Commit 22caa0417db3b1d3dfafc9b7c0bf31baf8d667e7
Committed by
Linus Torvalds
1 parent
cd6fda3608
lib/inflate.c: handle failed malloc()
lib/inflate.c (inflate_dynamic): Don't deref NULL upon failed malloc. Signed-off-by: Jim Meyering <meyering@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Showing 1 changed file with 3 additions and 0 deletions Inline Diff
lib/inflate.c
1 | #define DEBG(x) | 1 | #define DEBG(x) |
2 | #define DEBG1(x) | 2 | #define DEBG1(x) |
3 | /* inflate.c -- Not copyrighted 1992 by Mark Adler | 3 | /* inflate.c -- Not copyrighted 1992 by Mark Adler |
4 | version c10p1, 10 January 1993 */ | 4 | version c10p1, 10 January 1993 */ |
5 | 5 | ||
6 | /* | 6 | /* |
7 | * Adapted for booting Linux by Hannu Savolainen 1993 | 7 | * Adapted for booting Linux by Hannu Savolainen 1993 |
8 | * based on gzip-1.0.3 | 8 | * based on gzip-1.0.3 |
9 | * | 9 | * |
10 | * Nicolas Pitre <nico@cam.org>, 1999/04/14 : | 10 | * Nicolas Pitre <nico@cam.org>, 1999/04/14 : |
11 | * Little mods for all variable to reside either into rodata or bss segments | 11 | * Little mods for all variable to reside either into rodata or bss segments |
12 | * by marking constant variables with 'const' and initializing all the others | 12 | * by marking constant variables with 'const' and initializing all the others |
13 | * at run-time only. This allows for the kernel uncompressor to run | 13 | * at run-time only. This allows for the kernel uncompressor to run |
14 | * directly from Flash or ROM memory on embedded systems. | 14 | * directly from Flash or ROM memory on embedded systems. |
15 | */ | 15 | */ |
16 | 16 | ||
17 | /* | 17 | /* |
18 | Inflate deflated (PKZIP's method 8 compressed) data. The compression | 18 | Inflate deflated (PKZIP's method 8 compressed) data. The compression |
19 | method searches for as much of the current string of bytes (up to a | 19 | method searches for as much of the current string of bytes (up to a |
20 | length of 258) in the previous 32 K bytes. If it doesn't find any | 20 | length of 258) in the previous 32 K bytes. If it doesn't find any |
21 | matches (of at least length 3), it codes the next byte. Otherwise, it | 21 | matches (of at least length 3), it codes the next byte. Otherwise, it |
22 | codes the length of the matched string and its distance backwards from | 22 | codes the length of the matched string and its distance backwards from |
23 | the current position. There is a single Huffman code that codes both | 23 | the current position. There is a single Huffman code that codes both |
24 | single bytes (called "literals") and match lengths. A second Huffman | 24 | single bytes (called "literals") and match lengths. A second Huffman |
25 | code codes the distance information, which follows a length code. Each | 25 | code codes the distance information, which follows a length code. Each |
26 | length or distance code actually represents a base value and a number | 26 | length or distance code actually represents a base value and a number |
27 | of "extra" (sometimes zero) bits to get to add to the base value. At | 27 | of "extra" (sometimes zero) bits to get to add to the base value. At |
28 | the end of each deflated block is a special end-of-block (EOB) literal/ | 28 | the end of each deflated block is a special end-of-block (EOB) literal/ |
29 | length code. The decoding process is basically: get a literal/length | 29 | length code. The decoding process is basically: get a literal/length |
30 | code; if EOB then done; if a literal, emit the decoded byte; if a | 30 | code; if EOB then done; if a literal, emit the decoded byte; if a |
31 | length then get the distance and emit the referred-to bytes from the | 31 | length then get the distance and emit the referred-to bytes from the |
32 | sliding window of previously emitted data. | 32 | sliding window of previously emitted data. |
33 | 33 | ||
34 | There are (currently) three kinds of inflate blocks: stored, fixed, and | 34 | There are (currently) three kinds of inflate blocks: stored, fixed, and |
35 | dynamic. The compressor deals with some chunk of data at a time, and | 35 | dynamic. The compressor deals with some chunk of data at a time, and |
36 | decides which method to use on a chunk-by-chunk basis. A chunk might | 36 | decides which method to use on a chunk-by-chunk basis. A chunk might |
37 | typically be 32 K or 64 K. If the chunk is incompressible, then the | 37 | typically be 32 K or 64 K. If the chunk is incompressible, then the |
38 | "stored" method is used. In this case, the bytes are simply stored as | 38 | "stored" method is used. In this case, the bytes are simply stored as |
39 | is, eight bits per byte, with none of the above coding. The bytes are | 39 | is, eight bits per byte, with none of the above coding. The bytes are |
40 | preceded by a count, since there is no longer an EOB code. | 40 | preceded by a count, since there is no longer an EOB code. |
41 | 41 | ||
42 | If the data is compressible, then either the fixed or dynamic methods | 42 | If the data is compressible, then either the fixed or dynamic methods |
43 | are used. In the dynamic method, the compressed data is preceded by | 43 | are used. In the dynamic method, the compressed data is preceded by |
44 | an encoding of the literal/length and distance Huffman codes that are | 44 | an encoding of the literal/length and distance Huffman codes that are |
45 | to be used to decode this block. The representation is itself Huffman | 45 | to be used to decode this block. The representation is itself Huffman |
46 | coded, and so is preceded by a description of that code. These code | 46 | coded, and so is preceded by a description of that code. These code |
47 | descriptions take up a little space, and so for small blocks, there is | 47 | descriptions take up a little space, and so for small blocks, there is |
48 | a predefined set of codes, called the fixed codes. The fixed method is | 48 | a predefined set of codes, called the fixed codes. The fixed method is |
49 | used if the block codes up smaller that way (usually for quite small | 49 | used if the block codes up smaller that way (usually for quite small |
50 | chunks), otherwise the dynamic method is used. In the latter case, the | 50 | chunks), otherwise the dynamic method is used. In the latter case, the |
51 | codes are customized to the probabilities in the current block, and so | 51 | codes are customized to the probabilities in the current block, and so |
52 | can code it much better than the pre-determined fixed codes. | 52 | can code it much better than the pre-determined fixed codes. |
53 | 53 | ||
54 | The Huffman codes themselves are decoded using a multi-level table | 54 | The Huffman codes themselves are decoded using a multi-level table |
55 | lookup, in order to maximize the speed of decoding plus the speed of | 55 | lookup, in order to maximize the speed of decoding plus the speed of |
56 | building the decoding tables. See the comments below that precede the | 56 | building the decoding tables. See the comments below that precede the |
57 | lbits and dbits tuning parameters. | 57 | lbits and dbits tuning parameters. |
58 | */ | 58 | */ |
59 | 59 | ||
60 | 60 | ||
61 | /* | 61 | /* |
62 | Notes beyond the 1.93a appnote.txt: | 62 | Notes beyond the 1.93a appnote.txt: |
63 | 63 | ||
64 | 1. Distance pointers never point before the beginning of the output | 64 | 1. Distance pointers never point before the beginning of the output |
65 | stream. | 65 | stream. |
66 | 2. Distance pointers can point back across blocks, up to 32k away. | 66 | 2. Distance pointers can point back across blocks, up to 32k away. |
67 | 3. There is an implied maximum of 7 bits for the bit length table and | 67 | 3. There is an implied maximum of 7 bits for the bit length table and |
68 | 15 bits for the actual data. | 68 | 15 bits for the actual data. |
69 | 4. If only one code exists, then it is encoded using one bit. (Zero | 69 | 4. If only one code exists, then it is encoded using one bit. (Zero |
70 | would be more efficient, but perhaps a little confusing.) If two | 70 | would be more efficient, but perhaps a little confusing.) If two |
71 | codes exist, they are coded using one bit each (0 and 1). | 71 | codes exist, they are coded using one bit each (0 and 1). |
72 | 5. There is no way of sending zero distance codes--a dummy must be | 72 | 5. There is no way of sending zero distance codes--a dummy must be |
73 | sent if there are none. (History: a pre 2.0 version of PKZIP would | 73 | sent if there are none. (History: a pre 2.0 version of PKZIP would |
74 | store blocks with no distance codes, but this was discovered to be | 74 | store blocks with no distance codes, but this was discovered to be |
75 | too harsh a criterion.) Valid only for 1.93a. 2.04c does allow | 75 | too harsh a criterion.) Valid only for 1.93a. 2.04c does allow |
76 | zero distance codes, which is sent as one code of zero bits in | 76 | zero distance codes, which is sent as one code of zero bits in |
77 | length. | 77 | length. |
78 | 6. There are up to 286 literal/length codes. Code 256 represents the | 78 | 6. There are up to 286 literal/length codes. Code 256 represents the |
79 | end-of-block. Note however that the static length tree defines | 79 | end-of-block. Note however that the static length tree defines |
80 | 288 codes just to fill out the Huffman codes. Codes 286 and 287 | 80 | 288 codes just to fill out the Huffman codes. Codes 286 and 287 |
81 | cannot be used though, since there is no length base or extra bits | 81 | cannot be used though, since there is no length base or extra bits |
82 | defined for them. Similarly, there are up to 30 distance codes. | 82 | defined for them. Similarly, there are up to 30 distance codes. |
83 | However, static trees define 32 codes (all 5 bits) to fill out the | 83 | However, static trees define 32 codes (all 5 bits) to fill out the |
84 | Huffman codes, but the last two had better not show up in the data. | 84 | Huffman codes, but the last two had better not show up in the data. |
85 | 7. Unzip can check dynamic Huffman blocks for complete code sets. | 85 | 7. Unzip can check dynamic Huffman blocks for complete code sets. |
86 | The exception is that a single code would not be complete (see #4). | 86 | The exception is that a single code would not be complete (see #4). |
87 | 8. The five bits following the block type is really the number of | 87 | 8. The five bits following the block type is really the number of |
88 | literal codes sent minus 257. | 88 | literal codes sent minus 257. |
89 | 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits | 89 | 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits |
