Blame view
drivers/dma/fsl_raid.c
25 KB
ad80da658 dmaengine: Driver... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
/* * drivers/dma/fsl_raid.c * * Freescale RAID Engine device driver * * Author: * Harninder Rai <harninder.rai@freescale.com> * Naveen Burmi <naveenburmi@freescale.com> * * Rewrite: * Xuelin Shi <xuelin.shi@freescale.com> * * Copyright (c) 2010-2014 Freescale Semiconductor, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Freescale Semiconductor nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") as published by the Free Software * Foundation, either version 2 of that License or (at your option) any * later version. * * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Theory of operation: * * General capabilities: * RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q * calculations required in RAID5 and RAID6 operations. RE driver * registers with Linux's ASYNC layer as dma driver. RE hardware * maintains strict ordering of the requests through chained * command queueing. * * Data flow: * Software RAID layer of Linux (MD layer) maintains RAID partitions, * strips, stripes etc. It sends requests to the underlying ASYNC layer * which further passes it to RE driver. ASYNC layer decides which request * goes to which job ring of RE hardware. For every request processed by * RAID Engine, driver gets an interrupt unless coalescing is set. The * per job ring interrupt handler checks the status register for errors, * clears the interrupt and leave the post interrupt processing to the irq * thread. */ #include <linux/interrupt.h> #include <linux/module.h> #include <linux/of_irq.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/dmaengine.h> #include <linux/io.h> #include <linux/spinlock.h> #include <linux/slab.h> #include "dmaengine.h" #include "fsl_raid.h" #define FSL_RE_MAX_XOR_SRCS 16 #define FSL_RE_MAX_PQ_SRCS 16 #define FSL_RE_MIN_DESCS 256 #define FSL_RE_MAX_DESCS (4 * FSL_RE_MIN_DESCS) #define FSL_RE_FRAME_FORMAT 0x1 #define FSL_RE_MAX_DATA_LEN (1024*1024) #define to_fsl_re_dma_desc(tx) container_of(tx, struct fsl_re_desc, async_tx) /* Add descriptors into per chan software queue - submit_q */ static dma_cookie_t fsl_re_tx_submit(struct dma_async_tx_descriptor *tx) { struct fsl_re_desc *desc; struct fsl_re_chan *re_chan; dma_cookie_t cookie; unsigned long flags; desc = to_fsl_re_dma_desc(tx); re_chan = container_of(tx->chan, struct fsl_re_chan, chan); spin_lock_irqsave(&re_chan->desc_lock, flags); cookie = dma_cookie_assign(tx); list_add_tail(&desc->node, &re_chan->submit_q); spin_unlock_irqrestore(&re_chan->desc_lock, flags); return cookie; } /* Copy descriptor from per chan software queue into hardware job ring */ static void fsl_re_issue_pending(struct dma_chan *chan) { struct fsl_re_chan *re_chan; int avail; struct fsl_re_desc *desc, *_desc; unsigned long flags; re_chan = container_of(chan, struct fsl_re_chan, chan); spin_lock_irqsave(&re_chan->desc_lock, flags); avail = FSL_RE_SLOT_AVAIL( in_be32(&re_chan->jrregs->inbring_slot_avail)); list_for_each_entry_safe(desc, _desc, &re_chan->submit_q, node) { if (!avail) break; list_move_tail(&desc->node, &re_chan->active_q); memcpy(&re_chan->inb_ring_virt_addr[re_chan->inb_count], &desc->hwdesc, sizeof(struct fsl_re_hw_desc)); re_chan->inb_count = (re_chan->inb_count + 1) & FSL_RE_RING_SIZE_MASK; out_be32(&re_chan->jrregs->inbring_add_job, FSL_RE_ADD_JOB(1)); avail--; } spin_unlock_irqrestore(&re_chan->desc_lock, flags); } static void fsl_re_desc_done(struct fsl_re_desc *desc) { |
