Blame view
kernel/posix-timers.c
29.2 KB
1da177e4c
|
1 |
/* |
f30c22695
|
2 |
* linux/kernel/posix-timers.c |
1da177e4c
|
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
* * * 2002-10-15 Posix Clocks & timers * by George Anzinger george@mvista.com * * Copyright (C) 2002 2003 by MontaVista Software. * * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. * Copyright (C) 2004 Boris Hu * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA */ /* These are all the functions necessary to implement * POSIX clocks & timers */ #include <linux/mm.h> |
1da177e4c
|
34 35 36 |
#include <linux/interrupt.h> #include <linux/slab.h> #include <linux/time.h> |
97d1f15b7
|
37 |
#include <linux/mutex.h> |
1da177e4c
|
38 39 |
#include <asm/uaccess.h> |
1da177e4c
|
40 41 42 43 44 45 46 47 48 |
#include <linux/list.h> #include <linux/init.h> #include <linux/compiler.h> #include <linux/idr.h> #include <linux/posix-timers.h> #include <linux/syscalls.h> #include <linux/wait.h> #include <linux/workqueue.h> #include <linux/module.h> |
1da177e4c
|
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
/* * Management arrays for POSIX timers. Timers are kept in slab memory * Timer ids are allocated by an external routine that keeps track of the * id and the timer. The external interface is: * * void *idr_find(struct idr *idp, int id); to find timer_id <id> * int idr_get_new(struct idr *idp, void *ptr); to get a new id and * related it to <ptr> * void idr_remove(struct idr *idp, int id); to release <id> * void idr_init(struct idr *idp); to initialize <idp> * which we supply. * The idr_get_new *may* call slab for more memory so it must not be * called under a spin lock. Likewise idr_remore may release memory * (but it may be ok to do this under a lock...). * idr_find is just a memory look up and is quite fast. A -1 return * indicates that the requested id does not exist. */ /* * Lets keep our timers in a slab cache :-) */ |
e18b890bb
|
70 |
static struct kmem_cache *posix_timers_cache; |
1da177e4c
|
71 72 73 74 |
static struct idr posix_timers_id; static DEFINE_SPINLOCK(idr_lock); /* |
1da177e4c
|
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
* we assume that the new SIGEV_THREAD_ID shares no bits with the other * SIGEV values. Here we put out an error if this assumption fails. */ #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" #endif /* * The timer ID is turned into a timer address by idr_find(). * Verifying a valid ID consists of: * * a) checking that idr_find() returns other than -1. * b) checking that the timer id matches the one in the timer itself. * c) that the timer owner is in the callers thread group. */ /* * CLOCKs: The POSIX standard calls for a couple of clocks and allows us * to implement others. This structure defines the various * clocks and allows the possibility of adding others. We * provide an interface to add clocks to the table and expect * the "arch" code to add at least one clock that is high * resolution. Here we define the standard CLOCK_REALTIME as a * 1/HZ resolution clock. * * RESOLUTION: Clock resolution is used to round up timer and interval * times, NOT to report clock times, which are reported with as * much resolution as the system can muster. In some cases this * resolution may depend on the underlying clock hardware and * may not be quantifiable until run time, and only then is the * necessary code is written. The standard says we should say * something about this issue in the documentation... * * FUNCTIONS: The CLOCKs structure defines possible functions to handle * various clock functions. For clocks that use the standard * system timer code these entries should be NULL. This will * allow dispatch without the overhead of indirect function * calls. CLOCKS that depend on other sources (e.g. WWV or GPS) * must supply functions here, even if the function just returns * ENOSYS. The standard POSIX timer management code assumes the * following: 1.) The k_itimer struct (sched.h) is used for the |
27af4245b
|
118 |
* timer. 2.) The list, it_lock, it_clock, it_id and it_pid |
1da177e4c
|
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
