Blame view
kernel/sys.c
41.9 KB
1da177e4c
|
1 2 3 4 5 |
/* * linux/kernel/sys.c * * Copyright (C) 1991, 1992 Linus Torvalds */ |
1da177e4c
|
6 7 8 9 |
#include <linux/module.h> #include <linux/mm.h> #include <linux/utsname.h> #include <linux/mman.h> |
1da177e4c
|
10 11 12 |
#include <linux/notifier.h> #include <linux/reboot.h> #include <linux/prctl.h> |
1da177e4c
|
13 14 |
#include <linux/highuid.h> #include <linux/fs.h> |
cdd6c482c
|
15 |
#include <linux/perf_event.h> |
3e88c553d
|
16 |
#include <linux/resource.h> |
dc009d924
|
17 18 |
#include <linux/kernel.h> #include <linux/kexec.h> |
1da177e4c
|
19 |
#include <linux/workqueue.h> |
c59ede7b7
|
20 |
#include <linux/capability.h> |
1da177e4c
|
21 22 23 24 25 26 27 28 |
#include <linux/device.h> #include <linux/key.h> #include <linux/times.h> #include <linux/posix-timers.h> #include <linux/security.h> #include <linux/dcookies.h> #include <linux/suspend.h> #include <linux/tty.h> |
7ed20e1ad
|
29 |
#include <linux/signal.h> |
9f46080c4
|
30 |
#include <linux/cn_proc.h> |
3cfc348bf
|
31 |
#include <linux/getcpu.h> |
6eaeeaba3
|
32 |
#include <linux/task_io_accounting_ops.h> |
1d9d02fee
|
33 |
#include <linux/seccomp.h> |
4047727e5
|
34 |
#include <linux/cpu.h> |
e28cbf229
|
35 |
#include <linux/personality.h> |
e3d5a27d5
|
36 |
#include <linux/ptrace.h> |
5ad4e53bd
|
37 |
#include <linux/fs_struct.h> |
5a0e3ad6a
|
38 |
#include <linux/gfp.h> |
40dc166cb
|
39 |
#include <linux/syscore_ops.h> |
1da177e4c
|
40 41 42 |
#include <linux/compat.h> #include <linux/syscalls.h> |
00d7c05ab
|
43 |
#include <linux/kprobes.h> |
acce292c8
|
44 |
#include <linux/user_namespace.h> |
1da177e4c
|
45 |
|
04c6862c0
|
46 |
#include <linux/kmsg_dump.h> |
1da177e4c
|
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
#include <asm/uaccess.h> #include <asm/io.h> #include <asm/unistd.h> #ifndef SET_UNALIGN_CTL # define SET_UNALIGN_CTL(a,b) (-EINVAL) #endif #ifndef GET_UNALIGN_CTL # define GET_UNALIGN_CTL(a,b) (-EINVAL) #endif #ifndef SET_FPEMU_CTL # define SET_FPEMU_CTL(a,b) (-EINVAL) #endif #ifndef GET_FPEMU_CTL # define GET_FPEMU_CTL(a,b) (-EINVAL) #endif #ifndef SET_FPEXC_CTL # define SET_FPEXC_CTL(a,b) (-EINVAL) #endif #ifndef GET_FPEXC_CTL # define GET_FPEXC_CTL(a,b) (-EINVAL) #endif |
651d765d0
|
69 70 71 72 73 74 |
#ifndef GET_ENDIAN # define GET_ENDIAN(a,b) (-EINVAL) #endif #ifndef SET_ENDIAN # define SET_ENDIAN(a,b) (-EINVAL) #endif |
8fb402bcc
|
75 76 77 78 79 80 |
#ifndef GET_TSC_CTL # define GET_TSC_CTL(a) (-EINVAL) #endif #ifndef SET_TSC_CTL # define SET_TSC_CTL(a) (-EINVAL) #endif |
1da177e4c
|
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
/* * this is where the system-wide overflow UID and GID are defined, for * architectures that now have 32-bit UID/GID but didn't in the past */ int overflowuid = DEFAULT_OVERFLOWUID; int overflowgid = DEFAULT_OVERFLOWGID; #ifdef CONFIG_UID16 EXPORT_SYMBOL(overflowuid); EXPORT_SYMBOL(overflowgid); #endif /* * the same as above, but for filesystems which can only store a 16-bit * UID and GID. as such, this is needed on all architectures */ int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; EXPORT_SYMBOL(fs_overflowuid); EXPORT_SYMBOL(fs_overflowgid); /* * this indicates whether you can reboot with ctrl-alt-del: the default is yes */ int C_A_D = 1; |
9ec52099e
|
111 112 |
struct pid *cad_pid; EXPORT_SYMBOL(cad_pid); |
1da177e4c
|
113 114 |
/* |
bd804eba1
|
115 116 117 118 |
* If set, this is used for preparing the system to power off. */ void (*pm_power_off_prepare)(void); |
bd804eba1
|
119 |
|
c69e8d9c0
|
120 |
/* |
fc832ad36
|
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
* Returns true if current's euid is same as p's uid or euid, * or has CAP_SYS_NICE to p's user_ns. * * Called with rcu_read_lock, creds are safe */ static bool set_one_prio_perm(struct task_struct *p) { const struct cred *cred = current_cred(), *pcred = __task_cred(p); if (pcred->user->user_ns == cred->user->user_ns && (pcred->uid == cred->euid || pcred->euid == cred->euid)) return true; if (ns_capable(pcred->user->user_ns, CAP_SYS_NICE)) return true; return false; } /* |
c69e8d9c0
|
140 141 142 |
* set the priority of a task * - the caller must hold the RCU read lock */ |
1da177e4c
|
143 144 145 |
static int set_one_prio(struct task_struct *p, int niceval, int error) { int no_nice; |
fc832ad36
|
146 |
if (!set_one_prio_perm(p)) { |
1da177e4c
|
147 148 149 |
error = -EPERM; goto out; } |
e43379f10
|
150 |
if (niceval < task_nice(p) && !can_nice(p, niceval)) { |
1da177e4c
|
151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
error = -EACCES; goto out; } no_nice = security_task_setnice(p, niceval); if (no_nice) { error = no_nice; goto out; } if (error == -ESRCH) error = 0; set_user_nice(p, niceval); out: return error; } |
754fe8d29
|
165 |
SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval) |
1da177e4c
|
166 167 168 |
{ struct task_struct *g, *p; struct user_struct *user; |
86a264abe
|
169 |
const struct cred *cred = current_cred(); |
1da177e4c
|
170 |
int error = -EINVAL; |
41487c65b
|
171 |
struct pid *pgrp; |
1da177e4c
|
172 |
|
3e88c553d
|
173 |
if (which > PRIO_USER || which < PRIO_PROCESS) |
1da177e4c
|
174 175 176 177 178 179 180 181 |
goto out; /* normalize: avoid signed division (rounding problems) */ error = -ESRCH; if (niceval < -20) niceval = -20; if (niceval > 19) niceval = 19; |
d4581a239
|
182 |
rcu_read_lock(); |
1da177e4c
|
183 184 185 |
read_lock(&tasklist_lock); switch (which) { case PRIO_PROCESS: |
41487c65b
|
186 |
if (who) |
228ebcbe6
|
187 |
p = find_task_by_vpid(who); |
41487c65b
|
188 189 |
else p = current; |
1da177e4c
|
190 191 192 193 |
if (p) error = set_one_prio(p, niceval, error); break; case PRIO_PGRP: |
41487c65b
|
194 |
if (who) |
b488893a3
|
195 |
pgrp = find_vpid(who); |
41487c65b
|
196 197 |
else pgrp = task_pgrp(current); |
2d70b68d4
|
198 |
do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { |
1da177e4c
|
199 |
error = set_one_prio(p, niceval, error); |
2d70b68d4
|
200 |
} while_each_pid_thread(pgrp, PIDTYPE_PGID, p); |
1da177e4c
|
201 202 |
break; case PRIO_USER: |
d84f4f992
|
203 |
user = (struct user_struct *) cred->user; |
1da177e4c
|
204 |
if (!who) |
86a264abe
|
205 206 207 208 |
who = cred->uid; else if ((who != cred->uid) && !(user = find_user(who))) goto out_unlock; /* No processes for this user */ |
1da177e4c
|
209 |
|
dfc6a736d
|
210 |
do_each_thread(g, p) { |
86a264abe
|
211 |
if (__task_cred(p)->uid == who) |
1da177e4c
|
212 |
error = set_one_prio(p, niceval, error); |
dfc6a736d
|
213 |
} while_each_thread(g, p); |
86a264abe
|
214 |
if (who != cred->uid) |
1da177e4c
|
215 216 217 218 219 |
free_uid(user); /* For find_user() */ break; } out_unlock: read_unlock(&tasklist_lock); |
d4581a239
|
220 |
rcu_read_unlock(); |
1da177e4c
|
221 222 223 224 225 226 227 228 229 230 |
out: return error; } /* * Ugh. To avoid negative return values, "getpriority()" will * not return the normal nice-value, but a negated value that * has been offset by 20 (ie it returns 40..1 instead of -20..19) * to stay compatible. */ |
754fe8d29
|
231 |
SYSCALL_DEFINE2(getpriority, int, which, int, who) |
1da177e4c
|
232 233 234 |
{ struct task_struct *g, *p; struct user_struct *user; |
86a264abe
