Commit 02afc6267f6d55d47aba9fcafdbd1b7230d2294a
1 parent
f52111b154
[PATCH] dup_fd() fixes, part 1
Move the sucker to fs/file.c in preparation to the rest Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Showing 3 changed files with 131 additions and 130 deletions Inline Diff
fs/file.c
1 | /* | 1 | /* |
2 | * linux/fs/file.c | 2 | * linux/fs/file.c |
3 | * | 3 | * |
4 | * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes | 4 | * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes |
5 | * | 5 | * |
6 | * Manage the dynamic fd arrays in the process files_struct. | 6 | * Manage the dynamic fd arrays in the process files_struct. |
7 | */ | 7 | */ |
8 | 8 | ||
9 | #include <linux/fs.h> | 9 | #include <linux/fs.h> |
10 | #include <linux/mm.h> | 10 | #include <linux/mm.h> |
11 | #include <linux/time.h> | 11 | #include <linux/time.h> |
12 | #include <linux/slab.h> | 12 | #include <linux/slab.h> |
13 | #include <linux/vmalloc.h> | 13 | #include <linux/vmalloc.h> |
14 | #include <linux/file.h> | 14 | #include <linux/file.h> |
15 | #include <linux/fdtable.h> | 15 | #include <linux/fdtable.h> |
16 | #include <linux/bitops.h> | 16 | #include <linux/bitops.h> |
17 | #include <linux/interrupt.h> | 17 | #include <linux/interrupt.h> |
18 | #include <linux/spinlock.h> | 18 | #include <linux/spinlock.h> |
19 | #include <linux/rcupdate.h> | 19 | #include <linux/rcupdate.h> |
20 | #include <linux/workqueue.h> | 20 | #include <linux/workqueue.h> |
21 | 21 | ||
22 | struct fdtable_defer { | 22 | struct fdtable_defer { |
23 | spinlock_t lock; | 23 | spinlock_t lock; |
24 | struct work_struct wq; | 24 | struct work_struct wq; |
25 | struct fdtable *next; | 25 | struct fdtable *next; |
26 | }; | 26 | }; |
27 | 27 | ||
28 | int sysctl_nr_open __read_mostly = 1024*1024; | 28 | int sysctl_nr_open __read_mostly = 1024*1024; |
29 | 29 | ||
30 | /* | 30 | /* |
31 | * We use this list to defer free fdtables that have vmalloced | 31 | * We use this list to defer free fdtables that have vmalloced |
32 | * sets/arrays. By keeping a per-cpu list, we avoid having to embed | 32 | * sets/arrays. By keeping a per-cpu list, we avoid having to embed |
33 | * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in | 33 | * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in |
34 | * this per-task structure. | 34 | * this per-task structure. |
35 | */ | 35 | */ |
36 | static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list); | 36 | static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list); |
37 | 37 | ||
38 | static inline void * alloc_fdmem(unsigned int size) | 38 | static inline void * alloc_fdmem(unsigned int size) |
39 | { | 39 | { |
40 | if (size <= PAGE_SIZE) | 40 | if (size <= PAGE_SIZE) |
41 | return kmalloc(size, GFP_KERNEL); | 41 | return kmalloc(size, GFP_KERNEL); |
42 | else | 42 | else |
43 | return vmalloc(size); | 43 | return vmalloc(size); |
44 | } | 44 | } |
45 | 45 | ||
46 | static inline void free_fdarr(struct fdtable *fdt) | 46 | static inline void free_fdarr(struct fdtable *fdt) |
47 | { | 47 | { |
48 | if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) | 48 | if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) |
49 | kfree(fdt->fd); | 49 | kfree(fdt->fd); |
50 | else | 50 | else |
51 | vfree(fdt->fd); | 51 | vfree(fdt->fd); |
52 | } | 52 | } |
53 | 53 | ||
54 | static inline void free_fdset(struct fdtable *fdt) | 54 | static inline void free_fdset(struct fdtable *fdt) |
55 | { | 55 | { |
56 | if (fdt->max_fds <= (PAGE_SIZE * BITS_PER_BYTE / 2)) | 56 | if (fdt->max_fds <= (PAGE_SIZE * BITS_PER_BYTE / 2)) |
57 | kfree(fdt->open_fds); | 57 | kfree(fdt->open_fds); |
58 | else | 58 | else |
59 | vfree(fdt->open_fds); | 59 | vfree(fdt->open_fds); |
60 | } | 60 | } |
61 | 61 | ||
62 | static void free_fdtable_work(struct work_struct *work) | 62 | static void free_fdtable_work(struct work_struct *work) |
63 | { | 63 | { |
64 | struct fdtable_defer *f = | 64 | struct fdtable_defer *f = |
65 | container_of(work, struct fdtable_defer, wq); | 65 | container_of(work, struct fdtable_defer, wq); |
66 | struct fdtable *fdt; | 66 | struct fdtable *fdt; |
67 | 67 | ||
68 | spin_lock_bh(&f->lock); | 68 | spin_lock_bh(&f->lock); |
69 | fdt = f->next; | 69 | fdt = f->next; |
70 | f->next = NULL; | 70 | f->next = NULL; |
71 | spin_unlock_bh(&f->lock); | 71 | spin_unlock_bh(&f->lock); |
72 | while(fdt) { | 72 | while(fdt) { |
73 | struct fdtable *next = fdt->next; | 73 | struct fdtable *next = fdt->next; |
74 | vfree(fdt->fd); | 74 | vfree(fdt->fd); |
75 | free_fdset(fdt); | 75 | free_fdset(fdt); |
76 | kfree(fdt); | 76 | kfree(fdt); |
77 | fdt = next; | 77 | fdt = next; |
78 | } | 78 | } |
79 | } | 79 | } |
80 | 80 | ||
81 | void free_fdtable_rcu(struct rcu_head *rcu) | 81 | void free_fdtable_rcu(struct rcu_head *rcu) |
82 | { | 82 | { |
83 | struct fdtable *fdt = container_of(rcu, struct fdtable, rcu); | 83 | struct fdtable *fdt = container_of(rcu, struct fdtable, rcu); |
84 | struct fdtable_defer *fddef; | 84 | struct fdtable_defer *fddef; |
85 | 85 | ||
86 | BUG_ON(!fdt); | 86 | BUG_ON(!fdt); |
87 | 87 | ||
88 | if (fdt->max_fds <= NR_OPEN_DEFAULT) { | 88 | if (fdt->max_fds <= NR_OPEN_DEFAULT) { |
89 | /* | 89 | /* |
90 | * This fdtable is embedded in the files structure and that | 90 | * This fdtable is embedded in the files structure and that |
91 | * structure itself is getting destroyed. | 91 | * structure itself is getting destroyed. |
92 | */ | 92 | */ |
93 | kmem_cache_free(files_cachep, | 93 | kmem_cache_free(files_cachep, |
94 | container_of(fdt, struct files_struct, fdtab)); | 94 | container_of(fdt, struct files_struct, fdtab)); |
95 | return; | 95 | return; |
96 | } | 96 | } |
97 | if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) { | 97 | if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) { |
98 | kfree(fdt->fd); | 98 | kfree(fdt->fd); |
99 | kfree(fdt->open_fds); | 99 | kfree(fdt->open_fds); |
100 | kfree(fdt); | 100 | kfree(fdt); |
101 | } else { | 101 | } else { |
102 | fddef = &get_cpu_var(fdtable_defer_list); | 102 | fddef = &get_cpu_var(fdtable_defer_list); |
103 | spin_lock(&fddef->lock); | 103 | spin_lock(&fddef->lock); |
104 | fdt->next = fddef->next; | 104 | fdt->next = fddef->next; |
105 | fddef->next = fdt; | 105 | fddef->next = fdt; |
106 | /* vmallocs are handled from the workqueue context */ | 106 | /* vmallocs are handled from the workqueue context */ |
107 | schedule_work(&fddef->wq); | 107 | schedule_work(&fddef->wq); |
108 | spin_unlock(&fddef->lock); | 108 | spin_unlock(&fddef->lock); |
109 | put_cpu_var(fdtable_defer_list); | 109 | put_cpu_var(fdtable_defer_list); |
110 | } | 110 | } |
111 | } | 111 | } |
112 | 112 | ||
113 | /* | 113 | /* |
114 | * Expand the fdset in the files_struct. Called with the files spinlock | 114 | * Expand the fdset in the files_struct. Called with the files spinlock |
115 | * held for write. | 115 | * held for write. |
116 | */ | 116 | */ |
117 | static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) | 117 | static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) |
118 | { | 118 | { |
119 | unsigned int cpy, set; | 119 | unsigned int cpy, set; |
120 | 120 | ||
121 | BUG_ON(nfdt->max_fds < ofdt->max_fds); | 121 | BUG_ON(nfdt->max_fds < ofdt->max_fds); |
122 | if (ofdt->max_fds == 0) | 122 | if (ofdt->max_fds == 0) |
123 | return; | 123 | return; |
124 | 124 | ||
125 | cpy = ofdt->max_fds * sizeof(struct file *); | 125 | cpy = ofdt->max_fds * sizeof(struct file *); |
126 | set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *); | 126 | set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *); |
127 | memcpy(nfdt->fd, ofdt->fd, cpy); | 127 | memcpy(nfdt->fd, ofdt->fd, cpy); |
128 | memset((char *)(nfdt->fd) + cpy, 0, set); | 128 | memset((char *)(nfdt->fd) + cpy, 0, set); |
129 | 129 | ||
130 | cpy = ofdt->max_fds / BITS_PER_BYTE; | 130 | cpy = ofdt->max_fds / BITS_PER_BYTE; |
131 | set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE; | 131 | set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE; |
132 | memcpy(nfdt->open_fds, ofdt->open_fds, cpy); | 132 | memcpy(nfdt->open_fds, ofdt->open_fds, cpy); |
133 | memset((char *)(nfdt->open_fds) + cpy, 0, set); | 133 | memset((char *)(nfdt->open_fds) + cpy, 0, set); |
134 | memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy); | 134 | memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy); |
135 | memset((char *)(nfdt->close_on_exec) + cpy, 0, set); | 135 | memset((char *)(nfdt->close_on_exec) + cpy, 0, set); |
136 | } | 136 | } |
137 | 137 | ||
138 | static struct fdtable * alloc_fdtable(unsigned int nr) | 138 | static struct fdtable * alloc_fdtable(unsigned int nr) |
139 | { | 139 | { |
140 | struct fdtable *fdt; | 140 | struct fdtable *fdt; |
141 | char *data; | 141 | char *data; |
142 | 142 | ||
143 | /* | 143 | /* |
144 | * Figure out how many fds we actually want to support in this fdtable. | 144 | * Figure out how many fds we actually want to support in this fdtable. |
145 | * Allocation steps are keyed to the size of the fdarray, since it | 145 | * Allocation steps are keyed to the size of the fdarray, since it |
146 | * grows far faster than any of the other dynamic data. We try to fit | 146 | * grows far faster than any of the other dynamic data. We try to fit |
147 | * the fdarray into comfortable page-tuned chunks: starting at 1024B | 147 | * the fdarray into comfortable page-tuned chunks: starting at 1024B |
148 | * and growing in powers of two from there on. | 148 | * and growing in powers of two from there on. |
149 | */ | 149 | */ |
150 | nr /= (1024 / sizeof(struct file *)); | 150 | nr /= (1024 / sizeof(struct file *)); |
151 | nr = roundup_pow_of_two(nr + 1); | 151 | nr = roundup_pow_of_two(nr + 1); |
152 | nr *= (1024 / sizeof(struct file *)); | 152 | nr *= (1024 / sizeof(struct file *)); |
153 | /* | 153 | /* |
154 | * Note that this can drive nr *below* what we had passed if sysctl_nr_open | 154 | * Note that this can drive nr *below* what we had passed if sysctl_nr_open |
155 | * had been set lower between the check in expand_files() and here. Deal | 155 | * had been set lower between the check in expand_files() and here. Deal |
156 | * with that in caller, it's cheaper that way. | 156 | * with that in caller, it's cheaper that way. |
157 | * | 157 | * |
158 | * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise | 158 | * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise |
159 | * bitmaps handling below becomes unpleasant, to put it mildly... | 159 | * bitmaps handling below becomes unpleasant, to put it mildly... |
160 | */ | 160 | */ |
161 | if (unlikely(nr > sysctl_nr_open)) | 161 | if (unlikely(nr > sysctl_nr_open)) |
162 | nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1; | 162 | nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1; |
163 | 163 | ||
164 | fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL); | 164 | fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL); |
165 | if (!fdt) | 165 | if (!fdt) |
166 | goto out; | 166 | goto out; |
167 | fdt->max_fds = nr; | 167 | fdt->max_fds = nr; |
168 | data = alloc_fdmem(nr * sizeof(struct file *)); | 168 | data = alloc_fdmem(nr * sizeof(struct file *)); |
169 | if (!data) | 169 | if (!data) |
170 | goto out_fdt; | 170 | goto out_fdt; |
171 | fdt->fd = (struct file **)data; | 171 | fdt->fd = (struct file **)data; |
172 | data = alloc_fdmem(max_t(unsigned int, | 172 | data = alloc_fdmem(max_t(unsigned int, |
173 | 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES)); | 173 | 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES)); |
174 | if (!data) | 174 | if (!data) |
175 | goto out_arr; | 175 | goto out_arr; |
176 | fdt->open_fds = (fd_set *)data; | 176 | fdt->open_fds = (fd_set *)data; |
177 | data += nr / BITS_PER_BYTE; | 177 | data += nr / BITS_PER_BYTE; |
178 | fdt->close_on_exec = (fd_set *)data; | 178 | fdt->close_on_exec = (fd_set *)data; |
179 | INIT_RCU_HEAD(&fdt->rcu); | 179 | INIT_RCU_HEAD(&fdt->rcu); |
180 | fdt->next = NULL; | 180 | fdt->next = NULL; |
181 | 181 | ||
182 | return fdt; | 182 | return fdt; |
183 | 183 | ||
184 | out_arr: | 184 | out_arr: |
185 | free_fdarr(fdt); | 185 | free_fdarr(fdt); |
186 | out_fdt: | 186 | out_fdt: |
187 | kfree(fdt); | 187 | kfree(fdt); |
188 | out: | 188 | out: |
189 | return NULL; | 189 | return NULL; |
190 | } | 190 | } |
191 | 191 | ||
192 | /* | 192 | /* |
193 | * Expand the file descriptor table. | 193 | * Expand the file descriptor table. |
194 | * This function will allocate a new fdtable and both fd array and fdset, of | 194 | * This function will allocate a new fdtable and both fd array and fdset, of |
195 | * the given size. | 195 | * the given size. |
196 | * Return <0 error code on error; 1 on successful completion. | 196 | * Return <0 error code on error; 1 on successful completion. |
197 | * The files->file_lock should be held on entry, and will be held on exit. | 197 | * The files->file_lock should be held on entry, and will be held on exit. |
198 | */ | 198 | */ |
199 | static int expand_fdtable(struct files_struct *files, int nr) | 199 | static int expand_fdtable(struct files_struct *files, int nr) |
200 | __releases(files->file_lock) | 200 | __releases(files->file_lock) |
201 | __acquires(files->file_lock) | 201 | __acquires(files->file_lock) |
202 | { | 202 | { |
203 | struct fdtable *new_fdt, *cur_fdt; | 203 | struct fdtable *new_fdt, *cur_fdt; |
204 | 204 | ||
205 | spin_unlock(&files->file_lock); | 205 | spin_unlock(&files->file_lock); |
206 | new_fdt = alloc_fdtable(nr); | 206 | new_fdt = alloc_fdtable(nr); |
207 | spin_lock(&files->file_lock); | 207 | spin_lock(&files->file_lock); |
208 | if (!new_fdt) | 208 | if (!new_fdt) |
209 | return -ENOMEM; | 209 | return -ENOMEM; |
210 | /* | 210 | /* |
211 | * extremely unlikely race - sysctl_nr_open decreased between the check in | 211 | * extremely unlikely race - sysctl_nr_open decreased between the check in |
212 | * caller and alloc_fdtable(). Cheaper to catch it here... | 212 | * caller and alloc_fdtable(). Cheaper to catch it here... |
213 | */ | 213 | */ |
214 | if (unlikely(new_fdt->max_fds <= nr)) { | 214 | if (unlikely(new_fdt->max_fds <= nr)) { |
215 | free_fdarr(new_fdt); | 215 | free_fdarr(new_fdt); |
216 | free_fdset(new_fdt); | 216 | free_fdset(new_fdt); |
217 | kfree(new_fdt); | 217 | kfree(new_fdt); |
218 | return -EMFILE; | 218 | return -EMFILE; |
219 | } | 219 | } |
220 | /* | 220 | /* |
221 | * Check again since another task may have expanded the fd table while | 221 | * Check again since another task may have expanded the fd table while |
222 | * we dropped the lock | 222 | * we dropped the lock |
223 | */ | 223 | */ |
224 | cur_fdt = files_fdtable(files); | 224 | cur_fdt = files_fdtable(files); |
225 | if (nr >= cur_fdt->max_fds) { | 225 | if (nr >= cur_fdt->max_fds) { |
226 | /* Continue as planned */ | 226 | /* Continue as planned */ |
227 | copy_fdtable(new_fdt, cur_fdt); | 227 | copy_fdtable(new_fdt, cur_fdt); |
228 | rcu_assign_pointer(files->fdt, new_fdt); | 228 | rcu_assign_pointer(files->fdt, new_fdt); |
229 | if (cur_fdt->max_fds > NR_OPEN_DEFAULT) | 229 | if (cur_fdt->max_fds > NR_OPEN_DEFAULT) |
230 | free_fdtable(cur_fdt); | 230 | free_fdtable(cur_fdt); |
231 | } else { | 231 | } else { |
232 | /* Somebody else expanded, so undo our attempt */ | 232 | /* Somebody else expanded, so undo our attempt */ |
233 | free_fdarr(new_fdt); | 233 | free_fdarr(new_fdt); |
234 | free_fdset(new_fdt); | 234 | free_fdset(new_fdt); |
235 | kfree(new_fdt); | 235 | kfree(new_fdt); |
236 | } | 236 | } |
237 | return 1; | 237 | return 1; |
238 | } | 238 | } |
239 | 239 | ||
240 | /* | 240 | /* |
241 | * Expand files. | 241 | * Expand files. |
242 | * This function will expand the file structures, if the requested size exceeds | 242 | * This function will expand the file structures, if the requested size exceeds |
243 | * the current capacity and there is room for expansion. | 243 | * the current capacity and there is room for expansion. |
244 | * Return <0 error code on error; 0 when nothing done; 1 when files were | 244 | * Return <0 error code on error; 0 when nothing done; 1 when files were |
245 | * expanded and execution may have blocked. | 245 | * expanded and execution may have blocked. |
246 | * The files->file_lock should be held on entry, and will be held on exit. | 246 | * The files->file_lock should be held on entry, and will be held on exit. |
247 | */ | 247 | */ |
248 | int expand_files(struct files_struct *files, int nr) | 248 | int expand_files(struct files_struct *files, int nr) |
249 | { | 249 | { |
250 | struct fdtable *fdt; | 250 | struct fdtable *fdt; |
251 | 251 | ||
252 | fdt = files_fdtable(files); | 252 | fdt = files_fdtable(files); |
253 | /* Do we need to expand? */ | 253 | /* Do we need to expand? */ |
254 | if (nr < fdt->max_fds) | 254 | if (nr < fdt->max_fds) |
255 | return 0; | 255 | return 0; |
256 | /* Can we expand? */ | 256 | /* Can we expand? */ |
257 | if (nr >= sysctl_nr_open) | 257 | if (nr >= sysctl_nr_open) |
258 | return -EMFILE; | 258 | return -EMFILE; |
259 | 259 | ||
260 | /* All good, so we try */ | 260 | /* All good, so we try */ |
261 | return expand_fdtable(files, nr); | 261 | return expand_fdtable(files, nr); |
262 | } | 262 | } |
263 | 263 | ||
264 | static int count_open_files(struct fdtable *fdt) | ||
265 | { | ||
266 | int size = fdt->max_fds; | ||
267 | int i; | ||
268 | |||
269 | /* Find the last open fd */ | ||
