Blame view
kernel/posix-cpu-timers.c
42.4 KB
1da177e4c
|
1 2 3 4 5 6 |
/* * Implement CPU time clocks for the POSIX clock interface. */ #include <linux/sched.h> #include <linux/posix-timers.h> |
1da177e4c
|
7 |
#include <linux/errno.h> |
f8bd2258e
|
8 9 |
#include <linux/math64.h> #include <asm/uaccess.h> |
bb34d92f6
|
10 |
#include <linux/kernel_stat.h> |
3f0a525eb
|
11 |
#include <trace/events/timer.h> |
1da177e4c
|
12 |
|
f06febc96
|
13 |
/* |
f55db6090
|
14 15 16 17 |
* Called after updating RLIMIT_CPU to run cpu timer and update * tsk->signal->cputime_expires expiration cache if necessary. Needs * siglock protection since other code may update expiration cache as * well. |
f06febc96
|
18 |
*/ |
5ab46b345
|
19 |
void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) |
f06febc96
|
20 |
{ |
42c4ab41a
|
21 |
cputime_t cputime = secs_to_cputime(rlim_new); |
f06febc96
|
22 |
|
5ab46b345
|
23 24 25 |
spin_lock_irq(&task->sighand->siglock); set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL); spin_unlock_irq(&task->sighand->siglock); |
f06febc96
|
26 |
} |
a924b04dd
|
27 |
static int check_clock(const clockid_t which_clock) |
1da177e4c
|
28 29 30 31 32 33 34 35 36 37 |
{ int error = 0; struct task_struct *p; const pid_t pid = CPUCLOCK_PID(which_clock); if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) return -EINVAL; if (pid == 0) return 0; |
c0deae8c9
|
38 |
rcu_read_lock(); |
8dc86af00
|
39 |
p = find_task_by_vpid(pid); |
bac0abd61
|
40 |
if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? |
c0deae8c9
|
41 |
same_thread_group(p, current) : has_group_leader_pid(p))) { |
1da177e4c
|
42 43 |
error = -EINVAL; } |
c0deae8c9
|
44 |
rcu_read_unlock(); |
1da177e4c
|
45 46 47 48 49 |
return error; } static inline union cpu_time_count |
a924b04dd
|
50 |
timespec_to_sample(const clockid_t which_clock, const struct timespec *tp) |
1da177e4c
|
51 52 53 54 |
{ union cpu_time_count ret; ret.sched = 0; /* high half always zero when .cpu used */ if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
ee500f274
|
55 |
ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; |
1da177e4c
|
56 57 58 59 60 |
} else { ret.cpu = timespec_to_cputime(tp); } return ret; } |
a924b04dd
|
61 |
static void sample_to_timespec(const clockid_t which_clock, |
1da177e4c
|
62 63 64 |
union cpu_time_count cpu, struct timespec *tp) { |
f8bd2258e
|
65 66 67 |
if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) *tp = ns_to_timespec(cpu.sched); else |
1da177e4c
|
68 |
cputime_to_timespec(cpu.cpu, tp); |
1da177e4c
|
69 |
} |
a924b04dd
|
70 |
static inline int cpu_time_before(const clockid_t which_clock, |
1da177e4c
|
71 72 73 74 75 76 77 78 79 |
union cpu_time_count now, union cpu_time_count then) { if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { return now.sched < then.sched; } else { return cputime_lt(now.cpu, then.cpu); } } |
a924b04dd
|
80 |
static inline void cpu_time_add(const clockid_t which_clock, |
1da177e4c
|
81 82 83 84 85 86 87 88 89 |
union cpu_time_count *acc, union cpu_time_count val) { if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { acc->sched += val.sched; } else { acc->cpu = cputime_add(acc->cpu, val.cpu); } } |
a924b04dd
|
90 |
static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock, |
1da177e4c
|
91 92 93 94 95 96 97 98 99 100 101 102 |
union cpu_time_count a, union cpu_time_count b) { if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { a.sched -= b.sched; } else { a.cpu = cputime_sub(a.cpu, b.cpu); } return a; } /* |
ac08c2649
|
103 104 105 106 107 108 109 110 111 112 113 114 115 |
* Divide and limit the result to res >= 1 * * This is necessary to prevent signal delivery starvation, when the result of * the division would be rounded down to 0. */ static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div) { cputime_t res = cputime_div(time, div); return max_t(cputime_t, res, 1); } /* |
1da177e4c
|
116 117 118 |
* Update expiry time from increment, and increase overrun count, * given the current clock sample. */ |
7a4ed937a
|
119 |
static void bump_cpu_timer(struct k_itimer *timer, |
1da177e4c
|
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
union cpu_time_count now) { int i; if (timer->it.cpu.incr.sched == 0) return; if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { unsigned long long delta, incr; if (now.sched < timer->it.cpu.expires.sched) return; incr = timer->it.cpu.incr.sched; delta = now.sched + incr - timer->it.cpu.expires.sched; /* Don't use (incr*2 < delta), incr*2 might overflow. */ for (i = 0; incr < delta - incr; i++) incr = incr << 1; for (; i >= 0; incr >>= 1, i--) { |
7a4ed937a
|
138 |
if (delta < incr) |
1da177e4c
|
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
continue; timer->it.cpu.expires.sched += incr; timer->it_overrun += 1 << i; delta -= incr; } } else { cputime_t delta, incr; if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu)) return; incr = timer->it.cpu.incr.cpu; delta = cputime_sub(cputime_add(now.cpu, incr), timer->it.cpu.expires.cpu); /* Don't use (incr*2 < delta), incr*2 might overflow. */ for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++) incr = cputime_add(incr, incr); for (; i >= 0; incr = cputime_halve(incr), i--) { |
7a4ed937a
|
156 |
if (cputime_lt(delta, incr)) |
1da177e4c
|
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
continue; timer->it.cpu.expires.cpu = cputime_add(timer->it.cpu.expires.cpu, incr); timer->it_overrun += 1 << i; delta = cputime_sub(delta, incr); } } } static inline cputime_t prof_ticks(struct task_struct *p) { return cputime_add(p->utime, p->stime); } static inline cputime_t virt_ticks(struct task_struct *p) { return p->utime; } |
1da177e4c
|
174 |
|
bc2c8ea48
|
175 176 |
static int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) |
1da177e4c
|
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
{ int error = check_clock(which_clock); if (!error) { tp->tv_sec = 0; tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { /* * If sched_clock is using a cycle counter, we * don't have any idea of its true resolution * exported, but it is much more than 1s/HZ. */ tp->tv_nsec = 1; } } return error; } |
bc2c8ea48
|
193 194 |
static int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp) |
1da177e4c
|
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
{ /* * You can never reset a CPU clock, but we check for other errors * in the call before failing with EPERM. */ int error = check_clock(which_clock); if (error == 0) { error = -EPERM; } return error; } /* * Sample a per-thread clock for the given task. */ |
a924b04dd
|
211 |
static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p, |
1da177e4c
|