90 | (1+6+6). Therefore, to output three times the length, you output | 90 | (1+6+6). Therefore, to output three times the length, you output |
91 | three codes (1+1+1), whereas to output four times the same length, | 91 | three codes (1+1+1), whereas to output four times the same length, |
92 | you only need two codes (1+3). Hmm. | 92 | you only need two codes (1+3). Hmm. |
93 | 10. In the tree reconstruction algorithm, Code = Code + Increment | 93 | 10. In the tree reconstruction algorithm, Code = Code + Increment |
94 | only if BitLength(i) is not zero. (Pretty obvious.) | 94 | only if BitLength(i) is not zero. (Pretty obvious.) |
95 | 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) | 95 | 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) |
96 | 12. Note: length code 284 can represent 227-258, but length code 285 | 96 | 12. Note: length code 284 can represent 227-258, but length code 285 |
97 | really is 258. The last length deserves its own, short code | 97 | really is 258. The last length deserves its own, short code |
98 | since it gets used a lot in very redundant files. The length | 98 | since it gets used a lot in very redundant files. The length |
99 | 258 is special since 258 - 3 (the min match length) is 255. | 99 | 258 is special since 258 - 3 (the min match length) is 255. |
100 | 13. The literal/length and distance code bit lengths are read as a | 100 | 13. The literal/length and distance code bit lengths are read as a |
101 | single stream of lengths. It is possible (and advantageous) for | 101 | single stream of lengths. It is possible (and advantageous) for |
102 | a repeat code (16, 17, or 18) to go across the boundary between | 102 | a repeat code (16, 17, or 18) to go across the boundary between |
103 | the two sets of lengths. | 103 | the two sets of lengths. |
104 | */ | 104 | */ |
105 | #include <linux/compiler.h> | 105 | #include <linux/compiler.h> |
106 | 106 | ||
107 | #ifdef RCSID | 107 | #ifdef RCSID |
108 | static char rcsid[] = "#Id: inflate.c,v 0.14 1993/06/10 13:27:04 jloup Exp #"; | 108 | static char rcsid[] = "#Id: inflate.c,v 0.14 1993/06/10 13:27:04 jloup Exp #"; |
109 | #endif | 109 | #endif |
110 | 110 | ||
111 | #ifndef STATIC | 111 | #ifndef STATIC |
112 | 112 | ||
113 | #if defined(STDC_HEADERS) || defined(HAVE_STDLIB_H) | 113 | #if defined(STDC_HEADERS) || defined(HAVE_STDLIB_H) |
114 | # include <sys/types.h> | 114 | # include <sys/types.h> |
115 | # include <stdlib.h> | 115 | # include <stdlib.h> |
116 | #endif | 116 | #endif |
117 | 117 | ||
118 | #include "gzip.h" | 118 | #include "gzip.h" |
119 | #define STATIC | 119 | #define STATIC |
120 | #endif /* !STATIC */ | 120 | #endif /* !STATIC */ |
121 | 121 | ||
122 | #ifndef INIT | 122 | #ifndef INIT |
123 | #define INIT | 123 | #define INIT |
124 | #endif | 124 | #endif |
125 | 125 | ||
126 | #define slide window | 126 | #define slide window |
127 | 127 | ||
128 | /* Huffman code lookup table entry--this entry is four bytes for machines | 128 | /* Huffman code lookup table entry--this entry is four bytes for machines |
129 | that have 16-bit pointers (e.g. PC's in the small or medium model). | 129 | that have 16-bit pointers (e.g. PC's in the small or medium model). |
130 | Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16 | 130 | Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16 |
131 | means that v is a literal, 16 < e < 32 means that v is a pointer to | 131 | means that v is a literal, 16 < e < 32 means that v is a pointer to |
132 | the next table, which codes e - 16 bits, and lastly e == 99 indicates | 132 | the next table, which codes e - 16 bits, and lastly e == 99 indicates |
133 | an unused code. If a code with e == 99 is looked up, this implies an | 133 | an unused code. If a code with e == 99 is looked up, this implies an |
134 | error in the data. */ | 134 | error in the data. */ |
135 | struct huft { | 135 | struct huft { |
136 | uch e; /* number of extra bits or operation */ | 136 | uch e; /* number of extra bits or operation */ |
137 | uch b; /* number of bits in this code or subcode */ | 137 | uch b; /* number of bits in this code or subcode */ |
138 | union { | 138 | union { |
139 | ush n; /* literal, length base, or distance base */ | 139 | ush n; /* literal, length base, or distance base */ |
140 | struct huft *t; /* pointer to next level of table */ | 140 | struct huft *t; /* pointer to next level of table */ |
141 | } v; | 141 | } v; |
142 | }; | 142 | }; |
143 | 143 | ||
144 | 144 | ||
145 | /* Function prototypes */ | 145 | /* Function prototypes */ |
146 | STATIC int INIT huft_build OF((unsigned *, unsigned, unsigned, | 146 | STATIC int INIT huft_build OF((unsigned *, unsigned, unsigned, |
147 | const ush *, const ush *, struct huft **, int *)); | 147 | const ush *, const ush *, struct huft **, int *)); |
148 | STATIC int INIT huft_free OF((struct huft *)); | 148 | STATIC int INIT huft_free OF((struct huft *)); |
149 | STATIC int INIT inflate_codes OF((struct huft *, struct huft *, int, int)); | 149 | STATIC int INIT inflate_codes OF((struct huft *, struct huft *, int, int)); |
150 | STATIC int INIT inflate_stored OF((void)); | 150 | STATIC int INIT inflate_stored OF((void)); |
151 | STATIC int INIT inflate_fixed OF((void)); | 151 | STATIC int INIT inflate_fixed OF((void)); |
152 | STATIC int INIT inflate_dynamic OF((void)); | 152 | STATIC int INIT inflate_dynamic OF((void)); |
153 | STATIC int INIT inflate_block OF((int *)); | 153 | STATIC int INIT inflate_block OF((int *)); |
154 | STATIC int INIT inflate OF((void)); | 154 | STATIC int INIT inflate OF((void)); |
155 | 155 | ||
156 | 156 | ||
157 | /* The inflate algorithm uses a sliding 32 K byte window on the uncompressed | 157 | /* The inflate algorithm uses a sliding 32 K byte window on the uncompressed |
158 | stream to find repeated byte strings. This is implemented here as a | 158 | stream to find repeated byte strings. This is implemented here as a |
159 | circular buffer. The index is updated simply by incrementing and then | 159 | circular buffer. The index is updated simply by incrementing and then |
160 | ANDing with 0x7fff (32K-1). */ | 160 | ANDing with 0x7fff (32K-1). */ |
161 | /* It is left to other modules to supply the 32 K area. It is assumed | 161 | /* It is left to other modules to supply the 32 K area. It is assumed |
162 | to be usable as if it were declared "uch slide[32768];" or as just | 162 | to be usable as if it were declared "uch slide[32768];" or as just |
163 | "uch *slide;" and then malloc'ed in the latter case. The definition | 163 | "uch *slide;" and then malloc'ed in the latter case. The definition |
164 | must be in unzip.h, included above. */ | 164 | must be in unzip.h, included above. */ |
165 | /* unsigned wp; current position in slide */ | 165 | /* unsigned wp; current position in slide */ |
166 | #define wp outcnt | 166 | #define wp outcnt |
167 | #define flush_output(w) (wp=(w),flush_window()) | 167 | #define flush_output(w) (wp=(w),flush_window()) |
168 | 168 | ||
169 | /* Tables for deflate from PKZIP's appnote.txt. */ | 169 | /* Tables for deflate from PKZIP's appnote.txt. */ |
170 | static const unsigned border[] = { /* Order of the bit length code lengths */ | 170 | static const unsigned border[] = { /* Order of the bit length code lengths */ |
171 | 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; | 171 | 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; |
172 | static const ush cplens[] = { /* Copy lengths for literal codes 257..285 */ | 172 | static const ush cplens[] = { /* Copy lengths for literal codes 257..285 */ |
173 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, | 173 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, |
174 | 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; | 174 | 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; |
175 | /* note: see note #13 above about the 258 in this list. */ | 175 | /* note: see note #13 above about the 258 in this list. */ |
176 | static const ush cplext[] = { /* Extra bits for literal codes 257..285 */ | 176 | static const ush cplext[] = { /* Extra bits for literal codes 257..285 */ |
177 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, | 177 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, |
178 | 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ | 178 | 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ |
179 | static const ush cpdist[] = { /* Copy offsets for distance codes 0..29 */ | 179 | static const ush cpdist[] = { /* Copy offsets for distance codes 0..29 */ |
180 | 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, | 180 | 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, |
181 | 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, | 181 | 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, |
182 | 8193, 12289, 16385, 24577}; | 182 | 8193, 12289, 16385, 24577}; |
183 | static const ush cpdext[] = { /* Extra bits for distance codes */ | 183 | static const ush cpdext[] = { /* Extra bits for distance codes */ |
184 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, | 184 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, |
185 | 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, | 185 | 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, |
186 | 12, 12, 13, 13}; | 186 | 12, 12, 13, 13}; |
187 | 187 | ||
188 | 188 | ||
189 | 189 | ||
190 | /* Macros for inflate() bit peeking and grabbing. | 190 | /* Macros for inflate() bit peeking and grabbing. |
191 | The usage is: | 191 | The usage is: |
192 | 192 | ||
193 | NEEDBITS(j) | 193 | NEEDBITS(j) |
194 | x = b & mask_bits[j]; | 194 | x = b & mask_bits[j]; |
195 | DUMPBITS(j) | 195 | DUMPBITS(j) |
196 | 196 | ||
197 | where NEEDBITS makes sure that b has at least j bits in it, and | 197 | where NEEDBITS makes sure that b has at least j bits in it, and |
198 | DUMPBITS removes the bits from b. The macros use the variable k | 198 | DUMPBITS removes the bits from b. The macros use the variable k |
199 | for the number of bits in b. Normally, b and k are register | 199 | for the number of bits in b. Normally, b and k are register |
200 | variables for speed, and are initialized at the beginning of a | 200 | variables for speed, and are initialized at the beginning of a |
201 | routine that uses these macros from a global bit buffer and count. | 201 | routine that uses these macros from a global bit buffer and count. |
202 | 202 | ||
203 | If we assume that EOB will be the longest code, then we will never | 203 | If we assume that EOB will be the longest code, then we will never |
204 | ask for bits with NEEDBITS that are beyond the end of the stream. | 204 | ask for bits with NEEDBITS that are beyond the end of the stream. |