270 | for (i = size/(8*sizeof(long)); i > 0; ) { | ||
271 | if (fdt->open_fds->fds_bits[--i]) | ||
272 | break; | ||
273 | } | ||
274 | i = (i+1) * 8 * sizeof(long); | ||
275 | return i; | ||
276 | } | ||
277 | |||
278 | static struct files_struct *alloc_files(void) | ||
279 | { | ||
280 | struct files_struct *newf; | ||
281 | struct fdtable *fdt; | ||
282 | |||
283 | newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); | ||
284 | if (!newf) | ||
285 | goto out; | ||
286 | |||
287 | atomic_set(&newf->count, 1); | ||
288 | |||
289 | spin_lock_init(&newf->file_lock); | ||
290 | newf->next_fd = 0; | ||
291 | fdt = &newf->fdtab; | ||
292 | fdt->max_fds = NR_OPEN_DEFAULT; | ||
293 | fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init; | ||
294 | fdt->open_fds = (fd_set *)&newf->open_fds_init; | ||
295 | fdt->fd = &newf->fd_array[0]; | ||
296 | INIT_RCU_HEAD(&fdt->rcu); | ||
297 | fdt->next = NULL; | ||
298 | rcu_assign_pointer(newf->fdt, fdt); | ||
299 | out: | ||
300 | return newf; | ||
301 | } | ||
302 | |||
303 | /* | ||
304 | * Allocate a new files structure and copy contents from the | ||
305 | * passed in files structure. | ||
306 | * errorp will be valid only when the returned files_struct is NULL. | ||
307 | */ | ||
308 | struct files_struct *dup_fd(struct files_struct *oldf, int *errorp) | ||
309 | { | ||
310 | struct files_struct *newf; | ||
311 | struct file **old_fds, **new_fds; | ||
312 | int open_files, size, i; | ||
313 | struct fdtable *old_fdt, *new_fdt; | ||
314 | |||
315 | *errorp = -ENOMEM; | ||
316 | newf = alloc_files(); | ||
317 | if (!newf) | ||
318 | goto out; | ||
319 | |||
320 | spin_lock(&oldf->file_lock); | ||
321 | old_fdt = files_fdtable(oldf); | ||
322 | new_fdt = files_fdtable(newf); | ||
323 | open_files = count_open_files(old_fdt); | ||
324 | |||
325 | /* | ||
326 | * Check whether we need to allocate a larger fd array and fd set. | ||
327 | * Note: we're not a clone task, so the open count won't change. | ||
328 | */ | ||
329 | if (open_files > new_fdt->max_fds) { | ||
330 | new_fdt->max_fds = 0; | ||
331 | spin_unlock(&oldf->file_lock); | ||
332 | spin_lock(&newf->file_lock); | ||
333 | *errorp = expand_files(newf, open_files-1); | ||
334 | spin_unlock(&newf->file_lock); | ||
335 | if (*errorp < 0) | ||
336 | goto out_release; | ||
337 | new_fdt = files_fdtable(newf); | ||
338 | /* | ||
339 | * Reacquire the oldf lock and a pointer to its fd table | ||
340 | * who knows it may have a new bigger fd table. We need | ||
341 | * the latest pointer. | ||
342 | */ | ||
343 | spin_lock(&oldf->file_lock); | ||
344 | old_fdt = files_fdtable(oldf); | ||
345 | } | ||
346 | |||
347 | old_fds = old_fdt->fd; | ||
348 | new_fds = new_fdt->fd; | ||
349 | |||
350 | memcpy(new_fdt->open_fds->fds_bits, | ||
351 | old_fdt->open_fds->fds_bits, open_files/8); | ||
352 | memcpy(new_fdt->close_on_exec->fds_bits, | ||
353 | old_fdt->close_on_exec->fds_bits, open_files/8); | ||
354 | |||
355 | for (i = open_files; i != 0; i--) { | ||
356 | struct file *f = *old_fds++; | ||
357 | if (f) { | ||
358 | get_file(f); | ||
359 | } else { | ||
360 | /* | ||
361 | * The fd may be claimed in the fd bitmap but not yet | ||
362 | * instantiated in the files array if a sibling thread | ||
363 | * is partway through open(). So make sure that this | ||
364 | * fd is available to the new process. | ||
365 | */ | ||
366 | FD_CLR(open_files - i, new_fdt->open_fds); | ||
367 | } | ||
368 | rcu_assign_pointer(*new_fds++, f); | ||
369 | } | ||
370 | spin_unlock(&oldf->file_lock); | ||
371 | |||
372 | /* compute the remainder to be cleared */ | ||
373 | size = (new_fdt->max_fds - open_files) * sizeof(struct file *); | ||
374 | |||
375 | /* This is long word aligned thus could use a optimized version */ | ||
376 | memset(new_fds, 0, size); | ||
377 | |||
378 | if (new_fdt->max_fds > open_files) { | ||
379 | int left = (new_fdt->max_fds-open_files)/8; | ||
380 | int start = open_files / (8 * sizeof(unsigned long)); | ||
381 | |||
382 | memset(&new_fdt->open_fds->fds_bits[start], 0, left); | ||
383 | memset(&new_fdt->close_on_exec->fds_bits[start], 0, left); | ||
384 | } | ||
385 | |||
386 | return newf; | ||
387 | |||
388 | out_release: | ||
389 | kmem_cache_free(files_cachep, newf); | ||
390 | out: | ||
391 | return NULL; | ||
392 | } | ||
393 | |||
264 | static void __devinit fdtable_defer_list_init(int cpu) | 394 | static void __devinit fdtable_defer_list_init(int cpu) |
265 | { | 395 | { |
266 | struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu); | 396 | struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu); |
267 | spin_lock_init(&fddef->lock); | 397 | spin_lock_init(&fddef->lock); |
268 | INIT_WORK(&fddef->wq, free_fdtable_work); | 398 | INIT_WORK(&fddef->wq, free_fdtable_work); |
269 | fddef->next = NULL; | 399 | fddef->next = NULL; |
270 | } | 400 | } |
271 | 401 | ||
272 | void __init files_defer_init(void) | 402 | void __init files_defer_init(void) |
273 | { | 403 | { |
274 | int i; | 404 | int i; |
275 | for_each_possible_cpu(i) | 405 | for_each_possible_cpu(i) |
276 | fdtable_defer_list_init(i); | 406 | fdtable_defer_list_init(i); |
277 | } | 407 | } |
278 | 408 | ||
279 | struct files_struct init_files = { | 409 | struct files_struct init_files = { |
280 | .count = ATOMIC_INIT(1), | 410 | .count = ATOMIC_INIT(1), |
281 | .fdt = &init_files.fdtab, | 411 | .fdt = &init_files.fdtab, |
282 | .fdtab = { | 412 | .fdtab = { |
283 | .max_fds = NR_OPEN_DEFAULT, | 413 | .max_fds = NR_OPEN_DEFAULT, |
284 | .fd = &init_files.fd_array[0], | 414 | .fd = &init_files.fd_array[0], |
285 | .close_on_exec = (fd_set *)&init_files.close_on_exec_init, | 415 | .close_on_exec = (fd_set *)&init_files.close_on_exec_init, |
286 | .open_fds = (fd_set *)&init_files.open_fds_init, | 416 | .open_fds = (fd_set *)&init_files.open_fds_init, |
287 | .rcu = RCU_HEAD_INIT, | 417 | .rcu = RCU_HEAD_INIT, |
288 | }, | 418 | }, |
289 | .file_lock = __SPIN_LOCK_UNLOCKED(init_task.file_lock), | 419 | .file_lock = __SPIN_LOCK_UNLOCKED(init_task.file_lock), |
290 | }; | 420 | }; |
291 | 421 |
include/linux/fdtable.h
1 | /* | 1 | /* |
2 | * descriptor table internals; you almost certainly want file.h instead. | 2 | * descriptor table internals; you almost certainly want file.h instead. |
3 | */ | 3 | */ |
4 | 4 | ||
5 | #ifndef __LINUX_FDTABLE_H | 5 | #ifndef __LINUX_FDTABLE_H |
6 | #define __LINUX_FDTABLE_H | 6 | #define __LINUX_FDTABLE_H |
7 | 7 | ||
8 | #include <asm/atomic.h> | 8 | #include <asm/atomic.h> |
9 | #include <linux/posix_types.h> | 9 | #include <linux/posix_types.h> |
10 | #include <linux/compiler.h> | 10 | #include <linux/compiler.h> |
11 | #include <linux/spinlock.h> | 11 | #include <linux/spinlock.h> |
12 | #include <linux/rcupdate.h> | 12 | #include <linux/rcupdate.h> |
13 | #include <linux/types.h> | 13 | #include <linux/types.h> |
14 | 14 | ||
15 | /* | 15 | /* |
16 | * The default fd array needs to be at least BITS_PER_LONG, | 16 | * The default fd array needs to be at least BITS_PER_LONG, |
17 | * as this is the granularity returned by copy_fdset(). | 17 | * as this is the granularity returned by copy_fdset(). |
18 | */ | 18 | */ |
19 | #define NR_OPEN_DEFAULT BITS_PER_LONG | 19 | #define NR_OPEN_DEFAULT BITS_PER_LONG |
20 | 20 | ||
21 | /* | 21 | /* |
22 | * The embedded_fd_set is a small fd_set, | 22 | * The embedded_fd_set is a small fd_set, |
23 | * suitable for most tasks (which open <= BITS_PER_LONG files) | 23 | * suitable for most tasks (which open <= BITS_PER_LONG files) |
24 | */ | 24 | */ |
25 | struct embedded_fd_set { | 25 | struct embedded_fd_set { |
26 | unsigned long fds_bits[1]; | 26 | unsigned long fds_bits[1]; |
27 | }; | 27 | }; |
28 | 28 | ||
29 | struct fdtable { | 29 | struct fdtable { |
30 | unsigned int max_fds; | 30 | unsigned int max_fds; |
31 | struct file ** fd; /* current fd array */ | 31 | struct file ** fd; /* current fd array */ |
32 | fd_set *close_on_exec; | 32 | fd_set *close_on_exec; |
33 | fd_set *open_fds; | 33 | fd_set *open_fds; |
34 | struct rcu_head rcu; | 34 | struct rcu_head rcu; |
35 | struct fdtable *next; | 35 | struct fdtable *next; |
36 | }; | 36 | }; |
37 | 37 | ||
38 | /* | 38 | /* |
39 | * Open file table structure | 39 | * Open file table structure |
40 | */ | 40 | */ |
41 | struct files_struct { | 41 | struct files_struct { |
42 | /* | 42 | /* |
43 | * read mostly part | 43 | * read mostly part |
44 | */ | 44 | */ |
45 | atomic_t count; | 45 | atomic_t count; |
46 | struct fdtable *fdt; | 46 | struct fdtable *fdt; |
47 | struct fdtable fdtab; | 47 | struct fdtable fdtab; |
48 | /* | 48 | /* |
49 | * written part on a separate cache line in SMP | 49 | * written part on a separate cache line in SMP |
50 | */ | 50 | */ |
51 | spinlock_t file_lock ____cacheline_aligned_in_smp; | 51 | spinlock_t file_lock ____cacheline_aligned_in_smp; |
52 | int next_fd; | 52 | int next_fd; |
53 | struct embedded_fd_set close_on_exec_init; | 53 | struct embedded_fd_set close_on_exec_init; |
54 | struct embedded_fd_set open_fds_init; | 54 | struct embedded_fd_set open_fds_init; |
55 | struct file * fd_array[NR_OPEN_DEFAULT]; | 55 | struct file * fd_array[NR_OPEN_DEFAULT]; |
56 | }; | 56 | }; |
57 | 57 | ||
58 | #define files_fdtable(files) (rcu_dereference((files)->fdt)) | 58 | #define files_fdtable(files) (rcu_dereference((files)->fdt)) |
59 | 59 | ||
60 | extern struct kmem_cache *filp_cachep; | 60 | extern struct kmem_cache *filp_cachep; |
61 | 61 | ||
62 | struct file_operations; | 62 | struct file_operations; |
63 | struct vfsmount; | 63 | struct vfsmount; |
64 | struct dentry; | 64 | struct dentry; |
65 | 65 | ||
66 | extern int expand_files(struct files_struct *, int nr); | 66 | extern int expand_files(struct files_struct *, int nr); |
67 | extern void free_fdtable_rcu(struct rcu_head *rcu); | 67 | extern void free_fdtable_rcu(struct rcu_head *rcu); |
68 | extern void __init files_defer_init(void); | 68 | extern void __init files_defer_init(void); |
69 | 69 | ||
70 | static inline void free_fdtable(struct fdtable *fdt) | 70 | static inline void free_fdtable(struct fdtable *fdt) |
71 | { | 71 | { |
72 | call_rcu(&fdt->rcu, free_fdtable_rcu); | 72 | call_rcu(&fdt->rcu, free_fdtable_rcu); |
73 | } | 73 | } |
74 | 74 | ||
75 | static inline struct file * fcheck_files(struct files_struct *files, unsigned int fd) | 75 | static inline struct file * fcheck_files(struct files_struct *files, unsigned int fd) |
76 | { | 76 | { |
77 | struct file * file = NULL; | 77 | struct file * file = NULL; |
78 | struct fdtable *fdt = files_fdtable(files); | 78 | struct fdtable *fdt = files_fdtable(files); |
79 | 79 | ||
80 | if (fd < fdt->max_fds) | 80 | if (fd < fdt->max_fds) |
81 | file = rcu_dereference(fdt->fd[fd]); | 81 | file = rcu_dereference(fdt->fd[fd]); |
82 | return file; | 82 | return file; |
83 | } | 83 | } |
84 | 84 | ||
85 | /* | 85 | /* |
86 | * Check whether the specified fd has an open file. | 86 | * Check whether the specified fd has an open file. |
87 | */ | 87 | */ |
88 | #define fcheck(fd) fcheck_files(current->files, fd) | 88 | #define fcheck(fd) fcheck_files(current->files, fd) |
89 | 89 | ||
90 | struct task_struct; | 90 | struct task_struct; |
91 | 91 | ||
92 | struct files_struct *get_files_struct(struct task_struct *); | 92 | struct files_struct *get_files_struct(struct task_struct *); |
93 | void put_files_struct(struct files_struct *fs); | 93 | void put_files_struct(struct files_struct *fs); |
94 | void reset_files_struct(struct files_struct *); | 94 | void reset_files_struct(struct files_struct *); |
95 | int unshare_files(struct files_struct **); | 95 | int unshare_files(struct files_struct **); |
96 | struct files_struct *dup_fd(struct files_struct *, int *); | ||
96 | 97 | ||
97 | extern struct kmem_cache *files_cachep; | 98 | extern struct kmem_cache *files_cachep; |
98 | 99 | ||
99 | #endif /* __LINUX_FDTABLE_H */ | 100 | #endif /* __LINUX_FDTABLE_H */ |
100 | 101 |
kernel/fork.c
1 | /* | 1 | /* |
2 | * linux/kernel/fork.c | 2 | * linux/kernel/fork.c |
3 | * | 3 | * |
4 | * Copyright (C) 1991, 1992 Linus Torvalds | 4 | * Copyright (C) 1991, 1992 Linus Torvalds |
5 | */ | 5 | */ |
6 | 6 | ||
7 | /* | 7 | /* |
8 | * 'fork.c' contains the help-routines for the 'fork' system call | 8 | * 'fork.c' contains the help-routines for the 'fork' system call |
9 | * (see also entry.S and others). | 9 | * (see also entry.S and others). |
10 | * Fork is rather simple, once you get the hang of it, but the memory | 10 | * Fork is rather simple, once you get the hang of it, but the memory |
11 | * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' | 11 | * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' |
12 | */ | 12 | */ |
13 | 13 | ||
14 | #include <linux/slab.h> | 14 | #include <linux/slab.h> |
15 | #include <linux/init.h> | 15 | #include <linux/init.h> |
16 | #include <linux/unistd.h> | 16 | #include <linux/unistd.h> |
17 | #include <linux/module.h> | 17 | #include <linux/module.h> |
18 | #include <linux/vmalloc.h> | 18 | #include <linux/vmalloc.h> |
19 | #include <linux/completion.h> | 19 | #include <linux/completion.h> |
20 | #include <linux/mnt_namespace.h> | 20 | #include <linux/mnt_namespace.h> |
21 | #include <linux/personality.h> | 21 | #include <linux/personality.h> |
22 | #include <linux/mempolicy.h> | 22 | #include <linux/mempolicy.h> |
23 | #include <linux/sem.h> | 23 | #include <linux/sem.h> |
24 | #include <linux/file.h> | 24 | #include <linux/file.h> |
25 | #include <linux/fdtable.h> | 25 | #include <linux/fdtable.h> |
26 | #include <linux/key.h> | 26 | #include <linux/key.h> |
27 | #include <linux/binfmts.h> | 27 | #include <linux/binfmts.h> |
28 | #include <linux/mman.h> | 28 | #include <linux/mman.h> |
29 | #include <linux/fs.h> | 29 | #include <linux/fs.h> |
30 | #include <linux/nsproxy.h> | 30 | #include <linux/nsproxy.h> |
31 | #include <linux/capability.h> | 31 | #include <linux/capability.h> |
32 | #include <linux/cpu.h> | 32 | #include <linux/cpu.h> |
33 | #include <linux/cgroup.h> | 33 | #include <linux/cgroup.h> |
34 | #include <linux/security.h> | 34 | #include <linux/security.h> |
35 | #include <linux/swap.h> | 35 | #include <linux/swap.h> |
36 | #include <linux/syscalls.h> | 36 | #include <linux/syscalls.h> |
37 | #include <linux/jiffies.h> | 37 | #include <linux/jiffies.h> |
38 | #include <linux/futex.h> | 38 | #include <linux/futex.h> |
39 | #include <linux/task_io_accounting_ops.h> | 39 | #include <linux/task_io_accounting_ops.h> |
40 | #include <linux/rcupdate.h> | 40 | #include <linux/rcupdate.h> |
41 | #include <linux/ptrace.h> | 41 | #include <linux/ptrace.h> |
42 | #include <linux/mount.h> | 42 | #include <linux/mount.h> |
43 | #include <linux/audit.h> | 43 | #include <linux/audit.h> |
44 | #include <linux/memcontrol.h> | 44 | #include <linux/memcontrol.h> |
45 | #include <linux/profile.h> | 45 | #include <linux/profile.h> |
46 | #include <linux/rmap.h> | 46 | #include <linux/rmap.h> |
47 | #include <linux/acct.h> | 47 | #include <linux/acct.h> |
48 | #include <linux/tsacct_kern.h> | 48 | #include <linux/tsacct_kern.h> |
49 | #include <linux/cn_proc.h> | 49 | #include <linux/cn_proc.h> |
50 | #include <linux/freezer.h> | 50 | #include <linux/freezer.h> |
51 | #include <linux/delayacct.h> | 51 | #include <linux/delayacct.h> |
52 | #include <linux/taskstats_kern.h> | 52 | #include <linux/taskstats_kern.h> |
53 | #include <linux/random.h> | 53 | #include <linux/random.h> |
54 | #include <linux/tty.h> | 54 | #include <linux/tty.h> |
55 | #include <linux/proc_fs.h> | 55 | #include <linux/proc_fs.h> |
56 | #include <linux/blkdev.h> | 56 | #include <linux/blkdev.h> |
57 | 57 | ||
58 | #include <asm/pgtable.h> | 58 | #include <asm/pgtable.h> |
59 | #include <asm/pgalloc.h> | 59 | #include <asm/pgalloc.h> |
60 | #include <asm/uaccess.h> | 60 | #include <asm/uaccess.h> |
61 | #include <asm/mmu_context.h> | 61 | #include <asm/mmu_context.h> |
62 | #include <asm/cacheflush.h> | 62 | #include <asm/cacheflush.h> |
63 | #include <asm/tlbflush.h> | 63 | #include <asm/tlbflush.h> |
64 | 64 | ||
65 | /* | 65 | /* |
66 | * Protected counters by write_lock_irq(&tasklist_lock) | 66 | * Protected counters by write_lock_irq(&tasklist_lock) |
67 | */ | 67 | */ |
68 | unsigned long total_forks; /* Handle normal Linux uptimes. */ | 68 | unsigned long total_forks; /* Handle normal Linux uptimes. */ |
69 | int nr_threads; /* The idle threads do not count.. */ | 69 | int nr_threads; /* The idle threads do not count.. */ |
70 | 70 | ||
71 | int max_threads; /* tunable limit on nr_threads */ | 71 | int max_threads; /* tunable limit on nr_threads */ |
72 | 72 | ||
73 | DEFINE_PER_CPU(unsigned long, process_counts) = 0; | 73 | DEFINE_PER_CPU(unsigned long, process_counts) = 0; |
74 | 74 | ||
75 | __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ | 75 | __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ |
76 | 76 | ||
77 | int nr_processes(void) | 77 | int nr_processes(void) |
78 | { | 78 | { |
79 | int cpu; | 79 | int cpu; |
80 | int total = 0; | 80 | int total = 0; |
81 | 81 | ||
82 | for_each_online_cpu(cpu) | 82 | for_each_online_cpu(cpu) |
83 | total += per_cpu(process_counts, cpu); | 83 | total += per_cpu(process_counts, cpu); |
84 | 84 | ||
85 | return total; | 85 | return total; |
86 | } | 86 | } |
87 | 87 | ||
88 | #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR | 88 | #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR |
