Commit 4315d834c1496ddca977e9e22002b77c85bfec2c

Authored by Tom Herbert
Committed by David S. Miller
1 parent a131d82266

net: Fix rxq ref counting

The rx->count reference is used to track reference counts to the
number of rx-queue kobjects created for the device.  This patch
eliminates initialization of the counter in netif_alloc_rx_queues
and instead increments the counter each time a kobject is created.
This is now symmetric with the decrement that is done when an object is
released.

Signed-off-by: Tom Herbert <therbert@google.com>
Acked-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>

Showing 2 changed files with 2 additions and 1 deletions Inline Diff

1 /* 1 /*
2 * NET3 Protocol independent device support routines. 2 * NET3 Protocol independent device support routines.
3 * 3 *
4 * This program is free software; you can redistribute it and/or 4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License 5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version. 7 * 2 of the License, or (at your option) any later version.
8 * 8 *
9 * Derived from the non IP parts of dev.c 1.0.19 9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro 10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * 13 *
14 * Additional Authors: 14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de> 15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org> 16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net> 17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu> 19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 * 21 *
22 * Changes: 22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called 24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a 25 * before net_dev_init & also removed a
26 * few lines of code in the process. 26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back. 27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant 28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe. 29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock. 30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap 31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range 32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into 33 * Alan Cox : Moved ioctl permission check into
34 * drivers 34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when 36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8) 37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager. 38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass 40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler 41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before 42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function 43 * calling netif_rx. Saves a function
44 * call a packet. 44 * call a packet.
45 * Alan Cox : Hashed net_bh() 45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes. 46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection. 48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close 49 * Alan Cox : Fixed nasty side effect of device close
50 * changes. 50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to 51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address() 52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to 53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc. 54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack. 55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise. 56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under 57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device. 58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function. 60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD 63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload 64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge 65 * A network device unload needs to purge
66 * the backlog queue. 66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME 67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code 68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait 69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt 70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling 71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback 72 * - netif_rx() feedback
73 */ 73 */
74 74
75 #include <asm/uaccess.h> 75 #include <asm/uaccess.h>
76 #include <asm/system.h> 76 #include <asm/system.h>
77 #include <linux/bitops.h> 77 #include <linux/bitops.h>
78 #include <linux/capability.h> 78 #include <linux/capability.h>
79 #include <linux/cpu.h> 79 #include <linux/cpu.h>
80 #include <linux/types.h> 80 #include <linux/types.h>
81 #include <linux/kernel.h> 81 #include <linux/kernel.h>
82 #include <linux/hash.h> 82 #include <linux/hash.h>
83 #include <linux/slab.h> 83 #include <linux/slab.h>
84 #include <linux/sched.h> 84 #include <linux/sched.h>
85 #include <linux/mutex.h> 85 #include <linux/mutex.h>
86 #include <linux/string.h> 86 #include <linux/string.h>
87 #include <linux/mm.h> 87 #include <linux/mm.h>
88 #include <linux/socket.h> 88 #include <linux/socket.h>
89 #include <linux/sockios.h> 89 #include <linux/sockios.h>
90 #include <linux/errno.h> 90 #include <linux/errno.h>
91 #include <linux/interrupt.h> 91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h> 92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h> 93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h> 94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h> 95 #include <linux/ethtool.h>
96 #include <linux/notifier.h> 96 #include <linux/notifier.h>
97 #include <linux/skbuff.h> 97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h> 98 #include <net/net_namespace.h>
99 #include <net/sock.h> 99 #include <net/sock.h>
100 #include <linux/rtnetlink.h> 100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h> 101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h> 102 #include <linux/seq_file.h>
103 #include <linux/stat.h> 103 #include <linux/stat.h>
104 #include <net/dst.h> 104 #include <net/dst.h>
105 #include <net/pkt_sched.h> 105 #include <net/pkt_sched.h>
106 #include <net/checksum.h> 106 #include <net/checksum.h>
107 #include <net/xfrm.h> 107 #include <net/xfrm.h>
108 #include <linux/highmem.h> 108 #include <linux/highmem.h>
109 #include <linux/init.h> 109 #include <linux/init.h>
110 #include <linux/kmod.h> 110 #include <linux/kmod.h>
111 #include <linux/module.h> 111 #include <linux/module.h>
112 #include <linux/netpoll.h> 112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h> 113 #include <linux/rcupdate.h>
114 #include <linux/delay.h> 114 #include <linux/delay.h>
115 #include <net/wext.h> 115 #include <net/wext.h>
116 #include <net/iw_handler.h> 116 #include <net/iw_handler.h>
117 #include <asm/current.h> 117 #include <asm/current.h>
118 #include <linux/audit.h> 118 #include <linux/audit.h>
119 #include <linux/dmaengine.h> 119 #include <linux/dmaengine.h>
120 #include <linux/err.h> 120 #include <linux/err.h>
121 #include <linux/ctype.h> 121 #include <linux/ctype.h>
122 #include <linux/if_arp.h> 122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h> 123 #include <linux/if_vlan.h>
124 #include <linux/ip.h> 124 #include <linux/ip.h>
125 #include <net/ip.h> 125 #include <net/ip.h>
126 #include <linux/ipv6.h> 126 #include <linux/ipv6.h>
127 #include <linux/in.h> 127 #include <linux/in.h>
128 #include <linux/jhash.h> 128 #include <linux/jhash.h>
129 #include <linux/random.h> 129 #include <linux/random.h>
130 #include <trace/events/napi.h> 130 #include <trace/events/napi.h>
131 #include <linux/pci.h> 131 #include <linux/pci.h>
132 #include <linux/inetdevice.h> 132 #include <linux/inetdevice.h>
133 133
134 #include "net-sysfs.h" 134 #include "net-sysfs.h"
135 135
136 /* Instead of increasing this, you should create a hash table. */ 136 /* Instead of increasing this, you should create a hash table. */
137 #define MAX_GRO_SKBS 8 137 #define MAX_GRO_SKBS 8
138 138
139 /* This should be increased if a protocol with a bigger head is added. */ 139 /* This should be increased if a protocol with a bigger head is added. */
140 #define GRO_MAX_HEAD (MAX_HEADER + 128) 140 #define GRO_MAX_HEAD (MAX_HEADER + 128)
141 141
142 /* 142 /*
143 * The list of packet types we will receive (as opposed to discard) 143 * The list of packet types we will receive (as opposed to discard)
144 * and the routines to invoke. 144 * and the routines to invoke.
145 * 145 *
146 * Why 16. Because with 16 the only overlap we get on a hash of the 146 * Why 16. Because with 16 the only overlap we get on a hash of the
147 * low nibble of the protocol value is RARP/SNAP/X.25. 147 * low nibble of the protocol value is RARP/SNAP/X.25.
148 * 148 *
149 * NOTE: That is no longer true with the addition of VLAN tags. Not 149 * NOTE: That is no longer true with the addition of VLAN tags. Not
150 * sure which should go first, but I bet it won't make much 150 * sure which should go first, but I bet it won't make much
151 * difference if we are running VLANs. The good news is that 151 * difference if we are running VLANs. The good news is that
152 * this protocol won't be in the list unless compiled in, so 152 * this protocol won't be in the list unless compiled in, so
153 * the average user (w/out VLANs) will not be adversely affected. 153 * the average user (w/out VLANs) will not be adversely affected.
154 * --BLG 154 * --BLG
155 * 155 *
156 * 0800 IP 156 * 0800 IP
157 * 8100 802.1Q VLAN 157 * 8100 802.1Q VLAN
158 * 0001 802.3 158 * 0001 802.3
159 * 0002 AX.25 159 * 0002 AX.25
160 * 0004 802.2 160 * 0004 802.2
161 * 8035 RARP 161 * 8035 RARP
162 * 0005 SNAP 162 * 0005 SNAP
163 * 0805 X.25 163 * 0805 X.25
164 * 0806 ARP 164 * 0806 ARP
165 * 8137 IPX 165 * 8137 IPX
166 * 0009 Localtalk 166 * 0009 Localtalk
167 * 86DD IPv6 167 * 86DD IPv6
168 */ 168 */
169 169
170 #define PTYPE_HASH_SIZE (16) 170 #define PTYPE_HASH_SIZE (16)
171 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 171 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
172 172
173 static DEFINE_SPINLOCK(ptype_lock); 173 static DEFINE_SPINLOCK(ptype_lock);
174 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 174 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
175 static struct list_head ptype_all __read_mostly; /* Taps */ 175 static struct list_head ptype_all __read_mostly; /* Taps */
176 176
177 /* 177 /*
178 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 178 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
179 * semaphore. 179 * semaphore.
180 * 180 *
181 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 181 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
182 * 182 *
183 * Writers must hold the rtnl semaphore while they loop through the 183 * Writers must hold the rtnl semaphore while they loop through the
184 * dev_base_head list, and hold dev_base_lock for writing when they do the 184 * dev_base_head list, and hold dev_base_lock for writing when they do the
185 * actual updates. This allows pure readers to access the list even 185 * actual updates. This allows pure readers to access the list even
186 * while a writer is preparing to update it. 186 * while a writer is preparing to update it.
187 * 187 *
188 * To put it another way, dev_base_lock is held for writing only to 188 * To put it another way, dev_base_lock is held for writing only to
189 * protect against pure readers; the rtnl semaphore provides the 189 * protect against pure readers; the rtnl semaphore provides the
190 * protection against other writers. 190 * protection against other writers.
191 * 191 *
192 * See, for example usages, register_netdevice() and 192 * See, for example usages, register_netdevice() and
193 * unregister_netdevice(), which must be called with the rtnl 193 * unregister_netdevice(), which must be called with the rtnl
194 * semaphore held. 194 * semaphore held.
195 */ 195 */
196 DEFINE_RWLOCK(dev_base_lock); 196 DEFINE_RWLOCK(dev_base_lock);
197 EXPORT_SYMBOL(dev_base_lock); 197 EXPORT_SYMBOL(dev_base_lock);
198 198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 { 200 {
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 } 203 }
204 204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 { 206 {
207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 } 208 }
209 209
210 static inline void rps_lock(struct softnet_data *sd) 210 static inline void rps_lock(struct softnet_data *sd)
211 { 211 {
212 #ifdef CONFIG_RPS 212 #ifdef CONFIG_RPS
213 spin_lock(&sd->input_pkt_queue.lock); 213 spin_lock(&sd->input_pkt_queue.lock);
214 #endif 214 #endif
215 } 215 }
216 216
217 static inline void rps_unlock(struct softnet_data *sd) 217 static inline void rps_unlock(struct softnet_data *sd)
218 { 218 {
219 #ifdef CONFIG_RPS 219 #ifdef CONFIG_RPS
220 spin_unlock(&sd->input_pkt_queue.lock); 220 spin_unlock(&sd->input_pkt_queue.lock);
221 #endif 221 #endif
222 } 222 }
223 223
224 /* Device list insertion */ 224 /* Device list insertion */
225 static int list_netdevice(struct net_device *dev) 225 static int list_netdevice(struct net_device *dev)
226 { 226 {
227 struct net *net = dev_net(dev); 227 struct net *net = dev_net(dev);
228 228
229 ASSERT_RTNL(); 229 ASSERT_RTNL();
230 230
231 write_lock_bh(&dev_base_lock); 231 write_lock_bh(&dev_base_lock);
232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234 hlist_add_head_rcu(&dev->index_hlist, 234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex)); 235 dev_index_hash(net, dev->ifindex));
236 write_unlock_bh(&dev_base_lock); 236 write_unlock_bh(&dev_base_lock);
237 return 0; 237 return 0;
238 } 238 }
239 239
240 /* Device list removal 240 /* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev 241 * caller must respect a RCU grace period before freeing/reusing dev
242 */ 242 */
243 static void unlist_netdevice(struct net_device *dev) 243 static void unlist_netdevice(struct net_device *dev)
244 { 244 {
245 ASSERT_RTNL(); 245 ASSERT_RTNL();
246 246
247 /* Unlink dev from the device chain */ 247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock); 248 write_lock_bh(&dev_base_lock);
249 list_del_rcu(&dev->dev_list); 249 list_del_rcu(&dev->dev_list);
250 hlist_del_rcu(&dev->name_hlist); 250 hlist_del_rcu(&dev->name_hlist);
251 hlist_del_rcu(&dev->index_hlist); 251 hlist_del_rcu(&dev->index_hlist);
252 write_unlock_bh(&dev_base_lock); 252 write_unlock_bh(&dev_base_lock);
253 } 253 }
254 254
255 /* 255 /*
256 * Our notifier list 256 * Our notifier list
257 */ 257 */
258 258
259 static RAW_NOTIFIER_HEAD(netdev_chain); 259 static RAW_NOTIFIER_HEAD(netdev_chain);
260 260
261 /* 261 /*
262 * Device drivers call our routines to queue packets here. We empty the 262 * Device drivers call our routines to queue packets here. We empty the
263 * queue in the local softnet handler. 263 * queue in the local softnet handler.
264 */ 264 */
265 265
266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267 EXPORT_PER_CPU_SYMBOL(softnet_data); 267 EXPORT_PER_CPU_SYMBOL(softnet_data);
268 268
269 #ifdef CONFIG_LOCKDEP 269 #ifdef CONFIG_LOCKDEP
270 /* 270 /*
271 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 271 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272 * according to dev->type 272 * according to dev->type
273 */ 273 */
274 static const unsigned short netdev_lock_type[] = 274 static const unsigned short netdev_lock_type[] =
275 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 275 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 276 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 277 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 278 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 279 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 280 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 281 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 282 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 283 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 284 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 285 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 286 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 287 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
288 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 288 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
289 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 289 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
290 ARPHRD_VOID, ARPHRD_NONE}; 290 ARPHRD_VOID, ARPHRD_NONE};
291 291
292 static const char *const netdev_lock_name[] = 292 static const char *const netdev_lock_name[] =
293 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 293 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
294 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 294 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
295 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 295 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
296 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 296 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
297 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 297 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
298 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 298 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
299 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 299 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
300 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 300 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
301 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 301 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
302 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 302 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
303 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 303 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
304 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 304 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
305 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 305 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
306 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 306 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
307 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 307 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
308 "_xmit_VOID", "_xmit_NONE"}; 308 "_xmit_VOID", "_xmit_NONE"};
309 309
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 312
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 { 314 {
315 int i; 315 int i;
316 316
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type) 318 if (netdev_lock_type[i] == dev_type)
319 return i; 319 return i;
320 /* the last key is used by default */ 320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1; 321 return ARRAY_SIZE(netdev_lock_type) - 1;
322 } 322 }
323 323
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type) 325 unsigned short dev_type)
326 { 326 {
327 int i; 327 int i;
328 328
329 i = netdev_lock_pos(dev_type); 329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]); 331 netdev_lock_name[i]);
332 } 332 }
333 333
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 { 335 {
336 int i; 336 int i;
337 337
338 i = netdev_lock_pos(dev->type); 338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock, 339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i], 340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]); 341 netdev_lock_name[i]);
342 } 342 }
343 #else 343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type) 345 unsigned short dev_type)
346 { 346 {
347 } 347 }
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 { 349 {
350 } 350 }
351 #endif 351 #endif
352 352
353 /******************************************************************************* 353 /*******************************************************************************
354 354
355 Protocol management and registration routines 355 Protocol management and registration routines
356 356
357 *******************************************************************************/ 357 *******************************************************************************/
358 358
359 /* 359 /*
360 * Add a protocol ID to the list. Now that the input handler is 360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be 361 * smarter we can dispense with all the messy stuff that used to be
362 * here. 362 * here.
363 * 363 *
364 * BEWARE!!! Protocol handlers, mangling input packets, 364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers 365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh. 366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it. 367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will 368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet 369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will 370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet. 371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803) 372 * --ANK (980803)
373 */ 373 */
374 374
375 static inline struct list_head *ptype_head(const struct packet_type *pt) 375 static inline struct list_head *ptype_head(const struct packet_type *pt)
376 { 376 {
377 if (pt->type == htons(ETH_P_ALL)) 377 if (pt->type == htons(ETH_P_ALL))
378 return &ptype_all; 378 return &ptype_all;
379 else 379 else
380 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 380 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
381 } 381 }
382 382
383 /** 383 /**
384 * dev_add_pack - add packet handler 384 * dev_add_pack - add packet handler
385 * @pt: packet type declaration 385 * @pt: packet type declaration
386 * 386 *
387 * Add a protocol handler to the networking stack. The passed &packet_type 387 * Add a protocol handler to the networking stack. The passed &packet_type
388 * is linked into kernel lists and may not be freed until it has been 388 * is linked into kernel lists and may not be freed until it has been
389 * removed from the kernel lists. 389 * removed from the kernel lists.
390 * 390 *
391 * This call does not sleep therefore it can not 391 * This call does not sleep therefore it can not
392 * guarantee all CPU's that are in middle of receiving packets 392 * guarantee all CPU's that are in middle of receiving packets
393 * will see the new packet type (until the next received packet). 393 * will see the new packet type (until the next received packet).
394 */ 394 */
395 395
396 void dev_add_pack(struct packet_type *pt) 396 void dev_add_pack(struct packet_type *pt)
397 { 397 {
398 struct list_head *head = ptype_head(pt); 398 struct list_head *head = ptype_head(pt);
399 399
400 spin_lock(&ptype_lock); 400 spin_lock(&ptype_lock);
401 list_add_rcu(&pt->list, head); 401 list_add_rcu(&pt->list, head);
402 spin_unlock(&ptype_lock); 402 spin_unlock(&ptype_lock);
403 } 403 }
404 EXPORT_SYMBOL(dev_add_pack); 404 EXPORT_SYMBOL(dev_add_pack);
405 405
406 /** 406 /**
407 * __dev_remove_pack - remove packet handler 407 * __dev_remove_pack - remove packet handler
408 * @pt: packet type declaration 408 * @pt: packet type declaration
409 * 409 *
410 * Remove a protocol handler that was previously added to the kernel 410 * Remove a protocol handler that was previously added to the kernel
411 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 411 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
412 * from the kernel lists and can be freed or reused once this function 412 * from the kernel lists and can be freed or reused once this function
413 * returns. 413 * returns.
414 * 414 *
415 * The packet type might still be in use by receivers 415 * The packet type might still be in use by receivers
416 * and must not be freed until after all the CPU's have gone 416 * and must not be freed until after all the CPU's have gone
417 * through a quiescent state. 417 * through a quiescent state.
418 */ 418 */
419 void __dev_remove_pack(struct packet_type *pt) 419 void __dev_remove_pack(struct packet_type *pt)
420 { 420 {
421 struct list_head *head = ptype_head(pt); 421 struct list_head *head = ptype_head(pt);
422 struct packet_type *pt1; 422 struct packet_type *pt1;
423 423
424 spin_lock(&ptype_lock); 424 spin_lock(&ptype_lock);
425 425
426 list_for_each_entry(pt1, head, list) { 426 list_for_each_entry(pt1, head, list) {
427 if (pt == pt1) { 427 if (pt == pt1) {
428 list_del_rcu(&pt->list); 428 list_del_rcu(&pt->list);
429 goto out; 429 goto out;
430 } 430 }
431 } 431 }
432 432
433 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 433 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
434 out: 434 out:
435 spin_unlock(&ptype_lock); 435 spin_unlock(&ptype_lock);
436 } 436 }
437 EXPORT_SYMBOL(__dev_remove_pack); 437 EXPORT_SYMBOL(__dev_remove_pack);
438 438
439 /** 439 /**
440 * dev_remove_pack - remove packet handler 440 * dev_remove_pack - remove packet handler
441 * @pt: packet type declaration 441 * @pt: packet type declaration
442 * 442 *
443 * Remove a protocol handler that was previously added to the kernel 443 * Remove a protocol handler that was previously added to the kernel
444 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 444 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
445 * from the kernel lists and can be freed or reused once this function 445 * from the kernel lists and can be freed or reused once this function
446 * returns. 446 * returns.
447 * 447 *
448 * This call sleeps to guarantee that no CPU is looking at the packet 448 * This call sleeps to guarantee that no CPU is looking at the packet
449 * type after return. 449 * type after return.
450 */ 450 */
451 void dev_remove_pack(struct packet_type *pt) 451 void dev_remove_pack(struct packet_type *pt)
452 { 452 {
453 __dev_remove_pack(pt); 453 __dev_remove_pack(pt);
454 454
455 synchronize_net(); 455 synchronize_net();
456 } 456 }
457 EXPORT_SYMBOL(dev_remove_pack); 457 EXPORT_SYMBOL(dev_remove_pack);
458 458
459 /****************************************************************************** 459 /******************************************************************************
460 460
461 Device Boot-time Settings Routines 461 Device Boot-time Settings Routines
462 462
463 *******************************************************************************/ 463 *******************************************************************************/
464 464
465 /* Boot time configuration table */ 465 /* Boot time configuration table */
466 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 466 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
467 467
468 /** 468 /**
469 * netdev_boot_setup_add - add new setup entry 469 * netdev_boot_setup_add - add new setup entry
470 * @name: name of the device 470 * @name: name of the device
471 * @map: configured settings for the device 471 * @map: configured settings for the device
472 * 472 *
473 * Adds new setup entry to the dev_boot_setup list. The function 473 * Adds new setup entry to the dev_boot_setup list. The function
474 * returns 0 on error and 1 on success. This is a generic routine to 474 * returns 0 on error and 1 on success. This is a generic routine to
475 * all netdevices. 475 * all netdevices.
476 */ 476 */
477 static int netdev_boot_setup_add(char *name, struct ifmap *map) 477 static int netdev_boot_setup_add(char *name, struct ifmap *map)
478 { 478 {
479 struct netdev_boot_setup *s; 479 struct netdev_boot_setup *s;
480 int i; 480 int i;
481 481
482 s = dev_boot_setup; 482 s = dev_boot_setup;
483 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 483 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
484 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 484 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
485 memset(s[i].name, 0, sizeof(s[i].name)); 485 memset(s[i].name, 0, sizeof(s[i].name));
486 strlcpy(s[i].name, name, IFNAMSIZ); 486 strlcpy(s[i].name, name, IFNAMSIZ);
487 memcpy(&s[i].map, map, sizeof(s[i].map)); 487 memcpy(&s[i].map, map, sizeof(s[i].map));
488 break; 488 break;
489 } 489 }
490 } 490 }
491 491
492 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 492 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
493 } 493 }
494 494
495 /** 495 /**
496 * netdev_boot_setup_check - check boot time settings 496 * netdev_boot_setup_check - check boot time settings
497 * @dev: the netdevice 497 * @dev: the netdevice
498 * 498 *
499 * Check boot time settings for the device. 499 * Check boot time settings for the device.
500 * The found settings are set for the device to be used 500 * The found settings are set for the device to be used
501 * later in the device probing. 501 * later in the device probing.
502 * Returns 0 if no settings found, 1 if they are. 502 * Returns 0 if no settings found, 1 if they are.
503 */ 503 */
504 int netdev_boot_setup_check(struct net_device *dev) 504 int netdev_boot_setup_check(struct net_device *dev)
505 { 505 {
506 struct netdev_boot_setup *s = dev_boot_setup; 506 struct netdev_boot_setup *s = dev_boot_setup;
507 int i; 507 int i;
508 508
509 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 509 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
510 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 510 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
511 !strcmp(dev->name, s[i].name)) { 511 !strcmp(dev->name, s[i].name)) {
512 dev->irq = s[i].map.irq; 512 dev->irq = s[i].map.irq;
513 dev->base_addr = s[i].map.base_addr; 513 dev->base_addr = s[i].map.base_addr;
514 dev->mem_start = s[i].map.mem_start; 514 dev->mem_start = s[i].map.mem_start;
515 dev->mem_end = s[i].map.mem_end; 515 dev->mem_end = s[i].map.mem_end;
516 return 1; 516 return 1;
517 } 517 }
518 } 518 }
519 return 0; 519 return 0;
520 } 520 }
521 EXPORT_SYMBOL(netdev_boot_setup_check); 521 EXPORT_SYMBOL(netdev_boot_setup_check);
522 522
523 523
524 /** 524 /**
525 * netdev_boot_base - get address from boot time settings 525 * netdev_boot_base - get address from boot time settings
526 * @prefix: prefix for network device 526 * @prefix: prefix for network device
527 * @unit: id for network device 527 * @unit: id for network device
528 * 528 *
529 * Check boot time settings for the base address of device. 529 * Check boot time settings for the base address of device.
530 * The found settings are set for the device to be used 530 * The found settings are set for the device to be used
531 * later in the device probing. 531 * later in the device probing.
532 * Returns 0 if no settings found. 532 * Returns 0 if no settings found.
533 */ 533 */
534 unsigned long netdev_boot_base(const char *prefix, int unit) 534 unsigned long netdev_boot_base(const char *prefix, int unit)
535 { 535 {
536 const struct netdev_boot_setup *s = dev_boot_setup; 536 const struct netdev_boot_setup *s = dev_boot_setup;
537 char name[IFNAMSIZ]; 537 char name[IFNAMSIZ];
538 int i; 538 int i;
539 539
540 sprintf(name, "%s%d", prefix, unit); 540 sprintf(name, "%s%d", prefix, unit);
541 541
542 /* 542 /*
543 * If device already registered then return base of 1 543 * If device already registered then return base of 1
544 * to indicate not to probe for this interface 544 * to indicate not to probe for this interface
545 */ 545 */
546 if (__dev_get_by_name(&init_net, name)) 546 if (__dev_get_by_name(&init_net, name))
547 return 1; 547 return 1;
548 548
549 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 549 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
550 if (!strcmp(name, s[i].name)) 550 if (!strcmp(name, s[i].name))
551 return s[i].map.base_addr; 551 return s[i].map.base_addr;
552 return 0; 552 return 0;
553 } 553 }
554 554
555 /* 555 /*
556 * Saves at boot time configured settings for any netdevice. 556 * Saves at boot time configured settings for any netdevice.
557 */ 557 */
558 int __init netdev_boot_setup(char *str) 558 int __init netdev_boot_setup(char *str)
559 { 559 {
560 int ints[5]; 560 int ints[5];
561 struct ifmap map; 561 struct ifmap map;
562 562
563 str = get_options(str, ARRAY_SIZE(ints), ints); 563 str = get_options(str, ARRAY_SIZE(ints), ints);
564 if (!str || !*str) 564 if (!str || !*str)
565 return 0; 565 return 0;
566 566
567 /* Save settings */ 567 /* Save settings */
568 memset(&map, 0, sizeof(map)); 568 memset(&map, 0, sizeof(map));
569 if (ints[0] > 0) 569 if (ints[0] > 0)
570 map.irq = ints[1]; 570 map.irq = ints[1];
571 if (ints[0] > 1) 571 if (ints[0] > 1)
572 map.base_addr = ints[2]; 572 map.base_addr = ints[2];
573 if (ints[0] > 2) 573 if (ints[0] > 2)
574 map.mem_start = ints[3]; 574 map.mem_start = ints[3];
575 if (ints[0] > 3) 575 if (ints[0] > 3)
576 map.mem_end = ints[4]; 576 map.mem_end = ints[4];
577 577
578 /* Add new entry to the list */ 578 /* Add new entry to the list */
579 return netdev_boot_setup_add(str, &map); 579 return netdev_boot_setup_add(str, &map);
580 } 580 }
581 581
582 __setup("netdev=", netdev_boot_setup); 582 __setup("netdev=", netdev_boot_setup);
583 583
584 /******************************************************************************* 584 /*******************************************************************************
585 585
586 Device Interface Subroutines 586 Device Interface Subroutines
587 587
588 *******************************************************************************/ 588 *******************************************************************************/
589 589
590 /** 590 /**
591 * __dev_get_by_name - find a device by its name 591 * __dev_get_by_name - find a device by its name
592 * @net: the applicable net namespace 592 * @net: the applicable net namespace
593 * @name: name to find 593 * @name: name to find
594 * 594 *
595 * Find an interface by name. Must be called under RTNL semaphore 595 * Find an interface by name. Must be called under RTNL semaphore
596 * or @dev_base_lock. If the name is found a pointer to the device 596 * or @dev_base_lock. If the name is found a pointer to the device
597 * is returned. If the name is not found then %NULL is returned. The 597 * is returned. If the name is not found then %NULL is returned. The
598 * reference counters are not incremented so the caller must be 598 * reference counters are not incremented so the caller must be
599 * careful with locks. 599 * careful with locks.
600 */ 600 */
601 601
602 struct net_device *__dev_get_by_name(struct net *net, const char *name) 602 struct net_device *__dev_get_by_name(struct net *net, const char *name)
603 { 603 {
604 struct hlist_node *p; 604 struct hlist_node *p;
605 struct net_device *dev; 605 struct net_device *dev;
606 struct hlist_head *head = dev_name_hash(net, name); 606 struct hlist_head *head = dev_name_hash(net, name);
607 607
608 hlist_for_each_entry(dev, p, head, name_hlist) 608 hlist_for_each_entry(dev, p, head, name_hlist)
609 if (!strncmp(dev->name, name, IFNAMSIZ)) 609 if (!strncmp(dev->name, name, IFNAMSIZ))
610 return dev; 610 return dev;
611 611
612 return NULL; 612 return NULL;
613 } 613 }
614 EXPORT_SYMBOL(__dev_get_by_name); 614 EXPORT_SYMBOL(__dev_get_by_name);
615 615
616 /** 616 /**
617 * dev_get_by_name_rcu - find a device by its name 617 * dev_get_by_name_rcu - find a device by its name
618 * @net: the applicable net namespace 618 * @net: the applicable net namespace
619 * @name: name to find 619 * @name: name to find
620 * 620 *
621 * Find an interface by name. 621 * Find an interface by name.
622 * If the name is found a pointer to the device is returned. 622 * If the name is found a pointer to the device is returned.
623 * If the name is not found then %NULL is returned. 623 * If the name is not found then %NULL is returned.
624 * The reference counters are not incremented so the caller must be 624 * The reference counters are not incremented so the caller must be
625 * careful with locks. The caller must hold RCU lock. 625 * careful with locks. The caller must hold RCU lock.
626 */ 626 */
627 627
628 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 628 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
629 { 629 {
630 struct hlist_node *p; 630 struct hlist_node *p;
631 struct net_device *dev; 631 struct net_device *dev;
632 struct hlist_head *head = dev_name_hash(net, name); 632 struct hlist_head *head = dev_name_hash(net, name);
633 633
634 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 634 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
635 if (!strncmp(dev->name, name, IFNAMSIZ)) 635 if (!strncmp(dev->name, name, IFNAMSIZ))
636 return dev; 636 return dev;
637 637
638 return NULL; 638 return NULL;
639 } 639 }
640 EXPORT_SYMBOL(dev_get_by_name_rcu); 640 EXPORT_SYMBOL(dev_get_by_name_rcu);
641 641
642 /** 642 /**
643 * dev_get_by_name - find a device by its name 643 * dev_get_by_name - find a device by its name
644 * @net: the applicable net namespace 644 * @net: the applicable net namespace
645 * @name: name to find 645 * @name: name to find
646 * 646 *
647 * Find an interface by name. This can be called from any 647 * Find an interface by name. This can be called from any
648 * context and does its own locking. The returned handle has 648 * context and does its own locking. The returned handle has
649 * the usage count incremented and the caller must use dev_put() to 649 * the usage count incremented and the caller must use dev_put() to
650 * release it when it is no longer needed. %NULL is returned if no 650 * release it when it is no longer needed. %NULL is returned if no
651 * matching device is found. 651 * matching device is found.
652 */ 652 */
653 653
654 struct net_device *dev_get_by_name(struct net *net, const char *name) 654 struct net_device *dev_get_by_name(struct net *net, const char *name)
655 { 655 {
656 struct net_device *dev; 656 struct net_device *dev;
657 657
658 rcu_read_lock(); 658 rcu_read_lock();
659 dev = dev_get_by_name_rcu(net, name); 659 dev = dev_get_by_name_rcu(net, name);
660 if (dev) 660 if (dev)
661 dev_hold(dev); 661 dev_hold(dev);
662 rcu_read_unlock(); 662 rcu_read_unlock();
663 return dev; 663 return dev;
664 } 664 }
665 EXPORT_SYMBOL(dev_get_by_name); 665 EXPORT_SYMBOL(dev_get_by_name);
666 666
667 /** 667 /**
668 * __dev_get_by_index - find a device by its ifindex 668 * __dev_get_by_index - find a device by its ifindex
669 * @net: the applicable net namespace 669 * @net: the applicable net namespace
670 * @ifindex: index of device 670 * @ifindex: index of device
671 * 671 *
672 * Search for an interface by index. Returns %NULL if the device 672 * Search for an interface by index. Returns %NULL if the device
673 * is not found or a pointer to the device. The device has not 673 * is not found or a pointer to the device. The device has not
674 * had its reference counter increased so the caller must be careful 674 * had its reference counter increased so the caller must be careful
675 * about locking. The caller must hold either the RTNL semaphore 675 * about locking. The caller must hold either the RTNL semaphore
676 * or @dev_base_lock. 676 * or @dev_base_lock.
677 */ 677 */
678 678
679 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 679 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
680 { 680 {
681 struct hlist_node *p; 681 struct hlist_node *p;
682 struct net_device *dev; 682 struct net_device *dev;
683 struct hlist_head *head = dev_index_hash(net, ifindex); 683 struct hlist_head *head = dev_index_hash(net, ifindex);
684 684
685 hlist_for_each_entry(dev, p, head, index_hlist) 685 hlist_for_each_entry(dev, p, head, index_hlist)
686 if (dev->ifindex == ifindex) 686 if (dev->ifindex == ifindex)
687 return dev; 687 return dev;
688 688
689 return NULL; 689 return NULL;
690 } 690 }
691 EXPORT_SYMBOL(__dev_get_by_index); 691 EXPORT_SYMBOL(__dev_get_by_index);
692 692
693 /** 693 /**
694 * dev_get_by_index_rcu - find a device by its ifindex 694 * dev_get_by_index_rcu - find a device by its ifindex
695 * @net: the applicable net namespace 695 * @net: the applicable net namespace
696 * @ifindex: index of device 696 * @ifindex: index of device
697 * 697 *
698 * Search for an interface by index. Returns %NULL if the device 698 * Search for an interface by index. Returns %NULL if the device
699 * is not found or a pointer to the device. The device has not 699 * is not found or a pointer to the device. The device has not
700 * had its reference counter increased so the caller must be careful 700 * had its reference counter increased so the caller must be careful
701 * about locking. The caller must hold RCU lock. 701 * about locking. The caller must hold RCU lock.
702 */ 702 */
703 703
704 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 704 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
705 { 705 {
706 struct hlist_node *p; 706 struct hlist_node *p;
707 struct net_device *dev; 707 struct net_device *dev;
708 struct hlist_head *head = dev_index_hash(net, ifindex); 708 struct hlist_head *head = dev_index_hash(net, ifindex);
709 709
710 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 710 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
711 if (dev->ifindex == ifindex) 711 if (dev->ifindex == ifindex)
712 return dev; 712 return dev;
713 713
714 return NULL; 714 return NULL;
715 } 715 }
716 EXPORT_SYMBOL(dev_get_by_index_rcu); 716 EXPORT_SYMBOL(dev_get_by_index_rcu);
717 717
718 718
719 /** 719 /**
720 * dev_get_by_index - find a device by its ifindex 720 * dev_get_by_index - find a device by its ifindex
721 * @net: the applicable net namespace 721 * @net: the applicable net namespace
722 * @ifindex: index of device 722 * @ifindex: index of device
723 * 723 *
724 * Search for an interface by index. Returns NULL if the device 724 * Search for an interface by index. Returns NULL if the device
725 * is not found or a pointer to the device. The device returned has 725 * is not found or a pointer to the device. The device returned has
726 * had a reference added and the pointer is safe until the user calls 726 * had a reference added and the pointer is safe until the user calls
727 * dev_put to indicate they have finished with it. 727 * dev_put to indicate they have finished with it.
728 */ 728 */
729 729
730 struct net_device *dev_get_by_index(struct net *net, int ifindex) 730 struct net_device *dev_get_by_index(struct net *net, int ifindex)
731 { 731 {
732 struct net_device *dev; 732 struct net_device *dev;
733 733
734 rcu_read_lock(); 734 rcu_read_lock();
735 dev = dev_get_by_index_rcu(net, ifindex); 735 dev = dev_get_by_index_rcu(net, ifindex);
736 if (dev) 736 if (dev)
737 dev_hold(dev); 737 dev_hold(dev);
738 rcu_read_unlock(); 738 rcu_read_unlock();
739 return dev; 739 return dev;
740 } 740 }
741 EXPORT_SYMBOL(dev_get_by_index); 741 EXPORT_SYMBOL(dev_get_by_index);
742 742
743 /** 743 /**
744 * dev_getbyhwaddr - find a device by its hardware address 744 * dev_getbyhwaddr - find a device by its hardware address
745 * @net: the applicable net namespace 745 * @net: the applicable net namespace
746 * @type: media type of device 746 * @type: media type of device
747 * @ha: hardware address 747 * @ha: hardware address
748 * 748 *
749 * Search for an interface by MAC address. Returns NULL if the device 749 * Search for an interface by MAC address. Returns NULL if the device
750 * is not found or a pointer to the device. The caller must hold the 750 * is not found or a pointer to the device. The caller must hold the
751 * rtnl semaphore. The returned device has not had its ref count increased 751 * rtnl semaphore. The returned device has not had its ref count increased
752 * and the caller must therefore be careful about locking 752 * and the caller must therefore be careful about locking
753 * 753 *
754 * BUGS: 754 * BUGS:
755 * If the API was consistent this would be __dev_get_by_hwaddr 755 * If the API was consistent this would be __dev_get_by_hwaddr
756 */ 756 */
757 757
758 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 758 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
759 { 759 {
760 struct net_device *dev; 760 struct net_device *dev;
761 761
762 ASSERT_RTNL(); 762 ASSERT_RTNL();
763 763
764 for_each_netdev(net, dev) 764 for_each_netdev(net, dev)
765 if (dev->type == type && 765 if (dev->type == type &&
766 !memcmp(dev->dev_addr, ha, dev->addr_len)) 766 !memcmp(dev->dev_addr, ha, dev->addr_len))
767 return dev; 767 return dev;
768 768
769 return NULL; 769 return NULL;
770 } 770 }
771 EXPORT_SYMBOL(dev_getbyhwaddr); 771 EXPORT_SYMBOL(dev_getbyhwaddr);
772 772
773 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 773 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 { 774 {
775 struct net_device *dev; 775 struct net_device *dev;
776 776
777 ASSERT_RTNL(); 777 ASSERT_RTNL();
778 for_each_netdev(net, dev) 778 for_each_netdev(net, dev)
779 if (dev->type == type) 779 if (dev->type == type)
780 return dev; 780 return dev;
781 781
782 return NULL; 782 return NULL;
783 } 783 }
784 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 784 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
785 785
786 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 786 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 { 787 {
788 struct net_device *dev, *ret = NULL; 788 struct net_device *dev, *ret = NULL;
789 789
790 rcu_read_lock(); 790 rcu_read_lock();
791 for_each_netdev_rcu(net, dev) 791 for_each_netdev_rcu(net, dev)
792 if (dev->type == type) { 792 if (dev->type == type) {
793 dev_hold(dev); 793 dev_hold(dev);
794 ret = dev; 794 ret = dev;
795 break; 795 break;
796 } 796 }
797 rcu_read_unlock(); 797 rcu_read_unlock();
798 return ret; 798 return ret;
799 } 799 }
800 EXPORT_SYMBOL(dev_getfirstbyhwtype); 800 EXPORT_SYMBOL(dev_getfirstbyhwtype);
801 801
802 /** 802 /**
803 * dev_get_by_flags_rcu - find any device with given flags 803 * dev_get_by_flags_rcu - find any device with given flags
804 * @net: the applicable net namespace 804 * @net: the applicable net namespace
805 * @if_flags: IFF_* values 805 * @if_flags: IFF_* values
806 * @mask: bitmask of bits in if_flags to check 806 * @mask: bitmask of bits in if_flags to check
807 * 807 *
808 * Search for any interface with the given flags. Returns NULL if a device 808 * Search for any interface with the given flags. Returns NULL if a device
809 * is not found or a pointer to the device. Must be called inside 809 * is not found or a pointer to the device. Must be called inside
810 * rcu_read_lock(), and result refcount is unchanged. 810 * rcu_read_lock(), and result refcount is unchanged.
811 */ 811 */
812 812
813 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 813 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
814 unsigned short mask) 814 unsigned short mask)
815 { 815 {
816 struct net_device *dev, *ret; 816 struct net_device *dev, *ret;
817 817
818 ret = NULL; 818 ret = NULL;
819 for_each_netdev_rcu(net, dev) { 819 for_each_netdev_rcu(net, dev) {
820 if (((dev->flags ^ if_flags) & mask) == 0) { 820 if (((dev->flags ^ if_flags) & mask) == 0) {
821 ret = dev; 821 ret = dev;
822 break; 822 break;
823 } 823 }
824 } 824 }
825 return ret; 825 return ret;
826 } 826 }
827 EXPORT_SYMBOL(dev_get_by_flags_rcu); 827 EXPORT_SYMBOL(dev_get_by_flags_rcu);
828 828
829 /** 829 /**
830 * dev_valid_name - check if name is okay for network device 830 * dev_valid_name - check if name is okay for network device
831 * @name: name string 831 * @name: name string
832 * 832 *
833 * Network device names need to be valid file names to 833 * Network device names need to be valid file names to
834 * to allow sysfs to work. We also disallow any kind of 834 * to allow sysfs to work. We also disallow any kind of
835 * whitespace. 835 * whitespace.
836 */ 836 */
837 int dev_valid_name(const char *name) 837 int dev_valid_name(const char *name)
838 { 838 {
839 if (*name == '\0') 839 if (*name == '\0')
840 return 0; 840 return 0;
841 if (strlen(name) >= IFNAMSIZ) 841 if (strlen(name) >= IFNAMSIZ)
842 return 0; 842 return 0;
843 if (!strcmp(name, ".") || !strcmp(name, "..")) 843 if (!strcmp(name, ".") || !strcmp(name, ".."))
