Blame view

Documentation/kprobes.txt 31.9 KB
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
  =======================
  Kernel Probes (Kprobes)
  =======================
  
  :Author: Jim Keniston <jkenisto@us.ibm.com>
  :Author: Prasanna S Panchamukhi <prasanna.panchamukhi@gmail.com>
  :Author: Masami Hiramatsu <mhiramat@redhat.com>
  
  .. CONTENTS
  
    1. Concepts: Kprobes, Jprobes, Return Probes
    2. Architectures Supported
    3. Configuring Kprobes
    4. API Reference
    5. Kprobes Features and Limitations
    6. Probe Overhead
    7. TODO
    8. Kprobes Example
    9. Jprobes Example
    10. Kretprobes Example
    Appendix A: The kprobes debugfs interface
    Appendix B: The kprobes sysctl interface
  
  Concepts: Kprobes, Jprobes, Return Probes
  =========================================
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
26
27
28
  
  Kprobes enables you to dynamically break into any kernel routine and
  collect debugging and performance information non-disruptively. You
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
29
  can trap at almost any kernel code address [1]_, specifying a handler
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
30
  routine to be invoked when the breakpoint is hit.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
31
32
33
  
  .. [1] some parts of the kernel code can not be trapped, see
         :ref:`kprobes_blacklist`)
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
34
35
36
37
38
39
40
41
42
43
44
45
46
47
  
  There are currently three types of probes: kprobes, jprobes, and
  kretprobes (also called return probes).  A kprobe can be inserted
  on virtually any instruction in the kernel.  A jprobe is inserted at
  the entry to a kernel function, and provides convenient access to the
  function's arguments.  A return probe fires when a specified function
  returns.
  
  In the typical case, Kprobes-based instrumentation is packaged as
  a kernel module.  The module's init function installs ("registers")
  one or more probes, and the exit function unregisters them.  A
  registration function such as register_kprobe() specifies where
  the probe is to be inserted and what handler is to be called when
  the probe is hit.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
48
49
  There are also ``register_/unregister_*probes()`` functions for batch
  registration/unregistration of a group of ``*probes``. These functions
3b0cb4cae   Masami Hiramatsu   kprobes: update d...
50
51
  can speed up unregistration process when you have to unregister
  a lot of probes at once.
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
52
53
54
55
56
57
  The next four subsections explain how the different types of
  probes work and how jump optimization works.  They explain certain
  things that you'll need to know in order to make the best use of
  Kprobes -- e.g., the difference between a pre_handler and
  a post_handler, and how to use the maxactive and nmissed fields of
  a kretprobe.  But if you're in a hurry to start using Kprobes, you
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
58
  can skip ahead to :ref:`kprobes_archs_supported`.
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
59

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
60
61
  How Does a Kprobe Work?
  -----------------------
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
  
  When a kprobe is registered, Kprobes makes a copy of the probed
  instruction and replaces the first byte(s) of the probed instruction
  with a breakpoint instruction (e.g., int3 on i386 and x86_64).
  
  When a CPU hits the breakpoint instruction, a trap occurs, the CPU's
  registers are saved, and control passes to Kprobes via the
  notifier_call_chain mechanism.  Kprobes executes the "pre_handler"
  associated with the kprobe, passing the handler the addresses of the
  kprobe struct and the saved registers.
  
  Next, Kprobes single-steps its copy of the probed instruction.
  (It would be simpler to single-step the actual instruction in place,
  but then Kprobes would have to temporarily remove the breakpoint
  instruction.  This would open a small time window when another CPU
  could sail right past the probepoint.)
  
  After the instruction is single-stepped, Kprobes executes the
  "post_handler," if any, that is associated with the kprobe.
  Execution then continues with the instruction following the probepoint.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
82
83
  How Does a Jprobe Work?
  -----------------------
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
  
  A jprobe is implemented using a kprobe that is placed on a function's
  entry point.  It employs a simple mirroring principle to allow
  seamless access to the probed function's arguments.  The jprobe
  handler routine should have the same signature (arg list and return
  type) as the function being probed, and must always end by calling
  the Kprobes function jprobe_return().
  
  Here's how it works.  When the probe is hit, Kprobes makes a copy of
  the saved registers and a generous portion of the stack (see below).
  Kprobes then points the saved instruction pointer at the jprobe's
  handler routine, and returns from the trap.  As a result, control
  passes to the handler, which is presented with the same register and
  stack contents as the probed function.  When it is done, the handler
  calls jprobe_return(), which traps again to restore the original stack
  contents and processor state and switch to the probed function.
  
  By convention, the callee owns its arguments, so gcc may produce code
  that unexpectedly modifies that portion of the stack.  This is why
  Kprobes saves a copy of the stack and restores it after the jprobe
  handler has run.  Up to MAX_STACK_SIZE bytes are copied -- e.g.,
  64 bytes on i386.
  