89 | # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL) | 89 | # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL) |
90 | # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk)) | 90 | # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk)) |
91 | static struct kmem_cache *task_struct_cachep; | 91 | static struct kmem_cache *task_struct_cachep; |
92 | #endif | 92 | #endif |
93 | 93 | ||
94 | /* SLAB cache for signal_struct structures (tsk->signal) */ | 94 | /* SLAB cache for signal_struct structures (tsk->signal) */ |
95 | static struct kmem_cache *signal_cachep; | 95 | static struct kmem_cache *signal_cachep; |
96 | 96 | ||
97 | /* SLAB cache for sighand_struct structures (tsk->sighand) */ | 97 | /* SLAB cache for sighand_struct structures (tsk->sighand) */ |
98 | struct kmem_cache *sighand_cachep; | 98 | struct kmem_cache *sighand_cachep; |
99 | 99 | ||
100 | /* SLAB cache for files_struct structures (tsk->files) */ | 100 | /* SLAB cache for files_struct structures (tsk->files) */ |
101 | struct kmem_cache *files_cachep; | 101 | struct kmem_cache *files_cachep; |
102 | 102 | ||
103 | /* SLAB cache for fs_struct structures (tsk->fs) */ | 103 | /* SLAB cache for fs_struct structures (tsk->fs) */ |
104 | struct kmem_cache *fs_cachep; | 104 | struct kmem_cache *fs_cachep; |
105 | 105 | ||
106 | /* SLAB cache for vm_area_struct structures */ | 106 | /* SLAB cache for vm_area_struct structures */ |
107 | struct kmem_cache *vm_area_cachep; | 107 | struct kmem_cache *vm_area_cachep; |
108 | 108 | ||
109 | /* SLAB cache for mm_struct structures (tsk->mm) */ | 109 | /* SLAB cache for mm_struct structures (tsk->mm) */ |
110 | static struct kmem_cache *mm_cachep; | 110 | static struct kmem_cache *mm_cachep; |
111 | 111 | ||
112 | void free_task(struct task_struct *tsk) | 112 | void free_task(struct task_struct *tsk) |
113 | { | 113 | { |
114 | prop_local_destroy_single(&tsk->dirties); | 114 | prop_local_destroy_single(&tsk->dirties); |
115 | free_thread_info(tsk->stack); | 115 | free_thread_info(tsk->stack); |
116 | rt_mutex_debug_task_free(tsk); | 116 | rt_mutex_debug_task_free(tsk); |
117 | free_task_struct(tsk); | 117 | free_task_struct(tsk); |
118 | } | 118 | } |
119 | EXPORT_SYMBOL(free_task); | 119 | EXPORT_SYMBOL(free_task); |
120 | 120 | ||
121 | void __put_task_struct(struct task_struct *tsk) | 121 | void __put_task_struct(struct task_struct *tsk) |
122 | { | 122 | { |
123 | WARN_ON(!tsk->exit_state); | 123 | WARN_ON(!tsk->exit_state); |
124 | WARN_ON(atomic_read(&tsk->usage)); | 124 | WARN_ON(atomic_read(&tsk->usage)); |
125 | WARN_ON(tsk == current); | 125 | WARN_ON(tsk == current); |
126 | 126 | ||
127 | security_task_free(tsk); | 127 | security_task_free(tsk); |
128 | free_uid(tsk->user); | 128 | free_uid(tsk->user); |
129 | put_group_info(tsk->group_info); | 129 | put_group_info(tsk->group_info); |
130 | delayacct_tsk_free(tsk); | 130 | delayacct_tsk_free(tsk); |
131 | 131 | ||
132 | if (!profile_handoff_task(tsk)) | 132 | if (!profile_handoff_task(tsk)) |
133 | free_task(tsk); | 133 | free_task(tsk); |
134 | } | 134 | } |
135 | 135 | ||
136 | /* | 136 | /* |
137 | * macro override instead of weak attribute alias, to workaround | 137 | * macro override instead of weak attribute alias, to workaround |
138 | * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions. | 138 | * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions. |
139 | */ | 139 | */ |
140 | #ifndef arch_task_cache_init | 140 | #ifndef arch_task_cache_init |
141 | #define arch_task_cache_init() | 141 | #define arch_task_cache_init() |
142 | #endif | 142 | #endif |
143 | 143 | ||
144 | void __init fork_init(unsigned long mempages) | 144 | void __init fork_init(unsigned long mempages) |
145 | { | 145 | { |
146 | #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR | 146 | #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR |
147 | #ifndef ARCH_MIN_TASKALIGN | 147 | #ifndef ARCH_MIN_TASKALIGN |
148 | #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES | 148 | #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES |
149 | #endif | 149 | #endif |
150 | /* create a slab on which task_structs can be allocated */ | 150 | /* create a slab on which task_structs can be allocated */ |
151 | task_struct_cachep = | 151 | task_struct_cachep = |
152 | kmem_cache_create("task_struct", sizeof(struct task_struct), | 152 | kmem_cache_create("task_struct", sizeof(struct task_struct), |
153 | ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL); | 153 | ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL); |
154 | #endif | 154 | #endif |
155 | 155 | ||
156 | /* do the arch specific task caches init */ | 156 | /* do the arch specific task caches init */ |
157 | arch_task_cache_init(); | 157 | arch_task_cache_init(); |
158 | 158 | ||
159 | /* | 159 | /* |
160 | * The default maximum number of threads is set to a safe | 160 | * The default maximum number of threads is set to a safe |
161 | * value: the thread structures can take up at most half | 161 | * value: the thread structures can take up at most half |
162 | * of memory. | 162 | * of memory. |
163 | */ | 163 | */ |
164 | max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); | 164 | max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); |
165 | 165 | ||
166 | /* | 166 | /* |
167 | * we need to allow at least 20 threads to boot a system | 167 | * we need to allow at least 20 threads to boot a system |
168 | */ | 168 | */ |
169 | if(max_threads < 20) | 169 | if(max_threads < 20) |
170 | max_threads = 20; | 170 | max_threads = 20; |
171 | 171 | ||
172 | init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; | 172 | init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; |
173 | init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; | 173 | init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; |
174 | init_task.signal->rlim[RLIMIT_SIGPENDING] = | 174 | init_task.signal->rlim[RLIMIT_SIGPENDING] = |
175 | init_task.signal->rlim[RLIMIT_NPROC]; | 175 | init_task.signal->rlim[RLIMIT_NPROC]; |
176 | } | 176 | } |
177 | 177 | ||
178 | int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst, | 178 | int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst, |
179 | struct task_struct *src) | 179 | struct task_struct *src) |
180 | { | 180 | { |
181 | *dst = *src; | 181 | *dst = *src; |
182 | return 0; | 182 | return 0; |
183 | } | 183 | } |
184 | 184 | ||
185 | static struct task_struct *dup_task_struct(struct task_struct *orig) | 185 | static struct task_struct *dup_task_struct(struct task_struct *orig) |
186 | { | 186 | { |
187 | struct task_struct *tsk; | 187 | struct task_struct *tsk; |
188 | struct thread_info *ti; | 188 | struct thread_info *ti; |
189 | int err; | 189 | int err; |
190 | 190 | ||
191 | prepare_to_copy(orig); | 191 | prepare_to_copy(orig); |
192 | 192 | ||
193 | tsk = alloc_task_struct(); | 193 | tsk = alloc_task_struct(); |
194 | if (!tsk) | 194 | if (!tsk) |
195 | return NULL; | 195 | return NULL; |
196 | 196 | ||
197 | ti = alloc_thread_info(tsk); | 197 | ti = alloc_thread_info(tsk); |
198 | if (!ti) { | 198 | if (!ti) { |
199 | free_task_struct(tsk); | 199 | free_task_struct(tsk); |
200 | return NULL; | 200 | return NULL; |
201 | } | 201 | } |
202 | 202 | ||
203 | err = arch_dup_task_struct(tsk, orig); | 203 | err = arch_dup_task_struct(tsk, orig); |
204 | if (err) | 204 | if (err) |
205 | goto out; | 205 | goto out; |
206 | 206 | ||
207 | tsk->stack = ti; | 207 | tsk->stack = ti; |
208 | 208 | ||
209 | err = prop_local_init_single(&tsk->dirties); | 209 | err = prop_local_init_single(&tsk->dirties); |
210 | if (err) | 210 | if (err) |
211 | goto out; | 211 | goto out; |
212 | 212 | ||
213 | setup_thread_stack(tsk, orig); | 213 | setup_thread_stack(tsk, orig); |
214 | 214 | ||
215 | #ifdef CONFIG_CC_STACKPROTECTOR | 215 | #ifdef CONFIG_CC_STACKPROTECTOR |
216 | tsk->stack_canary = get_random_int(); | 216 | tsk->stack_canary = get_random_int(); |
217 | #endif | 217 | #endif |
218 | 218 | ||
219 | /* One for us, one for whoever does the "release_task()" (usually parent) */ | 219 | /* One for us, one for whoever does the "release_task()" (usually parent) */ |
220 | atomic_set(&tsk->usage,2); | 220 | atomic_set(&tsk->usage,2); |
221 | atomic_set(&tsk->fs_excl, 0); | 221 | atomic_set(&tsk->fs_excl, 0); |
222 | #ifdef CONFIG_BLK_DEV_IO_TRACE | 222 | #ifdef CONFIG_BLK_DEV_IO_TRACE |
223 | tsk->btrace_seq = 0; | 223 | tsk->btrace_seq = 0; |
224 | #endif | 224 | #endif |
225 | tsk->splice_pipe = NULL; | 225 | tsk->splice_pipe = NULL; |
226 | return tsk; | 226 | return tsk; |
227 | 227 | ||
228 | out: | 228 | out: |
229 | free_thread_info(ti); | 229 | free_thread_info(ti); |
230 | free_task_struct(tsk); | 230 | free_task_struct(tsk); |
231 | return NULL; | 231 | return NULL; |
232 | } | 232 | } |
233 | 233 | ||
234 | #ifdef CONFIG_MMU | 234 | #ifdef CONFIG_MMU |
235 | static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) | 235 | static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) |
236 | { | 236 | { |
237 | struct vm_area_struct *mpnt, *tmp, **pprev; | 237 | struct vm_area_struct *mpnt, *tmp, **pprev; |
238 | struct rb_node **rb_link, *rb_parent; | 238 | struct rb_node **rb_link, *rb_parent; |
239 | int retval; | 239 | int retval; |
240 | unsigned long charge; | 240 | unsigned long charge; |
241 | struct mempolicy *pol; | 241 | struct mempolicy *pol; |
242 | 242 | ||
243 | down_write(&oldmm->mmap_sem); | 243 | down_write(&oldmm->mmap_sem); |
244 | flush_cache_dup_mm(oldmm); | 244 | flush_cache_dup_mm(oldmm); |
245 | /* | 245 | /* |
246 | * Not linked in yet - no deadlock potential: | 246 | * Not linked in yet - no deadlock potential: |
247 | */ | 247 | */ |
248 | down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); | 248 | down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); |
249 | 249 | ||
250 | mm->locked_vm = 0; | 250 | mm->locked_vm = 0; |
251 | mm->mmap = NULL; | 251 | mm->mmap = NULL; |
252 | mm->mmap_cache = NULL; | 252 | mm->mmap_cache = NULL; |
253 | mm->free_area_cache = oldmm->mmap_base; | 253 | mm->free_area_cache = oldmm->mmap_base; |
254 | mm->cached_hole_size = ~0UL; | 254 | mm->cached_hole_size = ~0UL; |
255 | mm->map_count = 0; | 255 | mm->map_count = 0; |
256 | cpus_clear(mm->cpu_vm_mask); | 256 | cpus_clear(mm->cpu_vm_mask); |
257 | mm->mm_rb = RB_ROOT; | 257 | mm->mm_rb = RB_ROOT; |
258 | rb_link = &mm->mm_rb.rb_node; | 258 | rb_link = &mm->mm_rb.rb_node; |
259 | rb_parent = NULL; | 259 | rb_parent = NULL; |
260 | pprev = &mm->mmap; | 260 | pprev = &mm->mmap; |
261 | 261 | ||
262 | for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { | 262 | for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { |
263 | struct file *file; | 263 | struct file *file; |
264 | 264 | ||
265 | if (mpnt->vm_flags & VM_DONTCOPY) { | 265 | if (mpnt->vm_flags & VM_DONTCOPY) { |
266 | long pages = vma_pages(mpnt); | 266 | long pages = vma_pages(mpnt); |
267 | mm->total_vm -= pages; | 267 | mm->total_vm -= pages; |
268 | vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, | 268 | vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, |
269 | -pages); | 269 | -pages); |
270 | continue; | 270 | continue; |
271 | } | 271 | } |
272 | charge = 0; | 272 | charge = 0; |
273 | if (mpnt->vm_flags & VM_ACCOUNT) { | 273 | if (mpnt->vm_flags & VM_ACCOUNT) { |
274 | unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; | 274 | unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; |
275 | if (security_vm_enough_memory(len)) | 275 | if (security_vm_enough_memory(len)) |
276 | goto fail_nomem; | 276 | goto fail_nomem; |
277 | charge = len; | 277 | charge = len; |
278 | } | 278 | } |
279 | tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); | 279 | tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); |
280 | if (!tmp) | 280 | if (!tmp) |
281 | goto fail_nomem; | 281 | goto fail_nomem; |
282 | *tmp = *mpnt; | 282 | *tmp = *mpnt; |
283 | pol = mpol_dup(vma_policy(mpnt)); | 283 | pol = mpol_dup(vma_policy(mpnt)); |
284 | retval = PTR_ERR(pol); | 284 | retval = PTR_ERR(pol); |
285 | if (IS_ERR(pol)) | 285 | if (IS_ERR(pol)) |
286 | goto fail_nomem_policy; | 286 | goto fail_nomem_policy; |
287 | vma_set_policy(tmp, pol); | 287 | vma_set_policy(tmp, pol); |
288 | tmp->vm_flags &= ~VM_LOCKED; | 288 | tmp->vm_flags &= ~VM_LOCKED; |
289 | tmp->vm_mm = mm; | 289 | tmp->vm_mm = mm; |
290 | tmp->vm_next = NULL; | 290 | tmp->vm_next = NULL; |
291 | anon_vma_link(tmp); | 291 | anon_vma_link(tmp); |
292 | file = tmp->vm_file; | 292 | file = tmp->vm_file; |
293 | if (file) { | 293 | if (file) { |
294 | struct inode *inode = file->f_path.dentry->d_inode; | 294 | struct inode *inode = file->f_path.dentry->d_inode; |
295 | get_file(file); | 295 | get_file(file); |
296 | if (tmp->vm_flags & VM_DENYWRITE) | 296 | if (tmp->vm_flags & VM_DENYWRITE) |
297 | atomic_dec(&inode->i_writecount); | 297 | atomic_dec(&inode->i_writecount); |
298 | 298 | ||
299 | /* insert tmp into the share list, just after mpnt */ | 299 | /* insert tmp into the share list, just after mpnt */ |
300 | spin_lock(&file->f_mapping->i_mmap_lock); | 300 | spin_lock(&file->f_mapping->i_mmap_lock); |
301 | tmp->vm_truncate_count = mpnt->vm_truncate_count; | 301 | tmp->vm_truncate_count = mpnt->vm_truncate_count; |
302 | flush_dcache_mmap_lock(file->f_mapping); | 302 | flush_dcache_mmap_lock(file->f_mapping); |
303 | vma_prio_tree_add(tmp, mpnt); | 303 | vma_prio_tree_add(tmp, mpnt); |
304 | flush_dcache_mmap_unlock(file->f_mapping); | 304 | flush_dcache_mmap_unlock(file->f_mapping); |
305 | spin_unlock(&file->f_mapping->i_mmap_lock); | 305 | spin_unlock(&file->f_mapping->i_mmap_lock); |
306 | } | 306 | } |
307 | 307 | ||
308 | /* | 308 | /* |
309 | * Link in the new vma and copy the page table entries. | 309 | * Link in the new vma and copy the page table entries. |
310 | */ | 310 | */ |
311 | *pprev = tmp; | 311 | *pprev = tmp; |
312 | pprev = &tmp->vm_next; | 312 | pprev = &tmp->vm_next; |
313 | 313 | ||
314 | __vma_link_rb(mm, tmp, rb_link, rb_parent); | 314 | __vma_link_rb(mm, tmp, rb_link, rb_parent); |
315 | rb_link = &tmp->vm_rb.rb_right; | 315 | rb_link = &tmp->vm_rb.rb_right; |
316 | rb_parent = &tmp->vm_rb; | 316 | rb_parent = &tmp->vm_rb; |
317 | 317 | ||
318 | mm->map_count++; | 318 | mm->map_count++; |
319 | retval = copy_page_range(mm, oldmm, mpnt); | 319 | retval = copy_page_range(mm, oldmm, mpnt); |
320 | 320 | ||
321 | if (tmp->vm_ops && tmp->vm_ops->open) | 321 | if (tmp->vm_ops && tmp->vm_ops->open) |
322 | tmp->vm_ops->open(tmp); | 322 | tmp->vm_ops->open(tmp); |
323 | 323 | ||
324 | if (retval) | 324 | if (retval) |
325 | goto out; | 325 | goto out; |
326 | } | 326 | } |
327 | /* a new mm has just been created */ | 327 | /* a new mm has just been created */ |
328 | arch_dup_mmap(oldmm, mm); | 328 | arch_dup_mmap(oldmm, mm); |
329 | retval = 0; | 329 | retval = 0; |
330 | out: | 330 | out: |
331 | up_write(&mm->mmap_sem); | 331 | up_write(&mm->mmap_sem); |
332 | flush_tlb_mm(oldmm); | 332 | flush_tlb_mm(oldmm); |
333 | up_write(&oldmm->mmap_sem); | 333 | up_write(&oldmm->mmap_sem); |
334 | return retval; | 334 | return retval; |
335 | fail_nomem_policy: | 335 | fail_nomem_policy: |
336 | kmem_cache_free(vm_area_cachep, tmp); | 336 | kmem_cache_free(vm_area_cachep, tmp); |
337 | fail_nomem: | 337 | fail_nomem: |
338 | retval = -ENOMEM; | 338 | retval = -ENOMEM; |
339 | vm_unacct_memory(charge); | 339 | vm_unacct_memory(charge); |
340 | goto out; | 340 | goto out; |
341 | } | 341 | } |
342 | 342 | ||
343 | static inline int mm_alloc_pgd(struct mm_struct * mm) | 343 | static inline int mm_alloc_pgd(struct mm_struct * mm) |
344 | { | 344 | { |
345 | mm->pgd = pgd_alloc(mm); | 345 | mm->pgd = pgd_alloc(mm); |
346 | if (unlikely(!mm->pgd)) | 346 | if (unlikely(!mm->pgd)) |
347 | return -ENOMEM; | 347 | return -ENOMEM; |
348 | return 0; | 348 | return 0; |
349 | } | 349 | } |
350 | 350 | ||
351 | static inline void mm_free_pgd(struct mm_struct * mm) | 351 | static inline void mm_free_pgd(struct mm_struct * mm) |
352 | { | 352 | { |
353 | pgd_free(mm, mm->pgd); | 353 | pgd_free(mm, mm->pgd); |
354 | } | 354 | } |
355 | #else | 355 | #else |
356 | #define dup_mmap(mm, oldmm) (0) | 356 | #define dup_mmap(mm, oldmm) (0) |
357 | #define mm_alloc_pgd(mm) (0) | 357 | #define mm_alloc_pgd(mm) (0) |
358 | #define mm_free_pgd(mm) | 358 | #define mm_free_pgd(mm) |
359 | #endif /* CONFIG_MMU */ | 359 | #endif /* CONFIG_MMU */ |
360 | 360 | ||
361 | __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); | 361 | __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); |
362 | 362 | ||
363 | #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) | 363 | #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) |
364 | #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) | 364 | #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) |
365 | 365 | ||
366 | #include <linux/init_task.h> | 366 | #include <linux/init_task.h> |
367 | 367 | ||
368 | static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) | 368 | static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) |
369 | { | 369 | { |
370 | atomic_set(&mm->mm_users, 1); | 370 | atomic_set(&mm->mm_users, 1); |
371 | atomic_set(&mm->mm_count, 1); | 371 | atomic_set(&mm->mm_count, 1); |
372 | init_rwsem(&mm->mmap_sem); | 372 | init_rwsem(&mm->mmap_sem); |
373 | INIT_LIST_HEAD(&mm->mmlist); | 373 | INIT_LIST_HEAD(&mm->mmlist); |
