hugetlb.c 123 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
/*
 * Generic hugetlb support.
 * (C) Nadia Yvette Chambers, April 2004
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/seq_file.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/mmu_notifier.h>
#include <linux/nodemask.h>
#include <linux/pagemap.h>
#include <linux/mempolicy.h>
#include <linux/compiler.h>
#include <linux/cpuset.h>
#include <linux/mutex.h>
#include <linux/bootmem.h>
#include <linux/sysfs.h>
#include <linux/slab.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/page-isolation.h>
#include <linux/jhash.h>

#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/tlb.h>

#include <linux/io.h>
#include <linux/hugetlb.h>
#include <linux/hugetlb_cgroup.h>
#include <linux/node.h>
#include "internal.h"

int hugepages_treat_as_movable;

int hugetlb_max_hstate __read_mostly;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;

__initdata LIST_HEAD(huge_boot_pages);

/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
static unsigned long __initdata default_hstate_size;
static bool __initdata parsed_valid_hugepagesz = true;

/*
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
 */
DEFINE_SPINLOCK(hugetlb_lock);

/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;

/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
		kfree(spool);
	}
}

struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
{
	struct hugepage_subpool *spool;

	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	long ret = delta;

	if (!spool)
		return ret;

	spin_lock(&spool->lock);

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
	}

	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
	return ret;
}

/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	long ret = delta;

	if (!spool)
		return delta;

	spin_lock(&spool->lock);

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
	unlock_or_release_subpool(spool);

	return ret;
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
	return subpool_inode(file_inode(vma->vm_file));
}

/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
 *
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

/*
 * Add the huge page range represented by [f, t) to the reserve
 * map.  In the normal case, existing regions will be expanded
 * to accommodate the specified range.  Sufficient regions should
 * exist for expansion due to the previous call to region_chg
 * with the same range.  However, it is possible that region_del
 * could have been called after region_chg and modifed the map
 * in such a way that no region exists to be expanded.  In this
 * case, pull a region descriptor from the cache associated with
 * the map and use that for the new range.
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
 */
static long region_add(struct resv_map *resv, long f, long t)
{
	struct list_head *head = &resv->regions;
	struct file_region *rg, *nrg, *trg;
	long add = 0;

	spin_lock(&resv->lock);
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/*
	 * If no region exists which can be expanded to include the
	 * specified range, the list must have been modified by an
	 * interleving call to region_del().  Pull a region descriptor
	 * from the cache and use it for this range.
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
			list_del(&rg->link);
			kfree(rg);
		}
	}

	add += (nrg->from - f);		/* Added to beginning of region */
	nrg->from = f;
	add += t - nrg->to;		/* Added to end of region */
	nrg->to = t;

out_locked:
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
	VM_BUG_ON(add < 0);
	return add;
}

/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
 * Upon entry, region_chg will also examine the cache of region descriptors
 * associated with the map.  If there are not enough descriptors cached, one
 * will be allocated for the in progress add operation.
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
 */
static long region_chg(struct resv_map *resv, long f, long t)
{
	struct list_head *head = &resv->regions;
	struct file_region *rg, *nrg = NULL;
	long chg = 0;

retry:
	spin_lock(&resv->lock);
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
		if (!trg) {
			kfree(nrg);
			return -ENOMEM;
		}

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		if (!nrg) {
			resv->adds_in_progress--;
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}

		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			goto out;

		/* We overlap with this area, if it extends further than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
	return chg;
}

/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

/*
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
 */
static long region_del(struct resv_map *resv, long f, long t)
{
	struct list_head *head = &resv->regions;
	struct file_region *rg, *trg;
	struct file_region *nrg = NULL;
	long del = 0;

retry:
	spin_lock(&resv->lock);
	list_for_each_entry_safe(rg, trg, head, link) {
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
			continue;

		if (rg->from >= t)
			break;

		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}

			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
			break;
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
	}

	spin_unlock(&resv->lock);
	kfree(nrg);
	return del;
}

/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
void hugetlb_fix_reserve_counts(struct inode *inode)
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
	if (rsv_adjust) {
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
static long region_count(struct resv_map *resv, long f, long t)
{
	struct list_head *head = &resv->regions;
	struct file_region *rg;
	long chg = 0;

	spin_lock(&resv->lock);
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		long seg_from;
		long seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
	spin_unlock(&resv->lock);

	return chg;
}

/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
{
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
}

pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
EXPORT_SYMBOL_GPL(linear_hugepage_index);

/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << huge_page_shift(hstate);
}
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);

/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)

/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
 */
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

struct resv_map *resv_map_alloc(void)
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
		return NULL;
	}

	kref_init(&resv_map->refs);
	spin_lock_init(&resv_map->lock);
	INIT_LIST_HEAD(&resv_map->regions);

	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

	return resv_map;
}

void resv_map_release(struct kref *ref)
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;

	/* Clear out any active regions before we release the map. */
	region_del(resv_map, 0, LONG_MAX);

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

	kfree(resv_map);
}

static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
{
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
	}
}

static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
{
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);

