truncate.c 24 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
/*
 * mm/truncate.c - code for taking down pages from address_spaces
 *
 * Copyright (C) 2002, Linus Torvalds
 *
 * 10Sep2002	Andrew Morton
 *		Initial version.
 */

#include <linux/kernel.h>
#include <linux/backing-dev.h>
#include <linux/dax.h>
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/export.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/pagevec.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/buffer_head.h>	/* grr. try_to_release_page,
				   do_invalidatepage */
#include <linux/cleancache.h>
#include <linux/rmap.h>
#include "internal.h"

static void clear_exceptional_entry(struct address_space *mapping,
				    pgoff_t index, void *entry)
{
	struct radix_tree_node *node;
	void **slot;

	/* Handled by shmem itself */
	if (shmem_mapping(mapping))
		return;

	if (dax_mapping(mapping)) {
		dax_delete_mapping_entry(mapping, index);
		return;
	}
	spin_lock_irq(&mapping->tree_lock);
	/*
	 * Regular page slots are stabilized by the page lock even
	 * without the tree itself locked.  These unlocked entries
	 * need verification under the tree lock.
	 */
	if (!__radix_tree_lookup(&mapping->page_tree, index, &node,
				&slot))
		goto unlock;
	if (*slot != entry)
		goto unlock;
	radix_tree_replace_slot(slot, NULL);
	mapping->nrexceptional--;
	if (!node)
		goto unlock;
	workingset_node_shadows_dec(node);
	/*
	 * Don't track node without shadow entries.
	 *
	 * Avoid acquiring the list_lru lock if already untracked.
	 * The list_empty() test is safe as node->private_list is
	 * protected by mapping->tree_lock.
	 */
	if (!workingset_node_shadows(node) &&
	    !list_empty(&node->private_list))
		list_lru_del(&workingset_shadow_nodes,
				&node->private_list);
	__radix_tree_delete_node(&mapping->page_tree, node);
unlock:
	spin_unlock_irq(&mapping->tree_lock);
}

/**
 * do_invalidatepage - invalidate part or all of a page
 * @page: the page which is affected
 * @offset: start of the range to invalidate
 * @length: length of the range to invalidate
 *
 * do_invalidatepage() is called when all or part of the page has become
 * invalidated by a truncate operation.
 *
 * do_invalidatepage() does not have to release all buffers, but it must
 * ensure that no dirty buffer is left outside @offset and that no I/O
 * is underway against any of the blocks which are outside the truncation
 * point.  Because the caller is about to free (and possibly reuse) those
 * blocks on-disk.
 */
void do_invalidatepage(struct page *page, unsigned int offset,
		       unsigned int length)
{
	void (*invalidatepage)(struct page *, unsigned int, unsigned int);

	invalidatepage = page->mapping->a_ops->invalidatepage;
#ifdef CONFIG_BLOCK
	if (!invalidatepage)
		invalidatepage = block_invalidatepage;
#endif
	if (invalidatepage)
		(*invalidatepage)(page, offset, length);
}

/*
 * If truncate cannot remove the fs-private metadata from the page, the page
 * becomes orphaned.  It will be left on the LRU and may even be mapped into
 * user pagetables if we're racing with filemap_fault().
 *
 * We need to bale out if page->mapping is no longer equal to the original
 * mapping.  This happens a) when the VM reclaimed the page while we waited on
 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
 */
static int
truncate_complete_page(struct address_space *mapping, struct page *page)
{
	if (page->mapping != mapping)
		return -EIO;

	if (page_has_private(page))
		do_invalidatepage(page, 0, PAGE_SIZE);

	/*
	 * Some filesystems seem to re-dirty the page even after
	 * the VM has canceled the dirty bit (eg ext3 journaling).
	 * Hence dirty accounting check is placed after invalidation.
	 */
	cancel_dirty_page(page);
	ClearPageMappedToDisk(page);
	delete_from_page_cache(page);
	return 0;
}