212 213 214 215 216 217 218 219 220 221 222 223 |
union cpu_time_count *cpu) { switch (CPUCLOCK_WHICH(which_clock)) { default: return -EINVAL; case CPUCLOCK_PROF: cpu->cpu = prof_ticks(p); break; case CPUCLOCK_VIRT: cpu->cpu = virt_ticks(p); break; case CPUCLOCK_SCHED: |
c5f8d9958
|
224 |
cpu->sched = task_sched_runtime(p); |
1da177e4c
|
225 226 227 228 |
break; } return 0; } |
4cd4c1b40
|
229 230 |
void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) { |
bfac70091
|
231 |
struct signal_struct *sig = tsk->signal; |
4cd4c1b40
|
232 |
struct task_struct *t; |
bfac70091
|
233 234 235 |
times->utime = sig->utime; times->stime = sig->stime; times->sum_exec_runtime = sig->sum_sched_runtime; |
4cd4c1b40
|
236 237 |
rcu_read_lock(); |
bfac70091
|
238 239 |
/* make sure we can trust tsk->thread_group list */ if (!likely(pid_alive(tsk))) |
4cd4c1b40
|
240 |
goto out; |
4cd4c1b40
|
241 242 243 244 245 |
t = tsk; do { times->utime = cputime_add(times->utime, t->utime); times->stime = cputime_add(times->stime, t->stime); times->sum_exec_runtime += t->se.sum_exec_runtime; |
bfac70091
|
246 |
} while_each_thread(tsk, t); |
4cd4c1b40
|
247 248 249 |
out: rcu_read_unlock(); } |
4da94d49b
|
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b) { if (cputime_gt(b->utime, a->utime)) a->utime = b->utime; if (cputime_gt(b->stime, a->stime)) a->stime = b->stime; if (b->sum_exec_runtime > a->sum_exec_runtime) a->sum_exec_runtime = b->sum_exec_runtime; } void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) { struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; struct task_cputime sum; unsigned long flags; spin_lock_irqsave(&cputimer->lock, flags); if (!cputimer->running) { cputimer->running = 1; /* * The POSIX timer interface allows for absolute time expiry * values through the TIMER_ABSTIME flag, therefore we have * to synchronize the timer to the clock every time we start * it. */ thread_group_cputime(tsk, &sum); update_gt_cputime(&cputimer->cputime, &sum); } *times = cputimer->cputime; spin_unlock_irqrestore(&cputimer->lock, flags); } |
1da177e4c
|
283 284 285 |
/* * Sample a process (thread group) clock for the given group_leader task. * Must be called with tasklist_lock held for reading. |
1da177e4c
|
286 |
*/ |
bb34d92f6
|
287 288 289 |
static int cpu_clock_sample_group(const clockid_t which_clock, struct task_struct *p, union cpu_time_count *cpu) |
1da177e4c
|
290 |
{ |
f06febc96
|
291 |
struct task_cputime cputime; |
eccdaeafa
|
292 |
switch (CPUCLOCK_WHICH(which_clock)) { |
1da177e4c
|
293 294 295 |
default: return -EINVAL; case CPUCLOCK_PROF: |
c5f8d9958
|
296 |
thread_group_cputime(p, &cputime); |
f06febc96
|
297 |
cpu->cpu = cputime_add(cputime.utime, cputime.stime); |
1da177e4c
|
298 299 |
break; case CPUCLOCK_VIRT: |
c5f8d9958
|
300 |
thread_group_cputime(p, &cputime); |
f06febc96
|
301 |
cpu->cpu = cputime.utime; |
1da177e4c
|
302 303 |
break; case CPUCLOCK_SCHED: |
c5f8d9958
|
304 |
cpu->sched = thread_group_sched_runtime(p); |
1da177e4c
|
305 306 307 308 |
break; } return 0; } |
1da177e4c
|
309 |
|
bc2c8ea48
|
310 |
static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) |
1da177e4c
|
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
{ const pid_t pid = CPUCLOCK_PID(which_clock); int error = -EINVAL; union cpu_time_count rtn; if (pid == 0) { /* * Special case constant value for our own clocks. * We don't have to do any lookup to find ourselves. */ if (CPUCLOCK_PERTHREAD(which_clock)) { /* * Sampling just ourselves we can do with no locking. */ error = cpu_clock_sample(which_clock, current, &rtn); } else { read_lock(&tasklist_lock); error = cpu_clock_sample_group(which_clock, current, &rtn); read_unlock(&tasklist_lock); } } else { /* * Find the given PID, and validate that the caller * should be able to see it. */ struct task_struct *p; |
1f2ea0837
|
339 |
rcu_read_lock(); |
8dc86af00
|
340 |
p = find_task_by_vpid(pid); |
1da177e4c
|
341 342 |
if (p) { if (CPUCLOCK_PERTHREAD(which_clock)) { |
bac0abd61
|
343 |
if (same_thread_group(p, current)) { |
1da177e4c
|
344 345 346 |
error = cpu_clock_sample(which_clock, p, &rtn); } |
1f2ea0837
|
347 348 |
} else { read_lock(&tasklist_lock); |
d30fda355
|
349 |
if (thread_group_leader(p) && p->sighand) { |
1f2ea0837
|
350 351 352 353 354 |
error = cpu_clock_sample_group(which_clock, p, &rtn); } read_unlock(&tasklist_lock); |
1da177e4c
|
355 356 |
} } |
1f2ea0837
|
357 |
rcu_read_unlock(); |
1da177e4c
|
358 359 360 361 362 363 364 365 366 367 368 |
} if (error) return error; sample_to_timespec(which_clock, rtn, tp); return 0; } /* * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. |
ba5ea951d
|
369 370 |
* This is called from sys_timer_create() and do_cpu_nanosleep() with the * new timer already all-zeros initialized. |
1da177e4c
|
371 |
*/ |
bc2c8ea48
|
372 |
static int posix_cpu_timer_create(struct k_itimer *new_timer) |
1da177e4c
|
373 374 375 376 377 378 379 380 381 |
{ int ret = 0; const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); struct task_struct *p; if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) return -EINVAL; INIT_LIST_HEAD(&new_timer->it.cpu.entry); |
1da177e4c
|
382 |
|
c0deae8c9
|
383 |
rcu_read_lock(); |
1da177e4c
|
384 385 386 387 |
if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { if (pid == 0) { p = current; } else { |
8dc86af00
|
388 |
p = find_task_by_vpid(pid); |
bac0abd61
|
389 |
if (p && !same_thread_group(p, current)) |
1da177e4c
|
390 391 392 393 394 395 |
p = NULL; } } else { if (pid == 0) { p = current->group_leader; } else { |
8dc86af00
|
396 |
p = find_task_by_vpid(pid); |
c0deae8c9
|
397 |
if (p && !has_group_leader_pid(p)) |
1da177e4c
|
398 399 400 401 402 403 404 405 406 |
p = NULL; } } new_timer->it.cpu.task = p; if (p) { get_task_struct(p); } else { ret = -EINVAL; } |
c0deae8c9
|
407 |
rcu_read_unlock(); |
1da177e4c
|
408 409 410 411 412 413 414 415 416 417 |
return ret; } /* * Clean up a CPU-clock timer that is about to be destroyed. * This is called from timer deletion with the timer already locked. * If we return TIMER_RETRY, it's necessary to release the timer's lock * and try again. (This happens when the timer is in the middle of firing.) */ |
bc2c8ea48
|
418 |
static int posix_cpu_timer_del(struct k_itimer *timer) |
1da177e4c
|
419 420 |
{ struct task_struct *p = timer->it.cpu.task; |
108150ea7
|
421 |
int ret = 0; |
1da177e4c
|
422 |
|
108150ea7
|
423 |
if (likely(p != NULL)) { |
9465bee86
|
424 |
read_lock(&tasklist_lock); |
d30fda355
|
425 |
if (unlikely(p->sighand == NULL)) { |
9465bee86
|
426 427 428 429 430 431 |
/* * We raced with the reaping of the task. * The deletion should have cleared us off the list. */ BUG_ON(!list_empty(&timer->it.cpu.entry)); } else { |