	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);

	return (get_vma_private_data(vma) & flag) != 0;
}

/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	if (!(vma->vm_flags & VM_MAYSHARE))
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
{
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
			return true;
		else
			return false;
	}

	/* Shared mappings always use reserves */
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
		 * fallocate.  In this case, there really are no reverves to
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}

	return false;
}

static void enqueue_huge_page(struct hstate *h, struct page *page)
{
	int nid = page_to_nid(page);
	list_move(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
}

static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
		return NULL;
	list_move(&page->lru, &h->hugepage_activelist);
	set_page_refcounted(page);
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
				unsigned long address, int avoid_reserve,
				long chg)
{
	struct page *page = NULL;
	struct mempolicy *mpol;
	nodemask_t *nodemask;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;
	unsigned int cpuset_mems_cookie;

	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
	if (!vma_has_reserves(vma, chg) &&
			h->free_huge_pages - h->resv_huge_pages == 0)
		goto err;

	/* If reserves cannot be used, ensure enough pages are in the pool */
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
		goto err;

retry_cpuset:
	cpuset_mems_cookie = read_mems_allowed_begin();
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask(h), &mpol, &nodemask);

	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

				SetPagePrivate(page);
				h->resv_huge_pages--;
				break;
			}
		}
	}

	mpol_cond_put(mpol);
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
		goto retry_cpuset;
	return page;

err:
	return NULL;
}

/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	nid = next_node_in(nid, *nodes_allowed);
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

#if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
	((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
	defined(CONFIG_CMA))
static void destroy_compound_gigantic_page(struct page *page,
					unsigned int order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	atomic_set(compound_mapcount_ptr(page), 0);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		clear_compound_head(p);
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

static void free_gigantic_page(struct page *page, unsigned int order)
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}

static bool pfn_range_valid_gigantic(struct zone *z,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

		if (page_zone(page) != z)
			return false;

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

static struct page *alloc_gigantic_page(int nid, unsigned int order)
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
			if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
static void prep_compound_gigantic_page(struct page *page, unsigned int order);

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
static inline void destroy_compound_gigantic_page(struct page *page,
						unsigned int order) { }
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

static void update_and_free_page(struct hstate *h, struct page *page)
{
	int i;

	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;

	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
	}
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
	set_page_refcounted(page);
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
}

struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

void free_huge_page(struct page *page)
{
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
	struct hstate *h = page_hstate(page);
	int nid = page_to_nid(page);
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
	bool restore_reserve;

	set_page_private(page, 0);
	page->mapping = NULL;
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
	restore_reserve = PagePrivate(page);
	ClearPagePrivate(page);

	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

	spin_lock(&hugetlb_lock);
	clear_page_huge_active(page);
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
	if (restore_reserve)
		h->resv_huge_pages++;

	if (h->surplus_huge_pages_node[nid]) {
		/* remove the page from active list */
		list_del(&page->lru);
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
	} else {
		arch_clear_hugepage_flags(page);
		enqueue_huge_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
{
	INIT_LIST_HEAD(&page->lru);
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
	spin_lock(&hugetlb_lock);
	set_hugetlb_cgroup(page, NULL);
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

static void prep_compound_gigantic_page(struct page *page, unsigned int order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__ClearPageReserved(page);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
		set_page_count(p, 0);
		set_compound_head(p, page);
	}
	atomic_set(compound_mapcount_ptr(page), -1);
}

/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
}
EXPORT_SYMBOL_GPL(PageHuge);

/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

	return get_compound_page_dtor(page_head) == free_huge_page;
}

pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = __alloc_pages_node(nid,
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
		huge_page_order(h));
	if (page) {
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
{
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
			struct page *page =
				list_entry(h->hugepage_freelists[node].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[node]--;
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[node]--;
			}
			update_and_free_page(h, page);
			ret = 1;
			break;
		}
	}

	return ret;
}

/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
 * number of free hugepages would be reduced below the number of reserved
 * hugepages.
 */
static int dissolve_free_huge_page(struct page *page)
{
	int rc = 0;

	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
		int nid = page_to_nid(head);
		if (h->free_huge_pages - h->resv_huge_pages == 0) {
			rc = -EBUSY;
			goto out;
		}
		list_del(&head->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		h->max_huge_pages--;
		update_and_free_page(h, head);
	}
out:
	spin_unlock(&hugetlb_lock);
	return rc;
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
 */
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long pfn;
	struct page *page;
	int rc = 0;

	if (!hugepages_supported())
		return rc;

	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
		if (PageHuge(page) && !page_count(page)) {
			rc = dissolve_free_huge_page(page);
			if (rc)
				break;
		}
	}

	return rc;
}

/*
 * There are 3 ways this can get called:
 * 1. With vma+addr: we use the VMA's memory policy
 * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
 *    page from any node, and let the buddy allocator itself figure
 *    it out.
 * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
 *    strictly from 'nid'
 */
static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
{
	int order = huge_page_order(h);
	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
	unsigned int cpuset_mems_cookie;