844 return 0; 844 return 0;
845 845
846 while (*name) { 846 while (*name) {
847 if (*name == '/' || isspace(*name)) 847 if (*name == '/' || isspace(*name))
848 return 0; 848 return 0;
849 name++; 849 name++;
850 } 850 }
851 return 1; 851 return 1;
852 } 852 }
853 EXPORT_SYMBOL(dev_valid_name); 853 EXPORT_SYMBOL(dev_valid_name);
854 854
855 /** 855 /**
856 * __dev_alloc_name - allocate a name for a device 856 * __dev_alloc_name - allocate a name for a device
857 * @net: network namespace to allocate the device name in 857 * @net: network namespace to allocate the device name in
858 * @name: name format string 858 * @name: name format string
859 * @buf: scratch buffer and result name string 859 * @buf: scratch buffer and result name string
860 * 860 *
861 * Passed a format string - eg "lt%d" it will try and find a suitable 861 * Passed a format string - eg "lt%d" it will try and find a suitable
862 * id. It scans list of devices to build up a free map, then chooses 862 * id. It scans list of devices to build up a free map, then chooses
863 * the first empty slot. The caller must hold the dev_base or rtnl lock 863 * the first empty slot. The caller must hold the dev_base or rtnl lock
864 * while allocating the name and adding the device in order to avoid 864 * while allocating the name and adding the device in order to avoid
865 * duplicates. 865 * duplicates.
866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
867 * Returns the number of the unit assigned or a negative errno code. 867 * Returns the number of the unit assigned or a negative errno code.
868 */ 868 */
869 869
870 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 870 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
871 { 871 {
872 int i = 0; 872 int i = 0;
873 const char *p; 873 const char *p;
874 const int max_netdevices = 8*PAGE_SIZE; 874 const int max_netdevices = 8*PAGE_SIZE;
875 unsigned long *inuse; 875 unsigned long *inuse;
876 struct net_device *d; 876 struct net_device *d;
877 877
878 p = strnchr(name, IFNAMSIZ-1, '%'); 878 p = strnchr(name, IFNAMSIZ-1, '%');
879 if (p) { 879 if (p) {
880 /* 880 /*
881 * Verify the string as this thing may have come from 881 * Verify the string as this thing may have come from
882 * the user. There must be either one "%d" and no other "%" 882 * the user. There must be either one "%d" and no other "%"
883 * characters. 883 * characters.
884 */ 884 */
885 if (p[1] != 'd' || strchr(p + 2, '%')) 885 if (p[1] != 'd' || strchr(p + 2, '%'))
886 return -EINVAL; 886 return -EINVAL;
887 887
888 /* Use one page as a bit array of possible slots */ 888 /* Use one page as a bit array of possible slots */
889 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 889 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
890 if (!inuse) 890 if (!inuse)
891 return -ENOMEM; 891 return -ENOMEM;
892 892
893 for_each_netdev(net, d) { 893 for_each_netdev(net, d) {
894 if (!sscanf(d->name, name, &i)) 894 if (!sscanf(d->name, name, &i))
895 continue; 895 continue;
896 if (i < 0 || i >= max_netdevices) 896 if (i < 0 || i >= max_netdevices)
897 continue; 897 continue;
898 898
899 /* avoid cases where sscanf is not exact inverse of printf */ 899 /* avoid cases where sscanf is not exact inverse of printf */
900 snprintf(buf, IFNAMSIZ, name, i); 900 snprintf(buf, IFNAMSIZ, name, i);
901 if (!strncmp(buf, d->name, IFNAMSIZ)) 901 if (!strncmp(buf, d->name, IFNAMSIZ))
902 set_bit(i, inuse); 902 set_bit(i, inuse);
903 } 903 }
904 904
905 i = find_first_zero_bit(inuse, max_netdevices); 905 i = find_first_zero_bit(inuse, max_netdevices);
906 free_page((unsigned long) inuse); 906 free_page((unsigned long) inuse);
907 } 907 }
908 908
909 if (buf != name) 909 if (buf != name)
910 snprintf(buf, IFNAMSIZ, name, i); 910 snprintf(buf, IFNAMSIZ, name, i);
911 if (!__dev_get_by_name(net, buf)) 911 if (!__dev_get_by_name(net, buf))
912 return i; 912 return i;
913 913
914 /* It is possible to run out of possible slots 914 /* It is possible to run out of possible slots
915 * when the name is long and there isn't enough space left 915 * when the name is long and there isn't enough space left
916 * for the digits, or if all bits are used. 916 * for the digits, or if all bits are used.
917 */ 917 */
918 return -ENFILE; 918 return -ENFILE;
919 } 919 }
920 920
921 /** 921 /**
922 * dev_alloc_name - allocate a name for a device 922 * dev_alloc_name - allocate a name for a device
923 * @dev: device 923 * @dev: device
924 * @name: name format string 924 * @name: name format string
925 * 925 *
926 * Passed a format string - eg "lt%d" it will try and find a suitable 926 * Passed a format string - eg "lt%d" it will try and find a suitable
927 * id. It scans list of devices to build up a free map, then chooses 927 * id. It scans list of devices to build up a free map, then chooses
928 * the first empty slot. The caller must hold the dev_base or rtnl lock 928 * the first empty slot. The caller must hold the dev_base or rtnl lock
929 * while allocating the name and adding the device in order to avoid 929 * while allocating the name and adding the device in order to avoid
930 * duplicates. 930 * duplicates.
931 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 931 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
932 * Returns the number of the unit assigned or a negative errno code. 932 * Returns the number of the unit assigned or a negative errno code.
933 */ 933 */
934 934
935 int dev_alloc_name(struct net_device *dev, const char *name) 935 int dev_alloc_name(struct net_device *dev, const char *name)
936 { 936 {
937 char buf[IFNAMSIZ]; 937 char buf[IFNAMSIZ];
938 struct net *net; 938 struct net *net;
939 int ret; 939 int ret;
940 940
941 BUG_ON(!dev_net(dev)); 941 BUG_ON(!dev_net(dev));
942 net = dev_net(dev); 942 net = dev_net(dev);
943 ret = __dev_alloc_name(net, name, buf); 943 ret = __dev_alloc_name(net, name, buf);
944 if (ret >= 0) 944 if (ret >= 0)
945 strlcpy(dev->name, buf, IFNAMSIZ); 945 strlcpy(dev->name, buf, IFNAMSIZ);
946 return ret; 946 return ret;
947 } 947 }
948 EXPORT_SYMBOL(dev_alloc_name); 948 EXPORT_SYMBOL(dev_alloc_name);
949 949
950 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt) 950 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
951 { 951 {
952 struct net *net; 952 struct net *net;
953 953
954 BUG_ON(!dev_net(dev)); 954 BUG_ON(!dev_net(dev));
955 net = dev_net(dev); 955 net = dev_net(dev);
956 956
957 if (!dev_valid_name(name)) 957 if (!dev_valid_name(name))
958 return -EINVAL; 958 return -EINVAL;
959 959
960 if (fmt && strchr(name, '%')) 960 if (fmt && strchr(name, '%'))
961 return dev_alloc_name(dev, name); 961 return dev_alloc_name(dev, name);
962 else if (__dev_get_by_name(net, name)) 962 else if (__dev_get_by_name(net, name))
963 return -EEXIST; 963 return -EEXIST;
964 else if (dev->name != name) 964 else if (dev->name != name)
965 strlcpy(dev->name, name, IFNAMSIZ); 965 strlcpy(dev->name, name, IFNAMSIZ);
966 966
967 return 0; 967 return 0;
968 } 968 }
969 969
970 /** 970 /**
971 * dev_change_name - change name of a device 971 * dev_change_name - change name of a device
972 * @dev: device 972 * @dev: device
973 * @newname: name (or format string) must be at least IFNAMSIZ 973 * @newname: name (or format string) must be at least IFNAMSIZ
974 * 974 *
975 * Change name of a device, can pass format strings "eth%d". 975 * Change name of a device, can pass format strings "eth%d".
976 * for wildcarding. 976 * for wildcarding.
977 */ 977 */
978 int dev_change_name(struct net_device *dev, const char *newname) 978 int dev_change_name(struct net_device *dev, const char *newname)
979 { 979 {
980 char oldname[IFNAMSIZ]; 980 char oldname[IFNAMSIZ];
981 int err = 0; 981 int err = 0;
982 int ret; 982 int ret;
983 struct net *net; 983 struct net *net;
984 984
985 ASSERT_RTNL(); 985 ASSERT_RTNL();
986 BUG_ON(!dev_net(dev)); 986 BUG_ON(!dev_net(dev));
987 987
988 net = dev_net(dev); 988 net = dev_net(dev);
989 if (dev->flags & IFF_UP) 989 if (dev->flags & IFF_UP)
990 return -EBUSY; 990 return -EBUSY;
991 991
992 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 992 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
993 return 0; 993 return 0;
994 994
995 memcpy(oldname, dev->name, IFNAMSIZ); 995 memcpy(oldname, dev->name, IFNAMSIZ);
996 996
997 err = dev_get_valid_name(dev, newname, 1); 997 err = dev_get_valid_name(dev, newname, 1);
998 if (err < 0) 998 if (err < 0)
999 return err; 999 return err;
1000 1000
1001 rollback: 1001 rollback:
1002 ret = device_rename(&dev->dev, dev->name); 1002 ret = device_rename(&dev->dev, dev->name);
1003 if (ret) { 1003 if (ret) {
1004 memcpy(dev->name, oldname, IFNAMSIZ); 1004 memcpy(dev->name, oldname, IFNAMSIZ);
1005 return ret; 1005 return ret;
1006 } 1006 }
1007 1007
1008 write_lock_bh(&dev_base_lock); 1008 write_lock_bh(&dev_base_lock);
1009 hlist_del(&dev->name_hlist); 1009 hlist_del(&dev->name_hlist);
1010 write_unlock_bh(&dev_base_lock); 1010 write_unlock_bh(&dev_base_lock);
1011 1011
1012 synchronize_rcu(); 1012 synchronize_rcu();
1013 1013
1014 write_lock_bh(&dev_base_lock); 1014 write_lock_bh(&dev_base_lock);
1015 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1015 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1016 write_unlock_bh(&dev_base_lock); 1016 write_unlock_bh(&dev_base_lock);
1017 1017
1018 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1018 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1019 ret = notifier_to_errno(ret); 1019 ret = notifier_to_errno(ret);
1020 1020
1021 if (ret) { 1021 if (ret) {
1022 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1022 /* err >= 0 after dev_alloc_name() or stores the first errno */
1023 if (err >= 0) { 1023 if (err >= 0) {
1024 err = ret; 1024 err = ret;
1025 memcpy(dev->name, oldname, IFNAMSIZ); 1025 memcpy(dev->name, oldname, IFNAMSIZ);
1026 goto rollback; 1026 goto rollback;
1027 } else { 1027 } else {
1028 printk(KERN_ERR 1028 printk(KERN_ERR
1029 "%s: name change rollback failed: %d.\n", 1029 "%s: name change rollback failed: %d.\n",
1030 dev->name, ret); 1030 dev->name, ret);
1031 } 1031 }
1032 } 1032 }
1033 1033
1034 return err; 1034 return err;
1035 } 1035 }
1036 1036
1037 /** 1037 /**
1038 * dev_set_alias - change ifalias of a device 1038 * dev_set_alias - change ifalias of a device
1039 * @dev: device 1039 * @dev: device
1040 * @alias: name up to IFALIASZ 1040 * @alias: name up to IFALIASZ
1041 * @len: limit of bytes to copy from info 1041 * @len: limit of bytes to copy from info
1042 * 1042 *
1043 * Set ifalias for a device, 1043 * Set ifalias for a device,
1044 */ 1044 */
1045 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1045 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1046 { 1046 {
1047 ASSERT_RTNL(); 1047 ASSERT_RTNL();
1048 1048
1049 if (len >= IFALIASZ) 1049 if (len >= IFALIASZ)
1050 return -EINVAL; 1050 return -EINVAL;
1051 1051
1052 if (!len) { 1052 if (!len) {
1053 if (dev->ifalias) { 1053 if (dev->ifalias) {
1054 kfree(dev->ifalias); 1054 kfree(dev->ifalias);
1055 dev->ifalias = NULL; 1055 dev->ifalias = NULL;
1056 } 1056 }
1057 return 0; 1057 return 0;
1058 } 1058 }
1059 1059
1060 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1060 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1061 if (!dev->ifalias) 1061 if (!dev->ifalias)
1062 return -ENOMEM; 1062 return -ENOMEM;
1063 1063
1064 strlcpy(dev->ifalias, alias, len+1); 1064 strlcpy(dev->ifalias, alias, len+1);
1065 return len; 1065 return len;
1066 } 1066 }
1067 1067
1068 1068
1069 /** 1069 /**
1070 * netdev_features_change - device changes features 1070 * netdev_features_change - device changes features
1071 * @dev: device to cause notification 1071 * @dev: device to cause notification
1072 * 1072 *
1073 * Called to indicate a device has changed features. 1073 * Called to indicate a device has changed features.
1074 */ 1074 */
1075 void netdev_features_change(struct net_device *dev) 1075 void netdev_features_change(struct net_device *dev)
1076 { 1076 {
1077 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1077 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1078 } 1078 }
1079 EXPORT_SYMBOL(netdev_features_change); 1079 EXPORT_SYMBOL(netdev_features_change);
1080 1080
1081 /** 1081 /**
1082 * netdev_state_change - device changes state 1082 * netdev_state_change - device changes state
1083 * @dev: device to cause notification 1083 * @dev: device to cause notification
1084 * 1084 *
1085 * Called to indicate a device has changed state. This function calls 1085 * Called to indicate a device has changed state. This function calls
1086 * the notifier chains for netdev_chain and sends a NEWLINK message 1086 * the notifier chains for netdev_chain and sends a NEWLINK message
1087 * to the routing socket. 1087 * to the routing socket.
1088 */ 1088 */
1089 void netdev_state_change(struct net_device *dev) 1089 void netdev_state_change(struct net_device *dev)
1090 { 1090 {
1091 if (dev->flags & IFF_UP) { 1091 if (dev->flags & IFF_UP) {
1092 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1092 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1093 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1093 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1094 } 1094 }
1095 } 1095 }
1096 EXPORT_SYMBOL(netdev_state_change); 1096 EXPORT_SYMBOL(netdev_state_change);
1097 1097
1098 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1098 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1099 { 1099 {
1100 return call_netdevice_notifiers(event, dev); 1100 return call_netdevice_notifiers(event, dev);
1101 } 1101 }
1102 EXPORT_SYMBOL(netdev_bonding_change); 1102 EXPORT_SYMBOL(netdev_bonding_change);
1103 1103
1104 /** 1104 /**
1105 * dev_load - load a network module 1105 * dev_load - load a network module
1106 * @net: the applicable net namespace 1106 * @net: the applicable net namespace
1107 * @name: name of interface 1107 * @name: name of interface
1108 * 1108 *
1109 * If a network interface is not present and the process has suitable 1109 * If a network interface is not present and the process has suitable
1110 * privileges this function loads the module. If module loading is not 1110 * privileges this function loads the module. If module loading is not
1111 * available in this kernel then it becomes a nop. 1111 * available in this kernel then it becomes a nop.
1112 */ 1112 */
1113 1113
1114 void dev_load(struct net *net, const char *name) 1114 void dev_load(struct net *net, const char *name)
1115 { 1115 {
1116 struct net_device *dev; 1116 struct net_device *dev;
1117 1117
1118 rcu_read_lock(); 1118 rcu_read_lock();
1119 dev = dev_get_by_name_rcu(net, name); 1119 dev = dev_get_by_name_rcu(net, name);
1120 rcu_read_unlock(); 1120 rcu_read_unlock();
1121 1121
1122 if (!dev && capable(CAP_NET_ADMIN)) 1122 if (!dev && capable(CAP_NET_ADMIN))
1123 request_module("%s", name); 1123 request_module("%s", name);
1124 } 1124 }
1125 EXPORT_SYMBOL(dev_load); 1125 EXPORT_SYMBOL(dev_load);
1126 1126
1127 static int __dev_open(struct net_device *dev) 1127 static int __dev_open(struct net_device *dev)
1128 { 1128 {
1129 const struct net_device_ops *ops = dev->netdev_ops; 1129 const struct net_device_ops *ops = dev->netdev_ops;
1130 int ret; 1130 int ret;
1131 1131
1132 ASSERT_RTNL(); 1132 ASSERT_RTNL();
1133 1133
1134 /* 1134 /*
1135 * Is it even present? 1135 * Is it even present?
1136 */ 1136 */
1137 if (!netif_device_present(dev)) 1137 if (!netif_device_present(dev))
1138 return -ENODEV; 1138 return -ENODEV;
1139 1139
1140 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1140 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1141 ret = notifier_to_errno(ret); 1141 ret = notifier_to_errno(ret);
1142 if (ret) 1142 if (ret)
1143 return ret; 1143 return ret;
1144 1144
1145 /* 1145 /*
1146 * Call device private open method 1146 * Call device private open method
1147 */ 1147 */
1148 set_bit(__LINK_STATE_START, &dev->state); 1148 set_bit(__LINK_STATE_START, &dev->state);
1149 1149
1150 if (ops->ndo_validate_addr) 1150 if (ops->ndo_validate_addr)
1151 ret = ops->ndo_validate_addr(dev); 1151 ret = ops->ndo_validate_addr(dev);
1152 1152
1153 if (!ret && ops->ndo_open) 1153 if (!ret && ops->ndo_open)
1154 ret = ops->ndo_open(dev); 1154 ret = ops->ndo_open(dev);
1155 1155
1156 /* 1156 /*
1157 * If it went open OK then: 1157 * If it went open OK then:
1158 */ 1158 */
1159 1159
1160 if (ret) 1160 if (ret)
1161 clear_bit(__LINK_STATE_START, &dev->state); 1161 clear_bit(__LINK_STATE_START, &dev->state);
1162 else { 1162 else {
1163 /* 1163 /*
1164 * Set the flags. 1164 * Set the flags.
1165 */ 1165 */
1166 dev->flags |= IFF_UP; 1166 dev->flags |= IFF_UP;
1167 1167
1168 /* 1168 /*
1169 * Enable NET_DMA 1169 * Enable NET_DMA
1170 */ 1170 */
1171 net_dmaengine_get(); 1171 net_dmaengine_get();
1172 1172
1173 /* 1173 /*
1174 * Initialize multicasting status 1174 * Initialize multicasting status
1175 */ 1175 */
1176 dev_set_rx_mode(dev); 1176 dev_set_rx_mode(dev);
1177 1177
1178 /* 1178 /*
1179 * Wakeup transmit queue engine 1179 * Wakeup transmit queue engine
1180 */ 1180 */
1181 dev_activate(dev); 1181 dev_activate(dev);
1182 } 1182 }
1183 1183
1184 return ret; 1184 return ret;
1185 } 1185 }
1186 1186
1187 /** 1187 /**
1188 * dev_open - prepare an interface for use. 1188 * dev_open - prepare an interface for use.
1189 * @dev: device to open 1189 * @dev: device to open
1190 * 1190 *
1191 * Takes a device from down to up state. The device's private open 1191 * Takes a device from down to up state. The device's private open
1192 * function is invoked and then the multicast lists are loaded. Finally 1192 * function is invoked and then the multicast lists are loaded. Finally
1193 * the device is moved into the up state and a %NETDEV_UP message is 1193 * the device is moved into the up state and a %NETDEV_UP message is
1194 * sent to the netdev notifier chain. 1194 * sent to the netdev notifier chain.
1195 * 1195 *
1196 * Calling this function on an active interface is a nop. On a failure 1196 * Calling this function on an active interface is a nop. On a failure
1197 * a negative errno code is returned. 1197 * a negative errno code is returned.
1198 */ 1198 */
1199 int dev_open(struct net_device *dev) 1199 int dev_open(struct net_device *dev)
1200 { 1200 {
1201 int ret; 1201 int ret;
1202 1202
1203 /* 1203 /*
1204 * Is it already up? 1204 * Is it already up?
1205 */ 1205 */
1206 if (dev->flags & IFF_UP) 1206 if (dev->flags & IFF_UP)
1207 return 0; 1207 return 0;
1208 1208
1209 /* 1209 /*
1210 * Open device 1210 * Open device
1211 */ 1211 */
1212 ret = __dev_open(dev); 1212 ret = __dev_open(dev);
1213 if (ret < 0) 1213 if (ret < 0)
1214 return ret; 1214 return ret;
1215 1215
1216 /* 1216 /*
1217 * ... and announce new interface. 1217 * ... and announce new interface.
1218 */ 1218 */
1219 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1219 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1220 call_netdevice_notifiers(NETDEV_UP, dev); 1220 call_netdevice_notifiers(NETDEV_UP, dev);
1221 1221
1222 return ret; 1222 return ret;
1223 } 1223 }
1224 EXPORT_SYMBOL(dev_open); 1224 EXPORT_SYMBOL(dev_open);
1225 1225
1226 static int __dev_close(struct net_device *dev) 1226 static int __dev_close(struct net_device *dev)
1227 { 1227 {
1228 const struct net_device_ops *ops = dev->netdev_ops; 1228 const struct net_device_ops *ops = dev->netdev_ops;
1229 1229
1230 ASSERT_RTNL(); 1230 ASSERT_RTNL();
1231 might_sleep(); 1231 might_sleep();
1232 1232
1233 /* 1233 /*
1234 * Tell people we are going down, so that they can 1234 * Tell people we are going down, so that they can
1235 * prepare to death, when device is still operating. 1235 * prepare to death, when device is still operating.
1236 */ 1236 */
1237 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1237 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1238 1238
1239 clear_bit(__LINK_STATE_START, &dev->state); 1239 clear_bit(__LINK_STATE_START, &dev->state);
1240 1240
1241 /* Synchronize to scheduled poll. We cannot touch poll list, 1241 /* Synchronize to scheduled poll. We cannot touch poll list,
1242 * it can be even on different cpu. So just clear netif_running(). 1242 * it can be even on different cpu. So just clear netif_running().
1243 * 1243 *
1244 * dev->stop() will invoke napi_disable() on all of it's 1244 * dev->stop() will invoke napi_disable() on all of it's
1245 * napi_struct instances on this device. 1245 * napi_struct instances on this device.
1246 */ 1246 */
1247 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1247 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1248 1248
1249 dev_deactivate(dev); 1249 dev_deactivate(dev);
1250 1250
1251 /* 1251 /*
1252 * Call the device specific close. This cannot fail. 1252 * Call the device specific close. This cannot fail.
1253 * Only if device is UP 1253 * Only if device is UP
1254 * 1254 *
1255 * We allow it to be called even after a DETACH hot-plug 1255 * We allow it to be called even after a DETACH hot-plug
1256 * event. 1256 * event.
1257 */ 1257 */
1258 if (ops->ndo_stop) 1258 if (ops->ndo_stop)
1259 ops->ndo_stop(dev); 1259 ops->ndo_stop(dev);
1260 1260
1261 /* 1261 /*
1262 * Device is now down. 1262 * Device is now down.
1263 */ 1263 */
1264 1264
1265 dev->flags &= ~IFF_UP; 1265 dev->flags &= ~IFF_UP;
1266 1266
1267 /* 1267 /*
1268 * Shutdown NET_DMA 1268 * Shutdown NET_DMA
1269 */ 1269 */
1270 net_dmaengine_put(); 1270 net_dmaengine_put();
1271 1271
1272 return 0; 1272 return 0;
1273 } 1273 }
1274 1274
1275 /** 1275 /**
1276 * dev_close - shutdown an interface. 1276 * dev_close - shutdown an interface.
1277 * @dev: device to shutdown 1277 * @dev: device to shutdown
1278 * 1278 *
1279 * This function moves an active device into down state. A 1279 * This function moves an active device into down state. A
1280 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1280 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1281 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1281 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1282 * chain. 1282 * chain.
1283 */ 1283 */
1284 int dev_close(struct net_device *dev) 1284 int dev_close(struct net_device *dev)
1285 { 1285 {
1286 if (!(dev->flags & IFF_UP)) 1286 if (!(dev->flags & IFF_UP))
1287 return 0; 1287 return 0;
1288 1288
1289 __dev_close(dev); 1289 __dev_close(dev);
1290 1290
1291 /* 1291 /*
1292 * Tell people we are down 1292 * Tell people we are down
1293 */ 1293 */
1294 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1294 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1295 call_netdevice_notifiers(NETDEV_DOWN, dev); 1295 call_netdevice_notifiers(NETDEV_DOWN, dev);
1296 1296
1297 return 0; 1297 return 0;
1298 } 1298 }
1299 EXPORT_SYMBOL(dev_close); 1299 EXPORT_SYMBOL(dev_close);
1300 1300
1301 1301
1302 /** 1302 /**
1303 * dev_disable_lro - disable Large Receive Offload on a device 1303 * dev_disable_lro - disable Large Receive Offload on a device
1304 * @dev: device 1304 * @dev: device
1305 * 1305 *
1306 * Disable Large Receive Offload (LRO) on a net device. Must be 1306 * Disable Large Receive Offload (LRO) on a net device. Must be
1307 * called under RTNL. This is needed if received packets may be 1307 * called under RTNL. This is needed if received packets may be
1308 * forwarded to another interface. 1308 * forwarded to another interface.
1309 */ 1309 */
1310 void dev_disable_lro(struct net_device *dev) 1310 void dev_disable_lro(struct net_device *dev)
1311 { 1311 {
1312 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1312 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1313 dev->ethtool_ops->set_flags) { 1313 dev->ethtool_ops->set_flags) {
1314 u32 flags = dev->ethtool_ops->get_flags(dev); 1314 u32 flags = dev->ethtool_ops->get_flags(dev);
1315 if (flags & ETH_FLAG_LRO) { 1315 if (flags & ETH_FLAG_LRO) {
1316 flags &= ~ETH_FLAG_LRO; 1316 flags &= ~ETH_FLAG_LRO;
1317 dev->ethtool_ops->set_flags(dev, flags); 1317 dev->ethtool_ops->set_flags(dev, flags);
1318 } 1318 }
1319 } 1319 }
1320 WARN_ON(dev->features & NETIF_F_LRO); 1320 WARN_ON(dev->features & NETIF_F_LRO);
1321 } 1321 }
1322 EXPORT_SYMBOL(dev_disable_lro); 1322 EXPORT_SYMBOL(dev_disable_lro);
1323 1323
1324 1324
1325 static int dev_boot_phase = 1; 1325 static int dev_boot_phase = 1;
1326 1326
1327 /* 1327 /*
1328 * Device change register/unregister. These are not inline or static 1328 * Device change register/unregister. These are not inline or static
1329 * as we export them to the world. 1329 * as we export them to the world.
1330 */ 1330 */
1331 1331
1332 /** 1332 /**
1333 * register_netdevice_notifier - register a network notifier block 1333 * register_netdevice_notifier - register a network notifier block
1334 * @nb: notifier 1334 * @nb: notifier
1335 * 1335 *
1336 * Register a notifier to be called when network device events occur. 1336 * Register a notifier to be called when network device events occur.
1337 * The notifier passed is linked into the kernel structures and must 1337 * The notifier passed is linked into the kernel structures and must
1338 * not be reused until it has been unregistered. A negative errno code 1338 * not be reused until it has been unregistered. A negative errno code
1339 * is returned on a failure. 1339 * is returned on a failure.
1340 * 1340 *
1341 * When registered all registration and up events are replayed 1341 * When registered all registration and up events are replayed
1342 * to the new notifier to allow device to have a race free 1342 * to the new notifier to allow device to have a race free
1343 * view of the network device list. 1343 * view of the network device list.
1344 */ 1344 */
1345 1345
1346 int register_netdevice_notifier(struct notifier_block *nb) 1346 int register_netdevice_notifier(struct notifier_block *nb)
1347 { 1347 {
1348 struct net_device *dev; 1348 struct net_device *dev;
1349 struct net_device *last; 1349 struct net_device *last;
1350 struct net *net; 1350 struct net *net;
1351 int err; 1351 int err;
1352 1352
1353 rtnl_lock(); 1353 rtnl_lock();
1354 err = raw_notifier_chain_register(&netdev_chain, nb); 1354 err = raw_notifier_chain_register(&netdev_chain, nb);
1355 if (err) 1355 if (err)
1356 goto unlock; 1356 goto unlock;
1357 if (dev_boot_phase) 1357 if (dev_boot_phase)
1358 goto unlock; 1358 goto unlock;
1359 for_each_net(net) { 1359 for_each_net(net) {
1360 for_each_netdev(net, dev) { 1360 for_each_netdev(net, dev) {
1361 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1361 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1362 err = notifier_to_errno(err); 1362 err = notifier_to_errno(err);
1363 if (err) 1363 if (err)
1364 goto rollback; 1364 goto rollback;
1365 1365
1366 if (!(dev->flags & IFF_UP)) 1366 if (!(dev->flags & IFF_UP))
1367 continue; 1367 continue;
1368 1368
1369 nb->notifier_call(nb, NETDEV_UP, dev); 1369 nb->notifier_call(nb, NETDEV_UP, dev);
1370 } 1370 }
1371 } 1371 }
1372 1372
1373 unlock: 1373 unlock:
1374 rtnl_unlock(); 1374 rtnl_unlock();
1375 return err; 1375 return err;
1376 1376
1377 rollback: 1377 rollback:
1378 last = dev; 1378 last = dev;
1379 for_each_net(net) { 1379 for_each_net(net) {
1380 for_each_netdev(net, dev) { 1380 for_each_netdev(net, dev) {
1381 if (dev == last) 1381 if (dev == last)
1382 break; 1382 break;
1383 1383
1384 if (dev->flags & IFF_UP) { 1384 if (dev->flags & IFF_UP) {
1385 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1385 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1386 nb->notifier_call(nb, NETDEV_DOWN, dev); 1386 nb->notifier_call(nb, NETDEV_DOWN, dev);
1387 } 1387 }
1388 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1388 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1389 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1389 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1390 } 1390 }
1391 } 1391 }
1392 1392
1393 raw_notifier_chain_unregister(&netdev_chain, nb); 1393 raw_notifier_chain_unregister(&netdev_chain, nb);
1394 goto unlock; 1394 goto unlock;
1395 } 1395 }
1396 EXPORT_SYMBOL(register_netdevice_notifier); 1396 EXPORT_SYMBOL(register_netdevice_notifier);
1397 1397
1398 /** 1398 /**
1399 * unregister_netdevice_notifier - unregister a network notifier block 1399 * unregister_netdevice_notifier - unregister a network notifier block
1400 * @nb: notifier 1400 * @nb: notifier
1401 * 1401 *
1402 * Unregister a notifier previously registered by 1402 * Unregister a notifier previously registered by
1403 * register_netdevice_notifier(). The notifier is unlinked into the 1403 * register_netdevice_notifier(). The notifier is unlinked into the
1404 * kernel structures and may then be reused. A negative errno code 1404 * kernel structures and may then be reused. A negative errno code
1405 * is returned on a failure. 1405 * is returned on a failure.
1406 */ 1406 */
1407 1407
1408 int unregister_netdevice_notifier(struct notifier_block *nb) 1408 int unregister_netdevice_notifier(struct notifier_block *nb)
1409 { 1409 {
1410 int err; 1410 int err;
1411 1411
1412 rtnl_lock(); 1412 rtnl_lock();
1413 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1413 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1414 rtnl_unlock(); 1414 rtnl_unlock();
1415 return err; 1415 return err;
1416 } 1416 }
1417 EXPORT_SYMBOL(unregister_netdevice_notifier); 1417 EXPORT_SYMBOL(unregister_netdevice_notifier);
1418 1418
1419 /** 1419 /**
1420 * call_netdevice_notifiers - call all network notifier blocks 1420 * call_netdevice_notifiers - call all network notifier blocks
1421 * @val: value passed unmodified to notifier function 1421 * @val: value passed unmodified to notifier function
1422 * @dev: net_device pointer passed unmodified to notifier function 1422 * @dev: net_device pointer passed unmodified to notifier function
1423 * 1423 *
1424 * Call all network notifier blocks. Parameters and return value 1424 * Call all network notifier blocks. Parameters and return value
1425 * are as for raw_notifier_call_chain(). 1425 * are as for raw_notifier_call_chain().
1426 */ 1426 */
1427 1427
1428 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1428 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1429 { 1429 {
1430 ASSERT_RTNL(); 1430 ASSERT_RTNL();
1431 return raw_notifier_call_chain(&netdev_chain, val, dev); 1431 return raw_notifier_call_chain(&netdev_chain, val, dev);
1432 } 1432 }
1433 1433
1434 /* When > 0 there are consumers of rx skb time stamps */ 1434 /* When > 0 there are consumers of rx skb time stamps */
1435 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1435 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1436 1436
1437 void net_enable_timestamp(void) 1437 void net_enable_timestamp(void)
1438 { 1438 {
1439 atomic_inc(&netstamp_needed); 1439 atomic_inc(&netstamp_needed);
1440 } 1440 }
1441 EXPORT_SYMBOL(net_enable_timestamp); 1441 EXPORT_SYMBOL(net_enable_timestamp);
1442 1442
1443 void net_disable_timestamp(void) 1443 void net_disable_timestamp(void)
1444 { 1444 {
1445 atomic_dec(&netstamp_needed); 1445 atomic_dec(&netstamp_needed);
1446 } 1446 }
1447 EXPORT_SYMBOL(net_disable_timestamp); 1447 EXPORT_SYMBOL(net_disable_timestamp);
1448 1448
1449 static inline void net_timestamp_set(struct sk_buff *skb) 1449 static inline void net_timestamp_set(struct sk_buff *skb)
1450 { 1450 {
1451 if (atomic_read(&netstamp_needed)) 1451 if (atomic_read(&netstamp_needed))
1452 __net_timestamp(skb); 1452 __net_timestamp(skb);
1453 else 1453 else
1454 skb->tstamp.tv64 = 0; 1454 skb->tstamp.tv64 = 0;
1455 } 1455 }
1456 1456
1457 static inline void net_timestamp_check(struct sk_buff *skb) 1457 static inline void net_timestamp_check(struct sk_buff *skb)
1458 { 1458 {
1459 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed)) 1459 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1460 __net_timestamp(skb); 1460 __net_timestamp(skb);
1461 } 1461 }
1462 1462
1463 /** 1463 /**
1464 * dev_forward_skb - loopback an skb to another netif 1464 * dev_forward_skb - loopback an skb to another netif
1465 * 1465 *
1466 * @dev: destination network device 1466 * @dev: destination network device
1467 * @skb: buffer to forward 1467 * @skb: buffer to forward
1468 * 1468 *
1469 * return values: 1469 * return values:
1470 * NET_RX_SUCCESS (no congestion) 1470 * NET_RX_SUCCESS (no congestion)
1471 * NET_RX_DROP (packet was dropped, but freed) 1471 * NET_RX_DROP (packet was dropped, but freed)
1472 * 1472 *
1473 * dev_forward_skb can be used for injecting an skb from the 1473 * dev_forward_skb can be used for injecting an skb from the
1474 * start_xmit function of one device into the receive queue 1474 * start_xmit function of one device into the receive queue
1475 * of another device. 1475 * of another device.
1476 * 1476 *
1477 * The receiving device may be in another namespace, so 1477 * The receiving device may be in another namespace, so
1478 * we have to clear all information in the skb that could 1478 * we have to clear all information in the skb that could
1479 * impact namespace isolation. 1479 * impact namespace isolation.
1480 */ 1480 */
1481 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1481 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1482 { 1482 {
1483 skb_orphan(skb); 1483 skb_orphan(skb);
1484 nf_reset(skb); 1484 nf_reset(skb);
1485 1485
1486 if (unlikely(!(dev->flags & IFF_UP) || 1486 if (unlikely(!(dev->flags & IFF_UP) ||
1487 (skb->len > (dev->mtu + dev->hard_header_len)))) { 1487 (skb->len > (dev->mtu + dev->hard_header_len)))) {
1488 atomic_long_inc(&dev->rx_dropped); 1488 atomic_long_inc(&dev->rx_dropped);
1489 kfree_skb(skb); 1489 kfree_skb(skb);
1490 return NET_RX_DROP; 1490 return NET_RX_DROP;
1491 } 1491 }
1492 skb_set_dev(skb, dev); 1492 skb_set_dev(skb, dev);
1493 skb->tstamp.tv64 = 0; 1493 skb->tstamp.tv64 = 0;
1494 skb->pkt_type = PACKET_HOST; 1494 skb->pkt_type = PACKET_HOST;
1495 skb->protocol = eth_type_trans(skb, dev); 1495 skb->protocol = eth_type_trans(skb, dev);
1496 return netif_rx(skb); 1496 return netif_rx(skb);
1497 } 1497 }
1498 EXPORT_SYMBOL_GPL(dev_forward_skb); 1498 EXPORT_SYMBOL_GPL(dev_forward_skb);
1499 1499
1500 /* 1500 /*
1501 * Support routine. Sends outgoing frames to any network 1501 * Support routine. Sends outgoing frames to any network
1502 * taps currently in use. 1502 * taps currently in use.
1503 */ 1503 */
1504 1504
1505 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1505 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1506 { 1506 {
1507 struct packet_type *ptype; 1507 struct packet_type *ptype;
1508 1508
1509 #ifdef CONFIG_NET_CLS_ACT 1509 #ifdef CONFIG_NET_CLS_ACT
1510 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS))) 1510 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1511 net_timestamp_set(skb); 1511 net_timestamp_set(skb);
1512 #else 1512 #else
1513 net_timestamp_set(skb); 1513 net_timestamp_set(skb);
1514 #endif 1514 #endif
1515 1515
1516 rcu_read_lock(); 1516 rcu_read_lock();
1517 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1517 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1518 /* Never send packets back to the socket 1518 /* Never send packets back to the socket
1519 * they originated from - MvS (miquels@drinkel.ow.org) 1519 * they originated from - MvS (miquels@drinkel.ow.org)
1520 */ 1520 */
1521 if ((ptype->dev == dev || !ptype->dev) && 1521 if ((ptype->dev == dev || !ptype->dev) &&
1522 (ptype->af_packet_priv == NULL || 1522 (ptype->af_packet_priv == NULL ||
1523 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1523 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1524 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1524 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1525 if (!skb2) 1525 if (!skb2)
1526 break; 1526 break;
1527 1527
1528 /* skb->nh should be correctly 1528 /* skb->nh should be correctly
1529 set by sender, so that the second statement is 1529 set by sender, so that the second statement is
1530 just protection against buggy protocols. 1530 just protection against buggy protocols.
1531 */ 1531 */
1532 skb_reset_mac_header(skb2); 1532 skb_reset_mac_header(skb2);
1533 1533
1534 if (skb_network_header(skb2) < skb2->data || 1534 if (skb_network_header(skb2) < skb2->data ||
1535 skb2->network_header > skb2->tail) { 1535 skb2->network_header > skb2->tail) {
1536 if (net_ratelimit()) 1536 if (net_ratelimit())
1537 printk(KERN_CRIT "protocol %04x is " 1537 printk(KERN_CRIT "protocol %04x is "
1538 "buggy, dev %s\n", 1538 "buggy, dev %s\n",
1539 ntohs(skb2->protocol), 1539 ntohs(skb2->protocol),
1540 dev->name); 1540 dev->name);
1541 skb_reset_network_header(skb2); 1541 skb_reset_network_header(skb2);
1542 } 1542 }
1543 1543
1544 skb2->transport_header = skb2->network_header; 1544 skb2->transport_header = skb2->network_header;
1545 skb2->pkt_type = PACKET_OUTGOING; 1545 skb2->pkt_type = PACKET_OUTGOING;
1546 ptype->func(skb2, skb->dev, ptype, skb->dev); 1546 ptype->func(skb2, skb->dev, ptype, skb->dev);
1547 } 1547 }
1548 } 1548 }
1549 rcu_read_unlock(); 1549 rcu_read_unlock();
1550 } 1550 }
1551 1551
1552 /* 1552 /*
1553 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1553 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1554 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1554 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1555 */ 1555 */
1556 void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1556 void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1557 { 1557 {
1558 unsigned int real_num = dev->real_num_tx_queues; 1558 unsigned int real_num = dev->real_num_tx_queues;
1559 1559
1560 if (unlikely(txq > dev->num_tx_queues)) 1560 if (unlikely(txq > dev->num_tx_queues))
1561 ; 1561 ;
1562 else if (txq > real_num) 1562 else if (txq > real_num)
1563 dev->real_num_tx_queues = txq; 1563 dev->real_num_tx_queues = txq;
1564 else if (txq < real_num) { 1564 else if (txq < real_num) {
1565 dev->real_num_tx_queues = txq; 1565 dev->real_num_tx_queues = txq;
1566 qdisc_reset_all_tx_gt(dev, txq); 1566 qdisc_reset_all_tx_gt(dev, txq);
1567 } 1567 }
1568 } 1568 }
1569 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1569 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1570 1570
1571 #ifdef CONFIG_RPS 1571 #ifdef CONFIG_RPS
1572 /** 1572 /**
1573 * netif_set_real_num_rx_queues - set actual number of RX queues used 1573 * netif_set_real_num_rx_queues - set actual number of RX queues used
1574 * @dev: Network device 1574 * @dev: Network device
1575 * @rxq: Actual number of RX queues 1575 * @rxq: Actual number of RX queues
1576 * 1576 *
1577 * This must be called either with the rtnl_lock held or before 1577 * This must be called either with the rtnl_lock held or before
1578 * registration of the net device. Returns 0 on success, or a 1578 * registration of the net device. Returns 0 on success, or a
1579 * negative error code. If called before registration, it always 1579 * negative error code. If called before registration, it always
1580 * succeeds. 1580 * succeeds.
