bootmem.c 20.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
/*
 *  bootmem - A boot-time physical memory allocator and configurator
 *
 *  Copyright (C) 1999 Ingo Molnar
 *                1999 Kanoj Sarcar, SGI
 *                2008 Johannes Weiner
 *
 * Access to this subsystem has to be serialized externally (which is true
 * for the boot process anyway).
 */
#include <linux/init.h>
#include <linux/pfn.h>
#include <linux/slab.h>
#include <linux/bootmem.h>
#include <linux/export.h>
#include <linux/kmemleak.h>
#include <linux/range.h>
#include <linux/memblock.h>

#include <asm/bug.h>
#include <asm/io.h>
#include <asm/processor.h>

#include "internal.h"

#ifndef CONFIG_NEED_MULTIPLE_NODES
struct pglist_data __refdata contig_page_data = {
	.bdata = &bootmem_node_data[0]
};
EXPORT_SYMBOL(contig_page_data);
#endif

unsigned long max_low_pfn;
unsigned long min_low_pfn;
unsigned long max_pfn;

bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;

static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);

static int bootmem_debug;

static int __init bootmem_debug_setup(char *buf)
{
	bootmem_debug = 1;
	return 0;
}
early_param("bootmem_debug", bootmem_debug_setup);

#define bdebug(fmt, args...) ({				\
	if (unlikely(bootmem_debug))			\
		printk(KERN_INFO			\
			"bootmem::%s " fmt,		\
			__func__, ## args);		\
})

static unsigned long __init bootmap_bytes(unsigned long pages)
{
	unsigned long bytes = DIV_ROUND_UP(pages, 8);

	return ALIGN(bytes, sizeof(long));
}

/**
 * bootmem_bootmap_pages - calculate bitmap size in pages
 * @pages: number of pages the bitmap has to represent
 */
unsigned long __init bootmem_bootmap_pages(unsigned long pages)
{
	unsigned long bytes = bootmap_bytes(pages);

	return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
}

/*
 * link bdata in order
 */
static void __init link_bootmem(bootmem_data_t *bdata)
{
	struct list_head *iter;

	list_for_each(iter, &bdata_list) {
		bootmem_data_t *ent;

		ent = list_entry(iter, bootmem_data_t, list);
		if (bdata->node_min_pfn < ent->node_min_pfn)
			break;
	}
	list_add_tail(&bdata->list, iter);
}

/*
 * Called once to set up the allocator itself.
 */
static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
	unsigned long mapstart, unsigned long start, unsigned long end)
{
	unsigned long mapsize;

	mminit_validate_memmodel_limits(&start, &end);
	bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
	bdata->node_min_pfn = start;
	bdata->node_low_pfn = end;
	link_bootmem(bdata);

	/*
	 * Initially all pages are reserved - setup_arch() has to
	 * register free RAM areas explicitly.
	 */
	mapsize = bootmap_bytes(end - start);
	memset(bdata->node_bootmem_map, 0xff, mapsize);

	bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
		bdata - bootmem_node_data, start, mapstart, end, mapsize);

	return mapsize;
}

/**
 * init_bootmem_node - register a node as boot memory
 * @pgdat: node to register
 * @freepfn: pfn where the bitmap for this node is to be placed
 * @startpfn: first pfn on the node
 * @endpfn: first pfn after the node
 *
 * Returns the number of bytes needed to hold the bitmap for this node.
 */
unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
				unsigned long startpfn, unsigned long endpfn)
{
	return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
}

/**
 * init_bootmem - register boot memory
 * @start: pfn where the bitmap is to be placed
 * @pages: number of available physical pages
 *
 * Returns the number of bytes needed to hold the bitmap.
 */
unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
{
	max_low_pfn = pages;
	min_low_pfn = start;
	return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
}