205 | So, NEEDBITS should not read any more bytes than are needed to | 205 | So, NEEDBITS should not read any more bytes than are needed to |
206 | meet the request. Then no bytes need to be "returned" to the buffer | 206 | meet the request. Then no bytes need to be "returned" to the buffer |
207 | at the end of the last block. | 207 | at the end of the last block. |
208 | 208 | ||
209 | However, this assumption is not true for fixed blocks--the EOB code | 209 | However, this assumption is not true for fixed blocks--the EOB code |
210 | is 7 bits, but the other literal/length codes can be 8 or 9 bits. | 210 | is 7 bits, but the other literal/length codes can be 8 or 9 bits. |
211 | (The EOB code is shorter than other codes because fixed blocks are | 211 | (The EOB code is shorter than other codes because fixed blocks are |
212 | generally short. So, while a block always has an EOB, many other | 212 | generally short. So, while a block always has an EOB, many other |
213 | literal/length codes have a significantly lower probability of | 213 | literal/length codes have a significantly lower probability of |
214 | showing up at all.) However, by making the first table have a | 214 | showing up at all.) However, by making the first table have a |
215 | lookup of seven bits, the EOB code will be found in that first | 215 | lookup of seven bits, the EOB code will be found in that first |
216 | lookup, and so will not require that too many bits be pulled from | 216 | lookup, and so will not require that too many bits be pulled from |
217 | the stream. | 217 | the stream. |
218 | */ | 218 | */ |
219 | 219 | ||
220 | STATIC ulg bb; /* bit buffer */ | 220 | STATIC ulg bb; /* bit buffer */ |
221 | STATIC unsigned bk; /* bits in bit buffer */ | 221 | STATIC unsigned bk; /* bits in bit buffer */ |
222 | 222 | ||
223 | STATIC const ush mask_bits[] = { | 223 | STATIC const ush mask_bits[] = { |
224 | 0x0000, | 224 | 0x0000, |
225 | 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, | 225 | 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, |
226 | 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff | 226 | 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff |
227 | }; | 227 | }; |
228 | 228 | ||
229 | #define NEXTBYTE() ({ int v = get_byte(); if (v < 0) goto underrun; (uch)v; }) | 229 | #define NEXTBYTE() ({ int v = get_byte(); if (v < 0) goto underrun; (uch)v; }) |
230 | #define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}} | 230 | #define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}} |
231 | #define DUMPBITS(n) {b>>=(n);k-=(n);} | 231 | #define DUMPBITS(n) {b>>=(n);k-=(n);} |
232 | 232 | ||
233 | 233 | ||
234 | /* | 234 | /* |
235 | Huffman code decoding is performed using a multi-level table lookup. | 235 | Huffman code decoding is performed using a multi-level table lookup. |
236 | The fastest way to decode is to simply build a lookup table whose | 236 | The fastest way to decode is to simply build a lookup table whose |
237 | size is determined by the longest code. However, the time it takes | 237 | size is determined by the longest code. However, the time it takes |
238 | to build this table can also be a factor if the data being decoded | 238 | to build this table can also be a factor if the data being decoded |
239 | is not very long. The most common codes are necessarily the | 239 | is not very long. The most common codes are necessarily the |
240 | shortest codes, so those codes dominate the decoding time, and hence | 240 | shortest codes, so those codes dominate the decoding time, and hence |
241 | the speed. The idea is you can have a shorter table that decodes the | 241 | the speed. The idea is you can have a shorter table that decodes the |
242 | shorter, more probable codes, and then point to subsidiary tables for | 242 | shorter, more probable codes, and then point to subsidiary tables for |
243 | the longer codes. The time it costs to decode the longer codes is | 243 | the longer codes. The time it costs to decode the longer codes is |
244 | then traded against the time it takes to make longer tables. | 244 | then traded against the time it takes to make longer tables. |
245 | 245 | ||
246 | This results of this trade are in the variables lbits and dbits | 246 | This results of this trade are in the variables lbits and dbits |
247 | below. lbits is the number of bits the first level table for literal/ | 247 | below. lbits is the number of bits the first level table for literal/ |
248 | length codes can decode in one step, and dbits is the same thing for | 248 | length codes can decode in one step, and dbits is the same thing for |
249 | the distance codes. Subsequent tables are also less than or equal to | 249 | the distance codes. Subsequent tables are also less than or equal to |
250 | those sizes. These values may be adjusted either when all of the | 250 | those sizes. These values may be adjusted either when all of the |
251 | codes are shorter than that, in which case the longest code length in | 251 | codes are shorter than that, in which case the longest code length in |
252 | bits is used, or when the shortest code is *longer* than the requested | 252 | bits is used, or when the shortest code is *longer* than the requested |
253 | table size, in which case the length of the shortest code in bits is | 253 | table size, in which case the length of the shortest code in bits is |
254 | used. | 254 | used. |
255 | 255 | ||
256 | There are two different values for the two tables, since they code a | 256 | There are two different values for the two tables, since they code a |
257 | different number of possibilities each. The literal/length table | 257 | different number of possibilities each. The literal/length table |
258 | codes 286 possible values, or in a flat code, a little over eight | 258 | codes 286 possible values, or in a flat code, a little over eight |
259 | bits. The distance table codes 30 possible values, or a little less | 259 | bits. The distance table codes 30 possible values, or a little less |
260 | than five bits, flat. The optimum values for speed end up being | 260 | than five bits, flat. The optimum values for speed end up being |
261 | about one bit more than those, so lbits is 8+1 and dbits is 5+1. | 261 | about one bit more than those, so lbits is 8+1 and dbits is 5+1. |
262 | The optimum values may differ though from machine to machine, and | 262 | The optimum values may differ though from machine to machine, and |
263 | possibly even between compilers. Your mileage may vary. | 263 | possibly even between compilers. Your mileage may vary. |
264 | */ | 264 | */ |
265 | 265 | ||
266 | 266 | ||
267 | STATIC const int lbits = 9; /* bits in base literal/length lookup table */ | 267 | STATIC const int lbits = 9; /* bits in base literal/length lookup table */ |
268 | STATIC const int dbits = 6; /* bits in base distance lookup table */ | 268 | STATIC const int dbits = 6; /* bits in base distance lookup table */ |
269 | 269 | ||
270 | 270 | ||
271 | /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */ | 271 | /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */ |
272 | #define BMAX 16 /* maximum bit length of any code (16 for explode) */ | 272 | #define BMAX 16 /* maximum bit length of any code (16 for explode) */ |
273 | #define N_MAX 288 /* maximum number of codes in any set */ | 273 | #define N_MAX 288 /* maximum number of codes in any set */ |
274 | 274 | ||
275 | 275 | ||
276 | STATIC unsigned hufts; /* track memory usage */ | 276 | STATIC unsigned hufts; /* track memory usage */ |
277 | 277 | ||
278 | 278 | ||
279 | STATIC int INIT huft_build( | 279 | STATIC int INIT huft_build( |
280 | unsigned *b, /* code lengths in bits (all assumed <= BMAX) */ | 280 | unsigned *b, /* code lengths in bits (all assumed <= BMAX) */ |
281 | unsigned n, /* number of codes (assumed <= N_MAX) */ | 281 | unsigned n, /* number of codes (assumed <= N_MAX) */ |
282 | unsigned s, /* number of simple-valued codes (0..s-1) */ | 282 | unsigned s, /* number of simple-valued codes (0..s-1) */ |
283 | const ush *d, /* list of base values for non-simple codes */ | 283 | const ush *d, /* list of base values for non-simple codes */ |
284 | const ush *e, /* list of extra bits for non-simple codes */ | 284 | const ush *e, /* list of extra bits for non-simple codes */ |
285 | struct huft **t, /* result: starting table */ | 285 | struct huft **t, /* result: starting table */ |
286 | int *m /* maximum lookup bits, returns actual */ | 286 | int *m /* maximum lookup bits, returns actual */ |
287 | ) | 287 | ) |
288 | /* Given a list of code lengths and a maximum table size, make a set of | 288 | /* Given a list of code lengths and a maximum table size, make a set of |
289 | tables to decode that set of codes. Return zero on success, one if | 289 | tables to decode that set of codes. Return zero on success, one if |
290 | the given code set is incomplete (the tables are still built in this | 290 | the given code set is incomplete (the tables are still built in this |
291 | case), two if the input is invalid (all zero length codes or an | 291 | case), two if the input is invalid (all zero length codes or an |
292 | oversubscribed set of lengths), and three if not enough memory. */ | 292 | oversubscribed set of lengths), and three if not enough memory. */ |
293 | { | 293 | { |
294 | unsigned a; /* counter for codes of length k */ | 294 | unsigned a; /* counter for codes of length k */ |
295 | unsigned f; /* i repeats in table every f entries */ | 295 | unsigned f; /* i repeats in table every f entries */ |
296 | int g; /* maximum code length */ | 296 | int g; /* maximum code length */ |
297 | int h; /* table level */ | 297 | int h; /* table level */ |
298 | register unsigned i; /* counter, current code */ | 298 | register unsigned i; /* counter, current code */ |
299 | register unsigned j; /* counter */ | 299 | register unsigned j; /* counter */ |
300 | register int k; /* number of bits in current code */ | 300 | register int k; /* number of bits in current code */ |
301 | int l; /* bits per table (returned in m) */ | 301 | int l; /* bits per table (returned in m) */ |
302 | register unsigned *p; /* pointer into c[], b[], or v[] */ | 302 | register unsigned *p; /* pointer into c[], b[], or v[] */ |
303 | register struct huft *q; /* points to current table */ | 303 | register struct huft *q; /* points to current table */ |
304 | struct huft r; /* table entry for structure assignment */ | 304 | struct huft r; /* table entry for structure assignment */ |
305 | register int w; /* bits before this table == (l * h) */ | 305 | register int w; /* bits before this table == (l * h) */ |
306 | unsigned *xp; /* pointer into x */ | 306 | unsigned *xp; /* pointer into x */ |