* fields are not modified by timer code. * * At this time all functions EXCEPT clock_nanosleep can be * redirected by the CLOCKS structure. Clock_nanosleep is in * there, but the code ignores it. * * Permissions: It is assumed that the clock_settime() function defined * for each clock will take care of permission checks. Some * clocks may be set able by any user (i.e. local process * clocks) others not. Currently the only set able clock we * have is CLOCK_REALTIME and its high res counter part, both of * which we beg off on and pass to do_sys_settimeofday(). */ static struct k_clock posix_clocks[MAX_CLOCKS]; |
becf8b5d0
|
134 |
|
1da177e4c
|
135 |
/* |
becf8b5d0
|
136 |
* These ones are defined below. |
1da177e4c
|
137 |
*/ |
becf8b5d0
|
138 139 140 141 142 143 |
static int common_nsleep(const clockid_t, int flags, struct timespec *t, struct timespec __user *rmtp); static void common_timer_get(struct k_itimer *, struct itimerspec *); static int common_timer_set(struct k_itimer *, int, struct itimerspec *, struct itimerspec *); static int common_timer_del(struct k_itimer *timer); |
1da177e4c
|
144 |
|
c9cb2e3d7
|
145 |
static enum hrtimer_restart posix_timer_fn(struct hrtimer *data); |
1da177e4c
|
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags); static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) { spin_unlock_irqrestore(&timr->it_lock, flags); } /* * Call the k_clock hook function if non-null, or the default function. */ #define CLOCK_DISPATCH(clock, call, arglist) \ ((clock) < 0 ? posix_cpu_##call arglist : \ (posix_clocks[clock].call != NULL \ ? (*posix_clocks[clock].call) arglist : common_##call arglist)) /* * Default clock hook functions when the struct k_clock passed * to register_posix_clock leaves a function pointer null. * * The function common_CALL is the default implementation for * the function pointer CALL in struct k_clock. */ |
a924b04dd
|
169 |
static inline int common_clock_getres(const clockid_t which_clock, |
1da177e4c
|
170 171 172 173 174 175 |
struct timespec *tp) { tp->tv_sec = 0; tp->tv_nsec = posix_clocks[which_clock].res; return 0; } |
becf8b5d0
|
176 177 178 179 |
/* * Get real time for posix timers */ static int common_clock_get(clockid_t which_clock, struct timespec *tp) |
1da177e4c
|
180 |
{ |
becf8b5d0
|
181 |
ktime_get_real_ts(tp); |
1da177e4c
|
182 183 |
return 0; } |
a924b04dd
|
184 185 |
static inline int common_clock_set(const clockid_t which_clock, struct timespec *tp) |
1da177e4c
|
186 187 188 |
{ return do_sys_settimeofday(tp, NULL); } |
858119e15
|
189 |
static int common_timer_create(struct k_itimer *new_timer) |
1da177e4c
|
190 |
{ |
7978672c4
|
191 |
hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); |
1da177e4c
|
192 193 |
return 0; } |
3d44cc3e0
|
194 195 196 197 |
static int no_timer_create(struct k_itimer *new_timer) { return -EOPNOTSUPP; } |
70d715fd0
|
198 199 200 201 202 |
static int no_nsleep(const clockid_t which_clock, int flags, struct timespec *tsave, struct timespec __user *rmtp) { return -EOPNOTSUPP; } |
1da177e4c
|
203 |
/* |
becf8b5d0
|
204 |
* Return nonzero if we know a priori this clockid_t value is bogus. |
1da177e4c
|
205 |
*/ |
a924b04dd
|
206 |
static inline int invalid_clockid(const clockid_t which_clock) |
1da177e4c
|
207 208 209 210 211 212 213 |
{ if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */ return 0; if ((unsigned) which_clock >= MAX_CLOCKS) return 1; if (posix_clocks[which_clock].clock_getres != NULL) return 0; |
1da177e4c
|
214 215 |
if (posix_clocks[which_clock].res != 0) return 0; |
1da177e4c
|
216 217 |
return 1; } |
becf8b5d0
|
218 219 220 221 222 223 224 225 |
/* * Get monotonic time for posix timers */ static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp) { ktime_get_ts(tp); return 0; } |
1da177e4c
|
226 227 |
/* |
2d42244ae
|
228 229 230 231 232 233 234 |
* Get monotonic time for posix timers */ static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp) { getrawmonotonic(tp); return 0; } |
da15cfdae
|
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp) { *tp = current_kernel_time(); return 0; } static int posix_get_monotonic_coarse(clockid_t which_clock, struct timespec *tp) { *tp = get_monotonic_coarse(); return 0; } int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp) { *tp = ktime_to_timespec(KTIME_LOW_RES); return 0; } |
2d42244ae
|
254 |
/* |
1da177e4c
|
255 256 257 258 |
* Initialize everything, well, just everything in Posix clocks/timers ;) */ static __init int init_posix_timers(void) { |
becf8b5d0
|
259 260 |
struct k_clock clock_realtime = { .clock_getres = hrtimer_get_res, |
1da177e4c
|
261 |
}; |
becf8b5d0
|
262 263 264 265 |