/*
 * This is for invalidate_mapping_pages().  That function can be called at
 * any time, and is not supposed to throw away dirty pages.  But pages can
 * be marked dirty at any time too, so use remove_mapping which safely
 * discards clean, unused pages.
 *
 * Returns non-zero if the page was successfully invalidated.
 */
static int
invalidate_complete_page(struct address_space *mapping, struct page *page)
{
	int ret;

	if (page->mapping != mapping)
		return 0;

	if (page_has_private(page) && !try_to_release_page(page, 0))
		return 0;

	ret = remove_mapping(mapping, page);

	return ret;
}

int truncate_inode_page(struct address_space *mapping, struct page *page)
{
	loff_t holelen;
	VM_BUG_ON_PAGE(PageTail(page), page);

	holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE;
	if (page_mapped(page)) {
		unmap_mapping_range(mapping,
				   (loff_t)page->index << PAGE_SHIFT,
				   holelen, 0);
	}
	return truncate_complete_page(mapping, page);
}

/*
 * Used to get rid of pages on hardware memory corruption.
 */
int generic_error_remove_page(struct address_space *mapping, struct page *page)
{
	if (!mapping)
		return -EINVAL;
	/*
	 * Only punch for normal data pages for now.
	 * Handling other types like directories would need more auditing.
	 */
	if (!S_ISREG(mapping->host->i_mode))
		return -EIO;
	return truncate_inode_page(mapping, page);
}
EXPORT_SYMBOL(generic_error_remove_page);

/*
 * Safely invalidate one page from its pagecache mapping.
 * It only drops clean, unused pages. The page must be locked.
 *
 * Returns 1 if the page is successfully invalidated, otherwise 0.
 */
int invalidate_inode_page(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
	if (!mapping)
		return 0;
	if (PageDirty(page) || PageWriteback(page))
		return 0;
	if (page_mapped(page))
		return 0;
	return invalidate_complete_page(mapping, page);
}

/**
 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
 * @mapping: mapping to truncate
 * @lstart: offset from which to truncate
 * @lend: offset to which to truncate (inclusive)
 *
 * Truncate the page cache, removing the pages that are between
 * specified offsets (and zeroing out partial pages
 * if lstart or lend + 1 is not page aligned).
 *
 * Truncate takes two passes - the first pass is nonblocking.  It will not
 * block on page locks and it will not block on writeback.  The second pass
 * will wait.  This is to prevent as much IO as possible in the affected region.
 * The first pass will remove most pages, so the search cost of the second pass
 * is low.
 *
 * We pass down the cache-hot hint to the page freeing code.  Even if the
 * mapping is large, it is probably the case that the final pages are the most
 * recently touched, and freeing happens in ascending file offset order.
 *
 * Note that since ->invalidatepage() accepts range to invalidate
 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
 * page aligned properly.
 */
void truncate_inode_pages_range(struct address_space *mapping,
				loff_t lstart, loff_t lend)
{
	pgoff_t		start;		/* inclusive */
	pgoff_t		end;		/* exclusive */
	unsigned int	partial_start;	/* inclusive */
	unsigned int	partial_end;	/* exclusive */
	struct pagevec	pvec;
	pgoff_t		indices[PAGEVEC_SIZE];
	pgoff_t		index;
	int		i;

	cleancache_invalidate_inode(mapping);
	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
		return;

	/* Offsets within partial pages */
	partial_start = lstart & (PAGE_SIZE - 1);
	partial_end = (lend + 1) & (PAGE_SIZE - 1);

	/*
	 * 'start' and 'end' always covers the range of pages to be fully
	 * truncated. Partial pages are covered with 'partial_start' at the
	 * start of the range and 'partial_end' at the end of the range.
	 * Note that 'end' is exclusive while 'lend' is inclusive.
	 */
	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (lend == -1)
		/*
		 * lend == -1 indicates end-of-file so we have to set 'end'
		 * to the highest possible pgoff_t and since the type is
		 * unsigned we're using -1.
		 */
		end = -1;
	else
		end = (lend + 1) >> PAGE_SHIFT;

	pagevec_init(&pvec, 0);
	index = start;
	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
			min(end - index, (pgoff_t)PAGEVEC_SIZE),
			indices)) {
		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];