374 | mm->flags = (current->mm) ? current->mm->flags | 374 | mm->flags = (current->mm) ? current->mm->flags |
375 | : MMF_DUMP_FILTER_DEFAULT; | 375 | : MMF_DUMP_FILTER_DEFAULT; |
376 | mm->core_waiters = 0; | 376 | mm->core_waiters = 0; |
377 | mm->nr_ptes = 0; | 377 | mm->nr_ptes = 0; |
378 | set_mm_counter(mm, file_rss, 0); | 378 | set_mm_counter(mm, file_rss, 0); |
379 | set_mm_counter(mm, anon_rss, 0); | 379 | set_mm_counter(mm, anon_rss, 0); |
380 | spin_lock_init(&mm->page_table_lock); | 380 | spin_lock_init(&mm->page_table_lock); |
381 | rwlock_init(&mm->ioctx_list_lock); | 381 | rwlock_init(&mm->ioctx_list_lock); |
382 | mm->ioctx_list = NULL; | 382 | mm->ioctx_list = NULL; |
383 | mm->free_area_cache = TASK_UNMAPPED_BASE; | 383 | mm->free_area_cache = TASK_UNMAPPED_BASE; |
384 | mm->cached_hole_size = ~0UL; | 384 | mm->cached_hole_size = ~0UL; |
385 | mm_init_owner(mm, p); | 385 | mm_init_owner(mm, p); |
386 | 386 | ||
387 | if (likely(!mm_alloc_pgd(mm))) { | 387 | if (likely(!mm_alloc_pgd(mm))) { |
388 | mm->def_flags = 0; | 388 | mm->def_flags = 0; |
389 | return mm; | 389 | return mm; |
390 | } | 390 | } |
391 | 391 | ||
392 | free_mm(mm); | 392 | free_mm(mm); |
393 | return NULL; | 393 | return NULL; |
394 | } | 394 | } |
395 | 395 | ||
396 | /* | 396 | /* |
397 | * Allocate and initialize an mm_struct. | 397 | * Allocate and initialize an mm_struct. |
398 | */ | 398 | */ |
399 | struct mm_struct * mm_alloc(void) | 399 | struct mm_struct * mm_alloc(void) |
400 | { | 400 | { |
401 | struct mm_struct * mm; | 401 | struct mm_struct * mm; |
402 | 402 | ||
403 | mm = allocate_mm(); | 403 | mm = allocate_mm(); |
404 | if (mm) { | 404 | if (mm) { |
405 | memset(mm, 0, sizeof(*mm)); | 405 | memset(mm, 0, sizeof(*mm)); |
406 | mm = mm_init(mm, current); | 406 | mm = mm_init(mm, current); |
407 | } | 407 | } |
408 | return mm; | 408 | return mm; |
409 | } | 409 | } |
410 | 410 | ||
411 | /* | 411 | /* |
412 | * Called when the last reference to the mm | 412 | * Called when the last reference to the mm |
413 | * is dropped: either by a lazy thread or by | 413 | * is dropped: either by a lazy thread or by |
414 | * mmput. Free the page directory and the mm. | 414 | * mmput. Free the page directory and the mm. |
415 | */ | 415 | */ |
416 | void __mmdrop(struct mm_struct *mm) | 416 | void __mmdrop(struct mm_struct *mm) |
417 | { | 417 | { |
418 | BUG_ON(mm == &init_mm); | 418 | BUG_ON(mm == &init_mm); |
419 | mm_free_pgd(mm); | 419 | mm_free_pgd(mm); |
420 | destroy_context(mm); | 420 | destroy_context(mm); |
421 | free_mm(mm); | 421 | free_mm(mm); |
422 | } | 422 | } |
423 | EXPORT_SYMBOL_GPL(__mmdrop); | 423 | EXPORT_SYMBOL_GPL(__mmdrop); |
424 | 424 | ||
425 | /* | 425 | /* |
426 | * Decrement the use count and release all resources for an mm. | 426 | * Decrement the use count and release all resources for an mm. |
427 | */ | 427 | */ |
428 | void mmput(struct mm_struct *mm) | 428 | void mmput(struct mm_struct *mm) |
429 | { | 429 | { |
430 | might_sleep(); | 430 | might_sleep(); |
431 | 431 | ||
432 | if (atomic_dec_and_test(&mm->mm_users)) { | 432 | if (atomic_dec_and_test(&mm->mm_users)) { |
433 | exit_aio(mm); | 433 | exit_aio(mm); |
434 | exit_mmap(mm); | 434 | exit_mmap(mm); |
435 | set_mm_exe_file(mm, NULL); | 435 | set_mm_exe_file(mm, NULL); |
436 | if (!list_empty(&mm->mmlist)) { | 436 | if (!list_empty(&mm->mmlist)) { |
437 | spin_lock(&mmlist_lock); | 437 | spin_lock(&mmlist_lock); |
438 | list_del(&mm->mmlist); | 438 | list_del(&mm->mmlist); |
439 | spin_unlock(&mmlist_lock); | 439 | spin_unlock(&mmlist_lock); |
440 | } | 440 | } |
441 | put_swap_token(mm); | 441 | put_swap_token(mm); |
442 | mmdrop(mm); | 442 | mmdrop(mm); |
443 | } | 443 | } |
444 | } | 444 | } |
445 | EXPORT_SYMBOL_GPL(mmput); | 445 | EXPORT_SYMBOL_GPL(mmput); |
446 | 446 | ||
447 | /** | 447 | /** |
448 | * get_task_mm - acquire a reference to the task's mm | 448 | * get_task_mm - acquire a reference to the task's mm |
449 | * | 449 | * |
450 | * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning | 450 | * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning |
451 | * this kernel workthread has transiently adopted a user mm with use_mm, | 451 | * this kernel workthread has transiently adopted a user mm with use_mm, |
452 | * to do its AIO) is not set and if so returns a reference to it, after | 452 | * to do its AIO) is not set and if so returns a reference to it, after |
453 | * bumping up the use count. User must release the mm via mmput() | 453 | * bumping up the use count. User must release the mm via mmput() |
454 | * after use. Typically used by /proc and ptrace. | 454 | * after use. Typically used by /proc and ptrace. |
455 | */ | 455 | */ |
456 | struct mm_struct *get_task_mm(struct task_struct *task) | 456 | struct mm_struct *get_task_mm(struct task_struct *task) |
457 | { | 457 | { |
458 | struct mm_struct *mm; | 458 | struct mm_struct *mm; |
459 | 459 | ||
460 | task_lock(task); | 460 | task_lock(task); |
461 | mm = task->mm; | 461 | mm = task->mm; |
462 | if (mm) { | 462 | if (mm) { |
463 | if (task->flags & PF_BORROWED_MM) | 463 | if (task->flags & PF_BORROWED_MM) |
464 | mm = NULL; | 464 | mm = NULL; |
465 | else | 465 | else |
466 | atomic_inc(&mm->mm_users); | 466 | atomic_inc(&mm->mm_users); |
467 | } | 467 | } |
468 | task_unlock(task); | 468 | task_unlock(task); |
469 | return mm; | 469 | return mm; |
470 | } | 470 | } |
471 | EXPORT_SYMBOL_GPL(get_task_mm); | 471 | EXPORT_SYMBOL_GPL(get_task_mm); |
472 | 472 | ||
473 | /* Please note the differences between mmput and mm_release. | 473 | /* Please note the differences between mmput and mm_release. |
474 | * mmput is called whenever we stop holding onto a mm_struct, | 474 | * mmput is called whenever we stop holding onto a mm_struct, |
475 | * error success whatever. | 475 | * error success whatever. |
476 | * | 476 | * |
477 | * mm_release is called after a mm_struct has been removed | 477 | * mm_release is called after a mm_struct has been removed |
478 | * from the current process. | 478 | * from the current process. |
479 | * | 479 | * |
480 | * This difference is important for error handling, when we | 480 | * This difference is important for error handling, when we |
481 | * only half set up a mm_struct for a new process and need to restore | 481 | * only half set up a mm_struct for a new process and need to restore |
482 | * the old one. Because we mmput the new mm_struct before | 482 | * the old one. Because we mmput the new mm_struct before |
483 | * restoring the old one. . . | 483 | * restoring the old one. . . |
484 | * Eric Biederman 10 January 1998 | 484 | * Eric Biederman 10 January 1998 |
485 | */ | 485 | */ |
486 | void mm_release(struct task_struct *tsk, struct mm_struct *mm) | 486 | void mm_release(struct task_struct *tsk, struct mm_struct *mm) |
487 | { | 487 | { |
488 | struct completion *vfork_done = tsk->vfork_done; | 488 | struct completion *vfork_done = tsk->vfork_done; |
489 | 489 | ||
490 | /* Get rid of any cached register state */ | 490 | /* Get rid of any cached register state */ |
491 | deactivate_mm(tsk, mm); | 491 | deactivate_mm(tsk, mm); |
492 | 492 | ||
493 | /* notify parent sleeping on vfork() */ | 493 | /* notify parent sleeping on vfork() */ |
494 | if (vfork_done) { | 494 | if (vfork_done) { |
495 | tsk->vfork_done = NULL; | 495 | tsk->vfork_done = NULL; |
496 | complete(vfork_done); | 496 | complete(vfork_done); |
497 | } | 497 | } |
498 | 498 | ||
499 | /* | 499 | /* |
500 | * If we're exiting normally, clear a user-space tid field if | 500 | * If we're exiting normally, clear a user-space tid field if |
501 | * requested. We leave this alone when dying by signal, to leave | 501 | * requested. We leave this alone when dying by signal, to leave |
502 | * the value intact in a core dump, and to save the unnecessary | 502 | * the value intact in a core dump, and to save the unnecessary |
503 | * trouble otherwise. Userland only wants this done for a sys_exit. | 503 | * trouble otherwise. Userland only wants this done for a sys_exit. |
504 | */ | 504 | */ |
505 | if (tsk->clear_child_tid | 505 | if (tsk->clear_child_tid |
506 | && !(tsk->flags & PF_SIGNALED) | 506 | && !(tsk->flags & PF_SIGNALED) |
507 | && atomic_read(&mm->mm_users) > 1) { | 507 | && atomic_read(&mm->mm_users) > 1) { |
508 | u32 __user * tidptr = tsk->clear_child_tid; | 508 | u32 __user * tidptr = tsk->clear_child_tid; |
509 | tsk->clear_child_tid = NULL; | 509 | tsk->clear_child_tid = NULL; |
510 | 510 | ||
511 | /* | 511 | /* |
512 | * We don't check the error code - if userspace has | 512 | * We don't check the error code - if userspace has |
513 | * not set up a proper pointer then tough luck. | 513 | * not set up a proper pointer then tough luck. |
514 | */ | 514 | */ |
515 | put_user(0, tidptr); | 515 | put_user(0, tidptr); |
516 | sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0); | 516 | sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0); |
517 | } | 517 | } |
518 | } | 518 | } |
519 | 519 | ||
520 | /* | 520 | /* |
521 | * Allocate a new mm structure and copy contents from the | 521 | * Allocate a new mm structure and copy contents from the |
522 | * mm structure of the passed in task structure. | 522 | * mm structure of the passed in task structure. |
523 | */ | 523 | */ |
524 | struct mm_struct *dup_mm(struct task_struct *tsk) | 524 | struct mm_struct *dup_mm(struct task_struct *tsk) |
525 | { | 525 | { |
526 | struct mm_struct *mm, *oldmm = current->mm; | 526 | struct mm_struct *mm, *oldmm = current->mm; |
527 | int err; | 527 | int err; |
528 | 528 | ||
529 | if (!oldmm) | 529 | if (!oldmm) |
530 | return NULL; | 530 | return NULL; |
531 | 531 | ||
532 | mm = allocate_mm(); | 532 | mm = allocate_mm(); |
533 | if (!mm) | 533 | if (!mm) |
534 | goto fail_nomem; | 534 | goto fail_nomem; |
535 | 535 | ||
536 | memcpy(mm, oldmm, sizeof(*mm)); | 536 | memcpy(mm, oldmm, sizeof(*mm)); |
537 | 537 | ||
538 | /* Initializing for Swap token stuff */ | 538 | /* Initializing for Swap token stuff */ |
539 | mm->token_priority = 0; | 539 | mm->token_priority = 0; |
540 | mm->last_interval = 0; | 540 | mm->last_interval = 0; |
541 | 541 | ||
542 | if (!mm_init(mm, tsk)) | 542 | if (!mm_init(mm, tsk)) |
543 | goto fail_nomem; | 543 | goto fail_nomem; |
544 | 544 | ||
545 | if (init_new_context(tsk, mm)) | 545 | if (init_new_context(tsk, mm)) |
546 | goto fail_nocontext; | 546 | goto fail_nocontext; |
547 | 547 | ||
548 | dup_mm_exe_file(oldmm, mm); | 548 | dup_mm_exe_file(oldmm, mm); |
549 | 549 | ||
550 | err = dup_mmap(mm, oldmm); | 550 | err = dup_mmap(mm, oldmm); |
551 | if (err) | 551 | if (err) |
552 | goto free_pt; | 552 | goto free_pt; |
553 | 553 | ||
554 | mm->hiwater_rss = get_mm_rss(mm); | 554 | mm->hiwater_rss = get_mm_rss(mm); |
555 | mm->hiwater_vm = mm->total_vm; | 555 | mm->hiwater_vm = mm->total_vm; |
556 | 556 | ||
557 | return mm; | 557 | return mm; |
558 | 558 | ||
559 | free_pt: | 559 | free_pt: |
560 | mmput(mm); | 560 | mmput(mm); |
561 | 561 | ||
562 | fail_nomem: | 562 | fail_nomem: |
563 | return NULL; | 563 | return NULL; |
564 | 564 | ||
565 | fail_nocontext: | 565 | fail_nocontext: |
566 | /* | 566 | /* |
567 | * If init_new_context() failed, we cannot use mmput() to free the mm | 567 | * If init_new_context() failed, we cannot use mmput() to free the mm |
568 | * because it calls destroy_context() | 568 | * because it calls destroy_context() |
569 | */ | 569 | */ |
570 | mm_free_pgd(mm); | 570 | mm_free_pgd(mm); |
571 | free_mm(mm); | 571 | free_mm(mm); |
572 | return NULL; | 572 | return NULL; |
573 | } | 573 | } |
574 | 574 | ||
575 | static int copy_mm(unsigned long clone_flags, struct task_struct * tsk) | 575 | static int copy_mm(unsigned long clone_flags, struct task_struct * tsk) |
576 | { | 576 | { |
577 | struct mm_struct * mm, *oldmm; | 577 | struct mm_struct * mm, *oldmm; |
578 | int retval; | 578 | int retval; |
579 | 579 | ||
580 | tsk->min_flt = tsk->maj_flt = 0; | 580 | tsk->min_flt = tsk->maj_flt = 0; |
581 | tsk->nvcsw = tsk->nivcsw = 0; | 581 | tsk->nvcsw = tsk->nivcsw = 0; |
582 | 582 | ||
583 | tsk->mm = NULL; | 583 | tsk->mm = NULL; |
584 | tsk->active_mm = NULL; | 584 | tsk->active_mm = NULL; |
585 | 585 | ||
586 | /* | 586 | /* |
587 | * Are we cloning a kernel thread? | 587 | * Are we cloning a kernel thread? |
588 | * | 588 | * |
589 | * We need to steal a active VM for that.. | 589 | * We need to steal a active VM for that.. |
590 | */ | 590 | */ |
591 | oldmm = current->mm; | 591 | oldmm = current->mm; |
592 | if (!oldmm) | 592 | if (!oldmm) |
593 | return 0; | 593 | return 0; |
594 | 594 | ||
595 | if (clone_flags & CLONE_VM) { | 595 | if (clone_flags & CLONE_VM) { |
596 | atomic_inc(&oldmm->mm_users); | 596 | atomic_inc(&oldmm->mm_users); |
597 | mm = oldmm; | 597 | mm = oldmm; |
598 | goto good_mm; | 598 | goto good_mm; |
599 | } | 599 | } |
600 | 600 | ||
601 | retval = -ENOMEM; | 601 | retval = -ENOMEM; |
602 | mm = dup_mm(tsk); | 602 | mm = dup_mm(tsk); |
603 | if (!mm) | 603 | if (!mm) |
604 | goto fail_nomem; | 604 | goto fail_nomem; |
605 | 605 | ||
606 | good_mm: | 606 | good_mm: |
607 | /* Initializing for Swap token stuff */ | 607 | /* Initializing for Swap token stuff */ |
608 | mm->token_priority = 0; | 608 | mm->token_priority = 0; |
609 | mm->last_interval = 0; | 609 | mm->last_interval = 0; |
610 | 610 | ||
611 | tsk->mm = mm; | 611 | tsk->mm = mm; |
612 | tsk->active_mm = mm; | 612 | tsk->active_mm = mm; |
613 | return 0; | 613 | return 0; |
614 | 614 | ||
615 | fail_nomem: | 615 | fail_nomem: |
616 | return retval; | 616 | return retval; |
617 | } | 617 | } |
618 | 618 | ||
619 | static struct fs_struct *__copy_fs_struct(struct fs_struct *old) | 619 | static struct fs_struct *__copy_fs_struct(struct fs_struct *old) |
620 | { | 620 | { |
621 | struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL); | 621 | struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL); |
622 | /* We don't need to lock fs - think why ;-) */ | 622 | /* We don't need to lock fs - think why ;-) */ |
623 | if (fs) { | 623 | if (fs) { |
624 | atomic_set(&fs->count, 1); | 624 | atomic_set(&fs->count, 1); |
625 | rwlock_init(&fs->lock); | 625 | rwlock_init(&fs->lock); |
626 | fs->umask = old->umask; | 626 | fs->umask = old->umask; |
627 | read_lock(&old->lock); | 627 | read_lock(&old->lock); |
628 | fs->root = old->root; | 628 | fs->root = old->root; |
629 | path_get(&old->root); | 629 | path_get(&old->root); |
630 | fs->pwd = old->pwd; | 630 | fs->pwd = old->pwd; |
631 | path_get(&old->pwd); | 631 | path_get(&old->pwd); |
632 | if (old->altroot.dentry) { | 632 | if (old->altroot.dentry) { |
633 | fs->altroot = old->altroot; | 633 | fs->altroot = old->altroot; |
634 | path_get(&old->altroot); | 634 | path_get(&old->altroot); |
635 | } else { | 635 | } else { |
636 | fs->altroot.mnt = NULL; | 636 | fs->altroot.mnt = NULL; |
637 | fs->altroot.dentry = NULL; | 637 | fs->altroot.dentry = NULL; |
638 | } | 638 | } |
639 | read_unlock(&old->lock); | 639 | read_unlock(&old->lock); |
640 | } | 640 | } |
641 | return fs; | 641 | return fs; |
642 | } | 642 | } |
643 | 643 | ||
644 | struct fs_struct *copy_fs_struct(struct fs_struct *old) | 644 | struct fs_struct *copy_fs_struct(struct fs_struct *old) |
645 | { | 645 | { |
646 | return __copy_fs_struct(old); | 646 | return __copy_fs_struct(old); |
647 | } | 647 | } |
648 | 648 | ||
649 | EXPORT_SYMBOL_GPL(copy_fs_struct); | 649 | EXPORT_SYMBOL_GPL(copy_fs_struct); |
650 | 650 | ||
651 | static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) | 651 | static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) |
652 | { | 652 | { |
653 | if (clone_flags & CLONE_FS) { | 653 | if (clone_flags & CLONE_FS) { |
654 | atomic_inc(¤t->fs->count); | 654 | atomic_inc(¤t->fs->count); |
655 | return 0; | 655 | return 0; |
656 | } | 656 | } |
657 | tsk->fs = __copy_fs_struct(current->fs); | 657 | tsk->fs = __copy_fs_struct(current->fs); |
658 | if (!tsk->fs) | 658 | if (!tsk->fs) |
659 | return -ENOMEM; | 659 | return -ENOMEM; |
660 | return 0; | 660 | return 0; |
661 | } | 661 | } |
662 | 662 | ||
663 | static int count_open_files(struct fdtable *fdt) | ||
664 | { | ||
665 | int size = fdt->max_fds; | ||
666 | int i; | ||
667 | |||
668 | /* Find the last open fd */ | ||
669 | for (i = size/(8*sizeof(long)); i > 0; ) { | ||
670 | if (fdt->open_fds->fds_bits[--i]) | ||
671 | break; | ||
672 | } | ||
673 | i = (i+1) * 8 * sizeof(long); | ||
674 | return i; | ||
675 | } | ||
676 | |||
677 | static struct files_struct *alloc_files(void) | ||
678 | { | ||
679 | struct files_struct *newf; | ||
680 | struct fdtable *fdt; | ||
681 | |||
682 | newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); | ||
683 | if (!newf) | ||
684 | goto out; | ||
685 | |||
686 | atomic_set(&newf->count, 1); | ||
687 | |||
688 | spin_lock_init(&newf->file_lock); | ||
689 | newf->next_fd = 0; | ||
690 | fdt = &newf->fdtab; | ||
691 | fdt->max_fds = NR_OPEN_DEFAULT; | ||
692 | fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init; | ||
693 | fdt->open_fds = (fd_set *)&newf->open_fds_init; | ||
694 | fdt->fd = &newf->fd_array[0]; | ||
695 | INIT_RCU_HEAD(&fdt->rcu); | ||
696 | fdt->next = NULL; | ||
697 | rcu_assign_pointer(newf->fdt, fdt); | ||
698 | out: | ||
699 | return newf; | ||
700 | } | ||
701 | |||
702 | /* | ||
703 | * Allocate a new files structure and copy contents from the | ||
704 | * passed in files structure. | ||
