Blame view
kernel/posix-timers.c
29.1 KB
1da177e4c
|
1 |
/* |
f30c22695
|
2 |
* linux/kernel/posix-timers.c |
1da177e4c
|
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
* * * 2002-10-15 Posix Clocks & timers * by George Anzinger george@mvista.com * * Copyright (C) 2002 2003 by MontaVista Software. * * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. * Copyright (C) 2004 Boris Hu * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA */ /* These are all the functions necessary to implement * POSIX clocks & timers */ #include <linux/mm.h> |
1da177e4c
|
34 35 36 |
#include <linux/interrupt.h> #include <linux/slab.h> #include <linux/time.h> |
97d1f15b7
|
37 |
#include <linux/mutex.h> |
1da177e4c
|
38 39 |
#include <asm/uaccess.h> |
1da177e4c
|
40 41 42 43 |
#include <linux/list.h> #include <linux/init.h> #include <linux/compiler.h> #include <linux/idr.h> |
0606f422b
|
44 |
#include <linux/posix-clock.h> |
1da177e4c
|
45 46 47 48 49 |
#include <linux/posix-timers.h> #include <linux/syscalls.h> #include <linux/wait.h> #include <linux/workqueue.h> #include <linux/module.h> |
1da177e4c
|
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
/* * Management arrays for POSIX timers. Timers are kept in slab memory * Timer ids are allocated by an external routine that keeps track of the * id and the timer. The external interface is: * * void *idr_find(struct idr *idp, int id); to find timer_id <id> * int idr_get_new(struct idr *idp, void *ptr); to get a new id and * related it to <ptr> * void idr_remove(struct idr *idp, int id); to release <id> * void idr_init(struct idr *idp); to initialize <idp> * which we supply. * The idr_get_new *may* call slab for more memory so it must not be * called under a spin lock. Likewise idr_remore may release memory * (but it may be ok to do this under a lock...). * idr_find is just a memory look up and is quite fast. A -1 return * indicates that the requested id does not exist. */ /* * Lets keep our timers in a slab cache :-) */ |
e18b890bb
|
71 |
static struct kmem_cache *posix_timers_cache; |
1da177e4c
|
72 73 74 75 |
static struct idr posix_timers_id; static DEFINE_SPINLOCK(idr_lock); /* |
1da177e4c
|
76 77 78 79 80 81 82 |
* we assume that the new SIGEV_THREAD_ID shares no bits with the other * SIGEV values. Here we put out an error if this assumption fails. */ #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" #endif |
65da528d7
|
83 84 85 86 87 88 89 90 |
/* * parisc wants ENOTSUP instead of EOPNOTSUPP */ #ifndef ENOTSUP # define ENANOSLEEP_NOTSUP EOPNOTSUPP #else # define ENANOSLEEP_NOTSUP ENOTSUP #endif |
1da177e4c
|
91 92 93 94 95 96 97 98 99 100 101 102 103 |
/* * The timer ID is turned into a timer address by idr_find(). * Verifying a valid ID consists of: * * a) checking that idr_find() returns other than -1. * b) checking that the timer id matches the one in the timer itself. * c) that the timer owner is in the callers thread group. */ /* * CLOCKs: The POSIX standard calls for a couple of clocks and allows us * to implement others. This structure defines the various |
0061748dd
|
104 |
* clocks. |
1da177e4c
|
105 106 107 108 109 110 111 112 113 |
* * RESOLUTION: Clock resolution is used to round up timer and interval * times, NOT to report clock times, which are reported with as * much resolution as the system can muster. In some cases this * resolution may depend on the underlying clock hardware and * may not be quantifiable until run time, and only then is the * necessary code is written. The standard says we should say * something about this issue in the documentation... * |
0061748dd
|
114 115 |
* FUNCTIONS: The CLOCKs structure defines possible functions to * handle various clock functions. |
1da177e4c
|
116 |
* |
0061748dd
|
117 118 119 120 |
* The standard POSIX timer management code assumes the * following: 1.) The k_itimer struct (sched.h) is used for * the timer. 2.) The list, it_lock, it_clock, it_id and * it_pid fields are not modified by timer code. |
1da177e4c
|
121 122 123 124 125 126 127 128 129 130 |
* * Permissions: It is assumed that the clock_settime() function defined * for each clock will take care of permission checks. Some * clocks may be set able by any user (i.e. local process * clocks) others not. Currently the only set able clock we * have is CLOCK_REALTIME and its high res counter part, both of * which we beg off on and pass to do_sys_settimeofday(). */ static struct k_clock posix_clocks[MAX_CLOCKS]; |
becf8b5d0
|
131 |
|
1da177e4c
|
132 |
/* |
becf8b5d0
|
133 |
* These ones are defined below. |
1da177e4c
|
134 |
*/ |
becf8b5d0
|
135 136 |
