Blame view

Documentation/tee.txt 9.23 KB
4297739f2   Mauro Carvalho Chehab   tee.txt: standard...
1
  =============
6a6e77006   Jens Wiklander   Documentation: te...
2
  TEE subsystem
4297739f2   Mauro Carvalho Chehab   tee.txt: standard...
3
  =============
6a6e77006   Jens Wiklander   Documentation: te...
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
  This document describes the TEE subsystem in Linux.
  
  A TEE (Trusted Execution Environment) is a trusted OS running in some
  secure environment, for example, TrustZone on ARM CPUs, or a separate
  secure co-processor etc. A TEE driver handles the details needed to
  communicate with the TEE.
  
  This subsystem deals with:
  
  - Registration of TEE drivers
  
  - Managing shared memory between Linux and the TEE
  
  - Providing a generic API to the TEE
  
  The TEE interface
  =================
  
  include/uapi/linux/tee.h defines the generic interface to a TEE.
  
  User space (the client) connects to the driver by opening /dev/tee[0-9]* or
  /dev/teepriv[0-9]*.
  
  - TEE_IOC_SHM_ALLOC allocates shared memory and returns a file descriptor
    which user space can mmap. When user space doesn't need the file
    descriptor any more, it should be closed. When shared memory isn't needed
    any longer it should be unmapped with munmap() to allow the reuse of
    memory.
  
  - TEE_IOC_VERSION lets user space know which TEE this driver handles and
e47cf0c95   Geert Uytterhoeven   Documentation: te...
34
    its capabilities.
6a6e77006   Jens Wiklander   Documentation: te...
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
  
  - TEE_IOC_OPEN_SESSION opens a new session to a Trusted Application.
  
  - TEE_IOC_INVOKE invokes a function in a Trusted Application.
  
  - TEE_IOC_CANCEL may cancel an ongoing TEE_IOC_OPEN_SESSION or TEE_IOC_INVOKE.
  
  - TEE_IOC_CLOSE_SESSION closes a session to a Trusted Application.
  
  There are two classes of clients, normal clients and supplicants. The latter is
  a helper process for the TEE to access resources in Linux, for example file
  system access. A normal client opens /dev/tee[0-9]* and a supplicant opens
  /dev/teepriv[0-9].
  
  Much of the communication between clients and the TEE is opaque to the
  driver. The main job for the driver is to receive requests from the
  clients, forward them to the TEE and send back the results. In the case of
  supplicants the communication goes in the other direction, the TEE sends
  requests to the supplicant which then sends back the result.
  
  OP-TEE driver
  =============
  
  The OP-TEE driver handles OP-TEE [1] based TEEs. Currently it is only the ARM
  TrustZone based OP-TEE solution that is supported.
  
  Lowest level of communication with OP-TEE builds on ARM SMC Calling
  Convention (SMCCC) [2], which is the foundation for OP-TEE's SMC interface
  [3] used internally by the driver. Stacked on top of that is OP-TEE Message
  Protocol [4].
  
  OP-TEE SMC interface provides the basic functions required by SMCCC and some
  additional functions specific for OP-TEE. The most interesting functions are:
  
  - OPTEE_SMC_FUNCID_CALLS_UID (part of SMCCC) returns the version information
    which is then returned by TEE_IOC_VERSION
  
  - OPTEE_SMC_CALL_GET_OS_UUID returns the particular OP-TEE implementation, used
    to tell, for instance, a TrustZone OP-TEE apart from an OP-TEE running on a
    separate secure co-processor.
  
  - OPTEE_SMC_CALL_WITH_ARG drives the OP-TEE message protocol
  
  - OPTEE_SMC_GET_SHM_CONFIG lets the driver and OP-TEE agree on which memory
    range to used for shared memory between Linux and OP-TEE.
  
  The GlobalPlatform TEE Client API [5] is implemented on top of the generic
  TEE API.
  
  Picture of the relationship between the different components in the
4297739f2   Mauro Carvalho Chehab   tee.txt: standard...
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
  OP-TEE architecture::
  
        User space                  Kernel                   Secure world
        ~~~~~~~~~~                  ~~~~~~                   ~~~~~~~~~~~~
     +--------+                                             +-------------+
     | Client |                                             | Trusted     |
     +--------+                                             | Application |
        /\                                                  +-------------+
        || +----------+                                           /\
        || |tee-      |                                           ||
        || |supplicant|                                           \/
        || +----------+                                     +-------------+
        \/      /\                                          | TEE Internal|
     +-------+  ||                                          | API         |
     + TEE   |  ||            +--------+--------+           +-------------+
     | Client|  ||            | TEE    | OP-TEE |           | OP-TEE      |
     | API   |  \/            | subsys | driver |           | Trusted OS  |
     +-------+----------------+----+-------+----+-----------+-------------+
     |      Generic TEE API        |       |     OP-TEE MSG               |
     |      IOCTL (TEE_IOC_*)      |       |     SMCCC (OPTEE_SMC_CALL_*) |
     +-----------------------------+       +------------------------------+
6a6e77006   Jens Wiklander   Documentation: te...
106
107
108
109
110
111
112
  
  RPC (Remote Procedure Call) are requests from secure world to kernel driver
  or tee-supplicant. An RPC is identified by a special range of SMCCC return
  values from OPTEE_SMC_CALL_WITH_ARG. RPC messages which are intended for the
  kernel are handled by the kernel driver. Other RPC messages will be forwarded to
  tee-supplicant without further involvement of the driver, except switching
  shared memory buffer representation.
79bfa4e73   Rijo Thomas   Documentation: te...
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
  AMD-TEE driver
  ==============
  
  The AMD-TEE driver handles the communication with AMD's TEE environment. The
  TEE environment is provided by AMD Secure Processor.
  