9465bee86
|
432 |
spin_lock(&p->sighand->siglock); |
108150ea7
|
433 434 435 436 |
if (timer->it.cpu.firing) ret = TIMER_RETRY; else list_del(&timer->it.cpu.entry); |
9465bee86
|
437 438 439 |
spin_unlock(&p->sighand->siglock); } read_unlock(&tasklist_lock); |
108150ea7
|
440 441 442 |
if (!ret) put_task_struct(p); |
1da177e4c
|
443 |
} |
1da177e4c
|
444 |
|
108150ea7
|
445 |
return ret; |
1da177e4c
|
446 447 448 449 450 451 452 453 454 455 |
} /* * Clean out CPU timers still ticking when a thread exited. The task * pointer is cleared, and the expiry time is replaced with the residual * time for later timer_gettime calls to return. * This must be called with the siglock held. */ static void cleanup_timers(struct list_head *head, cputime_t utime, cputime_t stime, |
41b86e9c5
|
456 |
unsigned long long sum_exec_runtime) |
1da177e4c
|
457 458 459 460 461 |
{ struct cpu_timer_list *timer, *next; cputime_t ptime = cputime_add(utime, stime); list_for_each_entry_safe(timer, next, head, entry) { |
1da177e4c
|
462 463 464 465 466 467 468 469 470 471 472 |
list_del_init(&timer->entry); if (cputime_lt(timer->expires.cpu, ptime)) { timer->expires.cpu = cputime_zero; } else { timer->expires.cpu = cputime_sub(timer->expires.cpu, ptime); } } ++head; list_for_each_entry_safe(timer, next, head, entry) { |
1da177e4c
|
473 474 475 476 477 478 479 480 481 482 483 |
list_del_init(&timer->entry); if (cputime_lt(timer->expires.cpu, utime)) { timer->expires.cpu = cputime_zero; } else { timer->expires.cpu = cputime_sub(timer->expires.cpu, utime); } } ++head; list_for_each_entry_safe(timer, next, head, entry) { |
1da177e4c
|
484 |
list_del_init(&timer->entry); |
41b86e9c5
|
485 |
if (timer->expires.sched < sum_exec_runtime) { |
1da177e4c
|
486 487 |
timer->expires.sched = 0; } else { |
41b86e9c5
|
488 |
timer->expires.sched -= sum_exec_runtime; |
1da177e4c
|
489 490 491 492 493 494 495 496 497 498 499 500 |
} } } /* * These are both called with the siglock held, when the current thread * is being reaped. When the final (leader) thread in the group is reaped, * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. */ void posix_cpu_timers_exit(struct task_struct *tsk) { cleanup_timers(tsk->cpu_timers, |
41b86e9c5
|
501 |
tsk->utime, tsk->stime, tsk->se.sum_exec_runtime); |
1da177e4c
|
502 503 504 505 |
} void posix_cpu_timers_exit_group(struct task_struct *tsk) { |
17d42c1c4
|
506 |
struct signal_struct *const sig = tsk->signal; |
ca531a0a5
|
507 |
|
f06febc96
|
508 |
cleanup_timers(tsk->signal->cpu_timers, |
17d42c1c4
|
509 510 511 |
cputime_add(tsk->utime, sig->utime), cputime_add(tsk->stime, sig->stime), tsk->se.sum_exec_runtime + sig->sum_sched_runtime); |
1da177e4c
|
512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
} static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) { /* * That's all for this thread or process. * We leave our residual in expires to be reported. */ put_task_struct(timer->it.cpu.task); timer->it.cpu.task = NULL; timer->it.cpu.expires = cpu_time_sub(timer->it_clock, timer->it.cpu.expires, now); } |
d1e3b6d19
|
526 527 528 529 530 |
static inline int expires_gt(cputime_t expires, cputime_t new_exp) { return cputime_eq(expires, cputime_zero) || cputime_gt(expires, new_exp); } |
1da177e4c
|
531 532 533 |
/* * Insert the timer on the appropriate list before any timers that * expire later. This must be called with the tasklist_lock held |
c28739375
|
534 |
* for reading, interrupts disabled and p->sighand->siglock taken. |
1da177e4c
|
535 |
*/ |
5eb9aa641
|
536 |
static void arm_timer(struct k_itimer *timer) |
1da177e4c
|
537 538 539 |
{ struct task_struct *p = timer->it.cpu.task; struct list_head *head, *listpos; |
5eb9aa641
|
540 |
struct task_cputime *cputime_expires; |
1da177e4c
|
541 542 |
struct cpu_timer_list *const nt = &timer->it.cpu; struct cpu_timer_list *next; |
1da177e4c
|
543 |
|
5eb9aa641
|
544 545 546 547 548 549 550 |
if (CPUCLOCK_PERTHREAD(timer->it_clock)) { head = p->cpu_timers; cputime_expires = &p->cputime_expires; } else { head = p->signal->cpu_timers; cputime_expires = &p->signal->cputime_expires; } |
1da177e4c
|
551 |
head += CPUCLOCK_WHICH(timer->it_clock); |
1da177e4c
|
552 |
listpos = head; |
5eb9aa641
|
553 554 555 556 |
list_for_each_entry(next, head, entry) { if (cpu_time_before(timer->it_clock, nt->expires, next->expires)) break; listpos = &next->entry; |
1da177e4c
|
557 558 559 560 |
} list_add(&nt->entry, listpos); if (listpos == head) { |
5eb9aa641
|
561 |
union cpu_time_count *exp = &nt->expires; |
1da177e4c
|
562 |
/* |
5eb9aa641
|
563 564 565 566 |
* We are the new earliest-expiring POSIX 1.b timer, hence * need to update expiration cache. Take into account that * for process timers we share expiration cache with itimers * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. |
1da177e4c
|
567 |
*/ |
5eb9aa641
|
568 569 570 571 572 573 574 575 576 577 578 579 580 581 |
switch (CPUCLOCK_WHICH(timer->it_clock)) { case CPUCLOCK_PROF: if (expires_gt(cputime_expires->prof_exp, exp->cpu)) cputime_expires->prof_exp = exp->cpu; break; case CPUCLOCK_VIRT: if (expires_gt(cputime_expires->virt_exp, exp->cpu)) cputime_expires->virt_exp = exp->cpu; break; case CPUCLOCK_SCHED: if (cputime_expires->sched_exp == 0 || cputime_expires->sched_exp > exp->sched) cputime_expires->sched_exp = exp->sched; break; |
1da177e4c
|
582 583 |
} } |
1da177e4c
|
584 585 586 587 588 589 590 |
} /* * The timer is locked, fire it and arrange for its reload. */ static void cpu_timer_fire(struct k_itimer *timer) { |
1f169f84d
|
591 592 593 594 595 596 |
if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { /* * User don't want any signal. */ timer->it.cpu.expires.sched = 0; } else if (unlikely(timer->sigq == NULL)) { |
1da177e4c
|
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 |
/* * This a special case for clock_nanosleep, * not a normal timer from sys_timer_create. */ wake_up_process(timer->it_process); timer->it.cpu.expires.sched = 0; } else if (timer->it.cpu.incr.sched == 0) { /* * One-shot timer. Clear it as soon as it's fired. */ posix_timer_event(timer, 0); timer->it.cpu.expires.sched = 0; } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { /* * The signal did not get queued because the signal * was ignored, so we won't get any callback to * reload the timer. But we need to keep it * ticking in case the signal is deliverable next time. */ posix_cpu_timer_schedule(timer); } } /* |
3997ad317
|
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
