The routine will return immediately unless * the current task state has been set (see set_current_state()). * * The @delta argument gives the kernel the freedom to schedule the * actual wakeup to a time that is both power and performance friendly. * The kernel give the normal best effort behavior for "@expires+@delta", * but may decide to fire the timer earlier, but no earlier than @expires. * * You can set the task state as follows - * * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to * pass before the routine returns. * * %TASK_INTERRUPTIBLE - the routine may return early if a signal is * delivered to the current task. * * The current task state is guaranteed to be TASK_RUNNING when this * routine returns. * * Returns 0 when the timer has expired otherwise -EINTR */ int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, const enum hrtimer_mode mode) { return schedule_hrtimeout_range_clock(expires, delta, mode, CLOCK_MONOTONIC); } |
654c8e0b1
|
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 |
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); /** * schedule_hrtimeout - sleep until timeout * @expires: timeout value (ktime_t) * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL * * Make the current task sleep until the given expiry time has * elapsed. The routine will return immediately unless * the current task state has been set (see set_current_state()). * * You can set the task state as follows - * * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to * pass before the routine returns. * * %TASK_INTERRUPTIBLE - the routine may return early if a signal is * delivered to the current task. * * The current task state is guaranteed to be TASK_RUNNING when this * routine returns. * * Returns 0 when the timer has expired otherwise -EINTR */ int __sched schedule_hrtimeout(ktime_t *expires, const enum hrtimer_mode mode) { return schedule_hrtimeout_range(expires, 0, mode); } |
7bb67439b
|
1775 |
EXPORT_SYMBOL_GPL(schedule_hrtimeout); |