|
235 |
const struct cred *cred = current_cred(); |
1da177e4c
|
236 |
long niceval, retval = -ESRCH; |
41487c65b
|
237 |
struct pid *pgrp; |
1da177e4c
|
238 |
|
3e88c553d
|
239 |
if (which > PRIO_USER || which < PRIO_PROCESS) |
1da177e4c
|
240 |
return -EINVAL; |
701188374
|
241 |
rcu_read_lock(); |
1da177e4c
|
242 243 244 |
read_lock(&tasklist_lock); switch (which) { case PRIO_PROCESS: |
41487c65b
|
245 |
if (who) |
228ebcbe6
|
246 |
p = find_task_by_vpid(who); |
41487c65b
|
247 248 |
else p = current; |
1da177e4c
|
249 250 251 252 253 254 255 |
if (p) { niceval = 20 - task_nice(p); if (niceval > retval) retval = niceval; } break; case PRIO_PGRP: |
41487c65b
|
256 |
if (who) |
b488893a3
|
257 |
pgrp = find_vpid(who); |
41487c65b
|
258 259 |
else pgrp = task_pgrp(current); |
2d70b68d4
|
260 |
do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { |
1da177e4c
|
261 262 263 |
niceval = 20 - task_nice(p); if (niceval > retval) retval = niceval; |
2d70b68d4
|
264 |
} while_each_pid_thread(pgrp, PIDTYPE_PGID, p); |
1da177e4c
|
265 266 |
break; case PRIO_USER: |
86a264abe
|
267 |
user = (struct user_struct *) cred->user; |
1da177e4c
|
268 |
if (!who) |
86a264abe
|
269 270 271 272 |
who = cred->uid; else if ((who != cred->uid) && !(user = find_user(who))) goto out_unlock; /* No processes for this user */ |
1da177e4c
|
273 |
|
dfc6a736d
|
274 |
do_each_thread(g, p) { |
86a264abe
|
275 |
if (__task_cred(p)->uid == who) { |
1da177e4c
|
276 277 278 279 |
niceval = 20 - task_nice(p); if (niceval > retval) retval = niceval; } |
dfc6a736d
|
280 |
} while_each_thread(g, p); |
86a264abe
|
281 |
if (who != cred->uid) |
1da177e4c
|
282 283 284 285 286 |
free_uid(user); /* for find_user() */ break; } out_unlock: read_unlock(&tasklist_lock); |
701188374
|
287 |
rcu_read_unlock(); |
1da177e4c
|
288 289 290 |
return retval; } |
e4c94330e
|
291 292 293 294 295 296 297 298 |
/** * emergency_restart - reboot the system * * Without shutting down any hardware or taking any locks * reboot the system. This is called when we know we are in * trouble so this is our best effort to reboot. This is * safe to call in interrupt context. */ |
7c9034735
|
299 300 |
void emergency_restart(void) { |
04c6862c0
|
301 |
kmsg_dump(KMSG_DUMP_EMERG); |
7c9034735
|
302 303 304 |
machine_emergency_restart(); } EXPORT_SYMBOL_GPL(emergency_restart); |
ca195b7f6
|
305 |
void kernel_restart_prepare(char *cmd) |
4a00ea1e1
|
306 |
{ |
e041c6834
|
307 |
blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); |
4a00ea1e1
|
308 |
system_state = SYSTEM_RESTART; |
4a00ea1e1
|
309 |
device_shutdown(); |
58b3b71df
|
310 |
sysdev_shutdown(); |
40dc166cb
|
311 |
syscore_shutdown(); |
e4c94330e
|
312 |
} |
1e5d53314
|
313 314 315 316 |
/** * kernel_restart - reboot the system * @cmd: pointer to buffer containing command to execute for restart |
b8887e6e8
|
317 |
* or %NULL |
1e5d53314
|
318 319 320 321 |
* * Shutdown everything and perform a clean reboot. * This is not safe to call in interrupt context. */ |
e4c94330e
|
322 323 324 |
void kernel_restart(char *cmd) { kernel_restart_prepare(cmd); |
756184b7d
|
325 |
if (!cmd) |
4a00ea1e1
|
326 327 |
printk(KERN_EMERG "Restarting system. "); |
756184b7d
|
328 |
else |
4a00ea1e1
|
329 330 |
printk(KERN_EMERG "Restarting system with command '%s'. ", cmd); |
04c6862c0
|
331 |
kmsg_dump(KMSG_DUMP_RESTART); |
4a00ea1e1
|
332 333 334 |
machine_restart(cmd); } EXPORT_SYMBOL_GPL(kernel_restart); |
4ef7229ff
|
335 |
static void kernel_shutdown_prepare(enum system_states state) |
729b4d4ce
|
336 |
{ |
e041c6834
|
337 |
blocking_notifier_call_chain(&reboot_notifier_list, |
729b4d4ce
|
338 339 340 341 |
(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL); system_state = state; device_shutdown(); } |
e4c94330e
|
342 343 344 345 346 |
/** * kernel_halt - halt the system * * Shutdown everything and perform a clean system halt. */ |
e4c94330e
|
347 348 |
void kernel_halt(void) { |
729b4d4ce
|
349 |
kernel_shutdown_prepare(SYSTEM_HALT); |
58b3b71df
|
350 |
sysdev_shutdown(); |
40dc166cb
|
351 |
syscore_shutdown(); |
4a00ea1e1
|
352 353 |
printk(KERN_EMERG "System halted. "); |
04c6862c0
|
354 |
kmsg_dump(KMSG_DUMP_HALT); |
4a00ea1e1
|
355 356 |
machine_halt(); } |
729b4d4ce
|
357 |
|
4a00ea1e1
|
358 |
EXPORT_SYMBOL_GPL(kernel_halt); |
e4c94330e
|
359 360 361 362 363 |
/** * kernel_power_off - power_off the system * * Shutdown everything and perform a clean system power_off. */ |
e4c94330e
|
364 365 |
void kernel_power_off(void) { |
729b4d4ce
|
366 |
kernel_shutdown_prepare(SYSTEM_POWER_OFF); |
bd804eba1
|
367 368 |
if (pm_power_off_prepare) pm_power_off_prepare(); |
4047727e5
|
369 |
disable_nonboot_cpus(); |
58b3b71df
|
370 |
sysdev_shutdown(); |
40dc166cb
|
371 |
syscore_shutdown(); |
4a00ea1e1
|
372 373 |
printk(KERN_EMERG "Power down. "); |
04c6862c0
|
374 |
kmsg_dump(KMSG_DUMP_POWEROFF); |
4a00ea1e1
|
375 376 377 |
machine_power_off(); } EXPORT_SYMBOL_GPL(kernel_power_off); |
6f15fa500
|
378 379 |
static DEFINE_MUTEX(reboot_mutex); |
1da177e4c
|
380 381 382 383 384 385 386 387 |
/* * Reboot system call: for obvious reasons only root may call it, * and even root needs to set up some magic numbers in the registers * so that some mistake won't make this reboot the whole machine. * You can also set the meaning of the ctrl-alt-del-key here. * * reboot doesn't sync: do that yourself before calling this. */ |
754fe8d29
|
388 389 |
SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd, void __user *, arg) |
1da177e4c
|
390 391 |
{ char buffer[256]; |
3d26dcf76
|
392 |
int ret = 0; |
1da177e4c
|
393 394 395 396 397 398 399 400 401 402 403 404 |
/* We only trust the superuser with rebooting the system. */ if (!capable(CAP_SYS_BOOT)) return -EPERM; /* For safety, we require "magic" arguments. */ if (magic1 != LINUX_REBOOT_MAGIC1 || (magic2 != LINUX_REBOOT_MAGIC2 && magic2 != LINUX_REBOOT_MAGIC2A && magic2 != LINUX_REBOOT_MAGIC2B && magic2 != LINUX_REBOOT_MAGIC2C)) return -EINVAL; |
5e38291d8
|
405 406 407 408 409 |
/* Instead of trying to make the power_off code look like * halt when pm_power_off is not set do it the easy way. */ if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off) cmd = LINUX_REBOOT_CMD_HALT; |
6f15fa500
|
410 |
mutex_lock(&reboot_mutex); |
1da177e4c
|
411 412 |
switch (cmd) { case LINUX_REBOOT_CMD_RESTART: |
4a00ea1e1
|
413 |
kernel_restart(NULL); |
1da177e4c
|
414 415 416 417 418 419 420 421 422 423 424 |
break; case LINUX_REBOOT_CMD_CAD_ON: C_A_D = 1; break; case LINUX_REBOOT_CMD_CAD_OFF: C_A_D = 0; break; case LINUX_REBOOT_CMD_HALT: |
4a00ea1e1
|
425 |
kernel_halt(); |
1da177e4c
|
426 |
do_exit(0); |
3d26dcf76
|
427 |
panic("cannot halt"); |
1da177e4c
|
428 429 |
case LINUX_REBOOT_CMD_POWER_OFF: |
4a00ea1e1
|
430 |
kernel_power_off(); |
1da177e4c
|
431 432 433 434 435 |
do_exit(0); break; case LINUX_REBOOT_CMD_RESTART2: if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) { |
6f15fa500
|
436 437 |
ret = -EFAULT; break; |
1da177e4c
|
438 439 |
} buffer[sizeof(buffer) - 1] = '\0'; |
4a00ea1e1
|
440 |
kernel_restart(buffer); |
1da177e4c
|
441 |
break; |
3ab835213
|
442 |
#ifdef CONFIG_KEXEC |
dc009d924
|
443 |
case LINUX_REBOOT_CMD_KEXEC: |
3d26dcf76
|
444 445 |
ret = kernel_kexec(); break; |