* Sample a process (thread group) timer for the given group_leader task. * Must be called with tasklist_lock held for reading. */ static int cpu_timer_sample_group(const clockid_t which_clock, struct task_struct *p, union cpu_time_count *cpu) { struct task_cputime cputime; thread_group_cputimer(p, &cputime); switch (CPUCLOCK_WHICH(which_clock)) { default: return -EINVAL; case CPUCLOCK_PROF: cpu->cpu = cputime_add(cputime.utime, cputime.stime); break; case CPUCLOCK_VIRT: cpu->cpu = cputime.utime; break; case CPUCLOCK_SCHED: cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p); break; } return 0; } /* |
1da177e4c
|
648 649 650 651 652 |
* Guts of sys_timer_settime for CPU timers. * This is called with the timer locked and interrupts disabled. * If we return TIMER_RETRY, it's necessary to release the timer's lock * and try again. (This happens when the timer is in the middle of firing.) */ |
bc2c8ea48
|
653 654 |
static int posix_cpu_timer_set(struct k_itimer *timer, int flags, struct itimerspec *new, struct itimerspec *old) |
1da177e4c
|
655 656 |
{ struct task_struct *p = timer->it.cpu.task; |
ae1a78eec
|
657 |
union cpu_time_count old_expires, new_expires, old_incr, val; |
1da177e4c
|
658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
int ret; if (unlikely(p == NULL)) { /* * Timer refers to a dead task's clock. */ return -ESRCH; } new_expires = timespec_to_sample(timer->it_clock, &new->it_value); read_lock(&tasklist_lock); /* * We need the tasklist_lock to protect against reaping that |
d30fda355
|
672 |
* clears p->sighand. If p has just been reaped, we can no |
1da177e4c
|
673 674 |
* longer get any information about it at all. */ |
d30fda355
|
675 |
if (unlikely(p->sighand == NULL)) { |
1da177e4c
|
676 677 678 679 680 681 682 683 684 685 |
read_unlock(&tasklist_lock); put_task_struct(p); timer->it.cpu.task = NULL; return -ESRCH; } /* * Disarm any old timer after extracting its expiry time. */ BUG_ON(!irqs_disabled()); |
a69ac4a78
|
686 687 |
ret = 0; |
ae1a78eec
|
688 |
old_incr = timer->it.cpu.incr; |
1da177e4c
|
689 690 |
spin_lock(&p->sighand->siglock); old_expires = timer->it.cpu.expires; |
a69ac4a78
|
691 692 693 694 695 |
if (unlikely(timer->it.cpu.firing)) { timer->it.cpu.firing = -1; ret = TIMER_RETRY; } else list_del_init(&timer->it.cpu.entry); |
1da177e4c
|
696 697 698 699 700 701 702 703 704 705 706 707 |
/* * We need to sample the current value to convert the new * value from to relative and absolute, and to convert the * old value from absolute to relative. To set a process * timer, we need a sample to balance the thread expiry * times (in arm_timer). With an absolute time, we must * check if it's already passed. In short, we need a sample. */ if (CPUCLOCK_PERTHREAD(timer->it_clock)) { cpu_clock_sample(timer->it_clock, p, &val); } else { |
3997ad317
|
708 |
cpu_timer_sample_group(timer->it_clock, p, &val); |
1da177e4c
|
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 |
} if (old) { if (old_expires.sched == 0) { old->it_value.tv_sec = 0; old->it_value.tv_nsec = 0; } else { /* * Update the timer in case it has * overrun already. If it has, * we'll report it as having overrun * and with the next reloaded timer * already ticking, though we are * swallowing that pending * notification here to install the * new setting. */ bump_cpu_timer(timer, val); if (cpu_time_before(timer->it_clock, val, timer->it.cpu.expires)) { old_expires = cpu_time_sub( timer->it_clock, timer->it.cpu.expires, val); sample_to_timespec(timer->it_clock, old_expires, &old->it_value); } else { old->it_value.tv_nsec = 1; old->it_value.tv_sec = 0; } } } |
a69ac4a78
|
741 |
if (unlikely(ret)) { |
1da177e4c
|
742 743 744 745 746 747 |
/* * We are colliding with the timer actually firing. * Punt after filling in the timer's old value, and * disable this firing since we are already reporting * it as an overrun (thanks to bump_cpu_timer above). */ |
c28739375
|
748 |
spin_unlock(&p->sighand->siglock); |
1da177e4c
|
749 |
read_unlock(&tasklist_lock); |
1da177e4c
|
750 751 752 753 754 755 756 757 758 759 760 761 762 763 |
goto out; } if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) { cpu_time_add(timer->it_clock, &new_expires, val); } /* * Install the new expiry time (or zero). * For a timer with no notification action, we don't actually * arm the timer (we'll just fake it for timer_gettime). */ timer->it.cpu.expires = new_expires; if (new_expires.sched != 0 && |
1da177e4c
|
764 |
cpu_time_before(timer->it_clock, val, new_expires)) { |
5eb9aa641
|
765 |
arm_timer(timer); |
1da177e4c
|
766 |
} |
c28739375
|
767 |
spin_unlock(&p->sighand->siglock); |
1da177e4c
|
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 |
read_unlock(&tasklist_lock); /* * Install the new reload setting, and * set up the signal and overrun bookkeeping. */ timer->it.cpu.incr = timespec_to_sample(timer->it_clock, &new->it_interval); /* * This acts as a modification timestamp for the timer, * so any automatic reload attempt will punt on seeing * that we have reset the timer manually. */ timer->it_requeue_pending = (timer->it_requeue_pending + 2) & ~REQUEUE_PENDING; timer->it_overrun_last = 0; timer->it_overrun = -1; if (new_expires.sched != 0 && |
1da177e4c
|
788 789 790 791 792 793 794 795 796 797 798 799 800 |
!cpu_time_before(timer->it_clock, val, new_expires)) { /* * The designated time already passed, so we notify * immediately, even if the thread never runs to * accumulate more time on this clock. */ cpu_timer_fire(timer); } ret = 0; out: if (old) { sample_to_timespec(timer->it_clock, |
ae1a78eec
|
801 |
old_incr, &old->it_interval); |
1da177e4c
|
802 803 804 |
} return ret; } |
bc2c8ea48
|
805 |
static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) |
1da177e4c
|
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 |
{ union cpu_time_count now; struct task_struct *p = timer->it.cpu.task; int clear_dead; /* * Easy part: convert the reload time. */ sample_to_timespec(timer->it_clock, timer->it.cpu.incr, &itp->it_interval); if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */ itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; return; } if (unlikely(p == NULL)) { /* * This task already died and the timer will never fire. * In this case, expires is actually the dead value. */ dead: sample_to_timespec(timer->it_clock, timer->it.cpu.expires, &itp->it_value); return; } /* * Sample the clock to take the difference with the expiry time. */ if (CPUCLOCK_PERTHREAD(timer->it_clock)) { cpu_clock_sample(timer->it_clock, p, &now); clear_dead = p->exit_state; } else { read_lock(&tasklist_lock); |
d30fda355
|
841 |
if (unlikely(p->sighand == NULL)) { |
1da177e4c
|
842 843 844 845 846 847 848 849 850 851 852 |