1581 */ 1581 */
1582 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1582 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1583 { 1583 {
1584 int rc; 1584 int rc;
1585 1585
1586 if (dev->reg_state == NETREG_REGISTERED) { 1586 if (dev->reg_state == NETREG_REGISTERED) {
1587 ASSERT_RTNL(); 1587 ASSERT_RTNL();
1588 1588
1589 if (rxq > dev->num_rx_queues) 1589 if (rxq > dev->num_rx_queues)
1590 return -EINVAL; 1590 return -EINVAL;
1591 1591
1592 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1592 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1593 rxq); 1593 rxq);
1594 if (rc) 1594 if (rc)
1595 return rc; 1595 return rc;
1596 } 1596 }
1597 1597
1598 dev->real_num_rx_queues = rxq; 1598 dev->real_num_rx_queues = rxq;
1599 return 0; 1599 return 0;
1600 } 1600 }
1601 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1601 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1602 #endif 1602 #endif
1603 1603
1604 static inline void __netif_reschedule(struct Qdisc *q) 1604 static inline void __netif_reschedule(struct Qdisc *q)
1605 { 1605 {
1606 struct softnet_data *sd; 1606 struct softnet_data *sd;
1607 unsigned long flags; 1607 unsigned long flags;
1608 1608
1609 local_irq_save(flags); 1609 local_irq_save(flags);
1610 sd = &__get_cpu_var(softnet_data); 1610 sd = &__get_cpu_var(softnet_data);
1611 q->next_sched = NULL; 1611 q->next_sched = NULL;
1612 *sd->output_queue_tailp = q; 1612 *sd->output_queue_tailp = q;
1613 sd->output_queue_tailp = &q->next_sched; 1613 sd->output_queue_tailp = &q->next_sched;
1614 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1614 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1615 local_irq_restore(flags); 1615 local_irq_restore(flags);
1616 } 1616 }
1617 1617
1618 void __netif_schedule(struct Qdisc *q) 1618 void __netif_schedule(struct Qdisc *q)
1619 { 1619 {
1620 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1620 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1621 __netif_reschedule(q); 1621 __netif_reschedule(q);
1622 } 1622 }
1623 EXPORT_SYMBOL(__netif_schedule); 1623 EXPORT_SYMBOL(__netif_schedule);
1624 1624
1625 void dev_kfree_skb_irq(struct sk_buff *skb) 1625 void dev_kfree_skb_irq(struct sk_buff *skb)
1626 { 1626 {
1627 if (atomic_dec_and_test(&skb->users)) { 1627 if (atomic_dec_and_test(&skb->users)) {
1628 struct softnet_data *sd; 1628 struct softnet_data *sd;
1629 unsigned long flags; 1629 unsigned long flags;
1630 1630
1631 local_irq_save(flags); 1631 local_irq_save(flags);
1632 sd = &__get_cpu_var(softnet_data); 1632 sd = &__get_cpu_var(softnet_data);
1633 skb->next = sd->completion_queue; 1633 skb->next = sd->completion_queue;
1634 sd->completion_queue = skb; 1634 sd->completion_queue = skb;
1635 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1635 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1636 local_irq_restore(flags); 1636 local_irq_restore(flags);
1637 } 1637 }
1638 } 1638 }
1639 EXPORT_SYMBOL(dev_kfree_skb_irq); 1639 EXPORT_SYMBOL(dev_kfree_skb_irq);
1640 1640
1641 void dev_kfree_skb_any(struct sk_buff *skb) 1641 void dev_kfree_skb_any(struct sk_buff *skb)
1642 { 1642 {
1643 if (in_irq() || irqs_disabled()) 1643 if (in_irq() || irqs_disabled())
1644 dev_kfree_skb_irq(skb); 1644 dev_kfree_skb_irq(skb);
1645 else 1645 else
1646 dev_kfree_skb(skb); 1646 dev_kfree_skb(skb);
1647 } 1647 }
1648 EXPORT_SYMBOL(dev_kfree_skb_any); 1648 EXPORT_SYMBOL(dev_kfree_skb_any);
1649 1649
1650 1650
1651 /** 1651 /**
1652 * netif_device_detach - mark device as removed 1652 * netif_device_detach - mark device as removed
1653 * @dev: network device 1653 * @dev: network device
1654 * 1654 *
1655 * Mark device as removed from system and therefore no longer available. 1655 * Mark device as removed from system and therefore no longer available.
1656 */ 1656 */
1657 void netif_device_detach(struct net_device *dev) 1657 void netif_device_detach(struct net_device *dev)
1658 { 1658 {
1659 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1659 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1660 netif_running(dev)) { 1660 netif_running(dev)) {
1661 netif_tx_stop_all_queues(dev); 1661 netif_tx_stop_all_queues(dev);
1662 } 1662 }
1663 } 1663 }
1664 EXPORT_SYMBOL(netif_device_detach); 1664 EXPORT_SYMBOL(netif_device_detach);
1665 1665
1666 /** 1666 /**
1667 * netif_device_attach - mark device as attached 1667 * netif_device_attach - mark device as attached
1668 * @dev: network device 1668 * @dev: network device
1669 * 1669 *
1670 * Mark device as attached from system and restart if needed. 1670 * Mark device as attached from system and restart if needed.
1671 */ 1671 */
1672 void netif_device_attach(struct net_device *dev) 1672 void netif_device_attach(struct net_device *dev)
1673 { 1673 {
1674 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1674 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1675 netif_running(dev)) { 1675 netif_running(dev)) {
1676 netif_tx_wake_all_queues(dev); 1676 netif_tx_wake_all_queues(dev);
1677 __netdev_watchdog_up(dev); 1677 __netdev_watchdog_up(dev);
1678 } 1678 }
1679 } 1679 }
1680 EXPORT_SYMBOL(netif_device_attach); 1680 EXPORT_SYMBOL(netif_device_attach);
1681 1681
1682 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1682 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1683 { 1683 {
1684 return ((features & NETIF_F_GEN_CSUM) || 1684 return ((features & NETIF_F_GEN_CSUM) ||
1685 ((features & NETIF_F_IP_CSUM) && 1685 ((features & NETIF_F_IP_CSUM) &&
1686 protocol == htons(ETH_P_IP)) || 1686 protocol == htons(ETH_P_IP)) ||
1687 ((features & NETIF_F_IPV6_CSUM) && 1687 ((features & NETIF_F_IPV6_CSUM) &&
1688 protocol == htons(ETH_P_IPV6)) || 1688 protocol == htons(ETH_P_IPV6)) ||
1689 ((features & NETIF_F_FCOE_CRC) && 1689 ((features & NETIF_F_FCOE_CRC) &&
1690 protocol == htons(ETH_P_FCOE))); 1690 protocol == htons(ETH_P_FCOE)));
1691 } 1691 }
1692 1692
1693 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1693 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1694 { 1694 {
1695 if (can_checksum_protocol(dev->features, skb->protocol)) 1695 if (can_checksum_protocol(dev->features, skb->protocol))
1696 return true; 1696 return true;
1697 1697
1698 if (skb->protocol == htons(ETH_P_8021Q)) { 1698 if (skb->protocol == htons(ETH_P_8021Q)) {
1699 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1699 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1700 if (can_checksum_protocol(dev->features & dev->vlan_features, 1700 if (can_checksum_protocol(dev->features & dev->vlan_features,
1701 veh->h_vlan_encapsulated_proto)) 1701 veh->h_vlan_encapsulated_proto))
1702 return true; 1702 return true;
1703 } 1703 }
1704 1704
1705 return false; 1705 return false;
1706 } 1706 }
1707 1707
1708 /** 1708 /**
1709 * skb_dev_set -- assign a new device to a buffer 1709 * skb_dev_set -- assign a new device to a buffer
1710 * @skb: buffer for the new device 1710 * @skb: buffer for the new device
1711 * @dev: network device 1711 * @dev: network device
1712 * 1712 *
1713 * If an skb is owned by a device already, we have to reset 1713 * If an skb is owned by a device already, we have to reset
1714 * all data private to the namespace a device belongs to 1714 * all data private to the namespace a device belongs to
1715 * before assigning it a new device. 1715 * before assigning it a new device.
1716 */ 1716 */
1717 #ifdef CONFIG_NET_NS 1717 #ifdef CONFIG_NET_NS
1718 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1718 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1719 { 1719 {
1720 skb_dst_drop(skb); 1720 skb_dst_drop(skb);
1721 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1721 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1722 secpath_reset(skb); 1722 secpath_reset(skb);
1723 nf_reset(skb); 1723 nf_reset(skb);
1724 skb_init_secmark(skb); 1724 skb_init_secmark(skb);
1725 skb->mark = 0; 1725 skb->mark = 0;
1726 skb->priority = 0; 1726 skb->priority = 0;
1727 skb->nf_trace = 0; 1727 skb->nf_trace = 0;
1728 skb->ipvs_property = 0; 1728 skb->ipvs_property = 0;
1729 #ifdef CONFIG_NET_SCHED 1729 #ifdef CONFIG_NET_SCHED
1730 skb->tc_index = 0; 1730 skb->tc_index = 0;
1731 #endif 1731 #endif
1732 } 1732 }
1733 skb->dev = dev; 1733 skb->dev = dev;
1734 } 1734 }
1735 EXPORT_SYMBOL(skb_set_dev); 1735 EXPORT_SYMBOL(skb_set_dev);
1736 #endif /* CONFIG_NET_NS */ 1736 #endif /* CONFIG_NET_NS */
1737 1737
1738 /* 1738 /*
1739 * Invalidate hardware checksum when packet is to be mangled, and 1739 * Invalidate hardware checksum when packet is to be mangled, and
1740 * complete checksum manually on outgoing path. 1740 * complete checksum manually on outgoing path.
1741 */ 1741 */
1742 int skb_checksum_help(struct sk_buff *skb) 1742 int skb_checksum_help(struct sk_buff *skb)
1743 { 1743 {
1744 __wsum csum; 1744 __wsum csum;
1745 int ret = 0, offset; 1745 int ret = 0, offset;
1746 1746
1747 if (skb->ip_summed == CHECKSUM_COMPLETE) 1747 if (skb->ip_summed == CHECKSUM_COMPLETE)
1748 goto out_set_summed; 1748 goto out_set_summed;
1749 1749
1750 if (unlikely(skb_shinfo(skb)->gso_size)) { 1750 if (unlikely(skb_shinfo(skb)->gso_size)) {
1751 /* Let GSO fix up the checksum. */ 1751 /* Let GSO fix up the checksum. */
1752 goto out_set_summed; 1752 goto out_set_summed;
1753 } 1753 }
1754 1754
1755 offset = skb->csum_start - skb_headroom(skb); 1755 offset = skb->csum_start - skb_headroom(skb);
1756 BUG_ON(offset >= skb_headlen(skb)); 1756 BUG_ON(offset >= skb_headlen(skb));
1757 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1757 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1758 1758
1759 offset += skb->csum_offset; 1759 offset += skb->csum_offset;
1760 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1760 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1761 1761
1762 if (skb_cloned(skb) && 1762 if (skb_cloned(skb) &&
1763 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1763 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1764 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1764 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1765 if (ret) 1765 if (ret)
1766 goto out; 1766 goto out;
1767 } 1767 }
1768 1768
1769 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1769 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1770 out_set_summed: 1770 out_set_summed:
1771 skb->ip_summed = CHECKSUM_NONE; 1771 skb->ip_summed = CHECKSUM_NONE;
1772 out: 1772 out:
1773 return ret; 1773 return ret;
1774 } 1774 }
1775 EXPORT_SYMBOL(skb_checksum_help); 1775 EXPORT_SYMBOL(skb_checksum_help);
1776 1776
1777 /** 1777 /**
1778 * skb_gso_segment - Perform segmentation on skb. 1778 * skb_gso_segment - Perform segmentation on skb.
1779 * @skb: buffer to segment 1779 * @skb: buffer to segment
1780 * @features: features for the output path (see dev->features) 1780 * @features: features for the output path (see dev->features)
1781 * 1781 *
1782 * This function segments the given skb and returns a list of segments. 1782 * This function segments the given skb and returns a list of segments.
1783 * 1783 *
1784 * It may return NULL if the skb requires no segmentation. This is 1784 * It may return NULL if the skb requires no segmentation. This is
1785 * only possible when GSO is used for verifying header integrity. 1785 * only possible when GSO is used for verifying header integrity.
1786 */ 1786 */
1787 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1787 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1788 { 1788 {
1789 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1789 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1790 struct packet_type *ptype; 1790 struct packet_type *ptype;
1791 __be16 type = skb->protocol; 1791 __be16 type = skb->protocol;
1792 int err; 1792 int err;
1793 1793
1794 skb_reset_mac_header(skb); 1794 skb_reset_mac_header(skb);
1795 skb->mac_len = skb->network_header - skb->mac_header; 1795 skb->mac_len = skb->network_header - skb->mac_header;
1796 __skb_pull(skb, skb->mac_len); 1796 __skb_pull(skb, skb->mac_len);
1797 1797
1798 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1798 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1799 struct net_device *dev = skb->dev; 1799 struct net_device *dev = skb->dev;
1800 struct ethtool_drvinfo info = {}; 1800 struct ethtool_drvinfo info = {};
1801 1801
1802 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1802 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1803 dev->ethtool_ops->get_drvinfo(dev, &info); 1803 dev->ethtool_ops->get_drvinfo(dev, &info);
1804 1804
1805 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1805 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1806 "ip_summed=%d", 1806 "ip_summed=%d",
1807 info.driver, dev ? dev->features : 0L, 1807 info.driver, dev ? dev->features : 0L,
1808 skb->sk ? skb->sk->sk_route_caps : 0L, 1808 skb->sk ? skb->sk->sk_route_caps : 0L,
1809 skb->len, skb->data_len, skb->ip_summed); 1809 skb->len, skb->data_len, skb->ip_summed);
1810 1810
1811 if (skb_header_cloned(skb) && 1811 if (skb_header_cloned(skb) &&
1812 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1812 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1813 return ERR_PTR(err); 1813 return ERR_PTR(err);
1814 } 1814 }
1815 1815
1816 rcu_read_lock(); 1816 rcu_read_lock();
1817 list_for_each_entry_rcu(ptype, 1817 list_for_each_entry_rcu(ptype,
1818 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1818 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1819 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1819 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1820 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1820 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1821 err = ptype->gso_send_check(skb); 1821 err = ptype->gso_send_check(skb);
1822 segs = ERR_PTR(err); 1822 segs = ERR_PTR(err);
1823 if (err || skb_gso_ok(skb, features)) 1823 if (err || skb_gso_ok(skb, features))
1824 break; 1824 break;
1825 __skb_push(skb, (skb->data - 1825 __skb_push(skb, (skb->data -
1826 skb_network_header(skb))); 1826 skb_network_header(skb)));
1827 } 1827 }
1828 segs = ptype->gso_segment(skb, features); 1828 segs = ptype->gso_segment(skb, features);
1829 break; 1829 break;
1830 } 1830 }
1831 } 1831 }
1832 rcu_read_unlock(); 1832 rcu_read_unlock();
1833 1833
1834 __skb_push(skb, skb->data - skb_mac_header(skb)); 1834 __skb_push(skb, skb->data - skb_mac_header(skb));
1835 1835
1836 return segs; 1836 return segs;
1837 } 1837 }
1838 EXPORT_SYMBOL(skb_gso_segment); 1838 EXPORT_SYMBOL(skb_gso_segment);
1839 1839
1840 /* Take action when hardware reception checksum errors are detected. */ 1840 /* Take action when hardware reception checksum errors are detected. */
1841 #ifdef CONFIG_BUG 1841 #ifdef CONFIG_BUG
1842 void netdev_rx_csum_fault(struct net_device *dev) 1842 void netdev_rx_csum_fault(struct net_device *dev)
1843 { 1843 {
1844 if (net_ratelimit()) { 1844 if (net_ratelimit()) {
1845 printk(KERN_ERR "%s: hw csum failure.\n", 1845 printk(KERN_ERR "%s: hw csum failure.\n",
1846 dev ? dev->name : "<unknown>"); 1846 dev ? dev->name : "<unknown>");
1847 dump_stack(); 1847 dump_stack();
1848 } 1848 }
1849 } 1849 }
1850 EXPORT_SYMBOL(netdev_rx_csum_fault); 1850 EXPORT_SYMBOL(netdev_rx_csum_fault);
1851 #endif 1851 #endif
1852 1852
1853 /* Actually, we should eliminate this check as soon as we know, that: 1853 /* Actually, we should eliminate this check as soon as we know, that:
1854 * 1. IOMMU is present and allows to map all the memory. 1854 * 1. IOMMU is present and allows to map all the memory.
1855 * 2. No high memory really exists on this machine. 1855 * 2. No high memory really exists on this machine.
1856 */ 1856 */
1857 1857
1858 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1858 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1859 { 1859 {
1860 #ifdef CONFIG_HIGHMEM 1860 #ifdef CONFIG_HIGHMEM
1861 int i; 1861 int i;
1862 if (!(dev->features & NETIF_F_HIGHDMA)) { 1862 if (!(dev->features & NETIF_F_HIGHDMA)) {
1863 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1863 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1864 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1864 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1865 return 1; 1865 return 1;
1866 } 1866 }
1867 1867
1868 if (PCI_DMA_BUS_IS_PHYS) { 1868 if (PCI_DMA_BUS_IS_PHYS) {
1869 struct device *pdev = dev->dev.parent; 1869 struct device *pdev = dev->dev.parent;
1870 1870
1871 if (!pdev) 1871 if (!pdev)
1872 return 0; 1872 return 0;
1873 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1873 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1874 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page); 1874 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1875 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 1875 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1876 return 1; 1876 return 1;
1877 } 1877 }
1878 } 1878 }
1879 #endif 1879 #endif
1880 return 0; 1880 return 0;
1881 } 1881 }
1882 1882
1883 struct dev_gso_cb { 1883 struct dev_gso_cb {
1884 void (*destructor)(struct sk_buff *skb); 1884 void (*destructor)(struct sk_buff *skb);
1885 }; 1885 };
1886 1886
1887 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1887 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1888 1888
1889 static void dev_gso_skb_destructor(struct sk_buff *skb) 1889 static void dev_gso_skb_destructor(struct sk_buff *skb)
1890 { 1890 {
1891 struct dev_gso_cb *cb; 1891 struct dev_gso_cb *cb;
1892 1892
1893 do { 1893 do {
1894 struct sk_buff *nskb = skb->next; 1894 struct sk_buff *nskb = skb->next;
1895 1895
1896 skb->next = nskb->next; 1896 skb->next = nskb->next;
1897 nskb->next = NULL; 1897 nskb->next = NULL;
1898 kfree_skb(nskb); 1898 kfree_skb(nskb);
1899 } while (skb->next); 1899 } while (skb->next);
1900 1900
1901 cb = DEV_GSO_CB(skb); 1901 cb = DEV_GSO_CB(skb);
1902 if (cb->destructor) 1902 if (cb->destructor)
1903 cb->destructor(skb); 1903 cb->destructor(skb);
1904 } 1904 }
1905 1905
1906 /** 1906 /**
1907 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1907 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1908 * @skb: buffer to segment 1908 * @skb: buffer to segment
1909 * 1909 *
1910 * This function segments the given skb and stores the list of segments 1910 * This function segments the given skb and stores the list of segments
1911 * in skb->next. 1911 * in skb->next.
1912 */ 1912 */
1913 static int dev_gso_segment(struct sk_buff *skb) 1913 static int dev_gso_segment(struct sk_buff *skb)
1914 { 1914 {
1915 struct net_device *dev = skb->dev; 1915 struct net_device *dev = skb->dev;
1916 struct sk_buff *segs; 1916 struct sk_buff *segs;
1917 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1917 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1918 NETIF_F_SG : 0); 1918 NETIF_F_SG : 0);
1919 1919
1920 segs = skb_gso_segment(skb, features); 1920 segs = skb_gso_segment(skb, features);
1921 1921
1922 /* Verifying header integrity only. */ 1922 /* Verifying header integrity only. */
1923 if (!segs) 1923 if (!segs)
1924 return 0; 1924 return 0;
1925 1925
1926 if (IS_ERR(segs)) 1926 if (IS_ERR(segs))
1927 return PTR_ERR(segs); 1927 return PTR_ERR(segs);
1928 1928
1929 skb->next = segs; 1929 skb->next = segs;
1930 DEV_GSO_CB(skb)->destructor = skb->destructor; 1930 DEV_GSO_CB(skb)->destructor = skb->destructor;
1931 skb->destructor = dev_gso_skb_destructor; 1931 skb->destructor = dev_gso_skb_destructor;
1932 1932
1933 return 0; 1933 return 0;
1934 } 1934 }
1935 1935
1936 /* 1936 /*
1937 * Try to orphan skb early, right before transmission by the device. 1937 * Try to orphan skb early, right before transmission by the device.
1938 * We cannot orphan skb if tx timestamp is requested or the sk-reference 1938 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1939 * is needed on driver level for other reasons, e.g. see net/can/raw.c 1939 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1940 */ 1940 */
1941 static inline void skb_orphan_try(struct sk_buff *skb) 1941 static inline void skb_orphan_try(struct sk_buff *skb)
1942 { 1942 {
1943 struct sock *sk = skb->sk; 1943 struct sock *sk = skb->sk;
1944 1944
1945 if (sk && !skb_shinfo(skb)->tx_flags) { 1945 if (sk && !skb_shinfo(skb)->tx_flags) {
1946 /* skb_tx_hash() wont be able to get sk. 1946 /* skb_tx_hash() wont be able to get sk.
1947 * We copy sk_hash into skb->rxhash 1947 * We copy sk_hash into skb->rxhash
1948 */ 1948 */
1949 if (!skb->rxhash) 1949 if (!skb->rxhash)
1950 skb->rxhash = sk->sk_hash; 1950 skb->rxhash = sk->sk_hash;
1951 skb_orphan(skb); 1951 skb_orphan(skb);
1952 } 1952 }
1953 } 1953 }
1954 1954
1955 /* 1955 /*
1956 * Returns true if either: 1956 * Returns true if either:
1957 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 1957 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
1958 * 2. skb is fragmented and the device does not support SG, or if 1958 * 2. skb is fragmented and the device does not support SG, or if
1959 * at least one of fragments is in highmem and device does not 1959 * at least one of fragments is in highmem and device does not
1960 * support DMA from it. 1960 * support DMA from it.
1961 */ 1961 */
1962 static inline int skb_needs_linearize(struct sk_buff *skb, 1962 static inline int skb_needs_linearize(struct sk_buff *skb,
1963 struct net_device *dev) 1963 struct net_device *dev)
1964 { 1964 {
1965 return skb_is_nonlinear(skb) && 1965 return skb_is_nonlinear(skb) &&
1966 ((skb_has_frag_list(skb) && !(dev->features & NETIF_F_FRAGLIST)) || 1966 ((skb_has_frag_list(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
1967 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) || 1967 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
1968 illegal_highdma(dev, skb)))); 1968 illegal_highdma(dev, skb))));
1969 } 1969 }
1970 1970
1971 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1971 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1972 struct netdev_queue *txq) 1972 struct netdev_queue *txq)
1973 { 1973 {
1974 const struct net_device_ops *ops = dev->netdev_ops; 1974 const struct net_device_ops *ops = dev->netdev_ops;
1975 int rc = NETDEV_TX_OK; 1975 int rc = NETDEV_TX_OK;
1976 1976
1977 if (likely(!skb->next)) { 1977 if (likely(!skb->next)) {
1978 if (!list_empty(&ptype_all)) 1978 if (!list_empty(&ptype_all))
1979 dev_queue_xmit_nit(skb, dev); 1979 dev_queue_xmit_nit(skb, dev);
1980 1980
1981 /* 1981 /*
1982 * If device doesnt need skb->dst, release it right now while 1982 * If device doesnt need skb->dst, release it right now while
1983 * its hot in this cpu cache 1983 * its hot in this cpu cache
1984 */ 1984 */
1985 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1985 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1986 skb_dst_drop(skb); 1986 skb_dst_drop(skb);
1987 1987
1988 skb_orphan_try(skb); 1988 skb_orphan_try(skb);
1989 1989
1990 if (netif_needs_gso(dev, skb)) { 1990 if (netif_needs_gso(dev, skb)) {
1991 if (unlikely(dev_gso_segment(skb))) 1991 if (unlikely(dev_gso_segment(skb)))
1992 goto out_kfree_skb; 1992 goto out_kfree_skb;
1993 if (skb->next) 1993 if (skb->next)
1994 goto gso; 1994 goto gso;
1995 } else { 1995 } else {
1996 if (skb_needs_linearize(skb, dev) && 1996 if (skb_needs_linearize(skb, dev) &&
1997 __skb_linearize(skb)) 1997 __skb_linearize(skb))
1998 goto out_kfree_skb; 1998 goto out_kfree_skb;
1999 1999
2000 /* If packet is not checksummed and device does not 2000 /* If packet is not checksummed and device does not
2001 * support checksumming for this protocol, complete 2001 * support checksumming for this protocol, complete
2002 * checksumming here. 2002 * checksumming here.
2003 */ 2003 */
2004 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2004 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2005 skb_set_transport_header(skb, skb->csum_start - 2005 skb_set_transport_header(skb, skb->csum_start -
2006 skb_headroom(skb)); 2006 skb_headroom(skb));
2007 if (!dev_can_checksum(dev, skb) && 2007 if (!dev_can_checksum(dev, skb) &&
2008 skb_checksum_help(skb)) 2008 skb_checksum_help(skb))
2009 goto out_kfree_skb; 2009 goto out_kfree_skb;
2010 } 2010 }
2011 } 2011 }
2012 2012
2013 rc = ops->ndo_start_xmit(skb, dev); 2013 rc = ops->ndo_start_xmit(skb, dev);
2014 if (rc == NETDEV_TX_OK) 2014 if (rc == NETDEV_TX_OK)
2015 txq_trans_update(txq); 2015 txq_trans_update(txq);
2016 return rc; 2016 return rc;
2017 } 2017 }
2018 2018
2019 gso: 2019 gso:
2020 do { 2020 do {
2021 struct sk_buff *nskb = skb->next; 2021 struct sk_buff *nskb = skb->next;
2022 2022
2023 skb->next = nskb->next; 2023 skb->next = nskb->next;
2024 nskb->next = NULL; 2024 nskb->next = NULL;
2025 2025
2026 /* 2026 /*
2027 * If device doesnt need nskb->dst, release it right now while 2027 * If device doesnt need nskb->dst, release it right now while
2028 * its hot in this cpu cache 2028 * its hot in this cpu cache
2029 */ 2029 */
2030 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2030 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2031 skb_dst_drop(nskb); 2031 skb_dst_drop(nskb);
2032 2032
2033 rc = ops->ndo_start_xmit(nskb, dev); 2033 rc = ops->ndo_start_xmit(nskb, dev);
2034 if (unlikely(rc != NETDEV_TX_OK)) { 2034 if (unlikely(rc != NETDEV_TX_OK)) {
2035 if (rc & ~NETDEV_TX_MASK) 2035 if (rc & ~NETDEV_TX_MASK)
2036 goto out_kfree_gso_skb; 2036 goto out_kfree_gso_skb;
2037 nskb->next = skb->next; 2037 nskb->next = skb->next;
2038 skb->next = nskb; 2038 skb->next = nskb;
2039 return rc; 2039 return rc;
2040 } 2040 }
2041 txq_trans_update(txq); 2041 txq_trans_update(txq);
2042 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 2042 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2043 return NETDEV_TX_BUSY; 2043 return NETDEV_TX_BUSY;
2044 } while (skb->next); 2044 } while (skb->next);
2045 2045
2046 out_kfree_gso_skb: 2046 out_kfree_gso_skb:
2047 if (likely(skb->next == NULL)) 2047 if (likely(skb->next == NULL))
2048 skb->destructor = DEV_GSO_CB(skb)->destructor; 2048 skb->destructor = DEV_GSO_CB(skb)->destructor;
2049 out_kfree_skb: 2049 out_kfree_skb:
2050 kfree_skb(skb); 2050 kfree_skb(skb);
2051 return rc; 2051 return rc;
2052 } 2052 }
2053 2053
2054 static u32 hashrnd __read_mostly; 2054 static u32 hashrnd __read_mostly;
2055 2055
2056 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb) 2056 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2057 { 2057 {
2058 u32 hash; 2058 u32 hash;
2059 2059
2060 if (skb_rx_queue_recorded(skb)) { 2060 if (skb_rx_queue_recorded(skb)) {
2061 hash = skb_get_rx_queue(skb); 2061 hash = skb_get_rx_queue(skb);
2062 while (unlikely(hash >= dev->real_num_tx_queues)) 2062 while (unlikely(hash >= dev->real_num_tx_queues))
2063 hash -= dev->real_num_tx_queues; 2063 hash -= dev->real_num_tx_queues;
2064 return hash; 2064 return hash;
2065 } 2065 }
2066 2066
2067 if (skb->sk && skb->sk->sk_hash) 2067 if (skb->sk && skb->sk->sk_hash)
2068 hash = skb->sk->sk_hash; 2068 hash = skb->sk->sk_hash;
2069 else 2069 else
2070 hash = (__force u16) skb->protocol ^ skb->rxhash; 2070 hash = (__force u16) skb->protocol ^ skb->rxhash;
2071 hash = jhash_1word(hash, hashrnd); 2071 hash = jhash_1word(hash, hashrnd);
2072 2072
2073 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 2073 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2074 } 2074 }
2075 EXPORT_SYMBOL(skb_tx_hash); 2075 EXPORT_SYMBOL(skb_tx_hash);
2076 2076
2077 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2077 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2078 { 2078 {
2079 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2079 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2080 if (net_ratelimit()) { 2080 if (net_ratelimit()) {
2081 pr_warning("%s selects TX queue %d, but " 2081 pr_warning("%s selects TX queue %d, but "
2082 "real number of TX queues is %d\n", 2082 "real number of TX queues is %d\n",
2083 dev->name, queue_index, dev->real_num_tx_queues); 2083 dev->name, queue_index, dev->real_num_tx_queues);
2084 } 2084 }
2085 return 0; 2085 return 0;
2086 } 2086 }
2087 return queue_index; 2087 return queue_index;
2088 } 2088 }
2089 2089
2090 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2090 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2091 struct sk_buff *skb) 2091 struct sk_buff *skb)
2092 { 2092 {
2093 int queue_index; 2093 int queue_index;
2094 const struct net_device_ops *ops = dev->netdev_ops; 2094 const struct net_device_ops *ops = dev->netdev_ops;
2095 2095
2096 if (ops->ndo_select_queue) { 2096 if (ops->ndo_select_queue) {
2097 queue_index = ops->ndo_select_queue(dev, skb); 2097 queue_index = ops->ndo_select_queue(dev, skb);
2098 queue_index = dev_cap_txqueue(dev, queue_index); 2098 queue_index = dev_cap_txqueue(dev, queue_index);
2099 } else { 2099 } else {
2100 struct sock *sk = skb->sk; 2100 struct sock *sk = skb->sk;
2101 queue_index = sk_tx_queue_get(sk); 2101 queue_index = sk_tx_queue_get(sk);
2102 if (queue_index < 0) { 2102 if (queue_index < 0) {
2103 2103
2104 queue_index = 0; 2104 queue_index = 0;
2105 if (dev->real_num_tx_queues > 1) 2105 if (dev->real_num_tx_queues > 1)
2106 queue_index = skb_tx_hash(dev, skb); 2106 queue_index = skb_tx_hash(dev, skb);
2107 2107
2108 if (sk) { 2108 if (sk) {
2109 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1); 2109 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2110 2110
2111 if (dst && skb_dst(skb) == dst) 2111 if (dst && skb_dst(skb) == dst)
2112 sk_tx_queue_set(sk, queue_index); 2112 sk_tx_queue_set(sk, queue_index);
2113 } 2113 }
2114 } 2114 }
2115 } 2115 }
2116 2116
2117 skb_set_queue_mapping(skb, queue_index); 2117 skb_set_queue_mapping(skb, queue_index);
2118 return netdev_get_tx_queue(dev, queue_index); 2118 return netdev_get_tx_queue(dev, queue_index);
2119 } 2119 }
2120 2120
2121 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2121 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2122 struct net_device *dev, 2122 struct net_device *dev,
2123 struct netdev_queue *txq) 2123 struct netdev_queue *txq)
2124 { 2124 {
2125 spinlock_t *root_lock = qdisc_lock(q); 2125 spinlock_t *root_lock = qdisc_lock(q);
2126 bool contended = qdisc_is_running(q); 2126 bool contended = qdisc_is_running(q);
2127 int rc; 2127 int rc;
2128 2128
2129 /* 2129 /*
2130 * Heuristic to force contended enqueues to serialize on a 2130 * Heuristic to force contended enqueues to serialize on a
2131 * separate lock before trying to get qdisc main lock. 2131 * separate lock before trying to get qdisc main lock.
2132 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2132 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2133 * and dequeue packets faster. 2133 * and dequeue packets faster.
2134 */ 2134 */
2135 if (unlikely(contended)) 2135 if (unlikely(contended))
2136 spin_lock(&q->busylock); 2136 spin_lock(&q->busylock);
2137 2137
2138 spin_lock(root_lock); 2138 spin_lock(root_lock);
2139 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2139 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2140 kfree_skb(skb); 2140 kfree_skb(skb);
2141 rc = NET_XMIT_DROP; 2141 rc = NET_XMIT_DROP;
2142 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2142 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2143 qdisc_run_begin(q)) { 2143 qdisc_run_begin(q)) {
2144 /* 2144 /*
2145 * This is a work-conserving queue; there are no old skbs 2145 * This is a work-conserving queue; there are no old skbs
2146 * waiting to be sent out; and the qdisc is not running - 2146 * waiting to be sent out; and the qdisc is not running -
2147 * xmit the skb directly. 2147 * xmit the skb directly.
2148 */ 2148 */
2149 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2149 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2150 skb_dst_force(skb); 2150 skb_dst_force(skb);
2151 __qdisc_update_bstats(q, skb->len); 2151 __qdisc_update_bstats(q, skb->len);
2152 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2152 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2153 if (unlikely(contended)) { 2153 if (unlikely(contended)) {
2154 spin_unlock(&q->busylock); 2154 spin_unlock(&q->busylock);
2155 contended = false; 2155 contended = false;
2156 } 2156 }
2157 __qdisc_run(q); 2157 __qdisc_run(q);
2158 } else 2158 } else
2159 qdisc_run_end(q); 2159 qdisc_run_end(q);
2160 2160
2161 rc = NET_XMIT_SUCCESS; 2161 rc = NET_XMIT_SUCCESS;
2162 } else { 2162 } else {
2163 skb_dst_force(skb); 2163 skb_dst_force(skb);
2164 rc = qdisc_enqueue_root(skb, q); 2164 rc = qdisc_enqueue_root(skb, q);
2165 if (qdisc_run_begin(q)) { 2165 if (qdisc_run_begin(q)) {
2166 if (unlikely(contended)) { 2166 if (unlikely(contended)) {
2167 spin_unlock(&q->busylock); 2167 spin_unlock(&q->busylock);
2168 contended = false; 2168 contended = false;
2169 } 2169 }
2170 __qdisc_run(q); 2170 __qdisc_run(q);
2171 } 2171 }
2172 } 2172 }
2173 spin_unlock(root_lock); 2173 spin_unlock(root_lock);
2174 if (unlikely(contended)) 2174 if (unlikely(contended))
2175 spin_unlock(&q->busylock); 2175 spin_unlock(&q->busylock);
2176 return rc; 2176 return rc;
2177 } 2177 }
2178 2178
2179 static DEFINE_PER_CPU(int, xmit_recursion); 2179 static DEFINE_PER_CPU(int, xmit_recursion);
2180 #define RECURSION_LIMIT 3 2180 #define RECURSION_LIMIT 3
2181 2181
2182 /** 2182 /**
2183 * dev_queue_xmit - transmit a buffer 2183 * dev_queue_xmit - transmit a buffer
2184 * @skb: buffer to transmit 2184 * @skb: buffer to transmit
2185 * 2185 *
2186 * Queue a buffer for transmission to a network device. The caller must 2186 * Queue a buffer for transmission to a network device. The caller must
2187 * have set the device and priority and built the buffer before calling 2187 * have set the device and priority and built the buffer before calling
2188 * this function. The function can be called from an interrupt. 2188 * this function. The function can be called from an interrupt.
2189 * 2189 *
2190 * A negative errno code is returned on a failure. A success does not 2190 * A negative errno code is returned on a failure. A success does not
2191 * guarantee the frame will be transmitted as it may be dropped due 2191 * guarantee the frame will be transmitted as it may be dropped due
2192 * to congestion or traffic shaping. 2192 * to congestion or traffic shaping.
2193 * 2193 *
2194 * ----------------------------------------------------------------------------------- 2194 * -----------------------------------------------------------------------------------
2195 * I notice this method can also return errors from the queue disciplines, 2195 * I notice this method can also return errors from the queue disciplines,
2196 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2196 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2197 * be positive. 2197 * be positive.
2198 * 2198 *
2199 * Regardless of the return value, the skb is consumed, so it is currently 2199 * Regardless of the return value, the skb is consumed, so it is currently
2200 * difficult to retry a send to this method. (You can bump the ref count 2200 * difficult to retry a send to this method. (You can bump the ref count
2201 * before sending to hold a reference for retry if you are careful.) 2201 * before sending to hold a reference for retry if you are careful.)
2202 * 2202 *
2203 * When calling this method, interrupts MUST be enabled. This is because 2203 * When calling this method, interrupts MUST be enabled. This is because
2204 * the BH enable code must have IRQs enabled so that it will not deadlock. 2204 * the BH enable code must have IRQs enabled so that it will not deadlock.
2205 * --BLG 2205 * --BLG
2206 */ 2206 */
2207 int dev_queue_xmit(struct sk_buff *skb) 2207 int dev_queue_xmit(struct sk_buff *skb)
2208 { 2208 {
2209 struct net_device *dev = skb->dev; 2209 struct net_device *dev = skb->dev;
2210 struct netdev_queue *txq; 2210 struct netdev_queue *txq;
2211 struct Qdisc *q; 2211 struct Qdisc *q;
2212 int rc = -ENOMEM; 2212 int rc = -ENOMEM;
2213 2213
2214 /* Disable soft irqs for various locks below. Also 2214 /* Disable soft irqs for various locks below. Also
2215 * stops preemption for RCU. 2215 * stops preemption for RCU.
2216 */ 2216 */
2217 rcu_read_lock_bh(); 2217 rcu_read_lock_bh();
2218 2218
2219 txq = dev_pick_tx(dev, skb); 2219 txq = dev_pick_tx(dev, skb);
2220 q = rcu_dereference_bh(txq->qdisc); 2220 q = rcu_dereference_bh(txq->qdisc);
2221 2221
2222 #ifdef CONFIG_NET_CLS_ACT 2222 #ifdef CONFIG_NET_CLS_ACT
2223 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2223 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2224 #endif 2224 #endif
2225 if (q->enqueue) { 2225 if (q->enqueue) {
2226 rc = __dev_xmit_skb(skb, q, dev, txq); 2226 rc = __dev_xmit_skb(skb, q, dev, txq);
2227 goto out; 2227 goto out;
2228 } 2228 }
2229 2229
2230 /* The device has no queue. Common case for software devices: 2230 /* The device has no queue. Common case for software devices:
2231 loopback, all the sorts of tunnels... 2231 loopback, all the sorts of tunnels...
2232 2232
2233 Really, it is unlikely that netif_tx_lock protection is necessary 2233 Really, it is unlikely that netif_tx_lock protection is necessary
2234 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2234 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2235 counters.) 2235 counters.)
2236 However, it is possible, that they rely on protection 2236 However, it is possible, that they rely on protection
2237 made by us here. 2237 made by us here.
2238 2238
2239 Check this and shot the lock. It is not prone from deadlocks. 2239 Check this and shot the lock. It is not prone from deadlocks.
2240 Either shot noqueue qdisc, it is even simpler 8) 2240 Either shot noqueue qdisc, it is even simpler 8)
2241 */ 2241 */
2242 if (dev->flags & IFF_UP) { 2242 if (dev->flags & IFF_UP) {
2243 int cpu = smp_processor_id(); /* ok because BHs are off */ 2243 int cpu = smp_processor_id(); /* ok because BHs are off */
2244 2244
2245 if (txq->xmit_lock_owner != cpu) { 2245 if (txq->xmit_lock_owner != cpu) {
2246 2246
2247 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2247 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2248 goto recursion_alert; 2248 goto recursion_alert;
2249 2249
2250 HARD_TX_LOCK(dev, txq, cpu); 2250 HARD_TX_LOCK(dev, txq, cpu);
2251 2251
2252 if (!netif_tx_queue_stopped(txq)) { 2252 if (!netif_tx_queue_stopped(txq)) {
2253 __this_cpu_inc(xmit_recursion); 2253 __this_cpu_inc(xmit_recursion);
2254 rc = dev_hard_start_xmit(skb, dev, txq); 2254 rc = dev_hard_start_xmit(skb, dev, txq);
2255 __this_cpu_dec(xmit_recursion); 2255 __this_cpu_dec(xmit_recursion);
2256 if (dev_xmit_complete(rc)) { 2256 if (dev_xmit_complete(rc)) {
2257 HARD_TX_UNLOCK(dev, txq); 2257 HARD_TX_UNLOCK(dev, txq);
2258 goto out; 2258 goto out;
2259 } 2259 }
2260 } 2260 }
2261 HARD_TX_UNLOCK(dev, txq); 2261 HARD_TX_UNLOCK(dev, txq);
2262 if (net_ratelimit()) 2262 if (net_ratelimit())
2263 printk(KERN_CRIT "Virtual device %s asks to " 2263 printk(KERN_CRIT "Virtual device %s asks to "
2264 "queue packet!\n", dev->name); 2264 "queue packet!\n", dev->name);
2265 } else { 2265 } else {
2266 /* Recursion is detected! It is possible, 2266 /* Recursion is detected! It is possible,
2267 * unfortunately 2267 * unfortunately
2268 */ 2268 */
2269 recursion_alert: 2269 recursion_alert:
2270 if (net_ratelimit()) 2270 if (net_ratelimit())
2271 printk(KERN_CRIT "Dead loop on virtual device " 2271 printk(KERN_CRIT "Dead loop on virtual device "
2272 "%s, fix it urgently!\n", dev->name); 2272 "%s, fix it urgently!\n", dev->name);
2273 } 2273 }
2274 } 2274 }
2275 2275
2276 rc = -ENETDOWN; 2276 rc = -ENETDOWN;
2277 rcu_read_unlock_bh(); 2277 rcu_read_unlock_bh();
2278 2278
2279 kfree_skb(skb); 2279 kfree_skb(skb);
2280 return rc; 2280 return rc;
2281 out: 2281 out:
2282 rcu_read_unlock_bh(); 2282 rcu_read_unlock_bh();
2283 return rc; 2283 return rc;
2284 } 2284 }
2285 EXPORT_SYMBOL(dev_queue_xmit); 2285 EXPORT_SYMBOL(dev_queue_xmit);
2286 2286
2287 2287
2288 /*======================================================================= 2288 /*=======================================================================
2289 Receiver routines 2289 Receiver routines
2290 =======================================================================*/ 2290 =======================================================================*/
2291 2291
2292 int netdev_max_backlog __read_mostly = 1000; 2292 int netdev_max_backlog __read_mostly = 1000;
2293 int netdev_tstamp_prequeue __read_mostly = 1; 2293 int netdev_tstamp_prequeue __read_mostly = 1;
2294 int netdev_budget __read_mostly = 300; 2294 int netdev_budget __read_mostly = 300;
2295 int weight_p __read_mostly = 64; /* old backlog weight */ 2295 int weight_p __read_mostly = 64; /* old backlog weight */
2296 2296
2297 /* Called with irq disabled */ 2297 /* Called with irq disabled */
2298 static inline void ____napi_schedule(struct softnet_data *sd, 2298 static inline void ____napi_schedule(struct softnet_data *sd,
2299 struct napi_struct *napi) 2299 struct napi_struct *napi)
2300 { 2300 {
2301 list_add_tail(&napi->poll_list, &sd->poll_list); 2301 list_add_tail(&napi->poll_list, &sd->poll_list);
2302 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2302 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2303 } 2303 }
2304 2304
2305 /* 2305 /*
2306 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2306 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2307 * and src/dst port numbers. Returns a non-zero hash number on success 2307 * and src/dst port numbers. Returns a non-zero hash number on success
2308 * and 0 on failure. 2308 * and 0 on failure.
