Blame view
kernel/profile.c
16.6 KB
1da177e4c
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
/* * linux/kernel/profile.c * Simple profiling. Manages a direct-mapped profile hit count buffer, * with configurable resolution, support for restricting the cpus on * which profiling is done, and switching between cpu time and * schedule() calls via kernel command line parameters passed at boot. * * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, * Red Hat, July 2004 * Consolidation of architecture support code for profiling, * William Irwin, Oracle, July 2004 * Amortized hit count accounting via per-cpu open-addressed hashtables * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004 */ |
1da177e4c
|
15 16 17 18 19 20 21 |
#include <linux/module.h> #include <linux/profile.h> #include <linux/bootmem.h> #include <linux/notifier.h> #include <linux/mm.h> #include <linux/cpumask.h> #include <linux/cpu.h> |
1da177e4c
|
22 |
#include <linux/highmem.h> |
97d1f15b7
|
23 |
#include <linux/mutex.h> |
22b8ce947
|
24 25 |
#include <linux/slab.h> #include <linux/vmalloc.h> |
1da177e4c
|
26 |
#include <asm/sections.h> |
7d12e780e
|
27 |
#include <asm/irq_regs.h> |
e8edc6e03
|
28 |
#include <asm/ptrace.h> |
1da177e4c
|
29 30 31 32 33 34 35 36 37 38 |
struct profile_hit { u32 pc, hits; }; #define PROFILE_GRPSHIFT 3 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) /* Oprofile timer tick hook */ |
b012d346c
|
39 |
static int (*timer_hook)(struct pt_regs *) __read_mostly; |
1da177e4c
|
40 41 42 |
static atomic_t *prof_buffer; static unsigned long prof_len, prof_shift; |
07031e14c
|
43 |
|
ece8a684c
|
44 |
int prof_on __read_mostly; |
07031e14c
|
45 |
EXPORT_SYMBOL_GPL(prof_on); |
c309b917c
|
46 |
static cpumask_var_t prof_cpu_mask; |
1da177e4c
|
47 48 49 |
#ifdef CONFIG_SMP static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); static DEFINE_PER_CPU(int, cpu_profile_flip); |
97d1f15b7
|
50 |
static DEFINE_MUTEX(profile_flip_mutex); |
1da177e4c
|
51 |
#endif /* CONFIG_SMP */ |
22b8ce947
|
52 |
int profile_setup(char *str) |
1da177e4c
|
53 |
{ |
22b8ce947
|
54 55 56 |
static char schedstr[] = "schedule"; static char sleepstr[] = "sleep"; static char kvmstr[] = "kvm"; |
1da177e4c
|
57 |
int par; |
ece8a684c
|
58 |
if (!strncmp(str, sleepstr, strlen(sleepstr))) { |
b3da2a73f
|
59 |
#ifdef CONFIG_SCHEDSTATS |
ece8a684c
|
60 61 62 63 64 65 66 67 68 |
prof_on = SLEEP_PROFILING; if (str[strlen(sleepstr)] == ',') str += strlen(sleepstr) + 1; if (get_option(&str, &par)) prof_shift = par; printk(KERN_INFO "kernel sleep profiling enabled (shift: %ld) ", prof_shift); |
b3da2a73f
|
69 70 71 72 73 |
#else printk(KERN_WARNING "kernel sleep profiling requires CONFIG_SCHEDSTATS "); #endif /* CONFIG_SCHEDSTATS */ |
a75acf850
|
74 |
} else if (!strncmp(str, schedstr, strlen(schedstr))) { |
1da177e4c
|
75 |
prof_on = SCHED_PROFILING; |
dfaa9c94b
|
76 77 78 79 80 81 82 83 |
if (str[strlen(schedstr)] == ',') str += strlen(schedstr) + 1; if (get_option(&str, &par)) prof_shift = par; printk(KERN_INFO "kernel schedule profiling enabled (shift: %ld) ", prof_shift); |
07031e14c
|
84 85 86 87 88 89 90 91 92 93 |
} else if (!strncmp(str, kvmstr, strlen(kvmstr))) { prof_on = KVM_PROFILING; if (str[strlen(kvmstr)] == ',') str += strlen(kvmstr) + 1; if (get_option(&str, &par)) prof_shift = par; printk(KERN_INFO "kernel KVM profiling enabled (shift: %ld) ", prof_shift); |
dfaa9c94b
|
94 |
} else if (get_option(&str, &par)) { |
1da177e4c
|
95 96 97 98 99 100 101 102 103 |
prof_shift = par; prof_on = CPU_PROFILING; printk(KERN_INFO "kernel profiling enabled (shift: %ld) ", prof_shift); } return 1; } __setup("profile=", profile_setup); |