  Note that the probed function's args may be passed on the stack
b5606c2d4   Harvey Harrison   remove final fast...
108
109
  or in registers.  The jprobe will work in either case, so long as the
  handler's prototype matches that of the probed function.
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
110

7a9011db3   David A. Long   Documentation: kp...
111
112
113
114
115
116
117
118
119
  Note that in some architectures (e.g.: arm64 and sparc64) the stack
  copy is not done, as the actual location of stacked parameters may be
  outside of a reasonable MAX_STACK_SIZE value and because that location
  cannot be determined by the jprobes code. In this case the jprobes
  user must be careful to make certain the calling signature of the
  function does not cause parameters to be passed on the stack (e.g.:
  more than eight function arguments, an argument of more than sixteen
  bytes, or more than 64 bytes of argument data, depending on
  architecture).
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
120
121
  Return Probes
  -------------
f47cd9b55   Abhishek Sagar   kprobes: kretprob...
122

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
123
124
  How Does a Return Probe Work?
  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
125
126
127
128
129
130
131
132
133
134
  
  When you call register_kretprobe(), Kprobes establishes a kprobe at
  the entry to the function.  When the probed function is called and this
  probe is hit, Kprobes saves a copy of the return address, and replaces
  the return address with the address of a "trampoline."  The trampoline
  is an arbitrary piece of code -- typically just a nop instruction.
  At boot time, Kprobes registers a kprobe at the trampoline.
  
  When the probed function executes its return instruction, control
  passes to the trampoline and that probe is hit.  Kprobes' trampoline
f47cd9b55   Abhishek Sagar   kprobes: kretprob...
135
136
137
  handler calls the user-specified return handler associated with the
  kretprobe, then sets the saved instruction pointer to the saved return
  address, and that's where execution resumes upon return from the trap.
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
  
  While the probed function is executing, its return address is
  stored in an object of type kretprobe_instance.  Before calling
  register_kretprobe(), the user sets the maxactive field of the
  kretprobe struct to specify how many instances of the specified
  function can be probed simultaneously.  register_kretprobe()
  pre-allocates the indicated number of kretprobe_instance objects.
  
  For example, if the function is non-recursive and is called with a
  spinlock held, maxactive = 1 should be enough.  If the function is
  non-recursive and can never relinquish the CPU (e.g., via a semaphore
  or preemption), NR_CPUS should be enough.  If maxactive <= 0, it is
  set to a default value.  If CONFIG_PREEMPT is enabled, the default
  is max(10, 2*NR_CPUS).  Otherwise, the default is NR_CPUS.
  
  It's not a disaster if you set maxactive too low; you'll just miss
  some probes.  In the kretprobe struct, the nmissed field is set to
  zero when the return probe is registered, and is incremented every
  time the probed function is entered but there is no kretprobe_instance
  object available for establishing the return probe.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
158
159
  Kretprobe entry-handler
  ^^^^^^^^^^^^^^^^^^^^^^^
f47cd9b55   Abhishek Sagar   kprobes: kretprob...
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
  
  Kretprobes also provides an optional user-specified handler which runs
  on function entry. This handler is specified by setting the entry_handler
  field of the kretprobe struct. Whenever the kprobe placed by kretprobe at the
  function entry is hit, the user-defined entry_handler, if any, is invoked.
  If the entry_handler returns 0 (success) then a corresponding return handler
  is guaranteed to be called upon function return. If the entry_handler
  returns a non-zero error then Kprobes leaves the return address as is, and
  the kretprobe has no further effect for that particular function instance.
  
  Multiple entry and return handler invocations are matched using the unique
  kretprobe_instance object associated with them. Additionally, a user
  may also specify per return-instance private data to be part of each
  kretprobe_instance object. This is especially useful when sharing private
  data between corresponding user entry and return handlers. The size of each
  private data object can be specified at kretprobe registration time by
  setting the data_size field of the kretprobe struct. This data can be
  accessed through the data field of each kretprobe_instance object.
  
  In case probed function is entered but there is no kretprobe_instance
  object available, then in addition to incrementing the nmissed count,
  the user entry_handler invocation is also skipped.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
182
183
184
185
  .. _kprobes_jump_optimization:
  
  How Does Jump Optimization Work?
  --------------------------------
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
186

5cc718b9d   Masami Hiramatsu   kprobes: Hide CON...
187
188
  If your kernel is built with CONFIG_OPTPROBES=y (currently this flag
  is automatically set 'y' on x86/x86-64, non-preemptive kernel) and
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
189
190
191
  the "debug.kprobes_optimization" kernel parameter is set to 1 (see
  sysctl(8)), Kprobes tries to reduce probe-hit overhead by using a jump
  instruction instead of a breakpoint instruction at each probepoint.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
192
193
  Init a Kprobe
  ^^^^^^^^^^^^^
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
194
195
196
197
198
  
  When a probe is registered, before attempting this optimization,
  Kprobes inserts an ordinary, breakpoint-based kprobe at the specified
  address. So, even if it's not possible to optimize this particular
  probepoint, there'll be a probe there.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
199
200
  Safety Check
  ^^^^^^^^^^^^
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
201
202
203
204
  
  Before optimizing a probe, Kprobes performs the following safety checks:
  
  - Kprobes verifies that the region that will be replaced by the jump
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
205
206
207
    instruction (the "optimized region") lies entirely within one function.
    (A jump instruction is multiple bytes, and so may overlay multiple
    instructions.)
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
208
209
  