/* * The process has been reaped. * We can't even collect a sample any more. * Call the timer disarmed, nothing else to do. */ put_task_struct(p); timer->it.cpu.task = NULL; timer->it.cpu.expires.sched = 0; read_unlock(&tasklist_lock); goto dead; } else { |
3997ad317
|
853 |
cpu_timer_sample_group(timer->it_clock, p, &now); |
1da177e4c
|
854 855 856 857 858 |
clear_dead = (unlikely(p->exit_state) && thread_group_empty(p)); } read_unlock(&tasklist_lock); } |
1da177e4c
|
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 |
if (unlikely(clear_dead)) { /* * We've noticed that the thread is dead, but * not yet reaped. Take this opportunity to * drop our task ref. */ clear_dead_task(timer, now); goto dead; } if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) { sample_to_timespec(timer->it_clock, cpu_time_sub(timer->it_clock, timer->it.cpu.expires, now), &itp->it_value); } else { /* * The timer should have expired already, but the firing * hasn't taken place yet. Say it's just about to expire. */ itp->it_value.tv_nsec = 1; itp->it_value.tv_sec = 0; } } /* * Check for any per-thread CPU timers that have fired and move them off * the tsk->cpu_timers[N] list onto the firing list. Here we update the * tsk->it_*_expires values to reflect the remaining thread CPU timers. */ static void check_thread_timers(struct task_struct *tsk, struct list_head *firing) { |
e80eda94d
|
892 |
int maxfire; |
1da177e4c
|
893 |
struct list_head *timers = tsk->cpu_timers; |
78f2c7db6
|
894 |
struct signal_struct *const sig = tsk->signal; |
d4bb52743
|
895 |
unsigned long soft; |
1da177e4c
|
896 |
|
e80eda94d
|
897 |
maxfire = 20; |
f06febc96
|
898 |
tsk->cputime_expires.prof_exp = cputime_zero; |
1da177e4c
|
899 |
while (!list_empty(timers)) { |
b5e618181
|
900 |
struct cpu_timer_list *t = list_first_entry(timers, |
1da177e4c
|
901 902 |
struct cpu_timer_list, entry); |
e80eda94d
|
903 |
if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) { |
f06febc96
|
904 |
tsk->cputime_expires.prof_exp = t->expires.cpu; |
1da177e4c
|
905 906 907 908 909 910 911 |
break; } t->firing = 1; list_move_tail(&t->entry, firing); } ++timers; |
e80eda94d
|
912 |
maxfire = 20; |
f06febc96
|
913 |
tsk->cputime_expires.virt_exp = cputime_zero; |
1da177e4c
|
914 |
while (!list_empty(timers)) { |
b5e618181
|
915 |
struct cpu_timer_list *t = list_first_entry(timers, |
1da177e4c
|
916 917 |
struct cpu_timer_list, entry); |
e80eda94d
|
918 |
if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) { |
f06febc96
|
919 |
tsk->cputime_expires.virt_exp = t->expires.cpu; |
1da177e4c
|
920 921 922 923 924 925 926 |
break; } t->firing = 1; list_move_tail(&t->entry, firing); } ++timers; |
e80eda94d
|
927 |
maxfire = 20; |
f06febc96
|
928 |
tsk->cputime_expires.sched_exp = 0; |
1da177e4c
|
929 |
while (!list_empty(timers)) { |
b5e618181
|
930 |
struct cpu_timer_list *t = list_first_entry(timers, |
1da177e4c
|
931 932 |
struct cpu_timer_list, entry); |
41b86e9c5
|
933 |
if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) { |
f06febc96
|
934 |
tsk->cputime_expires.sched_exp = t->expires.sched; |
1da177e4c
|
935 936 937 938 939 |
break; } t->firing = 1; list_move_tail(&t->entry, firing); } |
78f2c7db6
|
940 941 942 943 |
/* * Check for the special case thread timers. */ |
78d7d407b
|
944 |
soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur); |
d4bb52743
|
945 |
if (soft != RLIM_INFINITY) { |
78d7d407b
|
946 947 |
unsigned long hard = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); |
78f2c7db6
|
948 |
|
5a52dd500
|
949 950 |
if (hard != RLIM_INFINITY && tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { |
78f2c7db6
|
951 952 953 954 955 956 957 |
/* * At the hard limit, we just die. * No need to calculate anything else now. */ __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); return; } |
d4bb52743
|
958 |
if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { |
78f2c7db6
|
959 960 961 |
/* * At the soft limit, send a SIGXCPU every second. */ |
d4bb52743
|
962 963 964 |
if (soft < hard) { soft += USEC_PER_SEC; sig->rlim[RLIMIT_RTTIME].rlim_cur = soft; |
78f2c7db6
|
965 |
} |
81d50bb25
|
966 967 968 969 |
printk(KERN_INFO "RT Watchdog Timeout: %s[%d] ", tsk->comm, task_pid_nr(tsk)); |
78f2c7db6
|
970 971 972 |
__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); } } |
1da177e4c
|
973 |
} |
15365c108
|
974 |
static void stop_process_timers(struct signal_struct *sig) |
3fccfd67d
|
975 |
{ |
15365c108
|
976 |
struct thread_group_cputimer *cputimer = &sig->cputimer; |
3fccfd67d
|
977 |
unsigned long flags; |
3fccfd67d
|
978 979 980 981 |
spin_lock_irqsave(&cputimer->lock, flags); cputimer->running = 0; spin_unlock_irqrestore(&cputimer->lock, flags); } |
8356b5f9c
|
982 |
static u32 onecputick; |
42c4ab41a
|
983 984 985 986 987 988 989 |
static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, cputime_t *expires, cputime_t cur_time, int signo) { if (cputime_eq(it->expires, cputime_zero)) return; if (cputime_ge(cur_time, it->expires)) { |
8356b5f9c
|
990 991 992 993 994 |
if (!cputime_eq(it->incr, cputime_zero)) { it->expires = cputime_add(it->expires, it->incr); it->error += it->incr_error; if (it->error >= onecputick) { it->expires = cputime_sub(it->expires, |
a42548a18
|
995 |
cputime_one_jiffy); |
8356b5f9c
|
996 997 |
it->error -= onecputick; } |
3f0a525eb
|
998 |
} else { |
8356b5f9c
|
999 |
it->expires = cputime_zero; |
3f0a525eb
|
1000 |
} |
42c4ab41a
|
1001 |
|
3f0a525eb
|
1002 1003 1004 |
trace_itimer_expire(signo == SIGPROF ? ITIMER_PROF : ITIMER_VIRTUAL, tsk->signal->leader_pid, cur_time); |
42c4ab41a
|
1005 1006 1007 1008 1009 1010 1011 1012 1013 |
__group_send_sig_info(signo, SEND_SIG_PRIV, tsk); } if (!cputime_eq(it->expires, cputime_zero) && (cputime_eq(*expires, cputime_zero) || cputime_lt(it->expires, *expires))) { *expires = it->expires; } } |
29f87b793
|
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 |
/** * task_cputime_zero - Check a task_cputime struct for all zero fields. * * @cputime: The struct to compare. * * Checks @cputime to see if all fields are zero. Returns true if all fields * are zero, false if any field is nonzero. */ static inline int task_cputime_zero(const struct task_cputime *cputime) { if (cputime_eq(cputime->utime, cputime_zero) && cputime_eq(cputime->stime, cputime_zero) && cputime->sum_exec_runtime == 0) return 1; return 0; } |
1da177e4c
|
1030 1031 1032 1033 1034 1035 1036 1037 |
/* * Check for any per-thread CPU timers that have fired and move them * off the tsk->*_timers list onto the firing list. Per-thread timers * have already been taken off. */ static void check_process_timers(struct task_struct *tsk, struct list_head *firing) { |
e80eda94d
|
1038 |
int maxfire; |
1da177e4c
|
1039 |
struct signal_struct *const sig = tsk->signal; |
f06febc96
|
1040 |
