Commit 22caa0417db3b1d3dfafc9b7c0bf31baf8d667e7

Authored by Jim Meyering
Committed by Linus Torvalds
1 parent cd6fda3608

lib/inflate.c: handle failed malloc()

lib/inflate.c (inflate_dynamic): Don't deref NULL upon failed malloc.

Signed-off-by: Jim Meyering <meyering@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

Showing 1 changed file with 3 additions and 0 deletions Inline Diff

1 #define DEBG(x) 1 #define DEBG(x)
2 #define DEBG1(x) 2 #define DEBG1(x)
3 /* inflate.c -- Not copyrighted 1992 by Mark Adler 3 /* inflate.c -- Not copyrighted 1992 by Mark Adler
4 version c10p1, 10 January 1993 */ 4 version c10p1, 10 January 1993 */
5 5
6 /* 6 /*
7 * Adapted for booting Linux by Hannu Savolainen 1993 7 * Adapted for booting Linux by Hannu Savolainen 1993
8 * based on gzip-1.0.3 8 * based on gzip-1.0.3
9 * 9 *
10 * Nicolas Pitre <nico@cam.org>, 1999/04/14 : 10 * Nicolas Pitre <nico@cam.org>, 1999/04/14 :
11 * Little mods for all variable to reside either into rodata or bss segments 11 * Little mods for all variable to reside either into rodata or bss segments
12 * by marking constant variables with 'const' and initializing all the others 12 * by marking constant variables with 'const' and initializing all the others
13 * at run-time only. This allows for the kernel uncompressor to run 13 * at run-time only. This allows for the kernel uncompressor to run
14 * directly from Flash or ROM memory on embedded systems. 14 * directly from Flash or ROM memory on embedded systems.
15 */ 15 */
16 16
17 /* 17 /*
18 Inflate deflated (PKZIP's method 8 compressed) data. The compression 18 Inflate deflated (PKZIP's method 8 compressed) data. The compression
19 method searches for as much of the current string of bytes (up to a 19 method searches for as much of the current string of bytes (up to a
20 length of 258) in the previous 32 K bytes. If it doesn't find any 20 length of 258) in the previous 32 K bytes. If it doesn't find any
21 matches (of at least length 3), it codes the next byte. Otherwise, it 21 matches (of at least length 3), it codes the next byte. Otherwise, it
22 codes the length of the matched string and its distance backwards from 22 codes the length of the matched string and its distance backwards from
23 the current position. There is a single Huffman code that codes both 23 the current position. There is a single Huffman code that codes both
24 single bytes (called "literals") and match lengths. A second Huffman 24 single bytes (called "literals") and match lengths. A second Huffman
25 code codes the distance information, which follows a length code. Each 25 code codes the distance information, which follows a length code. Each
26 length or distance code actually represents a base value and a number 26 length or distance code actually represents a base value and a number
27 of "extra" (sometimes zero) bits to get to add to the base value. At 27 of "extra" (sometimes zero) bits to get to add to the base value. At
28 the end of each deflated block is a special end-of-block (EOB) literal/ 28 the end of each deflated block is a special end-of-block (EOB) literal/
29 length code. The decoding process is basically: get a literal/length 29 length code. The decoding process is basically: get a literal/length
30 code; if EOB then done; if a literal, emit the decoded byte; if a 30 code; if EOB then done; if a literal, emit the decoded byte; if a
31 length then get the distance and emit the referred-to bytes from the 31 length then get the distance and emit the referred-to bytes from the
32 sliding window of previously emitted data. 32 sliding window of previously emitted data.
33 33
34 There are (currently) three kinds of inflate blocks: stored, fixed, and 34 There are (currently) three kinds of inflate blocks: stored, fixed, and
35 dynamic. The compressor deals with some chunk of data at a time, and 35 dynamic. The compressor deals with some chunk of data at a time, and
36 decides which method to use on a chunk-by-chunk basis. A chunk might 36 decides which method to use on a chunk-by-chunk basis. A chunk might
37 typically be 32 K or 64 K. If the chunk is incompressible, then the 37 typically be 32 K or 64 K. If the chunk is incompressible, then the
38 "stored" method is used. In this case, the bytes are simply stored as 38 "stored" method is used. In this case, the bytes are simply stored as
39 is, eight bits per byte, with none of the above coding. The bytes are 39 is, eight bits per byte, with none of the above coding. The bytes are
40 preceded by a count, since there is no longer an EOB code. 40 preceded by a count, since there is no longer an EOB code.
41 41
42 If the data is compressible, then either the fixed or dynamic methods 42 If the data is compressible, then either the fixed or dynamic methods
43 are used. In the dynamic method, the compressed data is preceded by 43 are used. In the dynamic method, the compressed data is preceded by
44 an encoding of the literal/length and distance Huffman codes that are 44 an encoding of the literal/length and distance Huffman codes that are
45 to be used to decode this block. The representation is itself Huffman 45 to be used to decode this block. The representation is itself Huffman
46 coded, and so is preceded by a description of that code. These code 46 coded, and so is preceded by a description of that code. These code
47 descriptions take up a little space, and so for small blocks, there is 47 descriptions take up a little space, and so for small blocks, there is
48 a predefined set of codes, called the fixed codes. The fixed method is 48 a predefined set of codes, called the fixed codes. The fixed method is
49 used if the block codes up smaller that way (usually for quite small 49 used if the block codes up smaller that way (usually for quite small
50 chunks), otherwise the dynamic method is used. In the latter case, the 50 chunks), otherwise the dynamic method is used. In the latter case, the
51 codes are customized to the probabilities in the current block, and so 51 codes are customized to the probabilities in the current block, and so
52 can code it much better than the pre-determined fixed codes. 52 can code it much better than the pre-determined fixed codes.
53 53
54 The Huffman codes themselves are decoded using a multi-level table 54 The Huffman codes themselves are decoded using a multi-level table
55 lookup, in order to maximize the speed of decoding plus the speed of 55 lookup, in order to maximize the speed of decoding plus the speed of
56 building the decoding tables. See the comments below that precede the 56 building the decoding tables. See the comments below that precede the
57 lbits and dbits tuning parameters. 57 lbits and dbits tuning parameters.
58 */ 58 */
59 59
60 60
61 /* 61 /*
62 Notes beyond the 1.93a appnote.txt: 62 Notes beyond the 1.93a appnote.txt:
63 63
64 1. Distance pointers never point before the beginning of the output 64 1. Distance pointers never point before the beginning of the output
65 stream. 65 stream.
66 2. Distance pointers can point back across blocks, up to 32k away. 66 2. Distance pointers can point back across blocks, up to 32k away.
67 3. There is an implied maximum of 7 bits for the bit length table and 67 3. There is an implied maximum of 7 bits for the bit length table and
68 15 bits for the actual data. 68 15 bits for the actual data.
69 4. If only one code exists, then it is encoded using one bit. (Zero 69 4. If only one code exists, then it is encoded using one bit. (Zero
70 would be more efficient, but perhaps a little confusing.) If two 70 would be more efficient, but perhaps a little confusing.) If two
71 codes exist, they are coded using one bit each (0 and 1). 71 codes exist, they are coded using one bit each (0 and 1).
72 5. There is no way of sending zero distance codes--a dummy must be 72 5. There is no way of sending zero distance codes--a dummy must be
73 sent if there are none. (History: a pre 2.0 version of PKZIP would 73 sent if there are none. (History: a pre 2.0 version of PKZIP would
74 store blocks with no distance codes, but this was discovered to be 74 store blocks with no distance codes, but this was discovered to be
75 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow 75 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
76 zero distance codes, which is sent as one code of zero bits in 76 zero distance codes, which is sent as one code of zero bits in
77 length. 77 length.
78 6. There are up to 286 literal/length codes. Code 256 represents the 78 6. There are up to 286 literal/length codes. Code 256 represents the
79 end-of-block. Note however that the static length tree defines 79 end-of-block. Note however that the static length tree defines
80 288 codes just to fill out the Huffman codes. Codes 286 and 287 80 288 codes just to fill out the Huffman codes. Codes 286 and 287
81 cannot be used though, since there is no length base or extra bits 81 cannot be used though, since there is no length base or extra bits
82 defined for them. Similarly, there are up to 30 distance codes. 82 defined for them. Similarly, there are up to 30 distance codes.
83 However, static trees define 32 codes (all 5 bits) to fill out the 83 However, static trees define 32 codes (all 5 bits) to fill out the
84 Huffman codes, but the last two had better not show up in the data. 84 Huffman codes, but the last two had better not show up in the data.
85 7. Unzip can check dynamic Huffman blocks for complete code sets. 85 7. Unzip can check dynamic Huffman blocks for complete code sets.
86 The exception is that a single code would not be complete (see #4). 86 The exception is that a single code would not be complete (see #4).
87 8. The five bits following the block type is really the number of 87 8. The five bits following the block type is really the number of
88 literal codes sent minus 257. 88 literal codes sent minus 257.
89 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits 89 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
90 (1+6+6). Therefore, to output three times the length, you output 90 (1+6+6). Therefore, to output three times the length, you output
91 three codes (1+1+1), whereas to output four times the same length, 91 three codes (1+1+1), whereas to output four times the same length,
92 you only need two codes (1+3). Hmm. 92 you only need two codes (1+3). Hmm.
93 10. In the tree reconstruction algorithm, Code = Code + Increment 93 10. In the tree reconstruction algorithm, Code = Code + Increment
94 only if BitLength(i) is not zero. (Pretty obvious.) 94 only if BitLength(i) is not zero. (Pretty obvious.)
95 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) 95 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
96 12. Note: length code 284 can represent 227-258, but length code 285 96 12. Note: length code 284 can represent 227-258, but length code 285
97 really is 258. The last length deserves its own, short code 97 really is 258. The last length deserves its own, short code
98 since it gets used a lot in very redundant files. The length 98 since it gets used a lot in very redundant files. The length
99 258 is special since 258 - 3 (the min match length) is 255. 99 258 is special since 258 - 3 (the min match length) is 255.
100 13. The literal/length and distance code bit lengths are read as a 100 13. The literal/length and distance code bit lengths are read as a
101 single stream of lengths. It is possible (and advantageous) for 101 single stream of lengths. It is possible (and advantageous) for
102 a repeat code (16, 17, or 18) to go across the boundary between 102 a repeat code (16, 17, or 18) to go across the boundary between
103 the two sets of lengths. 103 the two sets of lengths.
