Blame view

Documentation/CodingStyle 28.9 KB
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
  
  		Linux kernel coding style
  
  This is a short document describing the preferred coding style for the
  linux kernel.  Coding style is very personal, and I won't _force_ my
  views on anybody, but this is what goes for anything that I have to be
  able to maintain, and I'd prefer it for most other things too.  Please
  at least consider the points made here.
  
  First off, I'd suggest printing out a copy of the GNU coding standards,
  and NOT read it.  Burn them, it's a great symbolic gesture.
  
  Anyway, here goes:
  
  
  	 	Chapter 1: Indentation
  
  Tabs are 8 characters, and thus indentations are also 8 characters.
  There are heretic movements that try to make indentations 4 (or even 2!)
  characters deep, and that is akin to trying to define the value of PI to
  be 3.
  
  Rationale: The whole idea behind indentation is to clearly define where
  a block of control starts and ends.  Especially when you've been looking
  at your screen for 20 straight hours, you'll find it a lot easier to see
  how the indentation works if you have large indentations.
  
  Now, some people will claim that having 8-character indentations makes
  the code move too far to the right, and makes it hard to read on a
  80-character terminal screen.  The answer to that is that if you need
  more than 3 levels of indentation, you're screwed anyway, and should fix
  your program.
  
  In short, 8-char indents make things easier to read, and have the added
  benefit of warning you when you're nesting your functions too deep.
  Heed that warning.
b3fc9941f   Randy Dunlap   [PATCH] CodingSty...
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
  The preferred way to ease multiple indentation levels in a switch statement is
  to align the "switch" and its subordinate "case" labels in the same column
  instead of "double-indenting" the "case" labels.  E.g.:
  
  	switch (suffix) {
  	case 'G':
  	case 'g':
  		mem <<= 30;
  		break;
  	case 'M':
  	case 'm':
  		mem <<= 20;
  		break;
  	case 'K':
  	case 'k':
  		mem <<= 10;
  		/* fall through */
  	default:
  		break;
  	}
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
57
58
59
60
61
  Don't put multiple statements on a single line unless you have
  something to hide:
  
  	if (condition) do_this;
  	  do_something_everytime;
b3fc9941f   Randy Dunlap   [PATCH] CodingSty...
62
63
  Don't put multiple assignments on a single line either.  Kernel coding style
  is super simple.  Avoid tricky expressions.
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
64
65
66
67
68
69
70
71
72
73
  Outside of comments, documentation and except in Kconfig, spaces are never
  used for indentation, and the above example is deliberately broken.
  
  Get a decent editor and don't leave whitespace at the end of lines.
  
  
  		Chapter 2: Breaking long lines and strings
  
  Coding style is all about readability and maintainability using commonly
  available tools.
dff4982f5   Alan Cox   CodingStyle: rela...
74
75
  The limit on the length of lines is 80 columns and this is a strongly
  preferred limit.
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
76
77
78
79
  
  Statements longer than 80 columns will be broken into sensible chunks.
  Descendants are always substantially shorter than the parent and are placed
  substantially to the right. The same applies to function headers with a long
dff4982f5   Alan Cox   CodingStyle: rela...
80
81
82
  argument list. Long strings are as well broken into shorter strings. The
  only exception to this is where exceeding 80 columns significantly increases
  readability and does not hide information.
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
83
84
85
86
87
88
89
90
91
92
93
  
  void fun(int a, int b, int c)
  {
  	if (condition)
  		printk(KERN_WARNING "Warning this is a long printk with "
  						"3 parameters a: %u b: %u "
  						"c: %u 
  ", a, b, c);
  	else
  		next_statement;
  }
b3fc9941f   Randy Dunlap   [PATCH] CodingSty...
94
  		Chapter 3: Placing Braces and Spaces
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
95
96
97
98
99
100
101
102
103
104
  