static int common_nsleep(const clockid_t, int flags, struct timespec *t, struct timespec __user *rmtp); |
838394fbf
|
137 |
static int common_timer_create(struct k_itimer *new_timer); |
becf8b5d0
|
138 139 140 141 |
static void common_timer_get(struct k_itimer *, struct itimerspec *); static int common_timer_set(struct k_itimer *, int, struct itimerspec *, struct itimerspec *); static int common_timer_del(struct k_itimer *timer); |
1da177e4c
|
142 |
|
c9cb2e3d7
|
143 |
static enum hrtimer_restart posix_timer_fn(struct hrtimer *data); |
1da177e4c
|
144 |
|
20f33a03f
|
145 146 147 148 149 150 151 |
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); #define lock_timer(tid, flags) \ ({ struct k_itimer *__timr; \ __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ __timr; \ }) |
1da177e4c
|
152 153 154 155 156 |
static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) { spin_unlock_irqrestore(&timr->it_lock, flags); } |
422857776
|
157 158 159 160 161 162 |
/* Get clock_realtime */ static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp) { ktime_get_real_ts(tp); return 0; } |
26f9a4796
|
163 164 165 166 167 168 |
/* Set clock_realtime */ static int posix_clock_realtime_set(const clockid_t which_clock, const struct timespec *tp) { return do_sys_settimeofday(tp, NULL); } |
f1f1d5ebd
|
169 170 171 172 173 |
static int posix_clock_realtime_adj(const clockid_t which_clock, struct timex *t) { return do_adjtimex(t); } |
becf8b5d0
|
174 175 176 177 178 179 180 181 |
/* * Get monotonic time for posix timers */ static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp) { ktime_get_ts(tp); return 0; } |
1da177e4c
|
182 183 |
/* |
7fdd7f890
|
184 |
* Get monotonic-raw time for posix timers |
2d42244ae
|
185 186 187 188 189 190 |
*/ static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp) { getrawmonotonic(tp); return 0; } |
da15cfdae
|
191 192 193 194 195 196 197 198 199 200 201 202 203 |
static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp) { *tp = current_kernel_time(); return 0; } static int posix_get_monotonic_coarse(clockid_t which_clock, struct timespec *tp) { *tp = get_monotonic_coarse(); return 0; } |
6622e670b
|
204 |
static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp) |
da15cfdae
|
205 206 207 208 |
{ *tp = ktime_to_timespec(KTIME_LOW_RES); return 0; } |
7fdd7f890
|
209 210 211 212 213 214 |
static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp) { get_monotonic_boottime(tp); return 0; } |
2d42244ae
|
215 |
/* |
1da177e4c
|
216 217 218 219 |
* Initialize everything, well, just everything in Posix clocks/timers ;) */ static __init int init_posix_timers(void) { |
becf8b5d0
|
220 |
struct k_clock clock_realtime = { |
2fd1f0408
|
221 |
.clock_getres = hrtimer_get_res, |
422857776
|
222 |
.clock_get = posix_clock_realtime_get, |
26f9a4796
|
223 |
.clock_set = posix_clock_realtime_set, |
f1f1d5ebd
|
224 |
.clock_adj = posix_clock_realtime_adj, |
a5cd28801
|
225 |
.nsleep = common_nsleep, |
59bd5bc24
|
226 |
.nsleep_restart = hrtimer_nanosleep_restart, |
838394fbf
|
227 |
.timer_create = common_timer_create, |
27722df16
|
228 |
.timer_set = common_timer_set, |
a7319fa25
|
229 |
.timer_get = common_timer_get, |
6761c6702
|
230 |
.timer_del = common_timer_del, |
1da177e4c
|
231 |
}; |
becf8b5d0
|
232 |
struct k_clock clock_monotonic = { |
2fd1f0408
|
233 234 |
.clock_getres = hrtimer_get_res, .clock_get = posix_ktime_get_ts, |
a5cd28801
|
235 |
.nsleep = common_nsleep, |
59bd5bc24
|
236 |
.nsleep_restart = hrtimer_nanosleep_restart, |
838394fbf
|
237 |
.timer_create = common_timer_create, |
27722df16
|
238 |
.timer_set = common_timer_set, |
a7319fa25
|
239 |
.timer_get = common_timer_get, |
6761c6702
|
240 |
.timer_del = common_timer_del, |
1da177e4c
|
241 |
}; |
2d42244ae
|
242 |
struct k_clock clock_monotonic_raw = { |
2fd1f0408
|
243 244 |
.clock_getres = hrtimer_get_res, .clock_get = posix_get_monotonic_raw, |
2d42244ae
|
245 |
}; |
da15cfdae
|
246 |
struct k_clock clock_realtime_coarse = { |
2fd1f0408
|
247 248 |
.clock_getres = posix_get_coarse_res, .clock_get = posix_get_realtime_coarse, |
da15cfdae
|
249 250 |
}; struct k_clock clock_monotonic_coarse = { |
2fd1f0408
|
251 252 |
.clock_getres = posix_get_coarse_res, .clock_get = posix_get_monotonic_coarse, |
da15cfdae
|
253 |
}; |
7fdd7f890
|
254 255 256 257 258 259 260 261 262 263 |
struct k_clock clock_boottime = { .clock_getres = hrtimer_get_res, .clock_get = posix_get_boottime, .nsleep = common_nsleep, .nsleep_restart = hrtimer_nanosleep_restart, .timer_create = common_timer_create, .timer_set = common_timer_set, .timer_get = common_timer_get, .timer_del = common_timer_del, }; |
