sem.c 56.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
/*
 * linux/ipc/sem.c
 * Copyright (C) 1992 Krishna Balasubramanian
 * Copyright (C) 1995 Eric Schenk, Bruno Haible
 *
 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
 *
 * SMP-threaded, sysctl's added
 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
 * Enforced range limit on SEM_UNDO
 * (c) 2001 Red Hat Inc
 * Lockless wakeup
 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
 * Further wakeup optimizations, documentation
 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
 *
 * support for audit of ipc object properties and permission changes
 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
 *
 * namespaces support
 * OpenVZ, SWsoft Inc.
 * Pavel Emelianov <xemul@openvz.org>
 *
 * Implementation notes: (May 2010)
 * This file implements System V semaphores.
 *
 * User space visible behavior:
 * - FIFO ordering for semop() operations (just FIFO, not starvation
 *   protection)
 * - multiple semaphore operations that alter the same semaphore in
 *   one semop() are handled.
 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
 *   SETALL calls.
 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
 * - undo adjustments at process exit are limited to 0..SEMVMX.
 * - namespace are supported.
 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
 *   to /proc/sys/kernel/sem.
 * - statistics about the usage are reported in /proc/sysvipc/sem.
 *
 * Internals:
 * - scalability:
 *   - all global variables are read-mostly.
 *   - semop() calls and semctl(RMID) are synchronized by RCU.
 *   - most operations do write operations (actually: spin_lock calls) to
 *     the per-semaphore array structure.
 *   Thus: Perfect SMP scaling between independent semaphore arrays.
 *         If multiple semaphores in one array are used, then cache line
 *         trashing on the semaphore array spinlock will limit the scaling.
 * - semncnt and semzcnt are calculated on demand in count_semcnt()
 * - the task that performs a successful semop() scans the list of all
 *   sleeping tasks and completes any pending operations that can be fulfilled.
 *   Semaphores are actively given to waiting tasks (necessary for FIFO).
 *   (see update_queue())
 * - To improve the scalability, the actual wake-up calls are performed after
 *   dropping all locks. (see wake_up_sem_queue_prepare(),
 *   wake_up_sem_queue_do())
 * - All work is done by the waker, the woken up task does not have to do
 *   anything - not even acquiring a lock or dropping a refcount.
 * - A woken up task may not even touch the semaphore array anymore, it may
 *   have been destroyed already by a semctl(RMID).
 * - The synchronizations between wake-ups due to a timeout/signal and a
 *   wake-up due to a completed semaphore operation is achieved by using an
 *   intermediate state (IN_WAKEUP).
 * - UNDO values are stored in an array (one per process and per
 *   semaphore array, lazily allocated). For backwards compatibility, multiple
 *   modes for the UNDO variables are supported (per process, per thread)
 *   (see copy_semundo, CLONE_SYSVSEM)
 * - There are two lists of the pending operations: a per-array list
 *   and per-semaphore list (stored in the array). This allows to achieve FIFO
 *   ordering without always scanning all pending operations.
 *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
 */

#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/time.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/audit.h>
#include <linux/capability.h>
#include <linux/seq_file.h>
#include <linux/rwsem.h>
#include <linux/nsproxy.h>
#include <linux/ipc_namespace.h>

#include <linux/uaccess.h>
#include "util.h"

/* One semaphore structure for each semaphore in the system. */
struct sem {
	int	semval;		/* current value */
	/*
	 * PID of the process that last modified the semaphore. For
	 * Linux, specifically these are:
	 *  - semop
	 *  - semctl, via SETVAL and SETALL.
	 *  - at task exit when performing undo adjustments (see exit_sem).
	 */
	int	sempid;
	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
	struct list_head pending_alter; /* pending single-sop operations */
					/* that alter the semaphore */
	struct list_head pending_const; /* pending single-sop operations */
					/* that do not alter the semaphore*/
	time_t	sem_otime;	/* candidate for sem_otime */
} ____cacheline_aligned_in_smp;

/* One queue for each sleeping process in the system. */
struct sem_queue {
	struct list_head	list;	 /* queue of pending operations */
	struct task_struct	*sleeper; /* this process */
	struct sem_undo		*undo;	 /* undo structure */
	int			pid;	 /* process id of requesting process */
	int			status;	 /* completion status of operation */
	struct sembuf		*sops;	 /* array of pending operations */
	struct sembuf		*blocking; /* the operation that blocked */
	int			nsops;	 /* number of operations */
	int			alter;	 /* does *sops alter the array? */
};

/* Each task has a list of undo requests. They are executed automatically
 * when the process exits.
 */
struct sem_undo {
	struct list_head	list_proc;	/* per-process list: *
						 * all undos from one process
						 * rcu protected */
	struct rcu_head		rcu;		/* rcu struct for sem_undo */
	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
	struct list_head	list_id;	/* per semaphore array list:
						 * all undos for one array */
	int			semid;		/* semaphore set identifier */
	short			*semadj;	/* array of adjustments */
						/* one per semaphore */
};

/* sem_undo_list controls shared access to the list of sem_undo structures
 * that may be shared among all a CLONE_SYSVSEM task group.
 */
struct sem_undo_list {
	atomic_t		refcnt;
	spinlock_t		lock;
	struct list_head	list_proc;
};


#define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])

#define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid)

static int newary(struct ipc_namespace *, struct ipc_params *);
static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
#ifdef CONFIG_PROC_FS
static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
#endif

#define SEMMSL_FAST	256 /* 512 bytes on stack */
#define SEMOPM_FAST	64  /* ~ 372 bytes on stack */

/*
 * Locking:
 * a) global sem_lock() for read/write
 *	sem_undo.id_next,
 *	sem_array.complex_count,
 *	sem_array.complex_mode
 *	sem_array.pending{_alter,_const},
 *	sem_array.sem_undo
 *
 * b) global or semaphore sem_lock() for read/write:
 *	sem_array.sem_base[i].pending_{const,alter}:
 *	sem_array.complex_mode (for read)
 *
 * c) special:
 *	sem_undo_list.list_proc:
 *	* undo_list->lock for write
 *	* rcu for read
 */

#define sc_semmsl	sem_ctls[0]
#define sc_semmns	sem_ctls[1]
#define sc_semopm	sem_ctls[2]
#define sc_semmni	sem_ctls[3]

void sem_init_ns(struct ipc_namespace *ns)
{
	ns->sc_semmsl = SEMMSL;
	ns->sc_semmns = SEMMNS;
	ns->sc_semopm = SEMOPM;
	ns->sc_semmni = SEMMNI;
	ns->used_sems = 0;
	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
}

#ifdef CONFIG_IPC_NS
void sem_exit_ns(struct ipc_namespace *ns)
{
	free_ipcs(ns, &sem_ids(ns), freeary);
	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
}
#endif

void __init sem_init(void)
{
	sem_init_ns(&init_ipc_ns);
	ipc_init_proc_interface("sysvipc/sem",
				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
				IPC_SEM_IDS, sysvipc_sem_proc_show);
}

/**
 * unmerge_queues - unmerge queues, if possible.
 * @sma: semaphore array
 *
 * The function unmerges the wait queues if complex_count is 0.
 * It must be called prior to dropping the global semaphore array lock.
 */
static void unmerge_queues(struct sem_array *sma)
{
	struct sem_queue *q, *tq;

	/* complex operations still around? */
	if (sma->complex_count)
		return;
	/*
	 * We will switch back to simple mode.
	 * Move all pending operation back into the per-semaphore
	 * queues.
	 */
	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
		struct sem *curr;
		curr = &sma->sem_base[q->sops[0].sem_num];

		list_add_tail(&q->list, &curr->pending_alter);
	}
	INIT_LIST_HEAD(&sma->pending_alter);
}