	/*
	 * We need a VMA to get a memory policy.  If we do not
	 * have one, we use the 'nid' argument.
	 *
	 * The mempolicy stuff below has some non-inlined bits
	 * and calls ->vm_ops.  That makes it hard to optimize at
	 * compile-time, even when NUMA is off and it does
	 * nothing.  This helps the compiler optimize it out.
	 */
	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
		/*
		 * If a specific node is requested, make sure to
		 * get memory from there, but only when a node
		 * is explicitly specified.
		 */
		if (nid != NUMA_NO_NODE)
			gfp |= __GFP_THISNODE;
		/*
		 * Make sure to call something that can handle
		 * nid=NUMA_NO_NODE
		 */
		return alloc_pages_node(nid, gfp, order);
	}

	/*
	 * OK, so we have a VMA.  Fetch the mempolicy and try to
	 * allocate a huge page with it.  We will only reach this
	 * when CONFIG_NUMA=y.
	 */
	do {
		struct page *page;
		struct mempolicy *mpol;
		struct zonelist *zl;
		nodemask_t *nodemask;

		cpuset_mems_cookie = read_mems_allowed_begin();
		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
		mpol_cond_put(mpol);
		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
		if (page)
			return page;
	} while (read_mems_allowed_retry(cpuset_mems_cookie));

	return NULL;
}

/*
 * There are two ways to allocate a huge page:
 * 1. When you have a VMA and an address (like a fault)
 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
 *
 * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
 * this case which signifies that the allocation should be done with
 * respect for the VMA's memory policy.
 *
 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
 * implies that memory policies will not be taken in to account.
 */
static struct page *__alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
{
	struct page *page;
	unsigned int r_nid;

	if (hstate_is_gigantic(h))
		return NULL;

	/*
	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
	 * This makes sure the caller is picking _one_ of the modes with which
	 * we can call this function, not both.
	 */
	if (vma || (addr != -1)) {
		VM_WARN_ON_ONCE(addr == -1);
		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
	}
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
	}
	spin_unlock(&hugetlb_lock);

	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);

	spin_lock(&hugetlb_lock);
	if (page) {
		INIT_LIST_HEAD(&page->lru);
		r_nid = page_to_nid(page);
		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
		set_hugetlb_cgroup(page, NULL);
		/*
		 * We incremented the global counters already
		 */
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
		__count_vm_event(HTLB_BUDDY_PGALLOC);
	} else {
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
	}
	spin_unlock(&hugetlb_lock);

	return page;
}

/*
 * Allocate a huge page from 'nid'.  Note, 'nid' may be
 * NUMA_NO_NODE, which means that it may be allocated
 * anywhere.
 */
static
struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
{
	unsigned long addr = -1;

	return __alloc_buddy_huge_page(h, NULL, addr, nid);
}

/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
static
struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr)
{
	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
}

/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
	struct page *page = NULL;

	spin_lock(&hugetlb_lock);
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
	spin_unlock(&hugetlb_lock);

	if (!page)
		page = __alloc_buddy_huge_page_no_mpol(h, nid);

	return page;
}

/*
 * Increase the hugetlb pool such that it can accommodate a reservation
 * of size 'delta'.
 */
static int gather_surplus_pages(struct hstate *h, int delta)
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
	bool alloc_ok = true;

	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
	if (needed <= 0) {
		h->resv_huge_pages += delta;
		return 0;
	}

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
		if (!page) {
			alloc_ok = false;
			break;
		}
		list_add(&page->lru, &surplus_list);
	}
	allocated += i;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accommodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
	 */
	needed += allocated;
	h->resv_huge_pages += delta;
	ret = 0;

	/* Free the needed pages to the hugetlb pool */
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
		if ((--needed) < 0)
			break;
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON_PAGE(page_count(page), page);
		enqueue_huge_page(h, page);
	}
free:
	spin_unlock(&hugetlb_lock);

	/* Free unnecessary surplus pages to the buddy allocator */
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
	spin_lock(&hugetlb_lock);

	return ret;
}

/*
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
 *
 * Called with hugetlb_lock held.  However, the lock could be dropped (and
 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
 * we must make sure nobody else can claim pages we are in the process of
 * freeing.  Do this by ensuring resv_huge_page always is greater than the
 * number of huge pages we plan to free when dropping the lock.
 */
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
{
	unsigned long nr_pages;

	/* Cannot return gigantic pages currently */
	if (hstate_is_gigantic(h))
		goto out;

	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);