ce05fcc30
|
104 |
int __ref profile_init(void) |
1da177e4c
|
105 |
{ |
22b8ce947
|
106 |
int buffer_bytes; |
1ad82fd54
|
107 |
if (!prof_on) |
22b8ce947
|
108 |
return 0; |
1ad82fd54
|
109 |
|
1da177e4c
|
110 111 |
/* only text is profiled */ prof_len = (_etext - _stext) >> prof_shift; |
22b8ce947
|
112 |
buffer_bytes = prof_len*sizeof(atomic_t); |
22b8ce947
|
113 |
|
c309b917c
|
114 115 |
if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL)) return -ENOMEM; |
acd895795
|
116 |
cpumask_copy(prof_cpu_mask, cpu_possible_mask); |
b62f495da
|
117 |
prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN); |
22b8ce947
|
118 119 |
if (prof_buffer) return 0; |
b62f495da
|
120 121 |
prof_buffer = alloc_pages_exact(buffer_bytes, GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN); |
22b8ce947
|
122 123 124 125 |
if (prof_buffer) return 0; prof_buffer = vmalloc(buffer_bytes); |
16a2164bb
|
126 127 |
if (prof_buffer) { memset(prof_buffer, 0, buffer_bytes); |
22b8ce947
|
128 |
return 0; |
16a2164bb
|
129 |
} |
22b8ce947
|
130 |
|
c309b917c
|
131 |
free_cpumask_var(prof_cpu_mask); |
22b8ce947
|
132 |
return -ENOMEM; |
1da177e4c
|
133 134 135 |
} /* Profile event notifications */ |
1ad82fd54
|
136 |
|
e041c6834
|
137 138 139 |
static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); static ATOMIC_NOTIFIER_HEAD(task_free_notifier); static BLOCKING_NOTIFIER_HEAD(munmap_notifier); |
1ad82fd54
|
140 141 |
void profile_task_exit(struct task_struct *task) |
1da177e4c
|
142 |
{ |
e041c6834
|
143 |
blocking_notifier_call_chain(&task_exit_notifier, 0, task); |
1da177e4c
|
144 |
} |
1ad82fd54
|
145 146 |
int profile_handoff_task(struct task_struct *task) |
1da177e4c
|
147 148 |
{ int ret; |
e041c6834
|
149 |
ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); |
1da177e4c
|
150 151 152 153 154 |
return (ret == NOTIFY_OK) ? 1 : 0; } void profile_munmap(unsigned long addr) { |
e041c6834
|
155 |
blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); |
1da177e4c
|
156 |
} |
1ad82fd54
|
157 |
int task_handoff_register(struct notifier_block *n) |
1da177e4c
|
158 |
{ |
e041c6834
|
159 |
return atomic_notifier_chain_register(&task_free_notifier, n); |
1da177e4c
|
160 |
} |
1ad82fd54
|
161 |
EXPORT_SYMBOL_GPL(task_handoff_register); |
1da177e4c
|
162 |
|
1ad82fd54
|
163 |
int task_handoff_unregister(struct notifier_block *n) |
1da177e4c
|
164 |
{ |
e041c6834
|
165 |
return atomic_notifier_chain_unregister(&task_free_notifier, n); |
1da177e4c
|
166 |
} |
1ad82fd54
|
167 |
EXPORT_SYMBOL_GPL(task_handoff_unregister); |
1da177e4c
|
168 |
|
1ad82fd54
|
169 |
int profile_event_register(enum profile_type type, struct notifier_block *n) |
1da177e4c
|
170 171 |
{ int err = -EINVAL; |
1ad82fd54
|
172 |
|
1da177e4c
|
173 |
switch (type) { |
1ad82fd54
|
174 175 176 177 178 179 180 181 |
case PROFILE_TASK_EXIT: err = blocking_notifier_chain_register( &task_exit_notifier, n); break; case PROFILE_MUNMAP: err = blocking_notifier_chain_register( &munmap_notifier, n); break; |
1da177e4c
|
182 |
} |
1ad82fd54
|
183 |
|
1da177e4c
|
184 185 |
return err; } |
1ad82fd54
|
186 |
EXPORT_SYMBOL_GPL(profile_event_register); |
1da177e4c
|
187 |
|
1ad82fd54
|
188 |
int profile_event_unregister(enum profile_type type, struct notifier_block *n) |
1da177e4c
|
189 190 |
{ int err = -EINVAL; |
1ad82fd54
|
191 |
|
1da177e4c
|
192 |
switch (type) { |
1ad82fd54
|
193 194 195 196 197 198 199 200 |
case PROFILE_TASK_EXIT: err = blocking_notifier_chain_unregister( &task_exit_notifier, n); break; case PROFILE_MUNMAP: err = blocking_notifier_chain_unregister( &munmap_notifier, n); break; |