/**
 * merge_queues - merge single semop queues into global queue
 * @sma: semaphore array
 *
 * This function merges all per-semaphore queues into the global queue.
 * It is necessary to achieve FIFO ordering for the pending single-sop
 * operations when a multi-semop operation must sleep.
 * Only the alter operations must be moved, the const operations can stay.
 */
static void merge_queues(struct sem_array *sma)
{
	int i;
	for (i = 0; i < sma->sem_nsems; i++) {
		struct sem *sem = sma->sem_base + i;

		list_splice_init(&sem->pending_alter, &sma->pending_alter);
	}
}

static void sem_rcu_free(struct rcu_head *head)
{
	struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
	struct sem_array *sma = ipc_rcu_to_struct(p);

	security_sem_free(sma);
	ipc_rcu_free(head);
}

/*
 * Enter the mode suitable for non-simple operations:
 * Caller must own sem_perm.lock.
 */
static void complexmode_enter(struct sem_array *sma)
{
	int i;
	struct sem *sem;

	if (sma->complex_mode)  {
		/* We are already in complex_mode. Nothing to do */
		return;
	}

	/* We need a full barrier after seting complex_mode:
	 * The write to complex_mode must be visible
	 * before we read the first sem->lock spinlock state.
	 */
	smp_store_mb(sma->complex_mode, true);

	for (i = 0; i < sma->sem_nsems; i++) {
		sem = sma->sem_base + i;
		spin_unlock_wait(&sem->lock);
	}
	/*
	 * spin_unlock_wait() is not a memory barriers, it is only a
	 * control barrier. The code must pair with spin_unlock(&sem->lock),
	 * thus just the control barrier is insufficient.
	 *
	 * smp_rmb() is sufficient, as writes cannot pass the control barrier.
	 */
	smp_rmb();
}

/*
 * Try to leave the mode that disallows simple operations:
 * Caller must own sem_perm.lock.
 */
static void complexmode_tryleave(struct sem_array *sma)
{
	if (sma->complex_count)  {
		/* Complex ops are sleeping.
		 * We must stay in complex mode
		 */
		return;
	}
	/*
	 * Immediately after setting complex_mode to false,
	 * a simple op can start. Thus: all memory writes
	 * performed by the current operation must be visible
	 * before we set complex_mode to false.
	 */
	smp_store_release(&sma->complex_mode, false);
}

#define SEM_GLOBAL_LOCK	(-1)
/*
 * If the request contains only one semaphore operation, and there are
 * no complex transactions pending, lock only the semaphore involved.
 * Otherwise, lock the entire semaphore array, since we either have
 * multiple semaphores in our own semops, or we need to look at
 * semaphores from other pending complex operations.
 */
static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
			      int nsops)
{
	struct sem *sem;

	if (nsops != 1) {
		/* Complex operation - acquire a full lock */
		ipc_lock_object(&sma->sem_perm);

		/* Prevent parallel simple ops */
		complexmode_enter(sma);
		return SEM_GLOBAL_LOCK;
	}

	/*
	 * Only one semaphore affected - try to optimize locking.
	 * Optimized locking is possible if no complex operation
	 * is either enqueued or processed right now.
	 *
	 * Both facts are tracked by complex_mode.
	 */
	sem = sma->sem_base + sops->sem_num;

	/*
	 * Initial check for complex_mode. Just an optimization,
	 * no locking, no memory barrier.
	 */
	if (!sma->complex_mode) {
		/*
		 * It appears that no complex operation is around.
		 * Acquire the per-semaphore lock.
		 */
		spin_lock(&sem->lock);

		/*
		 * See 51d7d5205d33
		 * ("powerpc: Add smp_mb() to arch_spin_is_locked()"):
		 * A full barrier is required: the write of sem->lock
		 * must be visible before the read is executed
		 */
		smp_mb();

		if (!smp_load_acquire(&sma->complex_mode)) {
			/* fast path successful! */
			return sops->sem_num;
		}
		spin_unlock(&sem->lock);
	}

	/* slow path: acquire the full lock */
	ipc_lock_object(&sma->sem_perm);

	if (sma->complex_count == 0) {
		/* False alarm:
		 * There is no complex operation, thus we can switch
		 * back to the fast path.
		 */
		spin_lock(&sem->lock);
		ipc_unlock_object(&sma->sem_perm);
		return sops->sem_num;
	} else {
		/* Not a false alarm, thus complete the sequence for a
		 * full lock.
		 */
		complexmode_enter(sma);
		return SEM_GLOBAL_LOCK;
	}
}

static inline void sem_unlock(struct sem_array *sma, int locknum)
{
	if (locknum == SEM_GLOBAL_LOCK) {
		unmerge_queues(sma);
		complexmode_tryleave(sma);
		ipc_unlock_object(&sma->sem_perm);
	} else {
		struct sem *sem = sma->sem_base + locknum;
		spin_unlock(&sem->lock);
	}
}

/*
 * sem_lock_(check_) routines are called in the paths where the rwsem
 * is not held.
 *
 * The caller holds the RCU read lock.
 */
static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
			int id, struct sembuf *sops, int nsops, int *locknum)
{
	struct kern_ipc_perm *ipcp;
	struct sem_array *sma;

	ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
	if (IS_ERR(ipcp))
		return ERR_CAST(ipcp);

	sma = container_of(ipcp, struct sem_array, sem_perm);
	*locknum = sem_lock(sma, sops, nsops);

	/* ipc_rmid() may have already freed the ID while sem_lock
	 * was spinning: verify that the structure is still valid
	 */
	if (ipc_valid_object(ipcp))
		return container_of(ipcp, struct sem_array, sem_perm);

	sem_unlock(sma, *locknum);
	return ERR_PTR(-EINVAL);
}

static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
{
	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);

	if (IS_ERR(ipcp))
		return ERR_CAST(ipcp);

	return container_of(ipcp, struct sem_array, sem_perm);
}

static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
							int id)
{
	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);

	if (IS_ERR(ipcp))
		return ERR_CAST(ipcp);

	return container_of(ipcp, struct sem_array, sem_perm);
}

static inline void sem_lock_and_putref(struct sem_array *sma)
{
	sem_lock(sma, NULL, -1);
	ipc_rcu_putref(sma, sem_rcu_free);
}

static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
{
	ipc_rmid(&sem_ids(ns), &s->sem_perm);
}

/*
 * Lockless wakeup algorithm:
 * Without the check/retry algorithm a lockless wakeup is possible:
 * - queue.status is initialized to -EINTR before blocking.
 * - wakeup is performed by
 *	* unlinking the queue entry from the pending list
 *	* setting queue.status to IN_WAKEUP
 *	  This is the notification for the blocked thread that a
 *	  result value is imminent.
 *	* call wake_up_process
 *	* set queue.status to the final value.
 * - the previously blocked thread checks queue.status:
 *	* if it's IN_WAKEUP, then it must wait until the value changes
 *	* if it's not -EINTR, then the operation was completed by
 *	  update_queue. semtimedop can return queue.status without
 *	  performing any operation on the sem array.
 *	* otherwise it must acquire the spinlock and check what's up.
 *
 * The two-stage algorithm is necessary to protect against the following
 * races:
 * - if queue.status is set after wake_up_process, then the woken up idle
 *   thread could race forward and try (and fail) to acquire sma->lock
 *   before update_queue had a chance to set queue.status
 * - if queue.status is written before wake_up_process and if the
 *   blocked process is woken up by a signal between writing
 *   queue.status and the wake_up_process, then the woken up
 *   process could return from semtimedop and die by calling
 *   sys_exit before wake_up_process is called. Then wake_up_process
 *   will oops, because the task structure is already invalid.
 *   (yes, this happened on s390 with sysv msg).
 *
 */
#define IN_WAKEUP	1