  The other issue that always comes up in C styling is the placement of
  braces.  Unlike the indent size, there are few technical reasons to
  choose one placement strategy over the other, but the preferred way, as
  shown to us by the prophets Kernighan and Ritchie, is to put the opening
  brace last on the line, and put the closing brace first, thusly:
  
  	if (x is true) {
  		we do y
  	}
b3fc9941f   Randy Dunlap   [PATCH] CodingSty...
105
106
107
108
109
110
111
112
113
114
115
116
117
  This applies to all non-function statement blocks (if, switch, for,
  while, do).  E.g.:
  
  	switch (action) {
  	case KOBJ_ADD:
  		return "add";
  	case KOBJ_REMOVE:
  		return "remove";
  	case KOBJ_CHANGE:
  		return "change";
  	default:
  		return NULL;
  	}
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
  However, there is one special case, namely functions: they have the
  opening brace at the beginning of the next line, thus:
  
  	int function(int x)
  	{
  		body of function
  	}
  
  Heretic people all over the world have claimed that this inconsistency
  is ...  well ...  inconsistent, but all right-thinking people know that
  (a) K&R are _right_ and (b) K&R are right.  Besides, functions are
  special anyway (you can't nest them in C).
  
  Note that the closing brace is empty on a line of its own, _except_ in
  the cases where it is followed by a continuation of the same statement,
  ie a "while" in a do-statement or an "else" in an if-statement, like
  this:
  
  	do {
  		body of do-loop
  	} while (condition);
  
  and
  
  	if (x == y) {
  		..
  	} else if (x > y) {
  		...
  	} else {
  		....
  	}
  
  Rationale: K&R.
  
  Also, note that this brace-placement also minimizes the number of empty
  (or almost empty) lines, without any loss of readability.  Thus, as the
  supply of new-lines on your screen is not a renewable resource (think
  25-line terminal screens here), you have more empty lines to put
  comments on.
e659ba4a0   Oliver Neukum   CodingStyle: star...
157
158
159
160
161
162
163
164
165
166
167
168
169
170
  Do not unnecessarily use braces where a single statement will do.
  
  if (condition)
  	action();
  
  This does not apply if one branch of a conditional statement is a single
  statement. Use braces in both branches.
  
  if (condition) {
  	do_this();
  	do_that();
  } else {
  	otherwise();
  }
b3fc9941f   Randy Dunlap   [PATCH] CodingSty...
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
  		3.1:  Spaces
  
  Linux kernel style for use of spaces depends (mostly) on
  function-versus-keyword usage.  Use a space after (most) keywords.  The
  notable exceptions are sizeof, typeof, alignof, and __attribute__, which look
  somewhat like functions (and are usually used with parentheses in Linux,
  although they are not required in the language, as in: "sizeof info" after
  "struct fileinfo info;" is declared).
  
  So use a space after these keywords:
  	if, switch, case, for, do, while
  but not with sizeof, typeof, alignof, or __attribute__.  E.g.,
  	s = sizeof(struct file);
  
  Do not add spaces around (inside) parenthesized expressions.  This example is
  *bad*:
  
  	s = sizeof( struct file );
  
  When declaring pointer data or a function that returns a pointer type, the
  preferred use of '*' is adjacent to the data name or function name and not
  adjacent to the type name.  Examples:
  
  	char *linux_banner;
  	unsigned long long memparse(char *ptr, char **retptr);
  	char *match_strdup(substring_t *s);
  
  Use one space around (on each side of) most binary and ternary operators,
  such as any of these:
  
  	=  +  -  <  >  *  /  %  |  &  ^  <=  >=  ==  !=  ?  :
  
  but no space after unary operators:
  	&  *  +  -  ~  !  sizeof  typeof  alignof  __attribute__  defined
  
  no space before the postfix increment & decrement unary operators:
  	++  --
  
  no space after the prefix increment & decrement unary operators:
  	++  --
  
  and no space around the '.' and "->" structure member operators.
a923fd6ae   Josh Triplett   CodingStyle: add ...
213
214
215
216
217
218
219
220
221
222
223
  Do not leave trailing whitespace at the ends of lines.  Some editors with
  "smart" indentation will insert whitespace at the beginning of new lines as
  appropriate, so you can start typing the next line of code right away.
  However, some such editors do not remove the whitespace if you end up not
  putting a line of code there, such as if you leave a blank line.  As a result,
  you end up with lines containing trailing whitespace.
  