3ab835213
|
446 |
#endif |
4a00ea1e1
|
447 |
|
b0cb1a19d
|
448 |
#ifdef CONFIG_HIBERNATION |
1da177e4c
|
449 |
case LINUX_REBOOT_CMD_SW_SUSPEND: |
3d26dcf76
|
450 451 |
ret = hibernate(); break; |
1da177e4c
|
452 453 454 |
#endif default: |
3d26dcf76
|
455 456 |
ret = -EINVAL; break; |
1da177e4c
|
457 |
} |
6f15fa500
|
458 |
mutex_unlock(&reboot_mutex); |
3d26dcf76
|
459 |
return ret; |
1da177e4c
|
460 |
} |
65f27f384
|
461 |
static void deferred_cad(struct work_struct *dummy) |
1da177e4c
|
462 |
{ |
abcd9e51f
|
463 |
kernel_restart(NULL); |
1da177e4c
|
464 465 466 467 468 469 470 471 472 |
} /* * This function gets called by ctrl-alt-del - ie the keyboard interrupt. * As it's called within an interrupt, it may NOT sync: the only choice * is whether to reboot at once, or just ignore the ctrl-alt-del. */ void ctrl_alt_del(void) { |
65f27f384
|
473 |
static DECLARE_WORK(cad_work, deferred_cad); |
1da177e4c
|
474 475 476 477 |
if (C_A_D) schedule_work(&cad_work); else |
9ec52099e
|
478 |
kill_cad_pid(SIGINT, 1); |
1da177e4c
|
479 480 |
} |
1da177e4c
|
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
/* * Unprivileged users may change the real gid to the effective gid * or vice versa. (BSD-style) * * If you set the real gid at all, or set the effective gid to a value not * equal to the real gid, then the saved gid is set to the new effective gid. * * This makes it possible for a setgid program to completely drop its * privileges, which is often a useful assertion to make when you are doing * a security audit over a program. * * The general idea is that a program which uses just setregid() will be * 100% compatible with BSD. A program which uses just setgid() will be * 100% compatible with POSIX with saved IDs. * * SMP: There are not races, the GIDs are checked only by filesystem * operations (as far as semantic preservation is concerned). */ |
ae1251ab7
|
499 |
SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid) |
1da177e4c
|
500 |
{ |
d84f4f992
|
501 502 |
const struct cred *old; struct cred *new; |
1da177e4c
|
503 |
int retval; |
d84f4f992
|
504 505 506 507 |
new = prepare_creds(); if (!new) return -ENOMEM; old = current_cred(); |
d84f4f992
|
508 |
retval = -EPERM; |
1da177e4c
|
509 |
if (rgid != (gid_t) -1) { |
d84f4f992
|
510 511 |
if (old->gid == rgid || old->egid == rgid || |
fc832ad36
|
512 |
nsown_capable(CAP_SETGID)) |
d84f4f992
|
513 |
new->gid = rgid; |
1da177e4c
|
514 |
else |
d84f4f992
|
515 |
goto error; |
1da177e4c
|
516 517 |
} if (egid != (gid_t) -1) { |
d84f4f992
|
518 519 520 |
if (old->gid == egid || old->egid == egid || old->sgid == egid || |
fc832ad36
|
521 |
nsown_capable(CAP_SETGID)) |
d84f4f992
|
522 |
new->egid = egid; |
756184b7d
|
523 |
else |
d84f4f992
|
524 |
goto error; |
1da177e4c
|
525 |
} |
d84f4f992
|
526 |
|
1da177e4c
|
527 |
if (rgid != (gid_t) -1 || |
d84f4f992
|
528 529 530 531 532 533 534 535 536 |
(egid != (gid_t) -1 && egid != old->gid)) new->sgid = new->egid; new->fsgid = new->egid; return commit_creds(new); error: abort_creds(new); return retval; |
1da177e4c
|
537 538 539 540 541 542 543 |
} /* * setgid() is implemented like SysV w/ SAVED_IDS * * SMP: Same implicit races as above. */ |
ae1251ab7
|
544 |
SYSCALL_DEFINE1(setgid, gid_t, gid) |
1da177e4c
|
545 |
{ |
d84f4f992
|
546 547 |
const struct cred *old; struct cred *new; |
1da177e4c
|
548 |
int retval; |
d84f4f992
|
549 550 551 552 |
new = prepare_creds(); if (!new) return -ENOMEM; old = current_cred(); |
d84f4f992
|
553 |
retval = -EPERM; |
fc832ad36
|
554 |
if (nsown_capable(CAP_SETGID)) |
d84f4f992
|
555 556 557 |
new->gid = new->egid = new->sgid = new->fsgid = gid; else if (gid == old->gid || gid == old->sgid) new->egid = new->fsgid = gid; |
1da177e4c
|
558 |
else |
d84f4f992
|
559 |
goto error; |
1da177e4c
|
560 |
|
d84f4f992
|
561 562 563 564 565 |
return commit_creds(new); error: abort_creds(new); return retval; |
1da177e4c
|
566 |
} |
54e991242
|
567 |
|
d84f4f992
|
568 569 570 571 |
/* * change the user struct in a credentials set to match the new UID */ static int set_user(struct cred *new) |
1da177e4c
|
572 573 |
{ struct user_struct *new_user; |
18b6e0414
|
574 |
new_user = alloc_uid(current_user_ns(), new->uid); |
1da177e4c
|
575 576 |
if (!new_user) return -EAGAIN; |
78d7d407b
|
577 |
if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) && |
18b6e0414
|
578 |
new_user != INIT_USER) { |
1da177e4c
|
579 580 581 |
free_uid(new_user); return -EAGAIN; } |
d84f4f992
|
582 583 |
free_uid(new->user); new->user = new_user; |
1da177e4c
|
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
return 0; } /* * Unprivileged users may change the real uid to the effective uid * or vice versa. (BSD-style) * * If you set the real uid at all, or set the effective uid to a value not * equal to the real uid, then the saved uid is set to the new effective uid. * * This makes it possible for a setuid program to completely drop its * privileges, which is often a useful assertion to make when you are doing * a security audit over a program. * * The general idea is that a program which uses just setreuid() will be * 100% compatible with BSD. A program which uses just setuid() will be * 100% compatible with POSIX with saved IDs. */ |
ae1251ab7
|
602 |
SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid) |
1da177e4c
|
603 |
{ |
d84f4f992
|
604 605 |
const struct cred *old; struct cred *new; |
1da177e4c
|
606 |
int retval; |
d84f4f992
|
607 608 609 610 |
new = prepare_creds(); if (!new) return -ENOMEM; old = current_cred(); |
d84f4f992
|
611 |
retval = -EPERM; |
1da177e4c
|
612 |
if (ruid != (uid_t) -1) { |
d84f4f992
|
613 614 615 |
new->uid = ruid; if (old->uid != ruid && old->euid != ruid && |
fc832ad36
|
616 |
!nsown_capable(CAP_SETUID)) |
d84f4f992
|
617 |
goto error; |
1da177e4c
|
618 619 620 |
} if (euid != (uid_t) -1) { |
d84f4f992
|
621 622 623 624 |
new->euid = euid; if (old->uid != euid && old->euid != euid && old->suid != euid && |
fc832ad36
|
625 |
!nsown_capable(CAP_SETUID)) |
d84f4f992
|
626 |
goto error; |
1da177e4c
|
627 |
} |
54e991242
|
628 629 630 631 632 |
if (new->uid != old->uid) { retval = set_user(new); if (retval < 0) goto error; } |
1da177e4c
|
633 |
if (ruid != (uid_t) -1 || |
d84f4f992
|
634 635 636 |
(euid != (uid_t) -1 && euid != old->uid)) new->suid = new->euid; new->fsuid = new->euid; |
1da177e4c
|
637 |
|
d84f4f992
|
638 639 640 |
retval = security_task_fix_setuid(new, old, LSM_SETID_RE); if (retval < 0) goto error; |
1da177e4c
|
641 |
|
d84f4f992
|
642 |
return commit_creds(new); |
1da177e4c
|
643 |
|
d84f4f992
|
644 645 646 647 |
error: abort_creds(new); return retval; } |
1da177e4c
|
648 649 650 651 652 653 654 655 656 657 658 659 |
/* * setuid() is implemented like SysV with SAVED_IDS * * Note that SAVED_ID's is deficient in that a setuid root program * like sendmail, for example, cannot set its uid to be a normal * user and then switch back, because if you're root, setuid() sets * the saved uid too. If you don't like this, blame the bright people * in the POSIX committee and/or USG. Note that the BSD-style setreuid() * will allow a root program to temporarily drop privileges and be able to * regain them by swapping the real and effective uid. */ |
