Blame view

Documentation/networking/phy.txt 15.3 KB
00db8189d   Andy Fleming   This patch adds a...
1
2
3
  
  -------
  PHY Abstraction Layer
f62220d3a   Andy Fleming   phylib: Add suppo...
4
  (Updated 2008-04-08)
00db8189d   Andy Fleming   This patch adds a...
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
  
  Purpose
  
   Most network devices consist of set of registers which provide an interface
   to a MAC layer, which communicates with the physical connection through a
   PHY.  The PHY concerns itself with negotiating link parameters with the link
   partner on the other side of the network connection (typically, an ethernet
   cable), and provides a register interface to allow drivers to determine what
   settings were chosen, and to configure what settings are allowed.
  
   While these devices are distinct from the network devices, and conform to a
   standard layout for the registers, it has been common practice to integrate
   the PHY management code with the network driver.  This has resulted in large
   amounts of redundant code.  Also, on embedded systems with multiple (and
   sometimes quite different) ethernet controllers connected to the same 
   management bus, it is difficult to ensure safe use of the bus.
  
   Since the PHYs are devices, and the management busses through which they are
   accessed are, in fact, busses, the PHY Abstraction Layer treats them as such.
   In doing so, it has these goals:
  
     1) Increase code-reuse
     2) Increase overall code-maintainability
     3) Speed development time for new network drivers, and for new systems
   
   Basically, this layer is meant to provide an interface to PHY devices which
   allows network driver writers to write as little code as possible, while
   still providing a full feature set.
  
  The MDIO bus
  
   Most network devices are connected to a PHY by means of a management bus.
   Different devices use different busses (though some share common interfaces).
   In order to take advantage of the PAL, each bus interface needs to be
   registered as a distinct device.
  
   1) read and write functions must be implemented.  Their prototypes are:
  
       int write(struct mii_bus *bus, int mii_id, int regnum, u16 value);
       int read(struct mii_bus *bus, int mii_id, int regnum);
  
     mii_id is the address on the bus for the PHY, and regnum is the register
     number.  These functions are guaranteed not to be called from interrupt
     time, so it is safe for them to block, waiting for an interrupt to signal
     the operation is complete
   
604fdf428   Florian Fainelli   Documentation: ne...
51
   2) A reset function is optional.  This is used to return the bus to an
00db8189d   Andy Fleming   This patch adds a...
52
53
54
55
56
57
58
59
60
61
62
63
64
     initialized state.
  
   3) A probe function is needed.  This function should set up anything the bus
     driver needs, setup the mii_bus structure, and register with the PAL using
     mdiobus_register.  Similarly, there's a remove function to undo all of
     that (use mdiobus_unregister).
   
   4) Like any driver, the device_driver structure must be configured, and init
     exit functions are used to register the driver.
  
   5) The bus must also be declared somewhere as a device, and registered.
  
   As an example for how one driver implemented an mdio bus driver, see
3396c7823   Paul Gortmaker   drivers/net: fix ...
65
66
   drivers/net/ethernet/freescale/fsl_pq_mdio.c and an associated DTS file
   for one of the users. (e.g. "git grep fsl,.*-mdio arch/powerpc/boot/dts/")
00db8189d   Andy Fleming   This patch adds a...
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
  
  Connecting to a PHY
  
   Sometime during startup, the network driver needs to establish a connection
   between the PHY device, and the network device.  At this time, the PHY's bus
   and drivers need to all have been loaded, so it is ready for the connection.
   At this point, there are several ways to connect to the PHY:
  
   1) The PAL handles everything, and only calls the network driver when
     the link state changes, so it can react.
  
   2) The PAL handles everything except interrupts (usually because the
     controller has the interrupt registers).
  
   3) The PAL handles everything, but checks in with the driver every second,
     allowing the network driver to react first to any changes before the PAL
     does.
   