1da177e4c
|
264 |
|
527087374
|
265 266 267 268 269 |
posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime); posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic); posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw); posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse); posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse); |
7fdd7f890
|
270 |
posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime); |
1da177e4c
|
271 272 |
posix_timers_cache = kmem_cache_create("posix_timers_cache", |
040b5c6f9
|
273 274 |
sizeof (struct k_itimer), 0, SLAB_PANIC, NULL); |
1da177e4c
|
275 276 277 278 279 |
idr_init(&posix_timers_id); return 0; } __initcall(init_posix_timers); |
1da177e4c
|
280 281 |
static void schedule_next_timer(struct k_itimer *timr) { |
44f214755
|
282 |
struct hrtimer *timer = &timr->it.real.timer; |
becf8b5d0
|
283 |
if (timr->it.real.interval.tv64 == 0) |
1da177e4c
|
284 |
return; |
4d672e7ac
|
285 286 287 |
timr->it_overrun += (unsigned int) hrtimer_forward(timer, timer->base->get_time(), timr->it.real.interval); |
44f214755
|
288 |
|
1da177e4c
|
289 290 291 |
timr->it_overrun_last = timr->it_overrun; timr->it_overrun = -1; ++timr->it_requeue_pending; |
44f214755
|
292 |
hrtimer_restart(timer); |
1da177e4c
|
293 294 295 296 297 298 299 300 301 302 |
} /* * This function is exported for use by the signal deliver code. It is * called just prior to the info block being released and passes that * block to us. It's function is to update the overrun entry AND to * restart the timer. It should only be called if the timer is to be * restarted (i.e. we have flagged this in the sys_private entry of the * info block). * |
25985edce
|
303 |
* To protect against the timer going away while the interrupt is queued, |
1da177e4c
|
304 305 306 307 308 309 310 311 |
* we require that the it_requeue_pending flag be set. */ void do_schedule_next_timer(struct siginfo *info) { struct k_itimer *timr; unsigned long flags; timr = lock_timer(info->si_tid, &flags); |
becf8b5d0
|
312 313 314 315 316 |
if (timr && timr->it_requeue_pending == info->si_sys_private) { if (timr->it_clock < 0) posix_cpu_timer_schedule(timr); else schedule_next_timer(timr); |
1da177e4c
|
317 |
|
54da11749
|
318 |
info->si_overrun += timr->it_overrun_last; |
becf8b5d0
|
319 |
} |
b6557fbca
|
320 321 |
if (timr) unlock_timer(timr, flags); |
1da177e4c
|
322 |
} |
ba661292a
|
323 |
int posix_timer_event(struct k_itimer *timr, int si_private) |
1da177e4c
|
324 |
{ |
27af4245b
|
325 326 |
struct task_struct *task; int shared, ret = -1; |
ba661292a
|
327 328 329 330 331 332 333 334 335 336 337 |
/* * FIXME: if ->sigq is queued we can race with * dequeue_signal()->do_schedule_next_timer(). * * If dequeue_signal() sees the "right" value of * si_sys_private it calls do_schedule_next_timer(). * We re-queue ->sigq and drop ->it_lock(). * do_schedule_next_timer() locks the timer * and re-schedules it while ->sigq is pending. * Not really bad, but not that we want. */ |
1da177e4c
|
338 |
timr->sigq->info.si_sys_private = si_private; |
1da177e4c
|
339 |
|
27af4245b
|
340 341 342 343 344 345 346 |
rcu_read_lock(); task = pid_task(timr->it_pid, PIDTYPE_PID); if (task) { shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID); ret = send_sigqueue(timr->sigq, task, shared); } rcu_read_unlock(); |
4aa736117
|
347 348 |
/* If we failed to send the signal the timer stops. */ return ret > 0; |
1da177e4c
|
349 350 351 352 353 354 355 356 357 358 |
} EXPORT_SYMBOL_GPL(posix_timer_event); /* * This function gets called when a POSIX.1b interval timer expires. It * is used as a callback from the kernel internal timer. The * run_timer_list code ALWAYS calls with interrupts on. * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. */ |
c9cb2e3d7
|
359 |
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) |
1da177e4c
|
360 |
{ |
05cfb614d
|
361 |
struct k_itimer *timr; |
1da177e4c
|
362 |
unsigned long flags; |
becf8b5d0
|
363 |
int si_private = 0; |
c9cb2e3d7
|
364 |
enum hrtimer_restart ret = HRTIMER_NORESTART; |
1da177e4c
|
365 |
|
05cfb614d
|
366 |
timr = container_of(timer, struct k_itimer, it.real.timer); |
1da177e4c
|
367 |
spin_lock_irqsave(&timr->it_lock, flags); |
1da177e4c
|
368 |
|
becf8b5d0
|
369 370 |
if (timr->it.real.interval.tv64 != 0) si_private = ++timr->it_requeue_pending; |
1da177e4c
|
371 |
|
becf8b5d0
|
372 373 374 375 376 377 378 |
if (posix_timer_event(timr, si_private)) { /* * signal was not sent because of sig_ignor * we will not get a call back to restart it AND * it should be restarted. */ if (timr->it.real.interval.tv64 != 0) { |
58229a189
|