ae1251ab7
|
660 |
SYSCALL_DEFINE1(setuid, uid_t, uid) |
1da177e4c
|
661 |
{ |
d84f4f992
|
662 663 |
const struct cred *old; struct cred *new; |
1da177e4c
|
664 |
int retval; |
d84f4f992
|
665 666 667 668 |
new = prepare_creds(); if (!new) return -ENOMEM; old = current_cred(); |
d84f4f992
|
669 |
retval = -EPERM; |
fc832ad36
|
670 |
if (nsown_capable(CAP_SETUID)) { |
d84f4f992
|
671 |
new->suid = new->uid = uid; |
54e991242
|
672 673 674 675 |
if (uid != old->uid) { retval = set_user(new); if (retval < 0) goto error; |
d84f4f992
|
676 677 678 |
} } else if (uid != old->uid && uid != new->suid) { goto error; |
1da177e4c
|
679 |
} |
1da177e4c
|
680 |
|
d84f4f992
|
681 682 683 684 685 |
new->fsuid = new->euid = uid; retval = security_task_fix_setuid(new, old, LSM_SETID_ID); if (retval < 0) goto error; |
1da177e4c
|
686 |
|
d84f4f992
|
687 |
return commit_creds(new); |
1da177e4c
|
688 |
|
d84f4f992
|
689 690 691 |
error: abort_creds(new); return retval; |
1da177e4c
|
692 693 694 695 696 697 698 |
} /* * This function implements a generic ability to update ruid, euid, * and suid. This allows you to implement the 4.4 compatible seteuid(). */ |
ae1251ab7
|
699 |
SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid) |
1da177e4c
|
700 |
{ |
d84f4f992
|
701 702 |
const struct cred *old; struct cred *new; |
1da177e4c
|
703 |
int retval; |
d84f4f992
|
704 705 706 |
new = prepare_creds(); if (!new) return -ENOMEM; |
d84f4f992
|
707 |
old = current_cred(); |
1da177e4c
|
708 |
|
d84f4f992
|
709 |
retval = -EPERM; |
fc832ad36
|
710 |
if (!nsown_capable(CAP_SETUID)) { |
d84f4f992
|
711 712 713 714 715 716 717 718 719 |
if (ruid != (uid_t) -1 && ruid != old->uid && ruid != old->euid && ruid != old->suid) goto error; if (euid != (uid_t) -1 && euid != old->uid && euid != old->euid && euid != old->suid) goto error; if (suid != (uid_t) -1 && suid != old->uid && suid != old->euid && suid != old->suid) goto error; |
1da177e4c
|
720 |
} |
d84f4f992
|
721 |
|
1da177e4c
|
722 |
if (ruid != (uid_t) -1) { |
d84f4f992
|
723 |
new->uid = ruid; |
54e991242
|
724 725 726 727 728 |
if (ruid != old->uid) { retval = set_user(new); if (retval < 0) goto error; } |
1da177e4c
|
729 |
} |
d84f4f992
|
730 731 |
if (euid != (uid_t) -1) new->euid = euid; |
1da177e4c
|
732 |
if (suid != (uid_t) -1) |
d84f4f992
|
733 734 |
new->suid = suid; new->fsuid = new->euid; |
1da177e4c
|
735 |
|
d84f4f992
|
736 737 738 |
retval = security_task_fix_setuid(new, old, LSM_SETID_RES); if (retval < 0) goto error; |
1da177e4c
|
739 |
|
d84f4f992
|
740 |
return commit_creds(new); |
1da177e4c
|
741 |
|
d84f4f992
|
742 743 744 |
error: abort_creds(new); return retval; |
1da177e4c
|
745 |
} |
dbf040d9d
|
746 |
SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid) |
1da177e4c
|
747 |
{ |
86a264abe
|
748 |
const struct cred *cred = current_cred(); |
1da177e4c
|
749 |
int retval; |
86a264abe
|
750 751 |
if (!(retval = put_user(cred->uid, ruid)) && !(retval = put_user(cred->euid, euid))) |
b6dff3ec5
|
752 |
retval = put_user(cred->suid, suid); |
1da177e4c
|
753 754 755 756 757 758 759 |
return retval; } /* * Same as above, but for rgid, egid, sgid. */ |
ae1251ab7
|
760 |
SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid) |
1da177e4c
|
761 |
{ |
d84f4f992
|
762 763 |
const struct cred *old; struct cred *new; |
1da177e4c
|
764 |
int retval; |
d84f4f992
|
765 766 767 768 |
new = prepare_creds(); if (!new) return -ENOMEM; old = current_cred(); |
d84f4f992
|
769 |
retval = -EPERM; |
fc832ad36
|
770 |
if (!nsown_capable(CAP_SETGID)) { |
d84f4f992
|
771 772 773 774 775 776 777 778 779 |
if (rgid != (gid_t) -1 && rgid != old->gid && rgid != old->egid && rgid != old->sgid) goto error; if (egid != (gid_t) -1 && egid != old->gid && egid != old->egid && egid != old->sgid) goto error; if (sgid != (gid_t) -1 && sgid != old->gid && sgid != old->egid && sgid != old->sgid) goto error; |
1da177e4c
|
780 |
} |
d84f4f992
|
781 |
|
1da177e4c
|
782 |
if (rgid != (gid_t) -1) |
d84f4f992
|
783 784 785 |
new->gid = rgid; if (egid != (gid_t) -1) new->egid = egid; |
1da177e4c
|
786 |
if (sgid != (gid_t) -1) |
d84f4f992
|
787 788 |
new->sgid = sgid; new->fsgid = new->egid; |
1da177e4c
|
789 |
|
d84f4f992
|
790 791 792 793 794 |
return commit_creds(new); error: abort_creds(new); return retval; |
1da177e4c
|
795 |
} |
dbf040d9d
|
796 |
SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid) |
1da177e4c
|
797 |
{ |
86a264abe
|
798 |
const struct cred *cred = current_cred(); |
1da177e4c
|
799 |
int retval; |
86a264abe
|
800 801 |
if (!(retval = put_user(cred->gid, rgid)) && !(retval = put_user(cred->egid, egid))) |
b6dff3ec5
|
802 |
retval = put_user(cred->sgid, sgid); |
1da177e4c
|
803 804 805 806 807 808 809 810 811 812 813 |
return retval; } /* * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This * is used for "access()" and for the NFS daemon (letting nfsd stay at * whatever uid it wants to). It normally shadows "euid", except when * explicitly set by setfsuid() or for access.. */ |
ae1251ab7
|
814 |
SYSCALL_DEFINE1(setfsuid, uid_t, uid) |
1da177e4c
|
815 |
{ |
d84f4f992
|
816 817 818 |
const struct cred *old; struct cred *new; uid_t old_fsuid; |
1da177e4c
|
819 |
|
d84f4f992
|
820 821 822 823 824 |
new = prepare_creds(); if (!new) return current_fsuid(); old = current_cred(); old_fsuid = old->fsuid; |
1da177e4c
|
825 |
|
d84f4f992
|
826 827 |
if (uid == old->uid || uid == old->euid || uid == old->suid || uid == old->fsuid || |
fc832ad36
|
828 |
nsown_capable(CAP_SETUID)) { |
756184b7d
|
829 |
if (uid != old_fsuid) { |
d84f4f992
|
830 831 832 |
new->fsuid = uid; if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0) goto change_okay; |
1da177e4c
|
833 |
} |
1da177e4c
|
834 |
} |
d84f4f992
|
835 836 |
abort_creds(new); return old_fsuid; |
1da177e4c
|
837 |
|
d84f4f992
|
838 839 |
change_okay: commit_creds(new); |
1da177e4c
|
840 841 842 843 |
return old_fsuid; } /* |
f42df9e65
|
844 |
* Samma på svenska.. |
1da177e4c
|
845 |
*/ |
ae1251ab7
|
846 |
SYSCALL_DEFINE1(setfsgid, gid_t, gid) |
1da177e4c
|
847 |
{ |
d84f4f992
|
848 849 850 851 852 853 854 855 856 |
const struct cred *old; struct cred *new; gid_t old_fsgid; new = prepare_creds(); if (!new) return current_fsgid(); old = current_cred(); old_fsgid = old->fsgid; |
1da177e4c
|
857 |
|
d84f4f992
|
858 859 |
if (gid == old->gid || gid == old->egid || gid == old->sgid || gid == old->fsgid || |
fc832ad36
|
860 |
nsown_capable(CAP_SETGID)) { |
756184b7d
|
861 |
if (gid != old_fsgid) { |
d84f4f992
|
862 863 |
new->fsgid = gid; goto change_okay; |
1da177e4c
|
864 |
} |
1da177e4c
|
865 |
} |
d84f4f992
|
866 |
|
d84f4f992
|
867 868 869 870 871 |
abort_creds(new); return old_fsgid; change_okay: commit_creds(new); |
1da177e4c
|
872 873 |
return old_fsgid; } |
f06febc96
|
874 875 |
void do_sys_times(struct tms *tms) { |
0cf55e1ec
|
876 |
cputime_t tgutime, tgstime, cutime, cstime; |
f06febc96
|
877 |
|
2b5fe6de5
|
878 |
spin_lock_irq(¤t->sighand->siglock); |
0cf55e1ec
|
879 |
thread_group_times(current, &tgutime, &tgstime); |
f06febc96
|
880 881 882 |
cutime = current->signal->cutime; cstime = current->signal->cstime; spin_unlock_irq(¤t->sighand->siglock); |
0cf55e1ec
|
883 884 |