struct k_clock clock_monotonic = { .clock_getres = hrtimer_get_res, .clock_get = posix_ktime_get_ts, .clock_set = do_posix_clock_nosettime, |
1da177e4c
|
266 |
}; |
2d42244ae
|
267 268 269 270 |
struct k_clock clock_monotonic_raw = { .clock_getres = hrtimer_get_res, .clock_get = posix_get_monotonic_raw, .clock_set = do_posix_clock_nosettime, |
3d44cc3e0
|
271 |
.timer_create = no_timer_create, |
70d715fd0
|
272 |
.nsleep = no_nsleep, |
2d42244ae
|
273 |
}; |
da15cfdae
|
274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
struct k_clock clock_realtime_coarse = { .clock_getres = posix_get_coarse_res, .clock_get = posix_get_realtime_coarse, .clock_set = do_posix_clock_nosettime, .timer_create = no_timer_create, .nsleep = no_nsleep, }; struct k_clock clock_monotonic_coarse = { .clock_getres = posix_get_coarse_res, .clock_get = posix_get_monotonic_coarse, .clock_set = do_posix_clock_nosettime, .timer_create = no_timer_create, .nsleep = no_nsleep, }; |
1da177e4c
|
288 289 290 |
register_posix_clock(CLOCK_REALTIME, &clock_realtime); register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic); |
2d42244ae
|
291 |
register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw); |
da15cfdae
|
292 293 |
register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse); register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse); |
1da177e4c
|
294 295 |
posix_timers_cache = kmem_cache_create("posix_timers_cache", |
040b5c6f9
|
296 297 |
sizeof (struct k_itimer), 0, SLAB_PANIC, NULL); |
1da177e4c
|
298 299 300 301 302 |
idr_init(&posix_timers_id); return 0; } __initcall(init_posix_timers); |
1da177e4c
|
303 304 |
static void schedule_next_timer(struct k_itimer *timr) { |
44f214755
|
305 |
struct hrtimer *timer = &timr->it.real.timer; |
becf8b5d0
|
306 |
if (timr->it.real.interval.tv64 == 0) |
1da177e4c
|
307 |
return; |
4d672e7ac
|
308 309 310 |
timr->it_overrun += (unsigned int) hrtimer_forward(timer, timer->base->get_time(), timr->it.real.interval); |
44f214755
|
311 |
|
1da177e4c
|
312 313 314 |
timr->it_overrun_last = timr->it_overrun; timr->it_overrun = -1; ++timr->it_requeue_pending; |
44f214755
|
315 |
hrtimer_restart(timer); |
1da177e4c
|
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
} /* * This function is exported for use by the signal deliver code. It is * called just prior to the info block being released and passes that * block to us. It's function is to update the overrun entry AND to * restart the timer. It should only be called if the timer is to be * restarted (i.e. we have flagged this in the sys_private entry of the * info block). * * To protect aginst the timer going away while the interrupt is queued, * we require that the it_requeue_pending flag be set. */ void do_schedule_next_timer(struct siginfo *info) { struct k_itimer *timr; unsigned long flags; timr = lock_timer(info->si_tid, &flags); |
becf8b5d0
|
335 336 337 338 339 |
if (timr && timr->it_requeue_pending == info->si_sys_private) { if (timr->it_clock < 0) posix_cpu_timer_schedule(timr); else schedule_next_timer(timr); |
1da177e4c
|
340 |
|
54da11749
|
341 |
info->si_overrun += timr->it_overrun_last; |
becf8b5d0
|
342 |
} |
b6557fbca
|
343 344 |
if (timr) unlock_timer(timr, flags); |
1da177e4c
|
345 |
} |
ba661292a
|
346 |
int posix_timer_event(struct k_itimer *timr, int si_private) |
1da177e4c
|
347 |
{ |
27af4245b
|
348 349 |
struct task_struct *task; int shared, ret = -1; |
ba661292a
|
350 351 352 353 354 355 356 357 358 359 360 |
/* * FIXME: if ->sigq is queued we can race with * dequeue_signal()->do_schedule_next_timer(). * * If dequeue_signal() sees the "right" value of * si_sys_private it calls do_schedule_next_timer(). * We re-queue ->sigq and drop ->it_lock(). * do_schedule_next_timer() locks the timer * and re-schedules it while ->sigq is pending. * Not really bad, but not that we want. */ |
1da177e4c
|
361 |
timr->sigq->info.si_sys_private = si_private; |
1da177e4c
|
362 |
|
27af4245b
|
363 364 365 366 367 368 369 |
rcu_read_lock(); task = pid_task(timr->it_pid, PIDTYPE_PID); if (task) { shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID); ret = send_sigqueue(timr->sigq, task, shared); } rcu_read_unlock(); |
4aa736117
|
370 371 |
/* If we failed to send the signal the timer stops. */ return ret > 0; |
1da177e4c
|
372 373 374 375 376 377 378 379 380 381 |