307 | int y; /* number of dummy codes added */ | 307 | int y; /* number of dummy codes added */ |
308 | unsigned z; /* number of entries in current table */ | 308 | unsigned z; /* number of entries in current table */ |
309 | struct { | 309 | struct { |
310 | unsigned c[BMAX+1]; /* bit length count table */ | 310 | unsigned c[BMAX+1]; /* bit length count table */ |
311 | struct huft *u[BMAX]; /* table stack */ | 311 | struct huft *u[BMAX]; /* table stack */ |
312 | unsigned v[N_MAX]; /* values in order of bit length */ | 312 | unsigned v[N_MAX]; /* values in order of bit length */ |
313 | unsigned x[BMAX+1]; /* bit offsets, then code stack */ | 313 | unsigned x[BMAX+1]; /* bit offsets, then code stack */ |
314 | } *stk; | 314 | } *stk; |
315 | unsigned *c, *v, *x; | 315 | unsigned *c, *v, *x; |
316 | struct huft **u; | 316 | struct huft **u; |
317 | int ret; | 317 | int ret; |
318 | 318 | ||
319 | DEBG("huft1 "); | 319 | DEBG("huft1 "); |
320 | 320 | ||
321 | stk = malloc(sizeof(*stk)); | 321 | stk = malloc(sizeof(*stk)); |
322 | if (stk == NULL) | 322 | if (stk == NULL) |
323 | return 3; /* out of memory */ | 323 | return 3; /* out of memory */ |
324 | 324 | ||
325 | c = stk->c; | 325 | c = stk->c; |
326 | v = stk->v; | 326 | v = stk->v; |
327 | x = stk->x; | 327 | x = stk->x; |
328 | u = stk->u; | 328 | u = stk->u; |
329 | 329 | ||
330 | /* Generate counts for each bit length */ | 330 | /* Generate counts for each bit length */ |
331 | memzero(stk->c, sizeof(stk->c)); | 331 | memzero(stk->c, sizeof(stk->c)); |
332 | p = b; i = n; | 332 | p = b; i = n; |
333 | do { | 333 | do { |
334 | Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"), | 334 | Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"), |
335 | n-i, *p)); | 335 | n-i, *p)); |
336 | c[*p]++; /* assume all entries <= BMAX */ | 336 | c[*p]++; /* assume all entries <= BMAX */ |
337 | p++; /* Can't combine with above line (Solaris bug) */ | 337 | p++; /* Can't combine with above line (Solaris bug) */ |
338 | } while (--i); | 338 | } while (--i); |
339 | if (c[0] == n) /* null input--all zero length codes */ | 339 | if (c[0] == n) /* null input--all zero length codes */ |
340 | { | 340 | { |
341 | *t = (struct huft *)NULL; | 341 | *t = (struct huft *)NULL; |
342 | *m = 0; | 342 | *m = 0; |
343 | ret = 2; | 343 | ret = 2; |
344 | goto out; | 344 | goto out; |
345 | } | 345 | } |
346 | 346 | ||
347 | DEBG("huft2 "); | 347 | DEBG("huft2 "); |
348 | 348 | ||
349 | /* Find minimum and maximum length, bound *m by those */ | 349 | /* Find minimum and maximum length, bound *m by those */ |
350 | l = *m; | 350 | l = *m; |
351 | for (j = 1; j <= BMAX; j++) | 351 | for (j = 1; j <= BMAX; j++) |
352 | if (c[j]) | 352 | if (c[j]) |
353 | break; | 353 | break; |
354 | k = j; /* minimum code length */ | 354 | k = j; /* minimum code length */ |
355 | if ((unsigned)l < j) | 355 | if ((unsigned)l < j) |
356 | l = j; | 356 | l = j; |
357 | for (i = BMAX; i; i--) | 357 | for (i = BMAX; i; i--) |
358 | if (c[i]) | 358 | if (c[i]) |
359 | break; | 359 | break; |
360 | g = i; /* maximum code length */ | 360 | g = i; /* maximum code length */ |
361 | if ((unsigned)l > i) | 361 | if ((unsigned)l > i) |
362 | l = i; | 362 | l = i; |
363 | *m = l; | 363 | *m = l; |
364 | 364 | ||
365 | DEBG("huft3 "); | 365 | DEBG("huft3 "); |
366 | 366 | ||
367 | /* Adjust last length count to fill out codes, if needed */ | 367 | /* Adjust last length count to fill out codes, if needed */ |
368 | for (y = 1 << j; j < i; j++, y <<= 1) | 368 | for (y = 1 << j; j < i; j++, y <<= 1) |
369 | if ((y -= c[j]) < 0) { | 369 | if ((y -= c[j]) < 0) { |
370 | ret = 2; /* bad input: more codes than bits */ | 370 | ret = 2; /* bad input: more codes than bits */ |
371 | goto out; | 371 | goto out; |
372 | } | 372 | } |
373 | if ((y -= c[i]) < 0) { | 373 | if ((y -= c[i]) < 0) { |
374 | ret = 2; | 374 | ret = 2; |
375 | goto out; | 375 | goto out; |
376 | } | 376 | } |
377 | c[i] += y; | 377 | c[i] += y; |
378 | 378 | ||
379 | DEBG("huft4 "); | 379 | DEBG("huft4 "); |
380 | 380 | ||
381 | /* Generate starting offsets into the value table for each length */ | 381 | /* Generate starting offsets into the value table for each length */ |
382 | x[1] = j = 0; | 382 | x[1] = j = 0; |
383 | p = c + 1; xp = x + 2; | 383 | p = c + 1; xp = x + 2; |
384 | while (--i) { /* note that i == g from above */ | 384 | while (--i) { /* note that i == g from above */ |
385 | *xp++ = (j += *p++); | 385 | *xp++ = (j += *p++); |
386 | } | 386 | } |
387 | 387 | ||
388 | DEBG("huft5 "); | 388 | DEBG("huft5 "); |
389 | 389 | ||
390 | /* Make a table of values in order of bit lengths */ | 390 | /* Make a table of values in order of bit lengths */ |
391 | p = b; i = 0; | 391 | p = b; i = 0; |
392 | do { | 392 | do { |
393 | if ((j = *p++) != 0) | 393 | if ((j = *p++) != 0) |
394 | v[x[j]++] = i; | 394 | v[x[j]++] = i; |
395 | } while (++i < n); | 395 | } while (++i < n); |
396 | n = x[g]; /* set n to length of v */ | 396 | n = x[g]; /* set n to length of v */ |
397 | 397 | ||
398 | DEBG("h6 "); | 398 | DEBG("h6 "); |
399 | 399 | ||
400 | /* Generate the Huffman codes and for each, make the table entries */ | 400 | /* Generate the Huffman codes and for each, make the table entries */ |
401 | x[0] = i = 0; /* first Huffman code is zero */ | 401 | x[0] = i = 0; /* first Huffman code is zero */ |
402 | p = v; /* grab values in bit order */ | 402 | p = v; /* grab values in bit order */ |
403 | h = -1; /* no tables yet--level -1 */ | 403 | h = -1; /* no tables yet--level -1 */ |
404 | w = -l; /* bits decoded == (l * h) */ | 404 | w = -l; /* bits decoded == (l * h) */ |
405 | u[0] = (struct huft *)NULL; /* just to keep compilers happy */ | 405 | u[0] = (struct huft *)NULL; /* just to keep compilers happy */ |
406 | q = (struct huft *)NULL; /* ditto */ | 406 | q = (struct huft *)NULL; /* ditto */ |
407 | z = 0; /* ditto */ | 407 | z = 0; /* ditto */ |
408 | DEBG("h6a "); | 408 | DEBG("h6a "); |
409 | 409 | ||
410 | /* go through the bit lengths (k already is bits in shortest code) */ | 410 | /* go through the bit lengths (k already is bits in shortest code) */ |
411 | for (; k <= g; k++) | 411 | for (; k <= g; k++) |
412 | { | 412 | { |
413 | DEBG("h6b "); | 413 | DEBG("h6b "); |
414 | a = c[k]; | 414 | a = c[k]; |
415 | while (a--) | 415 | while (a--) |
416 | { | 416 | { |
417 | DEBG("h6b1 "); | 417 | DEBG("h6b1 "); |
418 | /* here i is the Huffman code of length k bits for value *p */ | 418 | /* here i is the Huffman code of length k bits for value *p */ |
419 | /* make tables up to required level */ | 419 | /* make tables up to required level */ |
420 | while (k > w + l) | 420 | while (k > w + l) |
421 | { | 421 | { |
422 | DEBG1("1 "); | 422 | DEBG1("1 "); |
423 | h++; | 423 | h++; |
424 | w += l; /* previous table always l bits */ | 424 | w += l; /* previous table always l bits */ |
425 | 425 | ||
426 | /* compute minimum size table less than or equal to l bits */ | 426 | /* compute minimum size table less than or equal to l bits */ |
427 | z = (z = g - w) > (unsigned)l ? l : z; /* upper limit on table size */ | 427 | z = (z = g - w) > (unsigned)l ? l : z; /* upper limit on table size */ |
428 | if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ | 428 | if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ |
429 | { /* too few codes for k-w bit table */ | 429 | { /* too few codes for k-w bit table */ |
430 | DEBG1("2 "); | 430 | DEBG1("2 "); |
431 | f -= a + 1; /* deduct codes from patterns left */ | 431 | f -= a + 1; /* deduct codes from patterns left */ |
432 | xp = c + k; | 432 | xp = c + k; |
433 | if (j < z) | 433 | if (j < z) |
434 | while (++j < z) /* try smaller tables up to z bits */ | 434 | while (++j < z) /* try smaller tables up to z bits */ |
435 | { | 435 | { |
436 | if ((f <<= 1) <= *++xp) | 436 | if ((f <<= 1) <= *++xp) |
437 | break; /* enough codes to use up j bits */ | 437 | break; /* enough codes to use up j bits */ |
438 | f -= *xp; /* else deduct codes from patterns */ | 438 | f -= *xp; /* else deduct codes from patterns */ |
439 | } | 439 | } |
440 | } | 440 | } |
441 | DEBG1("3 "); | 441 | DEBG1("3 "); |
442 | z = 1 << j; /* table entries for j-bit table */ | 442 | z = 1 << j; /* table entries for j-bit table */ |
443 | 443 | ||
444 | /* allocate and link in new table */ | 444 | /* allocate and link in new table */ |
445 | if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) == | 445 | if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) == |
446 | (struct huft *)NULL) | 446 | (struct huft *)NULL) |
447 | { | 447 | { |
448 | if (h) | 448 | if (h) |
449 | huft_free(u[0]); | 449 | huft_free(u[0]); |
450 | ret = 3; /* not enough memory */ | 450 | ret = 3; /* not enough memory */ |
451 | goto out; | 451 | goto out; |
452 | } | 452 | } |
453 | DEBG1("4 "); | 453 | DEBG1("4 "); |
454 | hufts += z + 1; /* track memory usage */ | 454 | hufts += z + 1; /* track memory usage */ |
455 | *t = q + 1; /* link to list for huft_free() */ | 455 | *t = q + 1; /* link to list for huft_free() */ |
456 | *(t = &(q->v.t)) = (struct huft *)NULL; | 456 | *(t = &(q->v.t)) = (struct huft *)NULL; |
457 | u[h] = ++q; /* table starts after link */ | 457 | u[h] = ++q; /* table starts after link */ |
458 | 458 | ||
459 | DEBG1("5 "); | 459 | DEBG1("5 "); |
460 | /* connect to last table, if there is one */ | 460 | /* connect to last table, if there is one */ |
461 | if (h) | 461 | if (h) |
462 | { | 462 | { |
463 | x[h] = i; /* save pattern for backing up */ | 463 | x[h] = i; /* save pattern for backing up */ |
464 | r.b = (uch)l; /* bits to dump before this table */ | 464 | r.b = (uch)l; /* bits to dump before this table */ |
465 | r.e = (uch)(16 + j); /* bits in this table */ | 465 | r.e = (uch)(16 + j); /* bits in this table */ |
466 | r.v.t = q; /* pointer to this table */ | 466 | r.v.t = q; /* pointer to this table */ |
467 | j = i >> (w - l); /* (get around Turbo C bug) */ | 467 | j = i >> (w - l); /* (get around Turbo C bug) */ |
468 | u[h-1][j] = r; /* connect to last table */ | 468 | u[h-1][j] = r; /* connect to last table */ |
469 | } | 469 | } |
470 | DEBG1("6 "); | 470 | DEBG1("6 "); |
471 | } | 471 | } |
472 | DEBG("h6c "); | 472 | DEBG("h6c "); |
473 | 473 | ||
474 | /* set up table entry in r */ | 474 | /* set up table entry in r */ |
475 | r.b = (uch)(k - w); | 475 | r.b = (uch)(k - w); |
476 | if (p >= v + n) | 476 | if (p >= v + n) |
477 | r.e = 99; /* out of values--invalid code */ | 477 | r.e = 99; /* out of values--invalid code */ |
478 | else if (*p < s) | 478 | else if (*p < s) |
479 | { | 479 | { |
480 | r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */ | 480 | r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */ |
481 | r.v.n = (ush)(*p); /* simple code is just the value */ | 481 | r.v.n = (ush)(*p); /* simple code is just the value */ |