  Git will warn you about patches that introduce trailing whitespace, and can
  optionally strip the trailing whitespace for you; however, if applying a series
  of patches, this may make later patches in the series fail by changing their
  context lines.
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
  
  		Chapter 4: Naming
  
  C is a Spartan language, and so should your naming be.  Unlike Modula-2
  and Pascal programmers, C programmers do not use cute names like
  ThisVariableIsATemporaryCounter.  A C programmer would call that
  variable "tmp", which is much easier to write, and not the least more
  difficult to understand.
  
  HOWEVER, while mixed-case names are frowned upon, descriptive names for
  global variables are a must.  To call a global function "foo" is a
  shooting offense.
  
  GLOBAL variables (to be used only if you _really_ need them) need to
  have descriptive names, as do global functions.  If you have a function
  that counts the number of active users, you should call that
  "count_active_users()" or similar, you should _not_ call it "cntusr()".
  
  Encoding the type of a function into the name (so-called Hungarian
  notation) is brain damaged - the compiler knows the types anyway and can
  check those, and it only confuses the programmer.  No wonder MicroSoft
  makes buggy programs.
  
  LOCAL variable names should be short, and to the point.  If you have
  some random integer loop counter, it should probably be called "i".
  Calling it "loop_counter" is non-productive, if there is no chance of it
  being mis-understood.  Similarly, "tmp" can be just about any type of
  variable that is used to hold a temporary value.
  
  If you are afraid to mix up your local variable names, you have another
  problem, which is called the function-growth-hormone-imbalance syndrome.
b3fc9941f   Randy Dunlap   [PATCH] CodingSty...
255
  See chapter 6 (Functions).
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
256

226a6b84a   Randy Dunlap   [PATCH] CodingSty...
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
  		Chapter 5: Typedefs
  
  Please don't use things like "vps_t".
  
  It's a _mistake_ to use typedef for structures and pointers. When you see a
  
  	vps_t a;
  
  in the source, what does it mean?
  
  In contrast, if it says
  
  	struct virtual_container *a;
  
  you can actually tell what "a" is.
  
  Lots of people think that typedefs "help readability". Not so. They are
  useful only for:
  
   (a) totally opaque objects (where the typedef is actively used to _hide_
       what the object is).
  
       Example: "pte_t" etc. opaque objects that you can only access using
       the proper accessor functions.
  
       NOTE! Opaqueness and "accessor functions" are not good in themselves.
       The reason we have them for things like pte_t etc. is that there
       really is absolutely _zero_ portably accessible information there.
  
   (b) Clear integer types, where the abstraction _helps_ avoid confusion
       whether it is "int" or "long".
  
       u8/u16/u32 are perfectly fine typedefs, although they fit into
       category (d) better than here.
  
       NOTE! Again - there needs to be a _reason_ for this. If something is
       "unsigned long", then there's no reason to do
  
  	typedef unsigned long myflags_t;
  
       but if there is a clear reason for why it under certain circumstances
       might be an "unsigned int" and under other configurations might be
       "unsigned long", then by all means go ahead and use a typedef.
  
   (c) when you use sparse to literally create a _new_ type for
       type-checking.
  
   (d) New types which are identical to standard C99 types, in certain
       exceptional circumstances.
  
       Although it would only take a short amount of time for the eyes and
       brain to become accustomed to the standard types like 'uint32_t',
       some people object to their use anyway.
  
       Therefore, the Linux-specific 'u8/u16/u32/u64' types and their
       signed equivalents which are identical to standard types are
       permitted -- although they are not mandatory in new code of your
       own.
  
       When editing existing code which already uses one or the other set
       of types, you should conform to the existing choices in that code.
  
   (e) Types safe for use in userspace.
  
       In certain structures which are visible to userspace, we cannot
       require C99 types and cannot use the 'u32' form above. Thus, we
       use __u32 and similar types in all structures which are shared
       with userspace.
  