/*
 * free_bootmem_late - free bootmem pages directly to page allocator
 * @addr: starting address of the range
 * @size: size of the range in bytes
 *
 * This is only useful when the bootmem allocator has already been torn
 * down, but we are still initializing the system.  Pages are given directly
 * to the page allocator, no bootmem metadata is updated because it is gone.
 */
void __init free_bootmem_late(unsigned long addr, unsigned long size)
{
	unsigned long cursor, end;

	kmemleak_free_part(__va(addr), size);

	cursor = PFN_UP(addr);
	end = PFN_DOWN(addr + size);

	for (; cursor < end; cursor++) {
		__free_pages_bootmem(pfn_to_page(cursor), 0);
		totalram_pages++;
	}
}

static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
{
	struct page *page;
	unsigned long start, end, pages, count = 0;

	if (!bdata->node_bootmem_map)
		return 0;

	start = bdata->node_min_pfn;
	end = bdata->node_low_pfn;

	bdebug("nid=%td start=%lx end=%lx\n",
		bdata - bootmem_node_data, start, end);

	while (start < end) {
		unsigned long *map, idx, vec;

		map = bdata->node_bootmem_map;
		idx = start - bdata->node_min_pfn;
		vec = ~map[idx / BITS_PER_LONG];
		/*
		 * If we have a properly aligned and fully unreserved
		 * BITS_PER_LONG block of pages in front of us, free
		 * it in one go.
		 */
		if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
			int order = ilog2(BITS_PER_LONG);

			__free_pages_bootmem(pfn_to_page(start), order);
			count += BITS_PER_LONG;
			start += BITS_PER_LONG;
		} else {
			unsigned long off = 0;

			while (vec && off < BITS_PER_LONG) {
				if (vec & 1) {
					page = pfn_to_page(start + off);
					__free_pages_bootmem(page, 0);
					count++;
				}
				vec >>= 1;
				off++;
			}
			start = ALIGN(start + 1, BITS_PER_LONG);
		}
	}

	page = virt_to_page(bdata->node_bootmem_map);
	pages = bdata->node_low_pfn - bdata->node_min_pfn;
	pages = bootmem_bootmap_pages(pages);
	count += pages;
	while (pages--)
		__free_pages_bootmem(page++, 0);

	bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);

	return count;
}

/**
 * free_all_bootmem_node - release a node's free pages to the buddy allocator
 * @pgdat: node to be released
 *
 * Returns the number of pages actually released.
 */
unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
{
	register_page_bootmem_info_node(pgdat);
	return free_all_bootmem_core(pgdat->bdata);
}

/**
 * free_all_bootmem - release free pages to the buddy allocator
 *
 * Returns the number of pages actually released.
 */
unsigned long __init free_all_bootmem(void)
{
	unsigned long total_pages = 0;
	bootmem_data_t *bdata;

	list_for_each_entry(bdata, &bdata_list, list)
		total_pages += free_all_bootmem_core(bdata);

	return total_pages;
}

static void __init __free(bootmem_data_t *bdata,
			unsigned long sidx, unsigned long eidx)
{
	unsigned long idx;

	bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
		sidx + bdata->node_min_pfn,
		eidx + bdata->node_min_pfn);

	if (bdata->hint_idx > sidx)
		bdata->hint_idx = sidx;

	for (idx = sidx; idx < eidx; idx++)
		if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
			BUG();
}

static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
			unsigned long eidx, int flags)
{
	unsigned long idx;
	int exclusive = flags & BOOTMEM_EXCLUSIVE;

	bdebug("nid=%td start=%lx end=%lx flags=%x\n",
		bdata - bootmem_node_data,
		sidx + bdata->node_min_pfn,
		eidx + bdata->node_min_pfn,
		flags);

	for (idx = sidx; idx < eidx; idx++)
		if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
			if (exclusive) {
				__free(bdata, sidx, idx);
				return -EBUSY;
			}
			bdebug("silent double reserve of PFN %lx\n",
				idx + bdata->node_min_pfn);
		}
	return 0;
}

static int __init mark_bootmem_node(bootmem_data_t *bdata,
				unsigned long start, unsigned long end,
				int reserve, int flags)
{
	unsigned long sidx, eidx;

	bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
		bdata - bootmem_node_data, start, end, reserve, flags);