   4) The PAL serves only as a library of functions, with the network device
     manually calling functions to update status, and configure the PHY
  
  
  Letting the PHY Abstraction Layer do Everything
  
   If you choose option 1 (The hope is that every driver can, but to still be
   useful to drivers that can't), connecting to the PHY is simple:
  
   First, you need a function to react to changes in the link state.  This
   function follows this protocol:
  
     static void adjust_link(struct net_device *dev);
   
   Next, you need to know the device name of the PHY connected to this device. 
9d6ada9f4   Paulius Zaleckas   phylib: fix phy n...
100
   The name will look something like, "0:00", where the first number is the
e8a2b6a42   Andy Fleming   [PATCH] PHY: Add ...
101
102
   bus id, and the second is the PHY's address on that bus.  Typically,
   the bus is responsible for making its ID unique.
00db8189d   Andy Fleming   This patch adds a...
103
104
105
   
   Now, to connect, just call this function:
   
f9a8f83b0   Florian Fainelli   net: phy: remove ...
106
     phydev = phy_connect(dev, phy_name, &adjust_link, interface);
00db8189d   Andy Fleming   This patch adds a...
107
108
109
110
111
112
113
114
  
   phydev is a pointer to the phy_device structure which represents the PHY.  If
   phy_connect is successful, it will return the pointer.  dev, here, is the
   pointer to your net_device.  Once done, this function will have started the
   PHY's software state machine, and registered for the PHY's interrupt, if it
   has one.  The phydev structure will be populated with information about the
   current state, though the PHY will not yet be truly operational at this
   point.
f9a8f83b0   Florian Fainelli   net: phy: remove ...
115
116
117
   PHY-specific flags should be set in phydev->dev_flags prior to the call
   to phy_connect() such that the underlying PHY driver can check for flags
   and perform specific operations based on them.
00db8189d   Andy Fleming   This patch adds a...
118
119
   This is useful if the system has put hardware restrictions on
   the PHY/controller, of which the PHY needs to be aware.
e8a2b6a42   Andy Fleming   [PATCH] PHY: Add ...
120
121
122
   interface is a u32 which specifies the connection type used
   between the controller and the PHY.  Examples are GMII, MII,
   RGMII, and SGMII.  For a full list, see include/linux/phy.h
00db8189d   Andy Fleming   This patch adds a...
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
   Now just make sure that phydev->supported and phydev->advertising have any
   values pruned from them which don't make sense for your controller (a 10/100
   controller may be connected to a gigabit capable PHY, so you would need to
   mask off SUPPORTED_1000baseT*).  See include/linux/ethtool.h for definitions
   for these bitfields. Note that you should not SET any bits, or the PHY may
   get put into an unsupported state.
  
   Lastly, once the controller is ready to handle network traffic, you call
   phy_start(phydev).  This tells the PAL that you are ready, and configures the
   PHY to connect to the network.  If you want to handle your own interrupts,
   just set phydev->irq to PHY_IGNORE_INTERRUPT before you call phy_start.
   Similarly, if you don't want to use interrupts, set phydev->irq to PHY_POLL.
  
   When you want to disconnect from the network (even if just briefly), you call
   phy_stop(phydev).
  
  Keeping Close Tabs on the PAL
  
   It is possible that the PAL's built-in state machine needs a little help to
   keep your network device and the PHY properly in sync.  If so, you can
   register a helper function when connecting to the PHY, which will be called
   every second before the state machine reacts to any changes.  To do this, you
   need to manually call phy_attach() and phy_prepare_link(), and then call
   phy_start_machine() with the second argument set to point to your special
   handler.
  
   Currently there are no examples of how to use this functionality, and testing
   on it has been limited because the author does not have any drivers which use
   it (they all use option 1).  So Caveat Emptor.
  
  Doing it all yourself
  
   There's a remote chance that the PAL's built-in state machine cannot track
   the complex interactions between the PHY and your network device.  If this is
   so, you can simply call phy_attach(), and not call phy_start_machine or
   phy_prepare_link().  This will mean that phydev->state is entirely yours to
   handle (phy_start and phy_stop toggle between some of the states, so you
   might need to avoid them).
  
   An effort has been made to make sure that useful functionality can be
   accessed without the state-machine running, and most of these functions are
   descended from functions which did not interact with a complex state-machine.
   However, again, no effort has been made so far to test running without the
   state machine, so tryer beware.
  