104 */ 104 */
105 #include <linux/compiler.h> 105 #include <linux/compiler.h>
106 106
107 #ifdef RCSID 107 #ifdef RCSID
108 static char rcsid[] = "#Id: inflate.c,v 0.14 1993/06/10 13:27:04 jloup Exp #"; 108 static char rcsid[] = "#Id: inflate.c,v 0.14 1993/06/10 13:27:04 jloup Exp #";
109 #endif 109 #endif
110 110
111 #ifndef STATIC 111 #ifndef STATIC
112 112
113 #if defined(STDC_HEADERS) || defined(HAVE_STDLIB_H) 113 #if defined(STDC_HEADERS) || defined(HAVE_STDLIB_H)
114 # include <sys/types.h> 114 # include <sys/types.h>
115 # include <stdlib.h> 115 # include <stdlib.h>
116 #endif 116 #endif
117 117
118 #include "gzip.h" 118 #include "gzip.h"
119 #define STATIC 119 #define STATIC
120 #endif /* !STATIC */ 120 #endif /* !STATIC */
121 121
122 #ifndef INIT 122 #ifndef INIT
123 #define INIT 123 #define INIT
124 #endif 124 #endif
125 125
126 #define slide window 126 #define slide window
127 127
128 /* Huffman code lookup table entry--this entry is four bytes for machines 128 /* Huffman code lookup table entry--this entry is four bytes for machines
129 that have 16-bit pointers (e.g. PC's in the small or medium model). 129 that have 16-bit pointers (e.g. PC's in the small or medium model).
130 Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16 130 Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16
131 means that v is a literal, 16 < e < 32 means that v is a pointer to 131 means that v is a literal, 16 < e < 32 means that v is a pointer to
132 the next table, which codes e - 16 bits, and lastly e == 99 indicates 132 the next table, which codes e - 16 bits, and lastly e == 99 indicates
133 an unused code. If a code with e == 99 is looked up, this implies an 133 an unused code. If a code with e == 99 is looked up, this implies an
134 error in the data. */ 134 error in the data. */
135 struct huft { 135 struct huft {
136 uch e; /* number of extra bits or operation */ 136 uch e; /* number of extra bits or operation */
137 uch b; /* number of bits in this code or subcode */ 137 uch b; /* number of bits in this code or subcode */
138 union { 138 union {
139 ush n; /* literal, length base, or distance base */ 139 ush n; /* literal, length base, or distance base */
140 struct huft *t; /* pointer to next level of table */ 140 struct huft *t; /* pointer to next level of table */
141 } v; 141 } v;
142 }; 142 };
143 143
144 144
145 /* Function prototypes */ 145 /* Function prototypes */
146 STATIC int INIT huft_build OF((unsigned *, unsigned, unsigned, 146 STATIC int INIT huft_build OF((unsigned *, unsigned, unsigned,
147 const ush *, const ush *, struct huft **, int *)); 147 const ush *, const ush *, struct huft **, int *));
148 STATIC int INIT huft_free OF((struct huft *)); 148 STATIC int INIT huft_free OF((struct huft *));
149 STATIC int INIT inflate_codes OF((struct huft *, struct huft *, int, int)); 149 STATIC int INIT inflate_codes OF((struct huft *, struct huft *, int, int));
150 STATIC int INIT inflate_stored OF((void)); 150 STATIC int INIT inflate_stored OF((void));
151 STATIC int INIT inflate_fixed OF((void)); 151 STATIC int INIT inflate_fixed OF((void));
152 STATIC int INIT inflate_dynamic OF((void)); 152 STATIC int INIT inflate_dynamic OF((void));
153 STATIC int INIT inflate_block OF((int *)); 153 STATIC int INIT inflate_block OF((int *));
154 STATIC int INIT inflate OF((void)); 154 STATIC int INIT inflate OF((void));
155 155
156 156
157 /* The inflate algorithm uses a sliding 32 K byte window on the uncompressed 157 /* The inflate algorithm uses a sliding 32 K byte window on the uncompressed
158 stream to find repeated byte strings. This is implemented here as a 158 stream to find repeated byte strings. This is implemented here as a
159 circular buffer. The index is updated simply by incrementing and then 159 circular buffer. The index is updated simply by incrementing and then
160 ANDing with 0x7fff (32K-1). */ 160 ANDing with 0x7fff (32K-1). */
161 /* It is left to other modules to supply the 32 K area. It is assumed 161 /* It is left to other modules to supply the 32 K area. It is assumed
162 to be usable as if it were declared "uch slide[32768];" or as just 162 to be usable as if it were declared "uch slide[32768];" or as just
163 "uch *slide;" and then malloc'ed in the latter case. The definition 163 "uch *slide;" and then malloc'ed in the latter case. The definition
164 must be in unzip.h, included above. */ 164 must be in unzip.h, included above. */
165 /* unsigned wp; current position in slide */ 165 /* unsigned wp; current position in slide */
166 #define wp outcnt 166 #define wp outcnt
167 #define flush_output(w) (wp=(w),flush_window()) 167 #define flush_output(w) (wp=(w),flush_window())
168 168
169 /* Tables for deflate from PKZIP's appnote.txt. */ 169 /* Tables for deflate from PKZIP's appnote.txt. */
170 static const unsigned border[] = { /* Order of the bit length code lengths */ 170 static const unsigned border[] = { /* Order of the bit length code lengths */
171 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; 171 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
172 static const ush cplens[] = { /* Copy lengths for literal codes 257..285 */ 172 static const ush cplens[] = { /* Copy lengths for literal codes 257..285 */
173 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 173 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
174 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; 174 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
175 /* note: see note #13 above about the 258 in this list. */ 175 /* note: see note #13 above about the 258 in this list. */
176 static const ush cplext[] = { /* Extra bits for literal codes 257..285 */ 176 static const ush cplext[] = { /* Extra bits for literal codes 257..285 */
177 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 177 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
178 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ 178 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
179 static const ush cpdist[] = { /* Copy offsets for distance codes 0..29 */ 179 static const ush cpdist[] = { /* Copy offsets for distance codes 0..29 */
180 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 180 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
181 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 181 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
182 8193, 12289, 16385, 24577}; 182 8193, 12289, 16385, 24577};
183 static const ush cpdext[] = { /* Extra bits for distance codes */ 183 static const ush cpdext[] = { /* Extra bits for distance codes */
184 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 184 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
185 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 185 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
186 12, 12, 13, 13}; 186 12, 12, 13, 13};
187 187
188 188
189 189
190 /* Macros for inflate() bit peeking and grabbing. 190 /* Macros for inflate() bit peeking and grabbing.
191 The usage is: 191 The usage is:
192 192
193 NEEDBITS(j) 193 NEEDBITS(j)
194 x = b & mask_bits[j]; 194 x = b & mask_bits[j];
195 DUMPBITS(j) 195 DUMPBITS(j)
196 196
197 where NEEDBITS makes sure that b has at least j bits in it, and 197 where NEEDBITS makes sure that b has at least j bits in it, and
198 DUMPBITS removes the bits from b. The macros use the variable k 198 DUMPBITS removes the bits from b. The macros use the variable k
199 for the number of bits in b. Normally, b and k are register 199 for the number of bits in b. Normally, b and k are register
200 variables for speed, and are initialized at the beginning of a 200 variables for speed, and are initialized at the beginning of a
201 routine that uses these macros from a global bit buffer and count. 201 routine that uses these macros from a global bit buffer and count.
202 202
203 If we assume that EOB will be the longest code, then we will never 203 If we assume that EOB will be the longest code, then we will never
204 ask for bits with NEEDBITS that are beyond the end of the stream. 204 ask for bits with NEEDBITS that are beyond the end of the stream.
205 So, NEEDBITS should not read any more bytes than are needed to 205 So, NEEDBITS should not read any more bytes than are needed to
206 meet the request. Then no bytes need to be "returned" to the buffer 206 meet the request. Then no bytes need to be "returned" to the buffer
207 at the end of the last block. 207 at the end of the last block.
208 208
209 However, this assumption is not true for fixed blocks--the EOB code 209 However, this assumption is not true for fixed blocks--the EOB code
210 is 7 bits, but the other literal/length codes can be 8 or 9 bits. 210 is 7 bits, but the other literal/length codes can be 8 or 9 bits.
211 (The EOB code is shorter than other codes because fixed blocks are 211 (The EOB code is shorter than other codes because fixed blocks are
212 generally short. So, while a block always has an EOB, many other 212 generally short. So, while a block always has an EOB, many other
213 literal/length codes have a significantly lower probability of 213 literal/length codes have a significantly lower probability of
214 showing up at all.) However, by making the first table have a 214 showing up at all.) However, by making the first table have a
215 lookup of seven bits, the EOB code will be found in that first 215 lookup of seven bits, the EOB code will be found in that first
216 lookup, and so will not require that too many bits be pulled from 216 lookup, and so will not require that too many bits be pulled from
217 the stream. 217 the stream.
218 */ 218 */
219 219
220 STATIC ulg bb; /* bit buffer */ 220 STATIC ulg bb; /* bit buffer */
221 STATIC unsigned bk; /* bits in bit buffer */ 221 STATIC unsigned bk; /* bits in bit buffer */
222 222
223 STATIC const ush mask_bits[] = { 223 STATIC const ush mask_bits[] = {
224 0x0000, 224 0x0000,
225 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, 225 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
226 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff 226 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
227 }; 227 };
228 228
229 #define NEXTBYTE() ({ int v = get_byte(); if (v < 0) goto underrun; (uch)v; }) 229 #define NEXTBYTE() ({ int v = get_byte(); if (v < 0) goto underrun; (uch)v; })
230 #define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}} 230 #define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
231 #define DUMPBITS(n) {b>>=(n);k-=(n);} 231 #define DUMPBITS(n) {b>>=(n);k-=(n);}
232 232
233 233
234 /* 234 /*
235 Huffman code decoding is performed using a multi-level table lookup. 235 Huffman code decoding is performed using a multi-level table lookup.