2309 */ 2309 */
2310 __u32 __skb_get_rxhash(struct sk_buff *skb) 2310 __u32 __skb_get_rxhash(struct sk_buff *skb)
2311 { 2311 {
2312 int nhoff, hash = 0, poff; 2312 int nhoff, hash = 0, poff;
2313 struct ipv6hdr *ip6; 2313 struct ipv6hdr *ip6;
2314 struct iphdr *ip; 2314 struct iphdr *ip;
2315 u8 ip_proto; 2315 u8 ip_proto;
2316 u32 addr1, addr2, ihl; 2316 u32 addr1, addr2, ihl;
2317 union { 2317 union {
2318 u32 v32; 2318 u32 v32;
2319 u16 v16[2]; 2319 u16 v16[2];
2320 } ports; 2320 } ports;
2321 2321
2322 nhoff = skb_network_offset(skb); 2322 nhoff = skb_network_offset(skb);
2323 2323
2324 switch (skb->protocol) { 2324 switch (skb->protocol) {
2325 case __constant_htons(ETH_P_IP): 2325 case __constant_htons(ETH_P_IP):
2326 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff)) 2326 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2327 goto done; 2327 goto done;
2328 2328
2329 ip = (struct iphdr *) (skb->data + nhoff); 2329 ip = (struct iphdr *) (skb->data + nhoff);
2330 if (ip->frag_off & htons(IP_MF | IP_OFFSET)) 2330 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2331 ip_proto = 0; 2331 ip_proto = 0;
2332 else 2332 else
2333 ip_proto = ip->protocol; 2333 ip_proto = ip->protocol;
2334 addr1 = (__force u32) ip->saddr; 2334 addr1 = (__force u32) ip->saddr;
2335 addr2 = (__force u32) ip->daddr; 2335 addr2 = (__force u32) ip->daddr;
2336 ihl = ip->ihl; 2336 ihl = ip->ihl;
2337 break; 2337 break;
2338 case __constant_htons(ETH_P_IPV6): 2338 case __constant_htons(ETH_P_IPV6):
2339 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff)) 2339 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2340 goto done; 2340 goto done;
2341 2341
2342 ip6 = (struct ipv6hdr *) (skb->data + nhoff); 2342 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2343 ip_proto = ip6->nexthdr; 2343 ip_proto = ip6->nexthdr;
2344 addr1 = (__force u32) ip6->saddr.s6_addr32[3]; 2344 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2345 addr2 = (__force u32) ip6->daddr.s6_addr32[3]; 2345 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2346 ihl = (40 >> 2); 2346 ihl = (40 >> 2);
2347 break; 2347 break;
2348 default: 2348 default:
2349 goto done; 2349 goto done;
2350 } 2350 }
2351 2351
2352 ports.v32 = 0; 2352 ports.v32 = 0;
2353 poff = proto_ports_offset(ip_proto); 2353 poff = proto_ports_offset(ip_proto);
2354 if (poff >= 0) { 2354 if (poff >= 0) {
2355 nhoff += ihl * 4 + poff; 2355 nhoff += ihl * 4 + poff;
2356 if (pskb_may_pull(skb, nhoff + 4)) { 2356 if (pskb_may_pull(skb, nhoff + 4)) {
2357 ports.v32 = * (__force u32 *) (skb->data + nhoff); 2357 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2358 if (ports.v16[1] < ports.v16[0]) 2358 if (ports.v16[1] < ports.v16[0])
2359 swap(ports.v16[0], ports.v16[1]); 2359 swap(ports.v16[0], ports.v16[1]);
2360 } 2360 }
2361 } 2361 }
2362 2362
2363 /* get a consistent hash (same value on both flow directions) */ 2363 /* get a consistent hash (same value on both flow directions) */
2364 if (addr2 < addr1) 2364 if (addr2 < addr1)
2365 swap(addr1, addr2); 2365 swap(addr1, addr2);
2366 2366
2367 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd); 2367 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2368 if (!hash) 2368 if (!hash)
2369 hash = 1; 2369 hash = 1;
2370 2370
2371 done: 2371 done:
2372 return hash; 2372 return hash;
2373 } 2373 }
2374 EXPORT_SYMBOL(__skb_get_rxhash); 2374 EXPORT_SYMBOL(__skb_get_rxhash);
2375 2375
2376 #ifdef CONFIG_RPS 2376 #ifdef CONFIG_RPS
2377 2377
2378 /* One global table that all flow-based protocols share. */ 2378 /* One global table that all flow-based protocols share. */
2379 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly; 2379 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2380 EXPORT_SYMBOL(rps_sock_flow_table); 2380 EXPORT_SYMBOL(rps_sock_flow_table);
2381 2381
2382 /* 2382 /*
2383 * get_rps_cpu is called from netif_receive_skb and returns the target 2383 * get_rps_cpu is called from netif_receive_skb and returns the target
2384 * CPU from the RPS map of the receiving queue for a given skb. 2384 * CPU from the RPS map of the receiving queue for a given skb.
2385 * rcu_read_lock must be held on entry. 2385 * rcu_read_lock must be held on entry.
2386 */ 2386 */
2387 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2387 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2388 struct rps_dev_flow **rflowp) 2388 struct rps_dev_flow **rflowp)
2389 { 2389 {
2390 struct netdev_rx_queue *rxqueue; 2390 struct netdev_rx_queue *rxqueue;
2391 struct rps_map *map = NULL; 2391 struct rps_map *map = NULL;
2392 struct rps_dev_flow_table *flow_table; 2392 struct rps_dev_flow_table *flow_table;
2393 struct rps_sock_flow_table *sock_flow_table; 2393 struct rps_sock_flow_table *sock_flow_table;
2394 int cpu = -1; 2394 int cpu = -1;
2395 u16 tcpu; 2395 u16 tcpu;
2396 2396
2397 if (skb_rx_queue_recorded(skb)) { 2397 if (skb_rx_queue_recorded(skb)) {
2398 u16 index = skb_get_rx_queue(skb); 2398 u16 index = skb_get_rx_queue(skb);
2399 if (unlikely(index >= dev->real_num_rx_queues)) { 2399 if (unlikely(index >= dev->real_num_rx_queues)) {
2400 WARN_ONCE(dev->real_num_rx_queues > 1, 2400 WARN_ONCE(dev->real_num_rx_queues > 1,
2401 "%s received packet on queue %u, but number " 2401 "%s received packet on queue %u, but number "
2402 "of RX queues is %u\n", 2402 "of RX queues is %u\n",
2403 dev->name, index, dev->real_num_rx_queues); 2403 dev->name, index, dev->real_num_rx_queues);
2404 goto done; 2404 goto done;
2405 } 2405 }
2406 rxqueue = dev->_rx + index; 2406 rxqueue = dev->_rx + index;
2407 } else 2407 } else
2408 rxqueue = dev->_rx; 2408 rxqueue = dev->_rx;
2409 2409
2410 if (rxqueue->rps_map) { 2410 if (rxqueue->rps_map) {
2411 map = rcu_dereference(rxqueue->rps_map); 2411 map = rcu_dereference(rxqueue->rps_map);
2412 if (map && map->len == 1) { 2412 if (map && map->len == 1) {
2413 tcpu = map->cpus[0]; 2413 tcpu = map->cpus[0];
2414 if (cpu_online(tcpu)) 2414 if (cpu_online(tcpu))
2415 cpu = tcpu; 2415 cpu = tcpu;
2416 goto done; 2416 goto done;
2417 } 2417 }
2418 } else if (!rxqueue->rps_flow_table) { 2418 } else if (!rxqueue->rps_flow_table) {
2419 goto done; 2419 goto done;
2420 } 2420 }
2421 2421
2422 skb_reset_network_header(skb); 2422 skb_reset_network_header(skb);
2423 if (!skb_get_rxhash(skb)) 2423 if (!skb_get_rxhash(skb))
2424 goto done; 2424 goto done;
2425 2425
2426 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2426 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2427 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2427 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2428 if (flow_table && sock_flow_table) { 2428 if (flow_table && sock_flow_table) {
2429 u16 next_cpu; 2429 u16 next_cpu;
2430 struct rps_dev_flow *rflow; 2430 struct rps_dev_flow *rflow;
2431 2431
2432 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2432 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2433 tcpu = rflow->cpu; 2433 tcpu = rflow->cpu;
2434 2434
2435 next_cpu = sock_flow_table->ents[skb->rxhash & 2435 next_cpu = sock_flow_table->ents[skb->rxhash &
2436 sock_flow_table->mask]; 2436 sock_flow_table->mask];
2437 2437
2438 /* 2438 /*
2439 * If the desired CPU (where last recvmsg was done) is 2439 * If the desired CPU (where last recvmsg was done) is
2440 * different from current CPU (one in the rx-queue flow 2440 * different from current CPU (one in the rx-queue flow
2441 * table entry), switch if one of the following holds: 2441 * table entry), switch if one of the following holds:
2442 * - Current CPU is unset (equal to RPS_NO_CPU). 2442 * - Current CPU is unset (equal to RPS_NO_CPU).
2443 * - Current CPU is offline. 2443 * - Current CPU is offline.
2444 * - The current CPU's queue tail has advanced beyond the 2444 * - The current CPU's queue tail has advanced beyond the
2445 * last packet that was enqueued using this table entry. 2445 * last packet that was enqueued using this table entry.
2446 * This guarantees that all previous packets for the flow 2446 * This guarantees that all previous packets for the flow
2447 * have been dequeued, thus preserving in order delivery. 2447 * have been dequeued, thus preserving in order delivery.
2448 */ 2448 */
2449 if (unlikely(tcpu != next_cpu) && 2449 if (unlikely(tcpu != next_cpu) &&
2450 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2450 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2451 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2451 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2452 rflow->last_qtail)) >= 0)) { 2452 rflow->last_qtail)) >= 0)) {
2453 tcpu = rflow->cpu = next_cpu; 2453 tcpu = rflow->cpu = next_cpu;
2454 if (tcpu != RPS_NO_CPU) 2454 if (tcpu != RPS_NO_CPU)
2455 rflow->last_qtail = per_cpu(softnet_data, 2455 rflow->last_qtail = per_cpu(softnet_data,
2456 tcpu).input_queue_head; 2456 tcpu).input_queue_head;
2457 } 2457 }
2458 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2458 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2459 *rflowp = rflow; 2459 *rflowp = rflow;
2460 cpu = tcpu; 2460 cpu = tcpu;
2461 goto done; 2461 goto done;
2462 } 2462 }
2463 } 2463 }
2464 2464
2465 if (map) { 2465 if (map) {
2466 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2466 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2467 2467
2468 if (cpu_online(tcpu)) { 2468 if (cpu_online(tcpu)) {
2469 cpu = tcpu; 2469 cpu = tcpu;
2470 goto done; 2470 goto done;
2471 } 2471 }
2472 } 2472 }
2473 2473
2474 done: 2474 done:
2475 return cpu; 2475 return cpu;
2476 } 2476 }
2477 2477
2478 /* Called from hardirq (IPI) context */ 2478 /* Called from hardirq (IPI) context */
2479 static void rps_trigger_softirq(void *data) 2479 static void rps_trigger_softirq(void *data)
2480 { 2480 {
2481 struct softnet_data *sd = data; 2481 struct softnet_data *sd = data;
2482 2482
2483 ____napi_schedule(sd, &sd->backlog); 2483 ____napi_schedule(sd, &sd->backlog);
2484 sd->received_rps++; 2484 sd->received_rps++;
2485 } 2485 }
2486 2486
2487 #endif /* CONFIG_RPS */ 2487 #endif /* CONFIG_RPS */
2488 2488
2489 /* 2489 /*
2490 * Check if this softnet_data structure is another cpu one 2490 * Check if this softnet_data structure is another cpu one
2491 * If yes, queue it to our IPI list and return 1 2491 * If yes, queue it to our IPI list and return 1
2492 * If no, return 0 2492 * If no, return 0
2493 */ 2493 */
2494 static int rps_ipi_queued(struct softnet_data *sd) 2494 static int rps_ipi_queued(struct softnet_data *sd)
2495 { 2495 {
2496 #ifdef CONFIG_RPS 2496 #ifdef CONFIG_RPS
2497 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2497 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2498 2498
2499 if (sd != mysd) { 2499 if (sd != mysd) {
2500 sd->rps_ipi_next = mysd->rps_ipi_list; 2500 sd->rps_ipi_next = mysd->rps_ipi_list;
2501 mysd->rps_ipi_list = sd; 2501 mysd->rps_ipi_list = sd;
2502 2502
2503 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2503 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2504 return 1; 2504 return 1;
2505 } 2505 }
2506 #endif /* CONFIG_RPS */ 2506 #endif /* CONFIG_RPS */
2507 return 0; 2507 return 0;
2508 } 2508 }
2509 2509
2510 /* 2510 /*
2511 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2511 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2512 * queue (may be a remote CPU queue). 2512 * queue (may be a remote CPU queue).
2513 */ 2513 */
2514 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2514 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2515 unsigned int *qtail) 2515 unsigned int *qtail)
2516 { 2516 {
2517 struct softnet_data *sd; 2517 struct softnet_data *sd;
2518 unsigned long flags; 2518 unsigned long flags;
2519 2519
2520 sd = &per_cpu(softnet_data, cpu); 2520 sd = &per_cpu(softnet_data, cpu);
2521 2521
2522 local_irq_save(flags); 2522 local_irq_save(flags);
2523 2523
2524 rps_lock(sd); 2524 rps_lock(sd);
2525 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2525 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2526 if (skb_queue_len(&sd->input_pkt_queue)) { 2526 if (skb_queue_len(&sd->input_pkt_queue)) {
2527 enqueue: 2527 enqueue:
2528 __skb_queue_tail(&sd->input_pkt_queue, skb); 2528 __skb_queue_tail(&sd->input_pkt_queue, skb);
2529 input_queue_tail_incr_save(sd, qtail); 2529 input_queue_tail_incr_save(sd, qtail);
2530 rps_unlock(sd); 2530 rps_unlock(sd);
2531 local_irq_restore(flags); 2531 local_irq_restore(flags);
2532 return NET_RX_SUCCESS; 2532 return NET_RX_SUCCESS;
2533 } 2533 }
2534 2534
2535 /* Schedule NAPI for backlog device 2535 /* Schedule NAPI for backlog device
2536 * We can use non atomic operation since we own the queue lock 2536 * We can use non atomic operation since we own the queue lock
2537 */ 2537 */
2538 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2538 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2539 if (!rps_ipi_queued(sd)) 2539 if (!rps_ipi_queued(sd))
2540 ____napi_schedule(sd, &sd->backlog); 2540 ____napi_schedule(sd, &sd->backlog);
2541 } 2541 }
2542 goto enqueue; 2542 goto enqueue;
2543 } 2543 }
2544 2544
2545 sd->dropped++; 2545 sd->dropped++;
2546 rps_unlock(sd); 2546 rps_unlock(sd);
2547 2547
2548 local_irq_restore(flags); 2548 local_irq_restore(flags);
2549 2549
2550 atomic_long_inc(&skb->dev->rx_dropped); 2550 atomic_long_inc(&skb->dev->rx_dropped);
2551 kfree_skb(skb); 2551 kfree_skb(skb);
2552 return NET_RX_DROP; 2552 return NET_RX_DROP;
2553 } 2553 }
2554 2554
2555 /** 2555 /**
2556 * netif_rx - post buffer to the network code 2556 * netif_rx - post buffer to the network code
2557 * @skb: buffer to post 2557 * @skb: buffer to post
2558 * 2558 *
2559 * This function receives a packet from a device driver and queues it for 2559 * This function receives a packet from a device driver and queues it for
2560 * the upper (protocol) levels to process. It always succeeds. The buffer 2560 * the upper (protocol) levels to process. It always succeeds. The buffer
2561 * may be dropped during processing for congestion control or by the 2561 * may be dropped during processing for congestion control or by the
2562 * protocol layers. 2562 * protocol layers.
2563 * 2563 *
2564 * return values: 2564 * return values:
2565 * NET_RX_SUCCESS (no congestion) 2565 * NET_RX_SUCCESS (no congestion)
2566 * NET_RX_DROP (packet was dropped) 2566 * NET_RX_DROP (packet was dropped)
2567 * 2567 *
2568 */ 2568 */
2569 2569
2570 int netif_rx(struct sk_buff *skb) 2570 int netif_rx(struct sk_buff *skb)
2571 { 2571 {
2572 int ret; 2572 int ret;
2573 2573
2574 /* if netpoll wants it, pretend we never saw it */ 2574 /* if netpoll wants it, pretend we never saw it */
2575 if (netpoll_rx(skb)) 2575 if (netpoll_rx(skb))
2576 return NET_RX_DROP; 2576 return NET_RX_DROP;
2577 2577
2578 if (netdev_tstamp_prequeue) 2578 if (netdev_tstamp_prequeue)
2579 net_timestamp_check(skb); 2579 net_timestamp_check(skb);
2580 2580
2581 #ifdef CONFIG_RPS 2581 #ifdef CONFIG_RPS
2582 { 2582 {
2583 struct rps_dev_flow voidflow, *rflow = &voidflow; 2583 struct rps_dev_flow voidflow, *rflow = &voidflow;
2584 int cpu; 2584 int cpu;
2585 2585
2586 preempt_disable(); 2586 preempt_disable();
2587 rcu_read_lock(); 2587 rcu_read_lock();
2588 2588
2589 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2589 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2590 if (cpu < 0) 2590 if (cpu < 0)
2591 cpu = smp_processor_id(); 2591 cpu = smp_processor_id();
2592 2592
2593 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2593 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2594 2594
2595 rcu_read_unlock(); 2595 rcu_read_unlock();
2596 preempt_enable(); 2596 preempt_enable();
2597 } 2597 }
2598 #else 2598 #else
2599 { 2599 {
2600 unsigned int qtail; 2600 unsigned int qtail;
2601 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2601 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2602 put_cpu(); 2602 put_cpu();
2603 } 2603 }
2604 #endif 2604 #endif
2605 return ret; 2605 return ret;
2606 } 2606 }
2607 EXPORT_SYMBOL(netif_rx); 2607 EXPORT_SYMBOL(netif_rx);
2608 2608
2609 int netif_rx_ni(struct sk_buff *skb) 2609 int netif_rx_ni(struct sk_buff *skb)
2610 { 2610 {
2611 int err; 2611 int err;
2612 2612
2613 preempt_disable(); 2613 preempt_disable();
2614 err = netif_rx(skb); 2614 err = netif_rx(skb);
2615 if (local_softirq_pending()) 2615 if (local_softirq_pending())
2616 do_softirq(); 2616 do_softirq();
2617 preempt_enable(); 2617 preempt_enable();
2618 2618
2619 return err; 2619 return err;
2620 } 2620 }
2621 EXPORT_SYMBOL(netif_rx_ni); 2621 EXPORT_SYMBOL(netif_rx_ni);
2622 2622
2623 static void net_tx_action(struct softirq_action *h) 2623 static void net_tx_action(struct softirq_action *h)
2624 { 2624 {
2625 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2625 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2626 2626
2627 if (sd->completion_queue) { 2627 if (sd->completion_queue) {
2628 struct sk_buff *clist; 2628 struct sk_buff *clist;
2629 2629
2630 local_irq_disable(); 2630 local_irq_disable();
2631 clist = sd->completion_queue; 2631 clist = sd->completion_queue;
2632 sd->completion_queue = NULL; 2632 sd->completion_queue = NULL;
2633 local_irq_enable(); 2633 local_irq_enable();
2634 2634
2635 while (clist) { 2635 while (clist) {
2636 struct sk_buff *skb = clist; 2636 struct sk_buff *skb = clist;
2637 clist = clist->next; 2637 clist = clist->next;
2638 2638
2639 WARN_ON(atomic_read(&skb->users)); 2639 WARN_ON(atomic_read(&skb->users));
2640 __kfree_skb(skb); 2640 __kfree_skb(skb);
2641 } 2641 }
2642 } 2642 }
2643 2643
2644 if (sd->output_queue) { 2644 if (sd->output_queue) {
2645 struct Qdisc *head; 2645 struct Qdisc *head;
2646 2646
2647 local_irq_disable(); 2647 local_irq_disable();
2648 head = sd->output_queue; 2648 head = sd->output_queue;
2649 sd->output_queue = NULL; 2649 sd->output_queue = NULL;
2650 sd->output_queue_tailp = &sd->output_queue; 2650 sd->output_queue_tailp = &sd->output_queue;
2651 local_irq_enable(); 2651 local_irq_enable();
2652 2652
2653 while (head) { 2653 while (head) {
2654 struct Qdisc *q = head; 2654 struct Qdisc *q = head;
2655 spinlock_t *root_lock; 2655 spinlock_t *root_lock;
2656 2656
2657 head = head->next_sched; 2657 head = head->next_sched;
2658 2658
2659 root_lock = qdisc_lock(q); 2659 root_lock = qdisc_lock(q);
2660 if (spin_trylock(root_lock)) { 2660 if (spin_trylock(root_lock)) {
2661 smp_mb__before_clear_bit(); 2661 smp_mb__before_clear_bit();
2662 clear_bit(__QDISC_STATE_SCHED, 2662 clear_bit(__QDISC_STATE_SCHED,
2663 &q->state); 2663 &q->state);
2664 qdisc_run(q); 2664 qdisc_run(q);
2665 spin_unlock(root_lock); 2665 spin_unlock(root_lock);
2666 } else { 2666 } else {
2667 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2667 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2668 &q->state)) { 2668 &q->state)) {
2669 __netif_reschedule(q); 2669 __netif_reschedule(q);
2670 } else { 2670 } else {
2671 smp_mb__before_clear_bit(); 2671 smp_mb__before_clear_bit();
2672 clear_bit(__QDISC_STATE_SCHED, 2672 clear_bit(__QDISC_STATE_SCHED,
2673 &q->state); 2673 &q->state);
2674 } 2674 }
2675 } 2675 }
2676 } 2676 }
2677 } 2677 }
2678 } 2678 }
2679 2679
2680 static inline int deliver_skb(struct sk_buff *skb, 2680 static inline int deliver_skb(struct sk_buff *skb,
2681 struct packet_type *pt_prev, 2681 struct packet_type *pt_prev,
2682 struct net_device *orig_dev) 2682 struct net_device *orig_dev)
2683 { 2683 {
2684 atomic_inc(&skb->users); 2684 atomic_inc(&skb->users);
2685 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2685 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2686 } 2686 }
2687 2687
2688 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 2688 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2689 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 2689 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2690 /* This hook is defined here for ATM LANE */ 2690 /* This hook is defined here for ATM LANE */
2691 int (*br_fdb_test_addr_hook)(struct net_device *dev, 2691 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2692 unsigned char *addr) __read_mostly; 2692 unsigned char *addr) __read_mostly;
2693 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2693 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2694 #endif 2694 #endif
2695 2695
2696 #ifdef CONFIG_NET_CLS_ACT 2696 #ifdef CONFIG_NET_CLS_ACT
2697 /* TODO: Maybe we should just force sch_ingress to be compiled in 2697 /* TODO: Maybe we should just force sch_ingress to be compiled in
2698 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2698 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2699 * a compare and 2 stores extra right now if we dont have it on 2699 * a compare and 2 stores extra right now if we dont have it on
2700 * but have CONFIG_NET_CLS_ACT 2700 * but have CONFIG_NET_CLS_ACT
2701 * NOTE: This doesnt stop any functionality; if you dont have 2701 * NOTE: This doesnt stop any functionality; if you dont have
2702 * the ingress scheduler, you just cant add policies on ingress. 2702 * the ingress scheduler, you just cant add policies on ingress.
2703 * 2703 *
2704 */ 2704 */
2705 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 2705 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2706 { 2706 {
2707 struct net_device *dev = skb->dev; 2707 struct net_device *dev = skb->dev;
2708 u32 ttl = G_TC_RTTL(skb->tc_verd); 2708 u32 ttl = G_TC_RTTL(skb->tc_verd);
2709 int result = TC_ACT_OK; 2709 int result = TC_ACT_OK;
2710 struct Qdisc *q; 2710 struct Qdisc *q;
2711 2711
2712 if (unlikely(MAX_RED_LOOP < ttl++)) { 2712 if (unlikely(MAX_RED_LOOP < ttl++)) {
2713 if (net_ratelimit()) 2713 if (net_ratelimit())
2714 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n", 2714 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2715 skb->skb_iif, dev->ifindex); 2715 skb->skb_iif, dev->ifindex);
2716 return TC_ACT_SHOT; 2716 return TC_ACT_SHOT;
2717 } 2717 }
2718 2718
2719 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2719 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2720 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2720 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2721 2721
2722 q = rxq->qdisc; 2722 q = rxq->qdisc;
2723 if (q != &noop_qdisc) { 2723 if (q != &noop_qdisc) {
2724 spin_lock(qdisc_lock(q)); 2724 spin_lock(qdisc_lock(q));
2725 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2725 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2726 result = qdisc_enqueue_root(skb, q); 2726 result = qdisc_enqueue_root(skb, q);
2727 spin_unlock(qdisc_lock(q)); 2727 spin_unlock(qdisc_lock(q));
2728 } 2728 }
2729 2729
2730 return result; 2730 return result;
2731 } 2731 }
2732 2732
2733 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2733 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2734 struct packet_type **pt_prev, 2734 struct packet_type **pt_prev,
2735 int *ret, struct net_device *orig_dev) 2735 int *ret, struct net_device *orig_dev)
2736 { 2736 {
2737 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 2737 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2738 2738
2739 if (!rxq || rxq->qdisc == &noop_qdisc) 2739 if (!rxq || rxq->qdisc == &noop_qdisc)
2740 goto out; 2740 goto out;
2741 2741
2742 if (*pt_prev) { 2742 if (*pt_prev) {
2743 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2743 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2744 *pt_prev = NULL; 2744 *pt_prev = NULL;
2745 } 2745 }
2746 2746
2747 switch (ing_filter(skb, rxq)) { 2747 switch (ing_filter(skb, rxq)) {
2748 case TC_ACT_SHOT: 2748 case TC_ACT_SHOT:
2749 case TC_ACT_STOLEN: 2749 case TC_ACT_STOLEN:
2750 kfree_skb(skb); 2750 kfree_skb(skb);
2751 return NULL; 2751 return NULL;
2752 } 2752 }
2753 2753
2754 out: 2754 out:
2755 skb->tc_verd = 0; 2755 skb->tc_verd = 0;
2756 return skb; 2756 return skb;
2757 } 2757 }
2758 #endif 2758 #endif
2759 2759
2760 /* 2760 /*
2761 * netif_nit_deliver - deliver received packets to network taps 2761 * netif_nit_deliver - deliver received packets to network taps
2762 * @skb: buffer 2762 * @skb: buffer
2763 * 2763 *
2764 * This function is used to deliver incoming packets to network 2764 * This function is used to deliver incoming packets to network
2765 * taps. It should be used when the normal netif_receive_skb path 2765 * taps. It should be used when the normal netif_receive_skb path
2766 * is bypassed, for example because of VLAN acceleration. 2766 * is bypassed, for example because of VLAN acceleration.
2767 */ 2767 */
2768 void netif_nit_deliver(struct sk_buff *skb) 2768 void netif_nit_deliver(struct sk_buff *skb)
2769 { 2769 {
2770 struct packet_type *ptype; 2770 struct packet_type *ptype;
2771 2771
2772 if (list_empty(&ptype_all)) 2772 if (list_empty(&ptype_all))
2773 return; 2773 return;
2774 2774
2775 skb_reset_network_header(skb); 2775 skb_reset_network_header(skb);
2776 skb_reset_transport_header(skb); 2776 skb_reset_transport_header(skb);
2777 skb->mac_len = skb->network_header - skb->mac_header; 2777 skb->mac_len = skb->network_header - skb->mac_header;
2778 2778
2779 rcu_read_lock(); 2779 rcu_read_lock();
2780 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2780 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2781 if (!ptype->dev || ptype->dev == skb->dev) 2781 if (!ptype->dev || ptype->dev == skb->dev)
2782 deliver_skb(skb, ptype, skb->dev); 2782 deliver_skb(skb, ptype, skb->dev);
2783 } 2783 }
2784 rcu_read_unlock(); 2784 rcu_read_unlock();
2785 } 2785 }
2786 2786
2787 /** 2787 /**
2788 * netdev_rx_handler_register - register receive handler 2788 * netdev_rx_handler_register - register receive handler
2789 * @dev: device to register a handler for 2789 * @dev: device to register a handler for
2790 * @rx_handler: receive handler to register 2790 * @rx_handler: receive handler to register
2791 * @rx_handler_data: data pointer that is used by rx handler 2791 * @rx_handler_data: data pointer that is used by rx handler
2792 * 2792 *
2793 * Register a receive hander for a device. This handler will then be 2793 * Register a receive hander for a device. This handler will then be
2794 * called from __netif_receive_skb. A negative errno code is returned 2794 * called from __netif_receive_skb. A negative errno code is returned
2795 * on a failure. 2795 * on a failure.
2796 * 2796 *
2797 * The caller must hold the rtnl_mutex. 2797 * The caller must hold the rtnl_mutex.
2798 */ 2798 */
2799 int netdev_rx_handler_register(struct net_device *dev, 2799 int netdev_rx_handler_register(struct net_device *dev,
2800 rx_handler_func_t *rx_handler, 2800 rx_handler_func_t *rx_handler,
2801 void *rx_handler_data) 2801 void *rx_handler_data)
2802 { 2802 {
2803 ASSERT_RTNL(); 2803 ASSERT_RTNL();
2804 2804
2805 if (dev->rx_handler) 2805 if (dev->rx_handler)
2806 return -EBUSY; 2806 return -EBUSY;
2807 2807
2808 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 2808 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2809 rcu_assign_pointer(dev->rx_handler, rx_handler); 2809 rcu_assign_pointer(dev->rx_handler, rx_handler);
2810 2810
2811 return 0; 2811 return 0;
2812 } 2812 }
2813 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 2813 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2814 2814
2815 /** 2815 /**
2816 * netdev_rx_handler_unregister - unregister receive handler 2816 * netdev_rx_handler_unregister - unregister receive handler
2817 * @dev: device to unregister a handler from 2817 * @dev: device to unregister a handler from
2818 * 2818 *
2819 * Unregister a receive hander from a device. 2819 * Unregister a receive hander from a device.
2820 * 2820 *
2821 * The caller must hold the rtnl_mutex. 2821 * The caller must hold the rtnl_mutex.
2822 */ 2822 */
2823 void netdev_rx_handler_unregister(struct net_device *dev) 2823 void netdev_rx_handler_unregister(struct net_device *dev)
2824 { 2824 {
2825 2825
2826 ASSERT_RTNL(); 2826 ASSERT_RTNL();
2827 rcu_assign_pointer(dev->rx_handler, NULL); 2827 rcu_assign_pointer(dev->rx_handler, NULL);
2828 rcu_assign_pointer(dev->rx_handler_data, NULL); 2828 rcu_assign_pointer(dev->rx_handler_data, NULL);
2829 } 2829 }
2830 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 2830 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2831 2831
2832 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb, 2832 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2833 struct net_device *master) 2833 struct net_device *master)
2834 { 2834 {
2835 if (skb->pkt_type == PACKET_HOST) { 2835 if (skb->pkt_type == PACKET_HOST) {
2836 u16 *dest = (u16 *) eth_hdr(skb)->h_dest; 2836 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2837 2837
2838 memcpy(dest, master->dev_addr, ETH_ALEN); 2838 memcpy(dest, master->dev_addr, ETH_ALEN);
2839 } 2839 }
2840 } 2840 }
2841 2841
2842 /* On bonding slaves other than the currently active slave, suppress 2842 /* On bonding slaves other than the currently active slave, suppress
2843 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and 2843 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2844 * ARP on active-backup slaves with arp_validate enabled. 2844 * ARP on active-backup slaves with arp_validate enabled.
2845 */ 2845 */
2846 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master) 2846 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2847 { 2847 {
2848 struct net_device *dev = skb->dev; 2848 struct net_device *dev = skb->dev;
2849 2849
2850 if (master->priv_flags & IFF_MASTER_ARPMON) 2850 if (master->priv_flags & IFF_MASTER_ARPMON)
2851 dev->last_rx = jiffies; 2851 dev->last_rx = jiffies;
2852 2852
2853 if ((master->priv_flags & IFF_MASTER_ALB) && 2853 if ((master->priv_flags & IFF_MASTER_ALB) &&
2854 (master->priv_flags & IFF_BRIDGE_PORT)) { 2854 (master->priv_flags & IFF_BRIDGE_PORT)) {
2855 /* Do address unmangle. The local destination address 2855 /* Do address unmangle. The local destination address
2856 * will be always the one master has. Provides the right 2856 * will be always the one master has. Provides the right
2857 * functionality in a bridge. 2857 * functionality in a bridge.
2858 */ 2858 */
2859 skb_bond_set_mac_by_master(skb, master); 2859 skb_bond_set_mac_by_master(skb, master);
2860 } 2860 }
2861 2861
2862 if (dev->priv_flags & IFF_SLAVE_INACTIVE) { 2862 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2863 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) && 2863 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2864 skb->protocol == __cpu_to_be16(ETH_P_ARP)) 2864 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2865 return 0; 2865 return 0;
2866 2866
2867 if (master->priv_flags & IFF_MASTER_ALB) { 2867 if (master->priv_flags & IFF_MASTER_ALB) {
2868 if (skb->pkt_type != PACKET_BROADCAST && 2868 if (skb->pkt_type != PACKET_BROADCAST &&
2869 skb->pkt_type != PACKET_MULTICAST) 2869 skb->pkt_type != PACKET_MULTICAST)
2870 return 0; 2870 return 0;
2871 } 2871 }
2872 if (master->priv_flags & IFF_MASTER_8023AD && 2872 if (master->priv_flags & IFF_MASTER_8023AD &&
2873 skb->protocol == __cpu_to_be16(ETH_P_SLOW)) 2873 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2874 return 0; 2874 return 0;
2875 2875
2876 return 1; 2876 return 1;
2877 } 2877 }
2878 return 0; 2878 return 0;
2879 } 2879 }
2880 EXPORT_SYMBOL(__skb_bond_should_drop); 2880 EXPORT_SYMBOL(__skb_bond_should_drop);
2881 2881
2882 static int __netif_receive_skb(struct sk_buff *skb) 2882 static int __netif_receive_skb(struct sk_buff *skb)
2883 { 2883 {
2884 struct packet_type *ptype, *pt_prev; 2884 struct packet_type *ptype, *pt_prev;
2885 rx_handler_func_t *rx_handler; 2885 rx_handler_func_t *rx_handler;
2886 struct net_device *orig_dev; 2886 struct net_device *orig_dev;
2887 struct net_device *master; 2887 struct net_device *master;
2888 struct net_device *null_or_orig; 2888 struct net_device *null_or_orig;
2889 struct net_device *orig_or_bond; 2889 struct net_device *orig_or_bond;
2890 int ret = NET_RX_DROP; 2890 int ret = NET_RX_DROP;
2891 __be16 type; 2891 __be16 type;
2892 2892
2893 if (!netdev_tstamp_prequeue) 2893 if (!netdev_tstamp_prequeue)
2894 net_timestamp_check(skb); 2894 net_timestamp_check(skb);
2895 2895
2896 if (vlan_tx_tag_present(skb)) 2896 if (vlan_tx_tag_present(skb))
2897 vlan_hwaccel_do_receive(skb); 2897 vlan_hwaccel_do_receive(skb);
2898 2898
2899 /* if we've gotten here through NAPI, check netpoll */ 2899 /* if we've gotten here through NAPI, check netpoll */
2900 if (netpoll_receive_skb(skb)) 2900 if (netpoll_receive_skb(skb))
2901 return NET_RX_DROP; 2901 return NET_RX_DROP;
2902 2902
2903 if (!skb->skb_iif) 2903 if (!skb->skb_iif)
2904 skb->skb_iif = skb->dev->ifindex; 2904 skb->skb_iif = skb->dev->ifindex;
2905 2905
2906 /* 2906 /*
2907 * bonding note: skbs received on inactive slaves should only 2907 * bonding note: skbs received on inactive slaves should only
2908 * be delivered to pkt handlers that are exact matches. Also 2908 * be delivered to pkt handlers that are exact matches. Also
2909 * the deliver_no_wcard flag will be set. If packet handlers 2909 * the deliver_no_wcard flag will be set. If packet handlers
2910 * are sensitive to duplicate packets these skbs will need to 2910 * are sensitive to duplicate packets these skbs will need to
2911 * be dropped at the handler. The vlan accel path may have 2911 * be dropped at the handler. The vlan accel path may have
2912 * already set the deliver_no_wcard flag. 2912 * already set the deliver_no_wcard flag.
2913 */ 2913 */
2914 null_or_orig = NULL; 2914 null_or_orig = NULL;
2915 orig_dev = skb->dev; 2915 orig_dev = skb->dev;
2916 master = ACCESS_ONCE(orig_dev->master); 2916 master = ACCESS_ONCE(orig_dev->master);
2917 if (skb->deliver_no_wcard) 2917 if (skb->deliver_no_wcard)
2918 null_or_orig = orig_dev; 2918 null_or_orig = orig_dev;
2919 else if (master) { 2919 else if (master) {
2920 if (skb_bond_should_drop(skb, master)) { 2920 if (skb_bond_should_drop(skb, master)) {
2921 skb->deliver_no_wcard = 1; 2921 skb->deliver_no_wcard = 1;
2922 null_or_orig = orig_dev; /* deliver only exact match */ 2922 null_or_orig = orig_dev; /* deliver only exact match */
2923 } else 2923 } else
2924 skb->dev = master; 2924 skb->dev = master;
2925 } 2925 }
2926 2926
2927 __this_cpu_inc(softnet_data.processed); 2927 __this_cpu_inc(softnet_data.processed);
2928 skb_reset_network_header(skb); 2928 skb_reset_network_header(skb);
2929 skb_reset_transport_header(skb); 2929 skb_reset_transport_header(skb);
2930 skb->mac_len = skb->network_header - skb->mac_header; 2930 skb->mac_len = skb->network_header - skb->mac_header;
2931 2931
2932 pt_prev = NULL; 2932 pt_prev = NULL;
2933 2933
2934 rcu_read_lock(); 2934 rcu_read_lock();
2935 2935
2936 #ifdef CONFIG_NET_CLS_ACT 2936 #ifdef CONFIG_NET_CLS_ACT
2937 if (skb->tc_verd & TC_NCLS) { 2937 if (skb->tc_verd & TC_NCLS) {
2938 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2938 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2939 goto ncls; 2939 goto ncls;
2940 } 2940 }
2941 #endif 2941 #endif
2942 2942
2943 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2943 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2944 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2944 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2945 ptype->dev == orig_dev) { 2945 ptype->dev == orig_dev) {
2946 if (pt_prev) 2946 if (pt_prev)
2947 ret = deliver_skb(skb, pt_prev, orig_dev); 2947 ret = deliver_skb(skb, pt_prev, orig_dev);
2948 pt_prev = ptype; 2948 pt_prev = ptype;
2949 } 2949 }
2950 } 2950 }
2951 2951
2952 #ifdef CONFIG_NET_CLS_ACT 2952 #ifdef CONFIG_NET_CLS_ACT
2953 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2953 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2954 if (!skb) 2954 if (!skb)
2955 goto out; 2955 goto out;
2956 ncls: 2956 ncls:
2957 #endif 2957 #endif
2958 2958
2959 /* Handle special case of bridge or macvlan */ 2959 /* Handle special case of bridge or macvlan */
2960 rx_handler = rcu_dereference(skb->dev->rx_handler); 2960 rx_handler = rcu_dereference(skb->dev->rx_handler);
2961 if (rx_handler) { 2961 if (rx_handler) {
2962 if (pt_prev) { 2962 if (pt_prev) {
2963 ret = deliver_skb(skb, pt_prev, orig_dev); 2963 ret = deliver_skb(skb, pt_prev, orig_dev);
2964 pt_prev = NULL; 2964 pt_prev = NULL;
2965 } 2965 }
2966 skb = rx_handler(skb); 2966 skb = rx_handler(skb);
2967 if (!skb) 2967 if (!skb)
2968 goto out; 2968 goto out;
2969 } 2969 }
2970 2970
2971 /* 2971 /*
2972 * Make sure frames received on VLAN interfaces stacked on 2972 * Make sure frames received on VLAN interfaces stacked on
2973 * bonding interfaces still make their way to any base bonding 2973 * bonding interfaces still make their way to any base bonding
2974 * device that may have registered for a specific ptype. The 2974 * device that may have registered for a specific ptype. The
2975 * handler may have to adjust skb->dev and orig_dev. 2975 * handler may have to adjust skb->dev and orig_dev.