  - Kprobes analyzes the entire function and verifies that there is no
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
210
    jump into the optimized region.  Specifically:
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
211
212
    - the function contains no indirect jump;
    - the function contains no instruction that causes an exception (since
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
213
214
      the fixup code triggered by the exception could jump back into the
      optimized region -- Kprobes checks the exception tables to verify this);
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
215
    - there is no near jump to the optimized region (other than to the first
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
216
      byte).
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
217
218
  
  - For each instruction in the optimized region, Kprobes verifies that
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
219
    the instruction can be executed out of line.
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
220

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
221
222
  Preparing Detour Buffer
  ^^^^^^^^^^^^^^^^^^^^^^^
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
223
224
225
  
  Next, Kprobes prepares a "detour" buffer, which contains the following
  instruction sequence:
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
226

b26486bf7   Masami Hiramatsu   kprobes: Add docu...
227
228
229
230
231
  - code to push the CPU's registers (emulating a breakpoint trap)
  - a call to the trampoline code which calls user's probe handlers.
  - code to restore registers
  - the instructions from the optimized region
  - a jump back to the original execution path.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
232
233
  Pre-optimization
  ^^^^^^^^^^^^^^^^
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
234
235
236
  
  After preparing the detour buffer, Kprobes verifies that none of the
  following situations exist:
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
237

b26486bf7   Masami Hiramatsu   kprobes: Add docu...
238
  - The probe has either a break_handler (i.e., it's a jprobe) or a
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
239
    post_handler.
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
240
241
  - Other instructions in the optimized region are probed.
  - The probe is disabled.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
242

b26486bf7   Masami Hiramatsu   kprobes: Add docu...
243
244
245
246
247
248
249
250
251
252
  In any of the above cases, Kprobes won't start optimizing the probe.
  Since these are temporary situations, Kprobes tries to start
  optimizing it again if the situation is changed.
  
  If the kprobe can be optimized, Kprobes enqueues the kprobe to an
  optimizing list, and kicks the kprobe-optimizer workqueue to optimize
  it.  If the to-be-optimized probepoint is hit before being optimized,
  Kprobes returns control to the original instruction path by setting
  the CPU's instruction pointer to the copied code in the detour buffer
  -- thus at least avoiding the single-step.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
253
254
  Optimization
  ^^^^^^^^^^^^
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
255
256
257
258
  
  The Kprobe-optimizer doesn't insert the jump instruction immediately;
  rather, it calls synchronize_sched() for safety first, because it's
  possible for a CPU to be interrupted in the middle of executing the
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
259
  optimized region [3]_.  As you know, synchronize_sched() can ensure
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
260
261
  that all interruptions that were active when synchronize_sched()
  was called are done, but only if CONFIG_PREEMPT=n.  So, this version
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
262
  of kprobe optimization supports only kernels with CONFIG_PREEMPT=n [4]_.
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
263
264
265
266
  
  After that, the Kprobe-optimizer calls stop_machine() to replace
  the optimized region with a jump instruction to the detour buffer,
  using text_poke_smp().
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
267
268
  Unoptimization
  ^^^^^^^^^^^^^^
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
269
270
271
272
273
274
275
  
  When an optimized kprobe is unregistered, disabled, or blocked by
  another kprobe, it will be unoptimized.  If this happens before
  the optimization is complete, the kprobe is just dequeued from the
  optimized list.  If the optimization has been done, the jump is
  replaced with the original code (except for an int3 breakpoint in
  the first byte) by using text_poke_smp().
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
276
277
278
279
280
  .. [3] Please imagine that the 2nd instruction is interrupted and then
     the optimizer replaces the 2nd instruction with the jump *address*
     while the interrupt handler is running. When the interrupt
     returns to original address, there is no valid instruction,
     and it causes an unexpected result.
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
281

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
282
283
284
  .. [4] This optimization-safety checking may be replaced with the
     stop-machine method that ksplice uses for supporting a CONFIG_PREEMPT=y
     kernel.
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
285
286
287
288
289
290
291
292
  
  NOTE for geeks:
  The jump optimization changes the kprobe's pre_handler behavior.
  Without optimization, the pre_handler can change the kernel's execution
  path by changing regs->ip and returning 1.  However, when the probe
  is optimized, that modification is ignored.  Thus, if you want to
  tweak the kernel's execution path, you need to suppress optimization,
  using one of the following techniques:
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
293

b26486bf7   Masami Hiramatsu   kprobes: Add docu...
294
  - Specify an empty function for the kprobe's post_handler or break_handler.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
295
296
  
  or
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
297
  - Execute 'sysctl -w debug.kprobes_optimization=n'
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
298
299
300
301
  .. _kprobes_blacklist:
  
  Blacklist
  ---------
376e24242   Masami Hiramatsu   kprobes: Introduc...
302
303
304
305
306
307
308
309
310
311
312
  
  Kprobes can probe most of the kernel except itself. This means
  that there are some functions where kprobes cannot probe. Probing
  (trapping) such functions can cause a recursive trap (e.g. double
  fault) or the nested probe handler may never be called.
  Kprobes manages such functions as a blacklist.
  If you want to add a function into the blacklist, you just need
  to (1) include linux/kprobes.h and (2) use NOKPROBE_SYMBOL() macro
  to specify a blacklisted function.
  Kprobes checks the given probe address against the blacklist and
  rejects registering it, if the given address is in the blacklist.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
313
314
315
316
  .. _kprobes_archs_supported:
  