/**
 * newary - Create a new semaphore set
 * @ns: namespace
 * @params: ptr to the structure that contains key, semflg and nsems
 *
 * Called with sem_ids.rwsem held (as a writer)
 */
static int newary(struct ipc_namespace *ns, struct ipc_params *params)
{
	int id;
	int retval;
	struct sem_array *sma;
	int size;
	key_t key = params->key;
	int nsems = params->u.nsems;
	int semflg = params->flg;
	int i;

	if (!nsems)
		return -EINVAL;
	if (ns->used_sems + nsems > ns->sc_semmns)
		return -ENOSPC;

	size = sizeof(*sma) + nsems * sizeof(struct sem);
	sma = ipc_rcu_alloc(size);
	if (!sma)
		return -ENOMEM;

	memset(sma, 0, size);

	sma->sem_perm.mode = (semflg & S_IRWXUGO);
	sma->sem_perm.key = key;

	sma->sem_perm.security = NULL;
	retval = security_sem_alloc(sma);
	if (retval) {
		ipc_rcu_putref(sma, ipc_rcu_free);
		return retval;
	}

	sma->sem_base = (struct sem *) &sma[1];

	for (i = 0; i < nsems; i++) {
		INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
		INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
		spin_lock_init(&sma->sem_base[i].lock);
	}

	sma->complex_count = 0;
	sma->complex_mode = true; /* dropped by sem_unlock below */
	INIT_LIST_HEAD(&sma->pending_alter);
	INIT_LIST_HEAD(&sma->pending_const);
	INIT_LIST_HEAD(&sma->list_id);
	sma->sem_nsems = nsems;
	sma->sem_ctime = get_seconds();

	id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
	if (id < 0) {
		ipc_rcu_putref(sma, sem_rcu_free);
		return id;
	}
	ns->used_sems += nsems;

	sem_unlock(sma, -1);
	rcu_read_unlock();

	return sma->sem_perm.id;
}


/*
 * Called with sem_ids.rwsem and ipcp locked.
 */
static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
{
	struct sem_array *sma;

	sma = container_of(ipcp, struct sem_array, sem_perm);
	return security_sem_associate(sma, semflg);
}

/*
 * Called with sem_ids.rwsem and ipcp locked.
 */
static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
				struct ipc_params *params)
{
	struct sem_array *sma;

	sma = container_of(ipcp, struct sem_array, sem_perm);
	if (params->u.nsems > sma->sem_nsems)
		return -EINVAL;

	return 0;
}

SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
{
	struct ipc_namespace *ns;
	static const struct ipc_ops sem_ops = {
		.getnew = newary,
		.associate = sem_security,
		.more_checks = sem_more_checks,
	};
	struct ipc_params sem_params;

	ns = current->nsproxy->ipc_ns;

	if (nsems < 0 || nsems > ns->sc_semmsl)
		return -EINVAL;

	sem_params.key = key;
	sem_params.flg = semflg;
	sem_params.u.nsems = nsems;

	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
}

/**
 * perform_atomic_semop - Perform (if possible) a semaphore operation
 * @sma: semaphore array
 * @q: struct sem_queue that describes the operation
 *
 * Returns 0 if the operation was possible.
 * Returns 1 if the operation is impossible, the caller must sleep.
 * Negative values are error codes.
 */
static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
{
	int result, sem_op, nsops, pid;
	struct sembuf *sop;
	struct sem *curr;
	struct sembuf *sops;
	struct sem_undo *un;

	sops = q->sops;
	nsops = q->nsops;
	un = q->undo;

	for (sop = sops; sop < sops + nsops; sop++) {
		curr = sma->sem_base + sop->sem_num;
		sem_op = sop->sem_op;
		result = curr->semval;

		if (!sem_op && result)
			goto would_block;

		result += sem_op;
		if (result < 0)
			goto would_block;
		if (result > SEMVMX)
			goto out_of_range;

		if (sop->sem_flg & SEM_UNDO) {
			int undo = un->semadj[sop->sem_num] - sem_op;
			/* Exceeding the undo range is an error. */
			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
				goto out_of_range;
			un->semadj[sop->sem_num] = undo;
		}

		curr->semval = result;
	}

	sop--;
	pid = q->pid;
	while (sop >= sops) {
		sma->sem_base[sop->sem_num].sempid = pid;
		sop--;
	}

	return 0;

out_of_range:
	result = -ERANGE;
	goto undo;

would_block:
	q->blocking = sop;

	if (sop->sem_flg & IPC_NOWAIT)
		result = -EAGAIN;
	else
		result = 1;

undo:
	sop--;
	while (sop >= sops) {
		sem_op = sop->sem_op;
		sma->sem_base[sop->sem_num].semval -= sem_op;
		if (sop->sem_flg & SEM_UNDO)
			un->semadj[sop->sem_num] += sem_op;
		sop--;
	}

	return result;
}

/** wake_up_sem_queue_prepare(q, error): Prepare wake-up
 * @q: queue entry that must be signaled
 * @error: Error value for the signal
 *
 * Prepare the wake-up of the queue entry q.
 */
static void wake_up_sem_queue_prepare(struct list_head *pt,
				struct sem_queue *q, int error)
{
	if (list_empty(pt)) {
		/*
		 * Hold preempt off so that we don't get preempted and have the
		 * wakee busy-wait until we're scheduled back on.
		 */
		preempt_disable();
	}
	q->status = IN_WAKEUP;
	q->pid = error;

	list_add_tail(&q->list, pt);
}

/**
 * wake_up_sem_queue_do - do the actual wake-up
 * @pt: list of tasks to be woken up
 *
 * Do the actual wake-up.
 * The function is called without any locks held, thus the semaphore array
 * could be destroyed already and the tasks can disappear as soon as the
 * status is set to the actual return code.
 */
static void wake_up_sem_queue_do(struct list_head *pt)
{
	struct sem_queue *q, *t;
	int did_something;

	did_something = !list_empty(pt);
	list_for_each_entry_safe(q, t, pt, list) {
		wake_up_process(q->sleeper);
		/* q can disappear immediately after writing q->status. */
		smp_wmb();
		q->status = q->pid;
	}
	if (did_something)
		preempt_enable();
}

static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
{
	list_del(&q->list);
	if (q->nsops > 1)
		sma->complex_count--;
}

/** check_restart(sma, q)
 * @sma: semaphore array
 * @q: the operation that just completed
 *
 * update_queue is O(N^2) when it restarts scanning the whole queue of
 * waiting operations. Therefore this function checks if the restart is
 * really necessary. It is called after a previously waiting operation
 * modified the array.
 * Note that wait-for-zero operations are handled without restart.
 */
static int check_restart(struct sem_array *sma, struct sem_queue *q)
{
	/* pending complex alter operations are too difficult to analyse */
	if (!list_empty(&sma->pending_alter))
		return 1;

	/* we were a sleeping complex operation. Too difficult */
	if (q->nsops > 1)
		return 1;

	/* It is impossible that someone waits for the new value:
	 * - complex operations always restart.
	 * - wait-for-zero are handled seperately.
	 * - q is a previously sleeping simple operation that
	 *   altered the array. It must be a decrement, because
	 *   simple increments never sleep.
	 * - If there are older (higher priority) decrements
	 *   in the queue, then they have observed the original
	 *   semval value and couldn't proceed. The operation
	 *   decremented to value - thus they won't proceed either.
	 */
	return 0;
}