			/* We rely upon deletion not changing page->index */
			index = indices[i];
			if (index >= end)
				break;

			if (radix_tree_exceptional_entry(page)) {
				clear_exceptional_entry(mapping, index, page);
				continue;
			}

			if (!trylock_page(page))
				continue;
			WARN_ON(page_to_index(page) != index);
			if (PageWriteback(page)) {
				unlock_page(page);
				continue;
			}
			truncate_inode_page(mapping, page);
			unlock_page(page);
		}
		pagevec_remove_exceptionals(&pvec);
		pagevec_release(&pvec);
		cond_resched();
		index++;
	}

	if (partial_start) {
		struct page *page = find_lock_page(mapping, start - 1);
		if (page) {
			unsigned int top = PAGE_SIZE;
			if (start > end) {
				/* Truncation within a single page */
				top = partial_end;
				partial_end = 0;
			}
			wait_on_page_writeback(page);
			zero_user_segment(page, partial_start, top);
			cleancache_invalidate_page(mapping, page);
			if (page_has_private(page))
				do_invalidatepage(page, partial_start,
						  top - partial_start);
			unlock_page(page);
			put_page(page);
		}
	}
	if (partial_end) {
		struct page *page = find_lock_page(mapping, end);
		if (page) {
			wait_on_page_writeback(page);
			zero_user_segment(page, 0, partial_end);
			cleancache_invalidate_page(mapping, page);
			if (page_has_private(page))
				do_invalidatepage(page, 0,
						  partial_end);
			unlock_page(page);
			put_page(page);
		}
	}
	/*
	 * If the truncation happened within a single page no pages
	 * will be released, just zeroed, so we can bail out now.
	 */
	if (start >= end)
		return;

	index = start;
	for ( ; ; ) {
		cond_resched();
		if (!pagevec_lookup_entries(&pvec, mapping, index,
			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
			/* If all gone from start onwards, we're done */
			if (index == start)
				break;
			/* Otherwise restart to make sure all gone */
			index = start;
			continue;
		}
		if (index == start && indices[0] >= end) {
			/* All gone out of hole to be punched, we're done */
			pagevec_remove_exceptionals(&pvec);
			pagevec_release(&pvec);
			break;
		}
		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];

			/* We rely upon deletion not changing page->index */
			index = indices[i];
			if (index >= end) {
				/* Restart punch to make sure all gone */
				index = start - 1;
				break;
			}

			if (radix_tree_exceptional_entry(page)) {
				clear_exceptional_entry(mapping, index, page);
				continue;
			}

			lock_page(page);
			WARN_ON(page_to_index(page) != index);
			wait_on_page_writeback(page);
			truncate_inode_page(mapping, page);
			unlock_page(page);
		}
		pagevec_remove_exceptionals(&pvec);
		pagevec_release(&pvec);
		index++;
	}
	cleancache_invalidate_inode(mapping);
}
EXPORT_SYMBOL(truncate_inode_pages_range);

/**
 * truncate_inode_pages - truncate *all* the pages from an offset
 * @mapping: mapping to truncate
 * @lstart: offset from which to truncate
 *
 * Called under (and serialised by) inode->i_mutex.
 *
 * Note: When this function returns, there can be a page in the process of
 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
 * mapping->nrpages can be non-zero when this function returns even after
 * truncation of the whole mapping.
 */
void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
{
	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
}
EXPORT_SYMBOL(truncate_inode_pages);

/**
 * truncate_inode_pages_final - truncate *all* pages before inode dies
 * @mapping: mapping to truncate
 *
 * Called under (and serialized by) inode->i_mutex.
 *
 * Filesystems have to use this in the .evict_inode path to inform the
 * VM that this is the final truncate and the inode is going away.
 */
void truncate_inode_pages_final(struct address_space *mapping)
{
	unsigned long nrexceptional;
	unsigned long nrpages;

