edac.txt 24.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
EDAC - Error Detection And Correction
=====================================

"bluesmoke" was the name for this device driver when it
was "out-of-tree" and maintained at sourceforge.net -
bluesmoke.sourceforge.net. That site is mostly archaic now and can be
used only for historical purposes.

When the subsystem was pushed into 2.6.16 for the first time, it was
renamed to 'EDAC'.

PURPOSE
-------

The 'edac' kernel module's goal is to detect and report hardware errors
that occur within the computer system running under linux.

MEMORY
------

Memory Correctable Errors (CE) and Uncorrectable Errors (UE) are the
primary errors being harvested. These types of errors are harvested by
the 'edac_mc' device.

Detecting CE events, then harvesting those events and reporting them,
*can* but must not necessarily be a predictor of future UE events. With
CE events only, the system can and will continue to operate as no data
has been damaged yet.

However, preventive maintenance and proactive part replacement of memory
DIMMs exhibiting CEs can reduce the likelihood of the dreaded UE events
and system panics.

OTHER HARDWARE ELEMENTS
-----------------------

A new feature for EDAC, the edac_device class of device, was added in
the 2.6.23 version of the kernel.

This new device type allows for non-memory type of ECC hardware detectors
to have their states harvested and presented to userspace via the sysfs
interface.

Some architectures have ECC detectors for L1, L2 and L3 caches,
along with DMA engines, fabric switches, main data path switches,
interconnections, and various other hardware data paths. If the hardware
reports it, then a edac_device device probably can be constructed to
harvest and present that to userspace.


PCI BUS SCANNING
----------------

In addition, PCI devices are scanned for PCI Bus Parity and SERR Errors
in order to determine if errors are occurring during data transfers.

The presence of PCI Parity errors must be examined with a grain of salt.
There are several add-in adapters that do *not* follow the PCI specification
with regards to Parity generation and reporting. The specification says
the vendor should tie the parity status bits to 0 if they do not intend
to generate parity.  Some vendors do not do this, and thus the parity bit
can "float" giving false positives.

There is a PCI device attribute located in sysfs that is checked by
the EDAC PCI scanning code. If that attribute is set, PCI parity/error
scanning is skipped for that device. The attribute is:

	broken_parity_status

and is located in /sys/devices/pci<XXX>/0000:XX:YY.Z directories for
PCI devices.


VERSIONING
----------

EDAC is composed of a "core" module (edac_core.ko) and several Memory
Controller (MC) driver modules. On a given system, the CORE is loaded
and one MC driver will be loaded. Both the CORE and the MC driver (or
edac_device driver) have individual versions that reflect current
release level of their respective modules.

Thus, to "report" on what version a system is running, one must report
both the CORE's and the MC driver's versions.


LOADING
-------

If 'edac' was statically linked with the kernel then no loading
is necessary. If 'edac' was built as modules then simply modprobe
the 'edac' pieces that you need. You should be able to modprobe
hardware-specific modules and have the dependencies load the necessary
core modules.

Example:

$> modprobe amd76x_edac

loads both the amd76x_edac.ko memory controller module and the edac_mc.ko
core module.


SYSFS INTERFACE
---------------

EDAC presents a 'sysfs' interface for control and reporting purposes. It
lives in the /sys/devices/system/edac directory.

Within this directory there currently reside 2 components:

	mc	memory controller(s) system
	pci	PCI control and status system



Memory Controller (mc) Model
----------------------------

Each 'mc' device controls a set of DIMM memory modules. These modules
are laid out in a Chip-Select Row (csrowX) and Channel table (chX).
There can be multiple csrows and multiple channels.

Memory controllers allow for several csrows, with 8 csrows being a
typical value. Yet, the actual number of csrows depends on the layout of
a given motherboard, memory controller and DIMM characteristics.