} EXPORT_SYMBOL_GPL(posix_timer_event); /* * This function gets called when a POSIX.1b interval timer expires. It * is used as a callback from the kernel internal timer. The * run_timer_list code ALWAYS calls with interrupts on. * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. */ |
c9cb2e3d7
|
382 |
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) |
1da177e4c
|
383 |
{ |
05cfb614d
|
384 |
struct k_itimer *timr; |
1da177e4c
|
385 |
unsigned long flags; |
becf8b5d0
|
386 |
int si_private = 0; |
c9cb2e3d7
|
387 |
enum hrtimer_restart ret = HRTIMER_NORESTART; |
1da177e4c
|
388 |
|
05cfb614d
|
389 |
timr = container_of(timer, struct k_itimer, it.real.timer); |
1da177e4c
|
390 |
spin_lock_irqsave(&timr->it_lock, flags); |
1da177e4c
|
391 |
|
becf8b5d0
|
392 393 |
if (timr->it.real.interval.tv64 != 0) si_private = ++timr->it_requeue_pending; |
1da177e4c
|
394 |
|
becf8b5d0
|
395 396 397 398 399 400 401 |
if (posix_timer_event(timr, si_private)) { /* * signal was not sent because of sig_ignor * we will not get a call back to restart it AND * it should be restarted. */ if (timr->it.real.interval.tv64 != 0) { |
58229a189
|
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
ktime_t now = hrtimer_cb_get_time(timer); /* * FIXME: What we really want, is to stop this * timer completely and restart it in case the * SIG_IGN is removed. This is a non trivial * change which involves sighand locking * (sigh !), which we don't want to do late in * the release cycle. * * For now we just let timers with an interval * less than a jiffie expire every jiffie to * avoid softirq starvation in case of SIG_IGN * and a very small interval, which would put * the timer right back on the softirq pending * list. By moving now ahead of time we trick * hrtimer_forward() to expire the timer * later, while we still maintain the overrun * accuracy, but have some inconsistency in * the timer_gettime() case. This is at least * better than a starved softirq. A more * complex fix which solves also another related * inconsistency is already in the pipeline. */ #ifdef CONFIG_HIGH_RES_TIMERS { ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ); if (timr->it.real.interval.tv64 < kj.tv64) now = ktime_add(now, kj); } #endif |
4d672e7ac
|
434 |
timr->it_overrun += (unsigned int) |
58229a189
|
435 |
hrtimer_forward(timer, now, |
becf8b5d0
|
436 437 |
timr->it.real.interval); ret = HRTIMER_RESTART; |
a0a0c28c1
|
438 |
++timr->it_requeue_pending; |
1da177e4c
|
439 |
} |
1da177e4c
|
440 |
} |
1da177e4c
|
441 |
|
becf8b5d0
|
442 443 444 |
unlock_timer(timr, flags); return ret; } |
1da177e4c
|
445 |
|
27af4245b
|
446 |
static struct pid *good_sigevent(sigevent_t * event) |
1da177e4c
|
447 448 449 450 |
{ struct task_struct *rtn = current->group_leader; if ((event->sigev_notify & SIGEV_THREAD_ID ) && |
8dc86af00
|
451 |
(!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) || |
bac0abd61
|
452 |
!same_thread_group(rtn, current) || |
1da177e4c
|
453 454 455 456 457 458 |
(event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL)) return NULL; if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) && ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX))) return NULL; |
27af4245b
|
459 |
return task_pid(rtn); |
1da177e4c
|
460 |
} |
a924b04dd
|
461 |
void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock) |
1da177e4c
|
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
{ if ((unsigned) clock_id >= MAX_CLOCKS) { printk("POSIX clock register failed for clock_id %d ", clock_id); return; } posix_clocks[clock_id] = *new_clock; } EXPORT_SYMBOL_GPL(register_posix_clock); static struct k_itimer * alloc_posix_timer(void) { struct k_itimer *tmr; |
c37622296
|
477 |
tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); |
1da177e4c
|
478 479 |
if (!tmr) return tmr; |
1da177e4c
|
480 481 |
if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { kmem_cache_free(posix_timers_cache, tmr); |
aa94fbd5c
|
482 |
return NULL; |
1da177e4c
|
483 |
} |
ba661292a
|
484 |
memset(&tmr->sigq->info, 0, sizeof(siginfo_t)); |
1da177e4c
|
485 486 487 488 489 490 491 492 493 494 495 496 497 |
return tmr; } #define IT_ID_SET 1 #define IT_ID_NOT_SET 0 static void release_posix_timer(struct k_itimer *tmr, int it_id_set) { if (it_id_set) { unsigned long flags; spin_lock_irqsave(&idr_lock, flags); idr_remove(&posix_timers_id, tmr->it_id); spin_unlock_irqrestore(&idr_lock, flags); } |
899921025
|
498 |
put_pid(tmr->it_pid); |