236 The fastest way to decode is to simply build a lookup table whose 236 The fastest way to decode is to simply build a lookup table whose
237 size is determined by the longest code. However, the time it takes 237 size is determined by the longest code. However, the time it takes
238 to build this table can also be a factor if the data being decoded 238 to build this table can also be a factor if the data being decoded
239 is not very long. The most common codes are necessarily the 239 is not very long. The most common codes are necessarily the
240 shortest codes, so those codes dominate the decoding time, and hence 240 shortest codes, so those codes dominate the decoding time, and hence
241 the speed. The idea is you can have a shorter table that decodes the 241 the speed. The idea is you can have a shorter table that decodes the
242 shorter, more probable codes, and then point to subsidiary tables for 242 shorter, more probable codes, and then point to subsidiary tables for
243 the longer codes. The time it costs to decode the longer codes is 243 the longer codes. The time it costs to decode the longer codes is
244 then traded against the time it takes to make longer tables. 244 then traded against the time it takes to make longer tables.
245 245
246 This results of this trade are in the variables lbits and dbits 246 This results of this trade are in the variables lbits and dbits
247 below. lbits is the number of bits the first level table for literal/ 247 below. lbits is the number of bits the first level table for literal/
248 length codes can decode in one step, and dbits is the same thing for 248 length codes can decode in one step, and dbits is the same thing for
249 the distance codes. Subsequent tables are also less than or equal to 249 the distance codes. Subsequent tables are also less than or equal to
250 those sizes. These values may be adjusted either when all of the 250 those sizes. These values may be adjusted either when all of the
251 codes are shorter than that, in which case the longest code length in 251 codes are shorter than that, in which case the longest code length in
252 bits is used, or when the shortest code is *longer* than the requested 252 bits is used, or when the shortest code is *longer* than the requested
253 table size, in which case the length of the shortest code in bits is 253 table size, in which case the length of the shortest code in bits is
254 used. 254 used.
255 255
256 There are two different values for the two tables, since they code a 256 There are two different values for the two tables, since they code a
257 different number of possibilities each. The literal/length table 257 different number of possibilities each. The literal/length table
258 codes 286 possible values, or in a flat code, a little over eight 258 codes 286 possible values, or in a flat code, a little over eight
259 bits. The distance table codes 30 possible values, or a little less 259 bits. The distance table codes 30 possible values, or a little less
260 than five bits, flat. The optimum values for speed end up being 260 than five bits, flat. The optimum values for speed end up being
261 about one bit more than those, so lbits is 8+1 and dbits is 5+1. 261 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
262 The optimum values may differ though from machine to machine, and 262 The optimum values may differ though from machine to machine, and
263 possibly even between compilers. Your mileage may vary. 263 possibly even between compilers. Your mileage may vary.
264 */ 264 */
265 265
266 266
267 STATIC const int lbits = 9; /* bits in base literal/length lookup table */ 267 STATIC const int lbits = 9; /* bits in base literal/length lookup table */
268 STATIC const int dbits = 6; /* bits in base distance lookup table */ 268 STATIC const int dbits = 6; /* bits in base distance lookup table */
269 269
270 270
271 /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */ 271 /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
272 #define BMAX 16 /* maximum bit length of any code (16 for explode) */ 272 #define BMAX 16 /* maximum bit length of any code (16 for explode) */
273 #define N_MAX 288 /* maximum number of codes in any set */ 273 #define N_MAX 288 /* maximum number of codes in any set */
274 274
275 275
276 STATIC unsigned hufts; /* track memory usage */ 276 STATIC unsigned hufts; /* track memory usage */
277 277
278 278
279 STATIC int INIT huft_build( 279 STATIC int INIT huft_build(
280 unsigned *b, /* code lengths in bits (all assumed <= BMAX) */ 280 unsigned *b, /* code lengths in bits (all assumed <= BMAX) */
281 unsigned n, /* number of codes (assumed <= N_MAX) */ 281 unsigned n, /* number of codes (assumed <= N_MAX) */
282 unsigned s, /* number of simple-valued codes (0..s-1) */ 282 unsigned s, /* number of simple-valued codes (0..s-1) */
283 const ush *d, /* list of base values for non-simple codes */ 283 const ush *d, /* list of base values for non-simple codes */
284 const ush *e, /* list of extra bits for non-simple codes */ 284 const ush *e, /* list of extra bits for non-simple codes */
285 struct huft **t, /* result: starting table */ 285 struct huft **t, /* result: starting table */
286 int *m /* maximum lookup bits, returns actual */ 286 int *m /* maximum lookup bits, returns actual */
287 ) 287 )
288 /* Given a list of code lengths and a maximum table size, make a set of 288 /* Given a list of code lengths and a maximum table size, make a set of
289 tables to decode that set of codes. Return zero on success, one if 289 tables to decode that set of codes. Return zero on success, one if
290 the given code set is incomplete (the tables are still built in this 290 the given code set is incomplete (the tables are still built in this
291 case), two if the input is invalid (all zero length codes or an 291 case), two if the input is invalid (all zero length codes or an
292 oversubscribed set of lengths), and three if not enough memory. */ 292 oversubscribed set of lengths), and three if not enough memory. */
293 { 293 {
294 unsigned a; /* counter for codes of length k */ 294 unsigned a; /* counter for codes of length k */
295 unsigned f; /* i repeats in table every f entries */ 295 unsigned f; /* i repeats in table every f entries */
296 int g; /* maximum code length */ 296 int g; /* maximum code length */
297 int h; /* table level */ 297 int h; /* table level */
298 register unsigned i; /* counter, current code */ 298 register unsigned i; /* counter, current code */
299 register unsigned j; /* counter */ 299 register unsigned j; /* counter */
300 register int k; /* number of bits in current code */ 300 register int k; /* number of bits in current code */
301 int l; /* bits per table (returned in m) */ 301 int l; /* bits per table (returned in m) */
302 register unsigned *p; /* pointer into c[], b[], or v[] */ 302 register unsigned *p; /* pointer into c[], b[], or v[] */
303 register struct huft *q; /* points to current table */ 303 register struct huft *q; /* points to current table */
304 struct huft r; /* table entry for structure assignment */ 304 struct huft r; /* table entry for structure assignment */
305 register int w; /* bits before this table == (l * h) */ 305 register int w; /* bits before this table == (l * h) */
306 unsigned *xp; /* pointer into x */ 306 unsigned *xp; /* pointer into x */
307 int y; /* number of dummy codes added */ 307 int y; /* number of dummy codes added */
308 unsigned z; /* number of entries in current table */ 308 unsigned z; /* number of entries in current table */
309 struct { 309 struct {
310 unsigned c[BMAX+1]; /* bit length count table */ 310 unsigned c[BMAX+1]; /* bit length count table */
311 struct huft *u[BMAX]; /* table stack */ 311 struct huft *u[BMAX]; /* table stack */
312 unsigned v[N_MAX]; /* values in order of bit length */ 312 unsigned v[N_MAX]; /* values in order of bit length */
313 unsigned x[BMAX+1]; /* bit offsets, then code stack */ 313 unsigned x[BMAX+1]; /* bit offsets, then code stack */
314 } *stk; 314 } *stk;
315 unsigned *c, *v, *x; 315 unsigned *c, *v, *x;
316 struct huft **u; 316 struct huft **u;
317 int ret; 317 int ret;
318 318
319 DEBG("huft1 "); 319 DEBG("huft1 ");
320 320
321 stk = malloc(sizeof(*stk)); 321 stk = malloc(sizeof(*stk));
322 if (stk == NULL) 322 if (stk == NULL)
323 return 3; /* out of memory */ 323 return 3; /* out of memory */
324 324
325 c = stk->c; 325 c = stk->c;
326 v = stk->v; 326 v = stk->v;
327 x = stk->x; 327 x = stk->x;
328 u = stk->u; 328 u = stk->u;
329 329
330 /* Generate counts for each bit length */ 330 /* Generate counts for each bit length */
331 memzero(stk->c, sizeof(stk->c)); 331 memzero(stk->c, sizeof(stk->c));
332 p = b; i = n; 332 p = b; i = n;
333 do { 333 do {
334 Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"), 334 Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"),
335 n-i, *p)); 335 n-i, *p));
336 c[*p]++; /* assume all entries <= BMAX */ 336 c[*p]++; /* assume all entries <= BMAX */
337 p++; /* Can't combine with above line (Solaris bug) */ 337 p++; /* Can't combine with above line (Solaris bug) */
338 } while (--i); 338 } while (--i);
339 if (c[0] == n) /* null input--all zero length codes */ 339 if (c[0] == n) /* null input--all zero length codes */
340 { 340 {
341 *t = (struct huft *)NULL; 341 *t = (struct huft *)NULL;
342 *m = 0; 342 *m = 0;
343 ret = 2; 343 ret = 2;
344 goto out; 344 goto out;
345 } 345 }
346 346
347 DEBG("huft2 "); 347 DEBG("huft2 ");
348 348
349 /* Find minimum and maximum length, bound *m by those */ 349 /* Find minimum and maximum length, bound *m by those */
350 l = *m; 350 l = *m;
351 for (j = 1; j <= BMAX; j++) 351 for (j = 1; j <= BMAX; j++)
352 if (c[j]) 352 if (c[j])
353 break; 353 break;
354 k = j; /* minimum code length */ 354 k = j; /* minimum code length */
355 if ((unsigned)l < j) 355 if ((unsigned)l < j)
356 l = j; 356 l = j;
357 for (i = BMAX; i; i--) 357 for (i = BMAX; i; i--)
358 if (c[i]) 358 if (c[i])
359 break; 359 break;
