Blame view

drivers/mtd/devices/docecc.c 15.7 KB
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
1
2
3
4
5
6
  /*
   * ECC algorithm for M-systems disk on chip. We use the excellent Reed
   * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the
   * GNU GPL License. The rest is simply to convert the disk on chip
   * syndrom into a standard syndom.
   *
e5580fbe8   Thomas Gleixner   [MTD] devices: Cl...
7
   * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
8
9
   * Copyright (C) 2000 Netgem S.A.
   *
e5580fbe8   Thomas Gleixner   [MTD] devices: Cl...
10
   * $Id: docecc.c,v 1.7 2005/11/07 11:14:25 gleixner Exp $
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
   *
   * This program is free software; you can redistribute it and/or modify
   * it under the terms of the GNU General Public License as published by
   * the Free Software Foundation; either version 2 of the License, or
   * (at your option) any later version.
   *
   * This program is distributed in the hope that it will be useful,
   * but WITHOUT ANY WARRANTY; without even the implied warranty of
   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   * GNU General Public License for more details.
   *
   * You should have received a copy of the GNU General Public License
   * along with this program; if not, write to the Free Software
   * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
   */
  #include <linux/kernel.h>
  #include <linux/module.h>
  #include <asm/errno.h>
  #include <asm/io.h>
  #include <asm/uaccess.h>
  #include <linux/miscdevice.h>
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
32
33
  #include <linux/delay.h>
  #include <linux/slab.h>
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
34
35
36
37
38
39
  #include <linux/init.h>
  #include <linux/types.h>
  
  #include <linux/mtd/compatmac.h> /* for min() in older kernels */
  #include <linux/mtd/mtd.h>
  #include <linux/mtd/doc2000.h>
66c81f005   Grant Coady   [PATCH] DEBUG red...
40
  #define DEBUG_ECC 0
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
  /* need to undef it (from asm/termbits.h) */
  #undef B0
  
  #define MM 10 /* Symbol size in bits */
  #define KK (1023-4) /* Number of data symbols per block */
  #define B0 510 /* First root of generator polynomial, alpha form */
  #define PRIM 1 /* power of alpha used to generate roots of generator poly */
  #define	NN ((1 << MM) - 1)
  
  typedef unsigned short dtype;
  
  /* 1+x^3+x^10 */
  static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
  
  /* This defines the type used to store an element of the Galois Field
   * used by the code. Make sure this is something larger than a char if
   * if anything larger than GF(256) is used.
   *
   * Note: unsigned char will work up to GF(256) but int seems to run
   * faster on the Pentium.
   */
  typedef int gf;
  
  /* No legal value in index form represents zero, so
   * we need a special value for this purpose
   */
  #define A0	(NN)
  
  /* Compute x % NN, where NN is 2**MM - 1,
   * without a slow divide
   */
  static inline gf
  modnn(int x)
  {
    while (x >= NN) {
      x -= NN;
      x = (x >> MM) + (x & NN);
    }
    return x;
  }
  
  #define	CLEAR(a,n) {\
  int ci;\
  for(ci=(n)-1;ci >=0;ci--)\
  (a)[ci] = 0;\
  }
  
  #define	COPY(a,b,n) {\
  int ci;\
  for(ci=(n)-1;ci >=0;ci--)\
  (a)[ci] = (b)[ci];\
  }
  
  #define	COPYDOWN(a,b,n) {\
  int ci;\
  for(ci=(n)-1;ci >=0;ci--)\
  (a)[ci] = (b)[ci];\
  }
  
  #define Ldec 1
  
  /* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m]
     lookup tables:  index->polynomial form   alpha_to[] contains j=alpha**i;
                     polynomial form -> index form  index_of[j=alpha**i] = i
     alpha=2 is the primitive element of GF(2**m)
     HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
          Let @ represent the primitive element commonly called "alpha" that
     is the root of the primitive polynomial p(x). Then in GF(2^m), for any
     0 <= i <= 2^m-2,
          @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
     where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
     of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
     example the polynomial representation of @^5 would be given by the binary
     representation of the integer "alpha_to[5]".
                     Similarily, index_of[] can be used as follows:
          As above, let @ represent the primitive element of GF(2^m) that is
     the root of the primitive polynomial p(x). In order to find the power
     of @ (alpha) that has the polynomial representation
          a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
     we consider the integer "i" whose binary representation with a(0) being LSB
     and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
e5580fbe8   Thomas Gleixner   [MTD] devices: Cl...
122
     "index_of[i]". Now, @^index_of[i] is that element whose polynomial
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
123
124
125
126
127
128
129
      representation is (a(0),a(1),a(2),...,a(m-1)).
     NOTE:
          The element alpha_to[2^m-1] = 0 always signifying that the
     representation of "@^infinity" = 0 is (0,0,0,...,0).
          Similarily, the element index_of[0] = A0 always signifying
     that the power of alpha which has the polynomial representation
     (0,0,...,0) is "infinity".
e5580fbe8   Thomas Gleixner   [MTD] devices: Cl...
130