2976 */ 2976 */
2977 orig_or_bond = orig_dev; 2977 orig_or_bond = orig_dev;
2978 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) && 2978 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2979 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) { 2979 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2980 orig_or_bond = vlan_dev_real_dev(skb->dev); 2980 orig_or_bond = vlan_dev_real_dev(skb->dev);
2981 } 2981 }
2982 2982
2983 type = skb->protocol; 2983 type = skb->protocol;
2984 list_for_each_entry_rcu(ptype, 2984 list_for_each_entry_rcu(ptype,
2985 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2985 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2986 if (ptype->type == type && (ptype->dev == null_or_orig || 2986 if (ptype->type == type && (ptype->dev == null_or_orig ||
2987 ptype->dev == skb->dev || ptype->dev == orig_dev || 2987 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2988 ptype->dev == orig_or_bond)) { 2988 ptype->dev == orig_or_bond)) {
2989 if (pt_prev) 2989 if (pt_prev)
2990 ret = deliver_skb(skb, pt_prev, orig_dev); 2990 ret = deliver_skb(skb, pt_prev, orig_dev);
2991 pt_prev = ptype; 2991 pt_prev = ptype;
2992 } 2992 }
2993 } 2993 }
2994 2994
2995 if (pt_prev) { 2995 if (pt_prev) {
2996 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2996 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2997 } else { 2997 } else {
2998 atomic_long_inc(&skb->dev->rx_dropped); 2998 atomic_long_inc(&skb->dev->rx_dropped);
2999 kfree_skb(skb); 2999 kfree_skb(skb);
3000 /* Jamal, now you will not able to escape explaining 3000 /* Jamal, now you will not able to escape explaining
3001 * me how you were going to use this. :-) 3001 * me how you were going to use this. :-)
3002 */ 3002 */
3003 ret = NET_RX_DROP; 3003 ret = NET_RX_DROP;
3004 } 3004 }
3005 3005
3006 out: 3006 out:
3007 rcu_read_unlock(); 3007 rcu_read_unlock();
3008 return ret; 3008 return ret;
3009 } 3009 }
3010 3010
3011 /** 3011 /**
3012 * netif_receive_skb - process receive buffer from network 3012 * netif_receive_skb - process receive buffer from network
3013 * @skb: buffer to process 3013 * @skb: buffer to process
3014 * 3014 *
3015 * netif_receive_skb() is the main receive data processing function. 3015 * netif_receive_skb() is the main receive data processing function.
3016 * It always succeeds. The buffer may be dropped during processing 3016 * It always succeeds. The buffer may be dropped during processing
3017 * for congestion control or by the protocol layers. 3017 * for congestion control or by the protocol layers.
3018 * 3018 *
3019 * This function may only be called from softirq context and interrupts 3019 * This function may only be called from softirq context and interrupts
3020 * should be enabled. 3020 * should be enabled.
3021 * 3021 *
3022 * Return values (usually ignored): 3022 * Return values (usually ignored):
3023 * NET_RX_SUCCESS: no congestion 3023 * NET_RX_SUCCESS: no congestion
3024 * NET_RX_DROP: packet was dropped 3024 * NET_RX_DROP: packet was dropped
3025 */ 3025 */
3026 int netif_receive_skb(struct sk_buff *skb) 3026 int netif_receive_skb(struct sk_buff *skb)
3027 { 3027 {
3028 if (netdev_tstamp_prequeue) 3028 if (netdev_tstamp_prequeue)
3029 net_timestamp_check(skb); 3029 net_timestamp_check(skb);
3030 3030
3031 if (skb_defer_rx_timestamp(skb)) 3031 if (skb_defer_rx_timestamp(skb))
3032 return NET_RX_SUCCESS; 3032 return NET_RX_SUCCESS;
3033 3033
3034 #ifdef CONFIG_RPS 3034 #ifdef CONFIG_RPS
3035 { 3035 {
3036 struct rps_dev_flow voidflow, *rflow = &voidflow; 3036 struct rps_dev_flow voidflow, *rflow = &voidflow;
3037 int cpu, ret; 3037 int cpu, ret;
3038 3038
3039 rcu_read_lock(); 3039 rcu_read_lock();
3040 3040
3041 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3041 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3042 3042
3043 if (cpu >= 0) { 3043 if (cpu >= 0) {
3044 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3044 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3045 rcu_read_unlock(); 3045 rcu_read_unlock();
3046 } else { 3046 } else {
3047 rcu_read_unlock(); 3047 rcu_read_unlock();
3048 ret = __netif_receive_skb(skb); 3048 ret = __netif_receive_skb(skb);
3049 } 3049 }
3050 3050
3051 return ret; 3051 return ret;
3052 } 3052 }
3053 #else 3053 #else
3054 return __netif_receive_skb(skb); 3054 return __netif_receive_skb(skb);
3055 #endif 3055 #endif
3056 } 3056 }
3057 EXPORT_SYMBOL(netif_receive_skb); 3057 EXPORT_SYMBOL(netif_receive_skb);
3058 3058
3059 /* Network device is going away, flush any packets still pending 3059 /* Network device is going away, flush any packets still pending
3060 * Called with irqs disabled. 3060 * Called with irqs disabled.
3061 */ 3061 */
3062 static void flush_backlog(void *arg) 3062 static void flush_backlog(void *arg)
3063 { 3063 {
3064 struct net_device *dev = arg; 3064 struct net_device *dev = arg;
3065 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3065 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3066 struct sk_buff *skb, *tmp; 3066 struct sk_buff *skb, *tmp;
3067 3067
3068 rps_lock(sd); 3068 rps_lock(sd);
3069 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3069 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3070 if (skb->dev == dev) { 3070 if (skb->dev == dev) {
3071 __skb_unlink(skb, &sd->input_pkt_queue); 3071 __skb_unlink(skb, &sd->input_pkt_queue);
3072 kfree_skb(skb); 3072 kfree_skb(skb);
3073 input_queue_head_incr(sd); 3073 input_queue_head_incr(sd);
3074 } 3074 }
3075 } 3075 }
3076 rps_unlock(sd); 3076 rps_unlock(sd);
3077 3077
3078 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3078 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3079 if (skb->dev == dev) { 3079 if (skb->dev == dev) {
3080 __skb_unlink(skb, &sd->process_queue); 3080 __skb_unlink(skb, &sd->process_queue);
3081 kfree_skb(skb); 3081 kfree_skb(skb);
3082 input_queue_head_incr(sd); 3082 input_queue_head_incr(sd);
3083 } 3083 }
3084 } 3084 }
3085 } 3085 }
3086 3086
3087 static int napi_gro_complete(struct sk_buff *skb) 3087 static int napi_gro_complete(struct sk_buff *skb)
3088 { 3088 {
3089 struct packet_type *ptype; 3089 struct packet_type *ptype;
3090 __be16 type = skb->protocol; 3090 __be16 type = skb->protocol;
3091 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3091 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3092 int err = -ENOENT; 3092 int err = -ENOENT;
3093 3093
3094 if (NAPI_GRO_CB(skb)->count == 1) { 3094 if (NAPI_GRO_CB(skb)->count == 1) {
3095 skb_shinfo(skb)->gso_size = 0; 3095 skb_shinfo(skb)->gso_size = 0;
3096 goto out; 3096 goto out;
3097 } 3097 }
3098 3098
3099 rcu_read_lock(); 3099 rcu_read_lock();
3100 list_for_each_entry_rcu(ptype, head, list) { 3100 list_for_each_entry_rcu(ptype, head, list) {
3101 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3101 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3102 continue; 3102 continue;
3103 3103
3104 err = ptype->gro_complete(skb); 3104 err = ptype->gro_complete(skb);
3105 break; 3105 break;
3106 } 3106 }
3107 rcu_read_unlock(); 3107 rcu_read_unlock();
3108 3108
3109 if (err) { 3109 if (err) {
3110 WARN_ON(&ptype->list == head); 3110 WARN_ON(&ptype->list == head);
3111 kfree_skb(skb); 3111 kfree_skb(skb);
3112 return NET_RX_SUCCESS; 3112 return NET_RX_SUCCESS;
3113 } 3113 }
3114 3114
3115 out: 3115 out:
3116 return netif_receive_skb(skb); 3116 return netif_receive_skb(skb);
3117 } 3117 }
3118 3118
3119 inline void napi_gro_flush(struct napi_struct *napi) 3119 inline void napi_gro_flush(struct napi_struct *napi)
3120 { 3120 {
3121 struct sk_buff *skb, *next; 3121 struct sk_buff *skb, *next;
3122 3122
3123 for (skb = napi->gro_list; skb; skb = next) { 3123 for (skb = napi->gro_list; skb; skb = next) {
3124 next = skb->next; 3124 next = skb->next;
3125 skb->next = NULL; 3125 skb->next = NULL;
3126 napi_gro_complete(skb); 3126 napi_gro_complete(skb);
3127 } 3127 }
3128 3128
3129 napi->gro_count = 0; 3129 napi->gro_count = 0;
3130 napi->gro_list = NULL; 3130 napi->gro_list = NULL;
3131 } 3131 }
3132 EXPORT_SYMBOL(napi_gro_flush); 3132 EXPORT_SYMBOL(napi_gro_flush);
3133 3133
3134 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3134 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3135 { 3135 {
3136 struct sk_buff **pp = NULL; 3136 struct sk_buff **pp = NULL;
3137 struct packet_type *ptype; 3137 struct packet_type *ptype;
3138 __be16 type = skb->protocol; 3138 __be16 type = skb->protocol;
3139 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3139 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3140 int same_flow; 3140 int same_flow;
3141 int mac_len; 3141 int mac_len;
3142 enum gro_result ret; 3142 enum gro_result ret;
3143 3143
3144 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3144 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3145 goto normal; 3145 goto normal;
3146 3146
3147 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3147 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3148 goto normal; 3148 goto normal;
3149 3149
3150 rcu_read_lock(); 3150 rcu_read_lock();
3151 list_for_each_entry_rcu(ptype, head, list) { 3151 list_for_each_entry_rcu(ptype, head, list) {
3152 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3152 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3153 continue; 3153 continue;
3154 3154
3155 skb_set_network_header(skb, skb_gro_offset(skb)); 3155 skb_set_network_header(skb, skb_gro_offset(skb));
3156 mac_len = skb->network_header - skb->mac_header; 3156 mac_len = skb->network_header - skb->mac_header;
3157 skb->mac_len = mac_len; 3157 skb->mac_len = mac_len;
3158 NAPI_GRO_CB(skb)->same_flow = 0; 3158 NAPI_GRO_CB(skb)->same_flow = 0;
3159 NAPI_GRO_CB(skb)->flush = 0; 3159 NAPI_GRO_CB(skb)->flush = 0;
3160 NAPI_GRO_CB(skb)->free = 0; 3160 NAPI_GRO_CB(skb)->free = 0;
3161 3161
3162 pp = ptype->gro_receive(&napi->gro_list, skb); 3162 pp = ptype->gro_receive(&napi->gro_list, skb);
3163 break; 3163 break;
3164 } 3164 }
3165 rcu_read_unlock(); 3165 rcu_read_unlock();
3166 3166
3167 if (&ptype->list == head) 3167 if (&ptype->list == head)
3168 goto normal; 3168 goto normal;
3169 3169
3170 same_flow = NAPI_GRO_CB(skb)->same_flow; 3170 same_flow = NAPI_GRO_CB(skb)->same_flow;
3171 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3171 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3172 3172
3173 if (pp) { 3173 if (pp) {
3174 struct sk_buff *nskb = *pp; 3174 struct sk_buff *nskb = *pp;
3175 3175
3176 *pp = nskb->next; 3176 *pp = nskb->next;
3177 nskb->next = NULL; 3177 nskb->next = NULL;
3178 napi_gro_complete(nskb); 3178 napi_gro_complete(nskb);
3179 napi->gro_count--; 3179 napi->gro_count--;
3180 } 3180 }
3181 3181
3182 if (same_flow) 3182 if (same_flow)
3183 goto ok; 3183 goto ok;
3184 3184
3185 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3185 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3186 goto normal; 3186 goto normal;
3187 3187
3188 napi->gro_count++; 3188 napi->gro_count++;
3189 NAPI_GRO_CB(skb)->count = 1; 3189 NAPI_GRO_CB(skb)->count = 1;
3190 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3190 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3191 skb->next = napi->gro_list; 3191 skb->next = napi->gro_list;
3192 napi->gro_list = skb; 3192 napi->gro_list = skb;
3193 ret = GRO_HELD; 3193 ret = GRO_HELD;
3194 3194
3195 pull: 3195 pull:
3196 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3196 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3197 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3197 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3198 3198
3199 BUG_ON(skb->end - skb->tail < grow); 3199 BUG_ON(skb->end - skb->tail < grow);
3200 3200
3201 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3201 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3202 3202
3203 skb->tail += grow; 3203 skb->tail += grow;
3204 skb->data_len -= grow; 3204 skb->data_len -= grow;
3205 3205
3206 skb_shinfo(skb)->frags[0].page_offset += grow; 3206 skb_shinfo(skb)->frags[0].page_offset += grow;
3207 skb_shinfo(skb)->frags[0].size -= grow; 3207 skb_shinfo(skb)->frags[0].size -= grow;
3208 3208
3209 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 3209 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3210 put_page(skb_shinfo(skb)->frags[0].page); 3210 put_page(skb_shinfo(skb)->frags[0].page);
3211 memmove(skb_shinfo(skb)->frags, 3211 memmove(skb_shinfo(skb)->frags,
3212 skb_shinfo(skb)->frags + 1, 3212 skb_shinfo(skb)->frags + 1,
3213 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3213 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3214 } 3214 }
3215 } 3215 }
3216 3216
3217 ok: 3217 ok:
3218 return ret; 3218 return ret;
3219 3219
3220 normal: 3220 normal:
3221 ret = GRO_NORMAL; 3221 ret = GRO_NORMAL;
3222 goto pull; 3222 goto pull;
3223 } 3223 }
3224 EXPORT_SYMBOL(dev_gro_receive); 3224 EXPORT_SYMBOL(dev_gro_receive);
3225 3225
3226 static inline gro_result_t 3226 static inline gro_result_t
3227 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3227 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3228 { 3228 {
3229 struct sk_buff *p; 3229 struct sk_buff *p;
3230 3230
3231 for (p = napi->gro_list; p; p = p->next) { 3231 for (p = napi->gro_list; p; p = p->next) {
3232 unsigned long diffs; 3232 unsigned long diffs;
3233 3233
3234 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3234 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3235 diffs |= compare_ether_header(skb_mac_header(p), 3235 diffs |= compare_ether_header(skb_mac_header(p),
3236 skb_gro_mac_header(skb)); 3236 skb_gro_mac_header(skb));
3237 NAPI_GRO_CB(p)->same_flow = !diffs; 3237 NAPI_GRO_CB(p)->same_flow = !diffs;
3238 NAPI_GRO_CB(p)->flush = 0; 3238 NAPI_GRO_CB(p)->flush = 0;
3239 } 3239 }
3240 3240
3241 return dev_gro_receive(napi, skb); 3241 return dev_gro_receive(napi, skb);
3242 } 3242 }
3243 3243
3244 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3244 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3245 { 3245 {
3246 switch (ret) { 3246 switch (ret) {
3247 case GRO_NORMAL: 3247 case GRO_NORMAL:
3248 if (netif_receive_skb(skb)) 3248 if (netif_receive_skb(skb))
3249 ret = GRO_DROP; 3249 ret = GRO_DROP;
3250 break; 3250 break;
3251 3251
3252 case GRO_DROP: 3252 case GRO_DROP:
3253 case GRO_MERGED_FREE: 3253 case GRO_MERGED_FREE:
3254 kfree_skb(skb); 3254 kfree_skb(skb);
3255 break; 3255 break;
3256 3256
3257 case GRO_HELD: 3257 case GRO_HELD:
3258 case GRO_MERGED: 3258 case GRO_MERGED:
3259 break; 3259 break;
3260 } 3260 }
3261 3261
3262 return ret; 3262 return ret;
3263 } 3263 }
3264 EXPORT_SYMBOL(napi_skb_finish); 3264 EXPORT_SYMBOL(napi_skb_finish);
3265 3265
3266 void skb_gro_reset_offset(struct sk_buff *skb) 3266 void skb_gro_reset_offset(struct sk_buff *skb)
3267 { 3267 {
3268 NAPI_GRO_CB(skb)->data_offset = 0; 3268 NAPI_GRO_CB(skb)->data_offset = 0;
3269 NAPI_GRO_CB(skb)->frag0 = NULL; 3269 NAPI_GRO_CB(skb)->frag0 = NULL;
3270 NAPI_GRO_CB(skb)->frag0_len = 0; 3270 NAPI_GRO_CB(skb)->frag0_len = 0;
3271 3271
3272 if (skb->mac_header == skb->tail && 3272 if (skb->mac_header == skb->tail &&
3273 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 3273 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3274 NAPI_GRO_CB(skb)->frag0 = 3274 NAPI_GRO_CB(skb)->frag0 =
3275 page_address(skb_shinfo(skb)->frags[0].page) + 3275 page_address(skb_shinfo(skb)->frags[0].page) +
3276 skb_shinfo(skb)->frags[0].page_offset; 3276 skb_shinfo(skb)->frags[0].page_offset;
3277 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 3277 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3278 } 3278 }
3279 } 3279 }
3280 EXPORT_SYMBOL(skb_gro_reset_offset); 3280 EXPORT_SYMBOL(skb_gro_reset_offset);
3281 3281
3282 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3282 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3283 { 3283 {
3284 skb_gro_reset_offset(skb); 3284 skb_gro_reset_offset(skb);
3285 3285
3286 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3286 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3287 } 3287 }
3288 EXPORT_SYMBOL(napi_gro_receive); 3288 EXPORT_SYMBOL(napi_gro_receive);
3289 3289
3290 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3290 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3291 { 3291 {
3292 __skb_pull(skb, skb_headlen(skb)); 3292 __skb_pull(skb, skb_headlen(skb));
3293 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3293 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3294 3294
3295 napi->skb = skb; 3295 napi->skb = skb;
3296 } 3296 }
3297 EXPORT_SYMBOL(napi_reuse_skb); 3297 EXPORT_SYMBOL(napi_reuse_skb);
3298 3298
3299 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3299 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3300 { 3300 {
3301 struct sk_buff *skb = napi->skb; 3301 struct sk_buff *skb = napi->skb;
3302 3302
3303 if (!skb) { 3303 if (!skb) {
3304 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3304 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3305 if (skb) 3305 if (skb)
3306 napi->skb = skb; 3306 napi->skb = skb;
3307 } 3307 }
3308 return skb; 3308 return skb;
3309 } 3309 }
3310 EXPORT_SYMBOL(napi_get_frags); 3310 EXPORT_SYMBOL(napi_get_frags);
3311 3311
3312 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3312 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3313 gro_result_t ret) 3313 gro_result_t ret)
3314 { 3314 {
3315 switch (ret) { 3315 switch (ret) {
3316 case GRO_NORMAL: 3316 case GRO_NORMAL:
3317 case GRO_HELD: 3317 case GRO_HELD:
3318 skb->protocol = eth_type_trans(skb, skb->dev); 3318 skb->protocol = eth_type_trans(skb, skb->dev);
3319 3319
3320 if (ret == GRO_HELD) 3320 if (ret == GRO_HELD)
3321 skb_gro_pull(skb, -ETH_HLEN); 3321 skb_gro_pull(skb, -ETH_HLEN);
3322 else if (netif_receive_skb(skb)) 3322 else if (netif_receive_skb(skb))
3323 ret = GRO_DROP; 3323 ret = GRO_DROP;
3324 break; 3324 break;
3325 3325
3326 case GRO_DROP: 3326 case GRO_DROP:
3327 case GRO_MERGED_FREE: 3327 case GRO_MERGED_FREE:
3328 napi_reuse_skb(napi, skb); 3328 napi_reuse_skb(napi, skb);
3329 break; 3329 break;
3330 3330
3331 case GRO_MERGED: 3331 case GRO_MERGED:
3332 break; 3332 break;
3333 } 3333 }
3334 3334
3335 return ret; 3335 return ret;
3336 } 3336 }
3337 EXPORT_SYMBOL(napi_frags_finish); 3337 EXPORT_SYMBOL(napi_frags_finish);
3338 3338
3339 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3339 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3340 { 3340 {
3341 struct sk_buff *skb = napi->skb; 3341 struct sk_buff *skb = napi->skb;
3342 struct ethhdr *eth; 3342 struct ethhdr *eth;
3343 unsigned int hlen; 3343 unsigned int hlen;
3344 unsigned int off; 3344 unsigned int off;
3345 3345
3346 napi->skb = NULL; 3346 napi->skb = NULL;
3347 3347
3348 skb_reset_mac_header(skb); 3348 skb_reset_mac_header(skb);
3349 skb_gro_reset_offset(skb); 3349 skb_gro_reset_offset(skb);
3350 3350
3351 off = skb_gro_offset(skb); 3351 off = skb_gro_offset(skb);
3352 hlen = off + sizeof(*eth); 3352 hlen = off + sizeof(*eth);
3353 eth = skb_gro_header_fast(skb, off); 3353 eth = skb_gro_header_fast(skb, off);
3354 if (skb_gro_header_hard(skb, hlen)) { 3354 if (skb_gro_header_hard(skb, hlen)) {
3355 eth = skb_gro_header_slow(skb, hlen, off); 3355 eth = skb_gro_header_slow(skb, hlen, off);
3356 if (unlikely(!eth)) { 3356 if (unlikely(!eth)) {
3357 napi_reuse_skb(napi, skb); 3357 napi_reuse_skb(napi, skb);
3358 skb = NULL; 3358 skb = NULL;
3359 goto out; 3359 goto out;
3360 } 3360 }
3361 } 3361 }
3362 3362
3363 skb_gro_pull(skb, sizeof(*eth)); 3363 skb_gro_pull(skb, sizeof(*eth));
3364 3364
3365 /* 3365 /*
3366 * This works because the only protocols we care about don't require 3366 * This works because the only protocols we care about don't require
3367 * special handling. We'll fix it up properly at the end. 3367 * special handling. We'll fix it up properly at the end.
3368 */ 3368 */
3369 skb->protocol = eth->h_proto; 3369 skb->protocol = eth->h_proto;
3370 3370
3371 out: 3371 out:
3372 return skb; 3372 return skb;
3373 } 3373 }
3374 EXPORT_SYMBOL(napi_frags_skb); 3374 EXPORT_SYMBOL(napi_frags_skb);
3375 3375
3376 gro_result_t napi_gro_frags(struct napi_struct *napi) 3376 gro_result_t napi_gro_frags(struct napi_struct *napi)
3377 { 3377 {
3378 struct sk_buff *skb = napi_frags_skb(napi); 3378 struct sk_buff *skb = napi_frags_skb(napi);
3379 3379
3380 if (!skb) 3380 if (!skb)
3381 return GRO_DROP; 3381 return GRO_DROP;
3382 3382
3383 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3383 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3384 } 3384 }
3385 EXPORT_SYMBOL(napi_gro_frags); 3385 EXPORT_SYMBOL(napi_gro_frags);
3386 3386
3387 /* 3387 /*
3388 * net_rps_action sends any pending IPI's for rps. 3388 * net_rps_action sends any pending IPI's for rps.
3389 * Note: called with local irq disabled, but exits with local irq enabled. 3389 * Note: called with local irq disabled, but exits with local irq enabled.
3390 */ 3390 */
3391 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3391 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3392 { 3392 {
3393 #ifdef CONFIG_RPS 3393 #ifdef CONFIG_RPS
3394 struct softnet_data *remsd = sd->rps_ipi_list; 3394 struct softnet_data *remsd = sd->rps_ipi_list;
3395 3395
3396 if (remsd) { 3396 if (remsd) {
3397 sd->rps_ipi_list = NULL; 3397 sd->rps_ipi_list = NULL;
3398 3398
3399 local_irq_enable(); 3399 local_irq_enable();
3400 3400
3401 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3401 /* Send pending IPI's to kick RPS processing on remote cpus. */
3402 while (remsd) { 3402 while (remsd) {
3403 struct softnet_data *next = remsd->rps_ipi_next; 3403 struct softnet_data *next = remsd->rps_ipi_next;
3404 3404
3405 if (cpu_online(remsd->cpu)) 3405 if (cpu_online(remsd->cpu))
3406 __smp_call_function_single(remsd->cpu, 3406 __smp_call_function_single(remsd->cpu,
3407 &remsd->csd, 0); 3407 &remsd->csd, 0);
3408 remsd = next; 3408 remsd = next;
3409 } 3409 }
3410 } else 3410 } else
3411 #endif 3411 #endif
3412 local_irq_enable(); 3412 local_irq_enable();
3413 } 3413 }
3414 3414
3415 static int process_backlog(struct napi_struct *napi, int quota) 3415 static int process_backlog(struct napi_struct *napi, int quota)
3416 { 3416 {
3417 int work = 0; 3417 int work = 0;
3418 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3418 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3419 3419
3420 #ifdef CONFIG_RPS 3420 #ifdef CONFIG_RPS
3421 /* Check if we have pending ipi, its better to send them now, 3421 /* Check if we have pending ipi, its better to send them now,
3422 * not waiting net_rx_action() end. 3422 * not waiting net_rx_action() end.
3423 */ 3423 */
3424 if (sd->rps_ipi_list) { 3424 if (sd->rps_ipi_list) {
3425 local_irq_disable(); 3425 local_irq_disable();
3426 net_rps_action_and_irq_enable(sd); 3426 net_rps_action_and_irq_enable(sd);
3427 } 3427 }
3428 #endif 3428 #endif
3429 napi->weight = weight_p; 3429 napi->weight = weight_p;
3430 local_irq_disable(); 3430 local_irq_disable();
3431 while (work < quota) { 3431 while (work < quota) {
3432 struct sk_buff *skb; 3432 struct sk_buff *skb;
3433 unsigned int qlen; 3433 unsigned int qlen;
3434 3434
3435 while ((skb = __skb_dequeue(&sd->process_queue))) { 3435 while ((skb = __skb_dequeue(&sd->process_queue))) {
3436 local_irq_enable(); 3436 local_irq_enable();
3437 __netif_receive_skb(skb); 3437 __netif_receive_skb(skb);
3438 local_irq_disable(); 3438 local_irq_disable();
3439 input_queue_head_incr(sd); 3439 input_queue_head_incr(sd);
3440 if (++work >= quota) { 3440 if (++work >= quota) {
3441 local_irq_enable(); 3441 local_irq_enable();
3442 return work; 3442 return work;
3443 } 3443 }
3444 } 3444 }
3445 3445
3446 rps_lock(sd); 3446 rps_lock(sd);
3447 qlen = skb_queue_len(&sd->input_pkt_queue); 3447 qlen = skb_queue_len(&sd->input_pkt_queue);
3448 if (qlen) 3448 if (qlen)
3449 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3449 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3450 &sd->process_queue); 3450 &sd->process_queue);
3451 3451
3452 if (qlen < quota - work) { 3452 if (qlen < quota - work) {
3453 /* 3453 /*
3454 * Inline a custom version of __napi_complete(). 3454 * Inline a custom version of __napi_complete().
3455 * only current cpu owns and manipulates this napi, 3455 * only current cpu owns and manipulates this napi,
3456 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3456 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3457 * we can use a plain write instead of clear_bit(), 3457 * we can use a plain write instead of clear_bit(),
3458 * and we dont need an smp_mb() memory barrier. 3458 * and we dont need an smp_mb() memory barrier.
3459 */ 3459 */
3460 list_del(&napi->poll_list); 3460 list_del(&napi->poll_list);
3461 napi->state = 0; 3461 napi->state = 0;
3462 3462
3463 quota = work + qlen; 3463 quota = work + qlen;
3464 } 3464 }
3465 rps_unlock(sd); 3465 rps_unlock(sd);
3466 } 3466 }
3467 local_irq_enable(); 3467 local_irq_enable();
3468 3468
3469 return work; 3469 return work;
3470 } 3470 }
3471 3471
3472 /** 3472 /**
3473 * __napi_schedule - schedule for receive 3473 * __napi_schedule - schedule for receive
3474 * @n: entry to schedule 3474 * @n: entry to schedule
3475 * 3475 *
3476 * The entry's receive function will be scheduled to run 3476 * The entry's receive function will be scheduled to run
3477 */ 3477 */
3478 void __napi_schedule(struct napi_struct *n) 3478 void __napi_schedule(struct napi_struct *n)
3479 { 3479 {
3480 unsigned long flags; 3480 unsigned long flags;
3481 3481
3482 local_irq_save(flags); 3482 local_irq_save(flags);
3483 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3483 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3484 local_irq_restore(flags); 3484 local_irq_restore(flags);
3485 } 3485 }
3486 EXPORT_SYMBOL(__napi_schedule); 3486 EXPORT_SYMBOL(__napi_schedule);
3487 3487
3488 void __napi_complete(struct napi_struct *n) 3488 void __napi_complete(struct napi_struct *n)
3489 { 3489 {
3490 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3490 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3491 BUG_ON(n->gro_list); 3491 BUG_ON(n->gro_list);
3492 3492
3493 list_del(&n->poll_list); 3493 list_del(&n->poll_list);
3494 smp_mb__before_clear_bit(); 3494 smp_mb__before_clear_bit();
3495 clear_bit(NAPI_STATE_SCHED, &n->state); 3495 clear_bit(NAPI_STATE_SCHED, &n->state);
3496 } 3496 }
3497 EXPORT_SYMBOL(__napi_complete); 3497 EXPORT_SYMBOL(__napi_complete);
3498 3498
3499 void napi_complete(struct napi_struct *n) 3499 void napi_complete(struct napi_struct *n)
3500 { 3500 {
3501 unsigned long flags; 3501 unsigned long flags;
3502 3502
3503 /* 3503 /*
3504 * don't let napi dequeue from the cpu poll list 3504 * don't let napi dequeue from the cpu poll list
3505 * just in case its running on a different cpu 3505 * just in case its running on a different cpu
3506 */ 3506 */
3507 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3507 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3508 return; 3508 return;
3509 3509
3510 napi_gro_flush(n); 3510 napi_gro_flush(n);
3511 local_irq_save(flags); 3511 local_irq_save(flags);
3512 __napi_complete(n); 3512 __napi_complete(n);
3513 local_irq_restore(flags); 3513 local_irq_restore(flags);
3514 } 3514 }
3515 EXPORT_SYMBOL(napi_complete); 3515 EXPORT_SYMBOL(napi_complete);
3516 3516
3517 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3517 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3518 int (*poll)(struct napi_struct *, int), int weight) 3518 int (*poll)(struct napi_struct *, int), int weight)
3519 { 3519 {
3520 INIT_LIST_HEAD(&napi->poll_list); 3520 INIT_LIST_HEAD(&napi->poll_list);
3521 napi->gro_count = 0; 3521 napi->gro_count = 0;
3522 napi->gro_list = NULL; 3522 napi->gro_list = NULL;
3523 napi->skb = NULL; 3523 napi->skb = NULL;
3524 napi->poll = poll; 3524 napi->poll = poll;
3525 napi->weight = weight; 3525 napi->weight = weight;
3526 list_add(&napi->dev_list, &dev->napi_list); 3526 list_add(&napi->dev_list, &dev->napi_list);
3527 napi->dev = dev; 3527 napi->dev = dev;
3528 #ifdef CONFIG_NETPOLL 3528 #ifdef CONFIG_NETPOLL
3529 spin_lock_init(&napi->poll_lock); 3529 spin_lock_init(&napi->poll_lock);
3530 napi->poll_owner = -1; 3530 napi->poll_owner = -1;
3531 #endif 3531 #endif
3532 set_bit(NAPI_STATE_SCHED, &napi->state); 3532 set_bit(NAPI_STATE_SCHED, &napi->state);
3533 } 3533 }
3534 EXPORT_SYMBOL(netif_napi_add); 3534 EXPORT_SYMBOL(netif_napi_add);
3535 3535
3536 void netif_napi_del(struct napi_struct *napi) 3536 void netif_napi_del(struct napi_struct *napi)
3537 { 3537 {
3538 struct sk_buff *skb, *next; 3538 struct sk_buff *skb, *next;
3539 3539
3540 list_del_init(&napi->dev_list); 3540 list_del_init(&napi->dev_list);
3541 napi_free_frags(napi); 3541 napi_free_frags(napi);
3542 3542
3543 for (skb = napi->gro_list; skb; skb = next) { 3543 for (skb = napi->gro_list; skb; skb = next) {
3544 next = skb->next; 3544 next = skb->next;
3545 skb->next = NULL; 3545 skb->next = NULL;
3546 kfree_skb(skb); 3546 kfree_skb(skb);
3547 } 3547 }
3548 3548
3549 napi->gro_list = NULL; 3549 napi->gro_list = NULL;
3550 napi->gro_count = 0; 3550 napi->gro_count = 0;
3551 } 3551 }
3552 EXPORT_SYMBOL(netif_napi_del); 3552 EXPORT_SYMBOL(netif_napi_del);
3553 3553
3554 static void net_rx_action(struct softirq_action *h) 3554 static void net_rx_action(struct softirq_action *h)
3555 { 3555 {
3556 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3556 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3557 unsigned long time_limit = jiffies + 2; 3557 unsigned long time_limit = jiffies + 2;
3558 int budget = netdev_budget; 3558 int budget = netdev_budget;
3559 void *have; 3559 void *have;
3560 3560
3561 local_irq_disable(); 3561 local_irq_disable();
3562 3562
3563 while (!list_empty(&sd->poll_list)) { 3563 while (!list_empty(&sd->poll_list)) {
3564 struct napi_struct *n; 3564 struct napi_struct *n;
3565 int work, weight; 3565 int work, weight;
3566 3566
3567 /* If softirq window is exhuasted then punt. 3567 /* If softirq window is exhuasted then punt.
3568 * Allow this to run for 2 jiffies since which will allow 3568 * Allow this to run for 2 jiffies since which will allow
3569 * an average latency of 1.5/HZ. 3569 * an average latency of 1.5/HZ.
3570 */ 3570 */
3571 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3571 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3572 goto softnet_break; 3572 goto softnet_break;
3573 3573
3574 local_irq_enable(); 3574 local_irq_enable();
3575 3575
3576 /* Even though interrupts have been re-enabled, this 3576 /* Even though interrupts have been re-enabled, this
3577 * access is safe because interrupts can only add new 3577 * access is safe because interrupts can only add new
3578 * entries to the tail of this list, and only ->poll() 3578 * entries to the tail of this list, and only ->poll()
3579 * calls can remove this head entry from the list. 3579 * calls can remove this head entry from the list.
3580 */ 3580 */
3581 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3581 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3582 3582
3583 have = netpoll_poll_lock(n); 3583 have = netpoll_poll_lock(n);
3584 3584
3585 weight = n->weight; 3585 weight = n->weight;
3586 3586
3587 /* This NAPI_STATE_SCHED test is for avoiding a race 3587 /* This NAPI_STATE_SCHED test is for avoiding a race
3588 * with netpoll's poll_napi(). Only the entity which 3588 * with netpoll's poll_napi(). Only the entity which
3589 * obtains the lock and sees NAPI_STATE_SCHED set will 3589 * obtains the lock and sees NAPI_STATE_SCHED set will
3590 * actually make the ->poll() call. Therefore we avoid 3590 * actually make the ->poll() call. Therefore we avoid
3591 * accidently calling ->poll() when NAPI is not scheduled. 3591 * accidently calling ->poll() when NAPI is not scheduled.
3592 */ 3592 */
3593 work = 0; 3593 work = 0;
3594 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3594 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3595 work = n->poll(n, weight); 3595 work = n->poll(n, weight);
3596 trace_napi_poll(n); 3596 trace_napi_poll(n);
3597 } 3597 }
3598 3598
3599 WARN_ON_ONCE(work > weight); 3599 WARN_ON_ONCE(work > weight);
3600 3600
3601 budget -= work; 3601 budget -= work;
3602 3602
3603 local_irq_disable(); 3603 local_irq_disable();
3604 3604
3605 /* Drivers must not modify the NAPI state if they 3605 /* Drivers must not modify the NAPI state if they
3606 * consume the entire weight. In such cases this code 3606 * consume the entire weight. In such cases this code
3607 * still "owns" the NAPI instance and therefore can 3607 * still "owns" the NAPI instance and therefore can
3608 * move the instance around on the list at-will. 3608 * move the instance around on the list at-will.
3609 */ 3609 */
3610 if (unlikely(work == weight)) { 3610 if (unlikely(work == weight)) {
3611 if (unlikely(napi_disable_pending(n))) { 3611 if (unlikely(napi_disable_pending(n))) {
3612 local_irq_enable(); 3612 local_irq_enable();
3613 napi_complete(n); 3613 napi_complete(n);
3614 local_irq_disable(); 3614 local_irq_disable();
3615 } else 3615 } else
3616 list_move_tail(&n->poll_list, &sd->poll_list); 3616 list_move_tail(&n->poll_list, &sd->poll_list);
3617 } 3617 }
3618 3618
3619 netpoll_poll_unlock(have); 3619 netpoll_poll_unlock(have);
3620 } 3620 }
3621 out: 3621 out:
3622 net_rps_action_and_irq_enable(sd); 3622 net_rps_action_and_irq_enable(sd);
3623 3623
3624 #ifdef CONFIG_NET_DMA 3624 #ifdef CONFIG_NET_DMA
3625 /* 3625 /*
3626 * There may not be any more sk_buffs coming right now, so push 3626 * There may not be any more sk_buffs coming right now, so push
3627 * any pending DMA copies to hardware 3627 * any pending DMA copies to hardware
3628 */ 3628 */
3629 dma_issue_pending_all(); 3629 dma_issue_pending_all();
3630 #endif 3630 #endif
3631 3631
3632 return; 3632 return;
3633 3633
3634 softnet_break: 3634 softnet_break:
3635 sd->time_squeeze++; 3635 sd->time_squeeze++;
3636 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3636 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3637 goto out; 3637 goto out;
3638 } 3638 }
3639 3639
3640 static gifconf_func_t *gifconf_list[NPROTO]; 3640 static gifconf_func_t *gifconf_list[NPROTO];
3641 3641
3642 /** 3642 /**
3643 * register_gifconf - register a SIOCGIF handler 3643 * register_gifconf - register a SIOCGIF handler
3644 * @family: Address family 3644 * @family: Address family
3645 * @gifconf: Function handler 3645 * @gifconf: Function handler
3646 * 3646 *
3647 * Register protocol dependent address dumping routines. The handler 3647 * Register protocol dependent address dumping routines. The handler
3648 * that is passed must not be freed or reused until it has been replaced 3648 * that is passed must not be freed or reused until it has been replaced
3649 * by another handler. 3649 * by another handler.
3650 */ 3650 */
3651 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3651 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3652 { 3652 {
3653 if (family >= NPROTO) 3653 if (family >= NPROTO)
3654 return -EINVAL; 3654 return -EINVAL;
3655 gifconf_list[family] = gifconf; 3655 gifconf_list[family] = gifconf;
3656 return 0; 3656 return 0;
3657 } 3657 }
3658 EXPORT_SYMBOL(register_gifconf); 3658 EXPORT_SYMBOL(register_gifconf);
3659 3659
3660 3660
3661 /* 3661 /*
3662 * Map an interface index to its name (SIOCGIFNAME) 3662 * Map an interface index to its name (SIOCGIFNAME)
3663 */ 3663 */
3664 3664
3665 /* 3665 /*
3666 * We need this ioctl for efficient implementation of the 3666 * We need this ioctl for efficient implementation of the
3667 * if_indextoname() function required by the IPv6 API. Without 3667 * if_indextoname() function required by the IPv6 API. Without
3668 * it, we would have to search all the interfaces to find a 3668 * it, we would have to search all the interfaces to find a
3669 * match. --pb 3669 * match. --pb
3670 */ 3670 */
3671 3671
3672 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3672 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3673 { 3673 {
3674 struct net_device *dev; 3674 struct net_device *dev;
3675 struct ifreq ifr; 3675 struct ifreq ifr;
3676 3676
3677 /* 3677 /*
3678 * Fetch the caller's info block. 3678 * Fetch the caller's info block.
3679 */ 3679 */
3680 3680
3681 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3681 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3682 return -EFAULT; 3682 return -EFAULT;
3683 3683
3684 rcu_read_lock(); 3684 rcu_read_lock();
3685 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3685 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3686 if (!dev) { 3686 if (!dev) {
3687 rcu_read_unlock(); 3687 rcu_read_unlock();
3688 return -ENODEV; 3688 return -ENODEV;
3689 } 3689 }
3690 3690
3691 strcpy(ifr.ifr_name, dev->name); 3691 strcpy(ifr.ifr_name, dev->name);
3692 rcu_read_unlock(); 3692 rcu_read_unlock();
3693 3693
3694 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3694 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3695 return -EFAULT; 3695 return -EFAULT;
3696 return 0; 3696 return 0;
3697 } 3697 }
3698 3698
3699 /* 3699 /*
3700 * Perform a SIOCGIFCONF call. This structure will change 3700 * Perform a SIOCGIFCONF call. This structure will change
3701 * size eventually, and there is nothing I can do about it. 3701 * size eventually, and there is nothing I can do about it.
3702 * Thus we will need a 'compatibility mode'. 3702 * Thus we will need a 'compatibility mode'.