360 g = i; /* maximum code length */ 360 g = i; /* maximum code length */
361 if ((unsigned)l > i) 361 if ((unsigned)l > i)
362 l = i; 362 l = i;
363 *m = l; 363 *m = l;
364 364
365 DEBG("huft3 "); 365 DEBG("huft3 ");
366 366
367 /* Adjust last length count to fill out codes, if needed */ 367 /* Adjust last length count to fill out codes, if needed */
368 for (y = 1 << j; j < i; j++, y <<= 1) 368 for (y = 1 << j; j < i; j++, y <<= 1)
369 if ((y -= c[j]) < 0) { 369 if ((y -= c[j]) < 0) {
370 ret = 2; /* bad input: more codes than bits */ 370 ret = 2; /* bad input: more codes than bits */
371 goto out; 371 goto out;
372 } 372 }
373 if ((y -= c[i]) < 0) { 373 if ((y -= c[i]) < 0) {
374 ret = 2; 374 ret = 2;
375 goto out; 375 goto out;
376 } 376 }
377 c[i] += y; 377 c[i] += y;
378 378
379 DEBG("huft4 "); 379 DEBG("huft4 ");
380 380
381 /* Generate starting offsets into the value table for each length */ 381 /* Generate starting offsets into the value table for each length */
382 x[1] = j = 0; 382 x[1] = j = 0;
383 p = c + 1; xp = x + 2; 383 p = c + 1; xp = x + 2;
384 while (--i) { /* note that i == g from above */ 384 while (--i) { /* note that i == g from above */
385 *xp++ = (j += *p++); 385 *xp++ = (j += *p++);
386 } 386 }
387 387
388 DEBG("huft5 "); 388 DEBG("huft5 ");
389 389
390 /* Make a table of values in order of bit lengths */ 390 /* Make a table of values in order of bit lengths */
391 p = b; i = 0; 391 p = b; i = 0;
392 do { 392 do {
393 if ((j = *p++) != 0) 393 if ((j = *p++) != 0)
394 v[x[j]++] = i; 394 v[x[j]++] = i;
395 } while (++i < n); 395 } while (++i < n);
396 n = x[g]; /* set n to length of v */ 396 n = x[g]; /* set n to length of v */
397 397
398 DEBG("h6 "); 398 DEBG("h6 ");
399 399
400 /* Generate the Huffman codes and for each, make the table entries */ 400 /* Generate the Huffman codes and for each, make the table entries */
401 x[0] = i = 0; /* first Huffman code is zero */ 401 x[0] = i = 0; /* first Huffman code is zero */
402 p = v; /* grab values in bit order */ 402 p = v; /* grab values in bit order */
403 h = -1; /* no tables yet--level -1 */ 403 h = -1; /* no tables yet--level -1 */
404 w = -l; /* bits decoded == (l * h) */ 404 w = -l; /* bits decoded == (l * h) */
405 u[0] = (struct huft *)NULL; /* just to keep compilers happy */ 405 u[0] = (struct huft *)NULL; /* just to keep compilers happy */
406 q = (struct huft *)NULL; /* ditto */ 406 q = (struct huft *)NULL; /* ditto */
407 z = 0; /* ditto */ 407 z = 0; /* ditto */
408 DEBG("h6a "); 408 DEBG("h6a ");
409 409
410 /* go through the bit lengths (k already is bits in shortest code) */ 410 /* go through the bit lengths (k already is bits in shortest code) */
411 for (; k <= g; k++) 411 for (; k <= g; k++)
412 { 412 {
413 DEBG("h6b "); 413 DEBG("h6b ");
414 a = c[k]; 414 a = c[k];
415 while (a--) 415 while (a--)
416 { 416 {
417 DEBG("h6b1 "); 417 DEBG("h6b1 ");
418 /* here i is the Huffman code of length k bits for value *p */ 418 /* here i is the Huffman code of length k bits for value *p */
419 /* make tables up to required level */ 419 /* make tables up to required level */
420 while (k > w + l) 420 while (k > w + l)
421 { 421 {
422 DEBG1("1 "); 422 DEBG1("1 ");
423 h++; 423 h++;
424 w += l; /* previous table always l bits */ 424 w += l; /* previous table always l bits */
425 425
426 /* compute minimum size table less than or equal to l bits */ 426 /* compute minimum size table less than or equal to l bits */
427 z = (z = g - w) > (unsigned)l ? l : z; /* upper limit on table size */ 427 z = (z = g - w) > (unsigned)l ? l : z; /* upper limit on table size */
428 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ 428 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
429 { /* too few codes for k-w bit table */ 429 { /* too few codes for k-w bit table */
430 DEBG1("2 "); 430 DEBG1("2 ");
431 f -= a + 1; /* deduct codes from patterns left */ 431 f -= a + 1; /* deduct codes from patterns left */
432 xp = c + k; 432 xp = c + k;
433 if (j < z) 433 if (j < z)
434 while (++j < z) /* try smaller tables up to z bits */ 434 while (++j < z) /* try smaller tables up to z bits */
435 { 435 {
436 if ((f <<= 1) <= *++xp) 436 if ((f <<= 1) <= *++xp)
437 break; /* enough codes to use up j bits */ 437 break; /* enough codes to use up j bits */
438 f -= *xp; /* else deduct codes from patterns */ 438 f -= *xp; /* else deduct codes from patterns */
439 } 439 }
440 } 440 }
441 DEBG1("3 "); 441 DEBG1("3 ");
442 z = 1 << j; /* table entries for j-bit table */ 442 z = 1 << j; /* table entries for j-bit table */
443 443
444 /* allocate and link in new table */ 444 /* allocate and link in new table */
445 if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) == 445 if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
446 (struct huft *)NULL) 446 (struct huft *)NULL)
447 { 447 {
448 if (h) 448 if (h)
449 huft_free(u[0]); 449 huft_free(u[0]);
450 ret = 3; /* not enough memory */ 450 ret = 3; /* not enough memory */
451 goto out; 451 goto out;
452 } 452 }
453 DEBG1("4 "); 453 DEBG1("4 ");
454 hufts += z + 1; /* track memory usage */ 454 hufts += z + 1; /* track memory usage */
455 *t = q + 1; /* link to list for huft_free() */ 455 *t = q + 1; /* link to list for huft_free() */
456 *(t = &(q->v.t)) = (struct huft *)NULL; 456 *(t = &(q->v.t)) = (struct huft *)NULL;
457 u[h] = ++q; /* table starts after link */ 457 u[h] = ++q; /* table starts after link */
458 458
459 DEBG1("5 "); 459 DEBG1("5 ");
460 /* connect to last table, if there is one */ 460 /* connect to last table, if there is one */
461 if (h) 461 if (h)
462 { 462 {
463 x[h] = i; /* save pattern for backing up */ 463 x[h] = i; /* save pattern for backing up */
464 r.b = (uch)l; /* bits to dump before this table */ 464 r.b = (uch)l; /* bits to dump before this table */
465 r.e = (uch)(16 + j); /* bits in this table */ 465 r.e = (uch)(16 + j); /* bits in this table */
466 r.v.t = q; /* pointer to this table */ 466 r.v.t = q; /* pointer to this table */
467 j = i >> (w - l); /* (get around Turbo C bug) */ 467 j = i >> (w - l); /* (get around Turbo C bug) */
468 u[h-1][j] = r; /* connect to last table */ 468 u[h-1][j] = r; /* connect to last table */
469 } 469 }
470 DEBG1("6 "); 470 DEBG1("6 ");
471 } 471 }
472 DEBG("h6c "); 472 DEBG("h6c ");
473 473
474 /* set up table entry in r */ 474 /* set up table entry in r */
475 r.b = (uch)(k - w); 475 r.b = (uch)(k - w);
476 if (p >= v + n) 476 if (p >= v + n)
477 r.e = 99; /* out of values--invalid code */ 477 r.e = 99; /* out of values--invalid code */
478 else if (*p < s) 478 else if (*p < s)
479 { 479 {
480 r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */ 480 r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
481 r.v.n = (ush)(*p); /* simple code is just the value */ 481 r.v.n = (ush)(*p); /* simple code is just the value */
482 p++; /* one compiler does not like *p++ */ 482 p++; /* one compiler does not like *p++ */
483 } 483 }
484 else 484 else
485 { 485 {
486 r.e = (uch)e[*p - s]; /* non-simple--look up in lists */ 486 r.e = (uch)e[*p - s]; /* non-simple--look up in lists */
487 r.v.n = d[*p++ - s]; 487 r.v.n = d[*p++ - s];
488 } 488 }
489 DEBG("h6d "); 489 DEBG("h6d ");
490 490
491 /* fill code-like entries with r */ 491 /* fill code-like entries with r */
492 f = 1 << (k - w); 492 f = 1 << (k - w);
493 for (j = i >> w; j < z; j += f) 493 for (j = i >> w; j < z; j += f)
494 q[j] = r; 494 q[j] = r;
495 495
496 /* backwards increment the k-bit code i */ 496 /* backwards increment the k-bit code i */
497 for (j = 1 << (k - 1); i & j; j >>= 1) 497 for (j = 1 << (k - 1); i & j; j >>= 1)
498 i ^= j; 498 i ^= j;
499 i ^= j; 499 i ^= j;
500 500
501 /* backup over finished tables */ 501 /* backup over finished tables */
502 while ((i & ((1 << w) - 1)) != x[h]) 502 while ((i & ((1 << w) - 1)) != x[h])
503 { 503 {
504 h--; /* don't need to update q */ 504 h--; /* don't need to update q */
505 w -= l; 505 w -= l;
506 } 506 }
507 DEBG("h6e "); 507 DEBG("h6e ");
508 } 508 }
509 DEBG("h6f "); 509 DEBG("h6f ");
510 } 510 }
511 511
512 DEBG("huft7 "); 512 DEBG("huft7 ");
513 513
514 /* Return true (1) if we were given an incomplete table */ 514 /* Return true (1) if we were given an incomplete table */
515 ret = y != 0 && g != 1; 515 ret = y != 0 && g != 1;
516 516
517 out: 517 out:
518 free(stk); 518 free(stk);
519 return ret; 519 return ret;
520 } 520 }
521 521
522 522
523 523
524 STATIC int INIT huft_free( 524 STATIC int INIT huft_free(
525 struct huft *t /* table to free */ 525 struct huft *t /* table to free */
526 ) 526 )
527 /* Free the malloc'ed tables built by huft_build(), which makes a linked 527 /* Free the malloc'ed tables built by huft_build(), which makes a linked
528 list of the tables it made, with the links in a dummy first entry of 528 list of the tables it made, with the links in a dummy first entry of
529 each table. */ 529 each table. */
530 { 530 {
531 register struct huft *p, *q; 531 register struct huft *p, *q;
532 532
533 533
534 /* Go through linked list, freeing from the malloced (t[-1]) address. */ 534 /* Go through linked list, freeing from the malloced (t[-1]) address. */
535 p = t; 535 p = t;
536 while (p != (struct huft *)NULL) 536 while (p != (struct huft *)NULL)
537 { 537 {
538 q = (--p)->v.t; 538 q = (--p)->v.t;
539 free((char*)p); 539 free((char*)p);
540 p = q; 540 p = q;
541 } 541 }
542 return 0; 542 return 0;
543 } 543 }
544 544
545 545
546 STATIC int INIT inflate_codes( 546 STATIC int INIT inflate_codes(
547 struct huft *tl, /* literal/length decoder tables */ 547 struct huft *tl, /* literal/length decoder tables */
548 struct huft *td, /* distance decoder tables */ 548 struct huft *td, /* distance decoder tables */
549 int bl, /* number of bits decoded by tl[] */ 549 int bl, /* number of bits decoded by tl[] */
550 int bd /* number of bits decoded by td[] */ 550 int bd /* number of bits decoded by td[] */
551 ) 551 )
552 /* inflate (decompress) the codes in a deflated (compressed) block. 552 /* inflate (decompress) the codes in a deflated (compressed) block.