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
ktime_t now = hrtimer_cb_get_time(timer); /* * FIXME: What we really want, is to stop this * timer completely and restart it in case the * SIG_IGN is removed. This is a non trivial * change which involves sighand locking * (sigh !), which we don't want to do late in * the release cycle. * * For now we just let timers with an interval * less than a jiffie expire every jiffie to * avoid softirq starvation in case of SIG_IGN * and a very small interval, which would put * the timer right back on the softirq pending * list. By moving now ahead of time we trick * hrtimer_forward() to expire the timer * later, while we still maintain the overrun * accuracy, but have some inconsistency in * the timer_gettime() case. This is at least * better than a starved softirq. A more * complex fix which solves also another related * inconsistency is already in the pipeline. */ #ifdef CONFIG_HIGH_RES_TIMERS { ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ); if (timr->it.real.interval.tv64 < kj.tv64) now = ktime_add(now, kj); } #endif |
4d672e7ac
|
411 |
timr->it_overrun += (unsigned int) |
58229a189
|
412 |
hrtimer_forward(timer, now, |
becf8b5d0
|
413 414 |
timr->it.real.interval); ret = HRTIMER_RESTART; |
a0a0c28c1
|
415 |
++timr->it_requeue_pending; |
1da177e4c
|
416 |
} |
1da177e4c
|
417 |
} |
1da177e4c
|
418 |
|
becf8b5d0
|
419 420 421 |
unlock_timer(timr, flags); return ret; } |
1da177e4c
|
422 |
|
27af4245b
|
423 |
static struct pid *good_sigevent(sigevent_t * event) |
1da177e4c
|
424 425 426 427 |
{ struct task_struct *rtn = current->group_leader; if ((event->sigev_notify & SIGEV_THREAD_ID ) && |
8dc86af00
|
428 |
(!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) || |
bac0abd61
|
429 |
!same_thread_group(rtn, current) || |
1da177e4c
|
430 431 432 433 434 435 |
(event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL)) return NULL; if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) && ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX))) return NULL; |
27af4245b
|
436 |
return task_pid(rtn); |
1da177e4c
|
437 |
} |
527087374
|
438 439 |
void posix_timers_register_clock(const clockid_t clock_id, struct k_clock *new_clock) |
1da177e4c
|
440 441 |
{ if ((unsigned) clock_id >= MAX_CLOCKS) { |
4359ac0ac
|
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
printk(KERN_WARNING "POSIX clock register failed for clock_id %d ", clock_id); return; } if (!new_clock->clock_get) { printk(KERN_WARNING "POSIX clock id %d lacks clock_get() ", clock_id); return; } if (!new_clock->clock_getres) { printk(KERN_WARNING "POSIX clock id %d lacks clock_getres() ", |
1da177e4c
|
457 458 459 460 461 462 |
clock_id); return; } posix_clocks[clock_id] = *new_clock; } |
527087374
|
463 |
EXPORT_SYMBOL_GPL(posix_timers_register_clock); |
1da177e4c
|
464 465 466 467 |
static struct k_itimer * alloc_posix_timer(void) { struct k_itimer *tmr; |
c37622296
|
468 |
tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); |
1da177e4c
|
469 470 |
if (!tmr) return tmr; |
1da177e4c
|
471 472 |
if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { kmem_cache_free(posix_timers_cache, tmr); |
aa94fbd5c
|
473 |
return NULL; |
1da177e4c
|
474 |
} |
ba661292a
|
475 |
memset(&tmr->sigq->info, 0, sizeof(siginfo_t)); |
1da177e4c
|
476 477 |
return tmr; } |
8af088710
|
478 479 480 481 482 483 |
static void k_itimer_rcu_free(struct rcu_head *head) { struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu); kmem_cache_free(posix_timers_cache, tmr); } |
1da177e4c
|
484 485 486 487 488 489 490 491 492 493 |
#define IT_ID_SET 1 #define IT_ID_NOT_SET 0 static void release_posix_timer(struct k_itimer *tmr, int it_id_set) { if (it_id_set) { unsigned long flags; spin_lock_irqsave(&idr_lock, flags); idr_remove(&posix_timers_id, tmr->it_id); spin_unlock_irqrestore(&idr_lock, flags); } |
899921025
|
494 |
put_pid(tmr->it_pid); |
1da177e4c
|
495 |
sigqueue_free(tmr->sigq); |
8af088710
|
496 |
call_rcu(&tmr->it.rcu, k_itimer_rcu_free); |
1da177e4c
|
497 |
} |
cc785ac22
|
498 499 500 |
static struct k_clock *clockid_to_kclock(const clockid_t id) { if (id < 0) |
0606f422b
|
501 502 |
return (id & CLOCKFD_MASK) == CLOCKFD ? &clock_posix_dynamic : &clock_posix_cpu; |
cc785ac22
|
503 504 505 506 507 |
if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres) return NULL; return &posix_clocks[id]; } |
838394fbf
|
508 509 510 511 512 |
static int common_timer_create(struct k_itimer *new_timer) { hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); return 0; } |
1da177e4c
|
513 |
/* Create a POSIX.1b interval timer. */ |
362e9c07c
|
514 515 516 |
SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, struct sigevent __user *, timer_event_spec, timer_t __user *, created_timer_id) |
1da177e4c
|
517 |
{ |
838394fbf
|
518 |
struct k_clock *kc = clockid_to_kclock(which_clock); |
2cd499e38
|
519 |
struct k_itimer *new_timer; |
ef864c958
|
520 |
int error, new_timer_id; |
1da177e4c
|
521 522 |
sigevent_t event; int it_id_set = IT_ID_NOT_SET; |
838394fbf
|
523 |
if (!kc) |
1da177e4c
|
524 |
return -EINVAL; |
838394fbf
|
525 526 |
if (!kc->timer_create) return -EOPNOTSUPP; |
1da177e4c
|
527 528 529 530 531 532 533 534 535 536 537 538 |
new_timer = alloc_posix_timer(); if (unlikely(!new_timer)) return -EAGAIN; spin_lock_init(&new_timer->it_lock); retry: if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) { error = -EAGAIN; goto out; } spin_lock_irq(&idr_lock); |
5a51b713c
|
539 |
error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id); |
1da177e4c
|
540 |
spin_unlock_irq(&idr_lock); |
ef864c958
|
541 542 543 |
if (error) { if (error == -EAGAIN) goto retry; |
1da177e4c
|
544 |
/* |
0b0a3e7b1
|
545 |
* Weird looking, but we return EAGAIN if the IDR is |
1da177e4c
|
546 547 548 549 550 551 552 553 554 555 |
* full (proper POSIX return value for this) */ error = -EAGAIN; goto out; } it_id_set = IT_ID_SET; new_timer->it_id = (timer_t) new_timer_id; new_timer->it_clock = which_clock; new_timer->it_overrun = -1; |
1da177e4c
|
556 |
|
1da177e4c
|
557 558 559 560 561 |
if (timer_event_spec) { if (copy_from_user(&event, timer_event_spec, sizeof (event))) { error = -EFAULT; goto out; } |
36b2f0460
|
562 |
rcu_read_lock(); |
899921025
|
563 |
new_timer->it_pid = get_pid(good_sigevent(&event)); |
36b2f0460
|
564 |
rcu_read_unlock(); |
899921025
|
565 |
if (!new_timer->it_pid) { |
1da177e4c
|
566 567 568 569 |
error = -EINVAL; goto out; } } else { |
5a9fa7307
|
570 571 572 |
event.sigev_notify = SIGEV_SIGNAL; event.sigev_signo = SIGALRM; event.sigev_value.sival_int = new_timer->it_id; |
899921025
|
573 |
new_timer->it_pid = get_pid(task_tgid(current)); |
1da177e4c
|
574 |
} |
5a9fa7307
|
575 576 577 |
new_timer->it_sigev_notify = event.sigev_notify; new_timer->sigq->info.si_signo = event.sigev_signo; new_timer->sigq->info.si_value = event.sigev_value; |
717835d94
|
578 |
new_timer->sigq->info.si_tid = new_timer->it_id; |
5a9fa7307
|
579 |
new_timer->sigq->info.si_code = SI_TIMER; |
717835d94
|
580 |
|
2b08de007
|
581 582 583 584 585 |
if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) { error = -EFAULT; goto out; } |
838394fbf
|
586 |
error = kc->timer_create(new_timer); |
45e0fffc8
|
587 588 |
if (error) goto out; |
36b2f0460
|
589 |
spin_lock_irq(¤t->sighand->siglock); |
27af4245b
|
590 |
new_timer->it_signal = current->signal; |
36b2f0460
|
591 592 |
list_add(&new_timer->list, ¤t->signal->posix_timers); spin_unlock_irq(¤t->sighand->siglock); |
ef864c958
|
593 594 |
return 0; |
838394fbf
|
595 |
/* |
1da177e4c
|
596 597 598 599 600 |
* In the case of the timer belonging to another task, after * the task is unlocked, the timer is owned by the other task * and may cease to exist at any time. Don't use or modify * new_timer after the unlock call. */ |
1da177e4c
|
601 |
out: |
ef864c958
|
602 |
release_posix_timer(new_timer, it_id_set); |
1da177e4c
|
603 604 605 606 |
return error; } /* |
1da177e4c
|
607 608 609 610 611 612 |
* Locking issues: We need to protect the result of the id look up until * we get the timer locked down so it is not deleted under us. The * removal is done under the idr spinlock so we use that here to bridge * the find to the timer lock. To avoid a dead lock, the timer id MUST * be release with out holding the timer lock. */ |
20f33a03f
|
613 |
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) |
1da177e4c
|
614 615 |
{ struct k_itimer *timr; |
8af088710
|
616 617 |
rcu_read_lock(); |
31d928456
|
618 |
timr = idr_find(&posix_timers_id, (int)timer_id); |
1da177e4c
|
619 |
if (timr) { |
8af088710
|
620 |
spin_lock_irqsave(&timr->it_lock, *flags); |
899921025
|
621 |
if (timr->it_signal == current->signal) { |
8af088710
|
622 |
rcu_read_unlock(); |
31d928456
|
623 624 |
return timr; } |
8af088710
|
625 |
spin_unlock_irqrestore(&timr->it_lock, *flags); |
31d928456
|
626 |
} |
8af088710
|
627 |
rcu_read_unlock(); |
1da177e4c
|
628 |
|
31d928456
|
629 |
return NULL; |
1da177e4c
|
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 |