1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
  */
  
  static void
  generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1])
  {
    register int i, mask;
  
    mask = 1;
    Alpha_to[MM] = 0;
    for (i = 0; i < MM; i++) {
      Alpha_to[i] = mask;
      Index_of[Alpha_to[i]] = i;
      /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
      if (Pp[i] != 0)
        Alpha_to[MM] ^= mask;	/* Bit-wise EXOR operation */
      mask <<= 1;	/* single left-shift */
    }
    Index_of[Alpha_to[MM]] = MM;
    /*
     * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
     * poly-repr of @^i shifted left one-bit and accounting for any @^MM
     * term that may occur when poly-repr of @^i is shifted.
     */
    mask >>= 1;
    for (i = MM + 1; i < NN; i++) {
      if (Alpha_to[i - 1] >= mask)
        Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
      else
        Alpha_to[i] = Alpha_to[i - 1] << 1;
      Index_of[Alpha_to[i]] = i;
    }
    Index_of[0] = A0;
    Alpha_to[NN] = 0;
  }
  
  /*
   * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content
   * of the feedback shift register after having processed the data and
   * the ECC.
   *
   * Return number of symbols corrected, or -1 if codeword is illegal
   * or uncorrectable. If eras_pos is non-null, the detected error locations
   * are written back. NOTE! This array must be at least NN-KK elements long.
   * The corrected data are written in eras_val[]. They must be xor with the data
   * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] .
e5580fbe8   Thomas Gleixner   [MTD] devices: Cl...
176
   *
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
177
178
179
180
181
182
183
184
185
186
187
188
   * First "no_eras" erasures are declared by the calling program. Then, the
   * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
   * If the number of channel errors is not greater than "t_after_eras" the
   * transmitted codeword will be recovered. Details of algorithm can be found
   * in R. Blahut's "Theory ... of Error-Correcting Codes".
  
   * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure
   * will result. The decoder *could* check for this condition, but it would involve
   * extra time on every decoding operation.
   * */
  static int
  eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1],
e5580fbe8   Thomas Gleixner   [MTD] devices: Cl...
189
              gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK],
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
              int no_eras)
  {
    int deg_lambda, el, deg_omega;
    int i, j, r,k;
    gf u,q,tmp,num1,num2,den,discr_r;
    gf lambda[NN-KK + 1], s[NN-KK + 1];	/* Err+Eras Locator poly
  					 * and syndrome poly */
    gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1];
    gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK];
    int syn_error, count;
  
    syn_error = 0;
    for(i=0;i<NN-KK;i++)
        syn_error |= bb[i];
  
    if (!syn_error) {
      /* if remainder is zero, data[] is a codeword and there are no
       * errors to correct. So return data[] unmodified
       */
      count = 0;
      goto finish;
    }
e5580fbe8   Thomas Gleixner   [MTD] devices: Cl...
212

1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
213
214
215
216
217
218
219
    for(i=1;i<=NN-KK;i++){
      s[i] = bb[0];
    }
    for(j=1;j<NN-KK;j++){
      if(bb[j] == 0)
        continue;
      tmp = Index_of[bb[j]];
e5580fbe8   Thomas Gleixner   [MTD] devices: Cl...
220

1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
221
222
223
224
225
226
227
228
229
230
231
232
233
      for(i=1;i<=NN-KK;i++)
        s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)];
    }
  
    /* undo the feedback register implicit multiplication and convert
       syndromes to index form */
  
    for(i=1;i<=NN-KK;i++) {
        tmp = Index_of[s[i]];
        if (tmp != A0)
            tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM);
        s[i] = tmp;
    }
e5580fbe8   Thomas Gleixner   [MTD] devices: Cl...
234

1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    CLEAR(&lambda[1],NN-KK);
    lambda[0] = 1;
  
    if (no_eras > 0) {
      /* Init lambda to be the erasure locator polynomial */
      lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])];
      for (i = 1; i < no_eras; i++) {
        u = modnn(PRIM*eras_pos[i]);
        for (j = i+1; j > 0; j--) {
  	tmp = Index_of[lambda[j - 1]];
  	if(tmp != A0)
  	  lambda[j] ^= Alpha_to[modnn(u + tmp)];
        }
      }
66c81f005   Grant Coady   [PATCH] DEBUG red...
249
  #if DEBUG_ECC >= 1
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
250
251
      /* Test code that verifies the erasure locator polynomial just constructed
         Needed only for decoder debugging. */
e5580fbe8   Thomas Gleixner   [MTD] devices: Cl...
252