  Maybe there are other cases too, but the rule should basically be to NEVER
  EVER use a typedef unless you can clearly match one of those rules.
  
  In general, a pointer, or a struct that has elements that can reasonably
  be directly accessed should _never_ be a typedef.
  
  
  		Chapter 6: Functions
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
  
  Functions should be short and sweet, and do just one thing.  They should
  fit on one or two screenfuls of text (the ISO/ANSI screen size is 80x24,
  as we all know), and do one thing and do that well.
  
  The maximum length of a function is inversely proportional to the
  complexity and indentation level of that function.  So, if you have a
  conceptually simple function that is just one long (but simple)
  case-statement, where you have to do lots of small things for a lot of
  different cases, it's OK to have a longer function.
  
  However, if you have a complex function, and you suspect that a
  less-than-gifted first-year high-school student might not even
  understand what the function is all about, you should adhere to the
  maximum limits all the more closely.  Use helper functions with
  descriptive names (you can ask the compiler to in-line them if you think
  it's performance-critical, and it will probably do a better job of it
  than you would have done).
  
  Another measure of the function is the number of local variables.  They
  shouldn't exceed 5-10, or you're doing something wrong.  Re-think the
  function, and split it into smaller pieces.  A human brain can
  generally easily keep track of about 7 different things, anything more
  and it gets confused.  You know you're brilliant, but maybe you'd like
  to understand what you did 2 weeks from now.
b3fc9941f   Randy Dunlap   [PATCH] CodingSty...
359
360
361
362
363
364
365
366
367
368
369
370
371
  In source files, separate functions with one blank line.  If the function is
  exported, the EXPORT* macro for it should follow immediately after the closing
  function brace line.  E.g.:
  
  int system_is_up(void)
  {
  	return system_state == SYSTEM_RUNNING;
  }
  EXPORT_SYMBOL(system_is_up);
  
  In function prototypes, include parameter names with their data types.
  Although this is not required by the C language, it is preferred in Linux
  because it is a simple way to add valuable information for the reader.
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
372

226a6b84a   Randy Dunlap   [PATCH] CodingSty...
373
  		Chapter 7: Centralized exiting of functions
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
374
375
376
377
378
379
380
381
382
383
384
385
386
387
  
  Albeit deprecated by some people, the equivalent of the goto statement is
  used frequently by compilers in form of the unconditional jump instruction.
  
  The goto statement comes in handy when a function exits from multiple
  locations and some common work such as cleanup has to be done.
  
  The rationale is:
  
  - unconditional statements are easier to understand and follow
  - nesting is reduced
  - errors by not updating individual exit points when making
      modifications are prevented
  - saves the compiler work to optimize redundant code away ;)
dc3d28d02   Jesper Juhl   [PATCH] CodingSty...
388
  int fun(int a)
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
  {
  	int result = 0;
  	char *buffer = kmalloc(SIZE);
  
  	if (buffer == NULL)
  		return -ENOMEM;
  
  	if (condition1) {
  		while (loop1) {
  			...
  		}
  		result = 1;
  		goto out;
  	}
  	...
  out:
  	kfree(buffer);
  	return result;
  }
226a6b84a   Randy Dunlap   [PATCH] CodingSty...
408
  		Chapter 8: Commenting
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
409
410
411
412
413
414
415
416
417
  
  Comments are good, but there is also a danger of over-commenting.  NEVER
  try to explain HOW your code works in a comment: it's much better to
  write the code so that the _working_ is obvious, and it's a waste of
  time to explain badly written code.
  
  Generally, you want your comments to tell WHAT your code does, not HOW.
  Also, try to avoid putting comments inside a function body: if the
  function is so complex that you need to separately comment parts of it,
b3fc9941f   Randy Dunlap   [PATCH] CodingSty...
418
  you should probably go back to chapter 6 for a while.  You can make
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
419
420
421
422
  small comments to note or warn about something particularly clever (or
  ugly), but try to avoid excess.  Instead, put the comments at the head
  of the function, telling people what it does, and possibly WHY it does
  it.
b3fc9941f   Randy Dunlap   [PATCH] CodingSty...
423
  When commenting the kernel API functions, please use the kernel-doc format.
e776eba0f   Pekka J Enberg   [PATCH] Add kerne...
424
425
  See the files Documentation/kernel-doc-nano-HOWTO.txt and scripts/kernel-doc
  for details.
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
426

b3fc9941f   Randy Dunlap   [PATCH] CodingSty...
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
  Linux style for comments is the C89 "/* ... */" style.
  Don't use C99-style "// ..." comments.
  