553 Return an error code or zero if it all goes ok. */ 553 Return an error code or zero if it all goes ok. */
554 { 554 {
555 register unsigned e; /* table entry flag/number of extra bits */ 555 register unsigned e; /* table entry flag/number of extra bits */
556 unsigned n, d; /* length and index for copy */ 556 unsigned n, d; /* length and index for copy */
557 unsigned w; /* current window position */ 557 unsigned w; /* current window position */
558 struct huft *t; /* pointer to table entry */ 558 struct huft *t; /* pointer to table entry */
559 unsigned ml, md; /* masks for bl and bd bits */ 559 unsigned ml, md; /* masks for bl and bd bits */
560 register ulg b; /* bit buffer */ 560 register ulg b; /* bit buffer */
561 register unsigned k; /* number of bits in bit buffer */ 561 register unsigned k; /* number of bits in bit buffer */
562 562
563 563
564 /* make local copies of globals */ 564 /* make local copies of globals */
565 b = bb; /* initialize bit buffer */ 565 b = bb; /* initialize bit buffer */
566 k = bk; 566 k = bk;
567 w = wp; /* initialize window position */ 567 w = wp; /* initialize window position */
568 568
569 /* inflate the coded data */ 569 /* inflate the coded data */
570 ml = mask_bits[bl]; /* precompute masks for speed */ 570 ml = mask_bits[bl]; /* precompute masks for speed */
571 md = mask_bits[bd]; 571 md = mask_bits[bd];
572 for (;;) /* do until end of block */ 572 for (;;) /* do until end of block */
573 { 573 {
574 NEEDBITS((unsigned)bl) 574 NEEDBITS((unsigned)bl)
575 if ((e = (t = tl + ((unsigned)b & ml))->e) > 16) 575 if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
576 do { 576 do {
577 if (e == 99) 577 if (e == 99)
578 return 1; 578 return 1;
579 DUMPBITS(t->b) 579 DUMPBITS(t->b)
580 e -= 16; 580 e -= 16;
581 NEEDBITS(e) 581 NEEDBITS(e)
582 } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); 582 } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
583 DUMPBITS(t->b) 583 DUMPBITS(t->b)
584 if (e == 16) /* then it's a literal */ 584 if (e == 16) /* then it's a literal */
585 { 585 {
586 slide[w++] = (uch)t->v.n; 586 slide[w++] = (uch)t->v.n;
587 Tracevv((stderr, "%c", slide[w-1])); 587 Tracevv((stderr, "%c", slide[w-1]));
588 if (w == WSIZE) 588 if (w == WSIZE)
589 { 589 {
590 flush_output(w); 590 flush_output(w);
591 w = 0; 591 w = 0;
592 } 592 }
593 } 593 }
594 else /* it's an EOB or a length */ 594 else /* it's an EOB or a length */
595 { 595 {
596 /* exit if end of block */ 596 /* exit if end of block */
597 if (e == 15) 597 if (e == 15)
598 break; 598 break;
599 599
600 /* get length of block to copy */ 600 /* get length of block to copy */
601 NEEDBITS(e) 601 NEEDBITS(e)
602 n = t->v.n + ((unsigned)b & mask_bits[e]); 602 n = t->v.n + ((unsigned)b & mask_bits[e]);
603 DUMPBITS(e); 603 DUMPBITS(e);
604 604
605 /* decode distance of block to copy */ 605 /* decode distance of block to copy */
606 NEEDBITS((unsigned)bd) 606 NEEDBITS((unsigned)bd)
607 if ((e = (t = td + ((unsigned)b & md))->e) > 16) 607 if ((e = (t = td + ((unsigned)b & md))->e) > 16)
608 do { 608 do {
609 if (e == 99) 609 if (e == 99)
610 return 1; 610 return 1;
611 DUMPBITS(t->b) 611 DUMPBITS(t->b)
612 e -= 16; 612 e -= 16;
613 NEEDBITS(e) 613 NEEDBITS(e)
614 } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); 614 } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
615 DUMPBITS(t->b) 615 DUMPBITS(t->b)
616 NEEDBITS(e) 616 NEEDBITS(e)
617 d = w - t->v.n - ((unsigned)b & mask_bits[e]); 617 d = w - t->v.n - ((unsigned)b & mask_bits[e]);
618 DUMPBITS(e) 618 DUMPBITS(e)
619 Tracevv((stderr,"\\[%d,%d]", w-d, n)); 619 Tracevv((stderr,"\\[%d,%d]", w-d, n));
620 620
621 /* do the copy */ 621 /* do the copy */
622 do { 622 do {
623 n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e); 623 n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
624 #if !defined(NOMEMCPY) && !defined(DEBUG) 624 #if !defined(NOMEMCPY) && !defined(DEBUG)
625 if (w - d >= e) /* (this test assumes unsigned comparison) */ 625 if (w - d >= e) /* (this test assumes unsigned comparison) */
626 { 626 {
627 memcpy(slide + w, slide + d, e); 627 memcpy(slide + w, slide + d, e);
628 w += e; 628 w += e;
629 d += e; 629 d += e;
630 } 630 }
631 else /* do it slow to avoid memcpy() overlap */ 631 else /* do it slow to avoid memcpy() overlap */
632 #endif /* !NOMEMCPY */ 632 #endif /* !NOMEMCPY */
633 do { 633 do {
634 slide[w++] = slide[d++]; 634 slide[w++] = slide[d++];
635 Tracevv((stderr, "%c", slide[w-1])); 635 Tracevv((stderr, "%c", slide[w-1]));
636 } while (--e); 636 } while (--e);
637 if (w == WSIZE) 637 if (w == WSIZE)
638 { 638 {
639 flush_output(w); 639 flush_output(w);
640 w = 0; 640 w = 0;
641 } 641 }
642 } while (n); 642 } while (n);
643 } 643 }
644 } 644 }
645 645
646 646
647 /* restore the globals from the locals */ 647 /* restore the globals from the locals */
648 wp = w; /* restore global window pointer */ 648 wp = w; /* restore global window pointer */
649 bb = b; /* restore global bit buffer */ 649 bb = b; /* restore global bit buffer */
650 bk = k; 650 bk = k;
651 651
652 /* done */ 652 /* done */
653 return 0; 653 return 0;
654 654
655 underrun: 655 underrun:
656 return 4; /* Input underrun */ 656 return 4; /* Input underrun */
657 } 657 }
658 658
659 659
660 660
661 STATIC int INIT inflate_stored(void) 661 STATIC int INIT inflate_stored(void)
662 /* "decompress" an inflated type 0 (stored) block. */ 662 /* "decompress" an inflated type 0 (stored) block. */
663 { 663 {
664 unsigned n; /* number of bytes in block */ 664 unsigned n; /* number of bytes in block */
665 unsigned w; /* current window position */ 665 unsigned w; /* current window position */
666 register ulg b; /* bit buffer */ 666 register ulg b; /* bit buffer */
667 register unsigned k; /* number of bits in bit buffer */ 667 register unsigned k; /* number of bits in bit buffer */
668 668
669 DEBG("<stor"); 669 DEBG("<stor");
670 670
671 /* make local copies of globals */ 671 /* make local copies of globals */
672 b = bb; /* initialize bit buffer */ 672 b = bb; /* initialize bit buffer */
673 k = bk; 673 k = bk;
674 w = wp; /* initialize window position */ 674 w = wp; /* initialize window position */
675 675
676 676
677 /* go to byte boundary */ 677 /* go to byte boundary */
678 n = k & 7; 678 n = k & 7;
679 DUMPBITS(n); 679 DUMPBITS(n);
680 680
681 681
682 /* get the length and its complement */ 682 /* get the length and its complement */
683 NEEDBITS(16) 683 NEEDBITS(16)
684 n = ((unsigned)b & 0xffff); 684 n = ((unsigned)b & 0xffff);
685 DUMPBITS(16) 685 DUMPBITS(16)
686 NEEDBITS(16) 686 NEEDBITS(16)
687 if (n != (unsigned)((~b) & 0xffff)) 687 if (n != (unsigned)((~b) & 0xffff))
688 return 1; /* error in compressed data */ 688 return 1; /* error in compressed data */
689 DUMPBITS(16) 689 DUMPBITS(16)
690 690
691 691
692 /* read and output the compressed data */ 692 /* read and output the compressed data */
693 while (n--) 693 while (n--)
694 { 694 {
695 NEEDBITS(8) 695 NEEDBITS(8)
696 slide[w++] = (uch)b; 696 slide[w++] = (uch)b;
697 if (w == WSIZE) 697 if (w == WSIZE)
698 { 698 {
699 flush_output(w); 699 flush_output(w);
700 w = 0; 700 w = 0;
701 } 701 }
702 DUMPBITS(8) 702 DUMPBITS(8)
703 } 703 }
704 704
705 705
706 /* restore the globals from the locals */ 706 /* restore the globals from the locals */
707 wp = w; /* restore global window pointer */ 707 wp = w; /* restore global window pointer */
708 bb = b; /* restore global bit buffer */ 708 bb = b; /* restore global bit buffer */
709 bk = k; 709 bk = k;
710 710
711 DEBG(">"); 711 DEBG(">");
712 return 0; 712 return 0;
713 713
714 underrun: 714 underrun:
715 return 4; /* Input underrun */ 715 return 4; /* Input underrun */
716 } 716 }
717 717
718 718
719 /* 719 /*
720 * We use `noinline' here to prevent gcc-3.5 from using too much stack space 720 * We use `noinline' here to prevent gcc-3.5 from using too much stack space
721 */ 721 */
722 STATIC int noinline INIT inflate_fixed(void) 722 STATIC int noinline INIT inflate_fixed(void)
723 /* decompress an inflated type 1 (fixed Huffman codes) block. We should 723 /* decompress an inflated type 1 (fixed Huffman codes) block. We should
724 either replace this with a custom decoder, or at least precompute the 724 either replace this with a custom decoder, or at least precompute the