	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
	 *
	 * Note that we decrement resv_huge_pages as we free the pages.  If
	 * we drop the lock, resv_huge_pages will still be sufficiently large
	 * to cover subsequent pages we may free.
	 */
	while (nr_pages--) {
		h->resv_huge_pages--;
		unused_resv_pages--;
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
			goto out;
		cond_resched_lock(&hugetlb_lock);
	}

out:
	/* Fully uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
}


/*
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
 * are used by the huge page allocation routines to manage reservations.
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
 */
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
	VMA_END_RESV,
	VMA_ADD_RESV,
};
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
				enum vma_resv_mode mode)
{
	struct resv_map *resv;
	pgoff_t idx;
	long ret;

	resv = vma_resv_map(vma);
	if (!resv)
		return 1;

	idx = vma_hugecache_offset(h, vma, addr);
	switch (mode) {
	case VMA_NEEDS_RESV:
		ret = region_chg(resv, idx, idx + 1);
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
	case VMA_END_RESV:
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
	case VMA_ADD_RESV:
		if (vma->vm_flags & VM_MAYSHARE)
			ret = region_add(resv, idx, idx + 1);
		else {
			region_abort(resv, idx, idx + 1);
			ret = region_del(resv, idx, idx + 1);
		}
		break;
	default:
		BUG();
	}

	if (vma->vm_flags & VM_MAYSHARE)
		return ret;
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
		/*
		 * In most cases, reserves always exist for private mappings.
		 * However, a file associated with mapping could have been
		 * hole punched or truncated after reserves were consumed.
		 * As subsequent fault on such a range will not use reserves.
		 * Subtle - The reserve map for private mappings has the
		 * opposite meaning than that of shared mappings.  If NO
		 * entry is in the reserve map, it means a reservation exists.
		 * If an entry exists in the reserve map, it means the
		 * reservation has already been consumed.  As a result, the
		 * return value of this routine is the opposite of the
		 * value returned from reserve map manipulation routines above.
		 */
		if (ret)
			return 0;
		else
			return 1;
	}
	else
		return ret < 0 ? ret : 0;
}

static long vma_needs_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
}

static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

static void vma_end_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
}

static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

/*
 * This routine is called to restore a reservation on error paths.  In the
 * specific error paths, a huge page was allocated (via alloc_huge_page)
 * and is about to be freed.  If a reservation for the page existed,
 * alloc_huge_page would have consumed the reservation and set PagePrivate
 * in the newly allocated page.  When the page is freed via free_huge_page,
 * the global reservation count will be incremented if PagePrivate is set.
 * However, free_huge_page can not adjust the reserve map.  Adjust the
 * reserve map here to be consistent with global reserve count adjustments
 * to be made by free_huge_page.
 */
static void restore_reserve_on_error(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address,
			struct page *page)
{
	if (unlikely(PagePrivate(page))) {
		long rc = vma_needs_reservation(h, vma, address);

		if (unlikely(rc < 0)) {
			/*
			 * Rare out of memory condition in reserve map
			 * manipulation.  Clear PagePrivate so that
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
			ClearPagePrivate(page);
		} else if (rc) {
			rc = vma_add_reservation(h, vma, address);
			if (unlikely(rc < 0))
				/*
				 * See above comment about rare out of
				 * memory condition.
				 */
				ClearPagePrivate(page);
		} else
			vma_end_reservation(h, vma, address);
	}
}

struct page *alloc_huge_page(struct vm_area_struct *vma,
				    unsigned long addr, int avoid_reserve)
{
	struct hugepage_subpool *spool = subpool_vma(vma);
	struct hstate *h = hstate_vma(vma);
	struct page *page;
	long map_chg, map_commit;
	long gbl_chg;
	int ret, idx;
	struct hugetlb_cgroup *h_cg;

	idx = hstate_index(h);
	/*
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
	 */
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
		return ERR_PTR(-ENOMEM);

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
			vma_end_reservation(h, vma, addr);
			return ERR_PTR(-ENOSPC);
		}

		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret)
		goto out_subpool_put;

	spin_lock(&hugetlb_lock);
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
	if (!page) {
		spin_unlock(&hugetlb_lock);
		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
		if (!page)
			goto out_uncharge_cgroup;
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
			SetPagePrivate(page);
			h->resv_huge_pages--;
		}
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
		/* Fall through */
	}
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);

	set_page_private(page, (unsigned long)spool);

	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
	return page;

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
	if (map_chg || avoid_reserve)
		hugepage_subpool_put_pages(spool, 1);
	vma_end_reservation(h, vma, addr);
	return ERR_PTR(-ENOSPC);
}

/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

int __weak alloc_bootmem_huge_page(struct hstate *h)
{
	struct huge_bootmem_page *m;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
		void *addr;

		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
			goto found;
		}
	}
	return 0;

found:
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
		WARN_ON(page_count(page) != 1);
		prep_compound_huge_page(page, h->order);
		WARN_ON(PageReserved(page));
		prep_new_huge_page(h, page, page_to_nid(page));
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (hstate_is_gigantic(h))
			adjust_managed_page_count(page, 1 << h->order);
	}
}

static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
{
	unsigned long i;

	for (i = 0; i < h->max_huge_pages; ++i) {
		if (hstate_is_gigantic(h)) {
			if (!alloc_bootmem_huge_page(h))
				break;
		} else if (!alloc_fresh_huge_page(h,
					 &node_states[N_MEMORY]))
			break;
	}
	h->max_huge_pages = i;
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

		/* oversize hugepages were init'ed in early boot */
		if (!hstate_is_gigantic(h))
			hugetlb_hstate_alloc_pages(h);
	}
	VM_BUG_ON(minimum_order == UINT_MAX);
}

static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		char buf[32];
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
	}
}