/**
 * wake_const_ops - wake up non-alter tasks
 * @sma: semaphore array.
 * @semnum: semaphore that was modified.
 * @pt: list head for the tasks that must be woken up.
 *
 * wake_const_ops must be called after a semaphore in a semaphore array
 * was set to 0. If complex const operations are pending, wake_const_ops must
 * be called with semnum = -1, as well as with the number of each modified
 * semaphore.
 * The tasks that must be woken up are added to @pt. The return code
 * is stored in q->pid.
 * The function returns 1 if at least one operation was completed successfully.
 */
static int wake_const_ops(struct sem_array *sma, int semnum,
				struct list_head *pt)
{
	struct sem_queue *q;
	struct list_head *walk;
	struct list_head *pending_list;
	int semop_completed = 0;

	if (semnum == -1)
		pending_list = &sma->pending_const;
	else
		pending_list = &sma->sem_base[semnum].pending_const;

	walk = pending_list->next;
	while (walk != pending_list) {
		int error;

		q = container_of(walk, struct sem_queue, list);
		walk = walk->next;

		error = perform_atomic_semop(sma, q);

		if (error <= 0) {
			/* operation completed, remove from queue & wakeup */

			unlink_queue(sma, q);

			wake_up_sem_queue_prepare(pt, q, error);
			if (error == 0)
				semop_completed = 1;
		}
	}
	return semop_completed;
}

/**
 * do_smart_wakeup_zero - wakeup all wait for zero tasks
 * @sma: semaphore array
 * @sops: operations that were performed
 * @nsops: number of operations
 * @pt: list head of the tasks that must be woken up.
 *
 * Checks all required queue for wait-for-zero operations, based
 * on the actual changes that were performed on the semaphore array.
 * The function returns 1 if at least one operation was completed successfully.
 */
static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
					int nsops, struct list_head *pt)
{
	int i;
	int semop_completed = 0;
	int got_zero = 0;

	/* first: the per-semaphore queues, if known */
	if (sops) {
		for (i = 0; i < nsops; i++) {
			int num = sops[i].sem_num;

			if (sma->sem_base[num].semval == 0) {
				got_zero = 1;
				semop_completed |= wake_const_ops(sma, num, pt);
			}
		}
	} else {
		/*
		 * No sops means modified semaphores not known.
		 * Assume all were changed.
		 */
		for (i = 0; i < sma->sem_nsems; i++) {
			if (sma->sem_base[i].semval == 0) {
				got_zero = 1;
				semop_completed |= wake_const_ops(sma, i, pt);
			}
		}
	}
	/*
	 * If one of the modified semaphores got 0,
	 * then check the global queue, too.
	 */
	if (got_zero)
		semop_completed |= wake_const_ops(sma, -1, pt);

	return semop_completed;
}


/**
 * update_queue - look for tasks that can be completed.
 * @sma: semaphore array.
 * @semnum: semaphore that was modified.
 * @pt: list head for the tasks that must be woken up.
 *
 * update_queue must be called after a semaphore in a semaphore array
 * was modified. If multiple semaphores were modified, update_queue must
 * be called with semnum = -1, as well as with the number of each modified
 * semaphore.
 * The tasks that must be woken up are added to @pt. The return code
 * is stored in q->pid.
 * The function internally checks if const operations can now succeed.
 *
 * The function return 1 if at least one semop was completed successfully.
 */
static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
{
	struct sem_queue *q;
	struct list_head *walk;
	struct list_head *pending_list;
	int semop_completed = 0;

	if (semnum == -1)
		pending_list = &sma->pending_alter;
	else
		pending_list = &sma->sem_base[semnum].pending_alter;

again:
	walk = pending_list->next;
	while (walk != pending_list) {
		int error, restart;

		q = container_of(walk, struct sem_queue, list);
		walk = walk->next;

		/* If we are scanning the single sop, per-semaphore list of
		 * one semaphore and that semaphore is 0, then it is not
		 * necessary to scan further: simple increments
		 * that affect only one entry succeed immediately and cannot
		 * be in the  per semaphore pending queue, and decrements
		 * cannot be successful if the value is already 0.
		 */
		if (semnum != -1 && sma->sem_base[semnum].semval == 0)
			break;

		error = perform_atomic_semop(sma, q);

		/* Does q->sleeper still need to sleep? */
		if (error > 0)
			continue;

		unlink_queue(sma, q);

		if (error) {
			restart = 0;
		} else {
			semop_completed = 1;
			do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
			restart = check_restart(sma, q);
		}

		wake_up_sem_queue_prepare(pt, q, error);
		if (restart)
			goto again;
	}
	return semop_completed;
}

/**
 * set_semotime - set sem_otime
 * @sma: semaphore array
 * @sops: operations that modified the array, may be NULL
 *
 * sem_otime is replicated to avoid cache line trashing.
 * This function sets one instance to the current time.
 */
static void set_semotime(struct sem_array *sma, struct sembuf *sops)
{
	if (sops == NULL) {
		sma->sem_base[0].sem_otime = get_seconds();
	} else {
		sma->sem_base[sops[0].sem_num].sem_otime =
							get_seconds();
	}
}

/**
 * do_smart_update - optimized update_queue
 * @sma: semaphore array
 * @sops: operations that were performed
 * @nsops: number of operations
 * @otime: force setting otime
 * @pt: list head of the tasks that must be woken up.
 *
 * do_smart_update() does the required calls to update_queue and wakeup_zero,
 * based on the actual changes that were performed on the semaphore array.
 * Note that the function does not do the actual wake-up: the caller is
 * responsible for calling wake_up_sem_queue_do(@pt).
 * It is safe to perform this call after dropping all locks.
 */
static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
			int otime, struct list_head *pt)
{
	int i;

	otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);

	if (!list_empty(&sma->pending_alter)) {
		/* semaphore array uses the global queue - just process it. */
		otime |= update_queue(sma, -1, pt);
	} else {
		if (!sops) {
			/*
			 * No sops, thus the modified semaphores are not
			 * known. Check all.
			 */
			for (i = 0; i < sma->sem_nsems; i++)
				otime |= update_queue(sma, i, pt);
		} else {
			/*
			 * Check the semaphores that were increased:
			 * - No complex ops, thus all sleeping ops are
			 *   decrease.
			 * - if we decreased the value, then any sleeping
			 *   semaphore ops wont be able to run: If the
			 *   previous value was too small, then the new
			 *   value will be too small, too.
			 */
			for (i = 0; i < nsops; i++) {
				if (sops[i].sem_op > 0) {
					otime |= update_queue(sma,
							sops[i].sem_num, pt);
				}
			}
		}
	}
	if (otime)
		set_semotime(sma, sops);
}

/*
 * check_qop: Test if a queued operation sleeps on the semaphore semnum
 */
static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
			bool count_zero)
{
	struct sembuf *sop = q->blocking;

	/*
	 * Linux always (since 0.99.10) reported a task as sleeping on all
	 * semaphores. This violates SUS, therefore it was changed to the
	 * standard compliant behavior.
	 * Give the administrators a chance to notice that an application
	 * might misbehave because it relies on the Linux behavior.
	 */
	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
			current->comm, task_pid_nr(current));

	if (sop->sem_num != semnum)
		return 0;

	if (count_zero && sop->sem_op == 0)
		return 1;
	if (!count_zero && sop->sem_op < 0)
		return 1;

	return 0;
}

/* The following counts are associated to each semaphore:
 *   semncnt        number of tasks waiting on semval being nonzero
 *   semzcnt        number of tasks waiting on semval being zero
 *
 * Per definition, a task waits only on the semaphore of the first semop
 * that cannot proceed, even if additional operation would block, too.
 */
static int count_semcnt(struct sem_array *sma, ushort semnum,
			bool count_zero)
{
	struct list_head *l;
	struct sem_queue *q;
	int semcnt;

	semcnt = 0;
	/* First: check the simple operations. They are easy to evaluate */
	if (count_zero)
		l = &sma->sem_base[semnum].pending_const;
	else
		l = &sma->sem_base[semnum].pending_alter;

	list_for_each_entry(q, l, list) {
		/* all task on a per-semaphore list sleep on exactly
		 * that semaphore
		 */
		semcnt++;
	}