1da177e4c
|
201 |
} |
1da177e4c
|
202 203 |
return err; } |
1ad82fd54
|
204 |
EXPORT_SYMBOL_GPL(profile_event_unregister); |
1da177e4c
|
205 206 207 208 209 210 211 212 |
int register_timer_hook(int (*hook)(struct pt_regs *)) { if (timer_hook) return -EBUSY; timer_hook = hook; return 0; } |
1ad82fd54
|
213 |
EXPORT_SYMBOL_GPL(register_timer_hook); |
1da177e4c
|
214 215 216 217 218 219 |
void unregister_timer_hook(int (*hook)(struct pt_regs *)) { WARN_ON(hook != timer_hook); timer_hook = NULL; /* make sure all CPUs see the NULL hook */ |
fbd568a3e
|
220 |
synchronize_sched(); /* Allow ongoing interrupts to complete. */ |
1da177e4c
|
221 |
} |
1da177e4c
|
222 |
EXPORT_SYMBOL_GPL(unregister_timer_hook); |
1da177e4c
|
223 |
|
1da177e4c
|
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
#ifdef CONFIG_SMP /* * Each cpu has a pair of open-addressed hashtables for pending * profile hits. read_profile() IPI's all cpus to request them * to flip buffers and flushes their contents to prof_buffer itself. * Flip requests are serialized by the profile_flip_mutex. The sole * use of having a second hashtable is for avoiding cacheline * contention that would otherwise happen during flushes of pending * profile hits required for the accuracy of reported profile hits * and so resurrect the interrupt livelock issue. * * The open-addressed hashtables are indexed by profile buffer slot * and hold the number of pending hits to that profile buffer slot on * a cpu in an entry. When the hashtable overflows, all pending hits * are accounted to their corresponding profile buffer slots with * atomic_add() and the hashtable emptied. As numerous pending hits * may be accounted to a profile buffer slot in a hashtable entry, * this amortizes a number of atomic profile buffer increments likely * to be far larger than the number of entries in the hashtable, * particularly given that the number of distinct profile buffer * positions to which hits are accounted during short intervals (e.g. * several seconds) is usually very small. Exclusion from buffer * flipping is provided by interrupt disablement (note that for |
ece8a684c
|
248 249 |
* SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from * process context). |
1da177e4c
|
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
* The hash function is meant to be lightweight as opposed to strong, * and was vaguely inspired by ppc64 firmware-supported inverted * pagetable hash functions, but uses a full hashtable full of finite * collision chains, not just pairs of them. * * -- wli */ static void __profile_flip_buffers(void *unused) { int cpu = smp_processor_id(); per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); } static void profile_flip_buffers(void) { int i, j, cpu; |
97d1f15b7
|
267 |
mutex_lock(&profile_flip_mutex); |
1da177e4c
|
268 269 |
j = per_cpu(cpu_profile_flip, get_cpu()); put_cpu(); |
15c8b6c1a
|
270 |
on_each_cpu(__profile_flip_buffers, NULL, 1); |
1da177e4c
|
271 272 273 274 275 276 277 278 279 280 281 282 |
for_each_online_cpu(cpu) { struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; for (i = 0; i < NR_PROFILE_HIT; ++i) { if (!hits[i].hits) { if (hits[i].pc) hits[i].pc = 0; continue; } atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); hits[i].hits = hits[i].pc = 0; } } |
97d1f15b7
|
283 |
mutex_unlock(&profile_flip_mutex); |
1da177e4c
|
284 285 286 287 288 |
} static void profile_discard_flip_buffers(void) { int i, cpu; |
97d1f15b7
|
289 |
mutex_lock(&profile_flip_mutex); |
1da177e4c
|
290 291 |
i = per_cpu(cpu_profile_flip, get_cpu()); put_cpu(); |
15c8b6c1a
|