} /* * Get the time remaining on a POSIX.1b interval timer. This function * is ALWAYS called with spin_lock_irq on the timer, thus it must not * mess with irq. * * We have a couple of messes to clean up here. First there is the case * of a timer that has a requeue pending. These timers should appear to * be in the timer list with an expiry as if we were to requeue them * now. * * The second issue is the SIGEV_NONE timer which may be active but is * not really ever put in the timer list (to save system resources). * This timer may be expired, and if so, we will do it here. Otherwise * it is the same as a requeue pending timer WRT to what we should * report. */ static void common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) { |
3b98a5328
|
651 |
ktime_t now, remaining, iv; |
becf8b5d0
|
652 |
struct hrtimer *timer = &timr->it.real.timer; |
1da177e4c
|
653 |
|
becf8b5d0
|
654 |
memset(cur_setting, 0, sizeof(struct itimerspec)); |
becf8b5d0
|
655 |
|
3b98a5328
|
656 |
iv = timr->it.real.interval; |
becf8b5d0
|
657 |
/* interval timer ? */ |
3b98a5328
|
658 659 660 661 |
if (iv.tv64) cur_setting->it_interval = ktime_to_timespec(iv); else if (!hrtimer_active(timer) && (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) |
becf8b5d0
|
662 |
return; |
3b98a5328
|
663 664 |
now = timer->base->get_time(); |
becf8b5d0
|
665 |
/* |
3b98a5328
|
666 667 668 |
* When a requeue is pending or this is a SIGEV_NONE * timer move the expiry time forward by intervals, so * expiry is > now. |
becf8b5d0
|
669 |
*/ |
3b98a5328
|
670 671 |
if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING || (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) |
4d672e7ac
|
672 |
timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv); |
3b98a5328
|
673 |
|
cc584b213
|
674 |
remaining = ktime_sub(hrtimer_get_expires(timer), now); |
becf8b5d0
|
675 |
/* Return 0 only, when the timer is expired and not pending */ |
3b98a5328
|
676 677 678 679 680 681 682 683 |
if (remaining.tv64 <= 0) { /* * A single shot SIGEV_NONE timer must return 0, when * it is expired ! */ if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) cur_setting->it_value.tv_nsec = 1; } else |
becf8b5d0
|
684 |
cur_setting->it_value = ktime_to_timespec(remaining); |
1da177e4c
|
685 686 687 |
} /* Get the time remaining on a POSIX.1b interval timer. */ |
362e9c07c
|
688 689 |
SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, struct itimerspec __user *, setting) |
1da177e4c
|
690 |
{ |
1da177e4c
|
691 |
struct itimerspec cur_setting; |
a7319fa25
|
692 693 |
struct k_itimer *timr; struct k_clock *kc; |
1da177e4c
|
694 |
unsigned long flags; |
a7319fa25
|
695 |
int ret = 0; |
1da177e4c
|
696 697 698 699 |
timr = lock_timer(timer_id, &flags); if (!timr) return -EINVAL; |
a7319fa25
|
700 701 702 703 704 |
kc = clockid_to_kclock(timr->it_clock); if (WARN_ON_ONCE(!kc || !kc->timer_get)) ret = -EINVAL; else kc->timer_get(timr, &cur_setting); |
1da177e4c
|
705 706 |
unlock_timer(timr, flags); |
a7319fa25
|
707 |
if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting))) |
1da177e4c
|
708 |
return -EFAULT; |
a7319fa25
|
709 |
return ret; |
1da177e4c
|
710 |
} |
becf8b5d0
|
711 |
|
1da177e4c
|
712 713 714 715 716 717 718 719 720 |
/* * Get the number of overruns of a POSIX.1b interval timer. This is to * be the overrun of the timer last delivered. At the same time we are * accumulating overruns on the next timer. The overrun is frozen when * the signal is delivered, either at the notify time (if the info block * is not queued) or at the actual delivery time (as we are informed by * the call back to do_schedule_next_timer(). So all we need to do is * to pick up the frozen overrun. */ |
362e9c07c
|
721 |
SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) |
1da177e4c
|
722 723 724 |
{ struct k_itimer *timr; int overrun; |
5ba253313
|
725 |
unsigned long flags; |
1da177e4c
|
726 727 728 729 730 731 732 733 734 735 |
timr = lock_timer(timer_id, &flags); if (!timr) return -EINVAL; overrun = timr->it_overrun_last; unlock_timer(timr, flags); return overrun; } |
1da177e4c
|
736 737 738 |
/* Set a POSIX.1b interval timer. */ /* timr->it_lock is taken. */ |
858119e15
|
739 |
static int |
1da177e4c
|
740 741 742 |
common_timer_set(struct k_itimer *timr, int flags, struct itimerspec *new_setting, struct itimerspec *old_setting) { |
becf8b5d0
|
743 |
struct hrtimer *timer = &timr->it.real.timer; |
7978672c4
|
744 |
enum hrtimer_mode mode; |
1da177e4c
|
745 746 747 748 749 |
if (old_setting) common_timer_get(timr, old_setting); /* disable the timer */ |
becf8b5d0
|
750 |
timr->it.real.interval.tv64 = 0; |
1da177e4c
|
751 752 753 754 |
/* * careful here. If smp we could be in the "fire" routine which will * be spinning as we hold the lock. But this is ONLY an SMP issue. */ |
becf8b5d0
|
755 |
if (hrtimer_try_to_cancel(timer) < 0) |
1da177e4c
|
756 |
return TIMER_RETRY; |