	/* Then: check the complex operations. */
	list_for_each_entry(q, &sma->pending_alter, list) {
		semcnt += check_qop(sma, semnum, q, count_zero);
	}
	if (count_zero) {
		list_for_each_entry(q, &sma->pending_const, list) {
			semcnt += check_qop(sma, semnum, q, count_zero);
		}
	}
	return semcnt;
}

/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
 * remains locked on exit.
 */
static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
{
	struct sem_undo *un, *tu;
	struct sem_queue *q, *tq;
	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
	struct list_head tasks;
	int i;

	/* Free the existing undo structures for this semaphore set.  */
	ipc_assert_locked_object(&sma->sem_perm);
	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
		list_del(&un->list_id);
		spin_lock(&un->ulp->lock);
		un->semid = -1;
		list_del_rcu(&un->list_proc);
		spin_unlock(&un->ulp->lock);
		kfree_rcu(un, rcu);
	}

	/* Wake up all pending processes and let them fail with EIDRM. */
	INIT_LIST_HEAD(&tasks);
	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
		unlink_queue(sma, q);
		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
	}

	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
		unlink_queue(sma, q);
		wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
	}
	for (i = 0; i < sma->sem_nsems; i++) {
		struct sem *sem = sma->sem_base + i;
		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
			unlink_queue(sma, q);
			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
		}
		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
			unlink_queue(sma, q);
			wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
		}
	}

	/* Remove the semaphore set from the IDR */
	sem_rmid(ns, sma);
	sem_unlock(sma, -1);
	rcu_read_unlock();

	wake_up_sem_queue_do(&tasks);
	ns->used_sems -= sma->sem_nsems;
	ipc_rcu_putref(sma, sem_rcu_free);
}

static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
{
	switch (version) {
	case IPC_64:
		return copy_to_user(buf, in, sizeof(*in));
	case IPC_OLD:
	    {
		struct semid_ds out;

		memset(&out, 0, sizeof(out));

		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);

		out.sem_otime	= in->sem_otime;
		out.sem_ctime	= in->sem_ctime;
		out.sem_nsems	= in->sem_nsems;

		return copy_to_user(buf, &out, sizeof(out));
	    }
	default:
		return -EINVAL;
	}
}

static time_t get_semotime(struct sem_array *sma)
{
	int i;
	time_t res;

	res = sma->sem_base[0].sem_otime;
	for (i = 1; i < sma->sem_nsems; i++) {
		time_t to = sma->sem_base[i].sem_otime;

		if (to > res)
			res = to;
	}
	return res;
}

static int semctl_nolock(struct ipc_namespace *ns, int semid,
			 int cmd, int version, void __user *p)
{
	int err;
	struct sem_array *sma;

	switch (cmd) {
	case IPC_INFO:
	case SEM_INFO:
	{
		struct seminfo seminfo;
		int max_id;

		err = security_sem_semctl(NULL, cmd);
		if (err)
			return err;

		memset(&seminfo, 0, sizeof(seminfo));
		seminfo.semmni = ns->sc_semmni;
		seminfo.semmns = ns->sc_semmns;
		seminfo.semmsl = ns->sc_semmsl;
		seminfo.semopm = ns->sc_semopm;
		seminfo.semvmx = SEMVMX;
		seminfo.semmnu = SEMMNU;
		seminfo.semmap = SEMMAP;
		seminfo.semume = SEMUME;
		down_read(&sem_ids(ns).rwsem);
		if (cmd == SEM_INFO) {
			seminfo.semusz = sem_ids(ns).in_use;
			seminfo.semaem = ns->used_sems;
		} else {
			seminfo.semusz = SEMUSZ;
			seminfo.semaem = SEMAEM;
		}
		max_id = ipc_get_maxid(&sem_ids(ns));
		up_read(&sem_ids(ns).rwsem);
		if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
			return -EFAULT;
		return (max_id < 0) ? 0 : max_id;
	}
	case IPC_STAT:
	case SEM_STAT:
	{
		struct semid64_ds tbuf;
		int id = 0;

		memset(&tbuf, 0, sizeof(tbuf));

		rcu_read_lock();
		if (cmd == SEM_STAT) {
			sma = sem_obtain_object(ns, semid);
			if (IS_ERR(sma)) {
				err = PTR_ERR(sma);
				goto out_unlock;
			}
			id = sma->sem_perm.id;
		} else {
			sma = sem_obtain_object_check(ns, semid);
			if (IS_ERR(sma)) {
				err = PTR_ERR(sma);
				goto out_unlock;
			}
		}

		err = -EACCES;
		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
			goto out_unlock;

		err = security_sem_semctl(sma, cmd);
		if (err)
			goto out_unlock;

		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
		tbuf.sem_otime = get_semotime(sma);
		tbuf.sem_ctime = sma->sem_ctime;
		tbuf.sem_nsems = sma->sem_nsems;
		rcu_read_unlock();
		if (copy_semid_to_user(p, &tbuf, version))
			return -EFAULT;
		return id;
	}
	default:
		return -EINVAL;
	}
out_unlock:
	rcu_read_unlock();
	return err;
}

static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
		unsigned long arg)
{
	struct sem_undo *un;
	struct sem_array *sma;
	struct sem *curr;
	int err;
	struct list_head tasks;
	int val;
#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
	/* big-endian 64bit */
	val = arg >> 32;
#else
	/* 32bit or little-endian 64bit */
	val = arg;
#endif

	if (val > SEMVMX || val < 0)
		return -ERANGE;

	INIT_LIST_HEAD(&tasks);

	rcu_read_lock();
	sma = sem_obtain_object_check(ns, semid);
	if (IS_ERR(sma)) {
		rcu_read_unlock();
		return PTR_ERR(sma);
	}

	if (semnum < 0 || semnum >= sma->sem_nsems) {
		rcu_read_unlock();
		return -EINVAL;
	}


	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
		rcu_read_unlock();
		return -EACCES;
	}

	err = security_sem_semctl(sma, SETVAL);
	if (err) {
		rcu_read_unlock();
		return -EACCES;
	}

	sem_lock(sma, NULL, -1);

	if (!ipc_valid_object(&sma->sem_perm)) {
		sem_unlock(sma, -1);
		rcu_read_unlock();
		return -EIDRM;
	}

	curr = &sma->sem_base[semnum];

	ipc_assert_locked_object(&sma->sem_perm);
	list_for_each_entry(un, &sma->list_id, list_id)
		un->semadj[semnum] = 0;

	curr->semval = val;
	curr->sempid = task_tgid_vnr(current);
	sma->sem_ctime = get_seconds();
	/* maybe some queued-up processes were waiting for this */
	do_smart_update(sma, NULL, 0, 0, &tasks);
	sem_unlock(sma, -1);
	rcu_read_unlock();
	wake_up_sem_queue_do(&tasks);
	return 0;
}

static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
		int cmd, void __user *p)
{
	struct sem_array *sma;
	struct sem *curr;
	int err, nsems;
	ushort fast_sem_io[SEMMSL_FAST];
	ushort *sem_io = fast_sem_io;
	struct list_head tasks;