tms->tms_utime = cputime_to_clock_t(tgutime); tms->tms_stime = cputime_to_clock_t(tgstime); |
f06febc96
|
885 886 887 |
tms->tms_cutime = cputime_to_clock_t(cutime); tms->tms_cstime = cputime_to_clock_t(cstime); } |
58fd3aa28
|
888 |
SYSCALL_DEFINE1(times, struct tms __user *, tbuf) |
1da177e4c
|
889 |
{ |
1da177e4c
|
890 891 |
if (tbuf) { struct tms tmp; |
f06febc96
|
892 893 |
do_sys_times(&tmp); |
1da177e4c
|
894 895 896 |
if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) return -EFAULT; } |
e3d5a27d5
|
897 |
force_successful_syscall_return(); |
1da177e4c
|
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 |
return (long) jiffies_64_to_clock_t(get_jiffies_64()); } /* * This needs some heavy checking ... * I just haven't the stomach for it. I also don't fully * understand sessions/pgrp etc. Let somebody who does explain it. * * OK, I think I have the protection semantics right.... this is really * only important on a multi-user system anyway, to make sure one user * can't send a signal to a process owned by another. -TYT, 12/12/91 * * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. * LBT 04.03.94 */ |
b290ebe2c
|
913 |
SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid) |
1da177e4c
|
914 915 |
{ struct task_struct *p; |
ee0acf90d
|
916 |
struct task_struct *group_leader = current->group_leader; |
4e021306c
|
917 918 |
struct pid *pgrp; int err; |
1da177e4c
|
919 920 |
if (!pid) |
b488893a3
|
921 |
pid = task_pid_vnr(group_leader); |
1da177e4c
|
922 923 924 925 |
if (!pgid) pgid = pid; if (pgid < 0) return -EINVAL; |
950eaaca6
|
926 |
rcu_read_lock(); |
1da177e4c
|
927 928 929 930 931 932 933 |
/* From this point forward we keep holding onto the tasklist lock * so that our parent does not change from under us. -DaveM */ write_lock_irq(&tasklist_lock); err = -ESRCH; |
4e021306c
|
934 |
p = find_task_by_vpid(pid); |
1da177e4c
|
935 936 937 938 939 940 |
if (!p) goto out; err = -EINVAL; if (!thread_group_leader(p)) goto out; |
4e021306c
|
941 |
if (same_thread_group(p->real_parent, group_leader)) { |
1da177e4c
|
942 |
err = -EPERM; |
41487c65b
|
943 |
if (task_session(p) != task_session(group_leader)) |
1da177e4c
|
944 945 946 947 948 949 |
goto out; err = -EACCES; if (p->did_exec) goto out; } else { err = -ESRCH; |
ee0acf90d
|
950 |
if (p != group_leader) |
1da177e4c
|
951 952 953 954 955 956 |
goto out; } err = -EPERM; if (p->signal->leader) goto out; |
4e021306c
|
957 |
pgrp = task_pid(p); |
1da177e4c
|
958 |
if (pgid != pid) { |
b488893a3
|
959 |
struct task_struct *g; |
1da177e4c
|
960 |
|
4e021306c
|
961 962 |
pgrp = find_vpid(pgid); g = pid_task(pgrp, PIDTYPE_PGID); |
41487c65b
|
963 |
if (!g || task_session(g) != task_session(group_leader)) |
f020bc468
|
964 |
goto out; |
1da177e4c
|
965 |
} |
1da177e4c
|
966 967 968 |
err = security_task_setpgid(p, pgid); if (err) goto out; |
1b0f7ffd0
|
969 |
if (task_pgrp(p) != pgrp) |
83beaf3c6
|
970 |
change_pid(p, PIDTYPE_PGID, pgrp); |
1da177e4c
|
971 972 973 974 975 |
err = 0; out: /* All paths lead to here, thus we are safe. -DaveM */ write_unlock_irq(&tasklist_lock); |
950eaaca6
|
976 |
rcu_read_unlock(); |
1da177e4c
|
977 978 |
return err; } |
dbf040d9d
|
979 |
SYSCALL_DEFINE1(getpgid, pid_t, pid) |
1da177e4c
|
980 |
{ |
12a3de0a9
|
981 982 983 984 985 |
struct task_struct *p; struct pid *grp; int retval; rcu_read_lock(); |
756184b7d
|
986 |
if (!pid) |
12a3de0a9
|
987 |
grp = task_pgrp(current); |
756184b7d
|
988 |
else { |
1da177e4c
|
989 |
retval = -ESRCH; |
12a3de0a9
|
990 991 992 993 994 995 996 997 998 999 |
p = find_task_by_vpid(pid); if (!p) goto out; grp = task_pgrp(p); if (!grp) goto out; retval = security_task_getpgid(p); if (retval) goto out; |
1da177e4c
|
1000 |
} |
12a3de0a9
|
1001 1002 1003 1004 |
retval = pid_vnr(grp); out: rcu_read_unlock(); return retval; |
1da177e4c
|
1005 1006 1007 |
} #ifdef __ARCH_WANT_SYS_GETPGRP |
dbf040d9d
|
1008 |
SYSCALL_DEFINE0(getpgrp) |
1da177e4c
|
1009 |
{ |
12a3de0a9
|
1010 |
return sys_getpgid(0); |
1da177e4c
|
1011 1012 1013 |
} #endif |
dbf040d9d
|
1014 |
SYSCALL_DEFINE1(getsid, pid_t, pid) |
1da177e4c
|
1015 |
{ |
1dd768c08
|
1016 1017 1018 1019 1020 |
struct task_struct *p; struct pid *sid; int retval; rcu_read_lock(); |
756184b7d
|
1021 |
if (!pid) |
1dd768c08
|
1022 |
sid = task_session(current); |
756184b7d
|
1023 |
else { |
1da177e4c
|
1024 |
retval = -ESRCH; |
1dd768c08
|
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 |
p = find_task_by_vpid(pid); if (!p) goto out; sid = task_session(p); if (!sid) goto out; retval = security_task_getsid(p); if (retval) goto out; |
1da177e4c
|
1035 |
} |
1dd768c08
|
1036 1037 1038 1039 |
retval = pid_vnr(sid); out: rcu_read_unlock(); return retval; |
1da177e4c
|
1040 |
} |
b290ebe2c
|
1041 |
SYSCALL_DEFINE0(setsid) |
1da177e4c
|
1042 |
{ |
e19f247a3
|
1043 |
struct task_struct *group_leader = current->group_leader; |
e4cc0a9c8
|
1044 1045 |
struct pid *sid = task_pid(group_leader); pid_t session = pid_vnr(sid); |
1da177e4c
|
1046 |
int err = -EPERM; |
1da177e4c
|
1047 |
write_lock_irq(&tasklist_lock); |
390e2ff07
|
1048 1049 1050 |
/* Fail if I am already a session leader */ if (group_leader->signal->leader) goto out; |
430c62312
|
1051 1052 |
/* Fail if a process group id already exists that equals the * proposed session id. |
390e2ff07
|
1053 |
*/ |
6806aac6d
|
1054 |
if (pid_task(sid, PIDTYPE_PGID)) |
1da177e4c
|
1055 |
goto out; |
e19f247a3
|
1056 |
group_leader->signal->leader = 1; |
8520d7c7f
|
1057 |
__set_special_pids(sid); |
24ec839c4
|
1058 |
|
9c9f4ded9
|
1059 |
proc_clear_tty(group_leader); |
24ec839c4
|
1060 |
|
e4cc0a9c8
|
1061 |
err = session; |
1da177e4c
|
1062 1063 |
out: write_unlock_irq(&tasklist_lock); |
5091faa44
|
1064 |
if (err > 0) { |
0d0df599f
|
1065 |
proc_sid_connector(group_leader); |
5091faa44
|
1066 1067 |
sched_autogroup_create_attach(group_leader); } |
1da177e4c
|
1068 1069 |
return err; } |
1da177e4c
|
1070 |
DECLARE_RWSEM(uts_sem); |
e28cbf229
|
1071 1072 |
#ifdef COMPAT_UTS_MACHINE #define override_architecture(name) \ |
46da27664
|
1073 |
(personality(current->personality) == PER_LINUX32 && \ |
e28cbf229
|
1074 1075 1076 1077 1078 |
copy_to_user(name->machine, COMPAT_UTS_MACHINE, \ sizeof(COMPAT_UTS_MACHINE))) #else #define override_architecture(name) 0 #endif |
e48fbb699
|
1079 |
SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name) |
1da177e4c
|
1080 1081 1082 1083 |
{ int errno = 0; down_read(&uts_sem); |
e9ff3990f
|
1084 |
if (copy_to_user(name, utsname(), sizeof *name)) |
1da177e4c
|
1085 1086 |
errno = -EFAULT; up_read(&uts_sem); |
e28cbf229
|
1087 1088 1089 |
if (!errno && override_architecture(name)) errno = -EFAULT; |
1da177e4c
|
1090 1091 |
return errno; } |
5cacdb4ad
|
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 |