1da177e4c
|
757 758 759 760 |
timr->it_requeue_pending = (timr->it_requeue_pending + 2) & ~REQUEUE_PENDING; timr->it_overrun_last = 0; |
1da177e4c
|
761 |
|
becf8b5d0
|
762 763 764 |
/* switch off the timer when it_value is zero */ if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) return 0; |
1da177e4c
|
765 |
|
c9cb2e3d7
|
766 |
mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; |
7978672c4
|
767 |
hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); |
7978672c4
|
768 |
timr->it.real.timer.function = posix_timer_fn; |
becf8b5d0
|
769 |
|
cc584b213
|
770 |
hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value)); |
becf8b5d0
|
771 772 773 774 775 |
/* Convert interval */ timr->it.real.interval = timespec_to_ktime(new_setting->it_interval); /* SIGEV_NONE timers are not queued ! See common_timer_get */ |
952bbc87f
|
776 777 |
if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) { /* Setup correct expiry time for relative timers */ |
5a7780e72
|
778 |
if (mode == HRTIMER_MODE_REL) { |
cc584b213
|
779 |
hrtimer_add_expires(timer, timer->base->get_time()); |
5a7780e72
|
780 |
} |
becf8b5d0
|
781 |
return 0; |
952bbc87f
|
782 |
} |
becf8b5d0
|
783 |
|
cc584b213
|
784 |
hrtimer_start_expires(timer, mode); |
1da177e4c
|
785 786 787 788 |
return 0; } /* Set a POSIX.1b interval timer */ |
362e9c07c
|
789 790 791 |
SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, const struct itimerspec __user *, new_setting, struct itimerspec __user *, old_setting) |
1da177e4c
|
792 793 794 795 |
{ struct k_itimer *timr; struct itimerspec new_spec, old_spec; int error = 0; |
5ba253313
|
796 |
unsigned long flag; |
1da177e4c
|
797 |
struct itimerspec *rtn = old_setting ? &old_spec : NULL; |
27722df16
|
798 |
struct k_clock *kc; |
1da177e4c
|
799 800 801 802 803 804 |
if (!new_setting) return -EINVAL; if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) return -EFAULT; |
becf8b5d0
|
805 806 |
if (!timespec_valid(&new_spec.it_interval) || !timespec_valid(&new_spec.it_value)) |
1da177e4c
|
807 808 809 810 811 |
return -EINVAL; retry: timr = lock_timer(timer_id, &flag); if (!timr) return -EINVAL; |
27722df16
|
812 813 814 815 816 |
kc = clockid_to_kclock(timr->it_clock); if (WARN_ON_ONCE(!kc || !kc->timer_set)) error = -EINVAL; else error = kc->timer_set(timr, flags, &new_spec, rtn); |
1da177e4c
|
817 818 819 820 821 822 |
unlock_timer(timr, flag); if (error == TIMER_RETRY) { rtn = NULL; // We already got the old time... goto retry; } |
becf8b5d0
|
823 824 |
if (old_setting && !error && copy_to_user(old_setting, &old_spec, sizeof (old_spec))) |
1da177e4c
|
825 826 827 828 |
error = -EFAULT; return error; } |
6761c6702
|
829 |
static int common_timer_del(struct k_itimer *timer) |
1da177e4c
|
830 |
{ |
becf8b5d0
|
831 |
timer->it.real.interval.tv64 = 0; |
f972be33c
|
832 |
|
becf8b5d0
|
833 |
if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0) |
1da177e4c
|
834 |
return TIMER_RETRY; |
1da177e4c
|
835 836 837 838 839 |
return 0; } static inline int timer_delete_hook(struct k_itimer *timer) { |
6761c6702
|
840 841 842 843 844 |
struct k_clock *kc = clockid_to_kclock(timer->it_clock); if (WARN_ON_ONCE(!kc || !kc->timer_del)) return -EINVAL; return kc->timer_del(timer); |
1da177e4c
|
845 846 847 |
} /* Delete a POSIX.1b interval timer. */ |
362e9c07c
|
848 |
SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) |
1da177e4c
|
849 850 |
{ struct k_itimer *timer; |
5ba253313
|
851 |
unsigned long flags; |
1da177e4c
|
852 |
|
1da177e4c
|
853 |
retry_delete: |
1da177e4c
|
854 855 856 |
timer = lock_timer(timer_id, &flags); if (!timer) return -EINVAL; |
becf8b5d0
|
857 |
if (timer_delete_hook(timer) == TIMER_RETRY) { |
1da177e4c
|
858 859 860 |
unlock_timer(timer, flags); goto retry_delete; } |
becf8b5d0
|
861 |
|
1da177e4c
|
862 863 864 865 866 867 868 |
spin_lock(¤t->sighand->siglock); list_del(&timer->list); spin_unlock(¤t->sighand->siglock); /* * This keeps any tasks waiting on the spin lock from thinking * they got something (see the lock code above). */ |
899921025
|
869 |
timer->it_signal = NULL; |
4b7a13042
|
870 |
|
1da177e4c
|
871 872 873 874 |
unlock_timer(timer, flags); release_posix_timer(timer, IT_ID_SET); return 0; } |
becf8b5d0
|
875 |
|
1da177e4c
|
876 877 878 |
/* * return timer owned by the process, used by exit_itimers */ |
858119e15
|
879 |
static void itimer_delete(struct k_itimer *timer) |
1da177e4c
|
880 881 |
{ unsigned long flags; |
1da177e4c
|
882 |
retry_delete: |
1da177e4c
|
883 |
spin_lock_irqsave(&timer->it_lock, flags); |
becf8b5d0
|
884 |
if (timer_delete_hook(timer) == TIMER_RETRY) { |
1da177e4c
|
885 886 887 |