3703 */ 3703 */
3704 3704
3705 static int dev_ifconf(struct net *net, char __user *arg) 3705 static int dev_ifconf(struct net *net, char __user *arg)
3706 { 3706 {
3707 struct ifconf ifc; 3707 struct ifconf ifc;
3708 struct net_device *dev; 3708 struct net_device *dev;
3709 char __user *pos; 3709 char __user *pos;
3710 int len; 3710 int len;
3711 int total; 3711 int total;
3712 int i; 3712 int i;
3713 3713
3714 /* 3714 /*
3715 * Fetch the caller's info block. 3715 * Fetch the caller's info block.
3716 */ 3716 */
3717 3717
3718 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3718 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3719 return -EFAULT; 3719 return -EFAULT;
3720 3720
3721 pos = ifc.ifc_buf; 3721 pos = ifc.ifc_buf;
3722 len = ifc.ifc_len; 3722 len = ifc.ifc_len;
3723 3723
3724 /* 3724 /*
3725 * Loop over the interfaces, and write an info block for each. 3725 * Loop over the interfaces, and write an info block for each.
3726 */ 3726 */
3727 3727
3728 total = 0; 3728 total = 0;
3729 for_each_netdev(net, dev) { 3729 for_each_netdev(net, dev) {
3730 for (i = 0; i < NPROTO; i++) { 3730 for (i = 0; i < NPROTO; i++) {
3731 if (gifconf_list[i]) { 3731 if (gifconf_list[i]) {
3732 int done; 3732 int done;
3733 if (!pos) 3733 if (!pos)
3734 done = gifconf_list[i](dev, NULL, 0); 3734 done = gifconf_list[i](dev, NULL, 0);
3735 else 3735 else
3736 done = gifconf_list[i](dev, pos + total, 3736 done = gifconf_list[i](dev, pos + total,
3737 len - total); 3737 len - total);
3738 if (done < 0) 3738 if (done < 0)
3739 return -EFAULT; 3739 return -EFAULT;
3740 total += done; 3740 total += done;
3741 } 3741 }
3742 } 3742 }
3743 } 3743 }
3744 3744
3745 /* 3745 /*
3746 * All done. Write the updated control block back to the caller. 3746 * All done. Write the updated control block back to the caller.
3747 */ 3747 */
3748 ifc.ifc_len = total; 3748 ifc.ifc_len = total;
3749 3749
3750 /* 3750 /*
3751 * Both BSD and Solaris return 0 here, so we do too. 3751 * Both BSD and Solaris return 0 here, so we do too.
3752 */ 3752 */
3753 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3753 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3754 } 3754 }
3755 3755
3756 #ifdef CONFIG_PROC_FS 3756 #ifdef CONFIG_PROC_FS
3757 /* 3757 /*
3758 * This is invoked by the /proc filesystem handler to display a device 3758 * This is invoked by the /proc filesystem handler to display a device
3759 * in detail. 3759 * in detail.
3760 */ 3760 */
3761 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3761 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3762 __acquires(RCU) 3762 __acquires(RCU)
3763 { 3763 {
3764 struct net *net = seq_file_net(seq); 3764 struct net *net = seq_file_net(seq);
3765 loff_t off; 3765 loff_t off;
3766 struct net_device *dev; 3766 struct net_device *dev;
3767 3767
3768 rcu_read_lock(); 3768 rcu_read_lock();
3769 if (!*pos) 3769 if (!*pos)
3770 return SEQ_START_TOKEN; 3770 return SEQ_START_TOKEN;
3771 3771
3772 off = 1; 3772 off = 1;
3773 for_each_netdev_rcu(net, dev) 3773 for_each_netdev_rcu(net, dev)
3774 if (off++ == *pos) 3774 if (off++ == *pos)
3775 return dev; 3775 return dev;
3776 3776
3777 return NULL; 3777 return NULL;
3778 } 3778 }
3779 3779
3780 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3780 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3781 { 3781 {
3782 struct net_device *dev = (v == SEQ_START_TOKEN) ? 3782 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3783 first_net_device(seq_file_net(seq)) : 3783 first_net_device(seq_file_net(seq)) :
3784 next_net_device((struct net_device *)v); 3784 next_net_device((struct net_device *)v);
3785 3785
3786 ++*pos; 3786 ++*pos;
3787 return rcu_dereference(dev); 3787 return rcu_dereference(dev);
3788 } 3788 }
3789 3789
3790 void dev_seq_stop(struct seq_file *seq, void *v) 3790 void dev_seq_stop(struct seq_file *seq, void *v)
3791 __releases(RCU) 3791 __releases(RCU)
3792 { 3792 {
3793 rcu_read_unlock(); 3793 rcu_read_unlock();
3794 } 3794 }
3795 3795
3796 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 3796 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3797 { 3797 {
3798 struct rtnl_link_stats64 temp; 3798 struct rtnl_link_stats64 temp;
3799 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 3799 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3800 3800
3801 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 3801 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3802 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 3802 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3803 dev->name, stats->rx_bytes, stats->rx_packets, 3803 dev->name, stats->rx_bytes, stats->rx_packets,
3804 stats->rx_errors, 3804 stats->rx_errors,
3805 stats->rx_dropped + stats->rx_missed_errors, 3805 stats->rx_dropped + stats->rx_missed_errors,
3806 stats->rx_fifo_errors, 3806 stats->rx_fifo_errors,
3807 stats->rx_length_errors + stats->rx_over_errors + 3807 stats->rx_length_errors + stats->rx_over_errors +
3808 stats->rx_crc_errors + stats->rx_frame_errors, 3808 stats->rx_crc_errors + stats->rx_frame_errors,
3809 stats->rx_compressed, stats->multicast, 3809 stats->rx_compressed, stats->multicast,
3810 stats->tx_bytes, stats->tx_packets, 3810 stats->tx_bytes, stats->tx_packets,
3811 stats->tx_errors, stats->tx_dropped, 3811 stats->tx_errors, stats->tx_dropped,
3812 stats->tx_fifo_errors, stats->collisions, 3812 stats->tx_fifo_errors, stats->collisions,
3813 stats->tx_carrier_errors + 3813 stats->tx_carrier_errors +
3814 stats->tx_aborted_errors + 3814 stats->tx_aborted_errors +
3815 stats->tx_window_errors + 3815 stats->tx_window_errors +
3816 stats->tx_heartbeat_errors, 3816 stats->tx_heartbeat_errors,
3817 stats->tx_compressed); 3817 stats->tx_compressed);
3818 } 3818 }
3819 3819
3820 /* 3820 /*
3821 * Called from the PROCfs module. This now uses the new arbitrary sized 3821 * Called from the PROCfs module. This now uses the new arbitrary sized
3822 * /proc/net interface to create /proc/net/dev 3822 * /proc/net interface to create /proc/net/dev
3823 */ 3823 */
3824 static int dev_seq_show(struct seq_file *seq, void *v) 3824 static int dev_seq_show(struct seq_file *seq, void *v)
3825 { 3825 {
3826 if (v == SEQ_START_TOKEN) 3826 if (v == SEQ_START_TOKEN)
3827 seq_puts(seq, "Inter-| Receive " 3827 seq_puts(seq, "Inter-| Receive "
3828 " | Transmit\n" 3828 " | Transmit\n"
3829 " face |bytes packets errs drop fifo frame " 3829 " face |bytes packets errs drop fifo frame "
3830 "compressed multicast|bytes packets errs " 3830 "compressed multicast|bytes packets errs "
3831 "drop fifo colls carrier compressed\n"); 3831 "drop fifo colls carrier compressed\n");
3832 else 3832 else
3833 dev_seq_printf_stats(seq, v); 3833 dev_seq_printf_stats(seq, v);
3834 return 0; 3834 return 0;
3835 } 3835 }
3836 3836
3837 static struct softnet_data *softnet_get_online(loff_t *pos) 3837 static struct softnet_data *softnet_get_online(loff_t *pos)
3838 { 3838 {
3839 struct softnet_data *sd = NULL; 3839 struct softnet_data *sd = NULL;
3840 3840
3841 while (*pos < nr_cpu_ids) 3841 while (*pos < nr_cpu_ids)
3842 if (cpu_online(*pos)) { 3842 if (cpu_online(*pos)) {
3843 sd = &per_cpu(softnet_data, *pos); 3843 sd = &per_cpu(softnet_data, *pos);
3844 break; 3844 break;
3845 } else 3845 } else
3846 ++*pos; 3846 ++*pos;
3847 return sd; 3847 return sd;
3848 } 3848 }
3849 3849
3850 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3850 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3851 { 3851 {
3852 return softnet_get_online(pos); 3852 return softnet_get_online(pos);
3853 } 3853 }
3854 3854
3855 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3855 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3856 { 3856 {
3857 ++*pos; 3857 ++*pos;
3858 return softnet_get_online(pos); 3858 return softnet_get_online(pos);
3859 } 3859 }
3860 3860
3861 static void softnet_seq_stop(struct seq_file *seq, void *v) 3861 static void softnet_seq_stop(struct seq_file *seq, void *v)
3862 { 3862 {
3863 } 3863 }
3864 3864
3865 static int softnet_seq_show(struct seq_file *seq, void *v) 3865 static int softnet_seq_show(struct seq_file *seq, void *v)
3866 { 3866 {
3867 struct softnet_data *sd = v; 3867 struct softnet_data *sd = v;
3868 3868
3869 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 3869 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3870 sd->processed, sd->dropped, sd->time_squeeze, 0, 3870 sd->processed, sd->dropped, sd->time_squeeze, 0,
3871 0, 0, 0, 0, /* was fastroute */ 3871 0, 0, 0, 0, /* was fastroute */
3872 sd->cpu_collision, sd->received_rps); 3872 sd->cpu_collision, sd->received_rps);
3873 return 0; 3873 return 0;
3874 } 3874 }
3875 3875
3876 static const struct seq_operations dev_seq_ops = { 3876 static const struct seq_operations dev_seq_ops = {
3877 .start = dev_seq_start, 3877 .start = dev_seq_start,
3878 .next = dev_seq_next, 3878 .next = dev_seq_next,
3879 .stop = dev_seq_stop, 3879 .stop = dev_seq_stop,
3880 .show = dev_seq_show, 3880 .show = dev_seq_show,
3881 }; 3881 };
3882 3882
3883 static int dev_seq_open(struct inode *inode, struct file *file) 3883 static int dev_seq_open(struct inode *inode, struct file *file)
3884 { 3884 {
3885 return seq_open_net(inode, file, &dev_seq_ops, 3885 return seq_open_net(inode, file, &dev_seq_ops,
3886 sizeof(struct seq_net_private)); 3886 sizeof(struct seq_net_private));
3887 } 3887 }
3888 3888
3889 static const struct file_operations dev_seq_fops = { 3889 static const struct file_operations dev_seq_fops = {
3890 .owner = THIS_MODULE, 3890 .owner = THIS_MODULE,
3891 .open = dev_seq_open, 3891 .open = dev_seq_open,
3892 .read = seq_read, 3892 .read = seq_read,
3893 .llseek = seq_lseek, 3893 .llseek = seq_lseek,
3894 .release = seq_release_net, 3894 .release = seq_release_net,
3895 }; 3895 };
3896 3896
3897 static const struct seq_operations softnet_seq_ops = { 3897 static const struct seq_operations softnet_seq_ops = {
3898 .start = softnet_seq_start, 3898 .start = softnet_seq_start,
3899 .next = softnet_seq_next, 3899 .next = softnet_seq_next,
3900 .stop = softnet_seq_stop, 3900 .stop = softnet_seq_stop,
3901 .show = softnet_seq_show, 3901 .show = softnet_seq_show,
3902 }; 3902 };
3903 3903
3904 static int softnet_seq_open(struct inode *inode, struct file *file) 3904 static int softnet_seq_open(struct inode *inode, struct file *file)
3905 { 3905 {
3906 return seq_open(file, &softnet_seq_ops); 3906 return seq_open(file, &softnet_seq_ops);
3907 } 3907 }
3908 3908
3909 static const struct file_operations softnet_seq_fops = { 3909 static const struct file_operations softnet_seq_fops = {
3910 .owner = THIS_MODULE, 3910 .owner = THIS_MODULE,
3911 .open = softnet_seq_open, 3911 .open = softnet_seq_open,
3912 .read = seq_read, 3912 .read = seq_read,
3913 .llseek = seq_lseek, 3913 .llseek = seq_lseek,
3914 .release = seq_release, 3914 .release = seq_release,
3915 }; 3915 };
3916 3916
3917 static void *ptype_get_idx(loff_t pos) 3917 static void *ptype_get_idx(loff_t pos)
3918 { 3918 {
3919 struct packet_type *pt = NULL; 3919 struct packet_type *pt = NULL;
3920 loff_t i = 0; 3920 loff_t i = 0;
3921 int t; 3921 int t;
3922 3922
3923 list_for_each_entry_rcu(pt, &ptype_all, list) { 3923 list_for_each_entry_rcu(pt, &ptype_all, list) {
3924 if (i == pos) 3924 if (i == pos)
3925 return pt; 3925 return pt;
3926 ++i; 3926 ++i;
3927 } 3927 }
3928 3928
3929 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3929 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3930 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3930 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3931 if (i == pos) 3931 if (i == pos)
3932 return pt; 3932 return pt;
3933 ++i; 3933 ++i;
3934 } 3934 }
3935 } 3935 }
3936 return NULL; 3936 return NULL;
3937 } 3937 }
3938 3938
3939 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3939 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3940 __acquires(RCU) 3940 __acquires(RCU)
3941 { 3941 {
3942 rcu_read_lock(); 3942 rcu_read_lock();
3943 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3943 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3944 } 3944 }
3945 3945
3946 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3946 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3947 { 3947 {
3948 struct packet_type *pt; 3948 struct packet_type *pt;
3949 struct list_head *nxt; 3949 struct list_head *nxt;
3950 int hash; 3950 int hash;
3951 3951
3952 ++*pos; 3952 ++*pos;
3953 if (v == SEQ_START_TOKEN) 3953 if (v == SEQ_START_TOKEN)
3954 return ptype_get_idx(0); 3954 return ptype_get_idx(0);
3955 3955
3956 pt = v; 3956 pt = v;
3957 nxt = pt->list.next; 3957 nxt = pt->list.next;
3958 if (pt->type == htons(ETH_P_ALL)) { 3958 if (pt->type == htons(ETH_P_ALL)) {
3959 if (nxt != &ptype_all) 3959 if (nxt != &ptype_all)
3960 goto found; 3960 goto found;
3961 hash = 0; 3961 hash = 0;
3962 nxt = ptype_base[0].next; 3962 nxt = ptype_base[0].next;
3963 } else 3963 } else
3964 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3964 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3965 3965
3966 while (nxt == &ptype_base[hash]) { 3966 while (nxt == &ptype_base[hash]) {
3967 if (++hash >= PTYPE_HASH_SIZE) 3967 if (++hash >= PTYPE_HASH_SIZE)
3968 return NULL; 3968 return NULL;
3969 nxt = ptype_base[hash].next; 3969 nxt = ptype_base[hash].next;
3970 } 3970 }
3971 found: 3971 found:
3972 return list_entry(nxt, struct packet_type, list); 3972 return list_entry(nxt, struct packet_type, list);
3973 } 3973 }
3974 3974
3975 static void ptype_seq_stop(struct seq_file *seq, void *v) 3975 static void ptype_seq_stop(struct seq_file *seq, void *v)
3976 __releases(RCU) 3976 __releases(RCU)
3977 { 3977 {
3978 rcu_read_unlock(); 3978 rcu_read_unlock();
3979 } 3979 }
3980 3980
3981 static int ptype_seq_show(struct seq_file *seq, void *v) 3981 static int ptype_seq_show(struct seq_file *seq, void *v)
3982 { 3982 {
3983 struct packet_type *pt = v; 3983 struct packet_type *pt = v;
3984 3984
3985 if (v == SEQ_START_TOKEN) 3985 if (v == SEQ_START_TOKEN)
3986 seq_puts(seq, "Type Device Function\n"); 3986 seq_puts(seq, "Type Device Function\n");
3987 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3987 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3988 if (pt->type == htons(ETH_P_ALL)) 3988 if (pt->type == htons(ETH_P_ALL))
3989 seq_puts(seq, "ALL "); 3989 seq_puts(seq, "ALL ");
3990 else 3990 else
3991 seq_printf(seq, "%04x", ntohs(pt->type)); 3991 seq_printf(seq, "%04x", ntohs(pt->type));
3992 3992
3993 seq_printf(seq, " %-8s %pF\n", 3993 seq_printf(seq, " %-8s %pF\n",
3994 pt->dev ? pt->dev->name : "", pt->func); 3994 pt->dev ? pt->dev->name : "", pt->func);
3995 } 3995 }
3996 3996
3997 return 0; 3997 return 0;
3998 } 3998 }
3999 3999
4000 static const struct seq_operations ptype_seq_ops = { 4000 static const struct seq_operations ptype_seq_ops = {
4001 .start = ptype_seq_start, 4001 .start = ptype_seq_start,
4002 .next = ptype_seq_next, 4002 .next = ptype_seq_next,
4003 .stop = ptype_seq_stop, 4003 .stop = ptype_seq_stop,
4004 .show = ptype_seq_show, 4004 .show = ptype_seq_show,
4005 }; 4005 };
4006 4006
4007 static int ptype_seq_open(struct inode *inode, struct file *file) 4007 static int ptype_seq_open(struct inode *inode, struct file *file)
4008 { 4008 {
4009 return seq_open_net(inode, file, &ptype_seq_ops, 4009 return seq_open_net(inode, file, &ptype_seq_ops,
4010 sizeof(struct seq_net_private)); 4010 sizeof(struct seq_net_private));
4011 } 4011 }
4012 4012
4013 static const struct file_operations ptype_seq_fops = { 4013 static const struct file_operations ptype_seq_fops = {
4014 .owner = THIS_MODULE, 4014 .owner = THIS_MODULE,
4015 .open = ptype_seq_open, 4015 .open = ptype_seq_open,
4016 .read = seq_read, 4016 .read = seq_read,
4017 .llseek = seq_lseek, 4017 .llseek = seq_lseek,
4018 .release = seq_release_net, 4018 .release = seq_release_net,
4019 }; 4019 };
4020 4020
4021 4021
4022 static int __net_init dev_proc_net_init(struct net *net) 4022 static int __net_init dev_proc_net_init(struct net *net)
4023 { 4023 {
4024 int rc = -ENOMEM; 4024 int rc = -ENOMEM;
4025 4025
4026 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4026 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4027 goto out; 4027 goto out;
4028 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4028 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4029 goto out_dev; 4029 goto out_dev;
4030 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4030 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4031 goto out_softnet; 4031 goto out_softnet;
4032 4032
4033 if (wext_proc_init(net)) 4033 if (wext_proc_init(net))
4034 goto out_ptype; 4034 goto out_ptype;
4035 rc = 0; 4035 rc = 0;
4036 out: 4036 out:
4037 return rc; 4037 return rc;
4038 out_ptype: 4038 out_ptype:
4039 proc_net_remove(net, "ptype"); 4039 proc_net_remove(net, "ptype");
4040 out_softnet: 4040 out_softnet:
4041 proc_net_remove(net, "softnet_stat"); 4041 proc_net_remove(net, "softnet_stat");
4042 out_dev: 4042 out_dev:
4043 proc_net_remove(net, "dev"); 4043 proc_net_remove(net, "dev");
4044 goto out; 4044 goto out;
4045 } 4045 }
4046 4046
4047 static void __net_exit dev_proc_net_exit(struct net *net) 4047 static void __net_exit dev_proc_net_exit(struct net *net)
4048 { 4048 {
4049 wext_proc_exit(net); 4049 wext_proc_exit(net);
4050 4050
4051 proc_net_remove(net, "ptype"); 4051 proc_net_remove(net, "ptype");
4052 proc_net_remove(net, "softnet_stat"); 4052 proc_net_remove(net, "softnet_stat");
4053 proc_net_remove(net, "dev"); 4053 proc_net_remove(net, "dev");
4054 } 4054 }
4055 4055
4056 static struct pernet_operations __net_initdata dev_proc_ops = { 4056 static struct pernet_operations __net_initdata dev_proc_ops = {
4057 .init = dev_proc_net_init, 4057 .init = dev_proc_net_init,
4058 .exit = dev_proc_net_exit, 4058 .exit = dev_proc_net_exit,
4059 }; 4059 };
4060 4060
4061 static int __init dev_proc_init(void) 4061 static int __init dev_proc_init(void)
4062 { 4062 {
4063 return register_pernet_subsys(&dev_proc_ops); 4063 return register_pernet_subsys(&dev_proc_ops);
4064 } 4064 }
4065 #else 4065 #else
4066 #define dev_proc_init() 0 4066 #define dev_proc_init() 0
4067 #endif /* CONFIG_PROC_FS */ 4067 #endif /* CONFIG_PROC_FS */
4068 4068
4069 4069
4070 /** 4070 /**
4071 * netdev_set_master - set up master/slave pair 4071 * netdev_set_master - set up master/slave pair
4072 * @slave: slave device 4072 * @slave: slave device
4073 * @master: new master device 4073 * @master: new master device
4074 * 4074 *
4075 * Changes the master device of the slave. Pass %NULL to break the 4075 * Changes the master device of the slave. Pass %NULL to break the
4076 * bonding. The caller must hold the RTNL semaphore. On a failure 4076 * bonding. The caller must hold the RTNL semaphore. On a failure
4077 * a negative errno code is returned. On success the reference counts 4077 * a negative errno code is returned. On success the reference counts
4078 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 4078 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4079 * function returns zero. 4079 * function returns zero.
4080 */ 4080 */
4081 int netdev_set_master(struct net_device *slave, struct net_device *master) 4081 int netdev_set_master(struct net_device *slave, struct net_device *master)
4082 { 4082 {
4083 struct net_device *old = slave->master; 4083 struct net_device *old = slave->master;
4084 4084
4085 ASSERT_RTNL(); 4085 ASSERT_RTNL();
4086 4086
4087 if (master) { 4087 if (master) {
4088 if (old) 4088 if (old)
4089 return -EBUSY; 4089 return -EBUSY;
4090 dev_hold(master); 4090 dev_hold(master);
4091 } 4091 }
4092 4092
4093 slave->master = master; 4093 slave->master = master;
4094 4094
4095 if (old) { 4095 if (old) {
4096 synchronize_net(); 4096 synchronize_net();
4097 dev_put(old); 4097 dev_put(old);
4098 } 4098 }
4099 if (master) 4099 if (master)
4100 slave->flags |= IFF_SLAVE; 4100 slave->flags |= IFF_SLAVE;
4101 else 4101 else
4102 slave->flags &= ~IFF_SLAVE; 4102 slave->flags &= ~IFF_SLAVE;
4103 4103
4104 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4104 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4105 return 0; 4105 return 0;
4106 } 4106 }
4107 EXPORT_SYMBOL(netdev_set_master); 4107 EXPORT_SYMBOL(netdev_set_master);
4108 4108
4109 static void dev_change_rx_flags(struct net_device *dev, int flags) 4109 static void dev_change_rx_flags(struct net_device *dev, int flags)
4110 { 4110 {
4111 const struct net_device_ops *ops = dev->netdev_ops; 4111 const struct net_device_ops *ops = dev->netdev_ops;
4112 4112
4113 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4113 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4114 ops->ndo_change_rx_flags(dev, flags); 4114 ops->ndo_change_rx_flags(dev, flags);
4115 } 4115 }
4116 4116
4117 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4117 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4118 { 4118 {
4119 unsigned short old_flags = dev->flags; 4119 unsigned short old_flags = dev->flags;
4120 uid_t uid; 4120 uid_t uid;
4121 gid_t gid; 4121 gid_t gid;
4122 4122
4123 ASSERT_RTNL(); 4123 ASSERT_RTNL();
4124 4124
4125 dev->flags |= IFF_PROMISC; 4125 dev->flags |= IFF_PROMISC;
4126 dev->promiscuity += inc; 4126 dev->promiscuity += inc;
4127 if (dev->promiscuity == 0) { 4127 if (dev->promiscuity == 0) {
4128 /* 4128 /*
4129 * Avoid overflow. 4129 * Avoid overflow.
4130 * If inc causes overflow, untouch promisc and return error. 4130 * If inc causes overflow, untouch promisc and return error.
4131 */ 4131 */
4132 if (inc < 0) 4132 if (inc < 0)
4133 dev->flags &= ~IFF_PROMISC; 4133 dev->flags &= ~IFF_PROMISC;
4134 else { 4134 else {
4135 dev->promiscuity -= inc; 4135 dev->promiscuity -= inc;
4136 printk(KERN_WARNING "%s: promiscuity touches roof, " 4136 printk(KERN_WARNING "%s: promiscuity touches roof, "
4137 "set promiscuity failed, promiscuity feature " 4137 "set promiscuity failed, promiscuity feature "
4138 "of device might be broken.\n", dev->name); 4138 "of device might be broken.\n", dev->name);
4139 return -EOVERFLOW; 4139 return -EOVERFLOW;
4140 } 4140 }
4141 } 4141 }
4142 if (dev->flags != old_flags) { 4142 if (dev->flags != old_flags) {
4143 printk(KERN_INFO "device %s %s promiscuous mode\n", 4143 printk(KERN_INFO "device %s %s promiscuous mode\n",
4144 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4144 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4145 "left"); 4145 "left");
4146 if (audit_enabled) { 4146 if (audit_enabled) {
4147 current_uid_gid(&uid, &gid); 4147 current_uid_gid(&uid, &gid);
4148 audit_log(current->audit_context, GFP_ATOMIC, 4148 audit_log(current->audit_context, GFP_ATOMIC,
4149 AUDIT_ANOM_PROMISCUOUS, 4149 AUDIT_ANOM_PROMISCUOUS,
4150 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4150 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4151 dev->name, (dev->flags & IFF_PROMISC), 4151 dev->name, (dev->flags & IFF_PROMISC),
4152 (old_flags & IFF_PROMISC), 4152 (old_flags & IFF_PROMISC),
4153 audit_get_loginuid(current), 4153 audit_get_loginuid(current),
4154 uid, gid, 4154 uid, gid,
4155 audit_get_sessionid(current)); 4155 audit_get_sessionid(current));
4156 } 4156 }
4157 4157
4158 dev_change_rx_flags(dev, IFF_PROMISC); 4158 dev_change_rx_flags(dev, IFF_PROMISC);
4159 } 4159 }
4160 return 0; 4160 return 0;
4161 } 4161 }
4162 4162
4163 /** 4163 /**
4164 * dev_set_promiscuity - update promiscuity count on a device 4164 * dev_set_promiscuity - update promiscuity count on a device
4165 * @dev: device 4165 * @dev: device
4166 * @inc: modifier 4166 * @inc: modifier
4167 * 4167 *
4168 * Add or remove promiscuity from a device. While the count in the device 4168 * Add or remove promiscuity from a device. While the count in the device
4169 * remains above zero the interface remains promiscuous. Once it hits zero 4169 * remains above zero the interface remains promiscuous. Once it hits zero
4170 * the device reverts back to normal filtering operation. A negative inc 4170 * the device reverts back to normal filtering operation. A negative inc
4171 * value is used to drop promiscuity on the device. 4171 * value is used to drop promiscuity on the device.
4172 * Return 0 if successful or a negative errno code on error. 4172 * Return 0 if successful or a negative errno code on error.
4173 */ 4173 */
4174 int dev_set_promiscuity(struct net_device *dev, int inc) 4174 int dev_set_promiscuity(struct net_device *dev, int inc)
4175 { 4175 {
4176 unsigned short old_flags = dev->flags; 4176 unsigned short old_flags = dev->flags;
4177 int err; 4177 int err;
4178 4178
4179 err = __dev_set_promiscuity(dev, inc); 4179 err = __dev_set_promiscuity(dev, inc);
4180 if (err < 0) 4180 if (err < 0)
4181 return err; 4181 return err;
4182 if (dev->flags != old_flags) 4182 if (dev->flags != old_flags)
4183 dev_set_rx_mode(dev); 4183 dev_set_rx_mode(dev);
4184 return err; 4184 return err;
4185 } 4185 }
4186 EXPORT_SYMBOL(dev_set_promiscuity); 4186 EXPORT_SYMBOL(dev_set_promiscuity);
4187 4187
4188 /** 4188 /**
4189 * dev_set_allmulti - update allmulti count on a device 4189 * dev_set_allmulti - update allmulti count on a device
4190 * @dev: device 4190 * @dev: device
4191 * @inc: modifier 4191 * @inc: modifier
4192 * 4192 *
4193 * Add or remove reception of all multicast frames to a device. While the 4193 * Add or remove reception of all multicast frames to a device. While the
4194 * count in the device remains above zero the interface remains listening 4194 * count in the device remains above zero the interface remains listening
4195 * to all interfaces. Once it hits zero the device reverts back to normal 4195 * to all interfaces. Once it hits zero the device reverts back to normal
4196 * filtering operation. A negative @inc value is used to drop the counter 4196 * filtering operation. A negative @inc value is used to drop the counter
4197 * when releasing a resource needing all multicasts. 4197 * when releasing a resource needing all multicasts.
4198 * Return 0 if successful or a negative errno code on error. 4198 * Return 0 if successful or a negative errno code on error.
4199 */ 4199 */
4200 4200
4201 int dev_set_allmulti(struct net_device *dev, int inc) 4201 int dev_set_allmulti(struct net_device *dev, int inc)
4202 { 4202 {
4203 unsigned short old_flags = dev->flags; 4203 unsigned short old_flags = dev->flags;
4204 4204
4205 ASSERT_RTNL(); 4205 ASSERT_RTNL();
4206 4206
4207 dev->flags |= IFF_ALLMULTI; 4207 dev->flags |= IFF_ALLMULTI;
4208 dev->allmulti += inc; 4208 dev->allmulti += inc;
4209 if (dev->allmulti == 0) { 4209 if (dev->allmulti == 0) {
4210 /* 4210 /*
4211 * Avoid overflow. 4211 * Avoid overflow.
4212 * If inc causes overflow, untouch allmulti and return error. 4212 * If inc causes overflow, untouch allmulti and return error.
4213 */ 4213 */
4214 if (inc < 0) 4214 if (inc < 0)
4215 dev->flags &= ~IFF_ALLMULTI; 4215 dev->flags &= ~IFF_ALLMULTI;
4216 else { 4216 else {
4217 dev->allmulti -= inc; 4217 dev->allmulti -= inc;
4218 printk(KERN_WARNING "%s: allmulti touches roof, " 4218 printk(KERN_WARNING "%s: allmulti touches roof, "
4219 "set allmulti failed, allmulti feature of " 4219 "set allmulti failed, allmulti feature of "
4220 "device might be broken.\n", dev->name); 4220 "device might be broken.\n", dev->name);
4221 return -EOVERFLOW; 4221 return -EOVERFLOW;
4222 } 4222 }
4223 } 4223 }
4224 if (dev->flags ^ old_flags) { 4224 if (dev->flags ^ old_flags) {
4225 dev_change_rx_flags(dev, IFF_ALLMULTI); 4225 dev_change_rx_flags(dev, IFF_ALLMULTI);
4226 dev_set_rx_mode(dev); 4226 dev_set_rx_mode(dev);
4227 } 4227 }
4228 return 0; 4228 return 0;
4229 } 4229 }
4230 EXPORT_SYMBOL(dev_set_allmulti); 4230 EXPORT_SYMBOL(dev_set_allmulti);
4231 4231
4232 /* 4232 /*
4233 * Upload unicast and multicast address lists to device and 4233 * Upload unicast and multicast address lists to device and
4234 * configure RX filtering. When the device doesn't support unicast 4234 * configure RX filtering. When the device doesn't support unicast
4235 * filtering it is put in promiscuous mode while unicast addresses 4235 * filtering it is put in promiscuous mode while unicast addresses
4236 * are present. 4236 * are present.
4237 */ 4237 */
4238 void __dev_set_rx_mode(struct net_device *dev) 4238 void __dev_set_rx_mode(struct net_device *dev)
4239 { 4239 {
4240 const struct net_device_ops *ops = dev->netdev_ops; 4240 const struct net_device_ops *ops = dev->netdev_ops;
4241 4241
4242 /* dev_open will call this function so the list will stay sane. */ 4242 /* dev_open will call this function so the list will stay sane. */
4243 if (!(dev->flags&IFF_UP)) 4243 if (!(dev->flags&IFF_UP))
4244 return; 4244 return;
4245 4245
4246 if (!netif_device_present(dev)) 4246 if (!netif_device_present(dev))
4247 return; 4247 return;
4248 4248
4249 if (ops->ndo_set_rx_mode) 4249 if (ops->ndo_set_rx_mode)
4250 ops->ndo_set_rx_mode(dev); 4250 ops->ndo_set_rx_mode(dev);
4251 else { 4251 else {
4252 /* Unicast addresses changes may only happen under the rtnl, 4252 /* Unicast addresses changes may only happen under the rtnl,
4253 * therefore calling __dev_set_promiscuity here is safe. 4253 * therefore calling __dev_set_promiscuity here is safe.
4254 */ 4254 */
4255 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4255 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4256 __dev_set_promiscuity(dev, 1); 4256 __dev_set_promiscuity(dev, 1);
4257 dev->uc_promisc = 1; 4257 dev->uc_promisc = 1;
4258 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4258 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4259 __dev_set_promiscuity(dev, -1); 4259 __dev_set_promiscuity(dev, -1);
4260 dev->uc_promisc = 0; 4260 dev->uc_promisc = 0;
4261 } 4261 }
4262 4262
4263 if (ops->ndo_set_multicast_list) 4263 if (ops->ndo_set_multicast_list)
4264 ops->ndo_set_multicast_list(dev); 4264 ops->ndo_set_multicast_list(dev);
4265 } 4265 }
4266 } 4266 }
4267 4267
4268 void dev_set_rx_mode(struct net_device *dev) 4268 void dev_set_rx_mode(struct net_device *dev)
4269 { 4269 {
4270 netif_addr_lock_bh(dev); 4270 netif_addr_lock_bh(dev);
4271 __dev_set_rx_mode(dev); 4271 __dev_set_rx_mode(dev);
4272 netif_addr_unlock_bh(dev); 4272 netif_addr_unlock_bh(dev);
4273 } 4273 }
4274 4274
4275 /** 4275 /**
4276 * dev_get_flags - get flags reported to userspace 4276 * dev_get_flags - get flags reported to userspace
4277 * @dev: device 4277 * @dev: device
4278 * 4278 *
4279 * Get the combination of flag bits exported through APIs to userspace. 4279 * Get the combination of flag bits exported through APIs to userspace.
4280 */ 4280 */
4281 unsigned dev_get_flags(const struct net_device *dev) 4281 unsigned dev_get_flags(const struct net_device *dev)
4282 { 4282 {
4283 unsigned flags; 4283 unsigned flags;
4284 4284
4285 flags = (dev->flags & ~(IFF_PROMISC | 4285 flags = (dev->flags & ~(IFF_PROMISC |
4286 IFF_ALLMULTI | 4286 IFF_ALLMULTI |
4287 IFF_RUNNING | 4287 IFF_RUNNING |
4288 IFF_LOWER_UP | 4288 IFF_LOWER_UP |
4289 IFF_DORMANT)) | 4289 IFF_DORMANT)) |
4290 (dev->gflags & (IFF_PROMISC | 4290 (dev->gflags & (IFF_PROMISC |
4291 IFF_ALLMULTI)); 4291 IFF_ALLMULTI));
4292 4292
4293 if (netif_running(dev)) { 4293 if (netif_running(dev)) {
4294 if (netif_oper_up(dev)) 4294 if (netif_oper_up(dev))
4295 flags |= IFF_RUNNING; 4295 flags |= IFF_RUNNING;
4296 if (netif_carrier_ok(dev)) 4296 if (netif_carrier_ok(dev))
4297 flags |= IFF_LOWER_UP; 4297 flags |= IFF_LOWER_UP;
4298 if (netif_dormant(dev)) 4298 if (netif_dormant(dev))
4299 flags |= IFF_DORMANT; 4299 flags |= IFF_DORMANT;
4300 } 4300 }
4301 4301
4302 return flags; 4302 return flags;
4303 } 4303 }
4304 EXPORT_SYMBOL(dev_get_flags); 4304 EXPORT_SYMBOL(dev_get_flags);
4305 4305
4306 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4306 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4307 { 4307 {
4308 int old_flags = dev->flags; 4308 int old_flags = dev->flags;
4309 int ret; 4309 int ret;
4310 4310
4311 ASSERT_RTNL(); 4311 ASSERT_RTNL();
4312 4312
4313 /* 4313 /*
4314 * Set the flags on our device. 4314 * Set the flags on our device.
4315 */ 4315 */
4316 4316
4317 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4317 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4318 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4318 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4319 IFF_AUTOMEDIA)) | 4319 IFF_AUTOMEDIA)) |
4320 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4320 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4321 IFF_ALLMULTI)); 4321 IFF_ALLMULTI));
4322 4322
4323 /* 4323 /*
4324 * Load in the correct multicast list now the flags have changed. 4324 * Load in the correct multicast list now the flags have changed.
4325 */ 4325 */
4326 4326
4327 if ((old_flags ^ flags) & IFF_MULTICAST) 4327 if ((old_flags ^ flags) & IFF_MULTICAST)
4328 dev_change_rx_flags(dev, IFF_MULTICAST); 4328 dev_change_rx_flags(dev, IFF_MULTICAST);
4329 4329
4330 dev_set_rx_mode(dev); 4330 dev_set_rx_mode(dev);
4331 4331
4332 /* 4332 /*
4333 * Have we downed the interface. We handle IFF_UP ourselves 4333 * Have we downed the interface. We handle IFF_UP ourselves
4334 * according to user attempts to set it, rather than blindly 4334 * according to user attempts to set it, rather than blindly
4335 * setting it. 4335 * setting it.
4336 */ 4336 */
4337 4337
4338 ret = 0; 4338 ret = 0;
4339 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4339 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4340 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4340 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4341 4341
4342 if (!ret) 4342 if (!ret)
4343 dev_set_rx_mode(dev); 4343 dev_set_rx_mode(dev);
4344 } 4344 }
4345 4345
4346 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4346 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4347 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4347 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4348 4348
4349 dev->gflags ^= IFF_PROMISC; 4349 dev->gflags ^= IFF_PROMISC;
4350 dev_set_promiscuity(dev, inc); 4350 dev_set_promiscuity(dev, inc);
4351 } 4351 }
4352 4352
4353 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4353 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4354 is important. Some (broken) drivers set IFF_PROMISC, when 4354 is important. Some (broken) drivers set IFF_PROMISC, when
4355 IFF_ALLMULTI is requested not asking us and not reporting. 4355 IFF_ALLMULTI is requested not asking us and not reporting.
4356 */ 4356 */
4357 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4357 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4358 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4358 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4359 4359
4360 dev->gflags ^= IFF_ALLMULTI; 4360 dev->gflags ^= IFF_ALLMULTI;
4361 dev_set_allmulti(dev, inc); 4361 dev_set_allmulti(dev, inc);
4362 } 4362 }
4363 4363
4364 return ret; 4364 return ret;
4365 } 4365 }
4366 4366
4367 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4367 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4368 { 4368 {
4369 unsigned int changes = dev->flags ^ old_flags; 4369 unsigned int changes = dev->flags ^ old_flags;
4370 4370
4371 if (changes & IFF_UP) { 4371 if (changes & IFF_UP) {
4372 if (dev->flags & IFF_UP) 4372 if (dev->flags & IFF_UP)
4373 call_netdevice_notifiers(NETDEV_UP, dev); 4373 call_netdevice_notifiers(NETDEV_UP, dev);
4374 else 4374 else
4375 call_netdevice_notifiers(NETDEV_DOWN, dev); 4375 call_netdevice_notifiers(NETDEV_DOWN, dev);
4376 } 4376 }
4377 4377
4378 if (dev->flags & IFF_UP && 4378 if (dev->flags & IFF_UP &&
4379 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4379 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4380 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4380 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4381 } 4381 }
4382 4382
4383 /** 4383 /**
4384 * dev_change_flags - change device settings 4384 * dev_change_flags - change device settings
4385 * @dev: device 4385 * @dev: device
4386 * @flags: device state flags 4386 * @flags: device state flags
4387 * 4387 *
4388 * Change settings on device based state flags. The flags are 4388 * Change settings on device based state flags. The flags are
4389 * in the userspace exported format. 4389 * in the userspace exported format.
4390 */ 4390 */
4391 int dev_change_flags(struct net_device *dev, unsigned flags) 4391 int dev_change_flags(struct net_device *dev, unsigned flags)
4392 { 4392 {
4393 int ret, changes; 4393 int ret, changes;
4394 int old_flags = dev->flags; 4394 int old_flags = dev->flags;
4395 4395
4396 ret = __dev_change_flags(dev, flags); 4396 ret = __dev_change_flags(dev, flags);
4397 if (ret < 0) 4397 if (ret < 0)
4398 return ret; 4398 return ret;
4399 4399
4400 changes = old_flags ^ dev->flags; 4400 changes = old_flags ^ dev->flags;
4401 if (changes) 4401 if (changes)
4402 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4402 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4403 4403
4404 __dev_notify_flags(dev, old_flags); 4404 __dev_notify_flags(dev, old_flags);
4405 return ret; 4405 return ret;
4406 } 4406 }
4407 EXPORT_SYMBOL(dev_change_flags); 4407 EXPORT_SYMBOL(dev_change_flags);
4408 4408
4409 /** 4409 /**
4410 * dev_set_mtu - Change maximum transfer unit 4410 * dev_set_mtu - Change maximum transfer unit
4411 * @dev: device 4411 * @dev: device
4412 * @new_mtu: new transfer unit 4412 * @new_mtu: new transfer unit
4413 * 4413 *
4414 * Change the maximum transfer size of the network device. 4414 * Change the maximum transfer size of the network device.