  The preferred style for long (multi-line) comments is:
  
  	/*
  	 * This is the preferred style for multi-line
  	 * comments in the Linux kernel source code.
  	 * Please use it consistently.
  	 *
  	 * Description:  A column of asterisks on the left side,
  	 * with beginning and ending almost-blank lines.
  	 */
  
  It's also important to comment data, whether they are basic types or derived
  types.  To this end, use just one data declaration per line (no commas for
  multiple data declarations).  This leaves you room for a small comment on each
  item, explaining its use.
226a6b84a   Randy Dunlap   [PATCH] CodingSty...
445
  		Chapter 9: You've made a mess of it
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
446
447
448
449
450
451
452
453
454
455
  
  That's OK, we all do.  You've probably been told by your long-time Unix
  user helper that "GNU emacs" automatically formats the C sources for
  you, and you've noticed that yes, it does do that, but the defaults it
  uses are less than desirable (in fact, they are worse than random
  typing - an infinite number of monkeys typing into GNU emacs would never
  make a good program).
  
  So, you can either get rid of GNU emacs, or change it to use saner
  values.  To do the latter, you can stick the following in your .emacs file:
a7f371e54   Johannes Weiner   documentation: up...
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
  (defun c-lineup-arglist-tabs-only (ignored)
    "Line up argument lists by tabs, not spaces"
    (let* ((anchor (c-langelem-pos c-syntactic-element))
  	 (column (c-langelem-2nd-pos c-syntactic-element))
  	 (offset (- (1+ column) anchor))
  	 (steps (floor offset c-basic-offset)))
      (* (max steps 1)
         c-basic-offset)))
  
  (add-hook 'c-mode-hook
            (lambda ()
              (let ((filename (buffer-file-name)))
                ;; Enable kernel mode for the appropriate files
                (when (and filename
                           (string-match "~/src/linux-trees" filename))
                  (setq indent-tabs-mode t)
                  (c-set-style "linux")
                  (c-set-offset 'arglist-cont-nonempty
                                '(c-lineup-gcc-asm-reg
                                  c-lineup-arglist-tabs-only))))))
  
  This will make emacs go better with the kernel coding style for C
  files below ~/src/linux-trees.
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
  
  But even if you fail in getting emacs to do sane formatting, not
  everything is lost: use "indent".
  
  Now, again, GNU indent has the same brain-dead settings that GNU emacs
  has, which is why you need to give it a few command line options.
  However, that's not too bad, because even the makers of GNU indent
  recognize the authority of K&R (the GNU people aren't evil, they are
  just severely misguided in this matter), so you just give indent the
  options "-kr -i8" (stands for "K&R, 8 character indents"), or use
  "scripts/Lindent", which indents in the latest style.
  
  "indent" has a lot of options, and especially when it comes to comment
  re-formatting you may want to take a look at the man page.  But
  remember: "indent" is not a fix for bad programming.
6754bb4de   Robert P. J. Day   Documentation: fi...
494
  		Chapter 10: Kconfig configuration files
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
495

6754bb4de   Robert P. J. Day   Documentation: fi...
496
497
498
499
  For all of the Kconfig* configuration files throughout the source tree,
  the indentation is somewhat different.  Lines under a "config" definition
  are indented with one tab, while help text is indented an additional two
  spaces.  Example:
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
500

6754bb4de   Robert P. J. Day   Documentation: fi...
501
502
503
  config AUDIT
  	bool "Auditing support"
  	depends on NET
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
504
  	help
6754bb4de   Robert P. J. Day   Documentation: fi...
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
  	  Enable auditing infrastructure that can be used with another
  	  kernel subsystem, such as SELinux (which requires this for
  	  logging of avc messages output).  Does not do system-call
  	  auditing without CONFIG_AUDITSYSCALL.
  