#ifdef __ARCH_WANT_SYS_OLD_UNAME /* * Old cruft */ SYSCALL_DEFINE1(uname, struct old_utsname __user *, name) { int error = 0; if (!name) return -EFAULT; down_read(&uts_sem); if (copy_to_user(name, utsname(), sizeof(*name))) error = -EFAULT; up_read(&uts_sem); if (!error && override_architecture(name)) error = -EFAULT; return error; } SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name) { int error; if (!name) return -EFAULT; if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname))) return -EFAULT; down_read(&uts_sem); error = __copy_to_user(&name->sysname, &utsname()->sysname, __OLD_UTS_LEN); error |= __put_user(0, name->sysname + __OLD_UTS_LEN); error |= __copy_to_user(&name->nodename, &utsname()->nodename, __OLD_UTS_LEN); error |= __put_user(0, name->nodename + __OLD_UTS_LEN); error |= __copy_to_user(&name->release, &utsname()->release, __OLD_UTS_LEN); error |= __put_user(0, name->release + __OLD_UTS_LEN); error |= __copy_to_user(&name->version, &utsname()->version, __OLD_UTS_LEN); error |= __put_user(0, name->version + __OLD_UTS_LEN); error |= __copy_to_user(&name->machine, &utsname()->machine, __OLD_UTS_LEN); error |= __put_user(0, name->machine + __OLD_UTS_LEN); up_read(&uts_sem); if (!error && override_architecture(name)) error = -EFAULT; return error ? -EFAULT : 0; } #endif |
5a8a82b1d
|
1145 |
SYSCALL_DEFINE2(sethostname, char __user *, name, int, len) |
1da177e4c
|
1146 1147 1148 |
{ int errno; char tmp[__NEW_UTS_LEN]; |
bb96a6f50
|
1149 |
if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) |
1da177e4c
|
1150 |
return -EPERM; |
fc832ad36
|
1151 |
|
1da177e4c
|
1152 1153 1154 1155 1156 |
if (len < 0 || len > __NEW_UTS_LEN) return -EINVAL; down_write(&uts_sem); errno = -EFAULT; if (!copy_from_user(tmp, name, len)) { |
9679e4dd6
|
1157 1158 1159 1160 |
struct new_utsname *u = utsname(); memcpy(u->nodename, tmp, len); memset(u->nodename + len, 0, sizeof(u->nodename) - len); |
1da177e4c
|
1161 1162 1163 1164 1165 1166 1167 |
errno = 0; } up_write(&uts_sem); return errno; } #ifdef __ARCH_WANT_SYS_GETHOSTNAME |
5a8a82b1d
|
1168 |
SYSCALL_DEFINE2(gethostname, char __user *, name, int, len) |
1da177e4c
|
1169 1170 |
{ int i, errno; |
9679e4dd6
|
1171 |
struct new_utsname *u; |
1da177e4c
|
1172 1173 1174 1175 |
if (len < 0) return -EINVAL; down_read(&uts_sem); |
9679e4dd6
|
1176 1177 |
u = utsname(); i = 1 + strlen(u->nodename); |
1da177e4c
|
1178 1179 1180 |
if (i > len) i = len; errno = 0; |
9679e4dd6
|
1181 |
if (copy_to_user(name, u->nodename, i)) |
1da177e4c
|
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 |
errno = -EFAULT; up_read(&uts_sem); return errno; } #endif /* * Only setdomainname; getdomainname can be implemented by calling * uname() */ |
5a8a82b1d
|
1193 |
SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len) |
1da177e4c
|
1194 1195 1196 |
{ int errno; char tmp[__NEW_UTS_LEN]; |
fc832ad36
|
1197 |
if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN)) |
1da177e4c
|
1198 1199 1200 1201 1202 1203 1204 |
return -EPERM; if (len < 0 || len > __NEW_UTS_LEN) return -EINVAL; down_write(&uts_sem); errno = -EFAULT; if (!copy_from_user(tmp, name, len)) { |
9679e4dd6
|
1205 1206 1207 1208 |
struct new_utsname *u = utsname(); memcpy(u->domainname, tmp, len); memset(u->domainname + len, 0, sizeof(u->domainname) - len); |
1da177e4c
|
1209 1210 1211 1212 1213 |
errno = 0; } up_write(&uts_sem); return errno; } |
e48fbb699
|
1214 |
SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim) |
1da177e4c
|
1215 |
{ |
b95183453
|
1216 1217 1218 1219 1220 1221 1222 1223 |
struct rlimit value; int ret; ret = do_prlimit(current, resource, NULL, &value); if (!ret) ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; return ret; |
1da177e4c
|
1224 1225 1226 1227 1228 1229 1230 1231 |
} #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT /* * Back compatibility for getrlimit. Needed for some apps. */ |
e48fbb699
|
1232 1233 |
SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource, struct rlimit __user *, rlim) |
1da177e4c
|
1234 1235 1236 1237 1238 1239 1240 1241 |
{ struct rlimit x; if (resource >= RLIM_NLIMITS) return -EINVAL; task_lock(current->group_leader); x = current->signal->rlim[resource]; task_unlock(current->group_leader); |
756184b7d
|
1242 |
if (x.rlim_cur > 0x7FFFFFFF) |
1da177e4c
|
1243 |
x.rlim_cur = 0x7FFFFFFF; |
756184b7d
|
1244 |
if (x.rlim_max > 0x7FFFFFFF) |
1da177e4c
|
1245 1246 1247 1248 1249 |
x.rlim_max = 0x7FFFFFFF; return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; } #endif |
c022a0aca
|
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 |
static inline bool rlim64_is_infinity(__u64 rlim64) { #if BITS_PER_LONG < 64 return rlim64 >= ULONG_MAX; #else return rlim64 == RLIM64_INFINITY; #endif } static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64) { if (rlim->rlim_cur == RLIM_INFINITY) rlim64->rlim_cur = RLIM64_INFINITY; else rlim64->rlim_cur = rlim->rlim_cur; if (rlim->rlim_max == RLIM_INFINITY) rlim64->rlim_max = RLIM64_INFINITY; else rlim64->rlim_max = rlim->rlim_max; } static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim) { if (rlim64_is_infinity(rlim64->rlim_cur)) rlim->rlim_cur = RLIM_INFINITY; else rlim->rlim_cur = (unsigned long)rlim64->rlim_cur; if (rlim64_is_infinity(rlim64->rlim_max)) rlim->rlim_max = RLIM_INFINITY; else rlim->rlim_max = (unsigned long)rlim64->rlim_max; } |
1c1e618dd
|
1282 |
/* make sure you are allowed to change @tsk limits before calling this */ |
5b41535aa
|
1283 1284 |
int do_prlimit(struct task_struct *tsk, unsigned int resource, struct rlimit *new_rlim, struct rlimit *old_rlim) |
1da177e4c
|
1285 |
{ |
5b41535aa
|
1286 |
struct rlimit *rlim; |
86f162f4c
|
1287 |
int retval = 0; |
1da177e4c
|
1288 1289 1290 |
if (resource >= RLIM_NLIMITS) return -EINVAL; |
5b41535aa
|
1291 1292 1293 1294 1295 1296 1297 |
if (new_rlim) { if (new_rlim->rlim_cur > new_rlim->rlim_max) return -EINVAL; if (resource == RLIMIT_NOFILE && new_rlim->rlim_max > sysctl_nr_open) return -EPERM; } |
1da177e4c
|
1298 |
|
1c1e618dd
|
1299 1300 1301 1302 1303 1304 |
/* protect tsk->signal and tsk->sighand from disappearing */ read_lock(&tasklist_lock); if (!tsk->sighand) { retval = -ESRCH; goto out; } |
5b41535aa
|
1305 |
rlim = tsk->signal->rlim + resource; |
86f162f4c
|
1306 |
task_lock(tsk->group_leader); |
5b41535aa
|
1307 |
if (new_rlim) { |
fc832ad36
|
1308 1309 |
/* Keep the capable check against init_user_ns until cgroups can contain all limits */ |
5b41535aa
|
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 |
if (new_rlim->rlim_max > rlim->rlim_max && !capable(CAP_SYS_RESOURCE)) retval = -EPERM; if (!retval) retval = security_task_setrlimit(tsk->group_leader, resource, new_rlim); if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) { /* * The caller is asking for an immediate RLIMIT_CPU * expiry. But we use the zero value to mean "it was * never set". So let's cheat and make it one second * instead */ new_rlim->rlim_cur = 1; } } if (!retval) { if (old_rlim) *old_rlim = *rlim; if (new_rlim) *rlim = *new_rlim; |
9926e4c74
|
1331 |
} |
7855c35da
|
1332 |
task_unlock(tsk->group_leader); |
1da177e4c
|
1333 |
|
d3561f78f
|
1334 1335 1336 1337 1338 1339 |
/* * RLIMIT_CPU handling. Note that the kernel fails to return an error * code if it rejected the user's attempt to set RLIMIT_CPU. This is a * very long-standing error, and fixing it now risks breakage of * applications, so we live with it */ |
5b41535aa
|
1340 1341 1342 |
if (!retval && new_rlim && resource == RLIMIT_CPU && new_rlim->rlim_cur != RLIM_INFINITY) update_rlimit_cpu(tsk, new_rlim->rlim_cur); |
ec9e16bac
|
1343 |
out: |
1c1e618dd
|
1344 |
read_unlock(&tasklist_lock); |
2fb9d2689
|
1345 |
return retval; |
1da177e4c
|