  Architectures Supported
  =======================
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
317
318
319
  
  Kprobes, jprobes, and return probes are implemented on the following
  architectures:
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
320
321
  - i386 (Supports jump optimization)
  - x86_64 (AMD-64, EM64T) (Supports jump optimization)
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
322
  - ppc64
8861da31e   Jim Keniston   [PATCH] kprobes: ...
323
  - ia64 (Does not support probes on instruction slot1.)
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
324
  - sparc64 (Return probes not yet implemented.)
5de865b4c   Nicolas Pitre   ARM kprobes: let'...
325
  - arm
f82796214   Kumar Gala   powerpc/booke: Ad...
326
  - ppc
9bb4d9dfd   David Daney   Documentation: Me...
327
  - mips
369e8c355   Heiko Carstens   Documentation/kpr...
328
  - s390
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
329

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
330
331
  Configuring Kprobes
  ===================
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
332
333
  
  When configuring the kernel using make menuconfig/xconfig/oldconfig,
080684c88   Li Bin   kprobes: Update D...
334
335
  ensure that CONFIG_KPROBES is set to "y". Under "General setup", look
  for "Kprobes".
8861da31e   Jim Keniston   [PATCH] kprobes: ...
336
337
338
339
  
  So that you can load and unload Kprobes-based instrumentation modules,
  make sure "Loadable module support" (CONFIG_MODULES) and "Module
  unloading" (CONFIG_MODULE_UNLOAD) are set to "y".
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
340

09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
341
342
343
  Also make sure that CONFIG_KALLSYMS and perhaps even CONFIG_KALLSYMS_ALL
  are set to "y", since kallsyms_lookup_name() is used by the in-kernel
  kprobe address resolution code.
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
344
345
346
347
348
  
  If you need to insert a probe in the middle of a function, you may find
  it useful to "Compile the kernel with debug info" (CONFIG_DEBUG_INFO),
  so you can use "objdump -d -l vmlinux" to see the source-to-object
  code mapping.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
349
350
  API Reference
  =============
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
351
352
  
  The Kprobes API includes a "register" function and an "unregister"
3b0cb4cae   Masami Hiramatsu   kprobes: update d...
353
354
355
356
357
  function for each type of probe. The API also includes "register_*probes"
  and "unregister_*probes" functions for (un)registering arrays of probes.
  Here are terse, mini-man-page specifications for these functions and
  the associated probe handlers that you'll write. See the files in the
  samples/kprobes/ sub-directory for examples.
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
358

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
359
360
  register_kprobe
  ---------------
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
361

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
362
363
364
365
  ::
  
  	#include <linux/kprobes.h>
  	int register_kprobe(struct kprobe *kp);
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
366
367
368
369
370
371
  
  Sets a breakpoint at the address kp->addr.  When the breakpoint is
  hit, Kprobes calls kp->pre_handler.  After the probed instruction
  is single-stepped, Kprobe calls kp->post_handler.  If a fault
  occurs during execution of kp->pre_handler or kp->post_handler,
  or during single-stepping of the probed instruction, Kprobes calls
de5bd88d5   Masami Hiramatsu   kprobes: support ...
372
373
  kp->fault_handler.  Any or all handlers can be NULL. If kp->flags
  is set KPROBE_FLAG_DISABLED, that kp will be registered but disabled,
a33f32244   Francis Galiegue   Documentation/: i...
374
  so, its handlers aren't hit until calling enable_kprobe(kp).
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
375

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
376
377
378
379
380
  .. note::
  
     1. With the introduction of the "symbol_name" field to struct kprobe,
        the probepoint address resolution will now be taken care of by the kernel.
        The following will now work::
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
381
382
  
  	kp.symbol_name = "symbol_name";
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
383
384
        (64-bit powerpc intricacies such as function descriptors are handled
        transparently)
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
385

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
386
387
388
     2. Use the "offset" field of struct kprobe if the offset into the symbol
        to install a probepoint is known. This field is used to calculate the
        probepoint.
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
389

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
390
391
     3. Specify either the kprobe "symbol_name" OR the "addr". If both are
        specified, kprobe registration will fail with -EINVAL.
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
392

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
393
394
395
     4. With CISC architectures (such as i386 and x86_64), the kprobes code
        does not validate if the kprobe.addr is at an instruction boundary.
        Use "offset" with caution.
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
396

d27a4dddd   Jim Keniston   [PATCH] Add Docum...
397
  register_kprobe() returns 0 on success, or a negative errno otherwise.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
398
399
400
401
402
  User's pre-handler (kp->pre_handler)::
  
  	#include <linux/kprobes.h>
  	#include <linux/ptrace.h>
  	int pre_handler(struct kprobe *p, struct pt_regs *regs);
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
403
404
405
406
  
  Called with p pointing to the kprobe associated with the breakpoint,
  and regs pointing to the struct containing the registers saved when
  the breakpoint was hit.  Return 0 here unless you're a Kprobes geek.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
407
408
409
410
411
412
  User's post-handler (kp->post_handler)::
  
  	#include <linux/kprobes.h>
  	#include <linux/ptrace.h>
  	void post_handler(struct kprobe *p, struct pt_regs *regs,
  			  unsigned long flags);
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
413
414
415
  
  p and regs are as described for the pre_handler.  flags always seems
  to be zero.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
416
417
418
419
420
  User's fault-handler (kp->fault_handler)::
  