cputime_t utime, ptime, virt_expires, prof_expires; |
41b86e9c5
|
1041 |
unsigned long long sum_sched_runtime, sched_expires; |
1da177e4c
|
1042 |
struct list_head *timers = sig->cpu_timers; |
f06febc96
|
1043 |
struct task_cputime cputime; |
d4bb52743
|
1044 |
unsigned long soft; |
1da177e4c
|
1045 1046 |
/* |
1da177e4c
|
1047 1048 |
* Collect the current process totals. */ |
4cd4c1b40
|
1049 |
thread_group_cputimer(tsk, &cputime); |
f06febc96
|
1050 1051 1052 |
utime = cputime.utime; ptime = cputime_add(utime, cputime.stime); sum_sched_runtime = cputime.sum_exec_runtime; |
e80eda94d
|
1053 |
maxfire = 20; |
1da177e4c
|
1054 1055 |
prof_expires = cputime_zero; while (!list_empty(timers)) { |
ee7dd205b
|
1056 |
struct cpu_timer_list *tl = list_first_entry(timers, |
1da177e4c
|
1057 1058 |
struct cpu_timer_list, entry); |
ee7dd205b
|
1059 1060 |
if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) { prof_expires = tl->expires.cpu; |
1da177e4c
|
1061 1062 |
break; } |
ee7dd205b
|
1063 1064 |
tl->firing = 1; list_move_tail(&tl->entry, firing); |
1da177e4c
|
1065 1066 1067 |
} ++timers; |
e80eda94d
|
1068 |
maxfire = 20; |
1da177e4c
|
1069 1070 |
virt_expires = cputime_zero; while (!list_empty(timers)) { |
ee7dd205b
|
1071 |
struct cpu_timer_list *tl = list_first_entry(timers, |
1da177e4c
|
1072 1073 |
struct cpu_timer_list, entry); |
ee7dd205b
|
1074 1075 |
if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) { virt_expires = tl->expires.cpu; |
1da177e4c
|
1076 1077 |
break; } |
ee7dd205b
|
1078 1079 |
tl->firing = 1; list_move_tail(&tl->entry, firing); |
1da177e4c
|
1080 1081 1082 |
} ++timers; |
e80eda94d
|
1083 |
maxfire = 20; |
1da177e4c
|
1084 1085 |
sched_expires = 0; while (!list_empty(timers)) { |
ee7dd205b
|
1086 |
struct cpu_timer_list *tl = list_first_entry(timers, |
1da177e4c
|
1087 1088 |
struct cpu_timer_list, entry); |
ee7dd205b
|
1089 1090 |
if (!--maxfire || sum_sched_runtime < tl->expires.sched) { sched_expires = tl->expires.sched; |
1da177e4c
|
1091 1092 |
break; } |
ee7dd205b
|
1093 1094 |
tl->firing = 1; list_move_tail(&tl->entry, firing); |
1da177e4c
|
1095 1096 1097 1098 1099 |
} /* * Check for the special case process timers. */ |
42c4ab41a
|
1100 1101 1102 1103 |
check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, SIGPROF); check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, SIGVTALRM); |
78d7d407b
|
1104 |
soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); |
d4bb52743
|
1105 |
if (soft != RLIM_INFINITY) { |
1da177e4c
|
1106 |
unsigned long psecs = cputime_to_secs(ptime); |
78d7d407b
|
1107 1108 |
unsigned long hard = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max); |
1da177e4c
|
1109 |
cputime_t x; |
d4bb52743
|
1110 |
if (psecs >= hard) { |
1da177e4c
|
1111 1112 1113 1114 1115 1116 1117 |
/* * At the hard limit, we just die. * No need to calculate anything else now. */ __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); return; } |
d4bb52743
|
1118 |
if (psecs >= soft) { |
1da177e4c
|
1119 1120 1121 1122 |
/* * At the soft limit, send a SIGXCPU every second. */ __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); |
d4bb52743
|
1123 1124 1125 |
if (soft < hard) { soft++; sig->rlim[RLIMIT_CPU].rlim_cur = soft; |
1da177e4c
|
1126 1127 |
} } |
d4bb52743
|
1128 |
x = secs_to_cputime(soft); |
1da177e4c
|
1129 1130 1131 1132 1133 |
if (cputime_eq(prof_expires, cputime_zero) || cputime_lt(x, prof_expires)) { prof_expires = x; } } |
29f87b793
|
1134 1135 1136 1137 1138 |
sig->cputime_expires.prof_exp = prof_expires; sig->cputime_expires.virt_exp = virt_expires; sig->cputime_expires.sched_exp = sched_expires; if (task_cputime_zero(&sig->cputime_expires)) stop_process_timers(sig); |
1da177e4c
|
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 |
} /* * This is called from the signal code (via do_schedule_next_timer) * when the last timer signal was delivered and we have to reload the timer. */ void posix_cpu_timer_schedule(struct k_itimer *timer) { struct task_struct *p = timer->it.cpu.task; union cpu_time_count now; if (unlikely(p == NULL)) /* * The task was cleaned up already, no future firings. */ |
708f430dc
|
1154 |
goto out; |
1da177e4c
|
1155 1156 1157 1158 1159 1160 1161 1162 1163 |
/* * Fetch the current sample and update the timer's expiry time. */ if (CPUCLOCK_PERTHREAD(timer->it_clock)) { cpu_clock_sample(timer->it_clock, p, &now); bump_cpu_timer(timer, now); if (unlikely(p->exit_state)) { clear_dead_task(timer, now); |
708f430dc
|
1164 |
goto out; |
1da177e4c
|
1165 1166 |
} read_lock(&tasklist_lock); /* arm_timer needs it. */ |
c28739375
|
1167 |
spin_lock(&p->sighand->siglock); |
1da177e4c
|
1168 1169 |
} else { read_lock(&tasklist_lock); |
d30fda355
|
1170 |
if (unlikely(p->sighand == NULL)) { |
1da177e4c
|
1171 1172 1173 1174 1175 1176 1177 |
/* * The process has been reaped. * We can't even collect a sample any more. */ put_task_struct(p); timer->it.cpu.task = p = NULL; timer->it.cpu.expires.sched = 0; |
708f430dc
|
1178 |
goto out_unlock; |
1da177e4c
|
1179 1180 1181 1182 1183 1184 1185 |
} else if (unlikely(p->exit_state) && thread_group_empty(p)) { /* * We've noticed that the thread is dead, but * not yet reaped. Take this opportunity to * drop our task ref. */ clear_dead_task(timer, now); |
708f430dc
|
1186 |
goto out_unlock; |
1da177e4c
|
1187 |
} |
c28739375
|
1188 |
spin_lock(&p->sighand->siglock); |
3997ad317
|
1189 |
cpu_timer_sample_group(timer->it_clock, p, &now); |
1da177e4c
|
1190 1191 1192 1193 1194 1195 1196 |
bump_cpu_timer(timer, now); /* Leave the tasklist_lock locked for the call below. */ } /* * Now re-arm for the new expiry time. */ |
c28739375
|
1197 |
BUG_ON(!irqs_disabled()); |
5eb9aa641
|
1198 |
arm_timer(timer); |
c28739375
|
1199 |
spin_unlock(&p->sighand->siglock); |
1da177e4c
|
1200 |
|
708f430dc
|
1201 |
out_unlock: |
1da177e4c
|
1202 |
read_unlock(&tasklist_lock); |
708f430dc
|
1203 1204 1205 1206 1207 |
out: timer->it_overrun_last = timer->it_overrun; timer->it_overrun = -1; ++timer->it_requeue_pending; |
1da177e4c
|
1208 |
} |
f06febc96
|
1209 |
/** |
f06febc96
|
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 |
* task_cputime_expired - Compare two task_cputime entities. * * @sample: The task_cputime structure to be checked for expiration. * @expires: Expiration times, against which @sample will be checked. * * Checks @sample against @expires to see if any field of @sample has expired. * Returns true if any field of the former is greater than the corresponding * field of the latter if the latter field is set. Otherwise returns false. */ static inline int task_cputime_expired(const struct task_cputime *sample, const struct task_cputime *expires) { if (!cputime_eq(expires->utime, cputime_zero) && cputime_ge(sample->utime, expires->utime)) return 1; if (!cputime_eq(expires->stime, cputime_zero) && cputime_ge(cputime_add(sample->utime, sample->stime), expires->stime)) return 1; if (expires->sum_exec_runtime != 0 && sample->sum_exec_runtime >= expires->sum_exec_runtime) return 1; return 0; } /** * fastpath_timer_check - POSIX CPU timers fast path. * * @tsk: The task (thread) being checked. |