	INIT_LIST_HEAD(&tasks);

	rcu_read_lock();
	sma = sem_obtain_object_check(ns, semid);
	if (IS_ERR(sma)) {
		rcu_read_unlock();
		return PTR_ERR(sma);
	}

	nsems = sma->sem_nsems;

	err = -EACCES;
	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
		goto out_rcu_wakeup;

	err = security_sem_semctl(sma, cmd);
	if (err)
		goto out_rcu_wakeup;

	err = -EACCES;
	switch (cmd) {
	case GETALL:
	{
		ushort __user *array = p;
		int i;

		sem_lock(sma, NULL, -1);
		if (!ipc_valid_object(&sma->sem_perm)) {
			err = -EIDRM;
			goto out_unlock;
		}
		if (nsems > SEMMSL_FAST) {
			if (!ipc_rcu_getref(sma)) {
				err = -EIDRM;
				goto out_unlock;
			}
			sem_unlock(sma, -1);
			rcu_read_unlock();
			sem_io = ipc_alloc(sizeof(ushort)*nsems);
			if (sem_io == NULL) {
				ipc_rcu_putref(sma, sem_rcu_free);
				return -ENOMEM;
			}

			rcu_read_lock();
			sem_lock_and_putref(sma);
			if (!ipc_valid_object(&sma->sem_perm)) {
				err = -EIDRM;
				goto out_unlock;
			}
		}
		for (i = 0; i < sma->sem_nsems; i++)
			sem_io[i] = sma->sem_base[i].semval;
		sem_unlock(sma, -1);
		rcu_read_unlock();
		err = 0;
		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
			err = -EFAULT;
		goto out_free;
	}
	case SETALL:
	{
		int i;
		struct sem_undo *un;

		if (!ipc_rcu_getref(sma)) {
			err = -EIDRM;
			goto out_rcu_wakeup;
		}
		rcu_read_unlock();

		if (nsems > SEMMSL_FAST) {
			sem_io = ipc_alloc(sizeof(ushort)*nsems);
			if (sem_io == NULL) {
				ipc_rcu_putref(sma, sem_rcu_free);
				return -ENOMEM;
			}
		}

		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
			ipc_rcu_putref(sma, sem_rcu_free);
			err = -EFAULT;
			goto out_free;
		}

		for (i = 0; i < nsems; i++) {
			if (sem_io[i] > SEMVMX) {
				ipc_rcu_putref(sma, sem_rcu_free);
				err = -ERANGE;
				goto out_free;
			}
		}
		rcu_read_lock();
		sem_lock_and_putref(sma);
		if (!ipc_valid_object(&sma->sem_perm)) {
			err = -EIDRM;
			goto out_unlock;
		}

		for (i = 0; i < nsems; i++) {
			sma->sem_base[i].semval = sem_io[i];
			sma->sem_base[i].sempid = task_tgid_vnr(current);
		}

		ipc_assert_locked_object(&sma->sem_perm);
		list_for_each_entry(un, &sma->list_id, list_id) {
			for (i = 0; i < nsems; i++)
				un->semadj[i] = 0;
		}
		sma->sem_ctime = get_seconds();
		/* maybe some queued-up processes were waiting for this */
		do_smart_update(sma, NULL, 0, 0, &tasks);
		err = 0;
		goto out_unlock;
	}
	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
	}
	err = -EINVAL;
	if (semnum < 0 || semnum >= nsems)
		goto out_rcu_wakeup;

	sem_lock(sma, NULL, -1);
	if (!ipc_valid_object(&sma->sem_perm)) {
		err = -EIDRM;
		goto out_unlock;
	}
	curr = &sma->sem_base[semnum];

	switch (cmd) {
	case GETVAL:
		err = curr->semval;
		goto out_unlock;
	case GETPID:
		err = curr->sempid;
		goto out_unlock;
	case GETNCNT:
		err = count_semcnt(sma, semnum, 0);
		goto out_unlock;
	case GETZCNT:
		err = count_semcnt(sma, semnum, 1);
		goto out_unlock;
	}

out_unlock:
	sem_unlock(sma, -1);
out_rcu_wakeup:
	rcu_read_unlock();
	wake_up_sem_queue_do(&tasks);
out_free:
	if (sem_io != fast_sem_io)
		ipc_free(sem_io);
	return err;
}

static inline unsigned long
copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
{
	switch (version) {
	case IPC_64:
		if (copy_from_user(out, buf, sizeof(*out)))
			return -EFAULT;
		return 0;
	case IPC_OLD:
	    {
		struct semid_ds tbuf_old;

		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
			return -EFAULT;

		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
		out->sem_perm.mode	= tbuf_old.sem_perm.mode;

		return 0;
	    }
	default:
		return -EINVAL;
	}
}

/*
 * This function handles some semctl commands which require the rwsem
 * to be held in write mode.
 * NOTE: no locks must be held, the rwsem is taken inside this function.
 */
static int semctl_down(struct ipc_namespace *ns, int semid,
		       int cmd, int version, void __user *p)
{
	struct sem_array *sma;
	int err;
	struct semid64_ds semid64;
	struct kern_ipc_perm *ipcp;

	if (cmd == IPC_SET) {
		if (copy_semid_from_user(&semid64, p, version))
			return -EFAULT;
	}

	down_write(&sem_ids(ns).rwsem);
	rcu_read_lock();

	ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
				      &semid64.sem_perm, 0);
	if (IS_ERR(ipcp)) {
		err = PTR_ERR(ipcp);
		goto out_unlock1;
	}

	sma = container_of(ipcp, struct sem_array, sem_perm);

	err = security_sem_semctl(sma, cmd);
	if (err)
		goto out_unlock1;

	switch (cmd) {
	case IPC_RMID:
		sem_lock(sma, NULL, -1);
		/* freeary unlocks the ipc object and rcu */
		freeary(ns, ipcp);
		goto out_up;
	case IPC_SET:
		sem_lock(sma, NULL, -1);
		err = ipc_update_perm(&semid64.sem_perm, ipcp);
		if (err)
			goto out_unlock0;
		sma->sem_ctime = get_seconds();
		break;
	default:
		err = -EINVAL;
		goto out_unlock1;
	}

out_unlock0:
	sem_unlock(sma, -1);
out_unlock1:
	rcu_read_unlock();
out_up:
	up_write(&sem_ids(ns).rwsem);
	return err;
}

SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
{
	int version;
	struct ipc_namespace *ns;
	void __user *p = (void __user *)arg;

	if (semid < 0)
		return -EINVAL;

	version = ipc_parse_version(&cmd);
	ns = current->nsproxy->ipc_ns;

	switch (cmd) {
	case IPC_INFO:
	case SEM_INFO:
	case IPC_STAT:
	case SEM_STAT:
		return semctl_nolock(ns, semid, cmd, version, p);
	case GETALL:
	case GETVAL:
	case GETPID:
	case GETNCNT:
	case GETZCNT:
	case SETALL:
		return semctl_main(ns, semid, semnum, cmd, p);
	case SETVAL:
		return semctl_setval(ns, semid, semnum, arg);
	case IPC_RMID:
	case IPC_SET:
		return semctl_down(ns, semid, cmd, version, p);
	default:
		return -EINVAL;
	}
}

/* If the task doesn't already have a undo_list, then allocate one
 * here.  We guarantee there is only one thread using this undo list,
 * and current is THE ONE
 *
 * If this allocation and assignment succeeds, but later
 * portions of this code fail, there is no need to free the sem_undo_list.
 * Just let it stay associated with the task, and it'll be freed later
 * at exit time.
 *
 * This can block, so callers must hold no locks.
 */
static inline int get_undo_list(struct sem_undo_list **undo_listp)
{
	struct sem_undo_list *undo_list;

	undo_list = current->sysvsem.undo_list;
	if (!undo_list) {
		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
		if (undo_list == NULL)
			return -ENOMEM;
		spin_lock_init(&undo_list->lock);
		atomic_set(&undo_list->refcnt, 1);
		INIT_LIST_HEAD(&undo_list->list_proc);

		current->sysvsem.undo_list = undo_list;
	}
	*undo_listp = undo_list;
	return 0;
}

static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
{
	struct sem_undo *un;