	/*
	 * Page reclaim can not participate in regular inode lifetime
	 * management (can't call iput()) and thus can race with the
	 * inode teardown.  Tell it when the address space is exiting,
	 * so that it does not install eviction information after the
	 * final truncate has begun.
	 */
	mapping_set_exiting(mapping);

	/*
	 * When reclaim installs eviction entries, it increases
	 * nrexceptional first, then decreases nrpages.  Make sure we see
	 * this in the right order or we might miss an entry.
	 */
	nrpages = mapping->nrpages;
	smp_rmb();
	nrexceptional = mapping->nrexceptional;

	if (nrpages || nrexceptional) {
		/*
		 * As truncation uses a lockless tree lookup, cycle
		 * the tree lock to make sure any ongoing tree
		 * modification that does not see AS_EXITING is
		 * completed before starting the final truncate.
		 */
		spin_lock_irq(&mapping->tree_lock);
		spin_unlock_irq(&mapping->tree_lock);

		truncate_inode_pages(mapping, 0);
	}
}
EXPORT_SYMBOL(truncate_inode_pages_final);

/**
 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
 * @mapping: the address_space which holds the pages to invalidate
 * @start: the offset 'from' which to invalidate
 * @end: the offset 'to' which to invalidate (inclusive)
 *
 * This function only removes the unlocked pages, if you want to
 * remove all the pages of one inode, you must call truncate_inode_pages.
 *
 * invalidate_mapping_pages() will not block on IO activity. It will not
 * invalidate pages which are dirty, locked, under writeback or mapped into
 * pagetables.
 */
unsigned long invalidate_mapping_pages(struct address_space *mapping,
		pgoff_t start, pgoff_t end)
{
	pgoff_t indices[PAGEVEC_SIZE];
	struct pagevec pvec;
	pgoff_t index = start;
	unsigned long ret;
	unsigned long count = 0;
	int i;

	pagevec_init(&pvec, 0);
	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
			indices)) {
		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];

			/* We rely upon deletion not changing page->index */
			index = indices[i];
			if (index > end)
				break;

			if (radix_tree_exceptional_entry(page)) {
				clear_exceptional_entry(mapping, index, page);
				continue;
			}

			if (!trylock_page(page))
				continue;

			WARN_ON(page_to_index(page) != index);

			/* Middle of THP: skip */
			if (PageTransTail(page)) {
				unlock_page(page);
				continue;
			} else if (PageTransHuge(page)) {
				index += HPAGE_PMD_NR - 1;
				i += HPAGE_PMD_NR - 1;
				/* 'end' is in the middle of THP */
				if (index ==  round_down(end, HPAGE_PMD_NR))
					continue;
			}

			ret = invalidate_inode_page(page);
			unlock_page(page);
			/*
			 * Invalidation is a hint that the page is no longer
			 * of interest and try to speed up its reclaim.
			 */
			if (!ret)
				deactivate_file_page(page);
			count += ret;
		}
		pagevec_remove_exceptionals(&pvec);
		pagevec_release(&pvec);
		cond_resched();
		index++;
	}
	return count;
}
EXPORT_SYMBOL(invalidate_mapping_pages);

/*
 * This is like invalidate_complete_page(), except it ignores the page's
 * refcount.  We do this because invalidate_inode_pages2() needs stronger
 * invalidation guarantees, and cannot afford to leave pages behind because
 * shrink_page_list() has a temp ref on them, or because they're transiently
 * sitting in the lru_cache_add() pagevecs.
 */
static int
invalidate_complete_page2(struct address_space *mapping, struct page *page)
{
	unsigned long flags;

	if (page->mapping != mapping)
		return 0;

	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
		return 0;

	spin_lock_irqsave(&mapping->tree_lock, flags);
	if (PageDirty(page))
		goto failed;

	BUG_ON(page_has_private(page));
	__delete_from_page_cache(page, NULL);
	spin_unlock_irqrestore(&mapping->tree_lock, flags);

	if (mapping->a_ops->freepage)
		mapping->a_ops->freepage(page);

	put_page(page);	/* pagecache ref */
	return 1;
failed:
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
	return 0;
}

static int do_launder_page(struct address_space *mapping, struct page *page)
{
	if (!PageDirty(page))
		return 0;
	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
		return 0;
	return mapping->a_ops->launder_page(page);
}