#ifdef CONFIG_HIGHMEM
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
{
	int i;

	if (hstate_is_gigantic(h))
		return;

	for_each_node_mask(i, *nodes_allowed) {
		struct page *page, *next;
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
				return;
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
			update_and_free_page(h, page);
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
		}
	}
}
#else
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
{
}
#endif

/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
{
	int nr_nodes, node;

	VM_BUG_ON(delta != -1 && delta != 1);

	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
		}
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
		}
	}
	return 0;

found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
}

#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
{
	unsigned long min_count, ret;

	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return h->max_huge_pages;

	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
	 *
	 * We might race with __alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
	 */
	spin_lock(&hugetlb_lock);
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
			break;
	}

	while (count > persistent_huge_pages(h)) {
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);

		/* yield cpu to avoid soft lockup */
		cond_resched();

		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * __alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
	 */
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
	min_count = max(count, min_count);
	try_to_free_low(h, min_count, nodes_allowed);
	while (min_count < persistent_huge_pages(h)) {
		if (!free_pool_huge_page(h, nodes_allowed, 0))
			break;
		cond_resched_lock(&hugetlb_lock);
	}
	while (count < persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
			break;
	}
out:
	ret = persistent_huge_pages(h);
	spin_unlock(&hugetlb_lock);
	return ret;
}

#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
{
	int i;

	for (i = 0; i < HUGE_MAX_HSTATE; i++)
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
			return &hstates[i];
		}

	return kobj_to_node_hstate(kobj, nidp);
}

static ssize_t nr_hugepages_show_common(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
}

static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
{
	int err;
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);

	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
		err = -EINVAL;
		goto out;
	}

	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_MEMORY];
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
		nodes_allowed = &node_states[N_MEMORY];

	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);

	if (nodes_allowed != &node_states[N_MEMORY])
		NODEMASK_FREE(nodes_allowed);

	return len;
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
}

static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, buf, len);
}
HSTATE_ATTR(nr_hugepages);

#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj, NULL);
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}

static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj, NULL);

	if (hstate_is_gigantic(h))
		return -EINVAL;

	err = kstrtoul(buf, 10, &input);
	if (err)
		return err;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj, NULL);
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
{
	int retval;
	int hi = hstate_index(h);

	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
		return -ENOMEM;

	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
	if (retval)
		kobject_put(hstate_kobjs[hi]);

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
		if (err)
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
	}
}

#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
static struct node_hstate node_hstates[MAX_NUMNODES];

/*
 * A subset of global hstate attributes for node devices
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
 * Unregister hstate attributes from a single node device.
 * No-op if no hstate attributes attached.
 */
static void hugetlb_unregister_node(struct node *node)
{
	struct hstate *h;
	struct node_hstate *nhs = &node_hstates[node->dev.id];

	if (!nhs->hugepages_kobj)
		return;		/* no hstate attributes */

	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
		}
	}

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
 * Register hstate attributes for a single node device.
 * No-op if attributes already registered.
 */
static void hugetlb_register_node(struct node *node)
{
	struct hstate *h;
	struct node_hstate *nhs = &node_hstates[node->dev.id];
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
							&node->dev.kobj);
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
 * hugetlb init time:  register hstate attributes for all registered node
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
 */
static void __init hugetlb_register_all_nodes(void)
{
	int nid;

	for_each_node_state(nid, N_MEMORY) {
		struct node *node = node_devices[nid];
		if (node->dev.id == nid)
			hugetlb_register_node(node);
	}

	/*
	 * Let the node device driver know we're here so it can
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

static int __init hugetlb_init(void)
{
	int i;

	if (!hugepages_supported())
		return 0;

	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
	}
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
	if (default_hstate_max_huge_pages) {
		if (!default_hstate.max_huge_pages)
			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
	}

	hugetlb_init_hstates();
	gather_bootmem_prealloc();
	report_hugepages();

	hugetlb_sysfs_init();
	hugetlb_register_all_nodes();
	hugetlb_cgroup_file_init();

#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
	hugetlb_fault_mutex_table =
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
	BUG_ON(!hugetlb_fault_mutex_table);

	for (i = 0; i < num_fault_mutexes; i++)
		mutex_init(&hugetlb_fault_mutex_table[i]);
	return 0;
}
subsys_initcall(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_bad_size(void)
{
	parsed_valid_hugepagesz = false;
}

void __init hugetlb_add_hstate(unsigned int order)
{
	struct hstate *h;
	unsigned long i;

	if (size_to_hstate(PAGE_SIZE << order)) {
		pr_warn("hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[hugetlb_max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
	INIT_LIST_HEAD(&h->hugepage_activelist);
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);

	parsed_hstate = h;
}

static int __init hugetlb_nrpages_setup(char *s)
{
	unsigned long *mhp;
	static unsigned long *last_mhp;

	if (!parsed_valid_hugepagesz) {
		pr_warn("hugepages = %s preceded by "
			"an unsupported hugepagesz, ignoring\n", s);
		parsed_valid_hugepagesz = true;
		return 1;
	}
	/*
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	else if (!hugetlb_max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

	if (mhp == last_mhp) {
		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
		return 1;
	}