1346 |
} |
c022a0aca
|
1347 1348 1349 1350 |
/* rcu lock must be held */ static int check_prlimit_permission(struct task_struct *task) { const struct cred *cred = current_cred(), *tcred; |
fc832ad36
|
1351 1352 |
if (current == task) return 0; |
c022a0aca
|
1353 |
|
fc832ad36
|
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 |
tcred = __task_cred(task); if (cred->user->user_ns == tcred->user->user_ns && (cred->uid == tcred->euid && cred->uid == tcred->suid && cred->uid == tcred->uid && cred->gid == tcred->egid && cred->gid == tcred->sgid && cred->gid == tcred->gid)) return 0; if (ns_capable(tcred->user->user_ns, CAP_SYS_RESOURCE)) return 0; return -EPERM; |
c022a0aca
|
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 |
} SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource, const struct rlimit64 __user *, new_rlim, struct rlimit64 __user *, old_rlim) { struct rlimit64 old64, new64; struct rlimit old, new; struct task_struct *tsk; int ret; if (new_rlim) { if (copy_from_user(&new64, new_rlim, sizeof(new64))) return -EFAULT; rlim64_to_rlim(&new64, &new); } rcu_read_lock(); tsk = pid ? find_task_by_vpid(pid) : current; if (!tsk) { rcu_read_unlock(); return -ESRCH; } ret = check_prlimit_permission(tsk); if (ret) { rcu_read_unlock(); return ret; } get_task_struct(tsk); rcu_read_unlock(); ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL, old_rlim ? &old : NULL); if (!ret && old_rlim) { rlim_to_rlim64(&old, &old64); if (copy_to_user(old_rlim, &old64, sizeof(old64))) ret = -EFAULT; } put_task_struct(tsk); return ret; } |
7855c35da
|
1410 1411 1412 1413 1414 1415 |
SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim) { struct rlimit new_rlim; if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) return -EFAULT; |
5b41535aa
|
1416 |
return do_prlimit(current, resource, &new_rlim, NULL); |
7855c35da
|
1417 |
} |
1da177e4c
|
1418 1419 1420 1421 1422 1423 1424 1425 |
/* * It would make sense to put struct rusage in the task_struct, * except that would make the task_struct be *really big*. After * task_struct gets moved into malloc'ed memory, it would * make sense to do this. It will make moving the rest of the information * a lot simpler! (Which we're not doing right now because we're not * measuring them yet). * |
1da177e4c
|
1426 1427 1428 1429 1430 1431 1432 |
* When sampling multiple threads for RUSAGE_SELF, under SMP we might have * races with threads incrementing their own counters. But since word * reads are atomic, we either get new values or old values and we don't * care which for the sums. We always take the siglock to protect reading * the c* fields from p->signal from races with exit.c updating those * fields when reaping, so a sample either gets all the additions of a * given child after it's reaped, or none so this sample is before reaping. |
2dd0ebcd2
|
1433 |
* |
de047c1bc
|
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 |
* Locking: * We need to take the siglock for CHILDEREN, SELF and BOTH * for the cases current multithreaded, non-current single threaded * non-current multithreaded. Thread traversal is now safe with * the siglock held. * Strictly speaking, we donot need to take the siglock if we are current and * single threaded, as no one else can take our signal_struct away, no one * else can reap the children to update signal->c* counters, and no one else * can race with the signal-> fields. If we do not take any lock, the * signal-> fields could be read out of order while another thread was just * exiting. So we should place a read memory barrier when we avoid the lock. * On the writer side, write memory barrier is implied in __exit_signal * as __exit_signal releases the siglock spinlock after updating the signal-> * fields. But we don't do this yet to keep things simple. |
2dd0ebcd2
|
1448 |
* |
1da177e4c
|
1449 |
*/ |
f06febc96
|
1450 |
static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r) |
679c9cd4a
|
1451 |
{ |
679c9cd4a
|
1452 1453 1454 1455 1456 1457 1458 |
r->ru_nvcsw += t->nvcsw; r->ru_nivcsw += t->nivcsw; r->ru_minflt += t->min_flt; r->ru_majflt += t->maj_flt; r->ru_inblock += task_io_get_inblock(t); r->ru_oublock += task_io_get_oublock(t); } |
1da177e4c
|
1459 1460 1461 1462 |
static void k_getrusage(struct task_struct *p, int who, struct rusage *r) { struct task_struct *t; unsigned long flags; |
0cf55e1ec
|
1463 |
cputime_t tgutime, tgstime, utime, stime; |
1f10206cf
|
1464 |
unsigned long maxrss = 0; |
1da177e4c
|
1465 1466 |
memset((char *) r, 0, sizeof *r); |
2dd0ebcd2
|
1467 |
utime = stime = cputime_zero; |
1da177e4c
|
1468 |
|
679c9cd4a
|
1469 |
if (who == RUSAGE_THREAD) { |
d180c5bcc
|
1470 |
task_times(current, &utime, &stime); |
f06febc96
|
1471 |
accumulate_thread_rusage(p, r); |
1f10206cf
|
1472 |
maxrss = p->signal->maxrss; |
679c9cd4a
|
1473 1474 |
goto out; } |
d6cf723a1
|
1475 |
if (!lock_task_sighand(p, &flags)) |
de047c1bc
|
1476 |
return; |
0f59cc4a3
|
1477 |
|
1da177e4c
|
1478 |
switch (who) { |
0f59cc4a3
|
1479 |
case RUSAGE_BOTH: |
1da177e4c
|
1480 |
case RUSAGE_CHILDREN: |
1da177e4c
|
1481 1482 1483 1484 1485 1486 |
utime = p->signal->cutime; stime = p->signal->cstime; r->ru_nvcsw = p->signal->cnvcsw; r->ru_nivcsw = p->signal->cnivcsw; r->ru_minflt = p->signal->cmin_flt; r->ru_majflt = p->signal->cmaj_flt; |
6eaeeaba3
|
1487 1488 |
r->ru_inblock = p->signal->cinblock; r->ru_oublock = p->signal->coublock; |
1f10206cf
|
1489 |
maxrss = p->signal->cmaxrss; |
0f59cc4a3
|
1490 1491 1492 |
if (who == RUSAGE_CHILDREN) break; |
1da177e4c
|
1493 |
case RUSAGE_SELF: |
0cf55e1ec
|
1494 1495 1496 |
thread_group_times(p, &tgutime, &tgstime); utime = cputime_add(utime, tgutime); stime = cputime_add(stime, tgstime); |
1da177e4c
|
1497 1498 1499 1500 |
r->ru_nvcsw += p->signal->nvcsw; r->ru_nivcsw += p->signal->nivcsw; r->ru_minflt += p->signal->min_flt; r->ru_majflt += p->signal->maj_flt; |
6eaeeaba3
|
1501 1502 |
r->ru_inblock += p->signal->inblock; r->ru_oublock += p->signal->oublock; |
1f10206cf
|
1503 1504 |
if (maxrss < p->signal->maxrss) maxrss = p->signal->maxrss; |
1da177e4c
|
1505 1506 |
t = p; do { |
f06febc96
|
1507 |
accumulate_thread_rusage(t, r); |
1da177e4c
|
1508 1509 |
t = next_thread(t); } while (t != p); |
1da177e4c
|
1510 |
break; |
0f59cc4a3
|
1511 |
|
1da177e4c
|
1512 1513 1514 |
default: BUG(); } |
de047c1bc
|
1515 |
unlock_task_sighand(p, &flags); |
de047c1bc
|
1516 |
|
679c9cd4a
|
1517 |
out: |
0f59cc4a3
|
1518 1519 |
cputime_to_timeval(utime, &r->ru_utime); cputime_to_timeval(stime, &r->ru_stime); |
1f10206cf
|
1520 1521 1522 1523 1524 1525 1526 1527 1528 |
if (who != RUSAGE_CHILDREN) { struct mm_struct *mm = get_task_mm(p); if (mm) { setmax_mm_hiwater_rss(&maxrss, mm); mmput(mm); } } r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ |
1da177e4c
|
1529 1530 1531 1532 1533 |
} int getrusage(struct task_struct *p, int who, struct rusage __user *ru) { struct rusage r; |
1da177e4c
|
1534 |
k_getrusage(p, who, &r); |
1da177e4c
|
1535 1536 |
return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; } |
e48fbb699
|
1537 |
SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru) |
1da177e4c
|
1538 |
{ |
679c9cd4a
|
1539 1540 |
if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && who != RUSAGE_THREAD) |
