Blame view

Documentation/lzo.txt 7.79 KB
d98a05264   Willy Tarreau   Documentation: lz...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
  
  LZO stream format as understood by Linux's LZO decompressor
  ===========================================================
  
  Introduction
  
    This is not a specification. No specification seems to be publicly available
    for the LZO stream format. This document describes what input format the LZO
    decompressor as implemented in the Linux kernel understands. The file subject
    of this analysis is lib/lzo/lzo1x_decompress_safe.c. No analysis was made on
    the compressor nor on any other implementations though it seems likely that
    the format matches the standard one. The purpose of this document is to
    better understand what the code does in order to propose more efficient fixes
    for future bug reports.
  
  Description
  
    The stream is composed of a series of instructions, operands, and data. The
    instructions consist in a few bits representing an opcode, and bits forming
    the operands for the instruction, whose size and position depend on the
    opcode and on the number of literals copied by previous instruction. The
    operands are used to indicate :
  
      - a distance when copying data from the dictionary (past output buffer)
      - a length (number of bytes to copy from dictionary)
      - the number of literals to copy, which is retained in variable "state"
        as a piece of information for next instructions.
  
    Optionally depending on the opcode and operands, extra data may follow. These
    extra data can be a complement for the operand (eg: a length or a distance
    encoded on larger values), or a literal to be copied to the output buffer.
  
    The first byte of the block follows a different encoding from other bytes, it
    seems to be optimized for literal use only, since there is no dictionary yet
    prior to that byte.
  
    Lengths are always encoded on a variable size starting with a small number
    of bits in the operand. If the number of bits isn't enough to represent the
    length, up to 255 may be added in increments by consuming more bytes with a
    rate of at most 255 per extra byte (thus the compression ratio cannot exceed
    around 255:1). The variable length encoding using #bits is always the same :
  
         length = byte & ((1 << #bits) - 1)
         if (!length) {
                 length = ((1 << #bits) - 1)
                 length += 255*(number of zero bytes)
                 length += first-non-zero-byte
         }
         length += constant (generally 2 or 3)
  
    For references to the dictionary, distances are relative to the output
    pointer. Distances are encoded using very few bits belonging to certain
    ranges, resulting in multiple copy instructions using different encodings.
    Certain encodings involve one extra byte, others involve two extra bytes
    forming a little-endian 16-bit quantity (marked LE16 below).
  
    After any instruction except the large literal copy, 0, 1, 2 or 3 literals
    are copied before starting the next instruction. The number of literals that
    were copied may change the meaning and behaviour of the next instruction. In
    practice, only one instruction needs to know whether 0, less than 4, or more
    literals were copied. This is the information stored in the <state> variable
    in this implementation. This number of immediate literals to be copied is
    generally encoded in the last two bits of the instruction but may also be
    taken from the last two bits of an extra operand (eg: distance).
  
    End of stream is declared when a block copy of distance 0 is seen. Only one
    instruction may encode this distance (0001HLLL), it takes one LE16 operand
    for the distance, thus requiring 3 bytes.
  
    IMPORTANT NOTE : in the code some length checks are missing because certain
    instructions are called under the assumption that a certain number of bytes
62e153c46   Eric Engestrom   Documentation: lz...
72
    follow because it has already been guaranteed before parsing the instructions.
d98a05264   Willy Tarreau   Documentation: lz...
73
    They just have to "refill" this credit if they consume extra bytes. This is
62e153c46   Eric Engestrom   Documentation: lz...
74
    an implementation design choice independent on the algorithm or encoding.
d98a05264   Willy Tarreau   Documentation: lz...
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
  
  Byte sequences
  
    First byte encoding :
  
        0..17   : follow regular instruction encoding, see below. It is worth
                  noting that codes 16 and 17 will represent a block copy from
                  the dictionary which is empty, and that they will always be
                  invalid at this place.
  
        18..21  : copy 0..3 literals
                  state = (byte - 17) = 0..3  [ copy <state> literals ]
                  skip byte
  
        22..255 : copy literal string
                  length = (byte - 17) = 4..238
                  state = 4 [ don't copy extra literals ]
                  skip byte
  
    Instruction encoding :
  
        0 0 0 0 X X X X  (0..15)
          Depends on the number of literals copied by the last instruction.
          If last instruction did not copy any literal (state == 0), this
          encoding will be a copy of 4 or more literal, and must be interpreted
          like this :
  
             0 0 0 0 L L L L  (0..15)  : copy long literal string
             length = 3 + (L ?: 15 + (zero_bytes * 255) + non_zero_byte)
             state = 4  (no extra literals are copied)
  
          If last instruction used to copy between 1 to 3 literals (encoded in
          the instruction's opcode or distance), the instruction is a copy of a
          2-byte block from the dictionary within a 1kB distance. It is worth
          noting that this instruction provides little savings since it uses 2
          bytes to encode a copy of 2 other bytes but it encodes the number of
          following literals for free. It must be interpreted like this :
  
             0 0 0 0 D D S S  (0..15)  : copy 2 bytes from <= 1kB distance
             length = 2
             state = S (copy S literals after this block)
           Always followed by exactly one byte : H H H H H H H H
             distance = (H << 2) + D + 1
  
          If last instruction used to copy 4 or more literals (as detected by
          state == 4), the instruction becomes a copy of a 3-byte block from the
          dictionary from a 2..3kB distance, and must be interpreted like this :
  
             0 0 0 0 D D S S  (0..15)  : copy 3 bytes from 2..3 kB distance
             length = 3
             state = S (copy S literals after this block)
           Always followed by exactly one byte : H H H H H H H H
             distance = (H << 2) + D + 2049
  
        0 0 0 1 H L L L  (16..31)
             Copy of a block within 16..48kB distance (preferably less than 10B)
             length = 2 + (L ?: 7 + (zero_bytes * 255) + non_zero_byte)
          Always followed by exactly one LE16 :  D D D D D D D D : D D D D D D S S
             distance = 16384 + (H << 14) + D
             state = S (copy S literals after this block)
             End of stream is reached if distance == 16384
  
        0 0 1 L L L L L  (32..63)
             Copy of small block within 16kB distance (preferably less than 34B)
             length = 2 + (L ?: 31 + (zero_bytes * 255) + non_zero_byte)
          Always followed by exactly one LE16 :  D D D D D D D D : D D D D D D S S
             distance = D + 1
             state = S (copy S literals after this block)
  
        0 1 L D D D S S  (64..127)
             Copy 3-4 bytes from block within 2kB distance
             state = S (copy S literals after this block)
             length = 3 + L
           Always followed by exactly one byte : H H H H H H H H
             distance = (H << 3) + D + 1
  
        1 L L D D D S S  (128..255)
             Copy 5-8 bytes from block within 2kB distance
             state = S (copy S literals after this block)
             length = 5 + L
           Always followed by exactly one byte : H H H H H H H H
             distance = (H << 3) + D + 1
  
  Authors
  
    This document was written by Willy Tarreau <w@1wt.eu> on 2014/07/19 during an
    analysis of the decompression code available in Linux 3.16-rc5. The code is
    tricky, it is possible that this document contains mistakes or that a few
    corner cases were overlooked. In any case, please report any doubt, fix, or
    proposed updates to the author(s) so that the document can be updated.