Blame view

Documentation/kprobes.txt 22.1 KB
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
  Title	: Kernel Probes (Kprobes)
  Authors	: Jim Keniston <jkenisto@us.ibm.com>
  	: Prasanna S Panchamukhi <prasanna@in.ibm.com>
  
  CONTENTS
  
  1. Concepts: Kprobes, Jprobes, Return Probes
  2. Architectures Supported
  3. Configuring Kprobes
  4. API Reference
  5. Kprobes Features and Limitations
  6. Probe Overhead
  7. TODO
  8. Kprobes Example
  9. Jprobes Example
  10. Kretprobes Example
  
  1. Concepts: Kprobes, Jprobes, Return Probes
  
  Kprobes enables you to dynamically break into any kernel routine and
  collect debugging and performance information non-disruptively. You
  can trap at almost any kernel code address, specifying a handler
  routine to be invoked when the breakpoint is hit.
  
  There are currently three types of probes: kprobes, jprobes, and
  kretprobes (also called return probes).  A kprobe can be inserted
  on virtually any instruction in the kernel.  A jprobe is inserted at
  the entry to a kernel function, and provides convenient access to the
  function's arguments.  A return probe fires when a specified function
  returns.
  
  In the typical case, Kprobes-based instrumentation is packaged as
  a kernel module.  The module's init function installs ("registers")
  one or more probes, and the exit function unregisters them.  A
  registration function such as register_kprobe() specifies where
  the probe is to be inserted and what handler is to be called when
  the probe is hit.
  
  The next three subsections explain how the different types of
  probes work.  They explain certain things that you'll need to
  know in order to make the best use of Kprobes -- e.g., the
  difference between a pre_handler and a post_handler, and how
  to use the maxactive and nmissed fields of a kretprobe.  But
  if you're in a hurry to start using Kprobes, you can skip ahead
  to section 2.
  
  1.1 How Does a Kprobe Work?
  
  When a kprobe is registered, Kprobes makes a copy of the probed
  instruction and replaces the first byte(s) of the probed instruction
  with a breakpoint instruction (e.g., int3 on i386 and x86_64).
  
  When a CPU hits the breakpoint instruction, a trap occurs, the CPU's
  registers are saved, and control passes to Kprobes via the
  notifier_call_chain mechanism.  Kprobes executes the "pre_handler"
  associated with the kprobe, passing the handler the addresses of the
  kprobe struct and the saved registers.
  
  Next, Kprobes single-steps its copy of the probed instruction.
  (It would be simpler to single-step the actual instruction in place,
  but then Kprobes would have to temporarily remove the breakpoint
  instruction.  This would open a small time window when another CPU
  could sail right past the probepoint.)
  
  After the instruction is single-stepped, Kprobes executes the
  "post_handler," if any, that is associated with the kprobe.
  Execution then continues with the instruction following the probepoint.
  
  1.2 How Does a Jprobe Work?
  
  A jprobe is implemented using a kprobe that is placed on a function's
  entry point.  It employs a simple mirroring principle to allow
  seamless access to the probed function's arguments.  The jprobe
  handler routine should have the same signature (arg list and return
  type) as the function being probed, and must always end by calling
  the Kprobes function jprobe_return().
  
  Here's how it works.  When the probe is hit, Kprobes makes a copy of
  the saved registers and a generous portion of the stack (see below).
  Kprobes then points the saved instruction pointer at the jprobe's
  handler routine, and returns from the trap.  As a result, control
  passes to the handler, which is presented with the same register and
  stack contents as the probed function.  When it is done, the handler
  calls jprobe_return(), which traps again to restore the original stack
  contents and processor state and switch to the probed function.
  
  By convention, the callee owns its arguments, so gcc may produce code
  that unexpectedly modifies that portion of the stack.  This is why
  Kprobes saves a copy of the stack and restores it after the jprobe
  handler has run.  Up to MAX_STACK_SIZE bytes are copied -- e.g.,
  64 bytes on i386.
  
  Note that the probed function's args may be passed on the stack
  or in registers (e.g., for x86_64 or for an i386 fastcall function).
  The jprobe will work in either case, so long as the handler's
  prototype matches that of the probed function.
  