/**
 * invalidate_inode_pages2_range - remove range of pages from an address_space
 * @mapping: the address_space
 * @start: the page offset 'from' which to invalidate
 * @end: the page offset 'to' which to invalidate (inclusive)
 *
 * Any pages which are found to be mapped into pagetables are unmapped prior to
 * invalidation.
 *
 * Returns -EBUSY if any pages could not be invalidated.
 */
int invalidate_inode_pages2_range(struct address_space *mapping,
				  pgoff_t start, pgoff_t end)
{
	pgoff_t indices[PAGEVEC_SIZE];
	struct pagevec pvec;
	pgoff_t index;
	int i;
	int ret = 0;
	int ret2 = 0;
	int did_range_unmap = 0;

	cleancache_invalidate_inode(mapping);
	pagevec_init(&pvec, 0);
	index = start;
	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
			indices)) {
		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];

			/* We rely upon deletion not changing page->index */
			index = indices[i];
			if (index > end)
				break;

			if (radix_tree_exceptional_entry(page)) {
				clear_exceptional_entry(mapping, index, page);
				continue;
			}

			lock_page(page);
			WARN_ON(page_to_index(page) != index);
			if (page->mapping != mapping) {
				unlock_page(page);
				continue;
			}
			wait_on_page_writeback(page);
			if (page_mapped(page)) {
				if (!did_range_unmap) {
					/*
					 * Zap the rest of the file in one hit.
					 */
					unmap_mapping_range(mapping,
					   (loff_t)index << PAGE_SHIFT,
					   (loff_t)(1 + end - index)
							 << PAGE_SHIFT,
							 0);
					did_range_unmap = 1;
				} else {
					/*
					 * Just zap this page
					 */
					unmap_mapping_range(mapping,
					   (loff_t)index << PAGE_SHIFT,
					   PAGE_SIZE, 0);
				}
			}
			BUG_ON(page_mapped(page));
			ret2 = do_launder_page(mapping, page);
			if (ret2 == 0) {
				if (!invalidate_complete_page2(mapping, page))
					ret2 = -EBUSY;
			}
			if (ret2 < 0)
				ret = ret2;
			unlock_page(page);
		}
		pagevec_remove_exceptionals(&pvec);
		pagevec_release(&pvec);
		cond_resched();
		index++;
	}
	cleancache_invalidate_inode(mapping);
	return ret;
}
EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);

/**
 * invalidate_inode_pages2 - remove all pages from an address_space
 * @mapping: the address_space
 *
 * Any pages which are found to be mapped into pagetables are unmapped prior to
 * invalidation.
 *
 * Returns -EBUSY if any pages could not be invalidated.
 */
int invalidate_inode_pages2(struct address_space *mapping)
{
	return invalidate_inode_pages2_range(mapping, 0, -1);
}
EXPORT_SYMBOL_GPL(invalidate_inode_pages2);

/**
 * truncate_pagecache - unmap and remove pagecache that has been truncated
 * @inode: inode
 * @newsize: new file size
 *
 * inode's new i_size must already be written before truncate_pagecache
 * is called.
 *
 * This function should typically be called before the filesystem
 * releases resources associated with the freed range (eg. deallocates
 * blocks). This way, pagecache will always stay logically coherent
 * with on-disk format, and the filesystem would not have to deal with
 * situations such as writepage being called for a page that has already
 * had its underlying blocks deallocated.
 */
void truncate_pagecache(struct inode *inode, loff_t newsize)
{
	struct address_space *mapping = inode->i_mapping;
	loff_t holebegin = round_up(newsize, PAGE_SIZE);

	/*
	 * unmap_mapping_range is called twice, first simply for
	 * efficiency so that truncate_inode_pages does fewer
	 * single-page unmaps.  However after this first call, and
	 * before truncate_inode_pages finishes, it is possible for
	 * private pages to be COWed, which remain after
	 * truncate_inode_pages finishes, hence the second
	 * unmap_mapping_range call must be made for correctness.
	 */
	unmap_mapping_range(mapping, holebegin, 0, 1);
	truncate_inode_pages(mapping, newsize);
	unmap_mapping_range(mapping, holebegin, 0, 1);
}
EXPORT_SYMBOL(truncate_pagecache);