1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
      /* find roots of the erasure location polynomial */
      for(i=1;i<=no_eras;i++)
        reg[i] = Index_of[lambda[i]];
      count = 0;
      for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
        q = 1;
        for (j = 1; j <= no_eras; j++)
  	if (reg[j] != A0) {
  	  reg[j] = modnn(reg[j] + j);
  	  q ^= Alpha_to[reg[j]];
  	}
        if (q != 0)
  	continue;
        /* store root and error location number indices */
        root[count] = i;
        loc[count] = k;
        count++;
      }
      if (count != no_eras) {
        printf("
   lambda(x) is WRONG
  ");
        count = -1;
        goto finish;
      }
66c81f005   Grant Coady   [PATCH] DEBUG red...
278
  #if DEBUG_ECC >= 2
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
279
280
281
282
283
284
285
286
287
288
289
290
      printf("
   Erasure positions as determined by roots of Eras Loc Poly:
  ");
      for (i = 0; i < count; i++)
        printf("%d ", loc[i]);
      printf("
  ");
  #endif
  #endif
    }
    for(i=0;i<NN-KK+1;i++)
      b[i] = Index_of[lambda[i]];
e5580fbe8   Thomas Gleixner   [MTD] devices: Cl...
291

1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    /*
     * Begin Berlekamp-Massey algorithm to determine error+erasure
     * locator polynomial
     */
    r = no_eras;
    el = no_eras;
    while (++r <= NN-KK) {	/* r is the step number */
      /* Compute discrepancy at the r-th step in poly-form */
      discr_r = 0;
      for (i = 0; i < r; i++){
        if ((lambda[i] != 0) && (s[r - i] != A0)) {
  	discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
        }
      }
      discr_r = Index_of[discr_r];	/* Index form */
      if (discr_r == A0) {
        /* 2 lines below: B(x) <-- x*B(x) */
        COPYDOWN(&b[1],b,NN-KK);
        b[0] = A0;
      } else {
        /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
        t[0] = lambda[0];
        for (i = 0 ; i < NN-KK; i++) {
  	if(b[i] != A0)
  	  t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])];
  	else
  	  t[i+1] = lambda[i+1];
        }
        if (2 * el <= r + no_eras - 1) {
  	el = r + no_eras - el;
  	/*
  	 * 2 lines below: B(x) <-- inv(discr_r) *
  	 * lambda(x)
  	 */
  	for (i = 0; i <= NN-KK; i++)
  	  b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
        } else {
  	/* 2 lines below: B(x) <-- x*B(x) */
  	COPYDOWN(&b[1],b,NN-KK);
  	b[0] = A0;
        }
        COPY(lambda,t,NN-KK+1);
      }
    }
  
    /* Convert lambda to index form and compute deg(lambda(x)) */
    deg_lambda = 0;
    for(i=0;i<NN-KK+1;i++){
      lambda[i] = Index_of[lambda[i]];
      if(lambda[i] != A0)
        deg_lambda = i;
    }
    /*
     * Find roots of the error+erasure locator polynomial by Chien
     * Search
     */
    COPY(&reg[1],&lambda[1],NN-KK);
    count = 0;		/* Number of roots of lambda(x) */
    for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
      q = 1;
      for (j = deg_lambda; j > 0; j--){
        if (reg[j] != A0) {
  	reg[j] = modnn(reg[j] + j);
  	q ^= Alpha_to[reg[j]];
        }
      }
      if (q != 0)
        continue;
      /* store root (index-form) and error location number */
      root[count] = i;
      loc[count] = k;
      /* If we've already found max possible roots,
       * abort the search to save time
       */
      if(++count == deg_lambda)
        break;
    }
    if (deg_lambda != count) {
      /*
       * deg(lambda) unequal to number of roots => uncorrectable
       * error detected
       */
      count = -1;
      goto finish;
    }
    /*
     * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
     * x**(NN-KK)). in index form. Also find deg(omega).
     */
    deg_omega = 0;
    for (i = 0; i < NN-KK;i++){
      tmp = 0;
      j = (deg_lambda < i) ? deg_lambda : i;
      for(;j >= 0; j--){
        if ((s[i + 1 - j] != A0) && (lambda[j] != A0))
  	tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
      }
      if(tmp != 0)
        deg_omega = i;
      omega[i] = Index_of[tmp];
    }
    omega[NN-KK] = A0;
e5580fbe8   Thomas Gleixner   [MTD] devices: Cl...
394

1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
395
396
397
398
399
400
401
402
403
404
405
406
    /*
     * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
     * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
     */
    for (j = count-1; j >=0; j--) {
      num1 = 0;
      for (i = deg_omega; i >= 0; i--) {
        if (omega[i] != A0)
  	num1  ^= Alpha_to[modnn(omega[i] + i * root[j])];
      }
      num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
      den = 0;
e5580fbe8   Thomas Gleixner   [MTD] devices: Cl...
407