	BUG_ON(start < bdata->node_min_pfn);
	BUG_ON(end > bdata->node_low_pfn);

	sidx = start - bdata->node_min_pfn;
	eidx = end - bdata->node_min_pfn;

	if (reserve)
		return __reserve(bdata, sidx, eidx, flags);
	else
		__free(bdata, sidx, eidx);
	return 0;
}

static int __init mark_bootmem(unsigned long start, unsigned long end,
				int reserve, int flags)
{
	unsigned long pos;
	bootmem_data_t *bdata;

	pos = start;
	list_for_each_entry(bdata, &bdata_list, list) {
		int err;
		unsigned long max;

		if (pos < bdata->node_min_pfn ||
		    pos >= bdata->node_low_pfn) {
			BUG_ON(pos != start);
			continue;
		}

		max = min(bdata->node_low_pfn, end);

		err = mark_bootmem_node(bdata, pos, max, reserve, flags);
		if (reserve && err) {
			mark_bootmem(start, pos, 0, 0);
			return err;
		}

		if (max == end)
			return 0;
		pos = bdata->node_low_pfn;
	}
	BUG();
}

/**
 * free_bootmem_node - mark a page range as usable
 * @pgdat: node the range resides on
 * @physaddr: starting address of the range
 * @size: size of the range in bytes
 *
 * Partial pages will be considered reserved and left as they are.
 *
 * The range must reside completely on the specified node.
 */
void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
			      unsigned long size)
{
	unsigned long start, end;

	kmemleak_free_part(__va(physaddr), size);

	start = PFN_UP(physaddr);
	end = PFN_DOWN(physaddr + size);

	mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
}

/**
 * free_bootmem - mark a page range as usable
 * @addr: starting address of the range
 * @size: size of the range in bytes
 *
 * Partial pages will be considered reserved and left as they are.
 *
 * The range must be contiguous but may span node boundaries.
 */
void __init free_bootmem(unsigned long addr, unsigned long size)
{
	unsigned long start, end;

	kmemleak_free_part(__va(addr), size);

	start = PFN_UP(addr);
	end = PFN_DOWN(addr + size);

	mark_bootmem(start, end, 0, 0);
}

/**
 * reserve_bootmem_node - mark a page range as reserved
 * @pgdat: node the range resides on
 * @physaddr: starting address of the range
 * @size: size of the range in bytes
 * @flags: reservation flags (see linux/bootmem.h)
 *
 * Partial pages will be reserved.
 *
 * The range must reside completely on the specified node.
 */
int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
				 unsigned long size, int flags)
{
	unsigned long start, end;

	start = PFN_DOWN(physaddr);
	end = PFN_UP(physaddr + size);

	return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
}

/**
 * reserve_bootmem - mark a page range as usable
 * @addr: starting address of the range
 * @size: size of the range in bytes
 * @flags: reservation flags (see linux/bootmem.h)
 *
 * Partial pages will be reserved.
 *
 * The range must be contiguous but may span node boundaries.
 */
int __init reserve_bootmem(unsigned long addr, unsigned long size,
			    int flags)
{
	unsigned long start, end;

	start = PFN_DOWN(addr);
	end = PFN_UP(addr + size);

	return mark_bootmem(start, end, 1, flags);
}

int __weak __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
				   int flags)
{
	return reserve_bootmem(phys, len, flags);
}

static unsigned long __init align_idx(struct bootmem_data *bdata,
				      unsigned long idx, unsigned long step)
{
	unsigned long base = bdata->node_min_pfn;

	/*
	 * Align the index with respect to the node start so that the
	 * combination of both satisfies the requested alignment.
	 */

	return ALIGN(base + idx, step) - base;
}

static unsigned long __init align_off(struct bootmem_data *bdata,
				      unsigned long off, unsigned long align)
{
	unsigned long base = PFN_PHYS(bdata->node_min_pfn);

	/* Same as align_idx for byte offsets */

	return ALIGN(base + off, align) - base;
}

static void * __init alloc_bootmem_core(struct bootmem_data *bdata,
					unsigned long size, unsigned long align,
					unsigned long goal, unsigned long limit)
{
	unsigned long fallback = 0;
	unsigned long min, max, start, sidx, midx, step;

	bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
		bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
		align, goal, limit);