  	#include <linux/kprobes.h>
  	#include <linux/ptrace.h>
  	int fault_handler(struct kprobe *p, struct pt_regs *regs, int trapnr);
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
421
422
423
424
425
  
  p and regs are as described for the pre_handler.  trapnr is the
  architecture-specific trap number associated with the fault (e.g.,
  on i386, 13 for a general protection fault or 14 for a page fault).
  Returns 1 if it successfully handled the exception.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
426
427
428
429
  register_jprobe
  ---------------
  
  ::
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
430

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
431
432
  	#include <linux/kprobes.h>
  	int register_jprobe(struct jprobe *jp)
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
433
434
435
436
437
438
439
440
  
  Sets a breakpoint at the address jp->kp.addr, which must be the address
  of the first instruction of a function.  When the breakpoint is hit,
  Kprobes runs the handler whose address is jp->entry.
  
  The handler should have the same arg list and return type as the probed
  function; and just before it returns, it must call jprobe_return().
  (The handler never actually returns, since jprobe_return() returns
b5606c2d4   Harvey Harrison   remove final fast...
441
442
443
  control to Kprobes.)  If the probed function is declared asmlinkage
  or anything else that affects how args are passed, the handler's
  declaration must match.
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
444
445
  
  register_jprobe() returns 0 on success, or a negative errno otherwise.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
446
447
  register_kretprobe
  ------------------
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
448

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
449
450
451
452
  ::
  
  	#include <linux/kprobes.h>
  	int register_kretprobe(struct kretprobe *rp);
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
453
454
455
456
457
458
459
460
  
  Establishes a return probe for the function whose address is
  rp->kp.addr.  When that function returns, Kprobes calls rp->handler.
  You must set rp->maxactive appropriately before you call
  register_kretprobe(); see "How Does a Return Probe Work?" for details.
  
  register_kretprobe() returns 0 on success, or a negative errno
  otherwise.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
461
462
463
464
465
466
  User's return-probe handler (rp->handler)::
  
  	#include <linux/kprobes.h>
  	#include <linux/ptrace.h>
  	int kretprobe_handler(struct kretprobe_instance *ri,
  			      struct pt_regs *regs);
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
467
468
469
470
  
  regs is as described for kprobe.pre_handler.  ri points to the
  kretprobe_instance object, of which the following fields may be
  of interest:
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
471

d27a4dddd   Jim Keniston   [PATCH] Add Docum...
472
473
474
  - ret_addr: the return address
  - rp: points to the corresponding kretprobe object
  - task: points to the corresponding task struct
f47cd9b55   Abhishek Sagar   kprobes: kretprob...
475
476
  - data: points to per return-instance private data; see "Kretprobe
  	entry-handler" for details.
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
477
478
479
480
  
  The regs_return_value(regs) macro provides a simple abstraction to
  extract the return value from the appropriate register as defined by
  the architecture's ABI.
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
481
  The handler's return value is currently ignored.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
482
483
  unregister_*probe
  ------------------
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
484

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
485
486
487
488
489
490
  ::
  
  	#include <linux/kprobes.h>
  	void unregister_kprobe(struct kprobe *kp);
  	void unregister_jprobe(struct jprobe *jp);
  	void unregister_kretprobe(struct kretprobe *rp);
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
491
492
493
  
  Removes the specified probe.  The unregister function can be called
  at any time after the probe has been registered.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
494
495
496
497
  .. note::
  
     If the functions find an incorrect probe (ex. an unregistered probe),
     they clear the addr field of the probe.
3b0cb4cae   Masami Hiramatsu   kprobes: update d...
498

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
499
500
  register_*probes
  ----------------
3b0cb4cae   Masami Hiramatsu   kprobes: update d...
501

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
502
503
504
505
506
507
  ::
  
  	#include <linux/kprobes.h>
  	int register_kprobes(struct kprobe **kps, int num);
  	int register_kretprobes(struct kretprobe **rps, int num);
  	int register_jprobes(struct jprobe **jps, int num);
3b0cb4cae   Masami Hiramatsu   kprobes: update d...
508
509
510
511
512
  
  Registers each of the num probes in the specified array.  If any
  error occurs during registration, all probes in the array, up to
  the bad probe, are safely unregistered before the register_*probes
  function returns.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
513
514
  
  - kps/rps/jps: an array of pointers to ``*probe`` data structures
3b0cb4cae   Masami Hiramatsu   kprobes: update d...
515
  - num: the number of the array entries.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
516
517
518
519
520
521
522
  .. note::
  
     You have to allocate(or define) an array of pointers and set all
     of the array entries before using these functions.
  
  unregister_*probes
  ------------------
3b0cb4cae   Masami Hiramatsu   kprobes: update d...
523

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
524
  ::
3b0cb4cae   Masami Hiramatsu   kprobes: update d...
525

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
526
527
528
529
  	#include <linux/kprobes.h>
  	void unregister_kprobes(struct kprobe **kps, int num);
  	void unregister_kretprobes(struct kretprobe **rps, int num);
  	void unregister_jprobes(struct jprobe **jps, int num);
3b0cb4cae   Masami Hiramatsu   kprobes: update d...
530
531
  