  1.3 How Does a Return Probe Work?
  
  When you call register_kretprobe(), Kprobes establishes a kprobe at
  the entry to the function.  When the probed function is called and this
  probe is hit, Kprobes saves a copy of the return address, and replaces
  the return address with the address of a "trampoline."  The trampoline
  is an arbitrary piece of code -- typically just a nop instruction.
  At boot time, Kprobes registers a kprobe at the trampoline.
  
  When the probed function executes its return instruction, control
  passes to the trampoline and that probe is hit.  Kprobes' trampoline
  handler calls the user-specified handler associated with the kretprobe,
  then sets the saved instruction pointer to the saved return address,
  and that's where execution resumes upon return from the trap.
  
  While the probed function is executing, its return address is
  stored in an object of type kretprobe_instance.  Before calling
  register_kretprobe(), the user sets the maxactive field of the
  kretprobe struct to specify how many instances of the specified
  function can be probed simultaneously.  register_kretprobe()
  pre-allocates the indicated number of kretprobe_instance objects.
  
  For example, if the function is non-recursive and is called with a
  spinlock held, maxactive = 1 should be enough.  If the function is
  non-recursive and can never relinquish the CPU (e.g., via a semaphore
  or preemption), NR_CPUS should be enough.  If maxactive <= 0, it is
  set to a default value.  If CONFIG_PREEMPT is enabled, the default
  is max(10, 2*NR_CPUS).  Otherwise, the default is NR_CPUS.
  
  It's not a disaster if you set maxactive too low; you'll just miss
  some probes.  In the kretprobe struct, the nmissed field is set to
  zero when the return probe is registered, and is incremented every
  time the probed function is entered but there is no kretprobe_instance
  object available for establishing the return probe.
  
  2. Architectures Supported
  
  Kprobes, jprobes, and return probes are implemented on the following
  architectures:
  
  - i386
8861da31e   Jim Keniston   [PATCH] kprobes: ...
139
  - x86_64 (AMD-64, EM64T)
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
140
  - ppc64
8861da31e   Jim Keniston   [PATCH] kprobes: ...
141
  - ia64 (Does not support probes on instruction slot1.)
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
142
143
144
145
146
  - sparc64 (Return probes not yet implemented.)
  
  3. Configuring Kprobes
  
  When configuring the kernel using make menuconfig/xconfig/oldconfig,
8861da31e   Jim Keniston   [PATCH] kprobes: ...
147
148
149
150
151
152
  ensure that CONFIG_KPROBES is set to "y".  Under "Instrumentation
  Support", look for "Kprobes".
  
  So that you can load and unload Kprobes-based instrumentation modules,
  make sure "Loadable module support" (CONFIG_MODULES) and "Module
  unloading" (CONFIG_MODULE_UNLOAD) are set to "y".
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
153

09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
154
155
156
  Also make sure that CONFIG_KALLSYMS and perhaps even CONFIG_KALLSYMS_ALL
  are set to "y", since kallsyms_lookup_name() is used by the in-kernel
  kprobe address resolution code.
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
  
  If you need to insert a probe in the middle of a function, you may find
  it useful to "Compile the kernel with debug info" (CONFIG_DEBUG_INFO),
  so you can use "objdump -d -l vmlinux" to see the source-to-object
  code mapping.
  
  4. API Reference
  
  The Kprobes API includes a "register" function and an "unregister"
  function for each type of probe.  Here are terse, mini-man-page
  specifications for these functions and the associated probe handlers
  that you'll write.  See the latter half of this document for examples.
  
  4.1 register_kprobe
  
  #include <linux/kprobes.h>
  int register_kprobe(struct kprobe *kp);
  
  Sets a breakpoint at the address kp->addr.  When the breakpoint is
  hit, Kprobes calls kp->pre_handler.  After the probed instruction
  is single-stepped, Kprobe calls kp->post_handler.  If a fault
  occurs during execution of kp->pre_handler or kp->post_handler,
  or during single-stepping of the probed instruction, Kprobes calls
  kp->fault_handler.  Any or all handlers can be NULL.
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  NOTE:
  1. With the introduction of the "symbol_name" field to struct kprobe,
  the probepoint address resolution will now be taken care of by the kernel.
  The following will now work:
  
  	kp.symbol_name = "symbol_name";
  
  (64-bit powerpc intricacies such as function descriptors are handled
  transparently)
  
  2. Use the "offset" field of struct kprobe if the offset into the symbol
  to install a probepoint is known. This field is used to calculate the
  probepoint.
  