ad80da658 dmaengine: Driver... |
137 |
dma_cookie_complete(&desc->async_tx); |
ad80da658 dmaengine: Driver... |
138 |
dma_descriptor_unmap(&desc->async_tx); |
a941106de dmaengine: fsl_ra... |
139 |
dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL); |
ad80da658 dmaengine: Driver... |
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
} static void fsl_re_cleanup_descs(struct fsl_re_chan *re_chan) { struct fsl_re_desc *desc, *_desc; unsigned long flags; spin_lock_irqsave(&re_chan->desc_lock, flags); list_for_each_entry_safe(desc, _desc, &re_chan->ack_q, node) { if (async_tx_test_ack(&desc->async_tx)) list_move_tail(&desc->node, &re_chan->free_q); } spin_unlock_irqrestore(&re_chan->desc_lock, flags); fsl_re_issue_pending(&re_chan->chan); } static void fsl_re_dequeue(unsigned long data) { struct fsl_re_chan *re_chan; struct fsl_re_desc *desc, *_desc; struct fsl_re_hw_desc *hwdesc; unsigned long flags; unsigned int count, oub_count; int found; re_chan = dev_get_drvdata((struct device *)data); fsl_re_cleanup_descs(re_chan); spin_lock_irqsave(&re_chan->desc_lock, flags); count = FSL_RE_SLOT_FULL(in_be32(&re_chan->jrregs->oubring_slot_full)); while (count--) { found = 0; hwdesc = &re_chan->oub_ring_virt_addr[re_chan->oub_count]; list_for_each_entry_safe(desc, _desc, &re_chan->active_q, node) { /* compare the hw dma addr to find the completed */ if (desc->hwdesc.lbea32 == hwdesc->lbea32 && desc->hwdesc.addr_low == hwdesc->addr_low) { found = 1; break; } } if (found) { fsl_re_desc_done(desc); list_move_tail(&desc->node, &re_chan->ack_q); } else { dev_err(re_chan->dev, "found hwdesc not in sw queue, discard it "); } oub_count = (re_chan->oub_count + 1) & FSL_RE_RING_SIZE_MASK; re_chan->oub_count = oub_count; out_be32(&re_chan->jrregs->oubring_job_rmvd, FSL_RE_RMVD_JOB(1)); } spin_unlock_irqrestore(&re_chan->desc_lock, flags); } /* Per Job Ring interrupt handler */ static irqreturn_t fsl_re_isr(int irq, void *data) { struct fsl_re_chan *re_chan; u32 irqstate, status; re_chan = dev_get_drvdata((struct device *)data); irqstate = in_be32(&re_chan->jrregs->jr_interrupt_status); if (!irqstate) return IRQ_NONE; /* * There's no way in upper layer (read MD layer) to recover from * error conditions except restart everything. In long term we * need to do something more than just crashing */ if (irqstate & FSL_RE_ERROR) { status = in_be32(&re_chan->jrregs->jr_status); dev_err(re_chan->dev, "chan error irqstate: %x, status: %x ", irqstate, status); } /* Clear interrupt */ out_be32(&re_chan->jrregs->jr_interrupt_status, FSL_RE_CLR_INTR); tasklet_schedule(&re_chan->irqtask); return IRQ_HANDLED; } static enum dma_status fsl_re_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { return dma_cookie_status(chan, cookie, txstate); } static void fill_cfd_frame(struct fsl_re_cmpnd_frame *cf, u8 index, size_t length, dma_addr_t addr, bool final) { u32 efrl = length & FSL_RE_CF_LENGTH_MASK; efrl |= final << FSL_RE_CF_FINAL_SHIFT; cf[index].efrl32 = efrl; cf[index].addr_high = upper_32_bits(addr); cf[index].addr_low = lower_32_bits(addr); } static struct fsl_re_desc *fsl_re_init_desc(struct fsl_re_chan *re_chan, struct fsl_re_desc *desc, void *cf, dma_addr_t paddr) { desc->re_chan = re_chan; desc->async_tx.tx_submit = fsl_re_tx_submit; dma_async_tx_descriptor_init(&desc->async_tx, &re_chan->chan); INIT_LIST_HEAD(&desc->node); desc->hwdesc.fmt32 = FSL_RE_FRAME_FORMAT << FSL_RE_HWDESC_FMT_SHIFT; desc->hwdesc.lbea32 = upper_32_bits(paddr); desc->hwdesc.addr_low = lower_32_bits(paddr); desc->cf_addr = cf; desc->cf_paddr = paddr; desc->cdb_addr = (void *)(cf + FSL_RE_CF_DESC_SIZE); desc->cdb_paddr = paddr + FSL_RE_CF_DESC_SIZE; return desc; } static struct fsl_re_desc *fsl_re_chan_alloc_desc(struct fsl_re_chan *re_chan, unsigned long flags) { struct fsl_re_desc *desc = NULL; void *cf; dma_addr_t paddr; unsigned long lock_flag; fsl_re_cleanup_descs(re_chan); spin_lock_irqsave(&re_chan->desc_lock, lock_flag); if (!list_empty(&re_chan->free_q)) { /* take one desc from free_q */ desc = list_first_entry(&re_chan->free_q, struct fsl_re_desc, node); list_del(&desc->node); desc->async_tx.flags = flags; } spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag); if (!desc) { desc = kzalloc(sizeof(*desc), GFP_NOWAIT); if (!desc) return NULL; cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_NOWAIT, &paddr); if (!cf) { kfree(desc); return NULL; } desc = fsl_re_init_desc(re_chan, desc, cf, paddr); desc->async_tx.flags = flags; spin_lock_irqsave(&re_chan->desc_lock, lock_flag); re_chan->alloc_count++; spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag); } return desc; } static struct dma_async_tx_descriptor *fsl_re_prep_dma_genq( struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt, const unsigned char *scf, size_t len, unsigned long flags) { struct fsl_re_chan *re_chan; struct fsl_re_desc *desc; struct fsl_re_xor_cdb *xor; struct fsl_re_cmpnd_frame *cf; u32 cdb; unsigned int i, j; unsigned int save_src_cnt = src_cnt; int cont_q = 0; re_chan = container_of(chan, struct fsl_re_chan, chan); if (len > FSL_RE_MAX_DATA_LEN) { |
f950f0253 dmaengine: fsl_ra... |
334 335 |
dev_err(re_chan->dev, "genq tx length %zu, max length %d ", |
ad80da658 dmaengine: Driver... |
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
len, FSL_RE_MAX_DATA_LEN); return NULL; } desc = fsl_re_chan_alloc_desc(re_chan, flags); if (desc <= 0) return NULL; if (scf && (flags & DMA_PREP_CONTINUE)) { cont_q = 1; src_cnt += 1; } /* Filling xor CDB */ cdb = FSL_RE_XOR_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT; cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT; cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; xor = desc->cdb_addr; xor->cdb32 = cdb; if (scf) { /* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */ for (i = 0; i < save_src_cnt; i++) xor->gfm[i] = scf[i]; if (cont_q) xor->gfm[i++] = 1; } else { /* compute P, that is XOR all srcs */ for (i = 0; i < src_cnt; i++) xor->gfm[i] = 1; } /* Filling frame 0 of compound frame descriptor with CDB */ cf = desc->cf_addr; fill_cfd_frame(cf, 0, sizeof(*xor), desc->cdb_paddr, 0); /* Fill CFD's 1st frame with dest buffer */ fill_cfd_frame(cf, 1, len, dest, 0); /* Fill CFD's rest of the frames with source buffers */ for (i = 2, j = 0; j < save_src_cnt; i++, j++) fill_cfd_frame(cf, i, len, src[j], 0); if (cont_q) fill_cfd_frame(cf, i++, len, dest, 0); /* Setting the final bit in the last source buffer frame in CFD */ cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT; return &desc->async_tx; } /* * Prep function for P parity calculation.In RAID Engine terminology, * XOR calculation is called GenQ calculation done through GenQ command */ static struct dma_async_tx_descriptor *fsl_re_prep_dma_xor( struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt, size_t len, unsigned long flags) { /* NULL let genq take all coef as 1 */ return fsl_re_prep_dma_genq(chan, dest, src, src_cnt, NULL, len, flags); } /* * Prep function for P/Q parity calculation.In RAID Engine terminology, * P/Q calculation is called GenQQ done through GenQQ command */ static struct dma_async_tx_descriptor *fsl_re_prep_dma_pq( struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src, unsigned int src_cnt, const unsigned char *scf, size_t len, unsigned long flags) { struct fsl_re_chan *re_chan; struct fsl_re_desc *desc; struct fsl_re_pq_cdb *pq; struct fsl_re_cmpnd_frame *cf; u32 cdb; u8 *p; int gfmq_len, i, j; unsigned int save_src_cnt = src_cnt; re_chan = container_of(chan, struct fsl_re_chan, chan); if (len > FSL_RE_MAX_DATA_LEN) { |
f950f0253 dmaengine: fsl_ra... |
422 423 |
dev_err(re_chan->dev, "pq tx length is %zu, max length is %d ", |
ad80da658 dmaengine: Driver... |
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 |
len, FSL_RE_MAX_DATA_LEN); return NULL; } /* * RE requires at least 2 sources, if given only one source, we pass the * second source same as the first one. * With only one source, generating P is meaningless, only generate Q. */ if (src_cnt == 1) { struct dma_async_tx_descriptor *tx; dma_addr_t dma_src[2]; unsigned char coef[2]; dma_src[0] = *src; coef[0] = *scf; dma_src[1] = *src; coef[1] = 0; tx = fsl_re_prep_dma_genq(chan, dest[1], dma_src, 2, coef, len, flags); if (tx) desc = to_fsl_re_dma_desc(tx); return tx; } /* * During RAID6 array creation, Linux's MD layer gets P and Q * calculated separately in two steps. But our RAID Engine has * the capability to calculate both P and Q with a single command * Hence to merge well with MD layer, we need to provide a hook * here and call re_jq_prep_dma_genq() function */ if (flags & DMA_PREP_PQ_DISABLE_P) return fsl_re_prep_dma_genq(chan, dest[1], src, src_cnt, scf, len, flags); if (flags & DMA_PREP_CONTINUE) src_cnt += 3; desc = fsl_re_chan_alloc_desc(re_chan, flags); if (desc <= 0) return NULL; /* Filling GenQQ CDB */ cdb = FSL_RE_PQ_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT; cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; cdb |= FSL_RE_BUFFER_OUTPUT << FSL_RE_CDB_BUFFER_SHIFT; cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; pq = desc->cdb_addr; pq->cdb32 = cdb; p = pq->gfm_q1; /* Init gfm_q1[] */ for (i = 0; i < src_cnt; i++) p[i] = 1; /* Align gfm[] to 32bit */ gfmq_len = ALIGN(src_cnt, 4); /* Init gfm_q2[] */ p += gfmq_len; for (i = 0; i < src_cnt; i++) p[i] = scf[i]; /* Filling frame 0 of compound frame descriptor with CDB */ cf = desc->cf_addr; fill_cfd_frame(cf, 0, sizeof(struct fsl_re_pq_cdb), desc->cdb_paddr, 0); /* Fill CFD's 1st & 2nd frame with dest buffers */ for (i = 1, j = 0; i < 3; i++, j++) fill_cfd_frame(cf, i, len, dest[j], 0); /* Fill CFD's rest of the frames with source buffers */ for (i = 3, j = 0; j < save_src_cnt; i++, j++) fill_cfd_frame(cf, i, len, src[j], 0); /* PQ computation continuation */ if (flags & DMA_PREP_CONTINUE) { if (src_cnt - save_src_cnt == 3) { p[save_src_cnt] = 0; p[save_src_cnt + 1] = 0; p[save_src_cnt + 2] = 1; fill_cfd_frame(cf, i++, len, dest[0], 0); fill_cfd_frame(cf, i++, len, dest[1], 0); fill_cfd_frame(cf, i++, len, dest[1], 0); } else { dev_err(re_chan->dev, "PQ tx continuation error! "); return NULL; } } /* Setting the final bit in the last source buffer frame