  Removes each of the num probes in the specified array at once.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
532
  .. note::
3b0cb4cae   Masami Hiramatsu   kprobes: update d...
533

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
534
535
536
537
     If the functions find some incorrect probes (ex. unregistered
     probes) in the specified array, they clear the addr field of those
     incorrect probes. However, other probes in the array are
     unregistered correctly.
de5bd88d5   Masami Hiramatsu   kprobes: support ...
538

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
539
540
  disable_*probe
  --------------
de5bd88d5   Masami Hiramatsu   kprobes: support ...
541

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
542
543
544
545
546
547
548
549
  ::
  
  	#include <linux/kprobes.h>
  	int disable_kprobe(struct kprobe *kp);
  	int disable_kretprobe(struct kretprobe *rp);
  	int disable_jprobe(struct jprobe *jp);
  
  Temporarily disables the specified ``*probe``. You can enable it again by using
8f9b15286   Masami Hiramatsu   kprobes: support ...
550
  enable_*probe(). You must specify the probe which has been registered.
de5bd88d5   Masami Hiramatsu   kprobes: support ...
551

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
552
553
  enable_*probe
  -------------
de5bd88d5   Masami Hiramatsu   kprobes: support ...
554

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
555
  ::
de5bd88d5   Masami Hiramatsu   kprobes: support ...
556

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
557
558
559
560
561
562
  	#include <linux/kprobes.h>
  	int enable_kprobe(struct kprobe *kp);
  	int enable_kretprobe(struct kretprobe *rp);
  	int enable_jprobe(struct jprobe *jp);
  
  Enables ``*probe`` which has been disabled by disable_*probe(). You must specify
8f9b15286   Masami Hiramatsu   kprobes: support ...
563
  the probe which has been registered.
de5bd88d5   Masami Hiramatsu   kprobes: support ...
564

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
565
566
  Kprobes Features and Limitations
  ================================
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
567

8861da31e   Jim Keniston   [PATCH] kprobes: ...
568
569
  Kprobes allows multiple probes at the same address.  Currently,
  however, there cannot be multiple jprobes on the same function at
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
570
571
572
573
  the same time.  Also, a probepoint for which there is a jprobe or
  a post_handler cannot be optimized.  So if you install a jprobe,
  or a kprobe with a post_handler, at an optimized probepoint, the
  probepoint will be unoptimized automatically.
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
574
575
576
577
  
  In general, you can install a probe anywhere in the kernel.
  In particular, you can probe interrupt handlers.  Known exceptions
  are discussed in this section.
8861da31e   Jim Keniston   [PATCH] kprobes: ...
578
579
  The register_*probe functions will return -EINVAL if you attempt
  to install a probe in the code that implements Kprobes (mostly
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
580
  kernel/kprobes.c and ``arch/*/kernel/kprobes.c``, but also functions such
8861da31e   Jim Keniston   [PATCH] kprobes: ...
581
  as do_page_fault and notifier_call_chain).
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
  
  If you install a probe in an inline-able function, Kprobes makes
  no attempt to chase down all inline instances of the function and
  install probes there.  gcc may inline a function without being asked,
  so keep this in mind if you're not seeing the probe hits you expect.
  
  A probe handler can modify the environment of the probed function
  -- e.g., by modifying kernel data structures, or by modifying the
  contents of the pt_regs struct (which are restored to the registers
  upon return from the breakpoint).  So Kprobes can be used, for example,
  to install a bug fix or to inject faults for testing.  Kprobes, of
  course, has no way to distinguish the deliberately injected faults
  from the accidental ones.  Don't drink and probe.
  
  Kprobes makes no attempt to prevent probe handlers from stepping on
  each other -- e.g., probing printk() and then calling printk() from a
8861da31e   Jim Keniston   [PATCH] kprobes: ...
598
599
600
601
602
603
604
605
  probe handler.  If a probe handler hits a probe, that second probe's
  handlers won't be run in that instance, and the kprobe.nmissed member
  of the second probe will be incremented.
  
  As of Linux v2.6.15-rc1, multiple handlers (or multiple instances of
  the same handler) may run concurrently on different CPUs.
  
  Kprobes does not use mutexes or allocate memory except during
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
606
607
608
  registration and unregistration.
  
  Probe handlers are run with preemption disabled.  Depending on the
0f55a2f3d   Masami Hiramatsu   kprobes: Update d...
609
610
611
612
613
  architecture and optimization state, handlers may also run with
  interrupts disabled (e.g., kretprobe handlers and optimized kprobe
  handlers run without interrupt disabled on x86/x86-64).  In any case,
  your handler should not yield the CPU (e.g., by attempting to acquire
  a semaphore).
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
614
615
616
617
618
619
620
  
  Since a return probe is implemented by replacing the return
  address with the trampoline's address, stack backtraces and calls
  to __builtin_return_address() will typically yield the trampoline's
  address instead of the real return address for kretprobed functions.
  (As far as we can tell, __builtin_return_address() is used only
  for instrumentation and error reporting.)
8861da31e   Jim Keniston   [PATCH] kprobes: ...
621
622
  If the number of times a function is called does not match the number
  of times it returns, registering a return probe on that function may
bf8f6e5b3   Ananth N Mavinakayanahalli   Kprobes: The ON/O...
623
624
625
626
627
628
  produce undesirable results. In such a case, a line:
  kretprobe BUG!: Processing kretprobe d000000000041aa8 @ c00000000004f48c
  gets printed. With this information, one will be able to correlate the
  exact instance of the kretprobe that caused the problem. We have the
  do_exit() case covered. do_execve() and do_fork() are not an issue.
  We're unaware of other specific cases where this could be a problem.
8861da31e   Jim Keniston   [PATCH] kprobes: ...
629
630
631
632
633
634
635
  