  3. Specify either the kprobe "symbol_name" OR the "addr". If both are
  specified, kprobe registration will fail with -EINVAL.
  
  4. With CISC architectures (such as i386 and x86_64), the kprobes code
  does not validate if the kprobe.addr is at an instruction boundary.
  Use "offset" with caution.
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
  register_kprobe() returns 0 on success, or a negative errno otherwise.
  
  User's pre-handler (kp->pre_handler):
  #include <linux/kprobes.h>
  #include <linux/ptrace.h>
  int pre_handler(struct kprobe *p, struct pt_regs *regs);
  
  Called with p pointing to the kprobe associated with the breakpoint,
  and regs pointing to the struct containing the registers saved when
  the breakpoint was hit.  Return 0 here unless you're a Kprobes geek.
  
  User's post-handler (kp->post_handler):
  #include <linux/kprobes.h>
  #include <linux/ptrace.h>
  void post_handler(struct kprobe *p, struct pt_regs *regs,
  	unsigned long flags);
  
  p and regs are as described for the pre_handler.  flags always seems
  to be zero.
  
  User's fault-handler (kp->fault_handler):
  #include <linux/kprobes.h>
  #include <linux/ptrace.h>
  int fault_handler(struct kprobe *p, struct pt_regs *regs, int trapnr);
  
  p and regs are as described for the pre_handler.  trapnr is the
  architecture-specific trap number associated with the fault (e.g.,
  on i386, 13 for a general protection fault or 14 for a page fault).
  Returns 1 if it successfully handled the exception.
  
  4.2 register_jprobe
  
  #include <linux/kprobes.h>
  int register_jprobe(struct jprobe *jp)
  
  Sets a breakpoint at the address jp->kp.addr, which must be the address
  of the first instruction of a function.  When the breakpoint is hit,
  Kprobes runs the handler whose address is jp->entry.
  
  The handler should have the same arg list and return type as the probed
  function; and just before it returns, it must call jprobe_return().
  (The handler never actually returns, since jprobe_return() returns
  control to Kprobes.)  If the probed function is declared asmlinkage,
  fastcall, or anything else that affects how args are passed, the
  handler's declaration must match.
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
246
247
248
249
250
  NOTE: A macro JPROBE_ENTRY is provided to handle architecture-specific
  aliasing of jp->entry. In the interest of portability, it is advised
  to use:
  
  	jp->entry = JPROBE_ENTRY(handler);
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
  register_jprobe() returns 0 on success, or a negative errno otherwise.
  
  4.3 register_kretprobe
  
  #include <linux/kprobes.h>
  int register_kretprobe(struct kretprobe *rp);
  
  Establishes a return probe for the function whose address is
  rp->kp.addr.  When that function returns, Kprobes calls rp->handler.
  You must set rp->maxactive appropriately before you call
  register_kretprobe(); see "How Does a Return Probe Work?" for details.
  
  register_kretprobe() returns 0 on success, or a negative errno
  otherwise.
  
  User's return-probe handler (rp->handler):
  #include <linux/kprobes.h>
  #include <linux/ptrace.h>
  int kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs);
  
  regs is as described for kprobe.pre_handler.  ri points to the
  kretprobe_instance object, of which the following fields may be
  of interest:
  - ret_addr: the return address
  - rp: points to the corresponding kretprobe object
  - task: points to the corresponding task struct
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
277
278
279
280
  
  The regs_return_value(regs) macro provides a simple abstraction to
  extract the return value from the appropriate register as defined by
  the architecture's ABI.
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
281
282
283
284
285
286
287
288
289
290
291
292
293
  The handler's return value is currently ignored.
  
  4.4 unregister_*probe
  
  #include <linux/kprobes.h>
  void unregister_kprobe(struct kprobe *kp);
  void unregister_jprobe(struct jprobe *jp);
  void unregister_kretprobe(struct kretprobe *rp);
  
  Removes the specified probe.  The unregister function can be called
  at any time after the probe has been registered.
  