292 |
on_each_cpu(__profile_flip_buffers, NULL, 1); |
1da177e4c
|
293 294 295 296 |
for_each_online_cpu(cpu) { struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); } |
97d1f15b7
|
297 |
mutex_unlock(&profile_flip_mutex); |
1da177e4c
|
298 |
} |
ece8a684c
|
299 |
void profile_hits(int type, void *__pc, unsigned int nr_hits) |
1da177e4c
|
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
{ unsigned long primary, secondary, flags, pc = (unsigned long)__pc; int i, j, cpu; struct profile_hit *hits; if (prof_on != type || !prof_buffer) return; pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; cpu = get_cpu(); hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; if (!hits) { put_cpu(); return; } |
ece8a684c
|
316 317 318 319 320 |
/* * We buffer the global profiler buffer into a per-CPU * queue and thus reduce the number of global (and possibly * NUMA-alien) accesses. The write-queue is self-coalescing: */ |
1da177e4c
|
321 322 323 324 |
local_irq_save(flags); do { for (j = 0; j < PROFILE_GRPSZ; ++j) { if (hits[i + j].pc == pc) { |
ece8a684c
|
325 |
hits[i + j].hits += nr_hits; |
1da177e4c
|
326 327 328 |
goto out; } else if (!hits[i + j].hits) { hits[i + j].pc = pc; |
ece8a684c
|
329 |
hits[i + j].hits = nr_hits; |
1da177e4c
|
330 331 332 333 334 |
goto out; } } i = (i + secondary) & (NR_PROFILE_HIT - 1); } while (i != primary); |
ece8a684c
|
335 336 337 338 339 340 |
/* * Add the current hit(s) and flush the write-queue out * to the global buffer: */ atomic_add(nr_hits, &prof_buffer[pc]); |
1da177e4c
|
341 342 343 344 345 346 347 348 |
for (i = 0; i < NR_PROFILE_HIT; ++i) { atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); hits[i].pc = hits[i].hits = 0; } out: local_irq_restore(flags); put_cpu(); } |
841964145
|
349 |
static int __cpuinit profile_cpu_callback(struct notifier_block *info, |
1da177e4c
|
350 351 352 353 354 355 356 |
unsigned long action, void *__cpu) { int node, cpu = (unsigned long)__cpu; struct page *page; switch (action) { case CPU_UP_PREPARE: |
8bb784428
|
357 |
case CPU_UP_PREPARE_FROZEN: |
3dd6b5fb4
|
358 |
node = cpu_to_mem(cpu); |
1da177e4c
|
359 360 |
per_cpu(cpu_profile_flip, cpu) = 0; if (!per_cpu(cpu_profile_hits, cpu)[1]) { |
6484eb3e2
|
361 |
page = alloc_pages_exact_node(node, |
4199cfa02
|
362 |
GFP_KERNEL | __GFP_ZERO, |
fbd98167e
|
363 |
0); |
1da177e4c
|
364 |
if (!page) |
80b5184cc
|
365 |
return notifier_from_errno(-ENOMEM); |
1da177e4c
|
366 367 368 |
per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); } if (!per_cpu(cpu_profile_hits, cpu)[0]) { |
6484eb3e2
|
369 |
page = alloc_pages_exact_node(node, |
4199cfa02
|
370 |
GFP_KERNEL | __GFP_ZERO, |
fbd98167e
|
371 |
0); |
1da177e4c
|
372 373 374 375 376 |
if (!page) goto out_free; per_cpu(cpu_profile_hits, cpu)[0] = page_address(page); } break; |
1ad82fd54
|
377 |
out_free: |
1da177e4c
|
378 379 380 |
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); per_cpu(cpu_profile_hits, cpu)[1] = NULL; __free_page(page); |
80b5184cc
|
381 |
return notifier_from_errno(-ENOMEM); |
1da177e4c
|
382 |
case CPU_ONLINE: |
8bb784428
|
383 |
case CPU_ONLINE_FROZEN: |
c309b917c
|
384 385 |
if (prof_cpu_mask != NULL) cpumask_set_cpu(cpu, prof_cpu_mask); |
1da177e4c
|
386 387 |
break; case CPU_UP_CANCELED: |
8bb784428
|
388 |
case CPU_UP_CANCELED_FROZEN: |
1da177e4c
|
389 |
case CPU_DEAD: |
8bb784428
|
390 |
case CPU_DEAD_FROZEN: |
c309b917c
|
391 392 |
if (prof_cpu_mask != NULL) cpumask_clear_cpu(cpu, prof_cpu_mask); |
1da177e4c
|
393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