725 Huffman tables. */ 725 Huffman tables. */
726 { 726 {
727 int i; /* temporary variable */ 727 int i; /* temporary variable */
728 struct huft *tl; /* literal/length code table */ 728 struct huft *tl; /* literal/length code table */
729 struct huft *td; /* distance code table */ 729 struct huft *td; /* distance code table */
730 int bl; /* lookup bits for tl */ 730 int bl; /* lookup bits for tl */
731 int bd; /* lookup bits for td */ 731 int bd; /* lookup bits for td */
732 unsigned *l; /* length list for huft_build */ 732 unsigned *l; /* length list for huft_build */
733 733
734 DEBG("<fix"); 734 DEBG("<fix");
735 735
736 l = malloc(sizeof(*l) * 288); 736 l = malloc(sizeof(*l) * 288);
737 if (l == NULL) 737 if (l == NULL)
738 return 3; /* out of memory */ 738 return 3; /* out of memory */
739 739
740 /* set up literal table */ 740 /* set up literal table */
741 for (i = 0; i < 144; i++) 741 for (i = 0; i < 144; i++)
742 l[i] = 8; 742 l[i] = 8;
743 for (; i < 256; i++) 743 for (; i < 256; i++)
744 l[i] = 9; 744 l[i] = 9;
745 for (; i < 280; i++) 745 for (; i < 280; i++)
746 l[i] = 7; 746 l[i] = 7;
747 for (; i < 288; i++) /* make a complete, but wrong code set */ 747 for (; i < 288; i++) /* make a complete, but wrong code set */
748 l[i] = 8; 748 l[i] = 8;
749 bl = 7; 749 bl = 7;
750 if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0) { 750 if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0) {
751 free(l); 751 free(l);
752 return i; 752 return i;
753 } 753 }
754 754
755 /* set up distance table */ 755 /* set up distance table */
756 for (i = 0; i < 30; i++) /* make an incomplete code set */ 756 for (i = 0; i < 30; i++) /* make an incomplete code set */
757 l[i] = 5; 757 l[i] = 5;
758 bd = 5; 758 bd = 5;
759 if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1) 759 if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
760 { 760 {
761 huft_free(tl); 761 huft_free(tl);
762 free(l); 762 free(l);
763 763
764 DEBG(">"); 764 DEBG(">");
765 return i; 765 return i;
766 } 766 }
767 767
768 768
769 /* decompress until an end-of-block code */ 769 /* decompress until an end-of-block code */
770 if (inflate_codes(tl, td, bl, bd)) { 770 if (inflate_codes(tl, td, bl, bd)) {
771 free(l); 771 free(l);
772 return 1; 772 return 1;
773 } 773 }
774 774
775 /* free the decoding tables, return */ 775 /* free the decoding tables, return */
776 free(l); 776 free(l);
777 huft_free(tl); 777 huft_free(tl);
778 huft_free(td); 778 huft_free(td);
779 return 0; 779 return 0;
780 } 780 }
781 781
782 782
783 /* 783 /*
784 * We use `noinline' here to prevent gcc-3.5 from using too much stack space 784 * We use `noinline' here to prevent gcc-3.5 from using too much stack space
785 */ 785 */
786 STATIC int noinline INIT inflate_dynamic(void) 786 STATIC int noinline INIT inflate_dynamic(void)
787 /* decompress an inflated type 2 (dynamic Huffman codes) block. */ 787 /* decompress an inflated type 2 (dynamic Huffman codes) block. */
788 { 788 {
789 int i; /* temporary variables */ 789 int i; /* temporary variables */
790 unsigned j; 790 unsigned j;
791 unsigned l; /* last length */ 791 unsigned l; /* last length */
792 unsigned m; /* mask for bit lengths table */ 792 unsigned m; /* mask for bit lengths table */
793 unsigned n; /* number of lengths to get */ 793 unsigned n; /* number of lengths to get */
794 struct huft *tl; /* literal/length code table */ 794 struct huft *tl; /* literal/length code table */
795 struct huft *td; /* distance code table */ 795 struct huft *td; /* distance code table */
796 int bl; /* lookup bits for tl */ 796 int bl; /* lookup bits for tl */
797 int bd; /* lookup bits for td */ 797 int bd; /* lookup bits for td */
798 unsigned nb; /* number of bit length codes */ 798 unsigned nb; /* number of bit length codes */
799 unsigned nl; /* number of literal/length codes */ 799 unsigned nl; /* number of literal/length codes */
800 unsigned nd; /* number of distance codes */ 800 unsigned nd; /* number of distance codes */
801 unsigned *ll; /* literal/length and distance code lengths */ 801 unsigned *ll; /* literal/length and distance code lengths */
802 register ulg b; /* bit buffer */ 802 register ulg b; /* bit buffer */
803 register unsigned k; /* number of bits in bit buffer */ 803 register unsigned k; /* number of bits in bit buffer */
804 int ret; 804 int ret;
805 805
806 DEBG("<dyn"); 806 DEBG("<dyn");
807 807
808 #ifdef PKZIP_BUG_WORKAROUND 808 #ifdef PKZIP_BUG_WORKAROUND
809 ll = malloc(sizeof(*ll) * (288+32)); /* literal/length and distance code lengths */ 809 ll = malloc(sizeof(*ll) * (288+32)); /* literal/length and distance code lengths */
810 #else 810 #else
811 ll = malloc(sizeof(*ll) * (286+30)); /* literal/length and distance code lengths */ 811 ll = malloc(sizeof(*ll) * (286+30)); /* literal/length and distance code lengths */
812 #endif 812 #endif
813 813
814 if (ll == NULL)
815 return 1;
816
814 /* make local bit buffer */ 817 /* make local bit buffer */
815 b = bb; 818 b = bb;
816 k = bk; 819 k = bk;
817 820
818 821
819 /* read in table lengths */ 822 /* read in table lengths */
820 NEEDBITS(5) 823 NEEDBITS(5)
821 nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */ 824 nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
822 DUMPBITS(5) 825 DUMPBITS(5)
823 NEEDBITS(5) 826 NEEDBITS(5)
824 nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */ 827 nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
825 DUMPBITS(5) 828 DUMPBITS(5)
826 NEEDBITS(4) 829 NEEDBITS(4)
827 nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */ 830 nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
828 DUMPBITS(4) 831 DUMPBITS(4)
829 #ifdef PKZIP_BUG_WORKAROUND 832 #ifdef PKZIP_BUG_WORKAROUND
830 if (nl > 288 || nd > 32) 833 if (nl > 288 || nd > 32)
831 #else 834 #else
832 if (nl > 286 || nd > 30) 835 if (nl > 286 || nd > 30)
833 #endif 836 #endif
834 { 837 {
835 ret = 1; /* bad lengths */ 838 ret = 1; /* bad lengths */
836 goto out; 839 goto out;
837 } 840 }
838 841
839 DEBG("dyn1 "); 842 DEBG("dyn1 ");
840 843
841 /* read in bit-length-code lengths */ 844 /* read in bit-length-code lengths */
842 for (j = 0; j < nb; j++) 845 for (j = 0; j < nb; j++)
843 { 846 {
844 NEEDBITS(3) 847 NEEDBITS(3)
845 ll[border[j]] = (unsigned)b & 7; 848 ll[border[j]] = (unsigned)b & 7;
846 DUMPBITS(3) 849 DUMPBITS(3)
847 } 850 }
848 for (; j < 19; j++) 851 for (; j < 19; j++)
849 ll[border[j]] = 0; 852 ll[border[j]] = 0;
850 853
851 DEBG("dyn2 "); 854 DEBG("dyn2 ");
852 855
853 /* build decoding table for trees--single level, 7 bit lookup */ 856 /* build decoding table for trees--single level, 7 bit lookup */
854 bl = 7; 857 bl = 7;
855 if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0) 858 if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
856 { 859 {
857 if (i == 1) 860 if (i == 1)
858 huft_free(tl); 861 huft_free(tl);
859 ret = i; /* incomplete code set */ 862 ret = i; /* incomplete code set */
860 goto out; 863 goto out;
861 } 864 }
862 865
863 DEBG("dyn3 "); 866 DEBG("dyn3 ");
864 867
865 /* read in literal and distance code lengths */ 868 /* read in literal and distance code lengths */
866 n = nl + nd; 869 n = nl + nd;
867 m = mask_bits[bl]; 870 m = mask_bits[bl];
868 i = l = 0; 871 i = l = 0;
869 while ((unsigned)i < n) 872 while ((unsigned)i < n)
870 { 873 {
871 NEEDBITS((unsigned)bl) 874 NEEDBITS((unsigned)bl)
872 j = (td = tl + ((unsigned)b & m))->b; 875 j = (td = tl + ((unsigned)b & m))->b;
873 DUMPBITS(j) 876 DUMPBITS(j)
874 j = td->v.n; 877 j = td->v.n;
875 if (j < 16) /* length of code in bits (0..15) */ 878 if (j < 16) /* length of code in bits (0..15) */
876 ll[i++] = l = j; /* save last length in l */ 879 ll[i++] = l = j; /* save last length in l */
877 else if (j == 16) /* repeat last length 3 to 6 times */ 880 else if (j == 16) /* repeat last length 3 to 6 times */
878 { 881 {
879 NEEDBITS(2) 882 NEEDBITS(2)
880 j = 3 + ((unsigned)b & 3); 883 j = 3 + ((unsigned)b & 3);
881 DUMPBITS(2) 884 DUMPBITS(2)
882 if ((unsigned)i + j > n) { 885 if ((unsigned)i + j > n) {
883 ret = 1; 886 ret = 1;
884 goto out; 887 goto out;
885 } 888 }
886 while (j--) 889 while (j--)
887 ll[i++] = l; 890 ll[i++] = l;
888 } 891 }
889 else if (j == 17) /* 3 to 10 zero length codes */ 892 else if (j == 17) /* 3 to 10 zero length codes */