1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
408
409
410
411
412
413
      /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
      for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) {
        if(lambda[i+1] != A0)
  	den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];
      }
      if (den == 0) {
66c81f005   Grant Coady   [PATCH] DEBUG red...
414
  #if DEBUG_ECC >= 1
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
        printf("
   ERROR: denominator = 0
  ");
  #endif
        /* Convert to dual- basis */
        count = -1;
        goto finish;
      }
      /* Apply error to data */
      if (num1 != 0) {
          eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
      } else {
          eras_val[j] = 0;
      }
    }
   finish:
    for(i=0;i<count;i++)
        eras_pos[i] = loc[i];
    return count;
  }
  
  /***************************************************************************/
  /* The DOC specific code begins here */
  
  #define SECTOR_SIZE 512
  /* The sector bytes are packed into NB_DATA MM bits words */
  #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM)
e5580fbe8   Thomas Gleixner   [MTD] devices: Cl...
442
  /*
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
443
444
445
   * Correct the errors in 'sector[]' by using 'ecc1[]' which is the
   * content of the feedback shift register applyied to the sector and
   * the ECC. Return the number of errors corrected (and correct them in
e5580fbe8   Thomas Gleixner   [MTD] devices: Cl...
446
   * sector), or -1 if error
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
447
448
449
450
451
452
453
454
455
456
457
458
459
   */
  int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6])
  {
      int parity, i, nb_errors;
      gf bb[NN - KK + 1];
      gf error_val[NN-KK];
      int error_pos[NN-KK], pos, bitpos, index, val;
      dtype *Alpha_to, *Index_of;
  
      /* init log and exp tables here to save memory. However, it is slower */
      Alpha_to = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL);
      if (!Alpha_to)
          return -1;
e5580fbe8   Thomas Gleixner   [MTD] devices: Cl...
460

1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
461
462
463
464
465
466
467
468
469
470
471
472
473
474
      Index_of = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL);
      if (!Index_of) {
          kfree(Alpha_to);
          return -1;
      }
  
      generate_gf(Alpha_to, Index_of);
  
      parity = ecc1[1];
  
      bb[0] =  (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8);
      bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6);
      bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4);
      bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2);
e5580fbe8   Thomas Gleixner   [MTD] devices: Cl...
475
      nb_errors = eras_dec_rs(Alpha_to, Index_of, bb,
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
                              error_val, error_pos, 0);
      if (nb_errors <= 0)
          goto the_end;
  
      /* correct the errors */
      for(i=0;i<nb_errors;i++) {
          pos = error_pos[i];
          if (pos >= NB_DATA && pos < KK) {
              nb_errors = -1;
              goto the_end;
          }
          if (pos < NB_DATA) {
              /* extract bit position (MSB first) */
              pos = 10 * (NB_DATA - 1 - pos) - 6;
              /* now correct the following 10 bits. At most two bytes
                 can be modified since pos is even */
              index = (pos >> 3) ^ 1;
              bitpos = pos & 7;
e5580fbe8   Thomas Gleixner   [MTD] devices: Cl...
494
              if ((index >= 0 && index < SECTOR_SIZE) ||
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
495
496
497
498
499
500
501
502
503
504
                  index == (SECTOR_SIZE + 1)) {
                  val = error_val[i] >> (2 + bitpos);
                  parity ^= val;
                  if (index < SECTOR_SIZE)
                      sector[index] ^= val;
              }
              index = ((pos >> 3) + 1) ^ 1;
              bitpos = (bitpos + 10) & 7;
              if (bitpos == 0)
                  bitpos = 8;
e5580fbe8   Thomas Gleixner   [MTD] devices: Cl...
505
              if ((index >= 0 && index < SECTOR_SIZE) ||
1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
506
507
508
509
510
511
512
513
                  index == (SECTOR_SIZE + 1)) {
                  val = error_val[i] << (8 - bitpos);
                  parity ^= val;
                  if (index < SECTOR_SIZE)
                      sector[index] ^= val;
              }
          }
      }
e5580fbe8   Thomas Gleixner   [MTD] devices: Cl...
514

1da177e4c   Linus Torvalds   Linux-2.6.12-rc2
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
      /* use parity to test extra errors */
      if ((parity & 0xff) != 0)
          nb_errors = -1;
  
   the_end:
      kfree(Alpha_to);
      kfree(Index_of);
      return nb_errors;
  }
  
  EXPORT_SYMBOL_GPL(doc_decode_ecc);
  
  MODULE_LICENSE("GPL");
  MODULE_AUTHOR("Fabrice Bellard <fabrice.bellard@netgem.com>");
  MODULE_DESCRIPTION("ECC code for correcting errors detected by DiskOnChip 2000 and Millennium ECC hardware");