1da177e4c
|
499 |
sigqueue_free(tmr->sigq); |
1da177e4c
|
500 501 502 503 |
kmem_cache_free(posix_timers_cache, tmr); } /* Create a POSIX.1b interval timer. */ |
362e9c07c
|
504 505 506 |
SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, struct sigevent __user *, timer_event_spec, timer_t __user *, created_timer_id) |
1da177e4c
|
507 |
{ |
2cd499e38
|
508 |
struct k_itimer *new_timer; |
ef864c958
|
509 |
int error, new_timer_id; |
1da177e4c
|
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
sigevent_t event; int it_id_set = IT_ID_NOT_SET; if (invalid_clockid(which_clock)) return -EINVAL; new_timer = alloc_posix_timer(); if (unlikely(!new_timer)) return -EAGAIN; spin_lock_init(&new_timer->it_lock); retry: if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) { error = -EAGAIN; goto out; } spin_lock_irq(&idr_lock); |
5a51b713c
|
527 |
error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id); |
1da177e4c
|
528 |
spin_unlock_irq(&idr_lock); |
ef864c958
|
529 530 531 |
if (error) { if (error == -EAGAIN) goto retry; |
1da177e4c
|
532 |
/* |
0b0a3e7b1
|
533 |
* Weird looking, but we return EAGAIN if the IDR is |
1da177e4c
|
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
* full (proper POSIX return value for this) */ error = -EAGAIN; goto out; } it_id_set = IT_ID_SET; new_timer->it_id = (timer_t) new_timer_id; new_timer->it_clock = which_clock; new_timer->it_overrun = -1; error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer)); if (error) goto out; /* * return the timer_id now. The next step is hard to * back out if there is an error. */ if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) { error = -EFAULT; goto out; } if (timer_event_spec) { if (copy_from_user(&event, timer_event_spec, sizeof (event))) { error = -EFAULT; goto out; } |
36b2f0460
|
562 |
rcu_read_lock(); |
899921025
|
563 |
new_timer->it_pid = get_pid(good_sigevent(&event)); |
36b2f0460
|
564 |
rcu_read_unlock(); |
899921025
|
565 |
if (!new_timer->it_pid) { |
1da177e4c
|
566 567 568 569 |
error = -EINVAL; goto out; } } else { |
5a9fa7307
|
570 571 572 |
event.sigev_notify = SIGEV_SIGNAL; event.sigev_signo = SIGALRM; event.sigev_value.sival_int = new_timer->it_id; |
899921025
|
573 |
new_timer->it_pid = get_pid(task_tgid(current)); |
1da177e4c
|
574 |
} |
5a9fa7307
|
575 576 577 |
new_timer->it_sigev_notify = event.sigev_notify; new_timer->sigq->info.si_signo = event.sigev_signo; new_timer->sigq->info.si_value = event.sigev_value; |
717835d94
|
578 |
new_timer->sigq->info.si_tid = new_timer->it_id; |
5a9fa7307
|
579 |
new_timer->sigq->info.si_code = SI_TIMER; |
717835d94
|
580 |
|
36b2f0460
|
581 |
spin_lock_irq(¤t->sighand->siglock); |
27af4245b
|
582 |
new_timer->it_signal = current->signal; |
36b2f0460
|
583 584 |
list_add(&new_timer->list, ¤t->signal->posix_timers); spin_unlock_irq(¤t->sighand->siglock); |
ef864c958
|
585 586 |
return 0; |
1da177e4c
|
587 588 589 590 591 592 |
/* * In the case of the timer belonging to another task, after * the task is unlocked, the timer is owned by the other task * and may cease to exist at any time. Don't use or modify * new_timer after the unlock call. */ |
1da177e4c
|
593 |
out: |
ef864c958
|
594 |
release_posix_timer(new_timer, it_id_set); |
1da177e4c
|
595 596 597 598 |
return error; } /* |
1da177e4c
|
599 600 601 602 603 604 |
* Locking issues: We need to protect the result of the id look up until * we get the timer locked down so it is not deleted under us. The * removal is done under the idr spinlock so we use that here to bridge * the find to the timer lock. To avoid a dead lock, the timer id MUST * be release with out holding the timer lock. */ |
31d928456
|
605 |
static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags) |
1da177e4c
|
606 607 608 609 610 611 612 |
{ struct k_itimer *timr; /* * Watch out here. We do a irqsave on the idr_lock and pass the * flags part over to the timer lock. Must not let interrupts in * while we are moving the lock. */ |
1da177e4c
|
613 |
spin_lock_irqsave(&idr_lock, *flags); |
31d928456
|
614 |
timr = idr_find(&posix_timers_id, (int)timer_id); |
1da177e4c
|
615 616 |
if (timr) { spin_lock(&timr->it_lock); |
899921025
|
617 |
if (timr->it_signal == current->signal) { |
179394af7
|
618 |
spin_unlock(&idr_lock); |
31d928456
|
619 620 621 622 623 |
return timr; } spin_unlock(&timr->it_lock); } spin_unlock_irqrestore(&idr_lock, *flags); |