890 { 893 {
891 NEEDBITS(3) 894 NEEDBITS(3)
892 j = 3 + ((unsigned)b & 7); 895 j = 3 + ((unsigned)b & 7);
893 DUMPBITS(3) 896 DUMPBITS(3)
894 if ((unsigned)i + j > n) { 897 if ((unsigned)i + j > n) {
895 ret = 1; 898 ret = 1;
896 goto out; 899 goto out;
897 } 900 }
898 while (j--) 901 while (j--)
899 ll[i++] = 0; 902 ll[i++] = 0;
900 l = 0; 903 l = 0;
901 } 904 }
902 else /* j == 18: 11 to 138 zero length codes */ 905 else /* j == 18: 11 to 138 zero length codes */
903 { 906 {
904 NEEDBITS(7) 907 NEEDBITS(7)
905 j = 11 + ((unsigned)b & 0x7f); 908 j = 11 + ((unsigned)b & 0x7f);
906 DUMPBITS(7) 909 DUMPBITS(7)
907 if ((unsigned)i + j > n) { 910 if ((unsigned)i + j > n) {
908 ret = 1; 911 ret = 1;
909 goto out; 912 goto out;
910 } 913 }
911 while (j--) 914 while (j--)
912 ll[i++] = 0; 915 ll[i++] = 0;
913 l = 0; 916 l = 0;
914 } 917 }
915 } 918 }
916 919
917 DEBG("dyn4 "); 920 DEBG("dyn4 ");
918 921
919 /* free decoding table for trees */ 922 /* free decoding table for trees */
920 huft_free(tl); 923 huft_free(tl);
921 924
922 DEBG("dyn5 "); 925 DEBG("dyn5 ");
923 926
924 /* restore the global bit buffer */ 927 /* restore the global bit buffer */
925 bb = b; 928 bb = b;
926 bk = k; 929 bk = k;
927 930
928 DEBG("dyn5a "); 931 DEBG("dyn5a ");
929 932
930 /* build the decoding tables for literal/length and distance codes */ 933 /* build the decoding tables for literal/length and distance codes */
931 bl = lbits; 934 bl = lbits;
932 if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0) 935 if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
933 { 936 {
934 DEBG("dyn5b "); 937 DEBG("dyn5b ");
935 if (i == 1) { 938 if (i == 1) {
936 error("incomplete literal tree"); 939 error("incomplete literal tree");
937 huft_free(tl); 940 huft_free(tl);
938 } 941 }
939 ret = i; /* incomplete code set */ 942 ret = i; /* incomplete code set */
940 goto out; 943 goto out;
941 } 944 }
942 DEBG("dyn5c "); 945 DEBG("dyn5c ");
943 bd = dbits; 946 bd = dbits;
944 if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0) 947 if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
945 { 948 {
946 DEBG("dyn5d "); 949 DEBG("dyn5d ");
947 if (i == 1) { 950 if (i == 1) {
948 error("incomplete distance tree"); 951 error("incomplete distance tree");
949 #ifdef PKZIP_BUG_WORKAROUND 952 #ifdef PKZIP_BUG_WORKAROUND
950 i = 0; 953 i = 0;
951 } 954 }
952 #else 955 #else
953 huft_free(td); 956 huft_free(td);
954 } 957 }
955 huft_free(tl); 958 huft_free(tl);
956 ret = i; /* incomplete code set */ 959 ret = i; /* incomplete code set */
957 goto out; 960 goto out;
958 #endif 961 #endif
959 } 962 }
960 963
961 DEBG("dyn6 "); 964 DEBG("dyn6 ");
962 965
963 /* decompress until an end-of-block code */ 966 /* decompress until an end-of-block code */
964 if (inflate_codes(tl, td, bl, bd)) { 967 if (inflate_codes(tl, td, bl, bd)) {
965 ret = 1; 968 ret = 1;
966 goto out; 969 goto out;
967 } 970 }
968 971
969 DEBG("dyn7 "); 972 DEBG("dyn7 ");
970 973
971 /* free the decoding tables, return */ 974 /* free the decoding tables, return */
972 huft_free(tl); 975 huft_free(tl);
973 huft_free(td); 976 huft_free(td);
974 977
975 DEBG(">"); 978 DEBG(">");
976 ret = 0; 979 ret = 0;
977 out: 980 out:
978 free(ll); 981 free(ll);
979 return ret; 982 return ret;
980 983
981 underrun: 984 underrun:
982 ret = 4; /* Input underrun */ 985 ret = 4; /* Input underrun */
983 goto out; 986 goto out;
984 } 987 }
985 988
986 989
987 990
988 STATIC int INIT inflate_block( 991 STATIC int INIT inflate_block(
989 int *e /* last block flag */ 992 int *e /* last block flag */
990 ) 993 )
991 /* decompress an inflated block */ 994 /* decompress an inflated block */
992 { 995 {
993 unsigned t; /* block type */ 996 unsigned t; /* block type */
994 register ulg b; /* bit buffer */ 997 register ulg b; /* bit buffer */
995 register unsigned k; /* number of bits in bit buffer */ 998 register unsigned k; /* number of bits in bit buffer */
996 999
997 DEBG("<blk"); 1000 DEBG("<blk");
998 1001
999 /* make local bit buffer */ 1002 /* make local bit buffer */
1000 b = bb; 1003 b = bb;
1001 k = bk; 1004 k = bk;
1002 1005
1003 1006
1004 /* read in last block bit */ 1007 /* read in last block bit */
1005 NEEDBITS(1) 1008 NEEDBITS(1)
1006 *e = (int)b & 1; 1009 *e = (int)b & 1;
1007 DUMPBITS(1) 1010 DUMPBITS(1)
1008 1011
1009 1012
1010 /* read in block type */ 1013 /* read in block type */
1011 NEEDBITS(2) 1014 NEEDBITS(2)
1012 t = (unsigned)b & 3; 1015 t = (unsigned)b & 3;
1013 DUMPBITS(2) 1016 DUMPBITS(2)
1014 1017
1015 1018
1016 /* restore the global bit buffer */ 1019 /* restore the global bit buffer */
1017 bb = b; 1020 bb = b;
1018 bk = k; 1021 bk = k;
1019 1022
1020 /* inflate that block type */ 1023 /* inflate that block type */
1021 if (t == 2) 1024 if (t == 2)
1022 return inflate_dynamic(); 1025 return inflate_dynamic();
1023 if (t == 0) 1026 if (t == 0)
1024 return inflate_stored(); 1027 return inflate_stored();
1025 if (t == 1) 1028 if (t == 1)
1026 return inflate_fixed(); 1029 return inflate_fixed();
1027 1030
1028 DEBG(">"); 1031 DEBG(">");
1029 1032
1030 /* bad block type */ 1033 /* bad block type */
1031 return 2; 1034 return 2;
1032 1035
1033 underrun: 1036 underrun:
1034 return 4; /* Input underrun */ 1037 return 4; /* Input underrun */
1035 } 1038 }
1036 1039
1037 1040
1038 1041
1039 STATIC int INIT inflate(void) 1042 STATIC int INIT inflate(void)
1040 /* decompress an inflated entry */ 1043 /* decompress an inflated entry */
1041 { 1044 {
1042 int e; /* last block flag */ 1045 int e; /* last block flag */
1043 int r; /* result code */ 1046 int r; /* result code */
1044 unsigned h; /* maximum struct huft's malloc'ed */ 1047 unsigned h; /* maximum struct huft's malloc'ed */
1045 void *ptr; 1048 void *ptr;
1046 1049
1047 /* initialize window, bit buffer */ 1050 /* initialize window, bit buffer */
1048 wp = 0; 1051 wp = 0;
1049 bk = 0; 1052 bk = 0;
1050 bb = 0; 1053 bb = 0;
1051 1054
1052 1055
1053 /* decompress until the last block */ 1056 /* decompress until the last block */
1054 h = 0; 1057 h = 0;
1055 do { 1058 do {
1056 hufts = 0; 1059 hufts = 0;
1057 gzip_mark(&ptr); 1060 gzip_mark(&ptr);
1058 if ((r = inflate_block(&e)) != 0) { 1061 if ((r = inflate_block(&e)) != 0) {
1059 gzip_release(&ptr); 1062 gzip_release(&ptr);
1060 return r; 1063 return r;
1061 } 1064 }
1062 gzip_release(&ptr); 1065 gzip_release(&ptr);
1063 if (hufts > h) 1066 if (hufts > h)
1064 h = hufts; 1067 h = hufts;
1065 } while (!e); 1068 } while (!e);
1066 1069
1067 /* Undo too much lookahead. The next read will be byte aligned so we 1070 /* Undo too much lookahead. The next read will be byte aligned so we
1068 * can discard unused bits in the last meaningful byte. 1071 * can discard unused bits in the last meaningful byte.
1069 */ 1072 */
1070 while (bk >= 8) { 1073 while (bk >= 8) {
1071 bk -= 8; 1074 bk -= 8;
1072 inptr--; 1075 inptr--;
1073 } 1076 }
1074 1077
1075 /* flush out slide */ 1078 /* flush out slide */
1076 flush_output(wp); 1079 flush_output(wp);
1077 1080
1078 1081
1079 /* return success */ 1082 /* return success */
1080 #ifdef DEBUG 1083 #ifdef DEBUG
1081 fprintf(stderr, "<%u> ", h); 1084 fprintf(stderr, "<%u> ", h);
1082 #endif /* DEBUG */ 1085 #endif /* DEBUG */
1083 return 0; 1086 return 0;
1084 } 1087 }
1085 1088
1086 /********************************************************************** 1089 /**********************************************************************
1087 * 1090 *
1088 * The following are support routines for inflate.c 1091 * The following are support routines for inflate.c
1089 * 1092 *
1090 **********************************************************************/ 1093 **********************************************************************/
1091 1094
1092 static ulg crc_32_tab[256]; 1095 static ulg crc_32_tab[256];
1093 static ulg crc; /* initialized in makecrc() so it'll reside in bss */ 1096 static ulg crc; /* initialized in makecrc() so it'll reside in bss */
1094 #define CRC_VALUE (crc ^ 0xffffffffUL) 1097 #define CRC_VALUE (crc ^ 0xffffffffUL)
1095 1098
1096 /* 1099 /*
1097 * Code to compute the CRC-32 table. Borrowed from 1100 * Code to compute the CRC-32 table. Borrowed from
1098 * gzip-1.0.3/makecrc.c. 1101 * gzip-1.0.3/makecrc.c.