705 | * errorp will be valid only when the returned files_struct is NULL. | ||
706 | */ | ||
707 | static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp) | ||
708 | { | ||
709 | struct files_struct *newf; | ||
710 | struct file **old_fds, **new_fds; | ||
711 | int open_files, size, i; | ||
712 | struct fdtable *old_fdt, *new_fdt; | ||
713 | |||
714 | *errorp = -ENOMEM; | ||
715 | newf = alloc_files(); | ||
716 | if (!newf) | ||
717 | goto out; | ||
718 | |||
719 | spin_lock(&oldf->file_lock); | ||
720 | old_fdt = files_fdtable(oldf); | ||
721 | new_fdt = files_fdtable(newf); | ||
722 | open_files = count_open_files(old_fdt); | ||
723 | |||
724 | /* | ||
725 | * Check whether we need to allocate a larger fd array and fd set. | ||
726 | * Note: we're not a clone task, so the open count won't change. | ||
727 | */ | ||
728 | if (open_files > new_fdt->max_fds) { | ||
729 | new_fdt->max_fds = 0; | ||
730 | spin_unlock(&oldf->file_lock); | ||
731 | spin_lock(&newf->file_lock); | ||
732 | *errorp = expand_files(newf, open_files-1); | ||
733 | spin_unlock(&newf->file_lock); | ||
734 | if (*errorp < 0) | ||
735 | goto out_release; | ||
736 | new_fdt = files_fdtable(newf); | ||
737 | /* | ||
738 | * Reacquire the oldf lock and a pointer to its fd table | ||
739 | * who knows it may have a new bigger fd table. We need | ||
740 | * the latest pointer. | ||
741 | */ | ||
742 | spin_lock(&oldf->file_lock); | ||
743 | old_fdt = files_fdtable(oldf); | ||
744 | } | ||
745 | |||
746 | old_fds = old_fdt->fd; | ||
747 | new_fds = new_fdt->fd; | ||
748 | |||
749 | memcpy(new_fdt->open_fds->fds_bits, | ||
750 | old_fdt->open_fds->fds_bits, open_files/8); | ||
751 | memcpy(new_fdt->close_on_exec->fds_bits, | ||
752 | old_fdt->close_on_exec->fds_bits, open_files/8); | ||
753 | |||
754 | for (i = open_files; i != 0; i--) { | ||
755 | struct file *f = *old_fds++; | ||
756 | if (f) { | ||
757 | get_file(f); | ||
758 | } else { | ||
759 | /* | ||
760 | * The fd may be claimed in the fd bitmap but not yet | ||
761 | * instantiated in the files array if a sibling thread | ||
762 | * is partway through open(). So make sure that this | ||
763 | * fd is available to the new process. | ||
764 | */ | ||
765 | FD_CLR(open_files - i, new_fdt->open_fds); | ||
766 | } | ||
767 | rcu_assign_pointer(*new_fds++, f); | ||
768 | } | ||
769 | spin_unlock(&oldf->file_lock); | ||
770 | |||
771 | /* compute the remainder to be cleared */ | ||
772 | size = (new_fdt->max_fds - open_files) * sizeof(struct file *); | ||
773 | |||
774 | /* This is long word aligned thus could use a optimized version */ | ||
775 | memset(new_fds, 0, size); | ||
776 | |||
777 | if (new_fdt->max_fds > open_files) { | ||
778 | int left = (new_fdt->max_fds-open_files)/8; | ||
779 | int start = open_files / (8 * sizeof(unsigned long)); | ||
780 | |||
781 | memset(&new_fdt->open_fds->fds_bits[start], 0, left); | ||
782 | memset(&new_fdt->close_on_exec->fds_bits[start], 0, left); | ||
783 | } | ||
784 | |||
785 | return newf; | ||
786 | |||
787 | out_release: | ||
788 | kmem_cache_free(files_cachep, newf); | ||
789 | out: | ||
790 | return NULL; | ||
791 | } | ||
792 | |||
793 | static int copy_files(unsigned long clone_flags, struct task_struct * tsk) | 663 | static int copy_files(unsigned long clone_flags, struct task_struct * tsk) |
794 | { | 664 | { |
795 | struct files_struct *oldf, *newf; | 665 | struct files_struct *oldf, *newf; |
796 | int error = 0; | 666 | int error = 0; |
797 | 667 | ||
798 | /* | 668 | /* |
799 | * A background process may not have any files ... | 669 | * A background process may not have any files ... |
800 | */ | 670 | */ |
801 | oldf = current->files; | 671 | oldf = current->files; |
802 | if (!oldf) | 672 | if (!oldf) |
803 | goto out; | 673 | goto out; |
804 | 674 | ||
805 | if (clone_flags & CLONE_FILES) { | 675 | if (clone_flags & CLONE_FILES) { |
806 | atomic_inc(&oldf->count); | 676 | atomic_inc(&oldf->count); |
807 | goto out; | 677 | goto out; |
808 | } | 678 | } |
809 | 679 | ||
810 | newf = dup_fd(oldf, &error); | 680 | newf = dup_fd(oldf, &error); |
811 | if (!newf) | 681 | if (!newf) |
812 | goto out; | 682 | goto out; |
813 | 683 | ||
814 | tsk->files = newf; | 684 | tsk->files = newf; |
815 | error = 0; | 685 | error = 0; |
816 | out: | 686 | out: |
817 | return error; | 687 | return error; |
818 | } | 688 | } |
819 | 689 | ||
820 | static int copy_io(unsigned long clone_flags, struct task_struct *tsk) | 690 | static int copy_io(unsigned long clone_flags, struct task_struct *tsk) |
821 | { | 691 | { |
822 | #ifdef CONFIG_BLOCK | 692 | #ifdef CONFIG_BLOCK |
823 | struct io_context *ioc = current->io_context; | 693 | struct io_context *ioc = current->io_context; |
824 | 694 | ||
825 | if (!ioc) | 695 | if (!ioc) |
826 | return 0; | 696 | return 0; |
827 | /* | 697 | /* |
828 | * Share io context with parent, if CLONE_IO is set | 698 | * Share io context with parent, if CLONE_IO is set |
829 | */ | 699 | */ |
830 | if (clone_flags & CLONE_IO) { | 700 | if (clone_flags & CLONE_IO) { |
831 | tsk->io_context = ioc_task_link(ioc); | 701 | tsk->io_context = ioc_task_link(ioc); |
832 | if (unlikely(!tsk->io_context)) | 702 | if (unlikely(!tsk->io_context)) |
833 | return -ENOMEM; | 703 | return -ENOMEM; |
834 | } else if (ioprio_valid(ioc->ioprio)) { | 704 | } else if (ioprio_valid(ioc->ioprio)) { |
835 | tsk->io_context = alloc_io_context(GFP_KERNEL, -1); | 705 | tsk->io_context = alloc_io_context(GFP_KERNEL, -1); |
836 | if (unlikely(!tsk->io_context)) | 706 | if (unlikely(!tsk->io_context)) |
837 | return -ENOMEM; | 707 | return -ENOMEM; |
838 | 708 | ||
839 | tsk->io_context->ioprio = ioc->ioprio; | 709 | tsk->io_context->ioprio = ioc->ioprio; |
840 | } | 710 | } |
841 | #endif | 711 | #endif |
842 | return 0; | 712 | return 0; |
843 | } | 713 | } |
844 | 714 | ||
845 | static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) | 715 | static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) |
846 | { | 716 | { |
847 | struct sighand_struct *sig; | 717 | struct sighand_struct *sig; |
848 | 718 | ||
849 | if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) { | 719 | if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) { |
850 | atomic_inc(¤t->sighand->count); | 720 | atomic_inc(¤t->sighand->count); |
851 | return 0; | 721 | return 0; |
852 | } | 722 | } |
853 | sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); | 723 | sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); |
854 | rcu_assign_pointer(tsk->sighand, sig); | 724 | rcu_assign_pointer(tsk->sighand, sig); |
855 | if (!sig) | 725 | if (!sig) |
856 | return -ENOMEM; | 726 | return -ENOMEM; |
857 | atomic_set(&sig->count, 1); | 727 | atomic_set(&sig->count, 1); |
858 | memcpy(sig->action, current->sighand->action, sizeof(sig->action)); | 728 | memcpy(sig->action, current->sighand->action, sizeof(sig->action)); |
859 | return 0; | 729 | return 0; |
860 | } | 730 | } |
861 | 731 | ||
862 | void __cleanup_sighand(struct sighand_struct *sighand) | 732 | void __cleanup_sighand(struct sighand_struct *sighand) |
863 | { | 733 | { |
864 | if (atomic_dec_and_test(&sighand->count)) | 734 | if (atomic_dec_and_test(&sighand->count)) |
865 | kmem_cache_free(sighand_cachep, sighand); | 735 | kmem_cache_free(sighand_cachep, sighand); |
866 | } | 736 | } |
867 | 737 | ||
868 | static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | 738 | static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) |
869 | { | 739 | { |
870 | struct signal_struct *sig; | 740 | struct signal_struct *sig; |
871 | int ret; | 741 | int ret; |
872 | 742 | ||
873 | if (clone_flags & CLONE_THREAD) { | 743 | if (clone_flags & CLONE_THREAD) { |
874 | atomic_inc(¤t->signal->count); | 744 | atomic_inc(¤t->signal->count); |
875 | atomic_inc(¤t->signal->live); | 745 | atomic_inc(¤t->signal->live); |
876 | return 0; | 746 | return 0; |
877 | } | 747 | } |
878 | sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL); | 748 | sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL); |
879 | tsk->signal = sig; | 749 | tsk->signal = sig; |
880 | if (!sig) | 750 | if (!sig) |
881 | return -ENOMEM; | 751 | return -ENOMEM; |
882 | 752 | ||
883 | ret = copy_thread_group_keys(tsk); | 753 | ret = copy_thread_group_keys(tsk); |
884 | if (ret < 0) { | 754 | if (ret < 0) { |
885 | kmem_cache_free(signal_cachep, sig); | 755 | kmem_cache_free(signal_cachep, sig); |
886 | return ret; | 756 | return ret; |
887 | } | 757 | } |
888 | 758 | ||
889 | atomic_set(&sig->count, 1); | 759 | atomic_set(&sig->count, 1); |
890 | atomic_set(&sig->live, 1); | 760 | atomic_set(&sig->live, 1); |
891 | init_waitqueue_head(&sig->wait_chldexit); | 761 | init_waitqueue_head(&sig->wait_chldexit); |
892 | sig->flags = 0; | 762 | sig->flags = 0; |
893 | sig->group_exit_code = 0; | 763 | sig->group_exit_code = 0; |
894 | sig->group_exit_task = NULL; | 764 | sig->group_exit_task = NULL; |
895 | sig->group_stop_count = 0; | 765 | sig->group_stop_count = 0; |
896 | sig->curr_target = tsk; | 766 | sig->curr_target = tsk; |
897 | init_sigpending(&sig->shared_pending); | 767 | init_sigpending(&sig->shared_pending); |
898 | INIT_LIST_HEAD(&sig->posix_timers); | 768 | INIT_LIST_HEAD(&sig->posix_timers); |
899 | 769 | ||
900 | hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 770 | hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
901 | sig->it_real_incr.tv64 = 0; | 771 | sig->it_real_incr.tv64 = 0; |
902 | sig->real_timer.function = it_real_fn; | 772 | sig->real_timer.function = it_real_fn; |
903 | 773 | ||
904 | sig->it_virt_expires = cputime_zero; | 774 | sig->it_virt_expires = cputime_zero; |
905 | sig->it_virt_incr = cputime_zero; | 775 | sig->it_virt_incr = cputime_zero; |
906 | sig->it_prof_expires = cputime_zero; | 776 | sig->it_prof_expires = cputime_zero; |
907 | sig->it_prof_incr = cputime_zero; | 777 | sig->it_prof_incr = cputime_zero; |
908 | 778 | ||
909 | sig->leader = 0; /* session leadership doesn't inherit */ | 779 | sig->leader = 0; /* session leadership doesn't inherit */ |
910 | sig->tty_old_pgrp = NULL; | 780 | sig->tty_old_pgrp = NULL; |
911 | 781 | ||
912 | sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero; | 782 | sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero; |
913 | sig->gtime = cputime_zero; | 783 | sig->gtime = cputime_zero; |
914 | sig->cgtime = cputime_zero; | 784 | sig->cgtime = cputime_zero; |
915 | sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; | 785 | sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; |
916 | sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; | 786 | sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; |
917 | sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; | 787 | sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; |
918 | sig->sum_sched_runtime = 0; | 788 | sig->sum_sched_runtime = 0; |
919 | INIT_LIST_HEAD(&sig->cpu_timers[0]); | 789 | INIT_LIST_HEAD(&sig->cpu_timers[0]); |
920 | INIT_LIST_HEAD(&sig->cpu_timers[1]); | 790 | INIT_LIST_HEAD(&sig->cpu_timers[1]); |
921 | INIT_LIST_HEAD(&sig->cpu_timers[2]); | 791 | INIT_LIST_HEAD(&sig->cpu_timers[2]); |
922 | taskstats_tgid_init(sig); | 792 | taskstats_tgid_init(sig); |
923 | 793 | ||
924 | task_lock(current->group_leader); | 794 | task_lock(current->group_leader); |
925 | memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); | 795 | memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); |
926 | task_unlock(current->group_leader); | 796 | task_unlock(current->group_leader); |
927 | 797 | ||
928 | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { | 798 | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { |
929 | /* | 799 | /* |
930 | * New sole thread in the process gets an expiry time | 800 | * New sole thread in the process gets an expiry time |
931 | * of the whole CPU time limit. | 801 | * of the whole CPU time limit. |
932 | */ | 802 | */ |
933 | tsk->it_prof_expires = | 803 | tsk->it_prof_expires = |
934 | secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur); | 804 | secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur); |
935 | } | 805 | } |
936 | acct_init_pacct(&sig->pacct); | 806 | acct_init_pacct(&sig->pacct); |
937 | 807 | ||
938 | tty_audit_fork(sig); | 808 | tty_audit_fork(sig); |
939 | 809 | ||
940 | return 0; | 810 | return 0; |
941 | } | 811 | } |
942 | 812 | ||
943 | void __cleanup_signal(struct signal_struct *sig) | 813 | void __cleanup_signal(struct signal_struct *sig) |
944 | { | 814 | { |
945 | exit_thread_group_keys(sig); | 815 | exit_thread_group_keys(sig); |
946 | kmem_cache_free(signal_cachep, sig); | 816 | kmem_cache_free(signal_cachep, sig); |
947 | } | 817 | } |
948 | 818 | ||
949 | static void cleanup_signal(struct task_struct *tsk) | 819 | static void cleanup_signal(struct task_struct *tsk) |
950 | { | 820 | { |
951 | struct signal_struct *sig = tsk->signal; | 821 | struct signal_struct *sig = tsk->signal; |
952 | 822 | ||
953 | atomic_dec(&sig->live); | 823 | atomic_dec(&sig->live); |
954 | 824 | ||
955 | if (atomic_dec_and_test(&sig->count)) | 825 | if (atomic_dec_and_test(&sig->count)) |
956 | __cleanup_signal(sig); | 826 | __cleanup_signal(sig); |
957 | } | 827 | } |
958 | 828 | ||
959 | static void copy_flags(unsigned long clone_flags, struct task_struct *p) | 829 | static void copy_flags(unsigned long clone_flags, struct task_struct *p) |
960 | { | 830 | { |
961 | unsigned long new_flags = p->flags; | 831 | unsigned long new_flags = p->flags; |
962 | 832 | ||
963 | new_flags &= ~PF_SUPERPRIV; | 833 | new_flags &= ~PF_SUPERPRIV; |
964 | new_flags |= PF_FORKNOEXEC; | 834 | new_flags |= PF_FORKNOEXEC; |
965 | if (!(clone_flags & CLONE_PTRACE)) | 835 | if (!(clone_flags & CLONE_PTRACE)) |
966 | p->ptrace = 0; | 836 | p->ptrace = 0; |
967 | p->flags = new_flags; | 837 | p->flags = new_flags; |
968 | clear_freeze_flag(p); | 838 | clear_freeze_flag(p); |
969 | } | 839 | } |
970 | 840 | ||
971 | asmlinkage long sys_set_tid_address(int __user *tidptr) | 841 | asmlinkage long sys_set_tid_address(int __user *tidptr) |
972 | { | 842 | { |
973 | current->clear_child_tid = tidptr; | 843 | current->clear_child_tid = tidptr; |
974 | 844 | ||
975 | return task_pid_vnr(current); | 845 | return task_pid_vnr(current); |
976 | } | 846 | } |
977 | 847 | ||
978 | static void rt_mutex_init_task(struct task_struct *p) | 848 | static void rt_mutex_init_task(struct task_struct *p) |
979 | { | 849 | { |
980 | spin_lock_init(&p->pi_lock); | 850 | spin_lock_init(&p->pi_lock); |
981 | #ifdef CONFIG_RT_MUTEXES | 851 | #ifdef CONFIG_RT_MUTEXES |
982 | plist_head_init(&p->pi_waiters, &p->pi_lock); | 852 | plist_head_init(&p->pi_waiters, &p->pi_lock); |
983 | p->pi_blocked_on = NULL; | 853 | p->pi_blocked_on = NULL; |
984 | #endif | 854 | #endif |
985 | } | 855 | } |
986 | 856 | ||
987 | #ifdef CONFIG_MM_OWNER | 857 | #ifdef CONFIG_MM_OWNER |
988 | void mm_init_owner(struct mm_struct *mm, struct task_struct *p) | 858 | void mm_init_owner(struct mm_struct *mm, struct task_struct *p) |
989 | { | 859 | { |
990 | mm->owner = p; | 860 | mm->owner = p; |
991 | } | 861 | } |
992 | #endif /* CONFIG_MM_OWNER */ | 862 | #endif /* CONFIG_MM_OWNER */ |
993 | 863 | ||
994 | /* | 864 | /* |
995 | * This creates a new process as a copy of the old one, | 865 | * This creates a new process as a copy of the old one, |
996 | * but does not actually start it yet. | 866 | * but does not actually start it yet. |
997 | * | 867 | * |
998 | * It copies the registers, and all the appropriate | 868 | * It copies the registers, and all the appropriate |
999 | * parts of the process environment (as per the clone | 869 | * parts of the process environment (as per the clone |
1000 | * flags). The actual kick-off is left to the caller. | 870 | * flags). The actual kick-off is left to the caller. |
1001 | */ | 871 | */ |
1002 | static struct task_struct *copy_process(unsigned long clone_flags, | 872 | static struct task_struct *copy_process(unsigned long clone_flags, |
1003 | unsigned long stack_start, | 873 | unsigned long stack_start, |
1004 | struct pt_regs *regs, | 874 | struct pt_regs *regs, |
1005 | unsigned long stack_size, | 875 | unsigned long stack_size, |
1006 | int __user *child_tidptr, | 876 | int __user *child_tidptr, |
1007 | struct pid *pid) | 877 | struct pid *pid) |
1008 | { | 878 | { |
1009 | int retval; | 879 | int retval; |
1010 | struct task_struct *p; | 880 | struct task_struct *p; |
1011 | int cgroup_callbacks_done = 0; | 881 | int cgroup_callbacks_done = 0; |
1012 | 882 | ||
1013 | if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) | 883 | if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) |
1014 | return ERR_PTR(-EINVAL); | 884 | return ERR_PTR(-EINVAL); |
1015 | 885 | ||
1016 | /* | 886 | /* |
1017 | * Thread groups must share signals as well, and detached threads | 887 | * Thread groups must share signals as well, and detached threads |
1018 | * can only be started up within the thread group. | 888 | * can only be started up within the thread group. |
1019 | */ | 889 | */ |
1020 | if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) | 890 | if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) |
1021 | return ERR_PTR(-EINVAL); | 891 | return ERR_PTR(-EINVAL); |
1022 | 892 | ||
1023 | /* | 893 | /* |
1024 | * Shared signal handlers imply shared VM. By way of the above, | 894 | * Shared signal handlers imply shared VM. By way of the above, |