Dual channels allows for 128 bit data transfers to/from the CPU from/to
memory. Some newer chipsets allow for more than 2 channels, like Fully
Buffered DIMMs (FB-DIMMs). The following example will assume 2 channels:


		Channel 0	Channel 1
	===================================
	csrow0	| DIMM_A0	| DIMM_B0 |
	csrow1	| DIMM_A0	| DIMM_B0 |
	===================================

	===================================
	csrow2	| DIMM_A1	| DIMM_B1 |
	csrow3	| DIMM_A1	| DIMM_B1 |
	===================================

In the above example table there are 4 physical slots on the motherboard
for memory DIMMs:

	DIMM_A0
	DIMM_B0
	DIMM_A1
	DIMM_B1

Labels for these slots are usually silk-screened on the motherboard.
Slots labeled 'A' are channel 0 in this example. Slots labeled 'B' are
channel 1. Notice that there are two csrows possible on a physical DIMM.
These csrows are allocated their csrow assignment based on the slot into
which the memory DIMM is placed. Thus, when 1 DIMM is placed in each
Channel, the csrows cross both DIMMs.

Memory DIMMs come single or dual "ranked". A rank is a populated csrow.
Thus, 2 single ranked DIMMs, placed in slots DIMM_A0 and DIMM_B0 above
will have 1 csrow, csrow0. csrow1 will be empty. On the other hand,
when 2 dual ranked DIMMs are similarly placed, then both csrow0 and
csrow1 will be populated. The pattern repeats itself for csrow2 and
csrow3.

The representation of the above is reflected in the directory
tree in EDAC's sysfs interface. Starting in directory
/sys/devices/system/edac/mc each memory controller will be represented
by its own 'mcX' directory, where 'X' is the index of the MC.


	..../edac/mc/
		   |
		   |->mc0
		   |->mc1
		   |->mc2
		   ....

Under each 'mcX' directory each 'csrowX' is again represented by a
'csrowX', where 'X' is the csrow index:


	.../mc/mc0/
		|
		|->csrow0
		|->csrow2
		|->csrow3
		....

Notice that there is no csrow1, which indicates that csrow0 is composed
of a single ranked DIMMs. This should also apply in both Channels, in
order to have dual-channel mode be operational. Since both csrow2 and
csrow3 are populated, this indicates a dual ranked set of DIMMs for
channels 0 and 1.


Within each of the 'mcX' and 'csrowX' directories are several EDAC
control and attribute files.


'mcX' directories
-----------------

In 'mcX' directories are EDAC control and attribute files for
this 'X' instance of the memory controllers.

For a description of the sysfs API, please see:
	Documentation/ABI/testing/sysfs-devices-edac



'csrowX' directories
--------------------

When CONFIG_EDAC_LEGACY_SYSFS is enabled, sysfs will contain the csrowX
directories. As this API doesn't work properly for Rambus, FB-DIMMs and
modern Intel Memory Controllers, this is being deprecated in favor of
dimmX directories.

In the 'csrowX' directories are EDAC control and attribute files for
this 'X' instance of csrow:


Total Uncorrectable Errors count attribute file:

	'ue_count'

	This attribute file displays the total count of uncorrectable
	errors that have occurred on this csrow. If panic_on_ue is set
	this counter will not have a chance to increment, since EDAC
	will panic the system.


Total Correctable Errors count attribute file:

	'ce_count'

	This attribute file displays the total count of correctable
	errors that have occurred on this csrow. This count is very
	important to examine. CEs provide early indications that a
	DIMM is beginning to fail. This count field should be
	monitored for non-zero values and report such information
	to the system administrator.


Total memory managed by this csrow attribute file:

	'size_mb'

	This attribute file displays, in count of megabytes, the memory
	that this csrow contains.


Memory Type attribute file:

	'mem_type'

	This attribute file will display what type of memory is currently
	on this csrow. Normally, either buffered or unbuffered memory.
	Examples:
		Registered-DDR
		Unbuffered-DDR


EDAC Mode of operation attribute file:

	'edac_mode'

	This attribute file will display what type of Error detection
	and correction is being utilized.


Device type attribute file:

	'dev_type'

	This attribute file will display what type of DRAM device is
	being utilized on this DIMM.
	Examples:
		x1
		x2
		x4
		x8


Channel 0 CE Count attribute file:

	'ch0_ce_count'

	This attribute file will display the count of CEs on this
	DIMM located in channel 0.