  Features that might still be considered unstable should be defined as
  dependent on "EXPERIMENTAL":
  
  config SLUB
  	depends on EXPERIMENTAL && !ARCH_USES_SLAB_PAGE_STRUCT
  	bool "SLUB (Unqueued Allocator)"
  	...
  
  while seriously dangerous features (such as write support for certain
  filesystems) should advertise this prominently in their prompt string:
  
  config ADFS_FS_RW
  	bool "ADFS write support (DANGEROUS)"
  	depends on ADFS_FS
  	...
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
525

6754bb4de   Robert P. J. Day   Documentation: fi...
526
527
  For full documentation on the configuration files, see the file
  Documentation/kbuild/kconfig-language.txt.
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
528

226a6b84a   Randy Dunlap   [PATCH] CodingSty...
529
  		Chapter 11: Data structures
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
  
  Data structures that have visibility outside the single-threaded
  environment they are created and destroyed in should always have
  reference counts.  In the kernel, garbage collection doesn't exist (and
  outside the kernel garbage collection is slow and inefficient), which
  means that you absolutely _have_ to reference count all your uses.
  
  Reference counting means that you can avoid locking, and allows multiple
  users to have access to the data structure in parallel - and not having
  to worry about the structure suddenly going away from under them just
  because they slept or did something else for a while.
  
  Note that locking is _not_ a replacement for reference counting.
  Locking is used to keep data structures coherent, while reference
  counting is a memory management technique.  Usually both are needed, and
  they are not to be confused with each other.
  
  Many data structures can indeed have two levels of reference counting,
  when there are users of different "classes".  The subclass count counts
  the number of subclass users, and decrements the global count just once
  when the subclass count goes to zero.
  
  Examples of this kind of "multi-level-reference-counting" can be found in
  memory management ("struct mm_struct": mm_users and mm_count), and in
  filesystem code ("struct super_block": s_count and s_active).
  
  Remember: if another thread can find your data structure, and you don't
  have a reference count on it, you almost certainly have a bug.
226a6b84a   Randy Dunlap   [PATCH] CodingSty...
558
  		Chapter 12: Macros, Enums and RTL
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
  
  Names of macros defining constants and labels in enums are capitalized.
  
  #define CONSTANT 0x12345
  
  Enums are preferred when defining several related constants.
  
  CAPITALIZED macro names are appreciated but macros resembling functions
  may be named in lower case.
  
  Generally, inline functions are preferable to macros resembling functions.
  
  Macros with multiple statements should be enclosed in a do - while block:
  
  #define macrofun(a, b, c) 			\
  	do {					\
  		if (a == 5)			\
  			do_this(b, c);		\
  	} while (0)
  
  Things to avoid when using macros:
  
  1) macros that affect control flow:
  
  #define FOO(x)					\
  	do {					\
  		if (blah(x) < 0)		\
  			return -EBUGGERED;	\
  	} while(0)
  
  is a _very_ bad idea.  It looks like a function call but exits the "calling"
  function; don't break the internal parsers of those who will read the code.
  
  2) macros that depend on having a local variable with a magic name:
  
  #define FOO(val) bar(index, val)
  
  might look like a good thing, but it's confusing as hell when one reads the
  code and it's prone to breakage from seemingly innocent changes.
  
  3) macros with arguments that are used as l-values: FOO(x) = y; will
  bite you if somebody e.g. turns FOO into an inline function.
  
  4) forgetting about precedence: macros defining constants using expressions
  must enclose the expression in parentheses. Beware of similar issues with
  macros using parameters.
  
  #define CONSTANT 0x4000
  #define CONSTEXP (CONSTANT | 3)
  
  The cpp manual deals with macros exhaustively. The gcc internals manual also
  covers RTL which is used frequently with assembly language in the kernel.
226a6b84a   Randy Dunlap   [PATCH] CodingSty...
611
  		Chapter 13: Printing kernel messages
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
612
613
614
  
  Kernel developers like to be seen as literate. Do mind the spelling
  of kernel messages to make a good impression. Do not use crippled
6b09448ab   David Brownell   dev_vdbg() docume...
615
616
  words like "dont"; use "do not" or "don't" instead.  Make the messages
  concise, clear, and unambiguous.
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
617
618
619
620
  
  Kernel messages do not have to be terminated with a period.
  