if (per_cpu(cpu_profile_hits, cpu)[0]) { page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); per_cpu(cpu_profile_hits, cpu)[0] = NULL; __free_page(page); } if (per_cpu(cpu_profile_hits, cpu)[1]) { page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); per_cpu(cpu_profile_hits, cpu)[1] = NULL; __free_page(page); } break; } return NOTIFY_OK; } |
1da177e4c
|
407 408 409 |
#else /* !CONFIG_SMP */ #define profile_flip_buffers() do { } while (0) #define profile_discard_flip_buffers() do { } while (0) |
023160678
|
410 |
#define profile_cpu_callback NULL |
1da177e4c
|
411 |
|
ece8a684c
|
412 |
void profile_hits(int type, void *__pc, unsigned int nr_hits) |
1da177e4c
|
413 414 415 416 417 418 |
{ unsigned long pc; if (prof_on != type || !prof_buffer) return; pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; |
ece8a684c
|
419 |
atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); |
1da177e4c
|
420 421 |
} #endif /* !CONFIG_SMP */ |
bbe1a59b3
|
422 |
EXPORT_SYMBOL_GPL(profile_hits); |
7d12e780e
|
423 |
void profile_tick(int type) |
1da177e4c
|
424 |
{ |
7d12e780e
|
425 |
struct pt_regs *regs = get_irq_regs(); |
1da177e4c
|
426 427 |
if (type == CPU_PROFILING && timer_hook) timer_hook(regs); |
c309b917c
|
428 429 |
if (!user_mode(regs) && prof_cpu_mask != NULL && cpumask_test_cpu(smp_processor_id(), prof_cpu_mask)) |
1da177e4c
|
430 431 432 433 434 |
profile_hit(type, (void *)profile_pc(regs)); } #ifdef CONFIG_PROC_FS #include <linux/proc_fs.h> |
583a22e7c
|
435 |
#include <linux/seq_file.h> |
1da177e4c
|
436 |
#include <asm/uaccess.h> |
1da177e4c
|
437 |
|
583a22e7c
|
438 |
static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) |
1da177e4c
|
439 |
{ |
583a22e7c
|
440 441 442 443 444 445 446 447 448 |
seq_cpumask(m, prof_cpu_mask); seq_putc(m, ' '); return 0; } static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) { return single_open(file, prof_cpu_mask_proc_show, NULL); |
1da177e4c
|
449 |
} |
583a22e7c
|
450 451 |
static ssize_t prof_cpu_mask_proc_write(struct file *file, const char __user *buffer, size_t count, loff_t *pos) |
1da177e4c
|
452 |
{ |
c309b917c
|
453 |
cpumask_var_t new_value; |
583a22e7c
|
454 |
int err; |
1da177e4c
|
455 |
|
c309b917c
|
456 457 |
if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) return -ENOMEM; |
1da177e4c
|
458 |
|
c309b917c
|
459 460 |
err = cpumask_parse_user(buffer, count, new_value); if (!err) { |
583a22e7c
|
461 462 |
cpumask_copy(prof_cpu_mask, new_value); err = count; |
c309b917c
|
463 464 465 |
} free_cpumask_var(new_value); return err; |
1da177e4c
|
466 |
} |
583a22e7c
|
467 468 469 470 471 472 473 |
static const struct file_operations prof_cpu_mask_proc_fops = { .open = prof_cpu_mask_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = prof_cpu_mask_proc_write, }; |
1da177e4c
|
474 475 |
void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) { |
1da177e4c
|
476 |
/* create /proc/irq/prof_cpu_mask */ |
583a22e7c
|
477 |
proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops); |
1da177e4c
|
478 479 480 481 482 483 484 485 486 487 488 489 490 |
} /* * This function accesses profiling information. The returned data is * binary: the sampling step and the actual contents of the profile * buffer. Use of the program readprofile is recommended in order to * get meaningful info out of these data. */ static ssize_t read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) { unsigned long p = *ppos; ssize_t read; |
1ad82fd54
|
491 |
char *pnt; |
1da177e4c
|
492 493 494 495 496 497 498 499 500 501 |
unsigned int sample_step = 1 << prof_shift; profile_flip_buffers(); if (p >= (prof_len+1)*sizeof(unsigned int)) return 0; if (count > (prof_len+1)*sizeof(unsigned int) - p) count = (prof_len+1)*sizeof(unsigned int) - p; read = 0; while (p < sizeof(unsigned int) && count > 0) { |