	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
		if (un->semid == semid)
			return un;
	}
	return NULL;
}

static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
{
	struct sem_undo *un;

	assert_spin_locked(&ulp->lock);

	un = __lookup_undo(ulp, semid);
	if (un) {
		list_del_rcu(&un->list_proc);
		list_add_rcu(&un->list_proc, &ulp->list_proc);
	}
	return un;
}

/**
 * find_alloc_undo - lookup (and if not present create) undo array
 * @ns: namespace
 * @semid: semaphore array id
 *
 * The function looks up (and if not present creates) the undo structure.
 * The size of the undo structure depends on the size of the semaphore
 * array, thus the alloc path is not that straightforward.
 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
 * performs a rcu_read_lock().
 */
static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
{
	struct sem_array *sma;
	struct sem_undo_list *ulp;
	struct sem_undo *un, *new;
	int nsems, error;

	error = get_undo_list(&ulp);
	if (error)
		return ERR_PTR(error);

	rcu_read_lock();
	spin_lock(&ulp->lock);
	un = lookup_undo(ulp, semid);
	spin_unlock(&ulp->lock);
	if (likely(un != NULL))
		goto out;

	/* no undo structure around - allocate one. */
	/* step 1: figure out the size of the semaphore array */
	sma = sem_obtain_object_check(ns, semid);
	if (IS_ERR(sma)) {
		rcu_read_unlock();
		return ERR_CAST(sma);
	}

	nsems = sma->sem_nsems;
	if (!ipc_rcu_getref(sma)) {
		rcu_read_unlock();
		un = ERR_PTR(-EIDRM);
		goto out;
	}
	rcu_read_unlock();

	/* step 2: allocate new undo structure */
	new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
	if (!new) {
		ipc_rcu_putref(sma, sem_rcu_free);
		return ERR_PTR(-ENOMEM);
	}

	/* step 3: Acquire the lock on semaphore array */
	rcu_read_lock();
	sem_lock_and_putref(sma);
	if (!ipc_valid_object(&sma->sem_perm)) {
		sem_unlock(sma, -1);
		rcu_read_unlock();
		kfree(new);
		un = ERR_PTR(-EIDRM);
		goto out;
	}
	spin_lock(&ulp->lock);

	/*
	 * step 4: check for races: did someone else allocate the undo struct?
	 */
	un = lookup_undo(ulp, semid);
	if (un) {
		kfree(new);
		goto success;
	}
	/* step 5: initialize & link new undo structure */
	new->semadj = (short *) &new[1];
	new->ulp = ulp;
	new->semid = semid;
	assert_spin_locked(&ulp->lock);
	list_add_rcu(&new->list_proc, &ulp->list_proc);
	ipc_assert_locked_object(&sma->sem_perm);
	list_add(&new->list_id, &sma->list_id);
	un = new;

success:
	spin_unlock(&ulp->lock);
	sem_unlock(sma, -1);
out:
	return un;
}


/**
 * get_queue_result - retrieve the result code from sem_queue
 * @q: Pointer to queue structure
 *
 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
 * q->status, then we must loop until the value is replaced with the final
 * value: This may happen if a task is woken up by an unrelated event (e.g.
 * signal) and in parallel the task is woken up by another task because it got
 * the requested semaphores.
 *
 * The function can be called with or without holding the semaphore spinlock.
 */
static int get_queue_result(struct sem_queue *q)
{
	int error;

	error = q->status;
	while (unlikely(error == IN_WAKEUP)) {
		cpu_relax();
		error = q->status;
	}

	return error;
}

SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
		unsigned, nsops, const struct timespec __user *, timeout)
{
	int error = -EINVAL;
	struct sem_array *sma;
	struct sembuf fast_sops[SEMOPM_FAST];
	struct sembuf *sops = fast_sops, *sop;
	struct sem_undo *un;
	int undos = 0, alter = 0, max, locknum;
	struct sem_queue queue;
	unsigned long jiffies_left = 0;
	struct ipc_namespace *ns;
	struct list_head tasks;

	ns = current->nsproxy->ipc_ns;

	if (nsops < 1 || semid < 0)
		return -EINVAL;
	if (nsops > ns->sc_semopm)
		return -E2BIG;
	if (nsops > SEMOPM_FAST) {
		sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
		if (sops == NULL)
			return -ENOMEM;
	}
	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
		error =  -EFAULT;
		goto out_free;
	}
	if (timeout) {
		struct timespec _timeout;
		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
			error = -EFAULT;
			goto out_free;
		}
		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
			_timeout.tv_nsec >= 1000000000L) {
			error = -EINVAL;
			goto out_free;
		}
		jiffies_left = timespec_to_jiffies(&_timeout);
	}
	max = 0;
	for (sop = sops; sop < sops + nsops; sop++) {
		if (sop->sem_num >= max)
			max = sop->sem_num;
		if (sop->sem_flg & SEM_UNDO)
			undos = 1;
		if (sop->sem_op != 0)
			alter = 1;
	}

	INIT_LIST_HEAD(&tasks);

	if (undos) {
		/* On success, find_alloc_undo takes the rcu_read_lock */
		un = find_alloc_undo(ns, semid);
		if (IS_ERR(un)) {
			error = PTR_ERR(un);
			goto out_free;
		}
	} else {
		un = NULL;
		rcu_read_lock();
	}

	sma = sem_obtain_object_check(ns, semid);
	if (IS_ERR(sma)) {
		rcu_read_unlock();
		error = PTR_ERR(sma);
		goto out_free;
	}

	error = -EFBIG;
	if (max >= sma->sem_nsems)
		goto out_rcu_wakeup;

	error = -EACCES;
	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
		goto out_rcu_wakeup;

	error = security_sem_semop(sma, sops, nsops, alter);
	if (error)
		goto out_rcu_wakeup;

	error = -EIDRM;
	locknum = sem_lock(sma, sops, nsops);
	/*
	 * We eventually might perform the following check in a lockless
	 * fashion, considering ipc_valid_object() locking constraints.
	 * If nsops == 1 and there is no contention for sem_perm.lock, then
	 * only a per-semaphore lock is held and it's OK to proceed with the
	 * check below. More details on the fine grained locking scheme
	 * entangled here and why it's RMID race safe on comments at sem_lock()
	 */
	if (!ipc_valid_object(&sma->sem_perm))
		goto out_unlock_free;
	/*
	 * semid identifiers are not unique - find_alloc_undo may have
	 * allocated an undo structure, it was invalidated by an RMID
	 * and now a new array with received the same id. Check and fail.
	 * This case can be detected checking un->semid. The existence of
	 * "un" itself is guaranteed by rcu.
	 */
	if (un && un->semid == -1)
		goto out_unlock_free;

	queue.sops = sops;
	queue.nsops = nsops;
	queue.undo = un;
	queue.pid = task_tgid_vnr(current);
	queue.alter = alter;

	error = perform_atomic_semop(sma, &queue);
	if (error == 0) {
		/* If the operation was successful, then do
		 * the required updates.
		 */
		if (alter)
			do_smart_update(sma, sops, nsops, 1, &tasks);
		else
			set_semotime(sma, sops);
	}
	if (error <= 0)
		goto out_unlock_free;