f06febc96
|
1239 |
* |
bb34d92f6
|
1240 1241 1242 1243 |
* Check the task and thread group timers. If both are zero (there are no * timers set) return false. Otherwise snapshot the task and thread group * timers and compare them with the corresponding expiration times. Return * true if a timer has expired, else return false. |
f06febc96
|
1244 |
*/ |
bb34d92f6
|
1245 |
static inline int fastpath_timer_check(struct task_struct *tsk) |
f06febc96
|
1246 |
{ |
ad133ba3d
|
1247 |
struct signal_struct *sig; |
bb34d92f6
|
1248 |
|
bb34d92f6
|
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 |
if (!task_cputime_zero(&tsk->cputime_expires)) { struct task_cputime task_sample = { .utime = tsk->utime, .stime = tsk->stime, .sum_exec_runtime = tsk->se.sum_exec_runtime }; if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) return 1; } |
ad133ba3d
|
1259 1260 |
sig = tsk->signal; |
29f87b793
|
1261 |
if (sig->cputimer.running) { |
bb34d92f6
|
1262 |
struct task_cputime group_sample; |
8d1f431cb
|
1263 1264 1265 |
spin_lock(&sig->cputimer.lock); group_sample = sig->cputimer.cputime; spin_unlock(&sig->cputimer.lock); |
bb34d92f6
|
1266 1267 1268 |
if (task_cputime_expired(&group_sample, &sig->cputime_expires)) return 1; } |
37bebc70d
|
1269 |
|
f55db6090
|
1270 |
return 0; |
f06febc96
|
1271 |
} |
1da177e4c
|
1272 1273 1274 1275 1276 1277 1278 1279 1280 |
/* * This is called from the timer interrupt handler. The irq handler has * already updated our counts. We need to check if any timers fire now. * Interrupts are disabled. */ void run_posix_cpu_timers(struct task_struct *tsk) { LIST_HEAD(firing); struct k_itimer *timer, *next; |
0bdd2ed41
|
1281 |
unsigned long flags; |
1da177e4c
|
1282 1283 |
BUG_ON(!irqs_disabled()); |
1da177e4c
|
1284 |
/* |
f06febc96
|
1285 |
* The fast path checks that there are no expired thread or thread |
bb34d92f6
|
1286 |
* group timers. If that's so, just return. |
1da177e4c
|
1287 |
*/ |
bb34d92f6
|
1288 |
if (!fastpath_timer_check(tsk)) |
f06febc96
|
1289 |
return; |
5ce73a4a5
|
1290 |
|
0bdd2ed41
|
1291 1292 |
if (!lock_task_sighand(tsk, &flags)) return; |
bb34d92f6
|
1293 1294 1295 1296 1297 1298 |
/* * Here we take off tsk->signal->cpu_timers[N] and * tsk->cpu_timers[N] all the timers that are firing, and * put them on the firing list. */ check_thread_timers(tsk, &firing); |
29f87b793
|
1299 1300 1301 1302 1303 1304 |
/* * If there are any active process wide timers (POSIX 1.b, itimers, * RLIMIT_CPU) cputimer must be running. */ if (tsk->signal->cputimer.running) check_process_timers(tsk, &firing); |
1da177e4c
|
1305 |
|
bb34d92f6
|
1306 1307 1308 1309 1310 1311 1312 1313 |
/* * We must release these locks before taking any timer's lock. * There is a potential race with timer deletion here, as the * siglock now protects our private firing list. We have set * the firing flag in each timer, so that a deletion attempt * that gets the timer lock before we do will give it up and * spin until we've taken care of that timer below. */ |
0bdd2ed41
|
1314 |
unlock_task_sighand(tsk, &flags); |
1da177e4c
|
1315 1316 1317 |
/* * Now that all the timers on our list have the firing flag, |
25985edce
|
1318 |
* no one will touch their list entries but us. We'll take |
1da177e4c
|
1319 1320 1321 1322 |
* each timer's lock before clearing its firing flag, so no * timer call will interfere. */ list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { |
6e85c5ba7
|
1323 |
int cpu_firing; |
1da177e4c
|
1324 1325 |
spin_lock(&timer->it_lock); list_del_init(&timer->it.cpu.entry); |
6e85c5ba7
|
1326 |
cpu_firing = timer->it.cpu.firing; |
1da177e4c
|
1327 1328 1329 1330 1331 1332 |
timer->it.cpu.firing = 0; /* * The firing flag is -1 if we collided with a reset * of the timer, which already reported this * almost-firing as an overrun. So don't generate an event. */ |
6e85c5ba7
|
1333 |
if (likely(cpu_firing >= 0)) |
1da177e4c
|
1334 |
cpu_timer_fire(timer); |
1da177e4c
|
1335 1336 1337 1338 1339 |
spin_unlock(&timer->it_lock); } } /* |
f55db6090
|
1340 |
* Set one of the process-wide special case CPU timers or RLIMIT_CPU. |
f06febc96
|
1341 |
* The tsk->sighand->siglock must be held by the caller. |
1da177e4c
|
1342 1343 1344 1345 1346 |
*/ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, cputime_t *newval, cputime_t *oldval) { union cpu_time_count now; |
1da177e4c
|
1347 1348 |
BUG_ON(clock_idx == CPUCLOCK_SCHED); |
4cd4c1b40
|
1349 |
cpu_timer_sample_group(clock_idx, tsk, &now); |
1da177e4c
|
1350 1351 |
if (oldval) { |
f55db6090
|
1352 1353 1354 1355 1356 |
/* * We are setting itimer. The *oldval is absolute and we update * it to be relative, *newval argument is relative and we update * it to be absolute. */ |
1da177e4c
|
1357 1358 1359 |
if (!cputime_eq(*oldval, cputime_zero)) { if (cputime_le(*oldval, now.cpu)) { /* Just about to fire. */ |
a42548a18
|
1360 |
*oldval = cputime_one_jiffy; |
1da177e4c
|
1361 1362 1363 1364 1365 1366 1367 1368 |
} else { *oldval = cputime_sub(*oldval, now.cpu); } } if (cputime_eq(*newval, cputime_zero)) return; *newval = cputime_add(*newval, now.cpu); |
1da177e4c
|
1369 1370 1371 |
} /* |
f55db6090
|
1372 1373 |
* Update expiration cache if we are the earliest timer, or eventually * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. |
1da177e4c
|
1374 |
*/ |
f55db6090
|
1375 1376 1377 |
switch (clock_idx) { case CPUCLOCK_PROF: if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) |
f06febc96
|
1378 |
tsk->signal->cputime_expires.prof_exp = *newval; |
f55db6090
|
1379 1380 1381 |
break; case CPUCLOCK_VIRT: if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) |
f06febc96
|
1382 |
tsk->signal->cputime_expires.virt_exp = *newval; |
f55db6090
|
1383 |
break; |
1da177e4c
|
1384 1385 |
} } |
e4b765551
|
1386 1387 |
static int do_cpu_nanosleep(const clockid_t which_clock, int flags, struct timespec *rqtp, struct itimerspec *it) |
1da177e4c
|
1388 |
{ |
1da177e4c
|
1389 1390 1391 1392 |
struct k_itimer timer; int error; /* |
1da177e4c
|
1393 1394 1395 1396 1397 1398 1399 1400 1401 |
* Set up a temporary timer and then wait for it to go off. */ memset(&timer, 0, sizeof timer); spin_lock_init(&timer.it_lock); timer.it_clock = which_clock; timer.it_overrun = -1; error = posix_cpu_timer_create(&timer); timer.it_process = current; if (!error) { |