1ad82fd54
|
502 |
if (put_user(*((char *)(&sample_step)+p), buf)) |
064b022c7
|
503 |
return -EFAULT; |
1da177e4c
|
504 505 506 |
buf++; p++; count--; read++; } pnt = (char *)prof_buffer + p - sizeof(atomic_t); |
1ad82fd54
|
507 |
if (copy_to_user(buf, (void *)pnt, count)) |
1da177e4c
|
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
return -EFAULT; read += count; *ppos += read; return read; } /* * Writing to /proc/profile resets the counters * * Writing a 'profiling multiplier' value into it also re-sets the profiling * interrupt frequency, on architectures that support this. */ static ssize_t write_profile(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { #ifdef CONFIG_SMP |
1ad82fd54
|
524 |
extern int setup_profiling_timer(unsigned int multiplier); |
1da177e4c
|
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
if (count == sizeof(int)) { unsigned int multiplier; if (copy_from_user(&multiplier, buf, sizeof(int))) return -EFAULT; if (setup_profiling_timer(multiplier)) return -EINVAL; } #endif profile_discard_flip_buffers(); memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); return count; } |
15ad7cdcf
|
540 |
static const struct file_operations proc_profile_operations = { |
1da177e4c
|
541 542 |
.read = read_profile, .write = write_profile, |
6038f373a
|
543 |
.llseek = default_llseek, |
1da177e4c
|
544 545 546 |
}; #ifdef CONFIG_SMP |
60a515132
|
547 |
static void profile_nop(void *unused) |
1da177e4c
|
548 549 |
{ } |
22b8ce947
|
550 |
static int create_hash_tables(void) |
1da177e4c
|
551 552 553 554 |
{ int cpu; for_each_online_cpu(cpu) { |
3dd6b5fb4
|
555 |
int node = cpu_to_mem(cpu); |
1da177e4c
|
556 |
struct page *page; |
6484eb3e2
|
557 |
page = alloc_pages_exact_node(node, |
fbd98167e
|
558 559 |
GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 0); |
1da177e4c
|
560 561 562 563 |
if (!page) goto out_cleanup; per_cpu(cpu_profile_hits, cpu)[1] = (struct profile_hit *)page_address(page); |
6484eb3e2
|
564 |
page = alloc_pages_exact_node(node, |
fbd98167e
|
565 566 |
GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 0); |
1da177e4c
|
567 568 569 570 571 572 573 574 |
if (!page) goto out_cleanup; per_cpu(cpu_profile_hits, cpu)[0] = (struct profile_hit *)page_address(page); } return 0; out_cleanup: prof_on = 0; |
d59dd4620
|
575 |
smp_mb(); |
15c8b6c1a
|
576 |
on_each_cpu(profile_nop, NULL, 1); |
1da177e4c
|
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
for_each_online_cpu(cpu) { struct page *page; if (per_cpu(cpu_profile_hits, cpu)[0]) { page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); per_cpu(cpu_profile_hits, cpu)[0] = NULL; __free_page(page); } if (per_cpu(cpu_profile_hits, cpu)[1]) { page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); per_cpu(cpu_profile_hits, cpu)[1] = NULL; __free_page(page); } } return -1; } #else #define create_hash_tables() ({ 0; }) #endif |
841964145
|
596 |
int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */ |
1da177e4c
|
597 598 599 600 601 602 |
{ struct proc_dir_entry *entry; if (!prof_on) return 0; if (create_hash_tables()) |
22b8ce947
|
603 |
return -ENOMEM; |
c33fff0af
|
604 605 |
entry = proc_create("profile", S_IWUSR | S_IRUGO, NULL, &proc_profile_operations); |
1ad82fd54
|
606 |
if (!entry) |
1da177e4c
|
607 |
return 0; |
1da177e4c
|
608 609 610 611 612 613 |
entry->size = (1+prof_len) * sizeof(atomic_t); hotcpu_notifier(profile_cpu_callback, 0); return 0; } module_init(create_proc_profile); #endif /* CONFIG_PROC_FS */ |