1025 | * thread groups also imply shared VM. Blocking this case allows | 895 | * thread groups also imply shared VM. Blocking this case allows |
1026 | * for various simplifications in other code. | 896 | * for various simplifications in other code. |
1027 | */ | 897 | */ |
1028 | if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) | 898 | if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) |
1029 | return ERR_PTR(-EINVAL); | 899 | return ERR_PTR(-EINVAL); |
1030 | 900 | ||
1031 | retval = security_task_create(clone_flags); | 901 | retval = security_task_create(clone_flags); |
1032 | if (retval) | 902 | if (retval) |
1033 | goto fork_out; | 903 | goto fork_out; |
1034 | 904 | ||
1035 | retval = -ENOMEM; | 905 | retval = -ENOMEM; |
1036 | p = dup_task_struct(current); | 906 | p = dup_task_struct(current); |
1037 | if (!p) | 907 | if (!p) |
1038 | goto fork_out; | 908 | goto fork_out; |
1039 | 909 | ||
1040 | rt_mutex_init_task(p); | 910 | rt_mutex_init_task(p); |
1041 | 911 | ||
1042 | #ifdef CONFIG_TRACE_IRQFLAGS | 912 | #ifdef CONFIG_TRACE_IRQFLAGS |
1043 | DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); | 913 | DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); |
1044 | DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); | 914 | DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); |
1045 | #endif | 915 | #endif |
1046 | retval = -EAGAIN; | 916 | retval = -EAGAIN; |
1047 | if (atomic_read(&p->user->processes) >= | 917 | if (atomic_read(&p->user->processes) >= |
1048 | p->signal->rlim[RLIMIT_NPROC].rlim_cur) { | 918 | p->signal->rlim[RLIMIT_NPROC].rlim_cur) { |
1049 | if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && | 919 | if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && |
1050 | p->user != current->nsproxy->user_ns->root_user) | 920 | p->user != current->nsproxy->user_ns->root_user) |
1051 | goto bad_fork_free; | 921 | goto bad_fork_free; |
1052 | } | 922 | } |
1053 | 923 | ||
1054 | atomic_inc(&p->user->__count); | 924 | atomic_inc(&p->user->__count); |
1055 | atomic_inc(&p->user->processes); | 925 | atomic_inc(&p->user->processes); |
1056 | get_group_info(p->group_info); | 926 | get_group_info(p->group_info); |
1057 | 927 | ||
1058 | /* | 928 | /* |
1059 | * If multiple threads are within copy_process(), then this check | 929 | * If multiple threads are within copy_process(), then this check |
1060 | * triggers too late. This doesn't hurt, the check is only there | 930 | * triggers too late. This doesn't hurt, the check is only there |
1061 | * to stop root fork bombs. | 931 | * to stop root fork bombs. |
1062 | */ | 932 | */ |
1063 | if (nr_threads >= max_threads) | 933 | if (nr_threads >= max_threads) |
1064 | goto bad_fork_cleanup_count; | 934 | goto bad_fork_cleanup_count; |
1065 | 935 | ||
1066 | if (!try_module_get(task_thread_info(p)->exec_domain->module)) | 936 | if (!try_module_get(task_thread_info(p)->exec_domain->module)) |
1067 | goto bad_fork_cleanup_count; | 937 | goto bad_fork_cleanup_count; |
1068 | 938 | ||
1069 | if (p->binfmt && !try_module_get(p->binfmt->module)) | 939 | if (p->binfmt && !try_module_get(p->binfmt->module)) |
1070 | goto bad_fork_cleanup_put_domain; | 940 | goto bad_fork_cleanup_put_domain; |
1071 | 941 | ||
1072 | p->did_exec = 0; | 942 | p->did_exec = 0; |
1073 | delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ | 943 | delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ |
1074 | copy_flags(clone_flags, p); | 944 | copy_flags(clone_flags, p); |
1075 | INIT_LIST_HEAD(&p->children); | 945 | INIT_LIST_HEAD(&p->children); |
1076 | INIT_LIST_HEAD(&p->sibling); | 946 | INIT_LIST_HEAD(&p->sibling); |
1077 | #ifdef CONFIG_PREEMPT_RCU | 947 | #ifdef CONFIG_PREEMPT_RCU |
1078 | p->rcu_read_lock_nesting = 0; | 948 | p->rcu_read_lock_nesting = 0; |
1079 | p->rcu_flipctr_idx = 0; | 949 | p->rcu_flipctr_idx = 0; |
1080 | #endif /* #ifdef CONFIG_PREEMPT_RCU */ | 950 | #endif /* #ifdef CONFIG_PREEMPT_RCU */ |
1081 | p->vfork_done = NULL; | 951 | p->vfork_done = NULL; |
1082 | spin_lock_init(&p->alloc_lock); | 952 | spin_lock_init(&p->alloc_lock); |
1083 | 953 | ||
1084 | clear_tsk_thread_flag(p, TIF_SIGPENDING); | 954 | clear_tsk_thread_flag(p, TIF_SIGPENDING); |
1085 | init_sigpending(&p->pending); | 955 | init_sigpending(&p->pending); |
1086 | 956 | ||
1087 | p->utime = cputime_zero; | 957 | p->utime = cputime_zero; |
1088 | p->stime = cputime_zero; | 958 | p->stime = cputime_zero; |
1089 | p->gtime = cputime_zero; | 959 | p->gtime = cputime_zero; |
1090 | p->utimescaled = cputime_zero; | 960 | p->utimescaled = cputime_zero; |
1091 | p->stimescaled = cputime_zero; | 961 | p->stimescaled = cputime_zero; |
1092 | p->prev_utime = cputime_zero; | 962 | p->prev_utime = cputime_zero; |
1093 | p->prev_stime = cputime_zero; | 963 | p->prev_stime = cputime_zero; |
1094 | 964 | ||
1095 | #ifdef CONFIG_DETECT_SOFTLOCKUP | 965 | #ifdef CONFIG_DETECT_SOFTLOCKUP |
1096 | p->last_switch_count = 0; | 966 | p->last_switch_count = 0; |
1097 | p->last_switch_timestamp = 0; | 967 | p->last_switch_timestamp = 0; |
1098 | #endif | 968 | #endif |
1099 | 969 | ||
1100 | #ifdef CONFIG_TASK_XACCT | 970 | #ifdef CONFIG_TASK_XACCT |
1101 | p->rchar = 0; /* I/O counter: bytes read */ | 971 | p->rchar = 0; /* I/O counter: bytes read */ |
1102 | p->wchar = 0; /* I/O counter: bytes written */ | 972 | p->wchar = 0; /* I/O counter: bytes written */ |
1103 | p->syscr = 0; /* I/O counter: read syscalls */ | 973 | p->syscr = 0; /* I/O counter: read syscalls */ |
1104 | p->syscw = 0; /* I/O counter: write syscalls */ | 974 | p->syscw = 0; /* I/O counter: write syscalls */ |
1105 | #endif | 975 | #endif |
1106 | task_io_accounting_init(p); | 976 | task_io_accounting_init(p); |
1107 | acct_clear_integrals(p); | 977 | acct_clear_integrals(p); |
1108 | 978 | ||
1109 | p->it_virt_expires = cputime_zero; | 979 | p->it_virt_expires = cputime_zero; |
1110 | p->it_prof_expires = cputime_zero; | 980 | p->it_prof_expires = cputime_zero; |
1111 | p->it_sched_expires = 0; | 981 | p->it_sched_expires = 0; |
1112 | INIT_LIST_HEAD(&p->cpu_timers[0]); | 982 | INIT_LIST_HEAD(&p->cpu_timers[0]); |
1113 | INIT_LIST_HEAD(&p->cpu_timers[1]); | 983 | INIT_LIST_HEAD(&p->cpu_timers[1]); |
1114 | INIT_LIST_HEAD(&p->cpu_timers[2]); | 984 | INIT_LIST_HEAD(&p->cpu_timers[2]); |
1115 | 985 | ||
1116 | p->lock_depth = -1; /* -1 = no lock */ | 986 | p->lock_depth = -1; /* -1 = no lock */ |
1117 | do_posix_clock_monotonic_gettime(&p->start_time); | 987 | do_posix_clock_monotonic_gettime(&p->start_time); |
1118 | p->real_start_time = p->start_time; | 988 | p->real_start_time = p->start_time; |
1119 | monotonic_to_bootbased(&p->real_start_time); | 989 | monotonic_to_bootbased(&p->real_start_time); |
1120 | #ifdef CONFIG_SECURITY | 990 | #ifdef CONFIG_SECURITY |
1121 | p->security = NULL; | 991 | p->security = NULL; |
1122 | #endif | 992 | #endif |
1123 | p->cap_bset = current->cap_bset; | 993 | p->cap_bset = current->cap_bset; |
1124 | p->io_context = NULL; | 994 | p->io_context = NULL; |
1125 | p->audit_context = NULL; | 995 | p->audit_context = NULL; |
1126 | cgroup_fork(p); | 996 | cgroup_fork(p); |
1127 | #ifdef CONFIG_NUMA | 997 | #ifdef CONFIG_NUMA |
1128 | p->mempolicy = mpol_dup(p->mempolicy); | 998 | p->mempolicy = mpol_dup(p->mempolicy); |
1129 | if (IS_ERR(p->mempolicy)) { | 999 | if (IS_ERR(p->mempolicy)) { |
1130 | retval = PTR_ERR(p->mempolicy); | 1000 | retval = PTR_ERR(p->mempolicy); |
1131 | p->mempolicy = NULL; | 1001 | p->mempolicy = NULL; |
1132 | goto bad_fork_cleanup_cgroup; | 1002 | goto bad_fork_cleanup_cgroup; |
1133 | } | 1003 | } |
1134 | mpol_fix_fork_child_flag(p); | 1004 | mpol_fix_fork_child_flag(p); |
1135 | #endif | 1005 | #endif |
1136 | #ifdef CONFIG_TRACE_IRQFLAGS | 1006 | #ifdef CONFIG_TRACE_IRQFLAGS |
1137 | p->irq_events = 0; | 1007 | p->irq_events = 0; |
1138 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 1008 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
1139 | p->hardirqs_enabled = 1; | 1009 | p->hardirqs_enabled = 1; |
1140 | #else | 1010 | #else |
1141 | p->hardirqs_enabled = 0; | 1011 | p->hardirqs_enabled = 0; |
1142 | #endif | 1012 | #endif |
1143 | p->hardirq_enable_ip = 0; | 1013 | p->hardirq_enable_ip = 0; |
1144 | p->hardirq_enable_event = 0; | 1014 | p->hardirq_enable_event = 0; |
1145 | p->hardirq_disable_ip = _THIS_IP_; | 1015 | p->hardirq_disable_ip = _THIS_IP_; |
1146 | p->hardirq_disable_event = 0; | 1016 | p->hardirq_disable_event = 0; |
1147 | p->softirqs_enabled = 1; | 1017 | p->softirqs_enabled = 1; |
1148 | p->softirq_enable_ip = _THIS_IP_; | 1018 | p->softirq_enable_ip = _THIS_IP_; |
1149 | p->softirq_enable_event = 0; | 1019 | p->softirq_enable_event = 0; |
1150 | p->softirq_disable_ip = 0; | 1020 | p->softirq_disable_ip = 0; |
1151 | p->softirq_disable_event = 0; | 1021 | p->softirq_disable_event = 0; |
1152 | p->hardirq_context = 0; | 1022 | p->hardirq_context = 0; |
1153 | p->softirq_context = 0; | 1023 | p->softirq_context = 0; |
1154 | #endif | 1024 | #endif |
1155 | #ifdef CONFIG_LOCKDEP | 1025 | #ifdef CONFIG_LOCKDEP |
1156 | p->lockdep_depth = 0; /* no locks held yet */ | 1026 | p->lockdep_depth = 0; /* no locks held yet */ |
1157 | p->curr_chain_key = 0; | 1027 | p->curr_chain_key = 0; |
1158 | p->lockdep_recursion = 0; | 1028 | p->lockdep_recursion = 0; |
1159 | #endif | 1029 | #endif |
1160 | 1030 | ||
1161 | #ifdef CONFIG_DEBUG_MUTEXES | 1031 | #ifdef CONFIG_DEBUG_MUTEXES |
1162 | p->blocked_on = NULL; /* not blocked yet */ | 1032 | p->blocked_on = NULL; /* not blocked yet */ |
1163 | #endif | 1033 | #endif |
1164 | 1034 | ||
1165 | /* Perform scheduler related setup. Assign this task to a CPU. */ | 1035 | /* Perform scheduler related setup. Assign this task to a CPU. */ |
1166 | sched_fork(p, clone_flags); | 1036 | sched_fork(p, clone_flags); |
1167 | 1037 | ||
1168 | if ((retval = security_task_alloc(p))) | 1038 | if ((retval = security_task_alloc(p))) |
1169 | goto bad_fork_cleanup_policy; | 1039 | goto bad_fork_cleanup_policy; |
1170 | if ((retval = audit_alloc(p))) | 1040 | if ((retval = audit_alloc(p))) |
1171 | goto bad_fork_cleanup_security; | 1041 | goto bad_fork_cleanup_security; |
1172 | /* copy all the process information */ | 1042 | /* copy all the process information */ |
1173 | if ((retval = copy_semundo(clone_flags, p))) | 1043 | if ((retval = copy_semundo(clone_flags, p))) |
1174 | goto bad_fork_cleanup_audit; | 1044 | goto bad_fork_cleanup_audit; |
1175 | if ((retval = copy_files(clone_flags, p))) | 1045 | if ((retval = copy_files(clone_flags, p))) |
1176 | goto bad_fork_cleanup_semundo; | 1046 | goto bad_fork_cleanup_semundo; |
1177 | if ((retval = copy_fs(clone_flags, p))) | 1047 | if ((retval = copy_fs(clone_flags, p))) |
1178 | goto bad_fork_cleanup_files; | 1048 | goto bad_fork_cleanup_files; |
1179 | if ((retval = copy_sighand(clone_flags, p))) | 1049 | if ((retval = copy_sighand(clone_flags, p))) |
1180 | goto bad_fork_cleanup_fs; | 1050 | goto bad_fork_cleanup_fs; |
1181 | if ((retval = copy_signal(clone_flags, p))) | 1051 | if ((retval = copy_signal(clone_flags, p))) |
1182 | goto bad_fork_cleanup_sighand; | 1052 | goto bad_fork_cleanup_sighand; |
1183 | if ((retval = copy_mm(clone_flags, p))) | 1053 | if ((retval = copy_mm(clone_flags, p))) |
1184 | goto bad_fork_cleanup_signal; | 1054 | goto bad_fork_cleanup_signal; |
1185 | if ((retval = copy_keys(clone_flags, p))) | 1055 | if ((retval = copy_keys(clone_flags, p))) |
1186 | goto bad_fork_cleanup_mm; | 1056 | goto bad_fork_cleanup_mm; |
1187 | if ((retval = copy_namespaces(clone_flags, p))) | 1057 | if ((retval = copy_namespaces(clone_flags, p))) |
1188 | goto bad_fork_cleanup_keys; | 1058 | goto bad_fork_cleanup_keys; |
1189 | if ((retval = copy_io(clone_flags, p))) | 1059 | if ((retval = copy_io(clone_flags, p))) |
1190 | goto bad_fork_cleanup_namespaces; | 1060 | goto bad_fork_cleanup_namespaces; |
1191 | retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs); | 1061 | retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs); |
1192 | if (retval) | 1062 | if (retval) |
1193 | goto bad_fork_cleanup_io; | 1063 | goto bad_fork_cleanup_io; |
1194 | 1064 | ||
1195 | if (pid != &init_struct_pid) { | 1065 | if (pid != &init_struct_pid) { |
1196 | retval = -ENOMEM; | 1066 | retval = -ENOMEM; |
1197 | pid = alloc_pid(task_active_pid_ns(p)); | 1067 | pid = alloc_pid(task_active_pid_ns(p)); |
1198 | if (!pid) | 1068 | if (!pid) |
1199 | goto bad_fork_cleanup_io; | 1069 | goto bad_fork_cleanup_io; |
1200 | 1070 | ||
1201 | if (clone_flags & CLONE_NEWPID) { | 1071 | if (clone_flags & CLONE_NEWPID) { |
1202 | retval = pid_ns_prepare_proc(task_active_pid_ns(p)); | 1072 | retval = pid_ns_prepare_proc(task_active_pid_ns(p)); |
1203 | if (retval < 0) | 1073 | if (retval < 0) |
1204 | goto bad_fork_free_pid; | 1074 | goto bad_fork_free_pid; |
1205 | } | 1075 | } |
1206 | } | 1076 | } |
1207 | 1077 | ||
1208 | p->pid = pid_nr(pid); | 1078 | p->pid = pid_nr(pid); |
1209 | p->tgid = p->pid; | 1079 | p->tgid = p->pid; |
1210 | if (clone_flags & CLONE_THREAD) | 1080 | if (clone_flags & CLONE_THREAD) |
1211 | p->tgid = current->tgid; | 1081 | p->tgid = current->tgid; |
1212 | 1082 | ||
1213 | p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; | 1083 | p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; |
1214 | /* | 1084 | /* |
1215 | * Clear TID on mm_release()? | 1085 | * Clear TID on mm_release()? |
1216 | */ | 1086 | */ |
1217 | p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL; | 1087 | p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL; |
1218 | #ifdef CONFIG_FUTEX | 1088 | #ifdef CONFIG_FUTEX |
1219 | p->robust_list = NULL; | 1089 | p->robust_list = NULL; |
1220 | #ifdef CONFIG_COMPAT | 1090 | #ifdef CONFIG_COMPAT |
1221 | p->compat_robust_list = NULL; | 1091 | p->compat_robust_list = NULL; |
1222 | #endif | 1092 | #endif |
1223 | INIT_LIST_HEAD(&p->pi_state_list); | 1093 | INIT_LIST_HEAD(&p->pi_state_list); |
1224 | p->pi_state_cache = NULL; | 1094 | p->pi_state_cache = NULL; |
1225 | #endif | 1095 | #endif |
1226 | /* | 1096 | /* |
1227 | * sigaltstack should be cleared when sharing the same VM | 1097 | * sigaltstack should be cleared when sharing the same VM |
1228 | */ | 1098 | */ |
1229 | if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) | 1099 | if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) |
1230 | p->sas_ss_sp = p->sas_ss_size = 0; | 1100 | p->sas_ss_sp = p->sas_ss_size = 0; |
1231 | 1101 | ||
1232 | /* | 1102 | /* |
1233 | * Syscall tracing should be turned off in the child regardless | 1103 | * Syscall tracing should be turned off in the child regardless |
1234 | * of CLONE_PTRACE. | 1104 | * of CLONE_PTRACE. |
1235 | */ | 1105 | */ |
1236 | clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); | 1106 | clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); |
1237 | #ifdef TIF_SYSCALL_EMU | 1107 | #ifdef TIF_SYSCALL_EMU |
1238 | clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); | 1108 | clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); |
1239 | #endif | 1109 | #endif |
1240 | clear_all_latency_tracing(p); | 1110 | clear_all_latency_tracing(p); |
1241 | 1111 | ||
1242 | /* Our parent execution domain becomes current domain | 1112 | /* Our parent execution domain becomes current domain |
1243 | These must match for thread signalling to apply */ | 1113 | These must match for thread signalling to apply */ |
1244 | p->parent_exec_id = p->self_exec_id; | 1114 | p->parent_exec_id = p->self_exec_id; |
1245 | 1115 | ||
1246 | /* ok, now we should be set up.. */ | 1116 | /* ok, now we should be set up.. */ |
1247 | p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL); | 1117 | p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL); |
1248 | p->pdeath_signal = 0; | 1118 | p->pdeath_signal = 0; |
1249 | p->exit_state = 0; | 1119 | p->exit_state = 0; |
1250 | 1120 | ||
1251 | /* | 1121 | /* |
1252 | * Ok, make it visible to the rest of the system. | 1122 | * Ok, make it visible to the rest of the system. |
1253 | * We dont wake it up yet. | 1123 | * We dont wake it up yet. |
1254 | */ | 1124 | */ |
1255 | p->group_leader = p; | 1125 | p->group_leader = p; |
1256 | INIT_LIST_HEAD(&p->thread_group); | 1126 | INIT_LIST_HEAD(&p->thread_group); |
1257 | INIT_LIST_HEAD(&p->ptrace_children); | 1127 | INIT_LIST_HEAD(&p->ptrace_children); |
1258 | INIT_LIST_HEAD(&p->ptrace_list); | 1128 | INIT_LIST_HEAD(&p->ptrace_list); |
1259 | 1129 | ||
1260 | /* Now that the task is set up, run cgroup callbacks if | 1130 | /* Now that the task is set up, run cgroup callbacks if |
1261 | * necessary. We need to run them before the task is visible | 1131 | * necessary. We need to run them before the task is visible |
1262 | * on the tasklist. */ | 1132 | * on the tasklist. */ |
1263 | cgroup_fork_callbacks(p); | 1133 | cgroup_fork_callbacks(p); |
1264 | cgroup_callbacks_done = 1; | 1134 | cgroup_callbacks_done = 1; |
1265 | 1135 | ||
1266 | /* Need tasklist lock for parent etc handling! */ | 1136 | /* Need tasklist lock for parent etc handling! */ |
1267 | write_lock_irq(&tasklist_lock); | 1137 | write_lock_irq(&tasklist_lock); |
1268 | 1138 | ||
1269 | /* | 1139 | /* |
1270 | * The task hasn't been attached yet, so its cpus_allowed mask will | 1140 | * The task hasn't been attached yet, so its cpus_allowed mask will |
1271 | * not be changed, nor will its assigned CPU. | 1141 | * not be changed, nor will its assigned CPU. |
1272 | * | 1142 | * |