	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

	return 1;
}
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);

static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
{
	struct hstate *h = &default_hstate;
	unsigned long tmp = h->max_huge_pages;
	int ret;

	if (!hugepages_supported())
		return -EOPNOTSUPP;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;

	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
out:
	return ret;
}

int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

int hugetlb_overcommit_handler(struct ctl_table *table, int write,
			void __user *buffer,
			size_t *length, loff_t *ppos)
{
	struct hstate *h = &default_hstate;
	unsigned long tmp;
	int ret;

	if (!hugepages_supported())
		return -EOPNOTSUPP;

	tmp = h->nr_overcommit_huge_pages;

	if (write && hstate_is_gigantic(h))
		return -EINVAL;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
out:
	return ret;
}

#endif /* CONFIG_SYSCTL */

void hugetlb_report_meminfo(struct seq_file *m)
{
	struct hstate *h = &default_hstate;
	if (!hugepages_supported())
		return;
	seq_printf(m,
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
	struct hstate *h = &default_hstate;
	if (!hugepages_supported())
		return 0;
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
}

void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

	if (!hugepages_supported())
		return;

	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
}

static int hugetlb_acct_memory(struct hstate *h, long delta)
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
		if (gather_surplus_pages(h, delta) < 0)
			goto out;

		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
		return_unused_surplus_pages(h, (unsigned long) -delta);

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *resv = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot disappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_get(&resv->refs);
}

static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
	struct hstate *h = hstate_vma(vma);
	struct resv_map *resv = vma_resv_map(vma);
	struct hugepage_subpool *spool = subpool_vma(vma);
	unsigned long reserve, start, end;
	long gbl_reserve;

	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;

	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);

	reserve = (end - start) - region_count(resv, start, end);

	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
	}
}

/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	BUG();
	return 0;
}

const struct vm_operations_struct hugetlb_vm_ops = {
	.fault = hugetlb_vm_op_fault,
	.open = hugetlb_vm_op_open,
	.close = hugetlb_vm_op_close,
};

static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
{
	pte_t entry;

	if (writable) {
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
	} else {
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
	entry = arch_make_huge_pte(entry, vma, page, writable);

	return entry;
}

static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
		update_mmu_cache(vma, address, ptep);
}

static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
		return 1;
	else
		return 0;
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}

int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
	unsigned long addr;
	int cow;
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;

	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
		spinlock_t *src_ptl, *dst_ptl;
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
		dst_pte = huge_pte_alloc(dst, addr, sz);
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
				set_huge_pte_at(src, addr, src_pte, entry);
			}
			set_huge_pte_at(dst, addr, dst_pte, entry);
		} else {
			if (cow) {
				huge_ptep_set_wrprotect(src, addr, src_pte);
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
			entry = huge_ptep_get(src_pte);
			ptepage = pte_page(entry);
			get_page(ptepage);
			page_dup_rmap(ptepage, true);
			set_huge_pte_at(dst, addr, dst_pte, entry);
			hugetlb_count_add(pages_per_huge_page(h), dst);
		}
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
	}

	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
}

void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
	pte_t *ptep;
	pte_t pte;
	spinlock_t *ptl;
	struct page *page;
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */

	WARN_ON(!is_vm_hugetlb_page(vma));
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));

	tlb_start_vma(tlb, vma);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
	address = start;
	for (; address < end; address += sz) {
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;

		ptl = huge_pte_lock(h, mm, ptep);
		if (huge_pmd_unshare(mm, &address, ptep)) {
			spin_unlock(ptl);
			continue;
		}

		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}

		/*
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
		 */
		if (unlikely(!pte_present(pte))) {
			huge_pte_clear(mm, address, ptep);
			spin_unlock(ptl);
			continue;
		}

		page = pte_page(pte);
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

		pte = huge_ptep_get_and_clear(mm, address, ptep);
		tlb_remove_tlb_entry(tlb, ptep, address);
		if (huge_pte_dirty(pte))
			set_page_dirty(page);

		hugetlb_count_sub(pages_per_huge_page(h), mm);
		page_remove_rmap(page, true);

		spin_unlock(ptl);
		tlb_remove_page_size(tlb, page, huge_page_size(h));
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
	}
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
	tlb_end_vma(tlb, vma);
}

void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_rwsem. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_rwsem is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

	tlb_gather_mmu(&tlb, mm, start, end);
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
}

/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
{
	struct hstate *h = hstate_vma(vma);
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
	address = address & huge_page_mask(h);
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	mapping = vma->vm_file->f_mapping;

	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
	i_mmap_lock_write(mapping);
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
	}
	i_mmap_unlock_write(mapping);
}

/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
 */
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
		       unsigned long address, pte_t *ptep,
		       struct page *pagecache_page, spinlock_t *ptl)
{
	pte_t pte;
	struct hstate *h = hstate_vma(vma);
	struct page *old_page, *new_page;
	int ret = 0, outside_reserve = 0;
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */

	pte = huge_ptep_get(ptep);
	old_page = pte_page(pte);

retry_avoidcopy:
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma);
		set_huge_ptep_writable(vma, address, ptep);
		return 0;
	}