  If, upon entry to or exit from a function, the CPU is running on
  a stack other than that of the current task, registering a return
  probe on that function may produce undesirable results.  For this
  reason, Kprobes doesn't support return probes (or kprobes or jprobes)
  on the x86_64 version of __switch_to(); the registration functions
  return -EINVAL.
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
636

b26486bf7   Masami Hiramatsu   kprobes: Add docu...
637
638
639
640
641
  On x86/x86-64, since the Jump Optimization of Kprobes modifies
  instructions widely, there are some limitations to optimization. To
  explain it, we introduce some terminology. Imagine a 3-instruction
  sequence consisting of a two 2-byte instructions and one 3-byte
  instruction.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
642
643
644
645
646
647
648
649
  ::
  
  		IA
  		|
  	[-2][-1][0][1][2][3][4][5][6][7]
  		[ins1][ins2][  ins3 ]
  		[<-     DCR       ->]
  		[<- JTPR ->]
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
650

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
651
652
653
654
655
656
  	ins1: 1st Instruction
  	ins2: 2nd Instruction
  	ins3: 3rd Instruction
  	IA:  Insertion Address
  	JTPR: Jump Target Prohibition Region
  	DCR: Detoured Code Region
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
657
658
659
660
661
662
663
664
  
  The instructions in DCR are copied to the out-of-line buffer
  of the kprobe, because the bytes in DCR are replaced by
  a 5-byte jump instruction. So there are several limitations.
  
  a) The instructions in DCR must be relocatable.
  b) The instructions in DCR must not include a call instruction.
  c) JTPR must not be targeted by any jump or call instruction.
b595076a1   Uwe Kleine-König   tree-wide: fix co...
665
  d) DCR must not straddle the border between functions.
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
666
667
668
  
  Anyway, these limitations are checked by the in-kernel instruction
  decoder, so you don't need to worry about that.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
669
670
  Probe Overhead
  ==============
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
671
672
673
674
675
676
677
678
  
  On a typical CPU in use in 2005, a kprobe hit takes 0.5 to 1.0
  microseconds to process.  Specifically, a benchmark that hits the same
  probepoint repeatedly, firing a simple handler each time, reports 1-2
  million hits per second, depending on the architecture.  A jprobe or
  return-probe hit typically takes 50-75% longer than a kprobe hit.
  When you have a return probe set on a function, adding a kprobe at
  the entry to that function adds essentially no overhead.
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
679
  Here are sample overhead figures (in usec) for different architectures::
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
680

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
681
682
    k = kprobe; j = jprobe; r = return probe; kr = kprobe + return probe
    on same function; jr = jprobe + return probe on same function::
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
683

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
684
685
    i386: Intel Pentium M, 1495 MHz, 2957.31 bogomips
    k = 0.57 usec; j = 1.00; r = 0.92; kr = 0.99; jr = 1.40
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
686

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
687
688
    x86_64: AMD Opteron 246, 1994 MHz, 3971.48 bogomips
    k = 0.49 usec; j = 0.76; r = 0.80; kr = 0.82; jr = 1.07
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
689

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
690
691
692
693
694
    ppc64: POWER5 (gr), 1656 MHz (SMT disabled, 1 virtual CPU per physical CPU)
    k = 0.77 usec; j = 1.31; r = 1.26; kr = 1.45; jr = 1.99
  
  Optimized Probe Overhead
  ------------------------
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
695
696
  
  Typically, an optimized kprobe hit takes 0.07 to 0.1 microseconds to
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
697
698
699
700
  process. Here are sample overhead figures (in usec) for x86 architectures::
  
    k = unoptimized kprobe, b = boosted (single-step skipped), o = optimized kprobe,
    r = unoptimized kretprobe, rb = boosted kretprobe, ro = optimized kretprobe.
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
701

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
702
703
    i386: Intel(R) Xeon(R) E5410, 2.33GHz, 4656.90 bogomips
    k = 0.80 usec; b = 0.33; o = 0.05; r = 1.10; rb = 0.61; ro = 0.33
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
704

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
705
706
    x86-64: Intel(R) Xeon(R) E5410, 2.33GHz, 4656.90 bogomips
    k = 0.99 usec; b = 0.43; o = 0.06; r = 1.24; rb = 0.68; ro = 0.30
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
707

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
708
709
  TODO
  ====
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
710

8861da31e   Jim Keniston   [PATCH] kprobes: ...
711
  a. SystemTap (http://sourceware.org/systemtap): Provides a simplified
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
712
     programming interface for probe-based instrumentation.  Try it out.
8861da31e   Jim Keniston   [PATCH] kprobes: ...
713
714
715
716
  b. Kernel return probes for sparc64.
  c. Support for other architectures.
  d. User-space probes.
  e. Watchpoint probes (which fire on data references).
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
717