   Here is a brief rundown of the functions:
  
   int phy_read(struct phy_device *phydev, u16 regnum);
   int phy_write(struct phy_device *phydev, u16 regnum, u16 val);
  
     Simple read/write primitives.  They invoke the bus's read/write function
     pointers.
  
   void phy_print_status(struct phy_device *phydev);
   
     A convenience function to print out the PHY status neatly.
00db8189d   Andy Fleming   This patch adds a...
179
180
181
182
183
184
185
   int phy_start_interrupts(struct phy_device *phydev);
   int phy_stop_interrupts(struct phy_device *phydev);
  
     Requests the IRQ for the PHY interrupts, then enables them for
     start, or disables then frees them for stop.
  
   struct phy_device * phy_attach(struct net_device *dev, const char *phy_id,
f9a8f83b0   Florian Fainelli   net: phy: remove ...
186
  		 phy_interface_t interface);
00db8189d   Andy Fleming   This patch adds a...
187
188
  
     Attaches a network device to a particular PHY, binding the PHY to a generic
f9a8f83b0   Florian Fainelli   net: phy: remove ...
189
     driver if none was found during bus initialization.
00db8189d   Andy Fleming   This patch adds a...
190
191
192
193
194
195
196
197
198
199
200
  
   int phy_start_aneg(struct phy_device *phydev);
     
     Using variables inside the phydev structure, either configures advertising
     and resets autonegotiation, or disables autonegotiation, and configures
     forced settings.
  
   static inline int phy_read_status(struct phy_device *phydev);
  
     Fills the phydev structure with up-to-date information about the current
     settings in the PHY.
00db8189d   Andy Fleming   This patch adds a...
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
   int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd);
   int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd);
  
     Ethtool convenience functions.
  
   int phy_mii_ioctl(struct phy_device *phydev,
                   struct mii_ioctl_data *mii_data, int cmd);
  
     The MII ioctl.  Note that this function will completely screw up the state
     machine if you write registers like BMCR, BMSR, ADVERTISE, etc.  Best to
     use this only to write registers which are not standard, and don't set off
     a renegotiation.
  
  
  PHY Device Drivers
  
   With the PHY Abstraction Layer, adding support for new PHYs is
   quite easy.  In some cases, no work is required at all!  However,
   many PHYs require a little hand-holding to get up-and-running.
  
  Generic PHY driver
  
   If the desired PHY doesn't have any errata, quirks, or special
   features you want to support, then it may be best to not add
   support, and let the PHY Abstraction Layer's Generic PHY Driver
   do all of the work.  
  
  Writing a PHY driver
  
   If you do need to write a PHY driver, the first thing to do is
   make sure it can be matched with an appropriate PHY device.
   This is done during bus initialization by reading the device's
   UID (stored in registers 2 and 3), then comparing it to each
   driver's phy_id field by ANDing it with each driver's
   phy_id_mask field.  Also, it needs a name.  Here's an example:
  
     static struct phy_driver dm9161_driver = {
           .phy_id         = 0x0181b880,
  	 .name           = "Davicom DM9161E",
  	 .phy_id_mask    = 0x0ffffff0,
  	 ...
     }
  
   Next, you need to specify what features (speed, duplex, autoneg,
   etc) your PHY device and driver support.  Most PHYs support
   PHY_BASIC_FEATURES, but you can look in include/mii.h for other
   features.
  
   Each driver consists of a number of function pointers:
7f6224b7c   Florian Fainelli   Documentation: ne...
250
     soft_reset: perform a PHY software reset
00db8189d   Andy Fleming   This patch adds a...
251
252
     config_init: configures PHY into a sane state after a reset.
       For instance, a Davicom PHY requires descrambling disabled.
87aa9f9c6   Florian Fainelli   net: phy: consoli...
253
254
     probe: Allocate phy->priv, optionally refuse to bind.
     PHY may not have been reset or had fixups run yet.
00db8189d   Andy Fleming   This patch adds a...
255
256
     suspend/resume: power management
     config_aneg: Changes the speed/duplex/negotiation settings
7f6224b7c   Florian Fainelli   Documentation: ne...
257
     aneg_done: Determines the auto-negotiation result
00db8189d   Andy Fleming   This patch adds a...
258
259
     read_status: Reads the current speed/duplex/negotiation settings
     ack_interrupt: Clear a pending interrupt
7f6224b7c   Florian Fainelli   Documentation: ne...
260
     did_interrupt: Checks if the PHY generated an interrupt
00db8189d   Andy Fleming   This patch adds a...
261
262
     config_intr: Enable or disable interrupts
     remove: Does any driver take-down
7f6224b7c   Florian Fainelli   Documentation: ne...
263
     ts_info: Queries about the HW timestamping status
387178ec2   Florian Fainelli   Documentation: ne...
264
265
     match_phy_device: used for Clause 45 capable PHYs to match devices
     in package and ensure they are compatible
7f6224b7c   Florian Fainelli   Documentation: ne...
266
267
268
269
270
     hwtstamp: Set the PHY HW timestamping configuration
     rxtstamp: Requests a receive timestamp at the PHY level for a 'skb'
     txtsamp: Requests a transmit timestamp at the PHY level for a 'skb'
     set_wol: Enable Wake-on-LAN at the PHY level
     get_wol: Get the Wake-on-LAN status at the PHY level
387178ec2   Florian Fainelli   Documentation: ne...
271
272
     link_change_notify: called to inform the core is about to change the
     link state, can be used to work around bogus PHY between state changes
49193a66f   Vince Bridgers   Documentation: ne...
273
274
     read_mmd_indirect: Read PHY MMD indirect register
     write_mmd_indirect: Write PHY MMD indirect register
387178ec2   Florian Fainelli   Documentation: ne...
275
276
277
278
279
280
     module_info: Get the size and type of an EEPROM contained in an plug-in
     module
     module_eeprom: Get EEPROM information of a plug-in module
     get_sset_count: Get number of strings sets that get_strings will count
     get_strings: Get strings from requested objects (statistics)
     get_stats: Get the extended statistics from the PHY device
00db8189d   Andy Fleming   This patch adds a...
281
282
283
284
285
286
287
288
289
290
291
292
  