in CFD */ cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT; return &desc->async_tx; } /* * Prep function for memcpy. In RAID Engine, memcpy is done through MOVE * command. Logic of this function will need to be modified once multipage * support is added in Linux's MD/ASYNC Layer */ static struct dma_async_tx_descriptor *fsl_re_prep_dma_memcpy( struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long flags) { struct fsl_re_chan *re_chan; struct fsl_re_desc *desc; size_t length; struct fsl_re_cmpnd_frame *cf; struct fsl_re_move_cdb *move; u32 cdb; re_chan = container_of(chan, struct fsl_re_chan, chan); if (len > FSL_RE_MAX_DATA_LEN) { |
f950f0253 dmaengine: fsl_ra... |
545 546 |
dev_err(re_chan->dev, "cp tx length is %zu, max length is %d ", |
ad80da658 dmaengine: Driver... |
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 |
len, FSL_RE_MAX_DATA_LEN); return NULL; } desc = fsl_re_chan_alloc_desc(re_chan, flags); if (desc <= 0) return NULL; /* Filling move CDB */ cdb = FSL_RE_MOVE_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT; cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; move = desc->cdb_addr; move->cdb32 = cdb; /* Filling frame 0 of CFD with move CDB */ cf = desc->cf_addr; fill_cfd_frame(cf, 0, sizeof(*move), desc->cdb_paddr, 0); length = min_t(size_t, len, FSL_RE_MAX_DATA_LEN); /* Fill CFD's 1st frame with dest buffer */ fill_cfd_frame(cf, 1, length, dest, 0); /* Fill CFD's 2nd frame with src buffer */ fill_cfd_frame(cf, 2, length, src, 1); return &desc->async_tx; } static int fsl_re_alloc_chan_resources(struct dma_chan *chan) { struct fsl_re_chan *re_chan; struct fsl_re_desc *desc; void *cf; dma_addr_t paddr; int i; re_chan = container_of(chan, struct fsl_re_chan, chan); for (i = 0; i < FSL_RE_MIN_DESCS; i++) { desc = kzalloc(sizeof(*desc), GFP_KERNEL); if (!desc) break; cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_KERNEL, &paddr); if (!cf) { kfree(desc); break; } INIT_LIST_HEAD(&desc->node); fsl_re_init_desc(re_chan, desc, cf, paddr); list_add_tail(&desc->node, &re_chan->free_q); re_chan->alloc_count++; } return re_chan->alloc_count; } static void fsl_re_free_chan_resources(struct dma_chan *chan) { struct fsl_re_chan *re_chan; struct fsl_re_desc *desc; re_chan = container_of(chan, struct fsl_re_chan, chan); while (re_chan->alloc_count--) { desc = list_first_entry(&re_chan->free_q, struct fsl_re_desc, node); list_del(&desc->node); dma_pool_free(re_chan->re_dev->cf_desc_pool, desc->cf_addr, desc->cf_paddr); kfree(desc); } if (!list_empty(&re_chan->free_q)) dev_err(re_chan->dev, "chan resource cannot be cleaned! "); } |
453dcdb5b dmaengine: fsl_ra... |
630 |
static int fsl_re_chan_probe(struct platform_device *ofdev, |
ad80da658 dmaengine: Driver... |
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
struct device_node *np, u8 q, u32 off) { struct device *dev, *chandev; struct fsl_re_drv_private *re_priv; struct fsl_re_chan *chan; struct dma_device *dma_dev; u32 ptr; u32 status; int ret = 0, rc; struct platform_device *chan_ofdev; dev = &ofdev->dev; re_priv = dev_get_drvdata(dev); dma_dev = &re_priv->dma_dev; chan = devm_kzalloc(dev, sizeof(*chan), GFP_KERNEL); if (!chan) return -ENOMEM; /* create platform device for chan node */ chan_ofdev = of_platform_device_create(np, NULL, dev); if (!chan_ofdev) { dev_err(dev, "Not able to create ofdev for jr %d ", q); ret = -EINVAL; goto err_free; } /* read reg property from dts */ rc = of_property_read_u32(np, "reg", &ptr); if (rc) { dev_err(dev, "Reg property not found in jr %d ", q); ret = -ENODEV; goto err_free; } chan->jrregs = (struct fsl_re_chan_cfg *)((u8 *)re_priv->re_regs + off + ptr); /* read irq property from dts */ chan->irq = irq_of_parse_and_map(np, 0); |