482 | p++; /* one compiler does not like *p++ */ | 482 | p++; /* one compiler does not like *p++ */ |
483 | } | 483 | } |
484 | else | 484 | else |
485 | { | 485 | { |
486 | r.e = (uch)e[*p - s]; /* non-simple--look up in lists */ | 486 | r.e = (uch)e[*p - s]; /* non-simple--look up in lists */ |
487 | r.v.n = d[*p++ - s]; | 487 | r.v.n = d[*p++ - s]; |
488 | } | 488 | } |
489 | DEBG("h6d "); | 489 | DEBG("h6d "); |
490 | 490 | ||
491 | /* fill code-like entries with r */ | 491 | /* fill code-like entries with r */ |
492 | f = 1 << (k - w); | 492 | f = 1 << (k - w); |
493 | for (j = i >> w; j < z; j += f) | 493 | for (j = i >> w; j < z; j += f) |
494 | q[j] = r; | 494 | q[j] = r; |
495 | 495 | ||
496 | /* backwards increment the k-bit code i */ | 496 | /* backwards increment the k-bit code i */ |
497 | for (j = 1 << (k - 1); i & j; j >>= 1) | 497 | for (j = 1 << (k - 1); i & j; j >>= 1) |
498 | i ^= j; | 498 | i ^= j; |
499 | i ^= j; | 499 | i ^= j; |
500 | 500 | ||
501 | /* backup over finished tables */ | 501 | /* backup over finished tables */ |
502 | while ((i & ((1 << w) - 1)) != x[h]) | 502 | while ((i & ((1 << w) - 1)) != x[h]) |
503 | { | 503 | { |
504 | h--; /* don't need to update q */ | 504 | h--; /* don't need to update q */ |
505 | w -= l; | 505 | w -= l; |
506 | } | 506 | } |
507 | DEBG("h6e "); | 507 | DEBG("h6e "); |
508 | } | 508 | } |
509 | DEBG("h6f "); | 509 | DEBG("h6f "); |
510 | } | 510 | } |
511 | 511 | ||
512 | DEBG("huft7 "); | 512 | DEBG("huft7 "); |
513 | 513 | ||
514 | /* Return true (1) if we were given an incomplete table */ | 514 | /* Return true (1) if we were given an incomplete table */ |
515 | ret = y != 0 && g != 1; | 515 | ret = y != 0 && g != 1; |
516 | 516 | ||
517 | out: | 517 | out: |
518 | free(stk); | 518 | free(stk); |
519 | return ret; | 519 | return ret; |
520 | } | 520 | } |
521 | 521 | ||
522 | 522 | ||
523 | 523 | ||
524 | STATIC int INIT huft_free( | 524 | STATIC int INIT huft_free( |
525 | struct huft *t /* table to free */ | 525 | struct huft *t /* table to free */ |
526 | ) | 526 | ) |
527 | /* Free the malloc'ed tables built by huft_build(), which makes a linked | 527 | /* Free the malloc'ed tables built by huft_build(), which makes a linked |
528 | list of the tables it made, with the links in a dummy first entry of | 528 | list of the tables it made, with the links in a dummy first entry of |
529 | each table. */ | 529 | each table. */ |
530 | { | 530 | { |
531 | register struct huft *p, *q; | 531 | register struct huft *p, *q; |
532 | 532 | ||
533 | 533 | ||
534 | /* Go through linked list, freeing from the malloced (t[-1]) address. */ | 534 | /* Go through linked list, freeing from the malloced (t[-1]) address. */ |
535 | p = t; | 535 | p = t; |
536 | while (p != (struct huft *)NULL) | 536 | while (p != (struct huft *)NULL) |
537 | { | 537 | { |
538 | q = (--p)->v.t; | 538 | q = (--p)->v.t; |
539 | free((char*)p); | 539 | free((char*)p); |
540 | p = q; | 540 | p = q; |
541 | } | 541 | } |
542 | return 0; | 542 | return 0; |
543 | } | 543 | } |
544 | 544 | ||
545 | 545 | ||
546 | STATIC int INIT inflate_codes( | 546 | STATIC int INIT inflate_codes( |
547 | struct huft *tl, /* literal/length decoder tables */ | 547 | struct huft *tl, /* literal/length decoder tables */ |
548 | struct huft *td, /* distance decoder tables */ | 548 | struct huft *td, /* distance decoder tables */ |
549 | int bl, /* number of bits decoded by tl[] */ | 549 | int bl, /* number of bits decoded by tl[] */ |
550 | int bd /* number of bits decoded by td[] */ | 550 | int bd /* number of bits decoded by td[] */ |
551 | ) | 551 | ) |
552 | /* inflate (decompress) the codes in a deflated (compressed) block. | 552 | /* inflate (decompress) the codes in a deflated (compressed) block. |
553 | Return an error code or zero if it all goes ok. */ | 553 | Return an error code or zero if it all goes ok. */ |
554 | { | 554 | { |
555 | register unsigned e; /* table entry flag/number of extra bits */ | 555 | register unsigned e; /* table entry flag/number of extra bits */ |
556 | unsigned n, d; /* length and index for copy */ | 556 | unsigned n, d; /* length and index for copy */ |
557 | unsigned w; /* current window position */ | 557 | unsigned w; /* current window position */ |
558 | struct huft *t; /* pointer to table entry */ | 558 | struct huft *t; /* pointer to table entry */ |
559 | unsigned ml, md; /* masks for bl and bd bits */ | 559 | unsigned ml, md; /* masks for bl and bd bits */ |
560 | register ulg b; /* bit buffer */ | 560 | register ulg b; /* bit buffer */ |
561 | register unsigned k; /* number of bits in bit buffer */ | 561 | register unsigned k; /* number of bits in bit buffer */ |
562 | 562 | ||
563 | 563 | ||
564 | /* make local copies of globals */ | 564 | /* make local copies of globals */ |
565 | b = bb; /* initialize bit buffer */ | 565 | b = bb; /* initialize bit buffer */ |
566 | k = bk; | 566 | k = bk; |
567 | w = wp; /* initialize window position */ | 567 | w = wp; /* initialize window position */ |
568 | 568 | ||
569 | /* inflate the coded data */ | 569 | /* inflate the coded data */ |
570 | ml = mask_bits[bl]; /* precompute masks for speed */ | 570 | ml = mask_bits[bl]; /* precompute masks for speed */ |
571 | md = mask_bits[bd]; | 571 | md = mask_bits[bd]; |
572 | for (;;) /* do until end of block */ | 572 | for (;;) /* do until end of block */ |
573 | { | 573 | { |
574 | NEEDBITS((unsigned)bl) | 574 | NEEDBITS((unsigned)bl) |
575 | if ((e = (t = tl + ((unsigned)b & ml))->e) > 16) | 575 | if ((e = (t = tl + ((unsigned)b & ml))->e) > 16) |
576 | do { | 576 | do { |
577 | if (e == 99) | 577 | if (e == 99) |
578 | return 1; | 578 | return 1; |
579 | DUMPBITS(t->b) | 579 | DUMPBITS(t->b) |
580 | e -= 16; | 580 | e -= 16; |
581 | NEEDBITS(e) | 581 | NEEDBITS(e) |
582 | } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); | 582 | } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); |
583 | DUMPBITS(t->b) | 583 | DUMPBITS(t->b) |
584 | if (e == 16) /* then it's a literal */ | 584 | if (e == 16) /* then it's a literal */ |
585 | { | 585 | { |
586 | slide[w++] = (uch)t->v.n; | 586 | slide[w++] = (uch)t->v.n; |
587 | Tracevv((stderr, "%c", slide[w-1])); | 587 | Tracevv((stderr, "%c", slide[w-1])); |
588 | if (w == WSIZE) | 588 | if (w == WSIZE) |
589 | { | 589 | { |
590 | flush_output(w); | 590 | flush_output(w); |
591 | w = 0; | 591 | w = 0; |
592 | } | 592 | } |
593 | } | 593 | } |
594 | else /* it's an EOB or a length */ | 594 | else /* it's an EOB or a length */ |
595 | { | 595 | { |
596 | /* exit if end of block */ | 596 | /* exit if end of block */ |
597 | if (e == 15) | 597 | if (e == 15) |
598 | break; | 598 | break; |
599 | 599 | ||
600 | /* get length of block to copy */ | 600 | /* get length of block to copy */ |
601 | NEEDBITS(e) | 601 | NEEDBITS(e) |
602 | n = t->v.n + ((unsigned)b & mask_bits[e]); | 602 | n = t->v.n + ((unsigned)b & mask_bits[e]); |
603 | DUMPBITS(e); | 603 | DUMPBITS(e); |
604 | 604 | ||
605 | /* decode distance of block to copy */ | 605 | /* decode distance of block to copy */ |
606 | NEEDBITS((unsigned)bd) | 606 | NEEDBITS((unsigned)bd) |
607 | if ((e = (t = td + ((unsigned)b & md))->e) > 16) | 607 | if ((e = (t = td + ((unsigned)b & md))->e) > 16) |
608 | do { | 608 | do { |
609 | if (e == 99) | 609 | if (e == 99) |
610 | return 1; | 610 | return 1; |
611 | DUMPBITS(t->b) | 611 | DUMPBITS(t->b) |
612 | e -= 16; | 612 | e -= 16; |
613 | NEEDBITS(e) | 613 | NEEDBITS(e) |
614 | } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); | 614 | } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); |
615 | DUMPBITS(t->b) | 615 | DUMPBITS(t->b) |
616 | NEEDBITS(e) | 616 | NEEDBITS(e) |
617 | d = w - t->v.n - ((unsigned)b & mask_bits[e]); | 617 | d = w - t->v.n - ((unsigned)b & mask_bits[e]); |
618 | DUMPBITS(e) | 618 | DUMPBITS(e) |
619 | Tracevv((stderr,"\\[%d,%d]", w-d, n)); | 619 | Tracevv((stderr,"\\[%d,%d]", w-d, n)); |
620 | 620 | ||
621 | /* do the copy */ | 621 | /* do the copy */ |
622 | do { | 622 | do { |
623 | n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e); | 623 | n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e); |
624 | #if !defined(NOMEMCPY) && !defined(DEBUG) | 624 | #if !defined(NOMEMCPY) && !defined(DEBUG) |
625 | if (w - d >= e) /* (this test assumes unsigned comparison) */ | 625 | if (w - d >= e) /* (this test assumes unsigned comparison) */ |
626 | { | 626 | { |
627 | memcpy(slide + w, slide + d, e); | 627 | memcpy(slide + w, slide + d, e); |
628 | w += e; | 628 | w += e; |
629 | d += e; | 629 | d += e; |
630 | } | 630 | } |
631 | else /* do it slow to avoid memcpy() overlap */ | 631 | else /* do it slow to avoid memcpy() overlap */ |
632 | #endif /* !NOMEMCPY */ | 632 | #endif /* !NOMEMCPY */ |
633 | do { | 633 | do { |
634 | slide[w++] = slide[d++]; | 634 | slide[w++] = slide[d++]; |
635 | Tracevv((stderr, "%c", slide[w-1])); | 635 | Tracevv((stderr, "%c", slide[w-1])); |
636 | } while (--e); | 636 | } while (--e); |
637 | if (w == WSIZE) | 637 | if (w == WSIZE) |
638 | { | 638 | { |
639 | flush_output(w); | 639 | flush_output(w); |
640 | w = 0; | 640 | w = 0; |
641 | } | 641 | } |
642 | } while (n); | 642 | } while (n); |
643 | } | 643 | } |
644 | } | 644 | } |
645 | 645 | ||
646 | 646 | ||
647 | /* restore the globals from the locals */ | 647 | /* restore the globals from the locals */ |
648 | wp = w; /* restore global window pointer */ | 648 | wp = w; /* restore global window pointer */ |
649 | bb = b; /* restore global bit buffer */ | 649 | bb = b; /* restore global bit buffer */ |
650 | bk = k; | 650 | bk = k; |
651 | 651 | ||
652 | /* done */ | 652 | /* done */ |
653 | return 0; | 653 | return 0; |
654 | 654 | ||
655 | underrun: | 655 | underrun: |
656 | return 4; /* Input underrun */ | 656 | return 4; /* Input underrun */ |
657 | } | 657 | } |
658 | 658 | ||
659 | 659 | ||
660 | 660 | ||
661 | STATIC int INIT inflate_stored(void) | 661 | STATIC int INIT inflate_stored(void) |
662 | /* "decompress" an inflated type 0 (stored) block. */ | 662 | /* "decompress" an inflated type 0 (stored) block. */ |
663 | { | 663 | { |
664 | unsigned n; /* number of bytes in block */ | 664 | unsigned n; /* number of bytes in block */ |
665 | unsigned w; /* current window position */ | 665 | unsigned w; /* current window position */ |
666 | register ulg b; /* bit buffer */ | 666 | register ulg b; /* bit buffer */ |
667 | register unsigned k; /* number of bits in bit buffer */ | 667 | register unsigned k; /* number of bits in bit buffer */ |
668 | 668 | ||
669 | DEBG("<stor"); | 669 | DEBG("<stor"); |
670 | 670 | ||
671 | /* make local copies of globals */ | 671 | /* make local copies of globals */ |