   Of these, only config_aneg and read_status are required to be
   assigned by the driver code.  The rest are optional.  Also, it is
   preferred to use the generic phy driver's versions of these two
   functions if at all possible: genphy_read_status and
   genphy_config_aneg.  If this is not possible, it is likely that
   you only need to perform some actions before and after invoking
   these functions, and so your functions will wrap the generic
   ones.
  
   Feel free to look at the Marvell, Cicada, and Davicom drivers in
   drivers/net/phy/ for examples (the lxt and qsemi drivers have
49193a66f   Vince Bridgers   Documentation: ne...
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
   not been tested as of this writing).
  
   The PHY's MMD register accesses are handled by the PAL framework
   by default, but can be overridden by a specific PHY driver if
   required. This could be the case if a PHY was released for
   manufacturing before the MMD PHY register definitions were
   standardized by the IEEE. Most modern PHYs will be able to use
   the generic PAL framework for accessing the PHY's MMD registers.
   An example of such usage is for Energy Efficient Ethernet support,
   implemented in the PAL. This support uses the PAL to access MMD
   registers for EEE query and configuration if the PHY supports
   the IEEE standard access mechanisms, or can use the PHY's specific
   access interfaces if overridden by the specific PHY driver. See
   the Micrel driver in drivers/net/phy/ for an example of how this
   can be implemented.
f62220d3a   Andy Fleming   phylib: Add suppo...
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
  
  Board Fixups
  
   Sometimes the specific interaction between the platform and the PHY requires
   special handling.  For instance, to change where the PHY's clock input is,
   or to add a delay to account for latency issues in the data path.  In order
   to support such contingencies, the PHY Layer allows platform code to register
   fixups to be run when the PHY is brought up (or subsequently reset).
  
   When the PHY Layer brings up a PHY it checks to see if there are any fixups
   registered for it, matching based on UID (contained in the PHY device's phy_id
   field) and the bus identifier (contained in phydev->dev.bus_id).  Both must
   match, however two constants, PHY_ANY_ID and PHY_ANY_UID, are provided as
   wildcards for the bus ID and UID, respectively.
  
   When a match is found, the PHY layer will invoke the run function associated
   with the fixup.  This function is passed a pointer to the phy_device of
   interest.  It should therefore only operate on that PHY.
  
   The platform code can either register the fixup using phy_register_fixup():
  
  	int phy_register_fixup(const char *phy_id,
  		u32 phy_uid, u32 phy_uid_mask,
  		int (*run)(struct phy_device *));
  
   Or using one of the two stubs, phy_register_fixup_for_uid() and
   phy_register_fixup_for_id():
  
   int phy_register_fixup_for_uid(u32 phy_uid, u32 phy_uid_mask,
  		int (*run)(struct phy_device *));
   int phy_register_fixup_for_id(const char *phy_id,
  		int (*run)(struct phy_device *));
  
   The stubs set one of the two matching criteria, and set the other one to
   match anything.