	BUG_ON(!size);
	BUG_ON(align & (align - 1));
	BUG_ON(limit && goal + size > limit);

	if (!bdata->node_bootmem_map)
		return NULL;

	min = bdata->node_min_pfn;
	max = bdata->node_low_pfn;

	goal >>= PAGE_SHIFT;
	limit >>= PAGE_SHIFT;

	if (limit && max > limit)
		max = limit;
	if (max <= min)
		return NULL;

	step = max(align >> PAGE_SHIFT, 1UL);

	if (goal && min < goal && goal < max)
		start = ALIGN(goal, step);
	else
		start = ALIGN(min, step);

	sidx = start - bdata->node_min_pfn;
	midx = max - bdata->node_min_pfn;

	if (bdata->hint_idx > sidx) {
		/*
		 * Handle the valid case of sidx being zero and still
		 * catch the fallback below.
		 */
		fallback = sidx + 1;
		sidx = align_idx(bdata, bdata->hint_idx, step);
	}

	while (1) {
		int merge;
		void *region;
		unsigned long eidx, i, start_off, end_off;
find_block:
		sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
		sidx = align_idx(bdata, sidx, step);
		eidx = sidx + PFN_UP(size);

		if (sidx >= midx || eidx > midx)
			break;

		for (i = sidx; i < eidx; i++)
			if (test_bit(i, bdata->node_bootmem_map)) {
				sidx = align_idx(bdata, i, step);
				if (sidx == i)
					sidx += step;
				goto find_block;
			}

		if (bdata->last_end_off & (PAGE_SIZE - 1) &&
				PFN_DOWN(bdata->last_end_off) + 1 == sidx)
			start_off = align_off(bdata, bdata->last_end_off, align);
		else
			start_off = PFN_PHYS(sidx);

		merge = PFN_DOWN(start_off) < sidx;
		end_off = start_off + size;

		bdata->last_end_off = end_off;
		bdata->hint_idx = PFN_UP(end_off);

		/*
		 * Reserve the area now:
		 */
		if (__reserve(bdata, PFN_DOWN(start_off) + merge,
				PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
			BUG();

		region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
				start_off);
		memset(region, 0, size);
		/*
		 * The min_count is set to 0 so that bootmem allocated blocks
		 * are never reported as leaks.
		 */
		kmemleak_alloc(region, size, 0, 0);
		return region;
	}

	if (fallback) {
		sidx = align_idx(bdata, fallback - 1, step);
		fallback = 0;
		goto find_block;
	}

	return NULL;
}

static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata,
					unsigned long size, unsigned long align,
					unsigned long goal, unsigned long limit)
{
	if (WARN_ON_ONCE(slab_is_available()))
		return kzalloc(size, GFP_NOWAIT);

#ifdef CONFIG_HAVE_ARCH_BOOTMEM
	{
		bootmem_data_t *p_bdata;

		p_bdata = bootmem_arch_preferred_node(bdata, size, align,
							goal, limit);
		if (p_bdata)
			return alloc_bootmem_core(p_bdata, size, align,
							goal, limit);
	}
#endif
	return NULL;
}

static void * __init ___alloc_bootmem_nopanic(unsigned long size,
					unsigned long align,
					unsigned long goal,
					unsigned long limit)
{
	bootmem_data_t *bdata;
	void *region;

restart:
	region = alloc_arch_preferred_bootmem(NULL, size, align, goal, limit);
	if (region)
		return region;

	list_for_each_entry(bdata, &bdata_list, list) {
		if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
			continue;
		if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
			break;

		region = alloc_bootmem_core(bdata, size, align, goal, limit);
		if (region)
			return region;
	}

	if (goal) {
		goal = 0;
		goto restart;
	}

	return NULL;
}

/**
 * __alloc_bootmem_nopanic - allocate boot memory without panicking
 * @size: size of the request in bytes
 * @align: alignment of the region
 * @goal: preferred starting address of the region
 *
 * The goal is dropped if it can not be satisfied and the allocation will
 * fall back to memory below @goal.
 *
 * Allocation may happen on any node in the system.
 *
 * Returns NULL on failure.
 */
void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
					unsigned long goal)
{
	unsigned long limit = 0;

	return ___alloc_bootmem_nopanic(size, align, goal, limit);
}

static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
					unsigned long goal, unsigned long limit)
{
	void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);

	if (mem)
		return mem;
	/*
	 * Whoops, we cannot satisfy the allocation request.
	 */
	printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
	panic("Out of memory");
	return NULL;
}