672 | b = bb; /* initialize bit buffer */ | 672 | b = bb; /* initialize bit buffer */ |
673 | k = bk; | 673 | k = bk; |
674 | w = wp; /* initialize window position */ | 674 | w = wp; /* initialize window position */ |
675 | 675 | ||
676 | 676 | ||
677 | /* go to byte boundary */ | 677 | /* go to byte boundary */ |
678 | n = k & 7; | 678 | n = k & 7; |
679 | DUMPBITS(n); | 679 | DUMPBITS(n); |
680 | 680 | ||
681 | 681 | ||
682 | /* get the length and its complement */ | 682 | /* get the length and its complement */ |
683 | NEEDBITS(16) | 683 | NEEDBITS(16) |
684 | n = ((unsigned)b & 0xffff); | 684 | n = ((unsigned)b & 0xffff); |
685 | DUMPBITS(16) | 685 | DUMPBITS(16) |
686 | NEEDBITS(16) | 686 | NEEDBITS(16) |
687 | if (n != (unsigned)((~b) & 0xffff)) | 687 | if (n != (unsigned)((~b) & 0xffff)) |
688 | return 1; /* error in compressed data */ | 688 | return 1; /* error in compressed data */ |
689 | DUMPBITS(16) | 689 | DUMPBITS(16) |
690 | 690 | ||
691 | 691 | ||
692 | /* read and output the compressed data */ | 692 | /* read and output the compressed data */ |
693 | while (n--) | 693 | while (n--) |
694 | { | 694 | { |
695 | NEEDBITS(8) | 695 | NEEDBITS(8) |
696 | slide[w++] = (uch)b; | 696 | slide[w++] = (uch)b; |
697 | if (w == WSIZE) | 697 | if (w == WSIZE) |
698 | { | 698 | { |
699 | flush_output(w); | 699 | flush_output(w); |
700 | w = 0; | 700 | w = 0; |
701 | } | 701 | } |
702 | DUMPBITS(8) | 702 | DUMPBITS(8) |
703 | } | 703 | } |
704 | 704 | ||
705 | 705 | ||
706 | /* restore the globals from the locals */ | 706 | /* restore the globals from the locals */ |
707 | wp = w; /* restore global window pointer */ | 707 | wp = w; /* restore global window pointer */ |
708 | bb = b; /* restore global bit buffer */ | 708 | bb = b; /* restore global bit buffer */ |
709 | bk = k; | 709 | bk = k; |
710 | 710 | ||
711 | DEBG(">"); | 711 | DEBG(">"); |
712 | return 0; | 712 | return 0; |
713 | 713 | ||
714 | underrun: | 714 | underrun: |
715 | return 4; /* Input underrun */ | 715 | return 4; /* Input underrun */ |
716 | } | 716 | } |
717 | 717 | ||
718 | 718 | ||
719 | /* | 719 | /* |
720 | * We use `noinline' here to prevent gcc-3.5 from using too much stack space | 720 | * We use `noinline' here to prevent gcc-3.5 from using too much stack space |
721 | */ | 721 | */ |
722 | STATIC int noinline INIT inflate_fixed(void) | 722 | STATIC int noinline INIT inflate_fixed(void) |
723 | /* decompress an inflated type 1 (fixed Huffman codes) block. We should | 723 | /* decompress an inflated type 1 (fixed Huffman codes) block. We should |
724 | either replace this with a custom decoder, or at least precompute the | 724 | either replace this with a custom decoder, or at least precompute the |
725 | Huffman tables. */ | 725 | Huffman tables. */ |
726 | { | 726 | { |
727 | int i; /* temporary variable */ | 727 | int i; /* temporary variable */ |
728 | struct huft *tl; /* literal/length code table */ | 728 | struct huft *tl; /* literal/length code table */ |
729 | struct huft *td; /* distance code table */ | 729 | struct huft *td; /* distance code table */ |
730 | int bl; /* lookup bits for tl */ | 730 | int bl; /* lookup bits for tl */ |
731 | int bd; /* lookup bits for td */ | 731 | int bd; /* lookup bits for td */ |
732 | unsigned *l; /* length list for huft_build */ | 732 | unsigned *l; /* length list for huft_build */ |
733 | 733 | ||
734 | DEBG("<fix"); | 734 | DEBG("<fix"); |
735 | 735 | ||
736 | l = malloc(sizeof(*l) * 288); | 736 | l = malloc(sizeof(*l) * 288); |
737 | if (l == NULL) | 737 | if (l == NULL) |
738 | return 3; /* out of memory */ | 738 | return 3; /* out of memory */ |
739 | 739 | ||
740 | /* set up literal table */ | 740 | /* set up literal table */ |
741 | for (i = 0; i < 144; i++) | 741 | for (i = 0; i < 144; i++) |
742 | l[i] = 8; | 742 | l[i] = 8; |
743 | for (; i < 256; i++) | 743 | for (; i < 256; i++) |
744 | l[i] = 9; | 744 | l[i] = 9; |
745 | for (; i < 280; i++) | 745 | for (; i < 280; i++) |
746 | l[i] = 7; | 746 | l[i] = 7; |
747 | for (; i < 288; i++) /* make a complete, but wrong code set */ | 747 | for (; i < 288; i++) /* make a complete, but wrong code set */ |
748 | l[i] = 8; | 748 | l[i] = 8; |
749 | bl = 7; | 749 | bl = 7; |
750 | if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0) { | 750 | if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0) { |
751 | free(l); | 751 | free(l); |
752 | return i; | 752 | return i; |
753 | } | 753 | } |
754 | 754 | ||
755 | /* set up distance table */ | 755 | /* set up distance table */ |
756 | for (i = 0; i < 30; i++) /* make an incomplete code set */ | 756 | for (i = 0; i < 30; i++) /* make an incomplete code set */ |
757 | l[i] = 5; | 757 | l[i] = 5; |
758 | bd = 5; | 758 | bd = 5; |
759 | if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1) | 759 | if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1) |
760 | { | 760 | { |
761 | huft_free(tl); | 761 | huft_free(tl); |
762 | free(l); | 762 | free(l); |
763 | 763 | ||
764 | DEBG(">"); | 764 | DEBG(">"); |
765 | return i; | 765 | return i; |
766 | } | 766 | } |
767 | 767 | ||
768 | 768 | ||
769 | /* decompress until an end-of-block code */ | 769 | /* decompress until an end-of-block code */ |
770 | if (inflate_codes(tl, td, bl, bd)) { | 770 | if (inflate_codes(tl, td, bl, bd)) { |
771 | free(l); | 771 | free(l); |
772 | return 1; | 772 | return 1; |
773 | } | 773 | } |
774 | 774 | ||
775 | /* free the decoding tables, return */ | 775 | /* free the decoding tables, return */ |
776 | free(l); | 776 | free(l); |
777 | huft_free(tl); | 777 | huft_free(tl); |
778 | huft_free(td); | 778 | huft_free(td); |
779 | return 0; | 779 | return 0; |
780 | } | 780 | } |
781 | 781 | ||
782 | 782 | ||
783 | /* | 783 | /* |
784 | * We use `noinline' here to prevent gcc-3.5 from using too much stack space | 784 | * We use `noinline' here to prevent gcc-3.5 from using too much stack space |
785 | */ | 785 | */ |
786 | STATIC int noinline INIT inflate_dynamic(void) | 786 | STATIC int noinline INIT inflate_dynamic(void) |
787 | /* decompress an inflated type 2 (dynamic Huffman codes) block. */ | 787 | /* decompress an inflated type 2 (dynamic Huffman codes) block. */ |
788 | { | 788 | { |
789 | int i; /* temporary variables */ | 789 | int i; /* temporary variables */ |
790 | unsigned j; | 790 | unsigned j; |
791 | unsigned l; /* last length */ | 791 | unsigned l; /* last length */ |
792 | unsigned m; /* mask for bit lengths table */ | 792 | unsigned m; /* mask for bit lengths table */ |
793 | unsigned n; /* number of lengths to get */ | 793 | unsigned n; /* number of lengths to get */ |
794 | struct huft *tl; /* literal/length code table */ | 794 | struct huft *tl; /* literal/length code table */ |
795 | struct huft *td; /* distance code table */ | 795 | struct huft *td; /* distance code table */ |
796 | int bl; /* lookup bits for tl */ | 796 | int bl; /* lookup bits for tl */ |
797 | int bd; /* lookup bits for td */ | 797 | int bd; /* lookup bits for td */ |
798 | unsigned nb; /* number of bit length codes */ | 798 | unsigned nb; /* number of bit length codes */ |
799 | unsigned nl; /* number of literal/length codes */ | 799 | unsigned nl; /* number of literal/length codes */ |
800 | unsigned nd; /* number of distance codes */ | 800 | unsigned nd; /* number of distance codes */ |
801 | unsigned *ll; /* literal/length and distance code lengths */ | 801 | unsigned *ll; /* literal/length and distance code lengths */ |
802 | register ulg b; /* bit buffer */ | 802 | register ulg b; /* bit buffer */ |
803 | register unsigned k; /* number of bits in bit buffer */ | 803 | register unsigned k; /* number of bits in bit buffer */ |
804 | int ret; | 804 | int ret; |
805 | 805 | ||
806 | DEBG("<dyn"); | 806 | DEBG("<dyn"); |
807 | 807 | ||
808 | #ifdef PKZIP_BUG_WORKAROUND | 808 | #ifdef PKZIP_BUG_WORKAROUND |
809 | ll = malloc(sizeof(*ll) * (288+32)); /* literal/length and distance code lengths */ | 809 | ll = malloc(sizeof(*ll) * (288+32)); /* literal/length and distance code lengths */ |
810 | #else | 810 | #else |
811 | ll = malloc(sizeof(*ll) * (286+30)); /* literal/length and distance code lengths */ | 811 | ll = malloc(sizeof(*ll) * (286+30)); /* literal/length and distance code lengths */ |
812 | #endif | 812 | #endif |
813 | 813 | ||
814 | if (ll == NULL) | ||
815 | return 1; | ||
816 | |||
814 | /* make local bit buffer */ | 817 | /* make local bit buffer */ |
815 | b = bb; | 818 | b = bb; |
816 | k = bk; | 819 | k = bk; |
817 | 820 | ||
818 | 821 | ||
819 | /* read in table lengths */ | 822 | /* read in table lengths */ |
820 | NEEDBITS(5) | 823 | NEEDBITS(5) |
821 | nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */ | 824 | nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */ |
822 | DUMPBITS(5) | 825 | DUMPBITS(5) |
823 | NEEDBITS(5) | 826 | NEEDBITS(5) |
824 | nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */ | 827 | nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */ |
825 | DUMPBITS(5) | 828 | DUMPBITS(5) |
826 | NEEDBITS(4) | 829 | NEEDBITS(4) |
827 | nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */ | 830 | nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */ |
828 | DUMPBITS(4) | 831 | DUMPBITS(4) |
829 | #ifdef PKZIP_BUG_WORKAROUND | 832 | #ifdef PKZIP_BUG_WORKAROUND |
830 | if (nl > 288 || nd > 32) | 833 | if (nl > 288 || nd > 32) |
831 | #else | 834 | #else |
832 | if (nl > 286 || nd > 30) | 835 | if (nl > 286 || nd > 30) |
833 | #endif | 836 | #endif |
834 | { | 837 | { |
835 | ret = 1; /* bad lengths */ | 838 | ret = 1; /* bad lengths */ |
836 | goto out; | 839 | goto out; |
837 | } | 840 | } |
838 | 841 | ||
839 | DEBG("dyn1 "); | 842 | DEBG("dyn1 "); |
840 | 843 | ||
841 | /* read in bit-length-code lengths */ | 844 | /* read in bit-length-code lengths */ |
842 | for (j = 0; j < nb; j++) | 845 | for (j = 0; j < nb; j++) |
843 | { | 846 | { |
844 | NEEDBITS(3) | 847 | NEEDBITS(3) |
845 | ll[border[j]] = (unsigned)b & 7; | 848 | ll[border[j]] = (unsigned)b & 7; |
846 | DUMPBITS(3) | 849 | DUMPBITS(3) |
847 | } | 850 | } |
848 | for (; j < 19; j++) | 851 | for (; j < 19; j++) |
849 | ll[border[j]] = 0; | 852 | ll[border[j]] = 0; |
850 | 853 | ||
851 | DEBG("dyn2 "); | 854 | DEBG("dyn2 "); |
852 | 855 | ||
853 | /* build decoding table for trees--single level, 7 bit lookup */ | 856 | /* build decoding table for trees--single level, 7 bit lookup */ |
854 | bl = 7; | 857 | bl = 7; |
855 | if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0) | 858 | if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0) |
856 | { | 859 | { |
857 | if (i == 1) | 860 | if (i == 1) |
858 | huft_free(tl); | 861 | huft_free(tl); |
859 | ret = i; /* incomplete code set */ | 862 | ret = i; /* incomplete code set */ |
860 | goto out; | 863 | goto out; |
861 | } | 864 | } |