1da177e4c
|
624 |
|
31d928456
|
625 |
return NULL; |
1da177e4c
|
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
} /* * Get the time remaining on a POSIX.1b interval timer. This function * is ALWAYS called with spin_lock_irq on the timer, thus it must not * mess with irq. * * We have a couple of messes to clean up here. First there is the case * of a timer that has a requeue pending. These timers should appear to * be in the timer list with an expiry as if we were to requeue them * now. * * The second issue is the SIGEV_NONE timer which may be active but is * not really ever put in the timer list (to save system resources). * This timer may be expired, and if so, we will do it here. Otherwise * it is the same as a requeue pending timer WRT to what we should * report. */ static void common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) { |
3b98a5328
|
647 |
ktime_t now, remaining, iv; |
becf8b5d0
|
648 |
struct hrtimer *timer = &timr->it.real.timer; |
1da177e4c
|
649 |
|
becf8b5d0
|
650 |
memset(cur_setting, 0, sizeof(struct itimerspec)); |
becf8b5d0
|
651 |
|
3b98a5328
|
652 |
iv = timr->it.real.interval; |
becf8b5d0
|
653 |
/* interval timer ? */ |
3b98a5328
|
654 655 656 657 |
if (iv.tv64) cur_setting->it_interval = ktime_to_timespec(iv); else if (!hrtimer_active(timer) && (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) |
becf8b5d0
|
658 |
return; |
3b98a5328
|
659 660 |
now = timer->base->get_time(); |
becf8b5d0
|
661 |
/* |
3b98a5328
|
662 663 664 |
* When a requeue is pending or this is a SIGEV_NONE * timer move the expiry time forward by intervals, so * expiry is > now. |
becf8b5d0
|
665 |
*/ |
3b98a5328
|
666 667 |
if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING || (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) |
4d672e7ac
|
668 |
timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv); |
3b98a5328
|
669 |
|
cc584b213
|
670 |
remaining = ktime_sub(hrtimer_get_expires(timer), now); |
becf8b5d0
|
671 |
/* Return 0 only, when the timer is expired and not pending */ |
3b98a5328
|
672 673 674 675 676 677 678 679 |
if (remaining.tv64 <= 0) { /* * A single shot SIGEV_NONE timer must return 0, when * it is expired ! */ if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) cur_setting->it_value.tv_nsec = 1; } else |
becf8b5d0
|
680 |
cur_setting->it_value = ktime_to_timespec(remaining); |
1da177e4c
|
681 682 683 |
} /* Get the time remaining on a POSIX.1b interval timer. */ |
362e9c07c
|
684 685 |
SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, struct itimerspec __user *, setting) |
1da177e4c
|
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 |
{ struct k_itimer *timr; struct itimerspec cur_setting; unsigned long flags; timr = lock_timer(timer_id, &flags); if (!timr) return -EINVAL; CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting)); unlock_timer(timr, flags); if (copy_to_user(setting, &cur_setting, sizeof (cur_setting))) return -EFAULT; return 0; } |
becf8b5d0
|
704 |
|
1da177e4c
|
705 706 707 708 709 710 711 712 713 |
/* * Get the number of overruns of a POSIX.1b interval timer. This is to * be the overrun of the timer last delivered. At the same time we are * accumulating overruns on the next timer. The overrun is frozen when * the signal is delivered, either at the notify time (if the info block * is not queued) or at the actual delivery time (as we are informed by * the call back to do_schedule_next_timer(). So all we need to do is * to pick up the frozen overrun. */ |
362e9c07c
|
714 |
SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) |
1da177e4c
|
715 716 717 |
{ struct k_itimer *timr; int overrun; |
5ba253313
|
718 |
unsigned long flags; |
1da177e4c
|
719 720 721 722 723 724 725 726 727 728 |
timr = lock_timer(timer_id, &flags); if (!timr) return -EINVAL; overrun = timr->it_overrun_last; unlock_timer(timr, flags); return overrun; } |
1da177e4c
|
729 730 731 |
/* Set a POSIX.1b interval timer. */ /* timr->it_lock is taken. */ |
858119e15
|
732 |
static int |
1da177e4c
|
733 734 735 |
common_timer_set(struct k_itimer *timr, int flags, struct itimerspec *new_setting, struct itimerspec *old_setting) { |
becf8b5d0
|
736 |
struct hrtimer *timer = &timr->it.real.timer; |
7978672c4
|
737 |
enum hrtimer_mode mode; |
1da177e4c
|
738 739 740 741 742 |
if (old_setting) common_timer_get(timr, old_setting); /* disable the timer */ |
becf8b5d0
|
743 |