/**
 * __alloc_bootmem - allocate boot memory
 * @size: size of the request in bytes
 * @align: alignment of the region
 * @goal: preferred starting address of the region
 *
 * The goal is dropped if it can not be satisfied and the allocation will
 * fall back to memory below @goal.
 *
 * Allocation may happen on any node in the system.
 *
 * The function panics if the request can not be satisfied.
 */
void * __init __alloc_bootmem(unsigned long size, unsigned long align,
			      unsigned long goal)
{
	unsigned long limit = 0;

	return ___alloc_bootmem(size, align, goal, limit);
}

static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
				unsigned long size, unsigned long align,
				unsigned long goal, unsigned long limit)
{
	void *ptr;

	ptr = alloc_arch_preferred_bootmem(bdata, size, align, goal, limit);
	if (ptr)
		return ptr;

	ptr = alloc_bootmem_core(bdata, size, align, goal, limit);
	if (ptr)
		return ptr;

	return ___alloc_bootmem(size, align, goal, limit);
}

/**
 * __alloc_bootmem_node - allocate boot memory from a specific node
 * @pgdat: node to allocate from
 * @size: size of the request in bytes
 * @align: alignment of the region
 * @goal: preferred starting address of the region
 *
 * The goal is dropped if it can not be satisfied and the allocation will
 * fall back to memory below @goal.
 *
 * Allocation may fall back to any node in the system if the specified node
 * can not hold the requested memory.
 *
 * The function panics if the request can not be satisfied.
 */
void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
				   unsigned long align, unsigned long goal)
{
	if (WARN_ON_ONCE(slab_is_available()))
		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);

	return  ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
}

void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
				   unsigned long align, unsigned long goal)
{
#ifdef MAX_DMA32_PFN
	unsigned long end_pfn;

	if (WARN_ON_ONCE(slab_is_available()))
		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);

	/* update goal according ...MAX_DMA32_PFN */
	end_pfn = pgdat->node_start_pfn + pgdat->node_spanned_pages;

	if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
	    (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
		void *ptr;
		unsigned long new_goal;

		new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
		ptr = alloc_bootmem_core(pgdat->bdata, size, align,
						 new_goal, 0);
		if (ptr)
			return ptr;
	}
#endif

	return __alloc_bootmem_node(pgdat, size, align, goal);

}

#ifdef CONFIG_SPARSEMEM
/**
 * alloc_bootmem_section - allocate boot memory from a specific section
 * @size: size of the request in bytes
 * @section_nr: sparse map section to allocate from
 *
 * Return NULL on failure.
 */
void * __init alloc_bootmem_section(unsigned long size,
				    unsigned long section_nr)
{
	bootmem_data_t *bdata;
	unsigned long pfn, goal, limit;

	pfn = section_nr_to_pfn(section_nr);
	goal = pfn << PAGE_SHIFT;
	limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
	bdata = &bootmem_node_data[early_pfn_to_nid(pfn)];

	return alloc_bootmem_core(bdata, size, SMP_CACHE_BYTES, goal, limit);
}
#endif

void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
				   unsigned long align, unsigned long goal)
{
	void *ptr;

	if (WARN_ON_ONCE(slab_is_available()))
		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);

	ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size, align, goal, 0);
	if (ptr)
		return ptr;

	ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
	if (ptr)
		return ptr;

	return __alloc_bootmem_nopanic(size, align, goal);
}

#ifndef ARCH_LOW_ADDRESS_LIMIT
#define ARCH_LOW_ADDRESS_LIMIT	0xffffffffUL
#endif

/**
 * __alloc_bootmem_low - allocate low boot memory
 * @size: size of the request in bytes
 * @align: alignment of the region
 * @goal: preferred starting address of the region
 *
 * The goal is dropped if it can not be satisfied and the allocation will
 * fall back to memory below @goal.
 *
 * Allocation may happen on any node in the system.
 *
 * The function panics if the request can not be satisfied.
 */
void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
				  unsigned long goal)
{
	return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
}

/**
 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
 * @pgdat: node to allocate from
 * @size: size of the request in bytes
 * @align: alignment of the region
 * @goal: preferred starting address of the region
 *
 * The goal is dropped if it can not be satisfied and the allocation will
 * fall back to memory below @goal.
 *
 * Allocation may fall back to any node in the system if the specified node
 * can not hold the requested memory.
 *
 * The function panics if the request can not be satisfied.
 */
void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
				       unsigned long align, unsigned long goal)
{
	if (WARN_ON_ONCE(slab_is_available()))
		return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);

	return ___alloc_bootmem_node(pgdat->bdata, size, align,
				goal, ARCH_LOW_ADDRESS_LIMIT);
}