862 | 865 | ||
863 | DEBG("dyn3 "); | 866 | DEBG("dyn3 "); |
864 | 867 | ||
865 | /* read in literal and distance code lengths */ | 868 | /* read in literal and distance code lengths */ |
866 | n = nl + nd; | 869 | n = nl + nd; |
867 | m = mask_bits[bl]; | 870 | m = mask_bits[bl]; |
868 | i = l = 0; | 871 | i = l = 0; |
869 | while ((unsigned)i < n) | 872 | while ((unsigned)i < n) |
870 | { | 873 | { |
871 | NEEDBITS((unsigned)bl) | 874 | NEEDBITS((unsigned)bl) |
872 | j = (td = tl + ((unsigned)b & m))->b; | 875 | j = (td = tl + ((unsigned)b & m))->b; |
873 | DUMPBITS(j) | 876 | DUMPBITS(j) |
874 | j = td->v.n; | 877 | j = td->v.n; |
875 | if (j < 16) /* length of code in bits (0..15) */ | 878 | if (j < 16) /* length of code in bits (0..15) */ |
876 | ll[i++] = l = j; /* save last length in l */ | 879 | ll[i++] = l = j; /* save last length in l */ |
877 | else if (j == 16) /* repeat last length 3 to 6 times */ | 880 | else if (j == 16) /* repeat last length 3 to 6 times */ |
878 | { | 881 | { |
879 | NEEDBITS(2) | 882 | NEEDBITS(2) |
880 | j = 3 + ((unsigned)b & 3); | 883 | j = 3 + ((unsigned)b & 3); |
881 | DUMPBITS(2) | 884 | DUMPBITS(2) |
882 | if ((unsigned)i + j > n) { | 885 | if ((unsigned)i + j > n) { |
883 | ret = 1; | 886 | ret = 1; |
884 | goto out; | 887 | goto out; |
885 | } | 888 | } |
886 | while (j--) | 889 | while (j--) |
887 | ll[i++] = l; | 890 | ll[i++] = l; |
888 | } | 891 | } |
889 | else if (j == 17) /* 3 to 10 zero length codes */ | 892 | else if (j == 17) /* 3 to 10 zero length codes */ |
890 | { | 893 | { |
891 | NEEDBITS(3) | 894 | NEEDBITS(3) |
892 | j = 3 + ((unsigned)b & 7); | 895 | j = 3 + ((unsigned)b & 7); |
893 | DUMPBITS(3) | 896 | DUMPBITS(3) |
894 | if ((unsigned)i + j > n) { | 897 | if ((unsigned)i + j > n) { |
895 | ret = 1; | 898 | ret = 1; |
896 | goto out; | 899 | goto out; |
897 | } | 900 | } |
898 | while (j--) | 901 | while (j--) |
899 | ll[i++] = 0; | 902 | ll[i++] = 0; |
900 | l = 0; | 903 | l = 0; |
901 | } | 904 | } |
902 | else /* j == 18: 11 to 138 zero length codes */ | 905 | else /* j == 18: 11 to 138 zero length codes */ |
903 | { | 906 | { |
904 | NEEDBITS(7) | 907 | NEEDBITS(7) |
905 | j = 11 + ((unsigned)b & 0x7f); | 908 | j = 11 + ((unsigned)b & 0x7f); |
906 | DUMPBITS(7) | 909 | DUMPBITS(7) |
907 | if ((unsigned)i + j > n) { | 910 | if ((unsigned)i + j > n) { |
908 | ret = 1; | 911 | ret = 1; |
909 | goto out; | 912 | goto out; |
910 | } | 913 | } |
911 | while (j--) | 914 | while (j--) |
912 | ll[i++] = 0; | 915 | ll[i++] = 0; |
913 | l = 0; | 916 | l = 0; |
914 | } | 917 | } |
915 | } | 918 | } |
916 | 919 | ||
917 | DEBG("dyn4 "); | 920 | DEBG("dyn4 "); |
918 | 921 | ||
919 | /* free decoding table for trees */ | 922 | /* free decoding table for trees */ |
920 | huft_free(tl); | 923 | huft_free(tl); |
921 | 924 | ||
922 | DEBG("dyn5 "); | 925 | DEBG("dyn5 "); |
923 | 926 | ||
924 | /* restore the global bit buffer */ | 927 | /* restore the global bit buffer */ |
925 | bb = b; | 928 | bb = b; |
926 | bk = k; | 929 | bk = k; |
927 | 930 | ||
928 | DEBG("dyn5a "); | 931 | DEBG("dyn5a "); |
929 | 932 | ||
930 | /* build the decoding tables for literal/length and distance codes */ | 933 | /* build the decoding tables for literal/length and distance codes */ |
931 | bl = lbits; | 934 | bl = lbits; |
932 | if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0) | 935 | if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0) |
933 | { | 936 | { |
934 | DEBG("dyn5b "); | 937 | DEBG("dyn5b "); |
935 | if (i == 1) { | 938 | if (i == 1) { |
936 | error("incomplete literal tree"); | 939 | error("incomplete literal tree"); |
937 | huft_free(tl); | 940 | huft_free(tl); |
938 | } | 941 | } |
939 | ret = i; /* incomplete code set */ | 942 | ret = i; /* incomplete code set */ |
940 | goto out; | 943 | goto out; |
941 | } | 944 | } |
942 | DEBG("dyn5c "); | 945 | DEBG("dyn5c "); |
943 | bd = dbits; | 946 | bd = dbits; |
944 | if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0) | 947 | if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0) |
945 | { | 948 | { |
946 | DEBG("dyn5d "); | 949 | DEBG("dyn5d "); |
947 | if (i == 1) { | 950 | if (i == 1) { |
948 | error("incomplete distance tree"); | 951 | error("incomplete distance tree"); |
949 | #ifdef PKZIP_BUG_WORKAROUND | 952 | #ifdef PKZIP_BUG_WORKAROUND |
950 | i = 0; | 953 | i = 0; |
951 | } | 954 | } |
952 | #else | 955 | #else |
953 | huft_free(td); | 956 | huft_free(td); |
954 | } | 957 | } |
955 | huft_free(tl); | 958 | huft_free(tl); |
956 | ret = i; /* incomplete code set */ | 959 | ret = i; /* incomplete code set */ |
957 | goto out; | 960 | goto out; |
958 | #endif | 961 | #endif |
959 | } | 962 | } |
960 | 963 | ||
961 | DEBG("dyn6 "); | 964 | DEBG("dyn6 "); |
962 | 965 | ||
963 | /* decompress until an end-of-block code */ | 966 | /* decompress until an end-of-block code */ |
964 | if (inflate_codes(tl, td, bl, bd)) { | 967 | if (inflate_codes(tl, td, bl, bd)) { |
965 | ret = 1; | 968 | ret = 1; |
966 | goto out; | 969 | goto out; |
967 | } | 970 | } |
968 | 971 | ||
969 | DEBG("dyn7 "); | 972 | DEBG("dyn7 "); |
970 | 973 | ||
971 | /* free the decoding tables, return */ | 974 | /* free the decoding tables, return */ |
972 | huft_free(tl); | 975 | huft_free(tl); |
973 | huft_free(td); | 976 | huft_free(td); |
974 | 977 | ||
975 | DEBG(">"); | 978 | DEBG(">"); |
976 | ret = 0; | 979 | ret = 0; |
977 | out: | 980 | out: |
978 | free(ll); | 981 | free(ll); |
979 | return ret; | 982 | return ret; |
980 | 983 | ||
981 | underrun: | 984 | underrun: |
982 | ret = 4; /* Input underrun */ | 985 | ret = 4; /* Input underrun */ |
983 | goto out; | 986 | goto out; |
984 | } | 987 | } |
985 | 988 | ||
986 | 989 | ||
987 | 990 | ||
988 | STATIC int INIT inflate_block( | 991 | STATIC int INIT inflate_block( |
989 | int *e /* last block flag */ | 992 | int *e /* last block flag */ |
990 | ) | 993 | ) |
991 | /* decompress an inflated block */ | 994 | /* decompress an inflated block */ |
992 | { | 995 | { |
993 | unsigned t; /* block type */ | 996 | unsigned t; /* block type */ |
994 | register ulg b; /* bit buffer */ | 997 | register ulg b; /* bit buffer */ |
995 | register unsigned k; /* number of bits in bit buffer */ | 998 | register unsigned k; /* number of bits in bit buffer */ |
996 | 999 | ||
997 | DEBG("<blk"); | 1000 | DEBG("<blk"); |
998 | 1001 | ||
999 | /* make local bit buffer */ | 1002 | /* make local bit buffer */ |
1000 | b = bb; | 1003 | b = bb; |
1001 | k = bk; | 1004 | k = bk; |
1002 | 1005 | ||
1003 | 1006 | ||
1004 | /* read in last block bit */ | 1007 | /* read in last block bit */ |
1005 | NEEDBITS(1) | 1008 | NEEDBITS(1) |
1006 | *e = (int)b & 1; | 1009 | *e = (int)b & 1; |
1007 | DUMPBITS(1) | 1010 | DUMPBITS(1) |
1008 | 1011 | ||
1009 | 1012 | ||
1010 | /* read in block type */ | 1013 | /* read in block type */ |
1011 | NEEDBITS(2) | 1014 | NEEDBITS(2) |
1012 | t = (unsigned)b & 3; | 1015 | t = (unsigned)b & 3; |
1013 | DUMPBITS(2) | 1016 | DUMPBITS(2) |
1014 | 1017 | ||
1015 | 1018 | ||
1016 | /* restore the global bit buffer */ | 1019 | /* restore the global bit buffer */ |
1017 | bb = b; | 1020 | bb = b; |
1018 | bk = k; | 1021 | bk = k; |
1019 | 1022 | ||
1020 | /* inflate that block type */ | 1023 | /* inflate that block type */ |
1021 | if (t == 2) | 1024 | if (t == 2) |
1022 | return inflate_dynamic(); | 1025 | return inflate_dynamic(); |
1023 | if (t == 0) | 1026 | if (t == 0) |
1024 | return inflate_stored(); | 1027 | return inflate_stored(); |
1025 | if (t == 1) | 1028 | if (t == 1) |
1026 | return inflate_fixed(); | 1029 | return inflate_fixed(); |
1027 | 1030 | ||
1028 | DEBG(">"); | 1031 | DEBG(">"); |
1029 | 1032 | ||
1030 | /* bad block type */ | 1033 | /* bad block type */ |
1031 | return 2; | 1034 | return 2; |
1032 | 1035 | ||
1033 | underrun: | 1036 | underrun: |
1034 | return 4; /* Input underrun */ | 1037 | return 4; /* Input underrun */ |
1035 | } | 1038 | } |
1036 | 1039 | ||
1037 | 1040 | ||
1038 | 1041 | ||
1039 | STATIC int INIT inflate(void) | 1042 | STATIC int INIT inflate(void) |
1040 | /* decompress an inflated entry */ | 1043 | /* decompress an inflated entry */ |
1041 | { | 1044 | { |
1042 | int e; /* last block flag */ | 1045 | int e; /* last block flag */ |
1043 | int r; /* result code */ | 1046 | int r; /* result code */ |
1044 | unsigned h; /* maximum struct huft's malloc'ed */ | 1047 | unsigned h; /* maximum struct huft's malloc'ed */ |
1045 | void *ptr; | 1048 | void *ptr; |
1046 | 1049 | ||
1047 | /* initialize window, bit buffer */ | 1050 | /* initialize window, bit buffer */ |
1048 | wp = 0; | 1051 | wp = 0; |
1049 | bk = 0; | 1052 | bk = 0; |
1050 | bb = 0; | 1053 | bb = 0; |
1051 | 1054 | ||
1052 | 1055 | ||
1053 | /* decompress until the last block */ | 1056 | /* decompress until the last block */ |
1054 | h = 0; | 1057 | h = 0; |
1055 | do { | 1058 | do { |
1056 | hufts = 0; | 1059 | hufts = 0; |
1057 | gzip_mark(&ptr); | 1060 | gzip_mark(&ptr); |
1058 | if ((r = inflate_block(&e)) != 0) { | 1061 | if ((r = inflate_block(&e)) != 0) { |
1059 | gzip_release(&ptr); | 1062 | gzip_release(&ptr); |
1060 | return r; | 1063 | return r; |
1061 | } | 1064 | } |
1062 | gzip_release(&ptr); | 1065 | gzip_release(&ptr); |
1063 | if (hufts > h) | 1066 | if (hufts > h) |
1064 | h = hufts; | 1067 | h = hufts; |
1065 | } while (!e); | 1068 | } while (!e); |
1066 | 1069 | ||
1067 | /* Undo too much lookahead. The next read will be byte aligned so we | 1070 | /* Undo too much lookahead. The next read will be byte aligned so we |
1068 | * can discard unused bits in the last meaningful byte. | 1071 | * can discard unused bits in the last meaningful byte. |
1069 | */ | 1072 | */ |
1070 | while (bk >= 8) { | 1073 | while (bk >= 8) { |
1071 | bk -= 8; | 1074 | bk -= 8; |
1072 | inptr--; | 1075 | inptr--; |
1073 | } | 1076 | } |
1074 | 1077 | ||
1075 | /* flush out slide */ | 1078 | /* flush out slide */ |
1076 | flush_output(wp); | 1079 | flush_output(wp); |
1077 | 1080 | ||
1078 | 1081 | ||
1079 | /* return success */ | 1082 | /* return success */ |
1080 | #ifdef DEBUG | 1083 | #ifdef DEBUG |
1081 | fprintf(stderr, "<%u> ", h); | 1084 | fprintf(stderr, "<%u> ", h); |
1082 | #endif /* DEBUG */ | 1085 | #endif /* DEBUG */ |
1083 | return 0; | 1086 | return 0; |
1084 | } | 1087 | } |
1085 | 1088 | ||
1086 | /********************************************************************** | 1089 | /********************************************************************** |
1087 | * | 1090 | * |
1088 | * The following are support routines for inflate.c | 1091 | * The following are support routines for inflate.c |
1089 | * | 1092 | * |
1090 | **********************************************************************/ | 1093 | **********************************************************************/ |