1273 | * The cpus_allowed mask of the parent may have changed after it was | 1143 | * The cpus_allowed mask of the parent may have changed after it was |
1274 | * copied first time - so re-copy it here, then check the child's CPU | 1144 | * copied first time - so re-copy it here, then check the child's CPU |
1275 | * to ensure it is on a valid CPU (and if not, just force it back to | 1145 | * to ensure it is on a valid CPU (and if not, just force it back to |
1276 | * parent's CPU). This avoids alot of nasty races. | 1146 | * parent's CPU). This avoids alot of nasty races. |
1277 | */ | 1147 | */ |
1278 | p->cpus_allowed = current->cpus_allowed; | 1148 | p->cpus_allowed = current->cpus_allowed; |
1279 | p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed; | 1149 | p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed; |
1280 | if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) || | 1150 | if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) || |
1281 | !cpu_online(task_cpu(p)))) | 1151 | !cpu_online(task_cpu(p)))) |
1282 | set_task_cpu(p, smp_processor_id()); | 1152 | set_task_cpu(p, smp_processor_id()); |
1283 | 1153 | ||
1284 | /* CLONE_PARENT re-uses the old parent */ | 1154 | /* CLONE_PARENT re-uses the old parent */ |
1285 | if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) | 1155 | if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) |
1286 | p->real_parent = current->real_parent; | 1156 | p->real_parent = current->real_parent; |
1287 | else | 1157 | else |
1288 | p->real_parent = current; | 1158 | p->real_parent = current; |
1289 | p->parent = p->real_parent; | 1159 | p->parent = p->real_parent; |
1290 | 1160 | ||
1291 | spin_lock(¤t->sighand->siglock); | 1161 | spin_lock(¤t->sighand->siglock); |
1292 | 1162 | ||
1293 | /* | 1163 | /* |
1294 | * Process group and session signals need to be delivered to just the | 1164 | * Process group and session signals need to be delivered to just the |
1295 | * parent before the fork or both the parent and the child after the | 1165 | * parent before the fork or both the parent and the child after the |
1296 | * fork. Restart if a signal comes in before we add the new process to | 1166 | * fork. Restart if a signal comes in before we add the new process to |
1297 | * it's process group. | 1167 | * it's process group. |
1298 | * A fatal signal pending means that current will exit, so the new | 1168 | * A fatal signal pending means that current will exit, so the new |
1299 | * thread can't slip out of an OOM kill (or normal SIGKILL). | 1169 | * thread can't slip out of an OOM kill (or normal SIGKILL). |
1300 | */ | 1170 | */ |
1301 | recalc_sigpending(); | 1171 | recalc_sigpending(); |
1302 | if (signal_pending(current)) { | 1172 | if (signal_pending(current)) { |
1303 | spin_unlock(¤t->sighand->siglock); | 1173 | spin_unlock(¤t->sighand->siglock); |
1304 | write_unlock_irq(&tasklist_lock); | 1174 | write_unlock_irq(&tasklist_lock); |
1305 | retval = -ERESTARTNOINTR; | 1175 | retval = -ERESTARTNOINTR; |
1306 | goto bad_fork_free_pid; | 1176 | goto bad_fork_free_pid; |
1307 | } | 1177 | } |
1308 | 1178 | ||
1309 | if (clone_flags & CLONE_THREAD) { | 1179 | if (clone_flags & CLONE_THREAD) { |
1310 | p->group_leader = current->group_leader; | 1180 | p->group_leader = current->group_leader; |
1311 | list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); | 1181 | list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); |
1312 | 1182 | ||
1313 | if (!cputime_eq(current->signal->it_virt_expires, | 1183 | if (!cputime_eq(current->signal->it_virt_expires, |
1314 | cputime_zero) || | 1184 | cputime_zero) || |
1315 | !cputime_eq(current->signal->it_prof_expires, | 1185 | !cputime_eq(current->signal->it_prof_expires, |
1316 | cputime_zero) || | 1186 | cputime_zero) || |
1317 | current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY || | 1187 | current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY || |
1318 | !list_empty(¤t->signal->cpu_timers[0]) || | 1188 | !list_empty(¤t->signal->cpu_timers[0]) || |
1319 | !list_empty(¤t->signal->cpu_timers[1]) || | 1189 | !list_empty(¤t->signal->cpu_timers[1]) || |
1320 | !list_empty(¤t->signal->cpu_timers[2])) { | 1190 | !list_empty(¤t->signal->cpu_timers[2])) { |
1321 | /* | 1191 | /* |
1322 | * Have child wake up on its first tick to check | 1192 | * Have child wake up on its first tick to check |
1323 | * for process CPU timers. | 1193 | * for process CPU timers. |
1324 | */ | 1194 | */ |
1325 | p->it_prof_expires = jiffies_to_cputime(1); | 1195 | p->it_prof_expires = jiffies_to_cputime(1); |
1326 | } | 1196 | } |
1327 | } | 1197 | } |
1328 | 1198 | ||
1329 | if (likely(p->pid)) { | 1199 | if (likely(p->pid)) { |
1330 | add_parent(p); | 1200 | add_parent(p); |
1331 | if (unlikely(p->ptrace & PT_PTRACED)) | 1201 | if (unlikely(p->ptrace & PT_PTRACED)) |
1332 | __ptrace_link(p, current->parent); | 1202 | __ptrace_link(p, current->parent); |
1333 | 1203 | ||
1334 | if (thread_group_leader(p)) { | 1204 | if (thread_group_leader(p)) { |
1335 | if (clone_flags & CLONE_NEWPID) | 1205 | if (clone_flags & CLONE_NEWPID) |
1336 | p->nsproxy->pid_ns->child_reaper = p; | 1206 | p->nsproxy->pid_ns->child_reaper = p; |
1337 | 1207 | ||
1338 | p->signal->leader_pid = pid; | 1208 | p->signal->leader_pid = pid; |
1339 | p->signal->tty = current->signal->tty; | 1209 | p->signal->tty = current->signal->tty; |
1340 | set_task_pgrp(p, task_pgrp_nr(current)); | 1210 | set_task_pgrp(p, task_pgrp_nr(current)); |
1341 | set_task_session(p, task_session_nr(current)); | 1211 | set_task_session(p, task_session_nr(current)); |
1342 | attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); | 1212 | attach_pid(p, PIDTYPE_PGID, task_pgrp(current)); |
1343 | attach_pid(p, PIDTYPE_SID, task_session(current)); | 1213 | attach_pid(p, PIDTYPE_SID, task_session(current)); |
1344 | list_add_tail_rcu(&p->tasks, &init_task.tasks); | 1214 | list_add_tail_rcu(&p->tasks, &init_task.tasks); |
1345 | __get_cpu_var(process_counts)++; | 1215 | __get_cpu_var(process_counts)++; |
1346 | } | 1216 | } |
1347 | attach_pid(p, PIDTYPE_PID, pid); | 1217 | attach_pid(p, PIDTYPE_PID, pid); |
1348 | nr_threads++; | 1218 | nr_threads++; |
1349 | } | 1219 | } |
1350 | 1220 | ||
1351 | total_forks++; | 1221 | total_forks++; |
1352 | spin_unlock(¤t->sighand->siglock); | 1222 | spin_unlock(¤t->sighand->siglock); |
1353 | write_unlock_irq(&tasklist_lock); | 1223 | write_unlock_irq(&tasklist_lock); |
1354 | proc_fork_connector(p); | 1224 | proc_fork_connector(p); |
1355 | cgroup_post_fork(p); | 1225 | cgroup_post_fork(p); |
1356 | return p; | 1226 | return p; |
1357 | 1227 | ||
1358 | bad_fork_free_pid: | 1228 | bad_fork_free_pid: |
1359 | if (pid != &init_struct_pid) | 1229 | if (pid != &init_struct_pid) |
1360 | free_pid(pid); | 1230 | free_pid(pid); |
1361 | bad_fork_cleanup_io: | 1231 | bad_fork_cleanup_io: |
1362 | put_io_context(p->io_context); | 1232 | put_io_context(p->io_context); |
1363 | bad_fork_cleanup_namespaces: | 1233 | bad_fork_cleanup_namespaces: |
1364 | exit_task_namespaces(p); | 1234 | exit_task_namespaces(p); |
1365 | bad_fork_cleanup_keys: | 1235 | bad_fork_cleanup_keys: |
1366 | exit_keys(p); | 1236 | exit_keys(p); |
1367 | bad_fork_cleanup_mm: | 1237 | bad_fork_cleanup_mm: |
1368 | if (p->mm) | 1238 | if (p->mm) |
1369 | mmput(p->mm); | 1239 | mmput(p->mm); |
1370 | bad_fork_cleanup_signal: | 1240 | bad_fork_cleanup_signal: |
1371 | cleanup_signal(p); | 1241 | cleanup_signal(p); |
1372 | bad_fork_cleanup_sighand: | 1242 | bad_fork_cleanup_sighand: |
1373 | __cleanup_sighand(p->sighand); | 1243 | __cleanup_sighand(p->sighand); |
1374 | bad_fork_cleanup_fs: | 1244 | bad_fork_cleanup_fs: |
1375 | exit_fs(p); /* blocking */ | 1245 | exit_fs(p); /* blocking */ |
1376 | bad_fork_cleanup_files: | 1246 | bad_fork_cleanup_files: |
1377 | exit_files(p); /* blocking */ | 1247 | exit_files(p); /* blocking */ |
1378 | bad_fork_cleanup_semundo: | 1248 | bad_fork_cleanup_semundo: |
1379 | exit_sem(p); | 1249 | exit_sem(p); |
1380 | bad_fork_cleanup_audit: | 1250 | bad_fork_cleanup_audit: |
1381 | audit_free(p); | 1251 | audit_free(p); |
1382 | bad_fork_cleanup_security: | 1252 | bad_fork_cleanup_security: |
1383 | security_task_free(p); | 1253 | security_task_free(p); |
1384 | bad_fork_cleanup_policy: | 1254 | bad_fork_cleanup_policy: |
1385 | #ifdef CONFIG_NUMA | 1255 | #ifdef CONFIG_NUMA |
1386 | mpol_put(p->mempolicy); | 1256 | mpol_put(p->mempolicy); |
1387 | bad_fork_cleanup_cgroup: | 1257 | bad_fork_cleanup_cgroup: |
1388 | #endif | 1258 | #endif |
1389 | cgroup_exit(p, cgroup_callbacks_done); | 1259 | cgroup_exit(p, cgroup_callbacks_done); |
1390 | delayacct_tsk_free(p); | 1260 | delayacct_tsk_free(p); |
1391 | if (p->binfmt) | 1261 | if (p->binfmt) |
1392 | module_put(p->binfmt->module); | 1262 | module_put(p->binfmt->module); |
1393 | bad_fork_cleanup_put_domain: | 1263 | bad_fork_cleanup_put_domain: |
1394 | module_put(task_thread_info(p)->exec_domain->module); | 1264 | module_put(task_thread_info(p)->exec_domain->module); |
1395 | bad_fork_cleanup_count: | 1265 | bad_fork_cleanup_count: |
1396 | put_group_info(p->group_info); | 1266 | put_group_info(p->group_info); |
1397 | atomic_dec(&p->user->processes); | 1267 | atomic_dec(&p->user->processes); |
1398 | free_uid(p->user); | 1268 | free_uid(p->user); |
1399 | bad_fork_free: | 1269 | bad_fork_free: |
1400 | free_task(p); | 1270 | free_task(p); |
1401 | fork_out: | 1271 | fork_out: |
1402 | return ERR_PTR(retval); | 1272 | return ERR_PTR(retval); |
1403 | } | 1273 | } |
1404 | 1274 | ||
1405 | noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs) | 1275 | noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs) |
1406 | { | 1276 | { |
1407 | memset(regs, 0, sizeof(struct pt_regs)); | 1277 | memset(regs, 0, sizeof(struct pt_regs)); |
1408 | return regs; | 1278 | return regs; |
1409 | } | 1279 | } |
1410 | 1280 | ||
1411 | struct task_struct * __cpuinit fork_idle(int cpu) | 1281 | struct task_struct * __cpuinit fork_idle(int cpu) |
1412 | { | 1282 | { |
1413 | struct task_struct *task; | 1283 | struct task_struct *task; |
1414 | struct pt_regs regs; | 1284 | struct pt_regs regs; |
1415 | 1285 | ||
1416 | task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, | 1286 | task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, |
1417 | &init_struct_pid); | 1287 | &init_struct_pid); |
1418 | if (!IS_ERR(task)) | 1288 | if (!IS_ERR(task)) |
1419 | init_idle(task, cpu); | 1289 | init_idle(task, cpu); |
1420 | 1290 | ||
1421 | return task; | 1291 | return task; |
1422 | } | 1292 | } |
1423 | 1293 | ||
1424 | static int fork_traceflag(unsigned clone_flags) | 1294 | static int fork_traceflag(unsigned clone_flags) |
1425 | { | 1295 | { |
1426 | if (clone_flags & CLONE_UNTRACED) | 1296 | if (clone_flags & CLONE_UNTRACED) |
1427 | return 0; | 1297 | return 0; |
1428 | else if (clone_flags & CLONE_VFORK) { | 1298 | else if (clone_flags & CLONE_VFORK) { |
1429 | if (current->ptrace & PT_TRACE_VFORK) | 1299 | if (current->ptrace & PT_TRACE_VFORK) |
1430 | return PTRACE_EVENT_VFORK; | 1300 | return PTRACE_EVENT_VFORK; |
1431 | } else if ((clone_flags & CSIGNAL) != SIGCHLD) { | 1301 | } else if ((clone_flags & CSIGNAL) != SIGCHLD) { |
1432 | if (current->ptrace & PT_TRACE_CLONE) | 1302 | if (current->ptrace & PT_TRACE_CLONE) |
1433 | return PTRACE_EVENT_CLONE; | 1303 | return PTRACE_EVENT_CLONE; |
1434 | } else if (current->ptrace & PT_TRACE_FORK) | 1304 | } else if (current->ptrace & PT_TRACE_FORK) |
1435 | return PTRACE_EVENT_FORK; | 1305 | return PTRACE_EVENT_FORK; |
1436 | 1306 | ||
1437 | return 0; | 1307 | return 0; |
1438 | } | 1308 | } |
1439 | 1309 | ||
1440 | /* | 1310 | /* |
1441 | * Ok, this is the main fork-routine. | 1311 | * Ok, this is the main fork-routine. |
1442 | * | 1312 | * |
1443 | * It copies the process, and if successful kick-starts | 1313 | * It copies the process, and if successful kick-starts |
1444 | * it and waits for it to finish using the VM if required. | 1314 | * it and waits for it to finish using the VM if required. |
1445 | */ | 1315 | */ |
1446 | long do_fork(unsigned long clone_flags, | 1316 | long do_fork(unsigned long clone_flags, |
1447 | unsigned long stack_start, | 1317 | unsigned long stack_start, |
1448 | struct pt_regs *regs, | 1318 | struct pt_regs *regs, |
1449 | unsigned long stack_size, | 1319 | unsigned long stack_size, |
1450 | int __user *parent_tidptr, | 1320 | int __user *parent_tidptr, |
1451 | int __user *child_tidptr) | 1321 | int __user *child_tidptr) |
1452 | { | 1322 | { |
1453 | struct task_struct *p; | 1323 | struct task_struct *p; |
1454 | int trace = 0; | 1324 | int trace = 0; |
1455 | long nr; | 1325 | long nr; |
1456 | 1326 | ||
1457 | /* | 1327 | /* |
1458 | * We hope to recycle these flags after 2.6.26 | 1328 | * We hope to recycle these flags after 2.6.26 |
1459 | */ | 1329 | */ |
1460 | if (unlikely(clone_flags & CLONE_STOPPED)) { | 1330 | if (unlikely(clone_flags & CLONE_STOPPED)) { |
1461 | static int __read_mostly count = 100; | 1331 | static int __read_mostly count = 100; |
1462 | 1332 | ||
1463 | if (count > 0 && printk_ratelimit()) { | 1333 | if (count > 0 && printk_ratelimit()) { |
1464 | char comm[TASK_COMM_LEN]; | 1334 | char comm[TASK_COMM_LEN]; |
1465 | 1335 | ||
1466 | count--; | 1336 | count--; |
1467 | printk(KERN_INFO "fork(): process `%s' used deprecated " | 1337 | printk(KERN_INFO "fork(): process `%s' used deprecated " |
1468 | "clone flags 0x%lx\n", | 1338 | "clone flags 0x%lx\n", |
1469 | get_task_comm(comm, current), | 1339 | get_task_comm(comm, current), |
1470 | clone_flags & CLONE_STOPPED); | 1340 | clone_flags & CLONE_STOPPED); |
1471 | } | 1341 | } |
1472 | } | 1342 | } |
1473 | 1343 | ||
1474 | if (unlikely(current->ptrace)) { | 1344 | if (unlikely(current->ptrace)) { |
1475 | trace = fork_traceflag (clone_flags); | 1345 | trace = fork_traceflag (clone_flags); |
1476 | if (trace) | 1346 | if (trace) |
1477 | clone_flags |= CLONE_PTRACE; | 1347 | clone_flags |= CLONE_PTRACE; |
1478 | } | 1348 | } |
1479 | 1349 | ||
1480 | p = copy_process(clone_flags, stack_start, regs, stack_size, | 1350 | p = copy_process(clone_flags, stack_start, regs, stack_size, |
1481 | child_tidptr, NULL); | 1351 | child_tidptr, NULL); |
1482 | /* | 1352 | /* |
1483 | * Do this prior waking up the new thread - the thread pointer | 1353 | * Do this prior waking up the new thread - the thread pointer |
1484 | * might get invalid after that point, if the thread exits quickly. | 1354 | * might get invalid after that point, if the thread exits quickly. |
1485 | */ | 1355 | */ |
1486 | if (!IS_ERR(p)) { | 1356 | if (!IS_ERR(p)) { |
1487 | struct completion vfork; | 1357 | struct completion vfork; |
1488 | 1358 | ||
1489 | nr = task_pid_vnr(p); | 1359 | nr = task_pid_vnr(p); |
1490 | 1360 | ||
1491 | if (clone_flags & CLONE_PARENT_SETTID) | 1361 | if (clone_flags & CLONE_PARENT_SETTID) |
1492 | put_user(nr, parent_tidptr); | 1362 | put_user(nr, parent_tidptr); |
1493 | 1363 | ||
1494 | if (clone_flags & CLONE_VFORK) { | 1364 | if (clone_flags & CLONE_VFORK) { |
1495 | p->vfork_done = &vfork; | 1365 | p->vfork_done = &vfork; |
1496 | init_completion(&vfork); | 1366 | init_completion(&vfork); |
1497 | } | 1367 | } |
1498 | 1368 | ||
1499 | if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) { | 1369 | if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) { |
1500 | /* | 1370 | /* |
1501 | * We'll start up with an immediate SIGSTOP. | 1371 | * We'll start up with an immediate SIGSTOP. |
1502 | */ | 1372 | */ |
1503 | sigaddset(&p->pending.signal, SIGSTOP); | 1373 | sigaddset(&p->pending.signal, SIGSTOP); |
1504 | set_tsk_thread_flag(p, TIF_SIGPENDING); | 1374 | set_tsk_thread_flag(p, TIF_SIGPENDING); |
1505 | } | 1375 | } |
1506 | 1376 | ||
1507 | if (!(clone_flags & CLONE_STOPPED)) | 1377 | if (!(clone_flags & CLONE_STOPPED)) |
1508 | wake_up_new_task(p, clone_flags); | 1378 | wake_up_new_task(p, clone_flags); |
1509 | else | 1379 | else |
1510 | __set_task_state(p, TASK_STOPPED); | 1380 | __set_task_state(p, TASK_STOPPED); |
1511 | 1381 | ||
1512 | if (unlikely (trace)) { | 1382 | if (unlikely (trace)) { |
1513 | current->ptrace_message = nr; | 1383 | current->ptrace_message = nr; |
1514 | ptrace_notify ((trace << 8) | SIGTRAP); | 1384 | ptrace_notify ((trace << 8) | SIGTRAP); |
1515 | } | 1385 | } |
1516 | 1386 | ||
1517 | if (clone_flags & CLONE_VFORK) { | 1387 | if (clone_flags & CLONE_VFORK) { |
1518 | freezer_do_not_count(); | 1388 | freezer_do_not_count(); |
1519 | wait_for_completion(&vfork); | 1389 | wait_for_completion(&vfork); |
1520 | freezer_count(); | 1390 | freezer_count(); |
1521 | if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) { | 1391 | if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) { |
1522 | current->ptrace_message = nr; | 1392 | current->ptrace_message = nr; |
1523 | ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP); | 1393 | ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP); |
1524 | } | 1394 | } |
1525 | } | 1395 | } |
1526 | } else { | 1396 | } else { |
1527 | nr = PTR_ERR(p); | 1397 | nr = PTR_ERR(p); |
1528 | } | 1398 | } |
1529 | return nr; | 1399 | return nr; |
1530 | } | 1400 | } |
1531 | 1401 | ||
1532 | #ifndef ARCH_MIN_MMSTRUCT_ALIGN | 1402 | #ifndef ARCH_MIN_MMSTRUCT_ALIGN |
1533 | #define ARCH_MIN_MMSTRUCT_ALIGN 0 | 1403 | #define ARCH_MIN_MMSTRUCT_ALIGN 0 |
1534 | #endif | 1404 | #endif |