Channel 0 UE Count attribute file:

	'ch0_ue_count'

	This attribute file will display the count of UEs on this
	DIMM located in channel 0.


Channel 0 DIMM Label control file:

	'ch0_dimm_label'

	This control file allows this DIMM to have a label assigned
	to it. With this label in the module, when errors occur
	the output can provide the DIMM label in the system log.
	This becomes vital for panic events to isolate the
	cause of the UE event.

	DIMM Labels must be assigned after booting, with information
	that correctly identifies the physical slot with its
	silk screen label. This information is currently very
	motherboard specific and determination of this information
	must occur in userland at this time.


Channel 1 CE Count attribute file:

	'ch1_ce_count'

	This attribute file will display the count of CEs on this
	DIMM located in channel 1.


Channel 1 UE Count attribute file:

	'ch1_ue_count'

	This attribute file will display the count of UEs on this
	DIMM located in channel 0.


Channel 1 DIMM Label control file:

	'ch1_dimm_label'

	This control file allows this DIMM to have a label assigned
	to it. With this label in the module, when errors occur
	the output can provide the DIMM label in the system log.
	This becomes vital for panic events to isolate the
	cause of the UE event.

	DIMM Labels must be assigned after booting, with information
	that correctly identifies the physical slot with its
	silk screen label. This information is currently very
	motherboard specific and determination of this information
	must occur in userland at this time.



SYSTEM LOGGING
--------------

If logging for UEs and CEs is enabled, then system logs will contain
information indicating that errors have been detected:

EDAC MC0: CE page 0x283, offset 0xce0, grain 8, syndrome 0x6ec3, row 0,
channel 1 "DIMM_B1": amd76x_edac

EDAC MC0: CE page 0x1e5, offset 0xfb0, grain 8, syndrome 0xb741, row 0,
channel 1 "DIMM_B1": amd76x_edac


The structure of the message is:
	the memory controller			(MC0)
	Error type				(CE)
	memory page				(0x283)
	offset in the page			(0xce0)
	the byte granularity 			(grain 8)
		or resolution of the error
	the error syndrome			(0xb741)
	memory row				(row 0)
	memory channel				(channel 1)
	DIMM label, if set prior		(DIMM B1
	and then an optional, driver-specific message that may
		have additional information.

Both UEs and CEs with no info will lack all but memory controller, error
type, a notice of "no info" and then an optional, driver-specific error
message.


PCI Bus Parity Detection
------------------------

On Header Type 00 devices, the primary status is looked at for any
parity error regardless of whether parity is enabled on the device or
not. (The spec indicates parity is generated in some cases). On Header
Type 01 bridges, the secondary status register is also looked at to see
if parity occurred on the bus on the other side of the bridge.


SYSFS CONFIGURATION
-------------------

Under /sys/devices/system/edac/pci are control and attribute files as follows:


Enable/Disable PCI Parity checking control file:

	'check_pci_parity'


	This control file enables or disables the PCI Bus Parity scanning
	operation. Writing a 1 to this file enables the scanning. Writing
	a 0 to this file disables the scanning.

	Enable:
	echo "1" >/sys/devices/system/edac/pci/check_pci_parity

	Disable:
	echo "0" >/sys/devices/system/edac/pci/check_pci_parity


Parity Count:

	'pci_parity_count'

	This attribute file will display the number of parity errors that
	have been detected.



MODULE PARAMETERS
-----------------

Panic on UE control file:

	'edac_mc_panic_on_ue'

	An uncorrectable error will cause a machine panic.  This is usually
	desirable.  It is a bad idea to continue when an uncorrectable error
	occurs - it is indeterminate what was uncorrected and the operating
	system context might be so mangled that continuing will lead to further
	corruption. If the kernel has MCE configured, then EDAC will never
	notice the UE.