unlock_timer(timer, flags); goto retry_delete; } |
1da177e4c
|
888 889 890 891 892 |
list_del(&timer->list); /* * This keeps any tasks waiting on the spin lock from thinking * they got something (see the lock code above). */ |
899921025
|
893 |
timer->it_signal = NULL; |
4b7a13042
|
894 |
|
1da177e4c
|
895 896 897 898 899 |
unlock_timer(timer, flags); release_posix_timer(timer, IT_ID_SET); } /* |
25f407f0b
|
900 |
* This is called by do_exit or de_thread, only when there are no more |
1da177e4c
|
901 902 903 904 905 906 907 908 909 910 911 |
* references to the shared signal_struct. */ void exit_itimers(struct signal_struct *sig) { struct k_itimer *tmr; while (!list_empty(&sig->posix_timers)) { tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); itimer_delete(tmr); } } |
362e9c07c
|
912 913 |
SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, const struct timespec __user *, tp) |
1da177e4c
|
914 |
{ |
26f9a4796
|
915 |
struct k_clock *kc = clockid_to_kclock(which_clock); |
1da177e4c
|
916 |
struct timespec new_tp; |
26f9a4796
|
917 |
if (!kc || !kc->clock_set) |
1da177e4c
|
918 |
return -EINVAL; |
26f9a4796
|
919 |
|
1da177e4c
|
920 921 |
if (copy_from_user(&new_tp, tp, sizeof (*tp))) return -EFAULT; |
26f9a4796
|
922 |
return kc->clock_set(which_clock, &new_tp); |
1da177e4c
|
923 |
} |
362e9c07c
|
924 925 |
SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, struct timespec __user *,tp) |
1da177e4c
|
926 |
{ |
422857776
|
927 |
struct k_clock *kc = clockid_to_kclock(which_clock); |
1da177e4c
|
928 929 |
struct timespec kernel_tp; int error; |
422857776
|
930 |
if (!kc) |
1da177e4c
|
931 |
return -EINVAL; |
422857776
|
932 933 |
error = kc->clock_get(which_clock, &kernel_tp); |
1da177e4c
|
934 935 936 937 |
if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp))) error = -EFAULT; return error; |
1da177e4c
|
938 |
} |
f1f1d5ebd
|
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 |
SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, struct timex __user *, utx) { struct k_clock *kc = clockid_to_kclock(which_clock); struct timex ktx; int err; if (!kc) return -EINVAL; if (!kc->clock_adj) return -EOPNOTSUPP; if (copy_from_user(&ktx, utx, sizeof(ktx))) return -EFAULT; err = kc->clock_adj(which_clock, &ktx); if (!err && copy_to_user(utx, &ktx, sizeof(ktx))) return -EFAULT; return err; } |
362e9c07c
|
961 962 |
SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, struct timespec __user *, tp) |
1da177e4c
|
963 |
{ |
e5e542eea
|
964 |
struct k_clock *kc = clockid_to_kclock(which_clock); |
1da177e4c
|
965 966 |
struct timespec rtn_tp; int error; |
e5e542eea
|
967 |
if (!kc) |
1da177e4c
|
968 |
return -EINVAL; |
e5e542eea
|
969 |
error = kc->clock_getres(which_clock, &rtn_tp); |
1da177e4c
|
970 |
|
e5e542eea
|
971 |
if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) |
1da177e4c
|
972 |
error = -EFAULT; |
1da177e4c
|
973 974 975 |
return error; } |
1da177e4c
|
976 |
/* |
97735f25d
|
977 978 979 980 981 |
* nanosleep for monotonic and realtime clocks */ static int common_nsleep(const clockid_t which_clock, int flags, struct timespec *tsave, struct timespec __user *rmtp) { |
080344b98
|
982 983 984 |
return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL, which_clock); |
97735f25d
|
985 |
} |
1da177e4c
|
986 |
|
362e9c07c
|
987 988 989 |
SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, const struct timespec __user *, rqtp, struct timespec __user *, rmtp) |
1da177e4c
|
990 |
{ |
a5cd28801
|
991 |
struct k_clock *kc = clockid_to_kclock(which_clock); |
1da177e4c
|
992 |
struct timespec t; |
1da177e4c
|
993 |
|
a5cd28801
|
994 |
if (!kc) |
1da177e4c
|
995 |
return -EINVAL; |
a5cd28801
|
996 997 |
if (!kc->nsleep) return -ENANOSLEEP_NOTSUP; |
1da177e4c
|
998 999 1000 |
if (copy_from_user(&t, rqtp, sizeof (struct timespec))) return -EFAULT; |
5f82b2b77
|
1001 |
if (!timespec_valid(&t)) |
1da177e4c
|
1002 |
return -EINVAL; |
a5cd28801
|
1003 |
return kc->nsleep(which_clock, flags, &t, rmtp); |
1da177e4c
|
1004 |
} |
1711ef386
|
1005 1006 |
/* |
1711ef386
|
1007 1008 1009 |
* This will restart clock_nanosleep. This is required only by * compat_clock_nanosleep_restart for now. */ |
59bd5bc24
|
1010 |
long clock_nanosleep_restart(struct restart_block *restart_block) |
1711ef386
|
1011 |
{ |
ab8177bc5
|
1012 |
clockid_t which_clock = restart_block->nanosleep.clockid; |
59bd5bc24
|
1013 1014 1015 1016 |
struct k_clock *kc = clockid_to_kclock(which_clock); if (WARN_ON_ONCE(!kc || !kc->nsleep_restart)) return -EINVAL; |
1711ef386
|
1017 |
|
59bd5bc24
|
1018 |
return kc->nsleep_restart(restart_block); |
1711ef386
|
1019 |
} |