	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

	get_page(old_page);

	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
	spin_unlock(ptl);
	new_page = alloc_huge_page(vma, address, outside_reserve);

	if (IS_ERR(new_page)) {
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			put_page(old_page);
			BUG_ON(huge_pte_none(pte));
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
		}

		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
	}

	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
	if (unlikely(anon_vma_prepare(vma))) {
		ret = VM_FAULT_OOM;
		goto out_release_all;
	}

	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
	__SetPageUptodate(new_page);
	set_page_huge_active(new_page);

	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);

	/*
	 * Retake the page table lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(ptl);
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
		ClearPagePrivate(new_page);

		/* Break COW */
		huge_ptep_clear_flush(vma, address, ptep);
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		page_remove_rmap(old_page, true);
		hugepage_add_new_anon_rmap(new_page, vma, address);
		/* Make the old page be freed below */
		new_page = old_page;
	}
	spin_unlock(ptl);
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
out_release_all:
	restore_reserve_on_error(h, vma, address, new_page);
	put_page(new_page);
out_release_old:
	put_page(old_page);

	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
}

/* Return the pagecache page at a given address within a VMA */
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	return find_lock_page(mapping, idx);
}

/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
{
	struct hstate *h = hstate_vma(vma);
	int ret = VM_FAULT_SIGBUS;
	int anon_rmap = 0;
	unsigned long size;
	struct page *page;
	pte_t new_pte;
	spinlock_t *ptl;

	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occurred as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
		return ret;
	}

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
		size = i_size_read(mapping->host) >> huge_page_shift(h);
		if (idx >= size)
			goto out;
		page = alloc_huge_page(vma, address, 0);
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
			goto out;
		}
		clear_huge_page(page, address, pages_per_huge_page(h));
		__SetPageUptodate(page);
		set_page_huge_active(page);

		if (vma->vm_flags & VM_MAYSHARE) {
			int err = huge_add_to_page_cache(page, mapping, idx);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
		} else {
			lock_page(page);
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
			anon_rmap = 1;
		}
	} else {
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
			ret = VM_FAULT_HWPOISON |
				VM_FAULT_SET_HINDEX(hstate_index(h));
			goto backout_unlocked;
		}
	}

	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
		/* Just decrements count, does not deallocate */
		vma_end_reservation(h, vma, address);
	}

	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
	size = i_size_read(mapping->host) >> huge_page_shift(h);
	if (idx >= size)
		goto backout;

	ret = 0;
	if (!huge_pte_none(huge_ptep_get(ptep)))
		goto backout;

	if (anon_rmap) {
		ClearPagePrivate(page);
		hugepage_add_new_anon_rmap(page, vma, address);
	} else
		page_dup_rmap(page, true);
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

	hugetlb_count_add(pages_per_huge_page(h), mm);
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
		/* Optimization, do the COW without a second fault */
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
	}

	spin_unlock(ptl);
	unlock_page(page);
out:
	return ret;

backout:
	spin_unlock(ptl);
backout_unlocked:
	unlock_page(page);
	restore_reserve_on_error(h, vma, address, page);
	put_page(page);
	goto out;
}

#ifdef CONFIG_SMP
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, unsigned int flags)
{
	pte_t *ptep, entry;
	spinlock_t *ptl;
	int ret;
	u32 hash;
	pgoff_t idx;
	struct page *page = NULL;
	struct page *pagecache_page = NULL;
	struct hstate *h = hstate_vma(vma);
	struct address_space *mapping;
	int need_wait_lock = 0;

	address &= huge_page_mask(h);

	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_migration(entry))) {
			migration_entry_wait_huge(vma, mm, ptep);
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
			return VM_FAULT_HWPOISON_LARGE |
				VM_FAULT_SET_HINDEX(hstate_index(h));
	} else {
		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
		if (!ptep)
			return VM_FAULT_OOM;
	}

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);

	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
		goto out_mutex;
	}

	ret = 0;

	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto out_mutex;
		}
		/* Just decrements count, does not deallocate */
		vma_end_reservation(h, vma, address);

		if (!(vma->vm_flags & VM_MAYSHARE))
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}

	get_page(page);

	if (flags & FAULT_FLAG_WRITE) {
		if (!huge_pte_write(entry)) {
			ret = hugetlb_cow(mm, vma, address, ptep,
					  pagecache_page, ptl);
			goto out_put_page;
		}
		entry = huge_pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
		update_mmu_cache(vma, address, ptep);
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
out_ptl:
	spin_unlock(ptl);

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
out_mutex:
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
	return ret;
}

long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
{
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
	unsigned long remainder = *nr_pages;
	struct hstate *h = hstate_vma(vma);

	while (vaddr < vma->vm_end && remainder) {
		pte_t *pte;
		spinlock_t *ptl = NULL;
		int absent;
		struct page *page;

		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
		 * each hugepage.  We have to make sure we get the
		 * first, for the page indexing below to work.
		 *
		 * Note that page table lock is not held when pte is null.
		 */
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
		 */
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
			if (pte)
				spin_unlock(ptl);
			remainder = 0;
			break;
		}