4415 */ 4415 */
4416 int dev_set_mtu(struct net_device *dev, int new_mtu) 4416 int dev_set_mtu(struct net_device *dev, int new_mtu)
4417 { 4417 {
4418 const struct net_device_ops *ops = dev->netdev_ops; 4418 const struct net_device_ops *ops = dev->netdev_ops;
4419 int err; 4419 int err;
4420 4420
4421 if (new_mtu == dev->mtu) 4421 if (new_mtu == dev->mtu)
4422 return 0; 4422 return 0;
4423 4423
4424 /* MTU must be positive. */ 4424 /* MTU must be positive. */
4425 if (new_mtu < 0) 4425 if (new_mtu < 0)
4426 return -EINVAL; 4426 return -EINVAL;
4427 4427
4428 if (!netif_device_present(dev)) 4428 if (!netif_device_present(dev))
4429 return -ENODEV; 4429 return -ENODEV;
4430 4430
4431 err = 0; 4431 err = 0;
4432 if (ops->ndo_change_mtu) 4432 if (ops->ndo_change_mtu)
4433 err = ops->ndo_change_mtu(dev, new_mtu); 4433 err = ops->ndo_change_mtu(dev, new_mtu);
4434 else 4434 else
4435 dev->mtu = new_mtu; 4435 dev->mtu = new_mtu;
4436 4436
4437 if (!err && dev->flags & IFF_UP) 4437 if (!err && dev->flags & IFF_UP)
4438 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4438 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4439 return err; 4439 return err;
4440 } 4440 }
4441 EXPORT_SYMBOL(dev_set_mtu); 4441 EXPORT_SYMBOL(dev_set_mtu);
4442 4442
4443 /** 4443 /**
4444 * dev_set_mac_address - Change Media Access Control Address 4444 * dev_set_mac_address - Change Media Access Control Address
4445 * @dev: device 4445 * @dev: device
4446 * @sa: new address 4446 * @sa: new address
4447 * 4447 *
4448 * Change the hardware (MAC) address of the device 4448 * Change the hardware (MAC) address of the device
4449 */ 4449 */
4450 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4450 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4451 { 4451 {
4452 const struct net_device_ops *ops = dev->netdev_ops; 4452 const struct net_device_ops *ops = dev->netdev_ops;
4453 int err; 4453 int err;
4454 4454
4455 if (!ops->ndo_set_mac_address) 4455 if (!ops->ndo_set_mac_address)
4456 return -EOPNOTSUPP; 4456 return -EOPNOTSUPP;
4457 if (sa->sa_family != dev->type) 4457 if (sa->sa_family != dev->type)
4458 return -EINVAL; 4458 return -EINVAL;
4459 if (!netif_device_present(dev)) 4459 if (!netif_device_present(dev))
4460 return -ENODEV; 4460 return -ENODEV;
4461 err = ops->ndo_set_mac_address(dev, sa); 4461 err = ops->ndo_set_mac_address(dev, sa);
4462 if (!err) 4462 if (!err)
4463 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4463 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4464 return err; 4464 return err;
4465 } 4465 }
4466 EXPORT_SYMBOL(dev_set_mac_address); 4466 EXPORT_SYMBOL(dev_set_mac_address);
4467 4467
4468 /* 4468 /*
4469 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4469 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4470 */ 4470 */
4471 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4471 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4472 { 4472 {
4473 int err; 4473 int err;
4474 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4474 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4475 4475
4476 if (!dev) 4476 if (!dev)
4477 return -ENODEV; 4477 return -ENODEV;
4478 4478
4479 switch (cmd) { 4479 switch (cmd) {
4480 case SIOCGIFFLAGS: /* Get interface flags */ 4480 case SIOCGIFFLAGS: /* Get interface flags */
4481 ifr->ifr_flags = (short) dev_get_flags(dev); 4481 ifr->ifr_flags = (short) dev_get_flags(dev);
4482 return 0; 4482 return 0;
4483 4483
4484 case SIOCGIFMETRIC: /* Get the metric on the interface 4484 case SIOCGIFMETRIC: /* Get the metric on the interface
4485 (currently unused) */ 4485 (currently unused) */
4486 ifr->ifr_metric = 0; 4486 ifr->ifr_metric = 0;
4487 return 0; 4487 return 0;
4488 4488
4489 case SIOCGIFMTU: /* Get the MTU of a device */ 4489 case SIOCGIFMTU: /* Get the MTU of a device */
4490 ifr->ifr_mtu = dev->mtu; 4490 ifr->ifr_mtu = dev->mtu;
4491 return 0; 4491 return 0;
4492 4492
4493 case SIOCGIFHWADDR: 4493 case SIOCGIFHWADDR:
4494 if (!dev->addr_len) 4494 if (!dev->addr_len)
4495 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4495 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4496 else 4496 else
4497 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4497 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4498 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4498 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4499 ifr->ifr_hwaddr.sa_family = dev->type; 4499 ifr->ifr_hwaddr.sa_family = dev->type;
4500 return 0; 4500 return 0;
4501 4501
4502 case SIOCGIFSLAVE: 4502 case SIOCGIFSLAVE:
4503 err = -EINVAL; 4503 err = -EINVAL;
4504 break; 4504 break;
4505 4505
4506 case SIOCGIFMAP: 4506 case SIOCGIFMAP:
4507 ifr->ifr_map.mem_start = dev->mem_start; 4507 ifr->ifr_map.mem_start = dev->mem_start;
4508 ifr->ifr_map.mem_end = dev->mem_end; 4508 ifr->ifr_map.mem_end = dev->mem_end;
4509 ifr->ifr_map.base_addr = dev->base_addr; 4509 ifr->ifr_map.base_addr = dev->base_addr;
4510 ifr->ifr_map.irq = dev->irq; 4510 ifr->ifr_map.irq = dev->irq;
4511 ifr->ifr_map.dma = dev->dma; 4511 ifr->ifr_map.dma = dev->dma;
4512 ifr->ifr_map.port = dev->if_port; 4512 ifr->ifr_map.port = dev->if_port;
4513 return 0; 4513 return 0;
4514 4514
4515 case SIOCGIFINDEX: 4515 case SIOCGIFINDEX:
4516 ifr->ifr_ifindex = dev->ifindex; 4516 ifr->ifr_ifindex = dev->ifindex;
4517 return 0; 4517 return 0;
4518 4518
4519 case SIOCGIFTXQLEN: 4519 case SIOCGIFTXQLEN:
4520 ifr->ifr_qlen = dev->tx_queue_len; 4520 ifr->ifr_qlen = dev->tx_queue_len;
4521 return 0; 4521 return 0;
4522 4522
4523 default: 4523 default:
4524 /* dev_ioctl() should ensure this case 4524 /* dev_ioctl() should ensure this case
4525 * is never reached 4525 * is never reached
4526 */ 4526 */
4527 WARN_ON(1); 4527 WARN_ON(1);
4528 err = -EINVAL; 4528 err = -EINVAL;
4529 break; 4529 break;
4530 4530
4531 } 4531 }
4532 return err; 4532 return err;
4533 } 4533 }
4534 4534
4535 /* 4535 /*
4536 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4536 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4537 */ 4537 */
4538 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4538 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4539 { 4539 {
4540 int err; 4540 int err;
4541 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4541 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4542 const struct net_device_ops *ops; 4542 const struct net_device_ops *ops;
4543 4543
4544 if (!dev) 4544 if (!dev)
4545 return -ENODEV; 4545 return -ENODEV;
4546 4546
4547 ops = dev->netdev_ops; 4547 ops = dev->netdev_ops;
4548 4548
4549 switch (cmd) { 4549 switch (cmd) {
4550 case SIOCSIFFLAGS: /* Set interface flags */ 4550 case SIOCSIFFLAGS: /* Set interface flags */
4551 return dev_change_flags(dev, ifr->ifr_flags); 4551 return dev_change_flags(dev, ifr->ifr_flags);
4552 4552
4553 case SIOCSIFMETRIC: /* Set the metric on the interface 4553 case SIOCSIFMETRIC: /* Set the metric on the interface
4554 (currently unused) */ 4554 (currently unused) */
4555 return -EOPNOTSUPP; 4555 return -EOPNOTSUPP;
4556 4556
4557 case SIOCSIFMTU: /* Set the MTU of a device */ 4557 case SIOCSIFMTU: /* Set the MTU of a device */
4558 return dev_set_mtu(dev, ifr->ifr_mtu); 4558 return dev_set_mtu(dev, ifr->ifr_mtu);
4559 4559
4560 case SIOCSIFHWADDR: 4560 case SIOCSIFHWADDR:
4561 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4561 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4562 4562
4563 case SIOCSIFHWBROADCAST: 4563 case SIOCSIFHWBROADCAST:
4564 if (ifr->ifr_hwaddr.sa_family != dev->type) 4564 if (ifr->ifr_hwaddr.sa_family != dev->type)
4565 return -EINVAL; 4565 return -EINVAL;
4566 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4566 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4567 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4567 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4568 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4568 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4569 return 0; 4569 return 0;
4570 4570
4571 case SIOCSIFMAP: 4571 case SIOCSIFMAP:
4572 if (ops->ndo_set_config) { 4572 if (ops->ndo_set_config) {
4573 if (!netif_device_present(dev)) 4573 if (!netif_device_present(dev))
4574 return -ENODEV; 4574 return -ENODEV;
4575 return ops->ndo_set_config(dev, &ifr->ifr_map); 4575 return ops->ndo_set_config(dev, &ifr->ifr_map);
4576 } 4576 }
4577 return -EOPNOTSUPP; 4577 return -EOPNOTSUPP;
4578 4578
4579 case SIOCADDMULTI: 4579 case SIOCADDMULTI:
4580 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4580 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4581 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4581 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4582 return -EINVAL; 4582 return -EINVAL;
4583 if (!netif_device_present(dev)) 4583 if (!netif_device_present(dev))
4584 return -ENODEV; 4584 return -ENODEV;
4585 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4585 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4586 4586
4587 case SIOCDELMULTI: 4587 case SIOCDELMULTI:
4588 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4588 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4589 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4589 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4590 return -EINVAL; 4590 return -EINVAL;
4591 if (!netif_device_present(dev)) 4591 if (!netif_device_present(dev))
4592 return -ENODEV; 4592 return -ENODEV;
4593 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4593 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4594 4594
4595 case SIOCSIFTXQLEN: 4595 case SIOCSIFTXQLEN:
4596 if (ifr->ifr_qlen < 0) 4596 if (ifr->ifr_qlen < 0)
4597 return -EINVAL; 4597 return -EINVAL;
4598 dev->tx_queue_len = ifr->ifr_qlen; 4598 dev->tx_queue_len = ifr->ifr_qlen;
4599 return 0; 4599 return 0;
4600 4600
4601 case SIOCSIFNAME: 4601 case SIOCSIFNAME:
4602 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4602 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4603 return dev_change_name(dev, ifr->ifr_newname); 4603 return dev_change_name(dev, ifr->ifr_newname);
4604 4604
4605 /* 4605 /*
4606 * Unknown or private ioctl 4606 * Unknown or private ioctl
4607 */ 4607 */
4608 default: 4608 default:
4609 if ((cmd >= SIOCDEVPRIVATE && 4609 if ((cmd >= SIOCDEVPRIVATE &&
4610 cmd <= SIOCDEVPRIVATE + 15) || 4610 cmd <= SIOCDEVPRIVATE + 15) ||
4611 cmd == SIOCBONDENSLAVE || 4611 cmd == SIOCBONDENSLAVE ||
4612 cmd == SIOCBONDRELEASE || 4612 cmd == SIOCBONDRELEASE ||
4613 cmd == SIOCBONDSETHWADDR || 4613 cmd == SIOCBONDSETHWADDR ||
4614 cmd == SIOCBONDSLAVEINFOQUERY || 4614 cmd == SIOCBONDSLAVEINFOQUERY ||
4615 cmd == SIOCBONDINFOQUERY || 4615 cmd == SIOCBONDINFOQUERY ||
4616 cmd == SIOCBONDCHANGEACTIVE || 4616 cmd == SIOCBONDCHANGEACTIVE ||
4617 cmd == SIOCGMIIPHY || 4617 cmd == SIOCGMIIPHY ||
4618 cmd == SIOCGMIIREG || 4618 cmd == SIOCGMIIREG ||
4619 cmd == SIOCSMIIREG || 4619 cmd == SIOCSMIIREG ||
4620 cmd == SIOCBRADDIF || 4620 cmd == SIOCBRADDIF ||
4621 cmd == SIOCBRDELIF || 4621 cmd == SIOCBRDELIF ||
4622 cmd == SIOCSHWTSTAMP || 4622 cmd == SIOCSHWTSTAMP ||
4623 cmd == SIOCWANDEV) { 4623 cmd == SIOCWANDEV) {
4624 err = -EOPNOTSUPP; 4624 err = -EOPNOTSUPP;
4625 if (ops->ndo_do_ioctl) { 4625 if (ops->ndo_do_ioctl) {
4626 if (netif_device_present(dev)) 4626 if (netif_device_present(dev))
4627 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4627 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4628 else 4628 else
4629 err = -ENODEV; 4629 err = -ENODEV;
4630 } 4630 }
4631 } else 4631 } else
4632 err = -EINVAL; 4632 err = -EINVAL;
4633 4633
4634 } 4634 }
4635 return err; 4635 return err;
4636 } 4636 }
4637 4637
4638 /* 4638 /*
4639 * This function handles all "interface"-type I/O control requests. The actual 4639 * This function handles all "interface"-type I/O control requests. The actual
4640 * 'doing' part of this is dev_ifsioc above. 4640 * 'doing' part of this is dev_ifsioc above.
4641 */ 4641 */
4642 4642
4643 /** 4643 /**
4644 * dev_ioctl - network device ioctl 4644 * dev_ioctl - network device ioctl
4645 * @net: the applicable net namespace 4645 * @net: the applicable net namespace
4646 * @cmd: command to issue 4646 * @cmd: command to issue
4647 * @arg: pointer to a struct ifreq in user space 4647 * @arg: pointer to a struct ifreq in user space
4648 * 4648 *
4649 * Issue ioctl functions to devices. This is normally called by the 4649 * Issue ioctl functions to devices. This is normally called by the
4650 * user space syscall interfaces but can sometimes be useful for 4650 * user space syscall interfaces but can sometimes be useful for
4651 * other purposes. The return value is the return from the syscall if 4651 * other purposes. The return value is the return from the syscall if
4652 * positive or a negative errno code on error. 4652 * positive or a negative errno code on error.
4653 */ 4653 */
4654 4654
4655 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4655 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4656 { 4656 {
4657 struct ifreq ifr; 4657 struct ifreq ifr;
4658 int ret; 4658 int ret;
4659 char *colon; 4659 char *colon;
4660 4660
4661 /* One special case: SIOCGIFCONF takes ifconf argument 4661 /* One special case: SIOCGIFCONF takes ifconf argument
4662 and requires shared lock, because it sleeps writing 4662 and requires shared lock, because it sleeps writing
4663 to user space. 4663 to user space.
4664 */ 4664 */
4665 4665
4666 if (cmd == SIOCGIFCONF) { 4666 if (cmd == SIOCGIFCONF) {
4667 rtnl_lock(); 4667 rtnl_lock();
4668 ret = dev_ifconf(net, (char __user *) arg); 4668 ret = dev_ifconf(net, (char __user *) arg);
4669 rtnl_unlock(); 4669 rtnl_unlock();
4670 return ret; 4670 return ret;
4671 } 4671 }
4672 if (cmd == SIOCGIFNAME) 4672 if (cmd == SIOCGIFNAME)
4673 return dev_ifname(net, (struct ifreq __user *)arg); 4673 return dev_ifname(net, (struct ifreq __user *)arg);
4674 4674
4675 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4675 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4676 return -EFAULT; 4676 return -EFAULT;
4677 4677
4678 ifr.ifr_name[IFNAMSIZ-1] = 0; 4678 ifr.ifr_name[IFNAMSIZ-1] = 0;
4679 4679
4680 colon = strchr(ifr.ifr_name, ':'); 4680 colon = strchr(ifr.ifr_name, ':');
4681 if (colon) 4681 if (colon)
4682 *colon = 0; 4682 *colon = 0;
4683 4683
4684 /* 4684 /*
4685 * See which interface the caller is talking about. 4685 * See which interface the caller is talking about.
4686 */ 4686 */
4687 4687
4688 switch (cmd) { 4688 switch (cmd) {
4689 /* 4689 /*
4690 * These ioctl calls: 4690 * These ioctl calls:
4691 * - can be done by all. 4691 * - can be done by all.
4692 * - atomic and do not require locking. 4692 * - atomic and do not require locking.
4693 * - return a value 4693 * - return a value
4694 */ 4694 */
4695 case SIOCGIFFLAGS: 4695 case SIOCGIFFLAGS:
4696 case SIOCGIFMETRIC: 4696 case SIOCGIFMETRIC:
4697 case SIOCGIFMTU: 4697 case SIOCGIFMTU:
4698 case SIOCGIFHWADDR: 4698 case SIOCGIFHWADDR:
4699 case SIOCGIFSLAVE: 4699 case SIOCGIFSLAVE:
4700 case SIOCGIFMAP: 4700 case SIOCGIFMAP:
4701 case SIOCGIFINDEX: 4701 case SIOCGIFINDEX:
4702 case SIOCGIFTXQLEN: 4702 case SIOCGIFTXQLEN:
4703 dev_load(net, ifr.ifr_name); 4703 dev_load(net, ifr.ifr_name);
4704 rcu_read_lock(); 4704 rcu_read_lock();
4705 ret = dev_ifsioc_locked(net, &ifr, cmd); 4705 ret = dev_ifsioc_locked(net, &ifr, cmd);
4706 rcu_read_unlock(); 4706 rcu_read_unlock();
4707 if (!ret) { 4707 if (!ret) {
4708 if (colon) 4708 if (colon)
4709 *colon = ':'; 4709 *colon = ':';
4710 if (copy_to_user(arg, &ifr, 4710 if (copy_to_user(arg, &ifr,
4711 sizeof(struct ifreq))) 4711 sizeof(struct ifreq)))
4712 ret = -EFAULT; 4712 ret = -EFAULT;
4713 } 4713 }
4714 return ret; 4714 return ret;
4715 4715
4716 case SIOCETHTOOL: 4716 case SIOCETHTOOL:
4717 dev_load(net, ifr.ifr_name); 4717 dev_load(net, ifr.ifr_name);
4718 rtnl_lock(); 4718 rtnl_lock();
4719 ret = dev_ethtool(net, &ifr); 4719 ret = dev_ethtool(net, &ifr);
4720 rtnl_unlock(); 4720 rtnl_unlock();
4721 if (!ret) { 4721 if (!ret) {
4722 if (colon) 4722 if (colon)
4723 *colon = ':'; 4723 *colon = ':';
4724 if (copy_to_user(arg, &ifr, 4724 if (copy_to_user(arg, &ifr,
4725 sizeof(struct ifreq))) 4725 sizeof(struct ifreq)))
4726 ret = -EFAULT; 4726 ret = -EFAULT;
4727 } 4727 }
4728 return ret; 4728 return ret;
4729 4729
4730 /* 4730 /*
4731 * These ioctl calls: 4731 * These ioctl calls:
4732 * - require superuser power. 4732 * - require superuser power.
4733 * - require strict serialization. 4733 * - require strict serialization.
4734 * - return a value 4734 * - return a value
4735 */ 4735 */
4736 case SIOCGMIIPHY: 4736 case SIOCGMIIPHY:
4737 case SIOCGMIIREG: 4737 case SIOCGMIIREG:
4738 case SIOCSIFNAME: 4738 case SIOCSIFNAME:
4739 if (!capable(CAP_NET_ADMIN)) 4739 if (!capable(CAP_NET_ADMIN))
4740 return -EPERM; 4740 return -EPERM;
4741 dev_load(net, ifr.ifr_name); 4741 dev_load(net, ifr.ifr_name);
4742 rtnl_lock(); 4742 rtnl_lock();
4743 ret = dev_ifsioc(net, &ifr, cmd); 4743 ret = dev_ifsioc(net, &ifr, cmd);
4744 rtnl_unlock(); 4744 rtnl_unlock();
4745 if (!ret) { 4745 if (!ret) {
4746 if (colon) 4746 if (colon)
4747 *colon = ':'; 4747 *colon = ':';
4748 if (copy_to_user(arg, &ifr, 4748 if (copy_to_user(arg, &ifr,
4749 sizeof(struct ifreq))) 4749 sizeof(struct ifreq)))
4750 ret = -EFAULT; 4750 ret = -EFAULT;
4751 } 4751 }
4752 return ret; 4752 return ret;
4753 4753
4754 /* 4754 /*
4755 * These ioctl calls: 4755 * These ioctl calls:
4756 * - require superuser power. 4756 * - require superuser power.
4757 * - require strict serialization. 4757 * - require strict serialization.
4758 * - do not return a value 4758 * - do not return a value
4759 */ 4759 */
4760 case SIOCSIFFLAGS: 4760 case SIOCSIFFLAGS:
4761 case SIOCSIFMETRIC: 4761 case SIOCSIFMETRIC:
4762 case SIOCSIFMTU: 4762 case SIOCSIFMTU:
4763 case SIOCSIFMAP: 4763 case SIOCSIFMAP:
4764 case SIOCSIFHWADDR: 4764 case SIOCSIFHWADDR:
4765 case SIOCSIFSLAVE: 4765 case SIOCSIFSLAVE:
4766 case SIOCADDMULTI: 4766 case SIOCADDMULTI:
4767 case SIOCDELMULTI: 4767 case SIOCDELMULTI:
4768 case SIOCSIFHWBROADCAST: 4768 case SIOCSIFHWBROADCAST:
4769 case SIOCSIFTXQLEN: 4769 case SIOCSIFTXQLEN:
4770 case SIOCSMIIREG: 4770 case SIOCSMIIREG:
4771 case SIOCBONDENSLAVE: 4771 case SIOCBONDENSLAVE:
4772 case SIOCBONDRELEASE: 4772 case SIOCBONDRELEASE:
4773 case SIOCBONDSETHWADDR: 4773 case SIOCBONDSETHWADDR:
4774 case SIOCBONDCHANGEACTIVE: 4774 case SIOCBONDCHANGEACTIVE:
4775 case SIOCBRADDIF: 4775 case SIOCBRADDIF:
4776 case SIOCBRDELIF: 4776 case SIOCBRDELIF:
4777 case SIOCSHWTSTAMP: 4777 case SIOCSHWTSTAMP:
4778 if (!capable(CAP_NET_ADMIN)) 4778 if (!capable(CAP_NET_ADMIN))
4779 return -EPERM; 4779 return -EPERM;
4780 /* fall through */ 4780 /* fall through */
4781 case SIOCBONDSLAVEINFOQUERY: 4781 case SIOCBONDSLAVEINFOQUERY:
4782 case SIOCBONDINFOQUERY: 4782 case SIOCBONDINFOQUERY:
4783 dev_load(net, ifr.ifr_name); 4783 dev_load(net, ifr.ifr_name);
4784 rtnl_lock(); 4784 rtnl_lock();
4785 ret = dev_ifsioc(net, &ifr, cmd); 4785 ret = dev_ifsioc(net, &ifr, cmd);
4786 rtnl_unlock(); 4786 rtnl_unlock();
4787 return ret; 4787 return ret;
4788 4788
4789 case SIOCGIFMEM: 4789 case SIOCGIFMEM:
4790 /* Get the per device memory space. We can add this but 4790 /* Get the per device memory space. We can add this but
4791 * currently do not support it */ 4791 * currently do not support it */
4792 case SIOCSIFMEM: 4792 case SIOCSIFMEM:
4793 /* Set the per device memory buffer space. 4793 /* Set the per device memory buffer space.
4794 * Not applicable in our case */ 4794 * Not applicable in our case */
4795 case SIOCSIFLINK: 4795 case SIOCSIFLINK:
4796 return -EINVAL; 4796 return -EINVAL;
4797 4797
4798 /* 4798 /*
4799 * Unknown or private ioctl. 4799 * Unknown or private ioctl.
4800 */ 4800 */
4801 default: 4801 default:
4802 if (cmd == SIOCWANDEV || 4802 if (cmd == SIOCWANDEV ||
4803 (cmd >= SIOCDEVPRIVATE && 4803 (cmd >= SIOCDEVPRIVATE &&
4804 cmd <= SIOCDEVPRIVATE + 15)) { 4804 cmd <= SIOCDEVPRIVATE + 15)) {
4805 dev_load(net, ifr.ifr_name); 4805 dev_load(net, ifr.ifr_name);
4806 rtnl_lock(); 4806 rtnl_lock();
4807 ret = dev_ifsioc(net, &ifr, cmd); 4807 ret = dev_ifsioc(net, &ifr, cmd);
4808 rtnl_unlock(); 4808 rtnl_unlock();
4809 if (!ret && copy_to_user(arg, &ifr, 4809 if (!ret && copy_to_user(arg, &ifr,
4810 sizeof(struct ifreq))) 4810 sizeof(struct ifreq)))
4811 ret = -EFAULT; 4811 ret = -EFAULT;
4812 return ret; 4812 return ret;
4813 } 4813 }
4814 /* Take care of Wireless Extensions */ 4814 /* Take care of Wireless Extensions */
4815 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4815 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4816 return wext_handle_ioctl(net, &ifr, cmd, arg); 4816 return wext_handle_ioctl(net, &ifr, cmd, arg);
4817 return -EINVAL; 4817 return -EINVAL;
4818 } 4818 }
4819 } 4819 }
4820 4820
4821 4821
4822 /** 4822 /**
4823 * dev_new_index - allocate an ifindex 4823 * dev_new_index - allocate an ifindex
4824 * @net: the applicable net namespace 4824 * @net: the applicable net namespace
4825 * 4825 *
4826 * Returns a suitable unique value for a new device interface 4826 * Returns a suitable unique value for a new device interface
4827 * number. The caller must hold the rtnl semaphore or the 4827 * number. The caller must hold the rtnl semaphore or the
4828 * dev_base_lock to be sure it remains unique. 4828 * dev_base_lock to be sure it remains unique.
4829 */ 4829 */
4830 static int dev_new_index(struct net *net) 4830 static int dev_new_index(struct net *net)
4831 { 4831 {
4832 static int ifindex; 4832 static int ifindex;
4833 for (;;) { 4833 for (;;) {
4834 if (++ifindex <= 0) 4834 if (++ifindex <= 0)
4835 ifindex = 1; 4835 ifindex = 1;
4836 if (!__dev_get_by_index(net, ifindex)) 4836 if (!__dev_get_by_index(net, ifindex))
4837 return ifindex; 4837 return ifindex;
4838 } 4838 }
4839 } 4839 }
4840 4840
4841 /* Delayed registration/unregisteration */ 4841 /* Delayed registration/unregisteration */
4842 static LIST_HEAD(net_todo_list); 4842 static LIST_HEAD(net_todo_list);
4843 4843
4844 static void net_set_todo(struct net_device *dev) 4844 static void net_set_todo(struct net_device *dev)
4845 { 4845 {
4846 list_add_tail(&dev->todo_list, &net_todo_list); 4846 list_add_tail(&dev->todo_list, &net_todo_list);
4847 } 4847 }
4848 4848
4849 static void rollback_registered_many(struct list_head *head) 4849 static void rollback_registered_many(struct list_head *head)
4850 { 4850 {
4851 struct net_device *dev, *tmp; 4851 struct net_device *dev, *tmp;
4852 4852
4853 BUG_ON(dev_boot_phase); 4853 BUG_ON(dev_boot_phase);
4854 ASSERT_RTNL(); 4854 ASSERT_RTNL();
4855 4855
4856 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 4856 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4857 /* Some devices call without registering 4857 /* Some devices call without registering
4858 * for initialization unwind. Remove those 4858 * for initialization unwind. Remove those
4859 * devices and proceed with the remaining. 4859 * devices and proceed with the remaining.
4860 */ 4860 */
4861 if (dev->reg_state == NETREG_UNINITIALIZED) { 4861 if (dev->reg_state == NETREG_UNINITIALIZED) {
4862 pr_debug("unregister_netdevice: device %s/%p never " 4862 pr_debug("unregister_netdevice: device %s/%p never "
4863 "was registered\n", dev->name, dev); 4863 "was registered\n", dev->name, dev);
4864 4864
4865 WARN_ON(1); 4865 WARN_ON(1);
4866 list_del(&dev->unreg_list); 4866 list_del(&dev->unreg_list);
4867 continue; 4867 continue;
4868 } 4868 }
4869 4869
4870 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4870 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4871 4871
4872 /* If device is running, close it first. */ 4872 /* If device is running, close it first. */
4873 dev_close(dev); 4873 dev_close(dev);
4874 4874
4875 /* And unlink it from device chain. */ 4875 /* And unlink it from device chain. */
4876 unlist_netdevice(dev); 4876 unlist_netdevice(dev);
4877 4877
4878 dev->reg_state = NETREG_UNREGISTERING; 4878 dev->reg_state = NETREG_UNREGISTERING;
4879 } 4879 }
4880 4880
4881 synchronize_net(); 4881 synchronize_net();
4882 4882
4883 list_for_each_entry(dev, head, unreg_list) { 4883 list_for_each_entry(dev, head, unreg_list) {
4884 /* Shutdown queueing discipline. */ 4884 /* Shutdown queueing discipline. */
4885 dev_shutdown(dev); 4885 dev_shutdown(dev);
4886 4886
4887 4887
4888 /* Notify protocols, that we are about to destroy 4888 /* Notify protocols, that we are about to destroy
4889 this device. They should clean all the things. 4889 this device. They should clean all the things.
4890 */ 4890 */
4891 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4891 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4892 4892
4893 if (!dev->rtnl_link_ops || 4893 if (!dev->rtnl_link_ops ||
4894 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 4894 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4895 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 4895 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4896 4896
4897 /* 4897 /*
4898 * Flush the unicast and multicast chains 4898 * Flush the unicast and multicast chains
4899 */ 4899 */
4900 dev_uc_flush(dev); 4900 dev_uc_flush(dev);
4901 dev_mc_flush(dev); 4901 dev_mc_flush(dev);
4902 4902
4903 if (dev->netdev_ops->ndo_uninit) 4903 if (dev->netdev_ops->ndo_uninit)
4904 dev->netdev_ops->ndo_uninit(dev); 4904 dev->netdev_ops->ndo_uninit(dev);
4905 4905
4906 /* Notifier chain MUST detach us from master device. */ 4906 /* Notifier chain MUST detach us from master device. */
4907 WARN_ON(dev->master); 4907 WARN_ON(dev->master);
4908 4908
4909 /* Remove entries from kobject tree */ 4909 /* Remove entries from kobject tree */
4910 netdev_unregister_kobject(dev); 4910 netdev_unregister_kobject(dev);
4911 } 4911 }
4912 4912
4913 /* Process any work delayed until the end of the batch */ 4913 /* Process any work delayed until the end of the batch */
4914 dev = list_first_entry(head, struct net_device, unreg_list); 4914 dev = list_first_entry(head, struct net_device, unreg_list);
4915 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 4915 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4916 4916
4917 rcu_barrier(); 4917 rcu_barrier();
4918 4918
4919 list_for_each_entry(dev, head, unreg_list) 4919 list_for_each_entry(dev, head, unreg_list)
4920 dev_put(dev); 4920 dev_put(dev);
4921 } 4921 }
4922 4922
4923 static void rollback_registered(struct net_device *dev) 4923 static void rollback_registered(struct net_device *dev)
4924 { 4924 {
4925 LIST_HEAD(single); 4925 LIST_HEAD(single);
4926 4926
4927 list_add(&dev->unreg_list, &single); 4927 list_add(&dev->unreg_list, &single);
4928 rollback_registered_many(&single); 4928 rollback_registered_many(&single);
4929 } 4929 }
4930 4930
4931 static void __netdev_init_queue_locks_one(struct net_device *dev, 4931 static void __netdev_init_queue_locks_one(struct net_device *dev,
4932 struct netdev_queue *dev_queue, 4932 struct netdev_queue *dev_queue,
4933 void *_unused) 4933 void *_unused)
4934 { 4934 {
4935 spin_lock_init(&dev_queue->_xmit_lock); 4935 spin_lock_init(&dev_queue->_xmit_lock);
4936 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4936 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4937 dev_queue->xmit_lock_owner = -1; 4937 dev_queue->xmit_lock_owner = -1;
4938 } 4938 }
4939 4939
4940 static void netdev_init_queue_locks(struct net_device *dev) 4940 static void netdev_init_queue_locks(struct net_device *dev)
4941 { 4941 {
4942 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4942 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4943 } 4943 }
4944 4944
4945 unsigned long netdev_fix_features(unsigned long features, const char *name) 4945 unsigned long netdev_fix_features(unsigned long features, const char *name)
4946 { 4946 {
4947 /* Fix illegal SG+CSUM combinations. */ 4947 /* Fix illegal SG+CSUM combinations. */
4948 if ((features & NETIF_F_SG) && 4948 if ((features & NETIF_F_SG) &&
4949 !(features & NETIF_F_ALL_CSUM)) { 4949 !(features & NETIF_F_ALL_CSUM)) {
4950 if (name) 4950 if (name)
4951 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4951 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4952 "checksum feature.\n", name); 4952 "checksum feature.\n", name);
4953 features &= ~NETIF_F_SG; 4953 features &= ~NETIF_F_SG;
4954 } 4954 }
4955 4955
4956 /* TSO requires that SG is present as well. */ 4956 /* TSO requires that SG is present as well. */
4957 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4957 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4958 if (name) 4958 if (name)
4959 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4959 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4960 "SG feature.\n", name); 4960 "SG feature.\n", name);
4961 features &= ~NETIF_F_TSO; 4961 features &= ~NETIF_F_TSO;
4962 } 4962 }
4963 4963
4964 if (features & NETIF_F_UFO) { 4964 if (features & NETIF_F_UFO) {
4965 if (!(features & NETIF_F_GEN_CSUM)) { 4965 if (!(features & NETIF_F_GEN_CSUM)) {
4966 if (name) 4966 if (name)
4967 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4967 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4968 "since no NETIF_F_HW_CSUM feature.\n", 4968 "since no NETIF_F_HW_CSUM feature.\n",
4969 name); 4969 name);
4970 features &= ~NETIF_F_UFO; 4970 features &= ~NETIF_F_UFO;
4971 } 4971 }
4972 4972
4973 if (!(features & NETIF_F_SG)) { 4973 if (!(features & NETIF_F_SG)) {
4974 if (name) 4974 if (name)
4975 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4975 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4976 "since no NETIF_F_SG feature.\n", name); 4976 "since no NETIF_F_SG feature.\n", name);
4977 features &= ~NETIF_F_UFO; 4977 features &= ~NETIF_F_UFO;
4978 } 4978 }
4979 } 4979 }
4980 4980
4981 return features; 4981 return features;
4982 } 4982 }
4983 EXPORT_SYMBOL(netdev_fix_features); 4983 EXPORT_SYMBOL(netdev_fix_features);
4984 4984
4985 /** 4985 /**
4986 * netif_stacked_transfer_operstate - transfer operstate 4986 * netif_stacked_transfer_operstate - transfer operstate
4987 * @rootdev: the root or lower level device to transfer state from 4987 * @rootdev: the root or lower level device to transfer state from
4988 * @dev: the device to transfer operstate to 4988 * @dev: the device to transfer operstate to
4989 * 4989 *
4990 * Transfer operational state from root to device. This is normally 4990 * Transfer operational state from root to device. This is normally
4991 * called when a stacking relationship exists between the root 4991 * called when a stacking relationship exists between the root
4992 * device and the device(a leaf device). 4992 * device and the device(a leaf device).
4993 */ 4993 */
4994 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4994 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4995 struct net_device *dev) 4995 struct net_device *dev)
4996 { 4996 {
4997 if (rootdev->operstate == IF_OPER_DORMANT) 4997 if (rootdev->operstate == IF_OPER_DORMANT)
4998 netif_dormant_on(dev); 4998 netif_dormant_on(dev);
4999 else 4999 else
5000 netif_dormant_off(dev); 5000 netif_dormant_off(dev);
5001 5001
5002 if (netif_carrier_ok(rootdev)) { 5002 if (netif_carrier_ok(rootdev)) {
5003 if (!netif_carrier_ok(dev)) 5003 if (!netif_carrier_ok(dev))
5004 netif_carrier_on(dev); 5004 netif_carrier_on(dev);
5005 } else { 5005 } else {
5006 if (netif_carrier_ok(dev)) 5006 if (netif_carrier_ok(dev))
5007 netif_carrier_off(dev); 5007 netif_carrier_off(dev);
5008 } 5008 }
5009 } 5009 }
5010 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5010 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5011 5011
5012 static int netif_alloc_rx_queues(struct net_device *dev) 5012 static int netif_alloc_rx_queues(struct net_device *dev)
5013 { 5013 {
5014 #ifdef CONFIG_RPS 5014 #ifdef CONFIG_RPS
5015 unsigned int i, count = dev->num_rx_queues; 5015 unsigned int i, count = dev->num_rx_queues;
5016 5016
5017 if (count) { 5017 if (count) {
5018 struct netdev_rx_queue *rx; 5018 struct netdev_rx_queue *rx;
5019 5019
5020 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5020 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5021 if (!rx) { 5021 if (!rx) {
5022 pr_err("netdev: Unable to allocate %u rx queues.\n", 5022 pr_err("netdev: Unable to allocate %u rx queues.\n",
5023 count); 5023 count);
5024 return -ENOMEM; 5024 return -ENOMEM;
5025 } 5025 }
5026 dev->_rx = rx; 5026 dev->_rx = rx;
5027 atomic_set(&rx->count, count);
5028 5027
5029 /* 5028 /*
5030 * Set a pointer to first element in the array which holds the 5029 * Set a pointer to first element in the array which holds the
5031 * reference count. 5030 * reference count.
5032 */ 5031 */
5033 for (i = 0; i < count; i++) 5032 for (i = 0; i < count; i++)
5034 rx[i].first = rx; 5033 rx[i].first = rx;
5035 } 5034 }
5036 #endif 5035 #endif
5037 return 0; 5036 return 0;
5038 } 5037 }
5039 5038
5040 /** 5039 /**
5041 * register_netdevice - register a network device 5040 * register_netdevice - register a network device
5042 * @dev: device to register 5041 * @dev: device to register
5043 * 5042 *
5044 * Take a completed network device structure and add it to the kernel 5043 * Take a completed network device structure and add it to the kernel
5045 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5044 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5046 * chain. 0 is returned on success. A negative errno code is returned 5045 * chain. 0 is returned on success. A negative errno code is returned
5047 * on a failure to set up the device, or if the name is a duplicate. 5046 * on a failure to set up the device, or if the name is a duplicate.
5048 * 5047 *
5049 * Callers must hold the rtnl semaphore. You may want 5048 * Callers must hold the rtnl semaphore. You may want
5050 * register_netdev() instead of this. 5049 * register_netdev() instead of this.
5051 * 5050 *
5052 * BUGS: 5051 * BUGS:
5053 * The locking appears insufficient to guarantee two parallel registers 5052 * The locking appears insufficient to guarantee two parallel registers
5054 * will not get the same name. 5053 * will not get the same name.
5055 */ 5054 */
5056 5055
5057 int register_netdevice(struct net_device *dev) 5056 int register_netdevice(struct net_device *dev)
5058 { 5057 {
5059 int ret; 5058 int ret;
5060 struct net *net = dev_net(dev); 5059 struct net *net = dev_net(dev);
5061 5060
5062 BUG_ON(dev_boot_phase); 5061 BUG_ON(dev_boot_phase);
5063 ASSERT_RTNL(); 5062 ASSERT_RTNL();
5064 5063
5065 might_sleep(); 5064 might_sleep();
5066 5065
5067 /* When net_device's are persistent, this will be fatal. */ 5066 /* When net_device's are persistent, this will be fatal. */
5068 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5067 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5069 BUG_ON(!net); 5068 BUG_ON(!net);
5070 5069
5071 spin_lock_init(&dev->addr_list_lock); 5070 spin_lock_init(&dev->addr_list_lock);
5072 netdev_set_addr_lockdep_class(dev); 5071 netdev_set_addr_lockdep_class(dev);
5073 netdev_init_queue_locks(dev); 5072 netdev_init_queue_locks(dev);
5074 5073
5075 dev->iflink = -1; 5074 dev->iflink = -1;
5076 5075
5077 ret = netif_alloc_rx_queues(dev); 5076 ret = netif_alloc_rx_queues(dev);
5078 if (ret) 5077 if (ret)
5079 goto out; 5078 goto out;
5080 5079
5081 /* Init, if this function is available */ 5080 /* Init, if this function is available */
5082 if (dev->netdev_ops->ndo_init) { 5081 if (dev->netdev_ops->ndo_init) {
5083 ret = dev->netdev_ops->ndo_init(dev); 5082 ret = dev->netdev_ops->ndo_init(dev);
5084 if (ret) { 5083 if (ret) {
5085 if (ret > 0) 5084 if (ret > 0)
5086 ret = -EIO; 5085 ret = -EIO;
5087 goto out; 5086 goto out;
5088 } 5087 }
5089 } 5088 }
5090 5089
5091 ret = dev_get_valid_name(dev, dev->name, 0); 5090 ret = dev_get_valid_name(dev, dev->name, 0);
5092 if (ret) 5091 if (ret)
5093 goto err_uninit; 5092 goto err_uninit;
5094 5093
5095 dev->ifindex = dev_new_index(net); 5094 dev->ifindex = dev_new_index(net);
5096 if (dev->iflink == -1) 5095 if (dev->iflink == -1)
5097 dev->iflink = dev->ifindex; 5096 dev->iflink = dev->ifindex;
5098 5097
5099 /* Fix illegal checksum combinations */ 5098 /* Fix illegal checksum combinations */
5100 if ((dev->features & NETIF_F_HW_CSUM) && 5099 if ((dev->features & NETIF_F_HW_CSUM) &&
5101 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5100 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5102 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 5101 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5103 dev->name); 5102 dev->name);
5104 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5103 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5105 } 5104 }
5106 5105
5107 if ((dev->features & NETIF_F_NO_CSUM) && 5106 if ((dev->features & NETIF_F_NO_CSUM) &&
5108 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5107 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5109 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 5108 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5110 dev->name); 5109 dev->name);
5111 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5110 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5112 } 5111 }
5113 5112
5114 dev->features = netdev_fix_features(dev->features, dev->name); 5113 dev->features = netdev_fix_features(dev->features, dev->name);
5115 5114
5116 /* Enable software GSO if SG is supported. */ 5115 /* Enable software GSO if SG is supported. */
5117 if (dev->features & NETIF_F_SG) 5116 if (dev->features & NETIF_F_SG)
5118 dev->features |= NETIF_F_GSO; 5117 dev->features |= NETIF_F_GSO;
5119 5118
5120 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default, 5119 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5121 * vlan_dev_init() will do the dev->features check, so these features 5120 * vlan_dev_init() will do the dev->features check, so these features
5122 * are enabled only if supported by underlying device. 5121 * are enabled only if supported by underlying device.