  5. Kprobes Features and Limitations
8861da31e   Jim Keniston   [PATCH] kprobes: ...
294
295
296
  Kprobes allows multiple probes at the same address.  Currently,
  however, there cannot be multiple jprobes on the same function at
  the same time.
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
297
298
299
300
  
  In general, you can install a probe anywhere in the kernel.
  In particular, you can probe interrupt handlers.  Known exceptions
  are discussed in this section.
8861da31e   Jim Keniston   [PATCH] kprobes: ...
301
302
303
304
  The register_*probe functions will return -EINVAL if you attempt
  to install a probe in the code that implements Kprobes (mostly
  kernel/kprobes.c and arch/*/kernel/kprobes.c, but also functions such
  as do_page_fault and notifier_call_chain).
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
  
  If you install a probe in an inline-able function, Kprobes makes
  no attempt to chase down all inline instances of the function and
  install probes there.  gcc may inline a function without being asked,
  so keep this in mind if you're not seeing the probe hits you expect.
  
  A probe handler can modify the environment of the probed function
  -- e.g., by modifying kernel data structures, or by modifying the
  contents of the pt_regs struct (which are restored to the registers
  upon return from the breakpoint).  So Kprobes can be used, for example,
  to install a bug fix or to inject faults for testing.  Kprobes, of
  course, has no way to distinguish the deliberately injected faults
  from the accidental ones.  Don't drink and probe.
  
  Kprobes makes no attempt to prevent probe handlers from stepping on
  each other -- e.g., probing printk() and then calling printk() from a
8861da31e   Jim Keniston   [PATCH] kprobes: ...
321
322
323
324
325
326
327
328
  probe handler.  If a probe handler hits a probe, that second probe's
  handlers won't be run in that instance, and the kprobe.nmissed member
  of the second probe will be incremented.
  
  As of Linux v2.6.15-rc1, multiple handlers (or multiple instances of
  the same handler) may run concurrently on different CPUs.
  
  Kprobes does not use mutexes or allocate memory except during
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
329
330
331
332
333
334
335
336
337
338
339
340
341
  registration and unregistration.
  
  Probe handlers are run with preemption disabled.  Depending on the
  architecture, handlers may also run with interrupts disabled.  In any
  case, your handler should not yield the CPU (e.g., by attempting to
  acquire a semaphore).
  
  Since a return probe is implemented by replacing the return
  address with the trampoline's address, stack backtraces and calls
  to __builtin_return_address() will typically yield the trampoline's
  address instead of the real return address for kretprobed functions.
  (As far as we can tell, __builtin_return_address() is used only
  for instrumentation and error reporting.)
8861da31e   Jim Keniston   [PATCH] kprobes: ...
342
343
344
345
346
347
348
349
350
351
352
353
  If the number of times a function is called does not match the number
  of times it returns, registering a return probe on that function may
  produce undesirable results.  We have the do_exit() case covered.
  do_execve() and do_fork() are not an issue.  We're unaware of other
  specific cases where this could be a problem.
  
  If, upon entry to or exit from a function, the CPU is running on
  a stack other than that of the current task, registering a return
  probe on that function may produce undesirable results.  For this
  reason, Kprobes doesn't support return probes (or kprobes or jprobes)
  on the x86_64 version of __switch_to(); the registration functions
  return -EINVAL.
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
  
  6. Probe Overhead
  
  On a typical CPU in use in 2005, a kprobe hit takes 0.5 to 1.0
  microseconds to process.  Specifically, a benchmark that hits the same
  probepoint repeatedly, firing a simple handler each time, reports 1-2
  million hits per second, depending on the architecture.  A jprobe or
  return-probe hit typically takes 50-75% longer than a kprobe hit.
  When you have a return probe set on a function, adding a kprobe at
  the entry to that function adds essentially no overhead.
  
  Here are sample overhead figures (in usec) for different architectures.
  k = kprobe; j = jprobe; r = return probe; kr = kprobe + return probe
  on same function; jr = jprobe + return probe on same function
  
  i386: Intel Pentium M, 1495 MHz, 2957.31 bogomips
  k = 0.57 usec; j = 1.00; r = 0.92; kr = 0.99; jr = 1.40
  
  x86_64: AMD Opteron 246, 1994 MHz, 3971.48 bogomips
  k = 0.49 usec; j = 0.76; r = 0.80; kr = 0.82; jr = 1.07
  
  ppc64: POWER5 (gr), 1656 MHz (SMT disabled, 1 virtual CPU per physical CPU)
  k = 0.77 usec; j = 1.31; r = 1.26; kr = 1.45; jr = 1.99
  