1535 | 1405 | ||
1536 | static void sighand_ctor(struct kmem_cache *cachep, void *data) | 1406 | static void sighand_ctor(struct kmem_cache *cachep, void *data) |
1537 | { | 1407 | { |
1538 | struct sighand_struct *sighand = data; | 1408 | struct sighand_struct *sighand = data; |
1539 | 1409 | ||
1540 | spin_lock_init(&sighand->siglock); | 1410 | spin_lock_init(&sighand->siglock); |
1541 | init_waitqueue_head(&sighand->signalfd_wqh); | 1411 | init_waitqueue_head(&sighand->signalfd_wqh); |
1542 | } | 1412 | } |
1543 | 1413 | ||
1544 | void __init proc_caches_init(void) | 1414 | void __init proc_caches_init(void) |
1545 | { | 1415 | { |
1546 | sighand_cachep = kmem_cache_create("sighand_cache", | 1416 | sighand_cachep = kmem_cache_create("sighand_cache", |
1547 | sizeof(struct sighand_struct), 0, | 1417 | sizeof(struct sighand_struct), 0, |
1548 | SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU, | 1418 | SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU, |
1549 | sighand_ctor); | 1419 | sighand_ctor); |
1550 | signal_cachep = kmem_cache_create("signal_cache", | 1420 | signal_cachep = kmem_cache_create("signal_cache", |
1551 | sizeof(struct signal_struct), 0, | 1421 | sizeof(struct signal_struct), 0, |
1552 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); | 1422 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); |
1553 | files_cachep = kmem_cache_create("files_cache", | 1423 | files_cachep = kmem_cache_create("files_cache", |
1554 | sizeof(struct files_struct), 0, | 1424 | sizeof(struct files_struct), 0, |
1555 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); | 1425 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); |
1556 | fs_cachep = kmem_cache_create("fs_cache", | 1426 | fs_cachep = kmem_cache_create("fs_cache", |
1557 | sizeof(struct fs_struct), 0, | 1427 | sizeof(struct fs_struct), 0, |
1558 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); | 1428 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); |
1559 | vm_area_cachep = kmem_cache_create("vm_area_struct", | 1429 | vm_area_cachep = kmem_cache_create("vm_area_struct", |
1560 | sizeof(struct vm_area_struct), 0, | 1430 | sizeof(struct vm_area_struct), 0, |
1561 | SLAB_PANIC, NULL); | 1431 | SLAB_PANIC, NULL); |
1562 | mm_cachep = kmem_cache_create("mm_struct", | 1432 | mm_cachep = kmem_cache_create("mm_struct", |
1563 | sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, | 1433 | sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN, |
1564 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); | 1434 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); |
1565 | } | 1435 | } |
1566 | 1436 | ||
1567 | /* | 1437 | /* |
1568 | * Check constraints on flags passed to the unshare system call and | 1438 | * Check constraints on flags passed to the unshare system call and |
1569 | * force unsharing of additional process context as appropriate. | 1439 | * force unsharing of additional process context as appropriate. |
1570 | */ | 1440 | */ |
1571 | static void check_unshare_flags(unsigned long *flags_ptr) | 1441 | static void check_unshare_flags(unsigned long *flags_ptr) |
1572 | { | 1442 | { |
1573 | /* | 1443 | /* |
1574 | * If unsharing a thread from a thread group, must also | 1444 | * If unsharing a thread from a thread group, must also |
1575 | * unshare vm. | 1445 | * unshare vm. |
1576 | */ | 1446 | */ |
1577 | if (*flags_ptr & CLONE_THREAD) | 1447 | if (*flags_ptr & CLONE_THREAD) |
1578 | *flags_ptr |= CLONE_VM; | 1448 | *flags_ptr |= CLONE_VM; |
1579 | 1449 | ||
1580 | /* | 1450 | /* |
1581 | * If unsharing vm, must also unshare signal handlers. | 1451 | * If unsharing vm, must also unshare signal handlers. |
1582 | */ | 1452 | */ |
1583 | if (*flags_ptr & CLONE_VM) | 1453 | if (*flags_ptr & CLONE_VM) |
1584 | *flags_ptr |= CLONE_SIGHAND; | 1454 | *flags_ptr |= CLONE_SIGHAND; |
1585 | 1455 | ||
1586 | /* | 1456 | /* |
1587 | * If unsharing signal handlers and the task was created | 1457 | * If unsharing signal handlers and the task was created |
1588 | * using CLONE_THREAD, then must unshare the thread | 1458 | * using CLONE_THREAD, then must unshare the thread |
1589 | */ | 1459 | */ |
1590 | if ((*flags_ptr & CLONE_SIGHAND) && | 1460 | if ((*flags_ptr & CLONE_SIGHAND) && |
1591 | (atomic_read(¤t->signal->count) > 1)) | 1461 | (atomic_read(¤t->signal->count) > 1)) |
1592 | *flags_ptr |= CLONE_THREAD; | 1462 | *flags_ptr |= CLONE_THREAD; |
1593 | 1463 | ||
1594 | /* | 1464 | /* |
1595 | * If unsharing namespace, must also unshare filesystem information. | 1465 | * If unsharing namespace, must also unshare filesystem information. |
1596 | */ | 1466 | */ |
1597 | if (*flags_ptr & CLONE_NEWNS) | 1467 | if (*flags_ptr & CLONE_NEWNS) |
1598 | *flags_ptr |= CLONE_FS; | 1468 | *flags_ptr |= CLONE_FS; |
1599 | } | 1469 | } |
1600 | 1470 | ||
1601 | /* | 1471 | /* |
1602 | * Unsharing of tasks created with CLONE_THREAD is not supported yet | 1472 | * Unsharing of tasks created with CLONE_THREAD is not supported yet |
1603 | */ | 1473 | */ |
1604 | static int unshare_thread(unsigned long unshare_flags) | 1474 | static int unshare_thread(unsigned long unshare_flags) |
1605 | { | 1475 | { |
1606 | if (unshare_flags & CLONE_THREAD) | 1476 | if (unshare_flags & CLONE_THREAD) |
1607 | return -EINVAL; | 1477 | return -EINVAL; |
1608 | 1478 | ||
1609 | return 0; | 1479 | return 0; |
1610 | } | 1480 | } |
1611 | 1481 | ||
1612 | /* | 1482 | /* |
1613 | * Unshare the filesystem structure if it is being shared | 1483 | * Unshare the filesystem structure if it is being shared |
1614 | */ | 1484 | */ |
1615 | static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) | 1485 | static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) |
1616 | { | 1486 | { |
1617 | struct fs_struct *fs = current->fs; | 1487 | struct fs_struct *fs = current->fs; |
1618 | 1488 | ||
1619 | if ((unshare_flags & CLONE_FS) && | 1489 | if ((unshare_flags & CLONE_FS) && |
1620 | (fs && atomic_read(&fs->count) > 1)) { | 1490 | (fs && atomic_read(&fs->count) > 1)) { |
1621 | *new_fsp = __copy_fs_struct(current->fs); | 1491 | *new_fsp = __copy_fs_struct(current->fs); |
1622 | if (!*new_fsp) | 1492 | if (!*new_fsp) |
1623 | return -ENOMEM; | 1493 | return -ENOMEM; |
1624 | } | 1494 | } |
1625 | 1495 | ||
1626 | return 0; | 1496 | return 0; |
1627 | } | 1497 | } |
1628 | 1498 | ||
1629 | /* | 1499 | /* |
1630 | * Unsharing of sighand is not supported yet | 1500 | * Unsharing of sighand is not supported yet |
1631 | */ | 1501 | */ |
1632 | static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp) | 1502 | static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp) |
1633 | { | 1503 | { |
1634 | struct sighand_struct *sigh = current->sighand; | 1504 | struct sighand_struct *sigh = current->sighand; |
1635 | 1505 | ||
1636 | if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1) | 1506 | if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1) |
1637 | return -EINVAL; | 1507 | return -EINVAL; |
1638 | else | 1508 | else |
1639 | return 0; | 1509 | return 0; |
1640 | } | 1510 | } |
1641 | 1511 | ||
1642 | /* | 1512 | /* |
1643 | * Unshare vm if it is being shared | 1513 | * Unshare vm if it is being shared |
1644 | */ | 1514 | */ |
1645 | static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp) | 1515 | static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp) |
1646 | { | 1516 | { |
1647 | struct mm_struct *mm = current->mm; | 1517 | struct mm_struct *mm = current->mm; |
1648 | 1518 | ||
1649 | if ((unshare_flags & CLONE_VM) && | 1519 | if ((unshare_flags & CLONE_VM) && |
1650 | (mm && atomic_read(&mm->mm_users) > 1)) { | 1520 | (mm && atomic_read(&mm->mm_users) > 1)) { |
1651 | return -EINVAL; | 1521 | return -EINVAL; |
1652 | } | 1522 | } |
1653 | 1523 | ||
1654 | return 0; | 1524 | return 0; |
1655 | } | 1525 | } |
1656 | 1526 | ||
1657 | /* | 1527 | /* |
1658 | * Unshare file descriptor table if it is being shared | 1528 | * Unshare file descriptor table if it is being shared |
1659 | */ | 1529 | */ |
1660 | static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) | 1530 | static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) |
1661 | { | 1531 | { |
1662 | struct files_struct *fd = current->files; | 1532 | struct files_struct *fd = current->files; |
1663 | int error = 0; | 1533 | int error = 0; |
1664 | 1534 | ||
1665 | if ((unshare_flags & CLONE_FILES) && | 1535 | if ((unshare_flags & CLONE_FILES) && |
1666 | (fd && atomic_read(&fd->count) > 1)) { | 1536 | (fd && atomic_read(&fd->count) > 1)) { |
1667 | *new_fdp = dup_fd(fd, &error); | 1537 | *new_fdp = dup_fd(fd, &error); |
1668 | if (!*new_fdp) | 1538 | if (!*new_fdp) |
1669 | return error; | 1539 | return error; |
1670 | } | 1540 | } |
1671 | 1541 | ||
1672 | return 0; | 1542 | return 0; |
1673 | } | 1543 | } |
1674 | 1544 | ||
1675 | /* | 1545 | /* |
1676 | * unshare allows a process to 'unshare' part of the process | 1546 | * unshare allows a process to 'unshare' part of the process |
1677 | * context which was originally shared using clone. copy_* | 1547 | * context which was originally shared using clone. copy_* |
1678 | * functions used by do_fork() cannot be used here directly | 1548 | * functions used by do_fork() cannot be used here directly |
1679 | * because they modify an inactive task_struct that is being | 1549 | * because they modify an inactive task_struct that is being |
1680 | * constructed. Here we are modifying the current, active, | 1550 | * constructed. Here we are modifying the current, active, |
1681 | * task_struct. | 1551 | * task_struct. |
1682 | */ | 1552 | */ |
1683 | asmlinkage long sys_unshare(unsigned long unshare_flags) | 1553 | asmlinkage long sys_unshare(unsigned long unshare_flags) |
1684 | { | 1554 | { |
1685 | int err = 0; | 1555 | int err = 0; |
1686 | struct fs_struct *fs, *new_fs = NULL; | 1556 | struct fs_struct *fs, *new_fs = NULL; |
1687 | struct sighand_struct *new_sigh = NULL; | 1557 | struct sighand_struct *new_sigh = NULL; |
1688 | struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL; | 1558 | struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL; |
1689 | struct files_struct *fd, *new_fd = NULL; | 1559 | struct files_struct *fd, *new_fd = NULL; |
1690 | struct nsproxy *new_nsproxy = NULL; | 1560 | struct nsproxy *new_nsproxy = NULL; |
1691 | int do_sysvsem = 0; | 1561 | int do_sysvsem = 0; |
1692 | 1562 | ||
1693 | check_unshare_flags(&unshare_flags); | 1563 | check_unshare_flags(&unshare_flags); |
1694 | 1564 | ||
1695 | /* Return -EINVAL for all unsupported flags */ | 1565 | /* Return -EINVAL for all unsupported flags */ |
1696 | err = -EINVAL; | 1566 | err = -EINVAL; |
1697 | if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| | 1567 | if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| |
1698 | CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| | 1568 | CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| |
1699 | CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER| | 1569 | CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER| |
1700 | CLONE_NEWNET)) | 1570 | CLONE_NEWNET)) |
1701 | goto bad_unshare_out; | 1571 | goto bad_unshare_out; |
1702 | 1572 | ||
1703 | /* | 1573 | /* |
1704 | * CLONE_NEWIPC must also detach from the undolist: after switching | 1574 | * CLONE_NEWIPC must also detach from the undolist: after switching |
1705 | * to a new ipc namespace, the semaphore arrays from the old | 1575 | * to a new ipc namespace, the semaphore arrays from the old |
1706 | * namespace are unreachable. | 1576 | * namespace are unreachable. |
1707 | */ | 1577 | */ |
1708 | if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) | 1578 | if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) |
1709 | do_sysvsem = 1; | 1579 | do_sysvsem = 1; |
1710 | if ((err = unshare_thread(unshare_flags))) | 1580 | if ((err = unshare_thread(unshare_flags))) |
1711 | goto bad_unshare_out; | 1581 | goto bad_unshare_out; |
1712 | if ((err = unshare_fs(unshare_flags, &new_fs))) | 1582 | if ((err = unshare_fs(unshare_flags, &new_fs))) |
1713 | goto bad_unshare_cleanup_thread; | 1583 | goto bad_unshare_cleanup_thread; |
1714 | if ((err = unshare_sighand(unshare_flags, &new_sigh))) | 1584 | if ((err = unshare_sighand(unshare_flags, &new_sigh))) |
1715 | goto bad_unshare_cleanup_fs; | 1585 | goto bad_unshare_cleanup_fs; |
1716 | if ((err = unshare_vm(unshare_flags, &new_mm))) | 1586 | if ((err = unshare_vm(unshare_flags, &new_mm))) |
1717 | goto bad_unshare_cleanup_sigh; | 1587 | goto bad_unshare_cleanup_sigh; |
1718 | if ((err = unshare_fd(unshare_flags, &new_fd))) | 1588 | if ((err = unshare_fd(unshare_flags, &new_fd))) |
1719 | goto bad_unshare_cleanup_vm; | 1589 | goto bad_unshare_cleanup_vm; |
1720 | if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, | 1590 | if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, |
1721 | new_fs))) | 1591 | new_fs))) |
1722 | goto bad_unshare_cleanup_fd; | 1592 | goto bad_unshare_cleanup_fd; |
1723 | 1593 | ||
1724 | if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) { | 1594 | if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) { |
1725 | if (do_sysvsem) { | 1595 | if (do_sysvsem) { |
1726 | /* | 1596 | /* |
1727 | * CLONE_SYSVSEM is equivalent to sys_exit(). | 1597 | * CLONE_SYSVSEM is equivalent to sys_exit(). |
1728 | */ | 1598 | */ |
1729 | exit_sem(current); | 1599 | exit_sem(current); |
1730 | } | 1600 | } |
1731 | 1601 | ||
1732 | if (new_nsproxy) { | 1602 | if (new_nsproxy) { |
1733 | switch_task_namespaces(current, new_nsproxy); | 1603 | switch_task_namespaces(current, new_nsproxy); |
1734 | new_nsproxy = NULL; | 1604 | new_nsproxy = NULL; |
1735 | } | 1605 | } |
1736 | 1606 | ||
1737 | task_lock(current); | 1607 | task_lock(current); |
1738 | 1608 | ||
1739 | if (new_fs) { | 1609 | if (new_fs) { |
1740 | fs = current->fs; | 1610 | fs = current->fs; |
1741 | current->fs = new_fs; | 1611 | current->fs = new_fs; |
1742 | new_fs = fs; | 1612 | new_fs = fs; |
1743 | } | 1613 | } |
1744 | 1614 | ||
1745 | if (new_mm) { | 1615 | if (new_mm) { |
1746 | mm = current->mm; | 1616 | mm = current->mm; |
1747 | active_mm = current->active_mm; | 1617 | active_mm = current->active_mm; |
1748 | current->mm = new_mm; | 1618 | current->mm = new_mm; |
1749 | current->active_mm = new_mm; | 1619 | current->active_mm = new_mm; |
1750 | activate_mm(active_mm, new_mm); | 1620 | activate_mm(active_mm, new_mm); |
1751 | new_mm = mm; | 1621 | new_mm = mm; |
1752 | } | 1622 | } |
1753 | 1623 | ||
1754 | if (new_fd) { | 1624 | if (new_fd) { |
1755 | fd = current->files; | 1625 | fd = current->files; |
1756 | current->files = new_fd; | 1626 | current->files = new_fd; |
1757 | new_fd = fd; | 1627 | new_fd = fd; |
1758 | } | 1628 | } |
1759 | 1629 | ||
1760 | task_unlock(current); | 1630 | task_unlock(current); |
1761 | } | 1631 | } |
1762 | 1632 | ||
1763 | if (new_nsproxy) | 1633 | if (new_nsproxy) |
1764 | put_nsproxy(new_nsproxy); | 1634 | put_nsproxy(new_nsproxy); |
1765 | 1635 | ||
1766 | bad_unshare_cleanup_fd: | 1636 | bad_unshare_cleanup_fd: |
1767 | if (new_fd) | 1637 | if (new_fd) |
1768 | put_files_struct(new_fd); | 1638 | put_files_struct(new_fd); |
1769 | 1639 | ||
1770 | bad_unshare_cleanup_vm: | 1640 | bad_unshare_cleanup_vm: |
1771 | if (new_mm) | 1641 | if (new_mm) |
1772 | mmput(new_mm); | 1642 | mmput(new_mm); |
1773 | 1643 | ||
1774 | bad_unshare_cleanup_sigh: | 1644 | bad_unshare_cleanup_sigh: |
1775 | if (new_sigh) | 1645 | if (new_sigh) |
1776 | if (atomic_dec_and_test(&new_sigh->count)) | 1646 | if (atomic_dec_and_test(&new_sigh->count)) |
1777 | kmem_cache_free(sighand_cachep, new_sigh); | 1647 | kmem_cache_free(sighand_cachep, new_sigh); |
1778 | 1648 | ||
1779 | bad_unshare_cleanup_fs: | 1649 | bad_unshare_cleanup_fs: |
1780 | if (new_fs) | 1650 | if (new_fs) |
1781 | put_fs_struct(new_fs); | 1651 | put_fs_struct(new_fs); |
1782 | 1652 | ||
1783 | bad_unshare_cleanup_thread: | 1653 | bad_unshare_cleanup_thread: |
1784 | bad_unshare_out: | 1654 | bad_unshare_out: |
1785 | return err; | 1655 | return err; |
1786 | } | 1656 | } |
1787 | 1657 | ||
1788 | /* | 1658 | /* |
1789 | * Helper to unshare the files of the current task. | 1659 | * Helper to unshare the files of the current task. |
1790 | * We don't want to expose copy_files internals to | 1660 | * We don't want to expose copy_files internals to |
1791 | * the exec layer of the kernel. | 1661 | * the exec layer of the kernel. |
1792 | */ | 1662 | */ |
1793 | 1663 | ||
1794 | int unshare_files(struct files_struct **displaced) | 1664 | int unshare_files(struct files_struct **displaced) |
1795 | { | 1665 | { |
1796 | struct task_struct *task = current; | 1666 | struct task_struct *task = current; |
1797 | struct files_struct *copy = NULL; | 1667 | struct files_struct *copy = NULL; |
1798 | int error; | 1668 | int error; |
1799 | 1669 | ||
1800 | error = unshare_fd(CLONE_FILES, ©); | 1670 | error = unshare_fd(CLONE_FILES, ©); |
1801 | if (error || !copy) { | 1671 | if (error || !copy) { |
1802 | *displaced = NULL; | 1672 | *displaced = NULL; |
1803 | return error; | 1673 | return error; |
1804 | } | 1674 | } |
1805 | *displaced = task->files; | 1675 | *displaced = task->files; |
1806 | task_lock(task); | 1676 | task_lock(task); |
1807 | task->files = copy; | 1677 | task->files = copy; |
1808 | task_unlock(task); | 1678 | task_unlock(task); |
1809 | return 0; | 1679 | return 0; |
1810 | } | 1680 | } |
1811 | 1681 |