timr->it.real.interval.tv64 = 0; |
1da177e4c
|
744 745 746 747 |
/* * careful here. If smp we could be in the "fire" routine which will * be spinning as we hold the lock. But this is ONLY an SMP issue. */ |
becf8b5d0
|
748 |
if (hrtimer_try_to_cancel(timer) < 0) |
1da177e4c
|
749 |
return TIMER_RETRY; |
1da177e4c
|
750 751 752 753 |
timr->it_requeue_pending = (timr->it_requeue_pending + 2) & ~REQUEUE_PENDING; timr->it_overrun_last = 0; |
1da177e4c
|
754 |
|
becf8b5d0
|
755 756 757 |
/* switch off the timer when it_value is zero */ if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) return 0; |
1da177e4c
|
758 |
|
c9cb2e3d7
|
759 |
mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; |
7978672c4
|
760 |
hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); |
7978672c4
|
761 |
timr->it.real.timer.function = posix_timer_fn; |
becf8b5d0
|
762 |
|
cc584b213
|
763 |
hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value)); |
becf8b5d0
|
764 765 766 767 768 |
/* Convert interval */ timr->it.real.interval = timespec_to_ktime(new_setting->it_interval); /* SIGEV_NONE timers are not queued ! See common_timer_get */ |
952bbc87f
|
769 770 |
if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) { /* Setup correct expiry time for relative timers */ |
5a7780e72
|
771 |
if (mode == HRTIMER_MODE_REL) { |
cc584b213
|
772 |
hrtimer_add_expires(timer, timer->base->get_time()); |
5a7780e72
|
773 |
} |
becf8b5d0
|
774 |
return 0; |
952bbc87f
|
775 |
} |
becf8b5d0
|
776 |
|
cc584b213
|
777 |
hrtimer_start_expires(timer, mode); |
1da177e4c
|
778 779 780 781 |
return 0; } /* Set a POSIX.1b interval timer */ |
362e9c07c
|
782 783 784 |
SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, const struct itimerspec __user *, new_setting, struct itimerspec __user *, old_setting) |
1da177e4c
|
785 786 787 788 |
{ struct k_itimer *timr; struct itimerspec new_spec, old_spec; int error = 0; |
5ba253313
|
789 |
unsigned long flag; |
1da177e4c
|
790 791 792 793 794 795 796 |
struct itimerspec *rtn = old_setting ? &old_spec : NULL; if (!new_setting) return -EINVAL; if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) return -EFAULT; |
becf8b5d0
|
797 798 |
if (!timespec_valid(&new_spec.it_interval) || !timespec_valid(&new_spec.it_value)) |
1da177e4c
|
799 800 801 802 803 804 805 806 807 808 809 810 811 812 |
return -EINVAL; retry: timr = lock_timer(timer_id, &flag); if (!timr) return -EINVAL; error = CLOCK_DISPATCH(timr->it_clock, timer_set, (timr, flags, &new_spec, rtn)); unlock_timer(timr, flag); if (error == TIMER_RETRY) { rtn = NULL; // We already got the old time... goto retry; } |
becf8b5d0
|
813 814 |
if (old_setting && !error && copy_to_user(old_setting, &old_spec, sizeof (old_spec))) |
1da177e4c
|
815 816 817 818 819 820 821 |
error = -EFAULT; return error; } static inline int common_timer_del(struct k_itimer *timer) { |
becf8b5d0
|
822 |
timer->it.real.interval.tv64 = 0; |
f972be33c
|
823 |
|
becf8b5d0
|
824 |
if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0) |
1da177e4c
|
825 |
return TIMER_RETRY; |
1da177e4c
|
826 827 828 829 830 831 832 833 834 |
return 0; } static inline int timer_delete_hook(struct k_itimer *timer) { return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer)); } /* Delete a POSIX.1b interval timer. */ |
362e9c07c
|
835 |
SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) |
1da177e4c
|
836 837 |
{ struct k_itimer *timer; |
5ba253313
|
838 |
unsigned long flags; |
1da177e4c
|
839 |
|
1da177e4c
|
840 |
retry_delete: |
1da177e4c
|
841 842 843 |
timer = lock_timer(timer_id, &flags); if (!timer) return -EINVAL; |
becf8b5d0
|
844 |
if (timer_delete_hook(timer) == TIMER_RETRY) { |
1da177e4c
|
845 846 847 |
unlock_timer(timer, flags); goto retry_delete; } |
becf8b5d0
|
848 |
|
1da177e4c
|
849 850 851 852 853 854 855 |
spin_lock(¤t->sighand->siglock); list_del(&timer->list); spin_unlock(¤t->sighand->siglock); /* * This keeps any tasks waiting on the spin lock from thinking * they got something (see the lock code above). */ |
899921025
|
856 |
timer->it_signal = NULL; |
4b7a13042
|
857 |
|
1da177e4c
|
858 859 860 861 |
unlock_timer(timer, flags); release_posix_timer(timer, IT_ID_SET); return 0; } |
becf8b5d0
|
862 |
|
1da177e4c
|
863 864 865 |
/* * return timer owned by the process, used by exit_itimers */ |
858119e15
|
866 |
static void itimer_delete(struct k_itimer *timer) |
1da177e4c
|