/**
 * truncate_setsize - update inode and pagecache for a new file size
 * @inode: inode
 * @newsize: new file size
 *
 * truncate_setsize updates i_size and performs pagecache truncation (if
 * necessary) to @newsize. It will be typically be called from the filesystem's
 * setattr function when ATTR_SIZE is passed in.
 *
 * Must be called with a lock serializing truncates and writes (generally
 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
 * specific block truncation has been performed.
 */
void truncate_setsize(struct inode *inode, loff_t newsize)
{
	loff_t oldsize = inode->i_size;

	i_size_write(inode, newsize);
	if (newsize > oldsize)
		pagecache_isize_extended(inode, oldsize, newsize);
	truncate_pagecache(inode, newsize);
}
EXPORT_SYMBOL(truncate_setsize);

/**
 * pagecache_isize_extended - update pagecache after extension of i_size
 * @inode:	inode for which i_size was extended
 * @from:	original inode size
 * @to:		new inode size
 *
 * Handle extension of inode size either caused by extending truncate or by
 * write starting after current i_size. We mark the page straddling current
 * i_size RO so that page_mkwrite() is called on the nearest write access to
 * the page.  This way filesystem can be sure that page_mkwrite() is called on
 * the page before user writes to the page via mmap after the i_size has been
 * changed.
 *
 * The function must be called after i_size is updated so that page fault
 * coming after we unlock the page will already see the new i_size.
 * The function must be called while we still hold i_mutex - this not only
 * makes sure i_size is stable but also that userspace cannot observe new
 * i_size value before we are prepared to store mmap writes at new inode size.
 */
void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
{
	int bsize = 1 << inode->i_blkbits;
	loff_t rounded_from;
	struct page *page;
	pgoff_t index;

	WARN_ON(to > inode->i_size);

	if (from >= to || bsize == PAGE_SIZE)
		return;
	/* Page straddling @from will not have any hole block created? */
	rounded_from = round_up(from, bsize);
	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
		return;

	index = from >> PAGE_SHIFT;
	page = find_lock_page(inode->i_mapping, index);
	/* Page not cached? Nothing to do */
	if (!page)
		return;
	/*
	 * See clear_page_dirty_for_io() for details why set_page_dirty()
	 * is needed.
	 */
	if (page_mkclean(page))
		set_page_dirty(page);
	unlock_page(page);
	put_page(page);
}
EXPORT_SYMBOL(pagecache_isize_extended);

/**
 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
 * @inode: inode
 * @lstart: offset of beginning of hole
 * @lend: offset of last byte of hole
 *
 * This function should typically be called before the filesystem
 * releases resources associated with the freed range (eg. deallocates
 * blocks). This way, pagecache will always stay logically coherent
 * with on-disk format, and the filesystem would not have to deal with
 * situations such as writepage being called for a page that has already
 * had its underlying blocks deallocated.
 */
void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
{
	struct address_space *mapping = inode->i_mapping;
	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
	/*
	 * This rounding is currently just for example: unmap_mapping_range
	 * expands its hole outwards, whereas we want it to contract the hole
	 * inwards.  However, existing callers of truncate_pagecache_range are
	 * doing their own page rounding first.  Note that unmap_mapping_range
	 * allows holelen 0 for all, and we allow lend -1 for end of file.
	 */

	/*
	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
	 * once (before truncating pagecache), and without "even_cows" flag:
	 * hole-punching should not remove private COWed pages from the hole.
	 */
	if ((u64)unmap_end > (u64)unmap_start)
		unmap_mapping_range(mapping, unmap_start,
				    1 + unmap_end - unmap_start, 0);
	truncate_inode_pages_range(mapping, lstart, lend);
}
EXPORT_SYMBOL(truncate_pagecache_range);