	LOAD TIME: module/kernel parameter: edac_mc_panic_on_ue=[0|1]

	RUN TIME:  echo "1" > /sys/module/edac_core/parameters/edac_mc_panic_on_ue


Log UE control file:

	'edac_mc_log_ue'

	Generate kernel messages describing uncorrectable errors.  These errors
	are reported through the system message log system.  UE statistics
	will be accumulated even when UE logging is disabled.

	LOAD TIME: module/kernel parameter: edac_mc_log_ue=[0|1]

	RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ue


Log CE control file:

	'edac_mc_log_ce'

	Generate kernel messages describing correctable errors.  These
	errors are reported through the system message log system.
	CE statistics will be accumulated even when CE logging is disabled.

	LOAD TIME: module/kernel parameter: edac_mc_log_ce=[0|1]

	RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ce


Polling period control file:

	'edac_mc_poll_msec'

	The time period, in milliseconds, for polling for error information.
	Too small a value wastes resources.  Too large a value might delay
	necessary handling of errors and might loose valuable information for
	locating the error.  1000 milliseconds (once each second) is the current
	default. Systems which require all the bandwidth they can get, may
	increase this.

	LOAD TIME: module/kernel parameter: edac_mc_poll_msec=[0|1]

	RUN TIME: echo "1000" > /sys/module/edac_core/parameters/edac_mc_poll_msec


Panic on PCI PARITY Error:

	'panic_on_pci_parity'


	This control file enables or disables panicking when a parity
	error has been detected.


	module/kernel parameter: edac_panic_on_pci_pe=[0|1]

	Enable:
	echo "1" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe

	Disable:
	echo "0" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe



EDAC device type
----------------

In the header file, edac_core.h, there is a series of edac_device structures
and APIs for the EDAC_DEVICE.

User space access to an edac_device is through the sysfs interface.

At the location /sys/devices/system/edac (sysfs) new edac_device devices will
appear.

There is a three level tree beneath the above 'edac' directory. For example,
the 'test_device_edac' device (found at the bluesmoke.sourceforget.net website)
installs itself as:

	/sys/devices/systm/edac/test-instance

in this directory are various controls, a symlink and one or more 'instance'
directories.

The standard default controls are:

	log_ce		boolean to log CE events
	log_ue		boolean to log UE events
	panic_on_ue	boolean to 'panic' the system if an UE is encountered
			(default off, can be set true via startup script)
	poll_msec	time period between POLL cycles for events

The test_device_edac device adds at least one of its own custom control:

	test_bits	which in the current test driver does nothing but
			show how it is installed. A ported driver can
			add one or more such controls and/or attributes
			for specific uses.
			One out-of-tree driver uses controls here to allow
			for ERROR INJECTION operations to hardware
			injection registers

The symlink points to the 'struct dev' that is registered for this edac_device.

INSTANCES
---------

One or more instance directories are present. For the 'test_device_edac' case:

	test-instance0


In this directory there are two default counter attributes, which are totals of
counter in deeper subdirectories.

	ce_count	total of CE events of subdirectories
	ue_count	total of UE events of subdirectories

BLOCKS
------

At the lowest directory level is the 'block' directory. There can be 0, 1
or more blocks specified in each instance.

	test-block0


In this directory the default attributes are:

	ce_count	which is counter of CE events for this 'block'
			of hardware being monitored
	ue_count	which is counter of UE events for this 'block'
			of hardware being monitored


The 'test_device_edac' device adds 4 attributes and 1 control:

	test-block-bits-0	for every POLL cycle this counter
				is incremented
	test-block-bits-1	every 10 cycles, this counter is bumped once,
				and test-block-bits-0 is set to 0
	test-block-bits-2	every 100 cycles, this counter is bumped once,
				and test-block-bits-1 is set to 0
	test-block-bits-3	every 1000 cycles, this counter is bumped once,
				and test-block-bits-2 is set to 0


	reset-counters		writing ANY thing to this control will
				reset all the above counters.


Use of the 'test_device_edac' driver should enable any others to create their own
unique drivers for their hardware systems.

The 'test_device_edac' sample driver is located at the
bluesmoke.sourceforge.net project site for EDAC.