867 868 |
{ unsigned long flags; |
1da177e4c
|
869 |
retry_delete: |
1da177e4c
|
870 |
spin_lock_irqsave(&timer->it_lock, flags); |
becf8b5d0
|
871 |
if (timer_delete_hook(timer) == TIMER_RETRY) { |
1da177e4c
|
872 873 874 |
unlock_timer(timer, flags); goto retry_delete; } |
1da177e4c
|
875 876 877 878 879 |
list_del(&timer->list); /* * This keeps any tasks waiting on the spin lock from thinking * they got something (see the lock code above). */ |
899921025
|
880 |
timer->it_signal = NULL; |
4b7a13042
|
881 |
|
1da177e4c
|
882 883 884 885 886 |
unlock_timer(timer, flags); release_posix_timer(timer, IT_ID_SET); } /* |
25f407f0b
|
887 |
* This is called by do_exit or de_thread, only when there are no more |
1da177e4c
|
888 889 890 891 892 893 894 895 896 897 898 |
* references to the shared signal_struct. */ void exit_itimers(struct signal_struct *sig) { struct k_itimer *tmr; while (!list_empty(&sig->posix_timers)) { tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); itimer_delete(tmr); } } |
becf8b5d0
|
899 |
/* Not available / possible... functions */ |
a924b04dd
|
900 |
int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp) |
1da177e4c
|
901 902 903 904 |
{ return -EINVAL; } EXPORT_SYMBOL_GPL(do_posix_clock_nosettime); |
a924b04dd
|
905 |
int do_posix_clock_nonanosleep(const clockid_t clock, int flags, |
97735f25d
|
906 |
struct timespec *t, struct timespec __user *r) |
1da177e4c
|
907 908 909 910 911 912 913 914 |
{ #ifndef ENOTSUP return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */ #else /* parisc does define it separately. */ return -ENOTSUP; #endif } EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep); |
362e9c07c
|
915 916 |
SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, const struct timespec __user *, tp) |
1da177e4c
|
917 918 919 920 921 922 923 924 925 926 |
{ struct timespec new_tp; if (invalid_clockid(which_clock)) return -EINVAL; if (copy_from_user(&new_tp, tp, sizeof (*tp))) return -EFAULT; return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp)); } |
362e9c07c
|
927 928 |
SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, struct timespec __user *,tp) |
1da177e4c
|
929 930 931 932 933 934 935 936 937 938 939 940 941 942 |
{ struct timespec kernel_tp; int error; if (invalid_clockid(which_clock)) return -EINVAL; error = CLOCK_DISPATCH(which_clock, clock_get, (which_clock, &kernel_tp)); if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp))) error = -EFAULT; return error; } |
362e9c07c
|
943 944 |
SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, struct timespec __user *, tp) |
1da177e4c
|
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 |
{ struct timespec rtn_tp; int error; if (invalid_clockid(which_clock)) return -EINVAL; error = CLOCK_DISPATCH(which_clock, clock_getres, (which_clock, &rtn_tp)); if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) { error = -EFAULT; } return error; } |
1da177e4c
|
961 |
/* |
97735f25d
|
962 963 964 965 966 |
* nanosleep for monotonic and realtime clocks */ static int common_nsleep(const clockid_t which_clock, int flags, struct timespec *tsave, struct timespec __user *rmtp) { |
080344b98
|
967 968 969 |
return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL, which_clock); |
97735f25d
|
970 |
} |
1da177e4c
|
971 |
|
362e9c07c
|
972 973 974 |
SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, const struct timespec __user *, rqtp, struct timespec __user *, rmtp) |
1da177e4c
|
975 976 |
{ struct timespec t; |
1da177e4c
|
977 978 979 980 981 982 |
if (invalid_clockid(which_clock)) return -EINVAL; if (copy_from_user(&t, rqtp, sizeof (struct timespec))) return -EFAULT; |
5f82b2b77
|
983 |
if (!timespec_valid(&t)) |
1da177e4c
|
984 |
return -EINVAL; |
97735f25d
|
985 986 |
return CLOCK_DISPATCH(which_clock, nsleep, (which_clock, flags, &t, rmtp)); |
1da177e4c
|
987 |
} |
1711ef386
|
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 |
/* * nanosleep_restart for monotonic and realtime clocks */ static int common_nsleep_restart(struct restart_block *restart_block) { return hrtimer_nanosleep_restart(restart_block); } /* * This will restart clock_nanosleep. This is required only by * compat_clock_nanosleep_restart for now. */ long clock_nanosleep_restart(struct restart_block *restart_block) { clockid_t which_clock = restart_block->arg0; return CLOCK_DISPATCH(which_clock, nsleep_restart, (restart_block)); } |