  The AMD Secure Processor (formerly called Platform Security Processor or PSP)
  is a dedicated processor that features ARM TrustZone technology, along with a
  software-based Trusted Execution Environment (TEE) designed to enable
  third-party Trusted Applications. This feature is currently enabled only for
  APUs.
  
  The following picture shows a high level overview of AMD-TEE::
  
                                               |
      x86                                      |
                                               |
   User space            (Kernel space)        |    AMD Secure Processor (PSP)
   ~~~~~~~~~~            ~~~~~~~~~~~~~~        |    ~~~~~~~~~~~~~~~~~~~~~~~~~~
                                               |
   +--------+                                  |       +-------------+
   | Client |                                  |       | Trusted     |
   +--------+                                  |       | Application |
       /\                                      |       +-------------+
       ||                                      |             /\
       ||                                      |             ||
       ||                                      |             \/
       ||                                      |         +----------+
       ||                                      |         |   TEE    |
       ||                                      |         | Internal |
       \/                                      |         |   API    |
   +---------+           +-----------+---------+         +----------+
   | TEE     |           | TEE       | AMD-TEE |         | AMD-TEE  |
   | Client  |           | subsystem | driver  |         | Trusted  |
   | API     |           |           |         |         |   OS     |
   +---------+-----------+----+------+---------+---------+----------+
   |   Generic TEE API        |      | ASP     |      Mailbox       |
   |   IOCTL (TEE_IOC_*)      |      | driver  | Register Protocol  |
   +--------------------------+      +---------+--------------------+
  
  At the lowest level (in x86), the AMD Secure Processor (ASP) driver uses the
  CPU to PSP mailbox regsister to submit commands to the PSP. The format of the
  command buffer is opaque to the ASP driver. It's role is to submit commands to
  the secure processor and return results to AMD-TEE driver. The interface
  between AMD-TEE driver and AMD Secure Processor driver can be found in [6].
  
  The AMD-TEE driver packages the command buffer payload for processing in TEE.
  The command buffer format for the different TEE commands can be found in [7].
  
  The TEE commands supported by AMD-TEE Trusted OS are:
  * TEE_CMD_ID_LOAD_TA          - loads a Trusted Application (TA) binary into
                                  TEE environment.
  * TEE_CMD_ID_UNLOAD_TA        - unloads TA binary from TEE environment.
  * TEE_CMD_ID_OPEN_SESSION     - opens a session with a loaded TA.
  * TEE_CMD_ID_CLOSE_SESSION    - closes session with loaded TA
  * TEE_CMD_ID_INVOKE_CMD       - invokes a command with loaded TA
  * TEE_CMD_ID_MAP_SHARED_MEM   - maps shared memory
  * TEE_CMD_ID_UNMAP_SHARED_MEM - unmaps shared memory
  
  AMD-TEE Trusted OS is the firmware running on AMD Secure Processor.
  
  The AMD-TEE driver registers itself with TEE subsystem and implements the
  following driver function callbacks:
  
  * get_version - returns the driver implementation id and capability.
  * open - sets up the driver context data structure.
  * release - frees up driver resources.
  * open_session - loads the TA binary and opens session with loaded TA.
  * close_session -  closes session with loaded TA and unloads it.
  * invoke_func - invokes a command with loaded TA.
  
  cancel_req driver callback is not supported by AMD-TEE.
  
  The GlobalPlatform TEE Client API [5] can be used by the user space (client) to
  talk to AMD's TEE. AMD's TEE provides a secure environment for loading, opening
  a session, invoking commands and clossing session with TA.
4297739f2   Mauro Carvalho Chehab   tee.txt: standard...
189
190
  References
  ==========
6a6e77006   Jens Wiklander   Documentation: te...
191
  [1] https://github.com/OP-TEE/optee_os
4297739f2   Mauro Carvalho Chehab   tee.txt: standard...
192

6a6e77006   Jens Wiklander   Documentation: te...
193
  [2] http://infocenter.arm.com/help/topic/com.arm.doc.den0028a/index.html
4297739f2   Mauro Carvalho Chehab   tee.txt: standard...
194

6a6e77006   Jens Wiklander   Documentation: te...
195
  [3] drivers/tee/optee/optee_smc.h
4297739f2   Mauro Carvalho Chehab   tee.txt: standard...
196

6a6e77006   Jens Wiklander   Documentation: te...
197
  [4] drivers/tee/optee/optee_msg.h
4297739f2   Mauro Carvalho Chehab   tee.txt: standard...
198

6a6e77006   Jens Wiklander   Documentation: te...
199
200
  [5] http://www.globalplatform.org/specificationsdevice.asp look for
      "TEE Client API Specification v1.0" and click download.
79bfa4e73   Rijo Thomas   Documentation: te...
201
202
203
204
  
  [6] include/linux/psp-tee.h
  
  [7] drivers/tee/amdtee/amdtee_if.h