  7. TODO
8861da31e   Jim Keniston   [PATCH] kprobes: ...
379
380
381
382
383
384
  a. SystemTap (http://sourceware.org/systemtap): Provides a simplified
  programming interface for probe-based instrumentation.  Try it out.
  b. Kernel return probes for sparc64.
  c. Support for other architectures.
  d. User-space probes.
  e. Watchpoint probes (which fire on data references).
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
385
386
387
388
389
390
391
392
393
394
  
  8. Kprobes Example
  
  Here's a sample kernel module showing the use of kprobes to dump a
  stack trace and selected i386 registers when do_fork() is called.
  ----- cut here -----
  /*kprobe_example.c*/
  #include <linux/kernel.h>
  #include <linux/module.h>
  #include <linux/kprobes.h>
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
  #include <linux/sched.h>
  
  /*For each probe you need to allocate a kprobe structure*/
  static struct kprobe kp;
  
  /*kprobe pre_handler: called just before the probed instruction is executed*/
  int handler_pre(struct kprobe *p, struct pt_regs *regs)
  {
  	printk("pre_handler: p->addr=0x%p, eip=%lx, eflags=0x%lx
  ",
  		p->addr, regs->eip, regs->eflags);
  	dump_stack();
  	return 0;
  }
  
  /*kprobe post_handler: called after the probed instruction is executed*/
  void handler_post(struct kprobe *p, struct pt_regs *regs, unsigned long flags)
  {
  	printk("post_handler: p->addr=0x%p, eflags=0x%lx
  ",
  		p->addr, regs->eflags);
  }
  
  /* fault_handler: this is called if an exception is generated for any
   * instruction within the pre- or post-handler, or when Kprobes
   * single-steps the probed instruction.
   */
  int handler_fault(struct kprobe *p, struct pt_regs *regs, int trapnr)
  {
  	printk("fault_handler: p->addr=0x%p, trap #%dn",
  		p->addr, trapnr);
  	/* Return 0 because we don't handle the fault. */
  	return 0;
  }
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
429
  static int __init kprobe_init(void)
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
430
431
432
433
434
  {
  	int ret;
  	kp.pre_handler = handler_pre;
  	kp.post_handler = handler_post;
  	kp.fault_handler = handler_fault;
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
435
  	kp.symbol_name = "do_fork";
8861da31e   Jim Keniston   [PATCH] kprobes: ...
436
  	if ((ret = register_kprobe(&kp) < 0)) {
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
437
438
439
440
441
442
443
444
  		printk("register_kprobe failed, returned %d
  ", ret);
  		return -1;
  	}
  	printk("kprobe registered
  ");
  	return 0;
  }
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
445
  static void __exit kprobe_exit(void)
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
446
447
448
449
450
  {
  	unregister_kprobe(&kp);
  	printk("kprobe unregistered
  ");
  }
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
451
452
  module_init(kprobe_init)
  module_exit(kprobe_exit)
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
  MODULE_LICENSE("GPL");
  ----- cut here -----
  
  You can build the kernel module, kprobe-example.ko, using the following
  Makefile:
  ----- cut here -----
  obj-m := kprobe-example.o
  KDIR := /lib/modules/$(shell uname -r)/build
  PWD := $(shell pwd)
  default:
  	$(MAKE) -C $(KDIR) SUBDIRS=$(PWD) modules
  clean:
  	rm -f *.mod.c *.ko *.o
  ----- cut here -----
  
  $ make
  $ su -
  ...
  # insmod kprobe-example.ko
  
  You will see the trace data in /var/log/messages and on the console
  whenever do_fork() is invoked to create a new process.
  
  9. Jprobes Example
  
  Here's a sample kernel module showing the use of jprobes to dump
  the arguments of do_fork().
  ----- cut here -----
  /*jprobe-example.c */
  #include <linux/kernel.h>
  #include <linux/module.h>
  #include <linux/fs.h>
  #include <linux/uio.h>
  #include <linux/kprobes.h>
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
  
  /*
   * Jumper probe for do_fork.
   * Mirror principle enables access to arguments of the probed routine
   * from the probe handler.
   */
  