NEHALEM USAGE OF EDAC APIs
--------------------------

This chapter documents some EXPERIMENTAL mappings for EDAC API to handle
Nehalem EDAC driver. They will likely be changed on future versions
of the driver.

Due to the way Nehalem exports Memory Controller data, some adjustments
were done at i7core_edac driver. This chapter will cover those differences

1) On Nehalem, there is one Memory Controller per Quick Patch Interconnect
   (QPI). At the driver, the term "socket" means one QPI. This is
   associated with a physical CPU socket.

   Each MC have 3 physical read channels, 3 physical write channels and
   3 logic channels. The driver currently sees it as just 3 channels.
   Each channel can have up to 3 DIMMs.

   The minimum known unity is DIMMs. There are no information about csrows.
   As EDAC API maps the minimum unity is csrows, the driver sequentially
   maps channel/dimm into different csrows.

   For example, supposing the following layout:
	Ch0 phy rd0, wr0 (0x063f4031): 2 ranks, UDIMMs
	  dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
	  dimm 1 1024 Mb offset: 4, bank: 8, rank: 1, row: 0x4000, col: 0x400
        Ch1 phy rd1, wr1 (0x063f4031): 2 ranks, UDIMMs
	  dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
	Ch2 phy rd3, wr3 (0x063f4031): 2 ranks, UDIMMs
	  dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
   The driver will map it as:
	csrow0: channel 0, dimm0
	csrow1: channel 0, dimm1
	csrow2: channel 1, dimm0
	csrow3: channel 2, dimm0

exports one
   DIMM per csrow.

   Each QPI is exported as a different memory controller.

2) Nehalem MC has the ability to generate errors. The driver implements this
   functionality via some error injection nodes:

   For injecting a memory error, there are some sysfs nodes, under
   /sys/devices/system/edac/mc/mc?/:

   inject_addrmatch/*:
      Controls the error injection mask register. It is possible to specify
      several characteristics of the address to match an error code:
         dimm = the affected dimm. Numbers are relative to a channel;
         rank = the memory rank;
         channel = the channel that will generate an error;
         bank = the affected bank;
         page = the page address;
         column (or col) = the address column.
      each of the above values can be set to "any" to match any valid value.

      At driver init, all values are set to any.

      For example, to generate an error at rank 1 of dimm 2, for any channel,
      any bank, any page, any column:
		echo 2 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/dimm
		echo 1 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/rank

	To return to the default behaviour of matching any, you can do:
		echo any >/sys/devices/system/edac/mc/mc0/inject_addrmatch/dimm
		echo any >/sys/devices/system/edac/mc/mc0/inject_addrmatch/rank

   inject_eccmask:
       specifies what bits will have troubles,

   inject_section:
       specifies what ECC cache section will get the error:
		3 for both
		2 for the highest
		1 for the lowest

   inject_type:
       specifies the type of error, being a combination of the following bits:
		bit 0 - repeat
		bit 1 - ecc
		bit 2 - parity

       inject_enable starts the error generation when something different
       than 0 is written.

   All inject vars can be read. root permission is needed for write.

   Datasheet states that the error will only be generated after a write on an
   address that matches inject_addrmatch. It seems, however, that reading will
   also produce an error.

   For example, the following code will generate an error for any write access
   at socket 0, on any DIMM/address on channel 2:

   echo 2 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/channel
   echo 2 >/sys/devices/system/edac/mc/mc0/inject_type
   echo 64 >/sys/devices/system/edac/mc/mc0/inject_eccmask
   echo 3 >/sys/devices/system/edac/mc/mc0/inject_section
   echo 1 >/sys/devices/system/edac/mc/mc0/inject_enable
   dd if=/dev/mem of=/dev/null seek=16k bs=4k count=1 >& /dev/null

   For socket 1, it is needed to replace "mc0" by "mc1" at the above
   commands.