	/* We need to sleep on this operation, so we put the current
	 * task into the pending queue and go to sleep.
	 */

	if (nsops == 1) {
		struct sem *curr;
		curr = &sma->sem_base[sops->sem_num];

		if (alter) {
			if (sma->complex_count) {
				list_add_tail(&queue.list,
						&sma->pending_alter);
			} else {

				list_add_tail(&queue.list,
						&curr->pending_alter);
			}
		} else {
			list_add_tail(&queue.list, &curr->pending_const);
		}
	} else {
		if (!sma->complex_count)
			merge_queues(sma);

		if (alter)
			list_add_tail(&queue.list, &sma->pending_alter);
		else
			list_add_tail(&queue.list, &sma->pending_const);

		sma->complex_count++;
	}

	queue.status = -EINTR;
	queue.sleeper = current;

sleep_again:
	__set_current_state(TASK_INTERRUPTIBLE);
	sem_unlock(sma, locknum);
	rcu_read_unlock();

	if (timeout)
		jiffies_left = schedule_timeout(jiffies_left);
	else
		schedule();

	error = get_queue_result(&queue);

	if (error != -EINTR) {
		/* fast path: update_queue already obtained all requested
		 * resources.
		 * Perform a smp_mb(): User space could assume that semop()
		 * is a memory barrier: Without the mb(), the cpu could
		 * speculatively read in user space stale data that was
		 * overwritten by the previous owner of the semaphore.
		 */
		smp_mb();

		goto out_free;
	}

	rcu_read_lock();
	sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);

	/*
	 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
	 */
	error = get_queue_result(&queue);

	/*
	 * Array removed? If yes, leave without sem_unlock().
	 */
	if (IS_ERR(sma)) {
		rcu_read_unlock();
		goto out_free;
	}


	/*
	 * If queue.status != -EINTR we are woken up by another process.
	 * Leave without unlink_queue(), but with sem_unlock().
	 */
	if (error != -EINTR)
		goto out_unlock_free;

	/*
	 * If an interrupt occurred we have to clean up the queue
	 */
	if (timeout && jiffies_left == 0)
		error = -EAGAIN;

	/*
	 * If the wakeup was spurious, just retry
	 */
	if (error == -EINTR && !signal_pending(current))
		goto sleep_again;

	unlink_queue(sma, &queue);

out_unlock_free:
	sem_unlock(sma, locknum);
out_rcu_wakeup:
	rcu_read_unlock();
	wake_up_sem_queue_do(&tasks);
out_free:
	if (sops != fast_sops)
		kfree(sops);
	return error;
}

SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
		unsigned, nsops)
{
	return sys_semtimedop(semid, tsops, nsops, NULL);
}

/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
 * parent and child tasks.
 */

int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
{
	struct sem_undo_list *undo_list;
	int error;

	if (clone_flags & CLONE_SYSVSEM) {
		error = get_undo_list(&undo_list);
		if (error)
			return error;
		atomic_inc(&undo_list->refcnt);
		tsk->sysvsem.undo_list = undo_list;
	} else
		tsk->sysvsem.undo_list = NULL;

	return 0;
}

/*
 * add semadj values to semaphores, free undo structures.
 * undo structures are not freed when semaphore arrays are destroyed
 * so some of them may be out of date.
 * IMPLEMENTATION NOTE: There is some confusion over whether the
 * set of adjustments that needs to be done should be done in an atomic
 * manner or not. That is, if we are attempting to decrement the semval
 * should we queue up and wait until we can do so legally?
 * The original implementation attempted to do this (queue and wait).
 * The current implementation does not do so. The POSIX standard
 * and SVID should be consulted to determine what behavior is mandated.
 */
void exit_sem(struct task_struct *tsk)
{
	struct sem_undo_list *ulp;

	ulp = tsk->sysvsem.undo_list;
	if (!ulp)
		return;
	tsk->sysvsem.undo_list = NULL;

	if (!atomic_dec_and_test(&ulp->refcnt))
		return;

	for (;;) {
		struct sem_array *sma;
		struct sem_undo *un;
		struct list_head tasks;
		int semid, i;

		cond_resched();

		rcu_read_lock();
		un = list_entry_rcu(ulp->list_proc.next,
				    struct sem_undo, list_proc);
		if (&un->list_proc == &ulp->list_proc) {
			/*
			 * We must wait for freeary() before freeing this ulp,
			 * in case we raced with last sem_undo. There is a small
			 * possibility where we exit while freeary() didn't
			 * finish unlocking sem_undo_list.
			 */
			spin_unlock_wait(&ulp->lock);
			rcu_read_unlock();
			break;
		}
		spin_lock(&ulp->lock);
		semid = un->semid;
		spin_unlock(&ulp->lock);

		/* exit_sem raced with IPC_RMID, nothing to do */
		if (semid == -1) {
			rcu_read_unlock();
			continue;
		}

		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
		/* exit_sem raced with IPC_RMID, nothing to do */
		if (IS_ERR(sma)) {
			rcu_read_unlock();
			continue;
		}

		sem_lock(sma, NULL, -1);
		/* exit_sem raced with IPC_RMID, nothing to do */
		if (!ipc_valid_object(&sma->sem_perm)) {
			sem_unlock(sma, -1);
			rcu_read_unlock();
			continue;
		}
		un = __lookup_undo(ulp, semid);
		if (un == NULL) {
			/* exit_sem raced with IPC_RMID+semget() that created
			 * exactly the same semid. Nothing to do.
			 */
			sem_unlock(sma, -1);
			rcu_read_unlock();
			continue;
		}

		/* remove un from the linked lists */
		ipc_assert_locked_object(&sma->sem_perm);
		list_del(&un->list_id);

		/* we are the last process using this ulp, acquiring ulp->lock
		 * isn't required. Besides that, we are also protected against
		 * IPC_RMID as we hold sma->sem_perm lock now
		 */
		list_del_rcu(&un->list_proc);

		/* perform adjustments registered in un */
		for (i = 0; i < sma->sem_nsems; i++) {
			struct sem *semaphore = &sma->sem_base[i];
			if (un->semadj[i]) {
				semaphore->semval += un->semadj[i];
				/*
				 * Range checks of the new semaphore value,
				 * not defined by sus:
				 * - Some unices ignore the undo entirely
				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
				 * - some cap the value (e.g. FreeBSD caps
				 *   at 0, but doesn't enforce SEMVMX)
				 *
				 * Linux caps the semaphore value, both at 0
				 * and at SEMVMX.
				 *
				 *	Manfred <manfred@colorfullife.com>
				 */
				if (semaphore->semval < 0)
					semaphore->semval = 0;
				if (semaphore->semval > SEMVMX)
					semaphore->semval = SEMVMX;
				semaphore->sempid = task_tgid_vnr(current);
			}
		}
		/* maybe some queued-up processes were waiting for this */
		INIT_LIST_HEAD(&tasks);
		do_smart_update(sma, NULL, 0, 1, &tasks);
		sem_unlock(sma, -1);
		rcu_read_unlock();
		wake_up_sem_queue_do(&tasks);

		kfree_rcu(un, rcu);
	}
	kfree(ulp);
}

#ifdef CONFIG_PROC_FS
static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
{
	struct user_namespace *user_ns = seq_user_ns(s);
	struct sem_array *sma = it;
	time_t sem_otime;

	/*
	 * The proc interface isn't aware of sem_lock(), it calls
	 * ipc_lock_object() directly (in sysvipc_find_ipc).
	 * In order to stay compatible with sem_lock(), we must
	 * enter / leave complex_mode.
	 */
	complexmode_enter(sma);

	sem_otime = get_semotime(sma);

	seq_printf(s,
		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
		   sma->sem_perm.key,
		   sma->sem_perm.id,
		   sma->sem_perm.mode,
		   sma->sem_nsems,
		   from_kuid_munged(user_ns, sma->sem_perm.uid),
		   from_kgid_munged(user_ns, sma->sem_perm.gid),
		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
		   sem_otime,
		   sma->sem_ctime);

	complexmode_tryleave(sma);

	return 0;
}
#endif