  Printing numbers in parentheses (%d) adds no value and should be avoided.
6b09448ab   David Brownell   dev_vdbg() docume...
621
622
623
624
625
626
627
628
629
630
631
632
633
  There are a number of driver model diagnostic macros in <linux/device.h>
  which you should use to make sure messages are matched to the right device
  and driver, and are tagged with the right level:  dev_err(), dev_warn(),
  dev_info(), and so forth.  For messages that aren't associated with a
  particular device, <linux/kernel.h> defines pr_debug() and pr_info().
  
  Coming up with good debugging messages can be quite a challenge; and once
  you have them, they can be a huge help for remote troubleshooting.  Such
  messages should be compiled out when the DEBUG symbol is not defined (that
  is, by default they are not included).  When you use dev_dbg() or pr_debug(),
  that's automatic.  Many subsystems have Kconfig options to turn on -DDEBUG.
  A related convention uses VERBOSE_DEBUG to add dev_vdbg() messages to the
  ones already enabled by DEBUG.
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
634

226a6b84a   Randy Dunlap   [PATCH] CodingSty...
635
  		Chapter 14: Allocating memory
af4e5a218   Pekka J Enberg   [PATCH] CodingSty...
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
  
  The kernel provides the following general purpose memory allocators:
  kmalloc(), kzalloc(), kcalloc(), and vmalloc().  Please refer to the API
  documentation for further information about them.
  
  The preferred form for passing a size of a struct is the following:
  
  	p = kmalloc(sizeof(*p), ...);
  
  The alternative form where struct name is spelled out hurts readability and
  introduces an opportunity for a bug when the pointer variable type is changed
  but the corresponding sizeof that is passed to a memory allocator is not.
  
  Casting the return value which is a void pointer is redundant. The conversion
  from void pointer to any other pointer type is guaranteed by the C programming
  language.
226a6b84a   Randy Dunlap   [PATCH] CodingSty...
652
  		Chapter 15: The inline disease
a771f2b82   Arjan van de Ven   [PATCH] Add a sec...
653
654
655
  
  There appears to be a common misperception that gcc has a magic "make me
  faster" speedup option called "inline". While the use of inlines can be
53ab97a1c   Jesper Juhl   Fix chapter refer...
656
  appropriate (for example as a means of replacing macros, see Chapter 12), it
a771f2b82   Arjan van de Ven   [PATCH] Add a sec...
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
  very often is not. Abundant use of the inline keyword leads to a much bigger
  kernel, which in turn slows the system as a whole down, due to a bigger
  icache footprint for the CPU and simply because there is less memory
  available for the pagecache. Just think about it; a pagecache miss causes a
  disk seek, which easily takes 5 miliseconds. There are a LOT of cpu cycles
  that can go into these 5 miliseconds.
  
  A reasonable rule of thumb is to not put inline at functions that have more
  than 3 lines of code in them. An exception to this rule are the cases where
  a parameter is known to be a compiletime constant, and as a result of this
  constantness you *know* the compiler will be able to optimize most of your
  function away at compile time. For a good example of this later case, see
  the kmalloc() inline function.
  
  Often people argue that adding inline to functions that are static and used
  only once is always a win since there is no space tradeoff. While this is
  technically correct, gcc is capable of inlining these automatically without
  help, and the maintenance issue of removing the inline when a second user
  appears outweighs the potential value of the hint that tells gcc to do
  something it would have done anyway.
c16a02d6f   Alan Stern   [PATCH] Add secti...
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
  		Chapter 16: Function return values and names
  
  Functions can return values of many different kinds, and one of the
  most common is a value indicating whether the function succeeded or
  failed.  Such a value can be represented as an error-code integer
  (-Exxx = failure, 0 = success) or a "succeeded" boolean (0 = failure,
  non-zero = success).
  