  /* Proxy routine having the same arguments as actual do_fork() routine */
  long jdo_fork(unsigned long clone_flags, unsigned long stack_start,
  	      struct pt_regs *regs, unsigned long stack_size,
  	      int __user * parent_tidptr, int __user * child_tidptr)
  {
  	printk("jprobe: clone_flags=0x%lx, stack_size=0x%lx, regs=0x%p
  ",
  	       clone_flags, stack_size, regs);
  	/* Always end with a call to jprobe_return(). */
  	jprobe_return();
  	/*NOTREACHED*/
  	return 0;
  }
  
  static struct jprobe my_jprobe = {
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
509
  	.entry = JPROBE_ENTRY(jdo_fork)
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
510
  };
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
511
  static int __init jprobe_init(void)
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
512
513
  {
  	int ret;
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
514
  	my_jprobe.kp.symbol_name = "do_fork";
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
515
516
517
518
519
520
521
522
523
524
525
  
  	if ((ret = register_jprobe(&my_jprobe)) <0) {
  		printk("register_jprobe failed, returned %d
  ", ret);
  		return -1;
  	}
  	printk("Planted jprobe at %p, handler addr %p
  ",
  	       my_jprobe.kp.addr, my_jprobe.entry);
  	return 0;
  }
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
526
  static void __exit jprobe_exit(void)
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
527
528
529
530
531
  {
  	unregister_jprobe(&my_jprobe);
  	printk("jprobe unregistered
  ");
  }
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
532
533
  module_init(jprobe_init)
  module_exit(jprobe_exit)
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
  MODULE_LICENSE("GPL");
  ----- cut here -----
  
  Build and insert the kernel module as shown in the above kprobe
  example.  You will see the trace data in /var/log/messages and on
  the console whenever do_fork() is invoked to create a new process.
  (Some messages may be suppressed if syslogd is configured to
  eliminate duplicate messages.)
  
  10. Kretprobes Example
  
  Here's a sample kernel module showing the use of return probes to
  report failed calls to sys_open().
  ----- cut here -----
  /*kretprobe-example.c*/
  #include <linux/kernel.h>
  #include <linux/module.h>
  #include <linux/kprobes.h>
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
552
553
554
555
556
557
  
  static const char *probed_func = "sys_open";
  
  /* Return-probe handler: If the probed function fails, log the return value. */
  static int ret_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
  {
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
558
  	int retval = regs_return_value(regs);
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
559
560
561
562
563
564
565
566
567
568
569
570
  	if (retval < 0) {
  		printk("%s returns %d
  ", probed_func, retval);
  	}
  	return 0;
  }
  
  static struct kretprobe my_kretprobe = {
  	.handler = ret_handler,
  	/* Probe up to 20 instances concurrently. */
  	.maxactive = 20
  };
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
571
  static int __init kretprobe_init(void)
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
572
573
  {
  	int ret;
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
574
  	my_kretprobe.kp.symbol_name = (char *)probed_func;
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
575
576
577
578
579
580
581
582
583
  	if ((ret = register_kretprobe(&my_kretprobe)) < 0) {
  		printk("register_kretprobe failed, returned %d
  ", ret);
  		return -1;
  	}
  	printk("Planted return probe at %p
  ", my_kretprobe.kp.addr);
  	return 0;
  }
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
584
  static void __exit kretprobe_exit(void)
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
585
586
587
588
589
590
591
592
593
  {
  	unregister_kretprobe(&my_kretprobe);
  	printk("kretprobe unregistered
  ");
  	/* nmissed > 0 suggests that maxactive was set too low. */
  	printk("Missed probing %d instances of %s
  ",
  		my_kretprobe.nmissed, probed_func);
  }
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
594
595
  module_init(kretprobe_init)
  module_exit(kretprobe_exit)
d27a4dddd   Jim Keniston   [PATCH] Add Docum...
596
597
598
599
600
601
602
603
604
605
606
607
  MODULE_LICENSE("GPL");
  ----- cut here -----
  
  Build and insert the kernel module as shown in the above kprobe
  example.  You will see the trace data in /var/log/messages and on the
  console whenever sys_open() returns a negative value.  (Some messages
  may be suppressed if syslogd is configured to eliminate duplicate
  messages.)
  
  For additional information on Kprobes, refer to the following URLs:
  http://www-106.ibm.com/developerworks/library/l-kprobes.html?ca=dgr-lnxw42Kprobe
  http://www.redhat.com/magazine/005mar05/features/kprobes/
09b18203d   Ananth N Mavinakayanahalli   [PATCH] Update Do...
608
609
  http://www-users.cs.umn.edu/~boutcher/kprobes/
  http://www.linuxsymposium.org/2006/linuxsymposium_procv2.pdf (pages 101-115)