1099 */ 1102 */
1100 1103
1101 static void INIT 1104 static void INIT
1102 makecrc(void) 1105 makecrc(void)
1103 { 1106 {
1104 /* Not copyrighted 1990 Mark Adler */ 1107 /* Not copyrighted 1990 Mark Adler */
1105 1108
1106 unsigned long c; /* crc shift register */ 1109 unsigned long c; /* crc shift register */
1107 unsigned long e; /* polynomial exclusive-or pattern */ 1110 unsigned long e; /* polynomial exclusive-or pattern */
1108 int i; /* counter for all possible eight bit values */ 1111 int i; /* counter for all possible eight bit values */
1109 int k; /* byte being shifted into crc apparatus */ 1112 int k; /* byte being shifted into crc apparatus */
1110 1113
1111 /* terms of polynomial defining this crc (except x^32): */ 1114 /* terms of polynomial defining this crc (except x^32): */
1112 static const int p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; 1115 static const int p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
1113 1116
1114 /* Make exclusive-or pattern from polynomial */ 1117 /* Make exclusive-or pattern from polynomial */
1115 e = 0; 1118 e = 0;
1116 for (i = 0; i < sizeof(p)/sizeof(int); i++) 1119 for (i = 0; i < sizeof(p)/sizeof(int); i++)
1117 e |= 1L << (31 - p[i]); 1120 e |= 1L << (31 - p[i]);
1118 1121
1119 crc_32_tab[0] = 0; 1122 crc_32_tab[0] = 0;
1120 1123
1121 for (i = 1; i < 256; i++) 1124 for (i = 1; i < 256; i++)
1122 { 1125 {
1123 c = 0; 1126 c = 0;
1124 for (k = i | 256; k != 1; k >>= 1) 1127 for (k = i | 256; k != 1; k >>= 1)
1125 { 1128 {
1126 c = c & 1 ? (c >> 1) ^ e : c >> 1; 1129 c = c & 1 ? (c >> 1) ^ e : c >> 1;
1127 if (k & 1) 1130 if (k & 1)
1128 c ^= e; 1131 c ^= e;
1129 } 1132 }
1130 crc_32_tab[i] = c; 1133 crc_32_tab[i] = c;
1131 } 1134 }
1132 1135
1133 /* this is initialized here so this code could reside in ROM */ 1136 /* this is initialized here so this code could reside in ROM */
1134 crc = (ulg)0xffffffffUL; /* shift register contents */ 1137 crc = (ulg)0xffffffffUL; /* shift register contents */
1135 } 1138 }
1136 1139
1137 /* gzip flag byte */ 1140 /* gzip flag byte */
1138 #define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */ 1141 #define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */
1139 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */ 1142 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
1140 #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */ 1143 #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
1141 #define ORIG_NAME 0x08 /* bit 3 set: original file name present */ 1144 #define ORIG_NAME 0x08 /* bit 3 set: original file name present */
1142 #define COMMENT 0x10 /* bit 4 set: file comment present */ 1145 #define COMMENT 0x10 /* bit 4 set: file comment present */
1143 #define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */ 1146 #define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */
1144 #define RESERVED 0xC0 /* bit 6,7: reserved */ 1147 #define RESERVED 0xC0 /* bit 6,7: reserved */
1145 1148
1146 /* 1149 /*
1147 * Do the uncompression! 1150 * Do the uncompression!
1148 */ 1151 */
1149 static int INIT gunzip(void) 1152 static int INIT gunzip(void)
1150 { 1153 {
1151 uch flags; 1154 uch flags;
1152 unsigned char magic[2]; /* magic header */ 1155 unsigned char magic[2]; /* magic header */
1153 char method; 1156 char method;
1154 ulg orig_crc = 0; /* original crc */ 1157 ulg orig_crc = 0; /* original crc */
1155 ulg orig_len = 0; /* original uncompressed length */ 1158 ulg orig_len = 0; /* original uncompressed length */
1156 int res; 1159 int res;
1157 1160
1158 magic[0] = NEXTBYTE(); 1161 magic[0] = NEXTBYTE();
1159 magic[1] = NEXTBYTE(); 1162 magic[1] = NEXTBYTE();
1160 method = NEXTBYTE(); 1163 method = NEXTBYTE();
1161 1164
1162 if (magic[0] != 037 || 1165 if (magic[0] != 037 ||
1163 ((magic[1] != 0213) && (magic[1] != 0236))) { 1166 ((magic[1] != 0213) && (magic[1] != 0236))) {
1164 error("bad gzip magic numbers"); 1167 error("bad gzip magic numbers");
1165 return -1; 1168 return -1;
1166 } 1169 }
1167 1170
1168 /* We only support method #8, DEFLATED */ 1171 /* We only support method #8, DEFLATED */
1169 if (method != 8) { 1172 if (method != 8) {
1170 error("internal error, invalid method"); 1173 error("internal error, invalid method");
1171 return -1; 1174 return -1;
1172 } 1175 }
1173 1176
1174 flags = (uch)get_byte(); 1177 flags = (uch)get_byte();
1175 if ((flags & ENCRYPTED) != 0) { 1178 if ((flags & ENCRYPTED) != 0) {
1176 error("Input is encrypted"); 1179 error("Input is encrypted");
1177 return -1; 1180 return -1;
1178 } 1181 }
1179 if ((flags & CONTINUATION) != 0) { 1182 if ((flags & CONTINUATION) != 0) {
1180 error("Multi part input"); 1183 error("Multi part input");
1181 return -1; 1184 return -1;
1182 } 1185 }
1183 if ((flags & RESERVED) != 0) { 1186 if ((flags & RESERVED) != 0) {
1184 error("Input has invalid flags"); 1187 error("Input has invalid flags");
1185 return -1; 1188 return -1;
1186 } 1189 }
1187 NEXTBYTE(); /* Get timestamp */ 1190 NEXTBYTE(); /* Get timestamp */
1188 NEXTBYTE(); 1191 NEXTBYTE();
1189 NEXTBYTE(); 1192 NEXTBYTE();
1190 NEXTBYTE(); 1193 NEXTBYTE();
1191 1194
1192 (void)NEXTBYTE(); /* Ignore extra flags for the moment */ 1195 (void)NEXTBYTE(); /* Ignore extra flags for the moment */
1193 (void)NEXTBYTE(); /* Ignore OS type for the moment */ 1196 (void)NEXTBYTE(); /* Ignore OS type for the moment */
1194 1197
1195 if ((flags & EXTRA_FIELD) != 0) { 1198 if ((flags & EXTRA_FIELD) != 0) {
1196 unsigned len = (unsigned)NEXTBYTE(); 1199 unsigned len = (unsigned)NEXTBYTE();
1197 len |= ((unsigned)NEXTBYTE())<<8; 1200 len |= ((unsigned)NEXTBYTE())<<8;
1198 while (len--) (void)NEXTBYTE(); 1201 while (len--) (void)NEXTBYTE();
1199 } 1202 }
1200 1203
1201 /* Get original file name if it was truncated */ 1204 /* Get original file name if it was truncated */
1202 if ((flags & ORIG_NAME) != 0) { 1205 if ((flags & ORIG_NAME) != 0) {
1203 /* Discard the old name */ 1206 /* Discard the old name */
1204 while (NEXTBYTE() != 0) /* null */ ; 1207 while (NEXTBYTE() != 0) /* null */ ;
1205 } 1208 }
1206 1209
1207 /* Discard file comment if any */ 1210 /* Discard file comment if any */
1208 if ((flags & COMMENT) != 0) { 1211 if ((flags & COMMENT) != 0) {
1209 while (NEXTBYTE() != 0) /* null */ ; 1212 while (NEXTBYTE() != 0) /* null */ ;
1210 } 1213 }
1211 1214
1212 /* Decompress */ 1215 /* Decompress */
1213 if ((res = inflate())) { 1216 if ((res = inflate())) {
1214 switch (res) { 1217 switch (res) {
1215 case 0: 1218 case 0:
1216 break; 1219 break;
1217 case 1: 1220 case 1:
1218 error("invalid compressed format (err=1)"); 1221 error("invalid compressed format (err=1)");
1219 break; 1222 break;
1220 case 2: 1223 case 2:
1221 error("invalid compressed format (err=2)"); 1224 error("invalid compressed format (err=2)");
1222 break; 1225 break;
1223 case 3: 1226 case 3:
1224 error("out of memory"); 1227 error("out of memory");
1225 break; 1228 break;
1226 case 4: 1229 case 4:
1227 error("out of input data"); 1230 error("out of input data");
1228 break; 1231 break;
1229 default: 1232 default:
1230 error("invalid compressed format (other)"); 1233 error("invalid compressed format (other)");
1231 } 1234 }
1232 return -1; 1235 return -1;
1233 } 1236 }
1234 1237
1235 /* Get the crc and original length */ 1238 /* Get the crc and original length */
1236 /* crc32 (see algorithm.doc) 1239 /* crc32 (see algorithm.doc)
1237 * uncompressed input size modulo 2^32 1240 * uncompressed input size modulo 2^32
1238 */ 1241 */
1239 orig_crc = (ulg) NEXTBYTE(); 1242 orig_crc = (ulg) NEXTBYTE();
1240 orig_crc |= (ulg) NEXTBYTE() << 8; 1243 orig_crc |= (ulg) NEXTBYTE() << 8;
1241 orig_crc |= (ulg) NEXTBYTE() << 16; 1244 orig_crc |= (ulg) NEXTBYTE() << 16;
1242 orig_crc |= (ulg) NEXTBYTE() << 24; 1245 orig_crc |= (ulg) NEXTBYTE() << 24;
1243 1246
1244 orig_len = (ulg) NEXTBYTE(); 1247 orig_len = (ulg) NEXTBYTE();
1245 orig_len |= (ulg) NEXTBYTE() << 8; 1248 orig_len |= (ulg) NEXTBYTE() << 8;
1246 orig_len |= (ulg) NEXTBYTE() << 16; 1249 orig_len |= (ulg) NEXTBYTE() << 16;
1247 orig_len |= (ulg) NEXTBYTE() << 24; 1250 orig_len |= (ulg) NEXTBYTE() << 24;
1248 1251
1249 /* Validate decompression */ 1252 /* Validate decompression */
1250 if (orig_crc != CRC_VALUE) { 1253 if (orig_crc != CRC_VALUE) {
1251 error("crc error"); 1254 error("crc error");
1252 return -1; 1255 return -1;
1253 } 1256 }
1254 if (orig_len != bytes_out) { 1257 if (orig_len != bytes_out) {
1255 error("length error"); 1258 error("length error");
1256 return -1; 1259 return -1;
1257 } 1260 }
1258 return 0; 1261 return 0;
1259 1262
1260 underrun: /* NEXTBYTE() goto's here if needed */ 1263 underrun: /* NEXTBYTE() goto's here if needed */
1261 error("out of input data"); 1264 error("out of input data");
1262 return -1; 1265 return -1;
1263 } 1266 }
1264 1267
1265 1268
1266 1269