  Mixing up these two sorts of representations is a fertile source of
  difficult-to-find bugs.  If the C language included a strong distinction
  between integers and booleans then the compiler would find these mistakes
  for us... but it doesn't.  To help prevent such bugs, always follow this
  convention:
  
  	If the name of a function is an action or an imperative command,
  	the function should return an error-code integer.  If the name
  	is a predicate, the function should return a "succeeded" boolean.
  
  For example, "add work" is a command, and the add_work() function returns 0
  for success or -EBUSY for failure.  In the same way, "PCI device present" is
  a predicate, and the pci_dev_present() function returns 1 if it succeeds in
  finding a matching device or 0 if it doesn't.
  
  All EXPORTed functions must respect this convention, and so should all
  public functions.  Private (static) functions need not, but it is
  recommended that they do.
  
  Functions whose return value is the actual result of a computation, rather
  than an indication of whether the computation succeeded, are not subject to
  this rule.  Generally they indicate failure by returning some out-of-range
  result.  Typical examples would be functions that return pointers; they use
  NULL or the ERR_PTR mechanism to report failure.
58637ec90   Robert P. J. Day   [PATCH] Add a new...
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
  		Chapter 17:  Don't re-invent the kernel macros
  
  The header file include/linux/kernel.h contains a number of macros that
  you should use, rather than explicitly coding some variant of them yourself.
  For example, if you need to calculate the length of an array, take advantage
  of the macro
  
    #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
  
  Similarly, if you need to calculate the size of some structure member, use
  
    #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
  
  There are also min() and max() macros that do strict type checking if you
  need them.  Feel free to peruse that header file to see what else is already
  defined that you shouldn't reproduce in your code.
4e7bd6631   Josh Triplett   CodingStyle: add ...
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
  		Chapter 18:  Editor modelines and other cruft
  
  Some editors can interpret configuration information embedded in source files,
  indicated with special markers.  For example, emacs interprets lines marked
  like this:
  
  -*- mode: c -*-
  
  Or like this:
  
  /*
  Local Variables:
  compile-command: "gcc -DMAGIC_DEBUG_FLAG foo.c"
  End:
  */
  
  Vim interprets markers that look like this:
  
  /* vim:set sw=8 noet */
  
  Do not include any of these in source files.  People have their own personal
  editor configurations, and your source files should not override them.  This
  includes markers for indentation and mode configuration.  People may use their
  own custom mode, or may have some other magic method for making indentation
  work correctly.
a771f2b82   Arjan van de Ven   [PATCH] Add a sec...
750

226a6b84a   Randy Dunlap   [PATCH] CodingSty...
751
  		Appendix I: References
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
752
753
754
755
756
757
758
759
760
761
762
763
764
765
  
  The C Programming Language, Second Edition
  by Brian W. Kernighan and Dennis M. Ritchie.
  Prentice Hall, Inc., 1988.
  ISBN 0-13-110362-8 (paperback), 0-13-110370-9 (hardback).
  URL: http://cm.bell-labs.com/cm/cs/cbook/
  
  The Practice of Programming
  by Brian W. Kernighan and Rob Pike.
  Addison-Wesley, Inc., 1999.
  ISBN 0-201-61586-X.
  URL: http://cm.bell-labs.com/cm/cs/tpop/
  
  GNU manuals - where in compliance with K&R and this text - for cpp, gcc,
5b0ed2c64   Xose Vazquez Perez   [PATCH] docs: upd...
766
  gcc internals and indent, all available from http://www.gnu.org/manual/
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
767
768
  
  WG14 is the international standardization working group for the programming
5b0ed2c64   Xose Vazquez Perez   [PATCH] docs: upd...
769
770
771
772
  language C, URL: http://www.open-std.org/JTC1/SC22/WG14/
  
  Kernel CodingStyle, by greg@kroah.com at OLS 2002:
  http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
773
774
  
  --
6b09448ab   David Brownell   dev_vdbg() docume...
775
  Last updated on 2007-July-13.