aa570be6d dmaengine: NO_IRQ... |
673 |
if (!chan->irq) { |
ad80da658 dmaengine: Driver... |
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 |
dev_err(dev, "No IRQ defined for JR %d ", q); ret = -ENODEV; goto err_free; } snprintf(chan->name, sizeof(chan->name), "re_jr%02d", q); chandev = &chan_ofdev->dev; tasklet_init(&chan->irqtask, fsl_re_dequeue, (unsigned long)chandev); ret = request_irq(chan->irq, fsl_re_isr, 0, chan->name, chandev); if (ret) { dev_err(dev, "Unable to register interrupt for JR %d ", q); ret = -EINVAL; goto err_free; } re_priv->re_jrs[q] = chan; chan->chan.device = dma_dev; chan->chan.private = chan; chan->dev = chandev; chan->re_dev = re_priv; spin_lock_init(&chan->desc_lock); INIT_LIST_HEAD(&chan->ack_q); INIT_LIST_HEAD(&chan->active_q); INIT_LIST_HEAD(&chan->submit_q); INIT_LIST_HEAD(&chan->free_q); chan->inb_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool, GFP_KERNEL, &chan->inb_phys_addr); if (!chan->inb_ring_virt_addr) { dev_err(dev, "No dma memory for inb_ring_virt_addr "); ret = -ENOMEM; goto err_free; } chan->oub_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool, GFP_KERNEL, &chan->oub_phys_addr); if (!chan->oub_ring_virt_addr) { dev_err(dev, "No dma memory for oub_ring_virt_addr "); ret = -ENOMEM; goto err_free_1; } /* Program the Inbound/Outbound ring base addresses and size */ out_be32(&chan->jrregs->inbring_base_h, chan->inb_phys_addr & FSL_RE_ADDR_BIT_MASK); out_be32(&chan->jrregs->oubring_base_h, chan->oub_phys_addr & FSL_RE_ADDR_BIT_MASK); out_be32(&chan->jrregs->inbring_base_l, chan->inb_phys_addr >> FSL_RE_ADDR_BIT_SHIFT); out_be32(&chan->jrregs->oubring_base_l, chan->oub_phys_addr >> FSL_RE_ADDR_BIT_SHIFT); out_be32(&chan->jrregs->inbring_size, FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT); out_be32(&chan->jrregs->oubring_size, FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT); /* Read LIODN value from u-boot */ status = in_be32(&chan->jrregs->jr_config_1) & FSL_RE_REG_LIODN_MASK; /* Program the CFG reg */ out_be32(&chan->jrregs->jr_config_1, FSL_RE_CFG1_CBSI | FSL_RE_CFG1_CBS0 | status); dev_set_drvdata(chandev, chan); /* Enable RE/CHAN */ out_be32(&chan->jrregs->jr_command, FSL_RE_ENABLE); return 0; err_free_1: dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr, chan->inb_phys_addr); err_free: return ret; } /* Probe function for RAID Engine */ static int fsl_re_probe(struct platform_device *ofdev) { struct fsl_re_drv_private *re_priv; struct device_node *np; struct device_node *child; u32 off; u8 ridx = 0; struct dma_device *dma_dev; struct resource *res; int rc; struct device *dev = &ofdev->dev; re_priv = devm_kzalloc(dev, sizeof(*re_priv), GFP_KERNEL); if (!re_priv) return -ENOMEM; res = platform_get_resource(ofdev, IORESOURCE_MEM, 0); if (!res) return -ENODEV; /* IOMAP the entire RAID Engine region */ re_priv->re_regs = devm_ioremap(dev, res->start, resource_size(res)); if (!re_priv->re_regs) return -EBUSY; /* Program the RE mode */ out_be32(&re_priv->re_regs->global_config, FSL_RE_NON_DPAA_MODE); /* Program Galois Field polynomial */ out_be32(&re_priv->re_regs->galois_field_config, FSL_RE_GFM_POLY); dev_info(dev, "version %x, mode %x, gfp %x ", in_be32(&re_priv->re_regs->re_version_id), in_be32(&re_priv->re_regs->global_config), in_be32(&re_priv->re_regs->galois_field_config)); dma_dev = &re_priv->dma_dev; dma_dev->dev = dev; INIT_LIST_HEAD(&dma_dev->channels); dma_set_mask(dev, DMA_BIT_MASK(40)); dma_dev->device_alloc_chan_resources = fsl_re_alloc_chan_resources; dma_dev->device_tx_status = fsl_re_tx_status; dma_dev->device_issue_pending = fsl_re_issue_pending; dma_dev->max_xor = FSL_RE_MAX_XOR_SRCS; dma_dev->device_prep_dma_xor = fsl_re_prep_dma_xor; dma_cap_set(DMA_XOR, dma_dev->cap_mask); dma_dev->max_pq = FSL_RE_MAX_PQ_SRCS; dma_dev->device_prep_dma_pq = fsl_re_prep_dma_pq; dma_cap_set(DMA_PQ, dma_dev->cap_mask); dma_dev->device_prep_dma_memcpy = fsl_re_prep_dma_memcpy; dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); dma_dev->device_free_chan_resources = fsl_re_free_chan_resources; re_priv->total_chans = 0; re_priv->cf_desc_pool = dmam_pool_create("fsl_re_cf_desc_pool", dev, FSL_RE_CF_CDB_SIZE, FSL_RE_CF_CDB_ALIGN, 0); if (!re_priv->cf_desc_pool) { dev_err(dev, "No memory for fsl re_cf desc pool "); return -ENOMEM; } re_priv->hw_desc_pool = dmam_pool_create("fsl_re_hw_desc_pool", dev, sizeof(struct fsl_re_hw_desc) * FSL_RE_RING_SIZE, FSL_RE_FRAME_ALIGN, 0); if (!re_priv->hw_desc_pool) { dev_err(dev, "No memory for fsl re_hw desc pool "); return -ENOMEM; } dev_set_drvdata(dev, re_priv); /* Parse Device tree to find out the total number of JQs present */ for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") { rc = of_property_read_u32(np, "reg", &off); if (rc) { dev_err(dev, "Reg property not found in JQ node "); |
93e11eb1b dmaengine: fsl_ra... |
847 |
of_node_put(np); |
ad80da658 dmaengine: Driver... |
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 |
return -ENODEV; } /* Find out the Job Rings present under each JQ */ for_each_child_of_node(np, child) { rc = of_device_is_compatible(child, "fsl,raideng-v1.0-job-ring"); if (rc) { fsl_re_chan_probe(ofdev, child, ridx++, off); re_priv->total_chans++; } } } dma_async_device_register(dma_dev); return 0; } static void fsl_re_remove_chan(struct fsl_re_chan *chan) { |
cb28c7ab7 dmaengine: fsl_ra... |
868 |
tasklet_kill(&chan->irqtask); |
ad80da658 dmaengine: Driver... |
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 |
dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr, chan->inb_phys_addr); dma_pool_free(chan->re_dev->hw_desc_pool, chan->oub_ring_virt_addr, chan->oub_phys_addr); } static int fsl_re_remove(struct platform_device *ofdev) { struct fsl_re_drv_private *re_priv; struct device *dev; int i; dev = &ofdev->dev; re_priv = dev_get_drvdata(dev); /* Cleanup chan related memory areas */ for (i = 0; i < re_priv->total_chans; i++) fsl_re_remove_chan(re_priv->re_jrs[i]); /* Unregister the driver */ dma_async_device_unregister(&re_priv->dma_dev); return 0; } static struct of_device_id fsl_re_ids[] = { { .compatible = "fsl,raideng-v1.0", }, {} }; static struct platform_driver fsl_re_driver = { .driver = { .name = "fsl-raideng", |
ad80da658 dmaengine: Driver... |
903 904 905 906 907 908 909 910 911 912 913 |
.of_match_table = fsl_re_ids, }, .probe = fsl_re_probe, .remove = fsl_re_remove, }; module_platform_driver(fsl_re_driver); MODULE_AUTHOR("Harninder Rai <harninder.rai@freescale.com>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Freescale RAID Engine Device Driver"); |