1091 | 1094 | ||
1092 | static ulg crc_32_tab[256]; | 1095 | static ulg crc_32_tab[256]; |
1093 | static ulg crc; /* initialized in makecrc() so it'll reside in bss */ | 1096 | static ulg crc; /* initialized in makecrc() so it'll reside in bss */ |
1094 | #define CRC_VALUE (crc ^ 0xffffffffUL) | 1097 | #define CRC_VALUE (crc ^ 0xffffffffUL) |
1095 | 1098 | ||
1096 | /* | 1099 | /* |
1097 | * Code to compute the CRC-32 table. Borrowed from | 1100 | * Code to compute the CRC-32 table. Borrowed from |
1098 | * gzip-1.0.3/makecrc.c. | 1101 | * gzip-1.0.3/makecrc.c. |
1099 | */ | 1102 | */ |
1100 | 1103 | ||
1101 | static void INIT | 1104 | static void INIT |
1102 | makecrc(void) | 1105 | makecrc(void) |
1103 | { | 1106 | { |
1104 | /* Not copyrighted 1990 Mark Adler */ | 1107 | /* Not copyrighted 1990 Mark Adler */ |
1105 | 1108 | ||
1106 | unsigned long c; /* crc shift register */ | 1109 | unsigned long c; /* crc shift register */ |
1107 | unsigned long e; /* polynomial exclusive-or pattern */ | 1110 | unsigned long e; /* polynomial exclusive-or pattern */ |
1108 | int i; /* counter for all possible eight bit values */ | 1111 | int i; /* counter for all possible eight bit values */ |
1109 | int k; /* byte being shifted into crc apparatus */ | 1112 | int k; /* byte being shifted into crc apparatus */ |
1110 | 1113 | ||
1111 | /* terms of polynomial defining this crc (except x^32): */ | 1114 | /* terms of polynomial defining this crc (except x^32): */ |
1112 | static const int p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; | 1115 | static const int p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; |
1113 | 1116 | ||
1114 | /* Make exclusive-or pattern from polynomial */ | 1117 | /* Make exclusive-or pattern from polynomial */ |
1115 | e = 0; | 1118 | e = 0; |
1116 | for (i = 0; i < sizeof(p)/sizeof(int); i++) | 1119 | for (i = 0; i < sizeof(p)/sizeof(int); i++) |
1117 | e |= 1L << (31 - p[i]); | 1120 | e |= 1L << (31 - p[i]); |
1118 | 1121 | ||
1119 | crc_32_tab[0] = 0; | 1122 | crc_32_tab[0] = 0; |
1120 | 1123 | ||
1121 | for (i = 1; i < 256; i++) | 1124 | for (i = 1; i < 256; i++) |
1122 | { | 1125 | { |
1123 | c = 0; | 1126 | c = 0; |
1124 | for (k = i | 256; k != 1; k >>= 1) | 1127 | for (k = i | 256; k != 1; k >>= 1) |
1125 | { | 1128 | { |
1126 | c = c & 1 ? (c >> 1) ^ e : c >> 1; | 1129 | c = c & 1 ? (c >> 1) ^ e : c >> 1; |
1127 | if (k & 1) | 1130 | if (k & 1) |
1128 | c ^= e; | 1131 | c ^= e; |
1129 | } | 1132 | } |
1130 | crc_32_tab[i] = c; | 1133 | crc_32_tab[i] = c; |
1131 | } | 1134 | } |
1132 | 1135 | ||
1133 | /* this is initialized here so this code could reside in ROM */ | 1136 | /* this is initialized here so this code could reside in ROM */ |
1134 | crc = (ulg)0xffffffffUL; /* shift register contents */ | 1137 | crc = (ulg)0xffffffffUL; /* shift register contents */ |
1135 | } | 1138 | } |
1136 | 1139 | ||
1137 | /* gzip flag byte */ | 1140 | /* gzip flag byte */ |
1138 | #define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */ | 1141 | #define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */ |
1139 | #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */ | 1142 | #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */ |
1140 | #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */ | 1143 | #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */ |
1141 | #define ORIG_NAME 0x08 /* bit 3 set: original file name present */ | 1144 | #define ORIG_NAME 0x08 /* bit 3 set: original file name present */ |
1142 | #define COMMENT 0x10 /* bit 4 set: file comment present */ | 1145 | #define COMMENT 0x10 /* bit 4 set: file comment present */ |
1143 | #define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */ | 1146 | #define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */ |
1144 | #define RESERVED 0xC0 /* bit 6,7: reserved */ | 1147 | #define RESERVED 0xC0 /* bit 6,7: reserved */ |
1145 | 1148 | ||
1146 | /* | 1149 | /* |
1147 | * Do the uncompression! | 1150 | * Do the uncompression! |
1148 | */ | 1151 | */ |
1149 | static int INIT gunzip(void) | 1152 | static int INIT gunzip(void) |
1150 | { | 1153 | { |
1151 | uch flags; | 1154 | uch flags; |
1152 | unsigned char magic[2]; /* magic header */ | 1155 | unsigned char magic[2]; /* magic header */ |
1153 | char method; | 1156 | char method; |
1154 | ulg orig_crc = 0; /* original crc */ | 1157 | ulg orig_crc = 0; /* original crc */ |
1155 | ulg orig_len = 0; /* original uncompressed length */ | 1158 | ulg orig_len = 0; /* original uncompressed length */ |
1156 | int res; | 1159 | int res; |
1157 | 1160 | ||
1158 | magic[0] = NEXTBYTE(); | 1161 | magic[0] = NEXTBYTE(); |
1159 | magic[1] = NEXTBYTE(); | 1162 | magic[1] = NEXTBYTE(); |
1160 | method = NEXTBYTE(); | 1163 | method = NEXTBYTE(); |
1161 | 1164 | ||
1162 | if (magic[0] != 037 || | 1165 | if (magic[0] != 037 || |
1163 | ((magic[1] != 0213) && (magic[1] != 0236))) { | 1166 | ((magic[1] != 0213) && (magic[1] != 0236))) { |
1164 | error("bad gzip magic numbers"); | 1167 | error("bad gzip magic numbers"); |
1165 | return -1; | 1168 | return -1; |
1166 | } | 1169 | } |
1167 | 1170 | ||
1168 | /* We only support method #8, DEFLATED */ | 1171 | /* We only support method #8, DEFLATED */ |
1169 | if (method != 8) { | 1172 | if (method != 8) { |
1170 | error("internal error, invalid method"); | 1173 | error("internal error, invalid method"); |
1171 | return -1; | 1174 | return -1; |
1172 | } | 1175 | } |
1173 | 1176 | ||
1174 | flags = (uch)get_byte(); | 1177 | flags = (uch)get_byte(); |
1175 | if ((flags & ENCRYPTED) != 0) { | 1178 | if ((flags & ENCRYPTED) != 0) { |
1176 | error("Input is encrypted"); | 1179 | error("Input is encrypted"); |
1177 | return -1; | 1180 | return -1; |
1178 | } | 1181 | } |
1179 | if ((flags & CONTINUATION) != 0) { | 1182 | if ((flags & CONTINUATION) != 0) { |
1180 | error("Multi part input"); | 1183 | error("Multi part input"); |
1181 | return -1; | 1184 | return -1; |
1182 | } | 1185 | } |
1183 | if ((flags & RESERVED) != 0) { | 1186 | if ((flags & RESERVED) != 0) { |
1184 | error("Input has invalid flags"); | 1187 | error("Input has invalid flags"); |
1185 | return -1; | 1188 | return -1; |
1186 | } | 1189 | } |
1187 | NEXTBYTE(); /* Get timestamp */ | 1190 | NEXTBYTE(); /* Get timestamp */ |
1188 | NEXTBYTE(); | 1191 | NEXTBYTE(); |
1189 | NEXTBYTE(); | 1192 | NEXTBYTE(); |
1190 | NEXTBYTE(); | 1193 | NEXTBYTE(); |
1191 | 1194 | ||
1192 | (void)NEXTBYTE(); /* Ignore extra flags for the moment */ | 1195 | (void)NEXTBYTE(); /* Ignore extra flags for the moment */ |
1193 | (void)NEXTBYTE(); /* Ignore OS type for the moment */ | 1196 | (void)NEXTBYTE(); /* Ignore OS type for the moment */ |
1194 | 1197 | ||
1195 | if ((flags & EXTRA_FIELD) != 0) { | 1198 | if ((flags & EXTRA_FIELD) != 0) { |
1196 | unsigned len = (unsigned)NEXTBYTE(); | 1199 | unsigned len = (unsigned)NEXTBYTE(); |
1197 | len |= ((unsigned)NEXTBYTE())<<8; | 1200 | len |= ((unsigned)NEXTBYTE())<<8; |
1198 | while (len--) (void)NEXTBYTE(); | 1201 | while (len--) (void)NEXTBYTE(); |
1199 | } | 1202 | } |
1200 | 1203 | ||
1201 | /* Get original file name if it was truncated */ | 1204 | /* Get original file name if it was truncated */ |
1202 | if ((flags & ORIG_NAME) != 0) { | 1205 | if ((flags & ORIG_NAME) != 0) { |
1203 | /* Discard the old name */ | 1206 | /* Discard the old name */ |
1204 | while (NEXTBYTE() != 0) /* null */ ; | 1207 | while (NEXTBYTE() != 0) /* null */ ; |
1205 | } | 1208 | } |
1206 | 1209 | ||
1207 | /* Discard file comment if any */ | 1210 | /* Discard file comment if any */ |
1208 | if ((flags & COMMENT) != 0) { | 1211 | if ((flags & COMMENT) != 0) { |
1209 | while (NEXTBYTE() != 0) /* null */ ; | 1212 | while (NEXTBYTE() != 0) /* null */ ; |
1210 | } | 1213 | } |
1211 | 1214 | ||
1212 | /* Decompress */ | 1215 | /* Decompress */ |
1213 | if ((res = inflate())) { | 1216 | if ((res = inflate())) { |
1214 | switch (res) { | 1217 | switch (res) { |
1215 | case 0: | 1218 | case 0: |
1216 | break; | 1219 | break; |
1217 | case 1: | 1220 | case 1: |
1218 | error("invalid compressed format (err=1)"); | 1221 | error("invalid compressed format (err=1)"); |
1219 | break; | 1222 | break; |
1220 | case 2: | 1223 | case 2: |
1221 | error("invalid compressed format (err=2)"); | 1224 | error("invalid compressed format (err=2)"); |
1222 | break; | 1225 | break; |
1223 | case 3: | 1226 | case 3: |
1224 | error("out of memory"); | 1227 | error("out of memory"); |
1225 | break; | 1228 | break; |
1226 | case 4: | 1229 | case 4: |
1227 | error("out of input data"); | 1230 | error("out of input data"); |
1228 | break; | 1231 | break; |
1229 | default: | 1232 | default: |
1230 | error("invalid compressed format (other)"); | 1233 | error("invalid compressed format (other)"); |
1231 | } | 1234 | } |
1232 | return -1; | 1235 | return -1; |
1233 | } | 1236 | } |
1234 | 1237 | ||
1235 | /* Get the crc and original length */ | 1238 | /* Get the crc and original length */ |
1236 | /* crc32 (see algorithm.doc) | 1239 | /* crc32 (see algorithm.doc) |
1237 | * uncompressed input size modulo 2^32 | 1240 | * uncompressed input size modulo 2^32 |
1238 | */ | 1241 | */ |
1239 | orig_crc = (ulg) NEXTBYTE(); | 1242 | orig_crc = (ulg) NEXTBYTE(); |
1240 | orig_crc |= (ulg) NEXTBYTE() << 8; | 1243 | orig_crc |= (ulg) NEXTBYTE() << 8; |
1241 | orig_crc |= (ulg) NEXTBYTE() << 16; | 1244 | orig_crc |= (ulg) NEXTBYTE() << 16; |
1242 | orig_crc |= (ulg) NEXTBYTE() << 24; | 1245 | orig_crc |= (ulg) NEXTBYTE() << 24; |
1243 | 1246 | ||
1244 | orig_len = (ulg) NEXTBYTE(); | 1247 | orig_len = (ulg) NEXTBYTE(); |
1245 | orig_len |= (ulg) NEXTBYTE() << 8; | 1248 | orig_len |= (ulg) NEXTBYTE() << 8; |
1246 | orig_len |= (ulg) NEXTBYTE() << 16; | 1249 | orig_len |= (ulg) NEXTBYTE() << 16; |
1247 | orig_len |= (ulg) NEXTBYTE() << 24; | 1250 | orig_len |= (ulg) NEXTBYTE() << 24; |
1248 | 1251 | ||
1249 | /* Validate decompression */ | 1252 | /* Validate decompression */ |
1250 | if (orig_crc != CRC_VALUE) { | 1253 | if (orig_crc != CRC_VALUE) { |
1251 | error("crc error"); | 1254 | error("crc error"); |
1252 | return -1; | 1255 | return -1; |
1253 | } | 1256 | } |
1254 | if (orig_len != bytes_out) { | 1257 | if (orig_len != bytes_out) { |
1255 | error("length error"); | 1258 | error("length error"); |
1256 | return -1; | 1259 | return -1; |
1257 | } | 1260 | } |
1258 | return 0; | 1261 | return 0; |
1259 | 1262 | ||
1260 | underrun: /* NEXTBYTE() goto's here if needed */ | 1263 | underrun: /* NEXTBYTE() goto's here if needed */ |
1261 | error("out of input data"); | 1264 | error("out of input data"); |
1262 | return -1; | 1265 | return -1; |
1263 | } | 1266 | } |
1264 | 1267 | ||
1265 | 1268 | ||
1266 | 1269 |