		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
			int ret;

			if (pte)
				spin_unlock(ptl);
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
			if (!(ret & VM_FAULT_ERROR))
				continue;

			remainder = 0;
			break;
		}

		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
		page = pte_page(huge_ptep_get(pte));
same_page:
		if (pages) {
			pages[i] = mem_map_offset(page, pfn_offset);
			get_page(pages[i]);
		}

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
		++pfn_offset;
		--remainder;
		++i;
		if (vaddr < vma->vm_end && remainder &&
				pfn_offset < pages_per_huge_page(h)) {
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
		spin_unlock(ptl);
	}
	*nr_pages = remainder;
	*position = vaddr;

	return i ? i : -EFAULT;
}

#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
/*
 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
 * implement this.
 */
#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
#endif

unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
	struct hstate *h = hstate_vma(vma);
	unsigned long pages = 0;

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

	mmu_notifier_invalidate_range_start(mm, start, end);
	i_mmap_lock_write(vma->vm_file->f_mapping);
	for (; address < end; address += huge_page_size(h)) {
		spinlock_t *ptl;
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
		ptl = huge_pte_lock(h, mm, ptep);
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
			spin_unlock(ptl);
			continue;
		}
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
				set_huge_pte_at(mm, address, ptep, newpte);
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
			set_huge_pte_at(mm, address, ptep, pte);
			pages++;
		}
		spin_unlock(ptl);
	}
	/*
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_rwsem, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
	flush_hugetlb_tlb_range(vma, start, end);
	mmu_notifier_invalidate_range(mm, start, end);
	i_mmap_unlock_write(vma->vm_file->f_mapping);
	mmu_notifier_invalidate_range_end(mm, start, end);

	return pages << h->order;
}

int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
					struct vm_area_struct *vma,
					vm_flags_t vm_flags)
{
	long ret, chg;
	struct hstate *h = hstate_inode(inode);
	struct hugepage_subpool *spool = subpool_inode(inode);
	struct resv_map *resv_map;
	long gbl_reserve;

	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
	 * without using reserves
	 */
	if (vm_flags & VM_NORESERVE)
		return 0;

	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		resv_map = inode_resv_map(inode);

		chg = region_chg(resv_map, from, to);

	} else {
		resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

		chg = to - from;

		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

	if (chg < 0) {
		ret = chg;
		goto out_err;
	}

	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
		ret = -ENOSPC;
		goto out_err;
	}

	/*
	 * Check enough hugepages are available for the reservation.
	 * Hand the pages back to the subpool if there are not
	 */
	ret = hugetlb_acct_memory(h, gbl_reserve);
	if (ret < 0) {
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
		goto out_err;
	}

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
	return 0;
out_err:
	if (!vma || vma->vm_flags & VM_MAYSHARE)
		region_abort(resv_map, from, to);
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
	return ret;
}

long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
{
	struct hstate *h = hstate_inode(inode);
	struct resv_map *resv_map = inode_resv_map(inode);
	long chg = 0;
	struct hugepage_subpool *spool = subpool_inode(inode);
	long gbl_reserve;

	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

	spin_lock(&inode->i_lock);
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
	spin_unlock(&inode->i_lock);

	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);

	return 0;
}

#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return true;
	return false;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
	spinlock_t *ptl;

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

	i_mmap_lock_write(mapping);
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
	if (pud_none(*pud)) {
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
		mm_inc_nr_pmds(mm);
	} else {
		put_page(virt_to_page(spte));
	}
	spin_unlock(ptl);
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	i_mmap_unlock_write(mapping);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
 * called with page table lock held.
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
	mm_dec_nr_pmds(mm);
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
#define want_pmd_share()	(0)
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

struct page * __weak
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int flags)
{
	struct page *page = NULL;
	spinlock_t *ptl;
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
	if (pmd_present(*pmd)) {
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
	return page;
}

struct page * __weak
follow_huge_pud(struct mm_struct *mm, unsigned long address,
		pud_t *pud, int flags)
{
	if (flags & FOLL_GET)
		return NULL;

	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
}

#ifdef CONFIG_MEMORY_FAILURE

/*
 * This function is called from memory failure code.
 */
int dequeue_hwpoisoned_huge_page(struct page *hpage)
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
	int ret = -EBUSY;

	spin_lock(&hugetlb_lock);
	/*
	 * Just checking !page_huge_active is not enough, because that could be
	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
	 */
	if (!page_huge_active(hpage) && !page_count(hpage)) {
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
		set_page_refcounted(hpage);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
	spin_unlock(&hugetlb_lock);
	return ret;
}
#endif

bool isolate_huge_page(struct page *page, struct list_head *list)
{
	bool ret = true;

	VM_BUG_ON_PAGE(!PageHead(page), page);
	spin_lock(&hugetlb_lock);
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
	list_move_tail(&page->lru, list);
unlock:
	spin_unlock(&hugetlb_lock);
	return ret;
}

void putback_active_hugepage(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHead(page), page);
	spin_lock(&hugetlb_lock);
	set_page_huge_active(page);
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}