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
718
719
  Kprobes Example
  ===============
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
720

804defea1   Ananth N Mavinakayanahalli   Kprobes: move kpr...
721
  See samples/kprobes/kprobe_example.c
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
722

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
723
724
  Jprobes Example
  ===============
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
725

804defea1   Ananth N Mavinakayanahalli   Kprobes: move kpr...
726
  See samples/kprobes/jprobe_example.c
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
727

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
728
729
  Kretprobes Example
  ==================
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
730

804defea1   Ananth N Mavinakayanahalli   Kprobes: move kpr...
731
  See samples/kprobes/kretprobe_example.c
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
732
733
  
  For additional information on Kprobes, refer to the following URLs:
bf8f6e5b3   Ananth N Mavinakayanahalli   Kprobes: The ON/O...
734

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
735
736
737
738
739
740
741
742
  - http://www-106.ibm.com/developerworks/library/l-kprobes.html?ca=dgr-lnxw42Kprobe
  - http://www.redhat.com/magazine/005mar05/features/kprobes/
  - http://www-users.cs.umn.edu/~boutcher/kprobes/
  - http://www.linuxsymposium.org/2006/linuxsymposium_procv2.pdf (pages 101-115)
  
  
  The kprobes debugfs interface
  =============================
bf8f6e5b3   Ananth N Mavinakayanahalli   Kprobes: The ON/O...
743

bf8f6e5b3   Ananth N Mavinakayanahalli   Kprobes: The ON/O...
744
745
  
  With recent kernels (> 2.6.20) the list of registered kprobes is visible
156f5a780   GeunSik Lim   debugfs: Fix term...
746
  under the /sys/kernel/debug/kprobes/ directory (assuming debugfs is mounted at //sys/kernel/debug).
bf8f6e5b3   Ananth N Mavinakayanahalli   Kprobes: The ON/O...
747

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
748
  /sys/kernel/debug/kprobes/list: Lists all registered probes on the system::
bf8f6e5b3   Ananth N Mavinakayanahalli   Kprobes: The ON/O...
749

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
750
751
752
  	c015d71a  k  vfs_read+0x0
  	c011a316  j  do_fork+0x0
  	c03dedc5  r  tcp_v4_rcv+0x0
bf8f6e5b3   Ananth N Mavinakayanahalli   Kprobes: The ON/O...
753
754
755
756
757
  
  The first column provides the kernel address where the probe is inserted.
  The second column identifies the type of probe (k - kprobe, r - kretprobe
  and j - jprobe), while the third column specifies the symbol+offset of
  the probe. If the probed function belongs to a module, the module name
e8386a0cb   Masami Hiramatsu   kprobes: support ...
758
759
760
  is also specified. Following columns show probe status. If the probe is on
  a virtual address that is no longer valid (module init sections, module
  virtual addresses that correspond to modules that've been unloaded),
de5bd88d5   Masami Hiramatsu   kprobes: support ...
761
  such probes are marked with [GONE]. If the probe is temporarily disabled,
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
762
  such probes are marked with [DISABLED]. If the probe is optimized, it is
9ed330d39   Wang Long   Documentation: ad...
763
764
  marked with [OPTIMIZED]. If the probe is ftrace-based, it is marked with
  [FTRACE].
bf8f6e5b3   Ananth N Mavinakayanahalli   Kprobes: The ON/O...
765

156f5a780   GeunSik Lim   debugfs: Fix term...
766
  /sys/kernel/debug/kprobes/enabled: Turn kprobes ON/OFF forcibly.
bf8f6e5b3   Ananth N Mavinakayanahalli   Kprobes: The ON/O...
767

de5bd88d5   Masami Hiramatsu   kprobes: support ...
768
769
770
771
772
773
  Provides a knob to globally and forcibly turn registered kprobes ON or OFF.
  By default, all kprobes are enabled. By echoing "0" to this file, all
  registered probes will be disarmed, till such time a "1" is echoed to this
  file. Note that this knob just disarms and arms all kprobes and doesn't
  change each probe's disabling state. This means that disabled kprobes (marked
  [DISABLED]) will be not enabled if you turn ON all kprobes by this knob.
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
774

a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
775
776
  The kprobes sysctl interface
  ============================
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
777
778
779
780
781
  
  /proc/sys/debug/kprobes-optimization: Turn kprobes optimization ON/OFF.
  
  When CONFIG_OPTPROBES=y, this sysctl interface appears and it provides
  a knob to globally and forcibly turn jump optimization (see section
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
782
783
784
785
  :ref:`kprobes_jump_optimization`) ON or OFF. By default, jump optimization
  is allowed (ON). If you echo "0" to this file or set
  "debug.kprobes_optimization" to 0 via sysctl, all optimized probes will be
  unoptimized, and any new probes registered after that will not be optimized.
43e5f7e1f   Mauro Carvalho Chehab   docs: kprobes.txt...
786
787
  
  Note that this knob *changes* the optimized state. This means that optimized
a1dac7676   Mauro Carvalho Chehab   kprobes.txt: stan...
788
  probes (marked [OPTIMIZED]) will be unoptimized ([OPTIMIZED] tag will be
b26486bf7   Masami Hiramatsu   kprobes: Add docu...
789
  removed). If the knob is turned on, they will be optimized again.