   The generated error message will look like:

   EDAC MC0: UE row 0, channel-a= 0 channel-b= 0 labels "-": NON_FATAL (addr = 0x0075b980, socket=0, Dimm=0, Channel=2, syndrome=0x00000040, count=1, Err=8c0000400001009f:4000080482 (read error: read ECC error))

3) Nehalem specific Corrected Error memory counters

   Nehalem have some registers to count memory errors. The driver uses those
   registers to report Corrected Errors on devices with Registered Dimms.

   However, those counters don't work with Unregistered Dimms. As the chipset
   offers some counters that also work with UDIMMS (but with a worse level of
   granularity than the default ones), the driver exposes those registers for
   UDIMM memories.

   They can be read by looking at the contents of all_channel_counts/

   $ for i in /sys/devices/system/edac/mc/mc0/all_channel_counts/*; do echo $i; cat $i; done
	/sys/devices/system/edac/mc/mc0/all_channel_counts/udimm0
	0
	/sys/devices/system/edac/mc/mc0/all_channel_counts/udimm1
	0
	/sys/devices/system/edac/mc/mc0/all_channel_counts/udimm2
	0

   What happens here is that errors on different csrows, but at the same
   dimm number will increment the same counter.
   So, in this memory mapping:
	csrow0: channel 0, dimm0
	csrow1: channel 0, dimm1
	csrow2: channel 1, dimm0
	csrow3: channel 2, dimm0
   The hardware will increment udimm0 for an error at the first dimm at either
	csrow0, csrow2  or csrow3;
   The hardware will increment udimm1 for an error at the second dimm at either
	csrow0, csrow2  or csrow3;
   The hardware will increment udimm2 for an error at the third dimm at either
	csrow0, csrow2  or csrow3;

4) Standard error counters

   The standard error counters are generated when an mcelog error is received
   by the driver. Since, with udimm, this is counted by software, it is
   possible that some errors could be lost. With rdimm's, they display the
   contents of the registers

AMD64_EDAC REFERENCE DOCUMENTS USED
-----------------------------------
amd64_edac module is based on the following documents
(available from http://support.amd.com/en-us/search/tech-docs):

1. Title:  BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD
	   Opteron Processors
   AMD publication #: 26094
   Revision: 3.26
   Link: http://support.amd.com/TechDocs/26094.PDF

2. Title:  BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh
	   Processors
   AMD publication #: 32559
   Revision: 3.00
   Issue Date: May 2006
   Link: http://support.amd.com/TechDocs/32559.pdf

3. Title:  BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h
	   Processors
   AMD publication #: 31116
   Revision: 3.00
   Issue Date: September 07, 2007
   Link: http://support.amd.com/TechDocs/31116.pdf

4. Title: BIOS and Kernel Developer's Guide (BKDG) for AMD Family 15h
	  Models 30h-3Fh Processors
   AMD publication #: 49125
   Revision: 3.06
   Issue Date: 2/12/2015 (latest release)
   Link: http://support.amd.com/TechDocs/49125_15h_Models_30h-3Fh_BKDG.pdf

5. Title: BIOS and Kernel Developer's Guide (BKDG) for AMD Family 15h
	  Models 60h-6Fh Processors
   AMD publication #: 50742
   Revision: 3.01
   Issue Date: 7/23/2015 (latest release)
   Link: http://support.amd.com/TechDocs/50742_15h_Models_60h-6Fh_BKDG.pdf

6. Title: BIOS and Kernel Developer's Guide (BKDG) for AMD Family 16h
	  Models 00h-0Fh Processors
   AMD publication #: 48751
   Revision: 3.03
   Issue Date: 2/23/2015 (latest release)
   Link: http://support.amd.com/TechDocs/48751_16h_bkdg.pdf

CREDITS:
========

Written by Doug Thompson <dougthompson@xmission.com>
7 Dec 2005
17 Jul 2007	Updated

(c) Mauro Carvalho Chehab
05 Aug 2009	Nehalem interface

EDAC authors/maintainers:

	Doug Thompson, Dave Jiang, Dave Peterson et al,
	Mauro Carvalho Chehab
	Borislav Petkov
	original author: Thayne Harbaugh