1da177e4c
|
1402 |
static struct itimerspec zero_it; |
e4b765551
|
1403 1404 1405 |
memset(it, 0, sizeof *it); it->it_value = *rqtp; |
1da177e4c
|
1406 1407 |
spin_lock_irq(&timer.it_lock); |
e4b765551
|
1408 |
error = posix_cpu_timer_set(&timer, flags, it, NULL); |
1da177e4c
|
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 |
if (error) { spin_unlock_irq(&timer.it_lock); return error; } while (!signal_pending(current)) { if (timer.it.cpu.expires.sched == 0) { /* * Our timer fired and was reset. */ spin_unlock_irq(&timer.it_lock); return 0; } /* * Block until cpu_timer_fire (or a signal) wakes us. */ __set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irq(&timer.it_lock); schedule(); spin_lock_irq(&timer.it_lock); } /* * We were interrupted by a signal. */ sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); |
e4b765551
|
1436 |
posix_cpu_timer_set(&timer, 0, &zero_it, it); |
1da177e4c
|
1437 |
spin_unlock_irq(&timer.it_lock); |
e4b765551
|
1438 |
if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) { |
1da177e4c
|
1439 1440 1441 1442 1443 |
/* * It actually did fire already. */ return 0; } |
e4b765551
|
1444 1445 1446 1447 1448 |
error = -ERESTART_RESTARTBLOCK; } return error; } |
bc2c8ea48
|
1449 1450 1451 1452 |
static long posix_cpu_nsleep_restart(struct restart_block *restart_block); static int posix_cpu_nsleep(const clockid_t which_clock, int flags, struct timespec *rqtp, struct timespec __user *rmtp) |
e4b765551
|
1453 1454 |
{ struct restart_block *restart_block = |
3751f9f29
|
1455 |
¤t_thread_info()->restart_block; |
e4b765551
|
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 |
struct itimerspec it; int error; /* * Diagnose required errors first. */ if (CPUCLOCK_PERTHREAD(which_clock) && (CPUCLOCK_PID(which_clock) == 0 || CPUCLOCK_PID(which_clock) == current->pid)) return -EINVAL; error = do_cpu_nanosleep(which_clock, flags, rqtp, &it); if (error == -ERESTART_RESTARTBLOCK) { |
3751f9f29
|
1470 |
if (flags & TIMER_ABSTIME) |
e4b765551
|
1471 |
return -ERESTARTNOHAND; |
1da177e4c
|
1472 |
/* |
3751f9f29
|
1473 1474 1475 |
* Report back to the user the time still remaining. */ if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) |
1da177e4c
|
1476 |
return -EFAULT; |
1711ef386
|
1477 |
restart_block->fn = posix_cpu_nsleep_restart; |
3751f9f29
|
1478 1479 1480 |
restart_block->nanosleep.index = which_clock; restart_block->nanosleep.rmtp = rmtp; restart_block->nanosleep.expires = timespec_to_ns(rqtp); |
1da177e4c
|
1481 |
} |
1da177e4c
|
1482 1483 |
return error; } |
bc2c8ea48
|
1484 |
static long posix_cpu_nsleep_restart(struct restart_block *restart_block) |
1da177e4c
|
1485 |
{ |
3751f9f29
|
1486 |
clockid_t which_clock = restart_block->nanosleep.index; |
97735f25d
|
1487 |
struct timespec t; |
e4b765551
|
1488 1489 |
struct itimerspec it; int error; |
97735f25d
|
1490 |
|
3751f9f29
|
1491 |
t = ns_to_timespec(restart_block->nanosleep.expires); |
97735f25d
|
1492 |
|
e4b765551
|
1493 1494 1495 |
error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it); if (error == -ERESTART_RESTARTBLOCK) { |
3751f9f29
|
1496 |
struct timespec __user *rmtp = restart_block->nanosleep.rmtp; |
e4b765551
|
1497 |
/* |
3751f9f29
|
1498 1499 1500 |
* Report back to the user the time still remaining. */ if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) |
e4b765551
|
1501 |
return -EFAULT; |
3751f9f29
|
1502 |
restart_block->nanosleep.expires = timespec_to_ns(&t); |
e4b765551
|
1503 1504 |
} return error; |
1da177e4c
|
1505 |
} |
1da177e4c
|
1506 1507 |
#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) |
a924b04dd
|
1508 1509 |
static int process_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) |
1da177e4c
|
1510 1511 1512 |
{ return posix_cpu_clock_getres(PROCESS_CLOCK, tp); } |
a924b04dd
|
1513 1514 |
static int process_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) |
1da177e4c
|
1515 1516 1517 1518 1519 1520 1521 1522 |
{ return posix_cpu_clock_get(PROCESS_CLOCK, tp); } static int process_cpu_timer_create(struct k_itimer *timer) { timer->it_clock = PROCESS_CLOCK; return posix_cpu_timer_create(timer); } |
a924b04dd
|
1523 |
static int process_cpu_nsleep(const clockid_t which_clock, int flags, |
97735f25d
|
1524 1525 |
struct timespec *rqtp, struct timespec __user *rmtp) |
1da177e4c
|
1526 |
{ |
97735f25d
|
1527 |
return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); |
1da177e4c
|
1528 |
} |
1711ef386
|
1529 1530 1531 1532 |
static long process_cpu_nsleep_restart(struct restart_block *restart_block) { return -EINVAL; } |
a924b04dd
|
1533 1534 |
static int thread_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) |
1da177e4c
|
1535 1536 1537 |
{ return posix_cpu_clock_getres(THREAD_CLOCK, tp); } |
a924b04dd
|
1538 1539 |
static int thread_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) |
1da177e4c
|
1540 1541 1542 1543 1544 1545 1546 1547 |
{ return posix_cpu_clock_get(THREAD_CLOCK, tp); } static int thread_cpu_timer_create(struct k_itimer *timer) { timer->it_clock = THREAD_CLOCK; return posix_cpu_timer_create(timer); } |
1da177e4c
|
1548 |
|
1976945ee
|
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 |
struct k_clock clock_posix_cpu = { .clock_getres = posix_cpu_clock_getres, .clock_set = posix_cpu_clock_set, .clock_get = posix_cpu_clock_get, .timer_create = posix_cpu_timer_create, .nsleep = posix_cpu_nsleep, .nsleep_restart = posix_cpu_nsleep_restart, .timer_set = posix_cpu_timer_set, .timer_del = posix_cpu_timer_del, .timer_get = posix_cpu_timer_get, }; |
1da177e4c
|
1560 1561 1562 |
static __init int init_posix_cpu_timers(void) { struct k_clock process = { |
2fd1f0408
|
1563 1564 |
.clock_getres = process_cpu_clock_getres, .clock_get = process_cpu_clock_get, |
2fd1f0408
|
1565 1566 1567 |
.timer_create = process_cpu_timer_create, .nsleep = process_cpu_nsleep, .nsleep_restart = process_cpu_nsleep_restart, |
1da177e4c
|
1568 1569 |
}; struct k_clock thread = { |
2fd1f0408
|
1570 1571 |
.clock_getres = thread_cpu_clock_getres, .clock_get = thread_cpu_clock_get, |
2fd1f0408
|
1572 |
.timer_create = thread_cpu_timer_create, |
1da177e4c
|
1573 |
}; |
8356b5f9c
|
1574 |
struct timespec ts; |
1da177e4c
|
1575 |
|
527087374
|
1576 1577 |
posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process); posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread); |
1da177e4c
|
1578 |
|
a42548a18
|
1579 |
cputime_to_timespec(cputime_one_jiffy, &ts); |
8356b5f9c
|
1580 1581 |
onecputick = ts.tv_nsec; WARN_ON(ts.tv_sec != 0); |
1da177e4c
|
1582 1583 1584 |
return 0; } __initcall(init_posix_cpu_timers); |