1da177e4c
|
1541 1542 1543 |
return -EINVAL; return getrusage(current, who, ru); } |
e48fbb699
|
1544 |
SYSCALL_DEFINE1(umask, int, mask) |
1da177e4c
|
1545 1546 1547 1548 |
{ mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); return mask; } |
3b7391de6
|
1549 |
|
c4ea37c26
|
1550 1551 |
SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, unsigned long, arg4, unsigned long, arg5) |
1da177e4c
|
1552 |
{ |
b6dff3ec5
|
1553 1554 1555 |
struct task_struct *me = current; unsigned char comm[sizeof(me->comm)]; long error; |
1da177e4c
|
1556 |
|
d84f4f992
|
1557 1558 |
error = security_task_prctl(option, arg2, arg3, arg4, arg5); if (error != -ENOSYS) |
1da177e4c
|
1559 |
return error; |
d84f4f992
|
1560 |
error = 0; |
1da177e4c
|
1561 1562 |
switch (option) { case PR_SET_PDEATHSIG: |
0730ded5b
|
1563 |
if (!valid_signal(arg2)) { |
1da177e4c
|
1564 1565 1566 |
error = -EINVAL; break; } |
b6dff3ec5
|
1567 1568 |
me->pdeath_signal = arg2; error = 0; |
1da177e4c
|
1569 1570 |
break; case PR_GET_PDEATHSIG: |
b6dff3ec5
|
1571 |
error = put_user(me->pdeath_signal, (int __user *)arg2); |
1da177e4c
|
1572 1573 |
break; case PR_GET_DUMPABLE: |
b6dff3ec5
|
1574 |
error = get_dumpable(me->mm); |
1da177e4c
|
1575 1576 |
break; case PR_SET_DUMPABLE: |
abf75a503
|
1577 |
if (arg2 < 0 || arg2 > 1) { |
1da177e4c
|
1578 1579 1580 |
error = -EINVAL; break; } |
b6dff3ec5
|
1581 1582 |
set_dumpable(me->mm, arg2); error = 0; |
1da177e4c
|
1583 1584 1585 |
break; case PR_SET_UNALIGN: |
b6dff3ec5
|
1586 |
error = SET_UNALIGN_CTL(me, arg2); |
1da177e4c
|
1587 1588 |
break; case PR_GET_UNALIGN: |
b6dff3ec5
|
1589 |
error = GET_UNALIGN_CTL(me, arg2); |
1da177e4c
|
1590 1591 |
break; case PR_SET_FPEMU: |
b6dff3ec5
|
1592 |
error = SET_FPEMU_CTL(me, arg2); |
1da177e4c
|
1593 1594 |
break; case PR_GET_FPEMU: |
b6dff3ec5
|
1595 |
error = GET_FPEMU_CTL(me, arg2); |
1da177e4c
|
1596 1597 |
break; case PR_SET_FPEXC: |
b6dff3ec5
|
1598 |
error = SET_FPEXC_CTL(me, arg2); |
1da177e4c
|
1599 1600 |
break; case PR_GET_FPEXC: |
b6dff3ec5
|
1601 |
error = GET_FPEXC_CTL(me, arg2); |
1da177e4c
|
1602 1603 1604 1605 1606 |
break; case PR_GET_TIMING: error = PR_TIMING_STATISTICAL; break; case PR_SET_TIMING: |
7b26655f6
|
1607 |
if (arg2 != PR_TIMING_STATISTICAL) |
1da177e4c
|
1608 |
error = -EINVAL; |
b6dff3ec5
|
1609 1610 |
else error = 0; |
1da177e4c
|
1611 |
break; |
b6dff3ec5
|
1612 1613 1614 1615 |
case PR_SET_NAME: comm[sizeof(me->comm)-1] = 0; if (strncpy_from_user(comm, (char __user *)arg2, sizeof(me->comm) - 1) < 0) |
1da177e4c
|
1616 |
return -EFAULT; |
b6dff3ec5
|
1617 |
set_task_comm(me, comm); |
1da177e4c
|
1618 |
return 0; |
b6dff3ec5
|
1619 1620 1621 1622 |
case PR_GET_NAME: get_task_comm(comm, me); if (copy_to_user((char __user *)arg2, comm, sizeof(comm))) |
1da177e4c
|
1623 1624 |
return -EFAULT; return 0; |
651d765d0
|
1625 |
case PR_GET_ENDIAN: |
b6dff3ec5
|
1626 |
error = GET_ENDIAN(me, arg2); |
651d765d0
|
1627 1628 |
break; case PR_SET_ENDIAN: |
b6dff3ec5
|
1629 |
error = SET_ENDIAN(me, arg2); |
651d765d0
|
1630 |
break; |
1d9d02fee
|
1631 1632 1633 1634 1635 1636 |
case PR_GET_SECCOMP: error = prctl_get_seccomp(); break; case PR_SET_SECCOMP: error = prctl_set_seccomp(arg2); break; |
8fb402bcc
|
1637 1638 1639 1640 1641 1642 |
case PR_GET_TSC: error = GET_TSC_CTL(arg2); break; case PR_SET_TSC: error = SET_TSC_CTL(arg2); break; |
cdd6c482c
|
1643 1644 |
case PR_TASK_PERF_EVENTS_DISABLE: error = perf_event_task_disable(); |
1d1c7ddbf
|
1645 |
break; |
cdd6c482c
|
1646 1647 |
case PR_TASK_PERF_EVENTS_ENABLE: error = perf_event_task_enable(); |
1d1c7ddbf
|
1648 |
break; |
6976675d9
|
1649 1650 1651 1652 1653 1654 1655 1656 1657 |
case PR_GET_TIMERSLACK: error = current->timer_slack_ns; break; case PR_SET_TIMERSLACK: if (arg2 <= 0) current->timer_slack_ns = current->default_timer_slack_ns; else current->timer_slack_ns = arg2; |
b6dff3ec5
|
1658 |
error = 0; |
6976675d9
|
1659 |
break; |
4db96cf07
|
1660 1661 1662 1663 |
case PR_MCE_KILL: if (arg4 | arg5) return -EINVAL; switch (arg2) { |
1087e9b4f
|
1664 |
case PR_MCE_KILL_CLEAR: |
4db96cf07
|
1665 1666 1667 1668 |
if (arg3 != 0) return -EINVAL; current->flags &= ~PF_MCE_PROCESS; break; |
1087e9b4f
|
1669 |
case PR_MCE_KILL_SET: |
4db96cf07
|
1670 |
current->flags |= PF_MCE_PROCESS; |
1087e9b4f
|
1671 |
if (arg3 == PR_MCE_KILL_EARLY) |
4db96cf07
|
1672 |
current->flags |= PF_MCE_EARLY; |
1087e9b4f
|
1673 |
else if (arg3 == PR_MCE_KILL_LATE) |
4db96cf07
|
1674 |
current->flags &= ~PF_MCE_EARLY; |
1087e9b4f
|
1675 1676 1677 1678 1679 |
else if (arg3 == PR_MCE_KILL_DEFAULT) current->flags &= ~(PF_MCE_EARLY|PF_MCE_PROCESS); else return -EINVAL; |
4db96cf07
|
1680 1681 1682 1683 1684 1685 |
break; default: return -EINVAL; } error = 0; break; |
1087e9b4f
|
1686 1687 1688 1689 1690 1691 1692 1693 1694 |
case PR_MCE_KILL_GET: if (arg2 | arg3 | arg4 | arg5) return -EINVAL; if (current->flags & PF_MCE_PROCESS) error = (current->flags & PF_MCE_EARLY) ? PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE; else error = PR_MCE_KILL_DEFAULT; break; |
1da177e4c
|
1695 1696 1697 1698 1699 1700 |
default: error = -EINVAL; break; } return error; } |
3cfc348bf
|
1701 |
|
836f92adf
|
1702 1703 |
SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep, struct getcpu_cache __user *, unused) |
3cfc348bf
|
1704 1705 1706 1707 1708 1709 1710 |
{ int err = 0; int cpu = raw_smp_processor_id(); if (cpup) err |= put_user(cpu, cpup); if (nodep) err |= put_user(cpu_to_node(cpu), nodep); |
3cfc348bf
|
1711 1712 |
return err ? -EFAULT : 0; } |
10a0a8d4e
|
1713 1714 |
char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff"; |
a06a4dc3a
|
1715 |
static void argv_cleanup(struct subprocess_info *info) |
10a0a8d4e
|
1716 |
{ |
a06a4dc3a
|
1717 |
argv_free(info->argv); |
10a0a8d4e
|
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 |
} /** * orderly_poweroff - Trigger an orderly system poweroff * @force: force poweroff if command execution fails * * This may be called from any context to trigger a system shutdown. * If the orderly shutdown fails, it will force an immediate shutdown. */ int orderly_poweroff(bool force) { int argc; char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc); static char *envp[] = { "HOME=/", "PATH=/sbin:/bin:/usr/sbin:/usr/bin", NULL }; int ret = -ENOMEM; struct subprocess_info *info; if (argv == NULL) { printk(KERN_WARNING "%s failed to allocate memory for \"%s\" ", __func__, poweroff_cmd); goto out; } |
ac331d158
|
1745 |
info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC); |
10a0a8d4e
|
1746 1747 1748 1749 |
if (info == NULL) { argv_free(argv); goto out; } |
a06a4dc3a
|
1750 |
call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL); |
10a0a8d4e
|
1751 |
|
86313c488
|
1752 |
ret = call_usermodehelper_exec(info, UMH_NO_WAIT); |
10a0a8d4e
|
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 |
out: if (ret && force) { printk(KERN_WARNING "Failed to start orderly shutdown: " "forcing the issue "); /* I guess this should try to kick off some daemon to sync and poweroff asap. Or not even bother syncing if we're doing an emergency shutdown? */ emergency_sync(); kernel_power_off(); } return ret; } EXPORT_SYMBOL_GPL(orderly_poweroff); |