5123 */ 5122 */
5124 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA); 5123 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5125 5124
5126 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5125 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5127 ret = notifier_to_errno(ret); 5126 ret = notifier_to_errno(ret);
5128 if (ret) 5127 if (ret)
5129 goto err_uninit; 5128 goto err_uninit;
5130 5129
5131 ret = netdev_register_kobject(dev); 5130 ret = netdev_register_kobject(dev);
5132 if (ret) 5131 if (ret)
5133 goto err_uninit; 5132 goto err_uninit;
5134 dev->reg_state = NETREG_REGISTERED; 5133 dev->reg_state = NETREG_REGISTERED;
5135 5134
5136 /* 5135 /*
5137 * Default initial state at registry is that the 5136 * Default initial state at registry is that the
5138 * device is present. 5137 * device is present.
5139 */ 5138 */
5140 5139
5141 set_bit(__LINK_STATE_PRESENT, &dev->state); 5140 set_bit(__LINK_STATE_PRESENT, &dev->state);
5142 5141
5143 dev_init_scheduler(dev); 5142 dev_init_scheduler(dev);
5144 dev_hold(dev); 5143 dev_hold(dev);
5145 list_netdevice(dev); 5144 list_netdevice(dev);
5146 5145
5147 /* Notify protocols, that a new device appeared. */ 5146 /* Notify protocols, that a new device appeared. */
5148 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5147 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5149 ret = notifier_to_errno(ret); 5148 ret = notifier_to_errno(ret);
5150 if (ret) { 5149 if (ret) {
5151 rollback_registered(dev); 5150 rollback_registered(dev);
5152 dev->reg_state = NETREG_UNREGISTERED; 5151 dev->reg_state = NETREG_UNREGISTERED;
5153 } 5152 }
5154 /* 5153 /*
5155 * Prevent userspace races by waiting until the network 5154 * Prevent userspace races by waiting until the network
5156 * device is fully setup before sending notifications. 5155 * device is fully setup before sending notifications.
5157 */ 5156 */
5158 if (!dev->rtnl_link_ops || 5157 if (!dev->rtnl_link_ops ||
5159 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5158 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5160 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5159 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5161 5160
5162 out: 5161 out:
5163 return ret; 5162 return ret;
5164 5163
5165 err_uninit: 5164 err_uninit:
5166 if (dev->netdev_ops->ndo_uninit) 5165 if (dev->netdev_ops->ndo_uninit)
5167 dev->netdev_ops->ndo_uninit(dev); 5166 dev->netdev_ops->ndo_uninit(dev);
5168 goto out; 5167 goto out;
5169 } 5168 }
5170 EXPORT_SYMBOL(register_netdevice); 5169 EXPORT_SYMBOL(register_netdevice);
5171 5170
5172 /** 5171 /**
5173 * init_dummy_netdev - init a dummy network device for NAPI 5172 * init_dummy_netdev - init a dummy network device for NAPI
5174 * @dev: device to init 5173 * @dev: device to init
5175 * 5174 *
5176 * This takes a network device structure and initialize the minimum 5175 * This takes a network device structure and initialize the minimum
5177 * amount of fields so it can be used to schedule NAPI polls without 5176 * amount of fields so it can be used to schedule NAPI polls without
5178 * registering a full blown interface. This is to be used by drivers 5177 * registering a full blown interface. This is to be used by drivers
5179 * that need to tie several hardware interfaces to a single NAPI 5178 * that need to tie several hardware interfaces to a single NAPI
5180 * poll scheduler due to HW limitations. 5179 * poll scheduler due to HW limitations.
5181 */ 5180 */
5182 int init_dummy_netdev(struct net_device *dev) 5181 int init_dummy_netdev(struct net_device *dev)
5183 { 5182 {
5184 /* Clear everything. Note we don't initialize spinlocks 5183 /* Clear everything. Note we don't initialize spinlocks
5185 * are they aren't supposed to be taken by any of the 5184 * are they aren't supposed to be taken by any of the
5186 * NAPI code and this dummy netdev is supposed to be 5185 * NAPI code and this dummy netdev is supposed to be
5187 * only ever used for NAPI polls 5186 * only ever used for NAPI polls
5188 */ 5187 */
5189 memset(dev, 0, sizeof(struct net_device)); 5188 memset(dev, 0, sizeof(struct net_device));
5190 5189
5191 /* make sure we BUG if trying to hit standard 5190 /* make sure we BUG if trying to hit standard
5192 * register/unregister code path 5191 * register/unregister code path
5193 */ 5192 */
5194 dev->reg_state = NETREG_DUMMY; 5193 dev->reg_state = NETREG_DUMMY;
5195 5194
5196 /* initialize the ref count */ 5195 /* initialize the ref count */
5197 atomic_set(&dev->refcnt, 1); 5196 atomic_set(&dev->refcnt, 1);
5198 5197
5199 /* NAPI wants this */ 5198 /* NAPI wants this */
5200 INIT_LIST_HEAD(&dev->napi_list); 5199 INIT_LIST_HEAD(&dev->napi_list);
5201 5200
5202 /* a dummy interface is started by default */ 5201 /* a dummy interface is started by default */
5203 set_bit(__LINK_STATE_PRESENT, &dev->state); 5202 set_bit(__LINK_STATE_PRESENT, &dev->state);
5204 set_bit(__LINK_STATE_START, &dev->state); 5203 set_bit(__LINK_STATE_START, &dev->state);
5205 5204
5206 return 0; 5205 return 0;
5207 } 5206 }
5208 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5207 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5209 5208
5210 5209
5211 /** 5210 /**
5212 * register_netdev - register a network device 5211 * register_netdev - register a network device
5213 * @dev: device to register 5212 * @dev: device to register
5214 * 5213 *
5215 * Take a completed network device structure and add it to the kernel 5214 * Take a completed network device structure and add it to the kernel
5216 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5215 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5217 * chain. 0 is returned on success. A negative errno code is returned 5216 * chain. 0 is returned on success. A negative errno code is returned
5218 * on a failure to set up the device, or if the name is a duplicate. 5217 * on a failure to set up the device, or if the name is a duplicate.
5219 * 5218 *
5220 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5219 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5221 * and expands the device name if you passed a format string to 5220 * and expands the device name if you passed a format string to
5222 * alloc_netdev. 5221 * alloc_netdev.
5223 */ 5222 */
5224 int register_netdev(struct net_device *dev) 5223 int register_netdev(struct net_device *dev)
5225 { 5224 {
5226 int err; 5225 int err;
5227 5226
5228 rtnl_lock(); 5227 rtnl_lock();
5229 5228
5230 /* 5229 /*
5231 * If the name is a format string the caller wants us to do a 5230 * If the name is a format string the caller wants us to do a
5232 * name allocation. 5231 * name allocation.
5233 */ 5232 */
5234 if (strchr(dev->name, '%')) { 5233 if (strchr(dev->name, '%')) {
5235 err = dev_alloc_name(dev, dev->name); 5234 err = dev_alloc_name(dev, dev->name);
5236 if (err < 0) 5235 if (err < 0)
5237 goto out; 5236 goto out;
5238 } 5237 }
5239 5238
5240 err = register_netdevice(dev); 5239 err = register_netdevice(dev);
5241 out: 5240 out:
5242 rtnl_unlock(); 5241 rtnl_unlock();
5243 return err; 5242 return err;
5244 } 5243 }
5245 EXPORT_SYMBOL(register_netdev); 5244 EXPORT_SYMBOL(register_netdev);
5246 5245
5247 /* 5246 /*
5248 * netdev_wait_allrefs - wait until all references are gone. 5247 * netdev_wait_allrefs - wait until all references are gone.
5249 * 5248 *
5250 * This is called when unregistering network devices. 5249 * This is called when unregistering network devices.
5251 * 5250 *
5252 * Any protocol or device that holds a reference should register 5251 * Any protocol or device that holds a reference should register
5253 * for netdevice notification, and cleanup and put back the 5252 * for netdevice notification, and cleanup and put back the
5254 * reference if they receive an UNREGISTER event. 5253 * reference if they receive an UNREGISTER event.
5255 * We can get stuck here if buggy protocols don't correctly 5254 * We can get stuck here if buggy protocols don't correctly
5256 * call dev_put. 5255 * call dev_put.
5257 */ 5256 */
5258 static void netdev_wait_allrefs(struct net_device *dev) 5257 static void netdev_wait_allrefs(struct net_device *dev)
5259 { 5258 {
5260 unsigned long rebroadcast_time, warning_time; 5259 unsigned long rebroadcast_time, warning_time;
5261 5260
5262 linkwatch_forget_dev(dev); 5261 linkwatch_forget_dev(dev);
5263 5262
5264 rebroadcast_time = warning_time = jiffies; 5263 rebroadcast_time = warning_time = jiffies;
5265 while (atomic_read(&dev->refcnt) != 0) { 5264 while (atomic_read(&dev->refcnt) != 0) {
5266 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5265 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5267 rtnl_lock(); 5266 rtnl_lock();
5268 5267
5269 /* Rebroadcast unregister notification */ 5268 /* Rebroadcast unregister notification */
5270 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5269 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5271 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5270 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5272 * should have already handle it the first time */ 5271 * should have already handle it the first time */
5273 5272
5274 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5273 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5275 &dev->state)) { 5274 &dev->state)) {
5276 /* We must not have linkwatch events 5275 /* We must not have linkwatch events
5277 * pending on unregister. If this 5276 * pending on unregister. If this
5278 * happens, we simply run the queue 5277 * happens, we simply run the queue
5279 * unscheduled, resulting in a noop 5278 * unscheduled, resulting in a noop
5280 * for this device. 5279 * for this device.
5281 */ 5280 */
5282 linkwatch_run_queue(); 5281 linkwatch_run_queue();
5283 } 5282 }
5284 5283
5285 __rtnl_unlock(); 5284 __rtnl_unlock();
5286 5285
5287 rebroadcast_time = jiffies; 5286 rebroadcast_time = jiffies;
5288 } 5287 }
5289 5288
5290 msleep(250); 5289 msleep(250);
5291 5290
5292 if (time_after(jiffies, warning_time + 10 * HZ)) { 5291 if (time_after(jiffies, warning_time + 10 * HZ)) {
5293 printk(KERN_EMERG "unregister_netdevice: " 5292 printk(KERN_EMERG "unregister_netdevice: "
5294 "waiting for %s to become free. Usage " 5293 "waiting for %s to become free. Usage "
5295 "count = %d\n", 5294 "count = %d\n",
5296 dev->name, atomic_read(&dev->refcnt)); 5295 dev->name, atomic_read(&dev->refcnt));
5297 warning_time = jiffies; 5296 warning_time = jiffies;
5298 } 5297 }
5299 } 5298 }
5300 } 5299 }
5301 5300
5302 /* The sequence is: 5301 /* The sequence is:
5303 * 5302 *
5304 * rtnl_lock(); 5303 * rtnl_lock();
5305 * ... 5304 * ...
5306 * register_netdevice(x1); 5305 * register_netdevice(x1);
5307 * register_netdevice(x2); 5306 * register_netdevice(x2);
5308 * ... 5307 * ...
5309 * unregister_netdevice(y1); 5308 * unregister_netdevice(y1);
5310 * unregister_netdevice(y2); 5309 * unregister_netdevice(y2);
5311 * ... 5310 * ...
5312 * rtnl_unlock(); 5311 * rtnl_unlock();
5313 * free_netdev(y1); 5312 * free_netdev(y1);
5314 * free_netdev(y2); 5313 * free_netdev(y2);
5315 * 5314 *
5316 * We are invoked by rtnl_unlock(). 5315 * We are invoked by rtnl_unlock().
5317 * This allows us to deal with problems: 5316 * This allows us to deal with problems:
5318 * 1) We can delete sysfs objects which invoke hotplug 5317 * 1) We can delete sysfs objects which invoke hotplug
5319 * without deadlocking with linkwatch via keventd. 5318 * without deadlocking with linkwatch via keventd.
5320 * 2) Since we run with the RTNL semaphore not held, we can sleep 5319 * 2) Since we run with the RTNL semaphore not held, we can sleep
5321 * safely in order to wait for the netdev refcnt to drop to zero. 5320 * safely in order to wait for the netdev refcnt to drop to zero.
5322 * 5321 *
5323 * We must not return until all unregister events added during 5322 * We must not return until all unregister events added during
5324 * the interval the lock was held have been completed. 5323 * the interval the lock was held have been completed.
5325 */ 5324 */
5326 void netdev_run_todo(void) 5325 void netdev_run_todo(void)
5327 { 5326 {
5328 struct list_head list; 5327 struct list_head list;
5329 5328
5330 /* Snapshot list, allow later requests */ 5329 /* Snapshot list, allow later requests */
5331 list_replace_init(&net_todo_list, &list); 5330 list_replace_init(&net_todo_list, &list);
5332 5331
5333 __rtnl_unlock(); 5332 __rtnl_unlock();
5334 5333
5335 while (!list_empty(&list)) { 5334 while (!list_empty(&list)) {
5336 struct net_device *dev 5335 struct net_device *dev
5337 = list_first_entry(&list, struct net_device, todo_list); 5336 = list_first_entry(&list, struct net_device, todo_list);
5338 list_del(&dev->todo_list); 5337 list_del(&dev->todo_list);
5339 5338
5340 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5339 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5341 printk(KERN_ERR "network todo '%s' but state %d\n", 5340 printk(KERN_ERR "network todo '%s' but state %d\n",
5342 dev->name, dev->reg_state); 5341 dev->name, dev->reg_state);
5343 dump_stack(); 5342 dump_stack();
5344 continue; 5343 continue;
5345 } 5344 }
5346 5345
5347 dev->reg_state = NETREG_UNREGISTERED; 5346 dev->reg_state = NETREG_UNREGISTERED;
5348 5347
5349 on_each_cpu(flush_backlog, dev, 1); 5348 on_each_cpu(flush_backlog, dev, 1);
5350 5349
5351 netdev_wait_allrefs(dev); 5350 netdev_wait_allrefs(dev);
5352 5351
5353 /* paranoia */ 5352 /* paranoia */
5354 BUG_ON(atomic_read(&dev->refcnt)); 5353 BUG_ON(atomic_read(&dev->refcnt));
5355 WARN_ON(rcu_dereference_raw(dev->ip_ptr)); 5354 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5356 WARN_ON(dev->ip6_ptr); 5355 WARN_ON(dev->ip6_ptr);
5357 WARN_ON(dev->dn_ptr); 5356 WARN_ON(dev->dn_ptr);
5358 5357
5359 if (dev->destructor) 5358 if (dev->destructor)
5360 dev->destructor(dev); 5359 dev->destructor(dev);
5361 5360
5362 /* Free network device */ 5361 /* Free network device */
5363 kobject_put(&dev->dev.kobj); 5362 kobject_put(&dev->dev.kobj);
5364 } 5363 }
5365 } 5364 }
5366 5365
5367 /** 5366 /**
5368 * dev_txq_stats_fold - fold tx_queues stats 5367 * dev_txq_stats_fold - fold tx_queues stats
5369 * @dev: device to get statistics from 5368 * @dev: device to get statistics from
5370 * @stats: struct rtnl_link_stats64 to hold results 5369 * @stats: struct rtnl_link_stats64 to hold results
5371 */ 5370 */
5372 void dev_txq_stats_fold(const struct net_device *dev, 5371 void dev_txq_stats_fold(const struct net_device *dev,
5373 struct rtnl_link_stats64 *stats) 5372 struct rtnl_link_stats64 *stats)
5374 { 5373 {
5375 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0; 5374 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5376 unsigned int i; 5375 unsigned int i;
5377 struct netdev_queue *txq; 5376 struct netdev_queue *txq;
5378 5377
5379 for (i = 0; i < dev->num_tx_queues; i++) { 5378 for (i = 0; i < dev->num_tx_queues; i++) {
5380 txq = netdev_get_tx_queue(dev, i); 5379 txq = netdev_get_tx_queue(dev, i);
5381 spin_lock_bh(&txq->_xmit_lock); 5380 spin_lock_bh(&txq->_xmit_lock);
5382 tx_bytes += txq->tx_bytes; 5381 tx_bytes += txq->tx_bytes;
5383 tx_packets += txq->tx_packets; 5382 tx_packets += txq->tx_packets;
5384 tx_dropped += txq->tx_dropped; 5383 tx_dropped += txq->tx_dropped;
5385 spin_unlock_bh(&txq->_xmit_lock); 5384 spin_unlock_bh(&txq->_xmit_lock);
5386 } 5385 }
5387 if (tx_bytes || tx_packets || tx_dropped) { 5386 if (tx_bytes || tx_packets || tx_dropped) {
5388 stats->tx_bytes = tx_bytes; 5387 stats->tx_bytes = tx_bytes;
5389 stats->tx_packets = tx_packets; 5388 stats->tx_packets = tx_packets;
5390 stats->tx_dropped = tx_dropped; 5389 stats->tx_dropped = tx_dropped;
5391 } 5390 }
5392 } 5391 }
5393 EXPORT_SYMBOL(dev_txq_stats_fold); 5392 EXPORT_SYMBOL(dev_txq_stats_fold);
5394 5393
5395 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5394 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5396 * fields in the same order, with only the type differing. 5395 * fields in the same order, with only the type differing.
5397 */ 5396 */
5398 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5397 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5399 const struct net_device_stats *netdev_stats) 5398 const struct net_device_stats *netdev_stats)
5400 { 5399 {
5401 #if BITS_PER_LONG == 64 5400 #if BITS_PER_LONG == 64
5402 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5401 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5403 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5402 memcpy(stats64, netdev_stats, sizeof(*stats64));
5404 #else 5403 #else
5405 size_t i, n = sizeof(*stats64) / sizeof(u64); 5404 size_t i, n = sizeof(*stats64) / sizeof(u64);
5406 const unsigned long *src = (const unsigned long *)netdev_stats; 5405 const unsigned long *src = (const unsigned long *)netdev_stats;
5407 u64 *dst = (u64 *)stats64; 5406 u64 *dst = (u64 *)stats64;
5408 5407
5409 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5408 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5410 sizeof(*stats64) / sizeof(u64)); 5409 sizeof(*stats64) / sizeof(u64));
5411 for (i = 0; i < n; i++) 5410 for (i = 0; i < n; i++)
5412 dst[i] = src[i]; 5411 dst[i] = src[i];
5413 #endif 5412 #endif
5414 } 5413 }
5415 5414
5416 /** 5415 /**
5417 * dev_get_stats - get network device statistics 5416 * dev_get_stats - get network device statistics
5418 * @dev: device to get statistics from 5417 * @dev: device to get statistics from
5419 * @storage: place to store stats 5418 * @storage: place to store stats
5420 * 5419 *
5421 * Get network statistics from device. Return @storage. 5420 * Get network statistics from device. Return @storage.
5422 * The device driver may provide its own method by setting 5421 * The device driver may provide its own method by setting
5423 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5422 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5424 * otherwise the internal statistics structure is used. 5423 * otherwise the internal statistics structure is used.
5425 */ 5424 */
5426 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5425 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5427 struct rtnl_link_stats64 *storage) 5426 struct rtnl_link_stats64 *storage)
5428 { 5427 {
5429 const struct net_device_ops *ops = dev->netdev_ops; 5428 const struct net_device_ops *ops = dev->netdev_ops;
5430 5429
5431 if (ops->ndo_get_stats64) { 5430 if (ops->ndo_get_stats64) {
5432 memset(storage, 0, sizeof(*storage)); 5431 memset(storage, 0, sizeof(*storage));
5433 ops->ndo_get_stats64(dev, storage); 5432 ops->ndo_get_stats64(dev, storage);
5434 } else if (ops->ndo_get_stats) { 5433 } else if (ops->ndo_get_stats) {
5435 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5434 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5436 } else { 5435 } else {
5437 netdev_stats_to_stats64(storage, &dev->stats); 5436 netdev_stats_to_stats64(storage, &dev->stats);
5438 dev_txq_stats_fold(dev, storage); 5437 dev_txq_stats_fold(dev, storage);
5439 } 5438 }
5440 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5439 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5441 return storage; 5440 return storage;
5442 } 5441 }
5443 EXPORT_SYMBOL(dev_get_stats); 5442 EXPORT_SYMBOL(dev_get_stats);
5444 5443
5445 static void netdev_init_one_queue(struct net_device *dev, 5444 static void netdev_init_one_queue(struct net_device *dev,
5446 struct netdev_queue *queue, 5445 struct netdev_queue *queue,
5447 void *_unused) 5446 void *_unused)
5448 { 5447 {
5449 queue->dev = dev; 5448 queue->dev = dev;
5450 } 5449 }
5451 5450
5452 static void netdev_init_queues(struct net_device *dev) 5451 static void netdev_init_queues(struct net_device *dev)
5453 { 5452 {
5454 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5453 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5455 spin_lock_init(&dev->tx_global_lock); 5454 spin_lock_init(&dev->tx_global_lock);
5456 } 5455 }
5457 5456
5458 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5457 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5459 { 5458 {
5460 struct netdev_queue *queue = dev_ingress_queue(dev); 5459 struct netdev_queue *queue = dev_ingress_queue(dev);
5461 5460
5462 #ifdef CONFIG_NET_CLS_ACT 5461 #ifdef CONFIG_NET_CLS_ACT
5463 if (queue) 5462 if (queue)
5464 return queue; 5463 return queue;
5465 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5464 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5466 if (!queue) 5465 if (!queue)
5467 return NULL; 5466 return NULL;
5468 netdev_init_one_queue(dev, queue, NULL); 5467 netdev_init_one_queue(dev, queue, NULL);
5469 __netdev_init_queue_locks_one(dev, queue, NULL); 5468 __netdev_init_queue_locks_one(dev, queue, NULL);
5470 queue->qdisc = &noop_qdisc; 5469 queue->qdisc = &noop_qdisc;
5471 queue->qdisc_sleeping = &noop_qdisc; 5470 queue->qdisc_sleeping = &noop_qdisc;
5472 rcu_assign_pointer(dev->ingress_queue, queue); 5471 rcu_assign_pointer(dev->ingress_queue, queue);
5473 #endif 5472 #endif
5474 return queue; 5473 return queue;
5475 } 5474 }
5476 5475
5477 /** 5476 /**
5478 * alloc_netdev_mq - allocate network device 5477 * alloc_netdev_mq - allocate network device
5479 * @sizeof_priv: size of private data to allocate space for 5478 * @sizeof_priv: size of private data to allocate space for
5480 * @name: device name format string 5479 * @name: device name format string
5481 * @setup: callback to initialize device 5480 * @setup: callback to initialize device
5482 * @queue_count: the number of subqueues to allocate 5481 * @queue_count: the number of subqueues to allocate
5483 * 5482 *
5484 * Allocates a struct net_device with private data area for driver use 5483 * Allocates a struct net_device with private data area for driver use
5485 * and performs basic initialization. Also allocates subquue structs 5484 * and performs basic initialization. Also allocates subquue structs
5486 * for each queue on the device at the end of the netdevice. 5485 * for each queue on the device at the end of the netdevice.
5487 */ 5486 */
5488 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 5487 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5489 void (*setup)(struct net_device *), unsigned int queue_count) 5488 void (*setup)(struct net_device *), unsigned int queue_count)
5490 { 5489 {
5491 struct netdev_queue *tx; 5490 struct netdev_queue *tx;
5492 struct net_device *dev; 5491 struct net_device *dev;
5493 size_t alloc_size; 5492 size_t alloc_size;
5494 struct net_device *p; 5493 struct net_device *p;
5495 5494
5496 BUG_ON(strlen(name) >= sizeof(dev->name)); 5495 BUG_ON(strlen(name) >= sizeof(dev->name));
5497 5496
5498 alloc_size = sizeof(struct net_device); 5497 alloc_size = sizeof(struct net_device);
5499 if (sizeof_priv) { 5498 if (sizeof_priv) {
5500 /* ensure 32-byte alignment of private area */ 5499 /* ensure 32-byte alignment of private area */
5501 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5500 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5502 alloc_size += sizeof_priv; 5501 alloc_size += sizeof_priv;
5503 } 5502 }
5504 /* ensure 32-byte alignment of whole construct */ 5503 /* ensure 32-byte alignment of whole construct */
5505 alloc_size += NETDEV_ALIGN - 1; 5504 alloc_size += NETDEV_ALIGN - 1;
5506 5505
5507 p = kzalloc(alloc_size, GFP_KERNEL); 5506 p = kzalloc(alloc_size, GFP_KERNEL);
5508 if (!p) { 5507 if (!p) {
5509 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5508 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5510 return NULL; 5509 return NULL;
5511 } 5510 }
5512 5511
5513 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 5512 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5514 if (!tx) { 5513 if (!tx) {
5515 printk(KERN_ERR "alloc_netdev: Unable to allocate " 5514 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5516 "tx qdiscs.\n"); 5515 "tx qdiscs.\n");
5517 goto free_p; 5516 goto free_p;
5518 } 5517 }
5519 5518
5520 5519
5521 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5520 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5522 dev->padded = (char *)dev - (char *)p; 5521 dev->padded = (char *)dev - (char *)p;
5523 5522
5524 if (dev_addr_init(dev)) 5523 if (dev_addr_init(dev))
5525 goto free_tx; 5524 goto free_tx;
5526 5525
5527 dev_mc_init(dev); 5526 dev_mc_init(dev);
5528 dev_uc_init(dev); 5527 dev_uc_init(dev);
5529 5528
5530 dev_net_set(dev, &init_net); 5529 dev_net_set(dev, &init_net);
5531 5530
5532 dev->_tx = tx; 5531 dev->_tx = tx;
5533 dev->num_tx_queues = queue_count; 5532 dev->num_tx_queues = queue_count;
5534 dev->real_num_tx_queues = queue_count; 5533 dev->real_num_tx_queues = queue_count;
5535 5534
5536 #ifdef CONFIG_RPS 5535 #ifdef CONFIG_RPS
5537 dev->num_rx_queues = queue_count; 5536 dev->num_rx_queues = queue_count;
5538 dev->real_num_rx_queues = queue_count; 5537 dev->real_num_rx_queues = queue_count;
5539 #endif 5538 #endif
5540 5539
5541 dev->gso_max_size = GSO_MAX_SIZE; 5540 dev->gso_max_size = GSO_MAX_SIZE;
5542 5541
5543 netdev_init_queues(dev); 5542 netdev_init_queues(dev);
5544 5543
5545 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list); 5544 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5546 dev->ethtool_ntuple_list.count = 0; 5545 dev->ethtool_ntuple_list.count = 0;
5547 INIT_LIST_HEAD(&dev->napi_list); 5546 INIT_LIST_HEAD(&dev->napi_list);
5548 INIT_LIST_HEAD(&dev->unreg_list); 5547 INIT_LIST_HEAD(&dev->unreg_list);
5549 INIT_LIST_HEAD(&dev->link_watch_list); 5548 INIT_LIST_HEAD(&dev->link_watch_list);
5550 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5549 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5551 setup(dev); 5550 setup(dev);
5552 strcpy(dev->name, name); 5551 strcpy(dev->name, name);
5553 return dev; 5552 return dev;
5554 5553
5555 free_tx: 5554 free_tx:
5556 kfree(tx); 5555 kfree(tx);
5557 free_p: 5556 free_p:
5558 kfree(p); 5557 kfree(p);
5559 return NULL; 5558 return NULL;
5560 } 5559 }
5561 EXPORT_SYMBOL(alloc_netdev_mq); 5560 EXPORT_SYMBOL(alloc_netdev_mq);
5562 5561
5563 /** 5562 /**
5564 * free_netdev - free network device 5563 * free_netdev - free network device
5565 * @dev: device 5564 * @dev: device
5566 * 5565 *
5567 * This function does the last stage of destroying an allocated device 5566 * This function does the last stage of destroying an allocated device
5568 * interface. The reference to the device object is released. 5567 * interface. The reference to the device object is released.
5569 * If this is the last reference then it will be freed. 5568 * If this is the last reference then it will be freed.
5570 */ 5569 */
5571 void free_netdev(struct net_device *dev) 5570 void free_netdev(struct net_device *dev)
5572 { 5571 {
5573 struct napi_struct *p, *n; 5572 struct napi_struct *p, *n;
5574 5573
5575 release_net(dev_net(dev)); 5574 release_net(dev_net(dev));
5576 5575
5577 kfree(dev->_tx); 5576 kfree(dev->_tx);
5578 5577
5579 kfree(rcu_dereference_raw(dev->ingress_queue)); 5578 kfree(rcu_dereference_raw(dev->ingress_queue));
5580 5579
5581 /* Flush device addresses */ 5580 /* Flush device addresses */
5582 dev_addr_flush(dev); 5581 dev_addr_flush(dev);
5583 5582
5584 /* Clear ethtool n-tuple list */ 5583 /* Clear ethtool n-tuple list */
5585 ethtool_ntuple_flush(dev); 5584 ethtool_ntuple_flush(dev);
5586 5585
5587 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5586 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5588 netif_napi_del(p); 5587 netif_napi_del(p);
5589 5588
5590 /* Compatibility with error handling in drivers */ 5589 /* Compatibility with error handling in drivers */
5591 if (dev->reg_state == NETREG_UNINITIALIZED) { 5590 if (dev->reg_state == NETREG_UNINITIALIZED) {
5592 kfree((char *)dev - dev->padded); 5591 kfree((char *)dev - dev->padded);
5593 return; 5592 return;
5594 } 5593 }
5595 5594
5596 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5595 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5597 dev->reg_state = NETREG_RELEASED; 5596 dev->reg_state = NETREG_RELEASED;
5598 5597
5599 /* will free via device release */ 5598 /* will free via device release */
5600 put_device(&dev->dev); 5599 put_device(&dev->dev);
5601 } 5600 }
5602 EXPORT_SYMBOL(free_netdev); 5601 EXPORT_SYMBOL(free_netdev);
5603 5602
5604 /** 5603 /**
5605 * synchronize_net - Synchronize with packet receive processing 5604 * synchronize_net - Synchronize with packet receive processing
5606 * 5605 *
5607 * Wait for packets currently being received to be done. 5606 * Wait for packets currently being received to be done.
5608 * Does not block later packets from starting. 5607 * Does not block later packets from starting.
5609 */ 5608 */
5610 void synchronize_net(void) 5609 void synchronize_net(void)
5611 { 5610 {
5612 might_sleep(); 5611 might_sleep();
5613 synchronize_rcu(); 5612 synchronize_rcu();
5614 } 5613 }
5615 EXPORT_SYMBOL(synchronize_net); 5614 EXPORT_SYMBOL(synchronize_net);
5616 5615
5617 /** 5616 /**
5618 * unregister_netdevice_queue - remove device from the kernel 5617 * unregister_netdevice_queue - remove device from the kernel
5619 * @dev: device 5618 * @dev: device
5620 * @head: list 5619 * @head: list
5621 * 5620 *
5622 * This function shuts down a device interface and removes it 5621 * This function shuts down a device interface and removes it
5623 * from the kernel tables. 5622 * from the kernel tables.
5624 * If head not NULL, device is queued to be unregistered later. 5623 * If head not NULL, device is queued to be unregistered later.
5625 * 5624 *
5626 * Callers must hold the rtnl semaphore. You may want 5625 * Callers must hold the rtnl semaphore. You may want
5627 * unregister_netdev() instead of this. 5626 * unregister_netdev() instead of this.
5628 */ 5627 */
5629 5628
5630 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5629 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5631 { 5630 {
5632 ASSERT_RTNL(); 5631 ASSERT_RTNL();
5633 5632
5634 if (head) { 5633 if (head) {
5635 list_move_tail(&dev->unreg_list, head); 5634 list_move_tail(&dev->unreg_list, head);
5636 } else { 5635 } else {
5637 rollback_registered(dev); 5636 rollback_registered(dev);
5638 /* Finish processing unregister after unlock */ 5637 /* Finish processing unregister after unlock */
5639 net_set_todo(dev); 5638 net_set_todo(dev);
5640 } 5639 }
5641 } 5640 }
5642 EXPORT_SYMBOL(unregister_netdevice_queue); 5641 EXPORT_SYMBOL(unregister_netdevice_queue);
5643 5642
5644 /** 5643 /**
5645 * unregister_netdevice_many - unregister many devices 5644 * unregister_netdevice_many - unregister many devices
5646 * @head: list of devices 5645 * @head: list of devices
5647 */ 5646 */
5648 void unregister_netdevice_many(struct list_head *head) 5647 void unregister_netdevice_many(struct list_head *head)
5649 { 5648 {
5650 struct net_device *dev; 5649 struct net_device *dev;
5651 5650
5652 if (!list_empty(head)) { 5651 if (!list_empty(head)) {
5653 rollback_registered_many(head); 5652 rollback_registered_many(head);
5654 list_for_each_entry(dev, head, unreg_list) 5653 list_for_each_entry(dev, head, unreg_list)
5655 net_set_todo(dev); 5654 net_set_todo(dev);
5656 } 5655 }
5657 } 5656 }
5658 EXPORT_SYMBOL(unregister_netdevice_many); 5657 EXPORT_SYMBOL(unregister_netdevice_many);
5659 5658
5660 /** 5659 /**
5661 * unregister_netdev - remove device from the kernel 5660 * unregister_netdev - remove device from the kernel
5662 * @dev: device 5661 * @dev: device
5663 * 5662 *
5664 * This function shuts down a device interface and removes it 5663 * This function shuts down a device interface and removes it
5665 * from the kernel tables. 5664 * from the kernel tables.
5666 * 5665 *
5667 * This is just a wrapper for unregister_netdevice that takes 5666 * This is just a wrapper for unregister_netdevice that takes
5668 * the rtnl semaphore. In general you want to use this and not 5667 * the rtnl semaphore. In general you want to use this and not
5669 * unregister_netdevice. 5668 * unregister_netdevice.
5670 */ 5669 */
5671 void unregister_netdev(struct net_device *dev) 5670 void unregister_netdev(struct net_device *dev)
5672 { 5671 {
5673 rtnl_lock(); 5672 rtnl_lock();
5674 unregister_netdevice(dev); 5673 unregister_netdevice(dev);
5675 rtnl_unlock(); 5674 rtnl_unlock();
5676 } 5675 }
5677 EXPORT_SYMBOL(unregister_netdev); 5676 EXPORT_SYMBOL(unregister_netdev);
5678 5677
5679 /** 5678 /**
5680 * dev_change_net_namespace - move device to different nethost namespace 5679 * dev_change_net_namespace - move device to different nethost namespace
5681 * @dev: device 5680 * @dev: device
5682 * @net: network namespace 5681 * @net: network namespace
5683 * @pat: If not NULL name pattern to try if the current device name 5682 * @pat: If not NULL name pattern to try if the current device name
5684 * is already taken in the destination network namespace. 5683 * is already taken in the destination network namespace.
5685 * 5684 *
5686 * This function shuts down a device interface and moves it 5685 * This function shuts down a device interface and moves it
5687 * to a new network namespace. On success 0 is returned, on 5686 * to a new network namespace. On success 0 is returned, on
5688 * a failure a netagive errno code is returned. 5687 * a failure a netagive errno code is returned.
5689 * 5688 *
5690 * Callers must hold the rtnl semaphore. 5689 * Callers must hold the rtnl semaphore.
5691 */ 5690 */
5692 5691
5693 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5692 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5694 { 5693 {
5695 int err; 5694 int err;
5696 5695
5697 ASSERT_RTNL(); 5696 ASSERT_RTNL();
5698 5697
5699 /* Don't allow namespace local devices to be moved. */ 5698 /* Don't allow namespace local devices to be moved. */
5700 err = -EINVAL; 5699 err = -EINVAL;
5701 if (dev->features & NETIF_F_NETNS_LOCAL) 5700 if (dev->features & NETIF_F_NETNS_LOCAL)
5702 goto out; 5701 goto out;
5703 5702
5704 /* Ensure the device has been registrered */ 5703 /* Ensure the device has been registrered */
5705 err = -EINVAL; 5704 err = -EINVAL;
5706 if (dev->reg_state != NETREG_REGISTERED) 5705 if (dev->reg_state != NETREG_REGISTERED)
5707 goto out; 5706 goto out;
5708 5707
5709 /* Get out if there is nothing todo */ 5708 /* Get out if there is nothing todo */
5710 err = 0; 5709 err = 0;
5711 if (net_eq(dev_net(dev), net)) 5710 if (net_eq(dev_net(dev), net))
5712 goto out; 5711 goto out;
5713 5712
5714 /* Pick the destination device name, and ensure 5713 /* Pick the destination device name, and ensure
5715 * we can use it in the destination network namespace. 5714 * we can use it in the destination network namespace.
5716 */ 5715 */
5717 err = -EEXIST; 5716 err = -EEXIST;
5718 if (__dev_get_by_name(net, dev->name)) { 5717 if (__dev_get_by_name(net, dev->name)) {
5719 /* We get here if we can't use the current device name */ 5718 /* We get here if we can't use the current device name */
5720 if (!pat) 5719 if (!pat)
5721 goto out; 5720 goto out;
5722 if (dev_get_valid_name(dev, pat, 1)) 5721 if (dev_get_valid_name(dev, pat, 1))
5723 goto out; 5722 goto out;
5724 } 5723 }
5725 5724
5726 /* 5725 /*
5727 * And now a mini version of register_netdevice unregister_netdevice. 5726 * And now a mini version of register_netdevice unregister_netdevice.
5728 */ 5727 */
5729 5728
5730 /* If device is running close it first. */ 5729 /* If device is running close it first. */
5731 dev_close(dev); 5730 dev_close(dev);
5732 5731
5733 /* And unlink it from device chain */ 5732 /* And unlink it from device chain */
5734 err = -ENODEV; 5733 err = -ENODEV;
5735 unlist_netdevice(dev); 5734 unlist_netdevice(dev);
5736 5735
5737 synchronize_net(); 5736 synchronize_net();
5738 5737
5739 /* Shutdown queueing discipline. */ 5738 /* Shutdown queueing discipline. */
5740 dev_shutdown(dev); 5739 dev_shutdown(dev);
5741 5740
5742 /* Notify protocols, that we are about to destroy 5741 /* Notify protocols, that we are about to destroy
5743 this device. They should clean all the things. 5742 this device. They should clean all the things.
5744 5743
5745 Note that dev->reg_state stays at NETREG_REGISTERED. 5744 Note that dev->reg_state stays at NETREG_REGISTERED.
5746 This is wanted because this way 8021q and macvlan know 5745 This is wanted because this way 8021q and macvlan know
5747 the device is just moving and can keep their slaves up. 5746 the device is just moving and can keep their slaves up.
5748 */ 5747 */
5749 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5748 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5750 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5749 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5751 5750
5752 /* 5751 /*
5753 * Flush the unicast and multicast chains 5752 * Flush the unicast and multicast chains
5754 */ 5753 */
5755 dev_uc_flush(dev); 5754 dev_uc_flush(dev);
5756 dev_mc_flush(dev); 5755 dev_mc_flush(dev);
5757 5756
5758 /* Actually switch the network namespace */ 5757 /* Actually switch the network namespace */
5759 dev_net_set(dev, net); 5758 dev_net_set(dev, net);
5760 5759
5761 /* If there is an ifindex conflict assign a new one */ 5760 /* If there is an ifindex conflict assign a new one */
5762 if (__dev_get_by_index(net, dev->ifindex)) { 5761 if (__dev_get_by_index(net, dev->ifindex)) {
5763 int iflink = (dev->iflink == dev->ifindex); 5762 int iflink = (dev->iflink == dev->ifindex);
5764 dev->ifindex = dev_new_index(net); 5763 dev->ifindex = dev_new_index(net);
5765 if (iflink) 5764 if (iflink)
5766 dev->iflink = dev->ifindex; 5765 dev->iflink = dev->ifindex;
5767 } 5766 }
5768 5767
5769 /* Fixup kobjects */ 5768 /* Fixup kobjects */
5770 err = device_rename(&dev->dev, dev->name); 5769 err = device_rename(&dev->dev, dev->name);
5771 WARN_ON(err); 5770 WARN_ON(err);
5772 5771
5773 /* Add the device back in the hashes */ 5772 /* Add the device back in the hashes */
5774 list_netdevice(dev); 5773 list_netdevice(dev);
5775 5774
5776 /* Notify protocols, that a new device appeared. */ 5775 /* Notify protocols, that a new device appeared. */
5777 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5776 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5778 5777
5779 /* 5778 /*
5780 * Prevent userspace races by waiting until the network 5779 * Prevent userspace races by waiting until the network
5781 * device is fully setup before sending notifications. 5780 * device is fully setup before sending notifications.
5782 */ 5781 */
5783 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5782 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5784 5783
5785 synchronize_net(); 5784 synchronize_net();
5786 err = 0; 5785 err = 0;
5787 out: 5786 out:
5788 return err; 5787 return err;
5789 } 5788 }
5790 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5789 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5791 5790
5792 static int dev_cpu_callback(struct notifier_block *nfb, 5791 static int dev_cpu_callback(struct notifier_block *nfb,
5793 unsigned long action, 5792 unsigned long action,
5794 void *ocpu) 5793 void *ocpu)
5795 { 5794 {
5796 struct sk_buff **list_skb; 5795 struct sk_buff **list_skb;
5797 struct sk_buff *skb; 5796 struct sk_buff *skb;
5798 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5797 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5799 struct softnet_data *sd, *oldsd; 5798 struct softnet_data *sd, *oldsd;
5800 5799
5801 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5800 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5802 return NOTIFY_OK; 5801 return NOTIFY_OK;
5803 5802
5804 local_irq_disable(); 5803 local_irq_disable();
5805 cpu = smp_processor_id(); 5804 cpu = smp_processor_id();
5806 sd = &per_cpu(softnet_data, cpu); 5805 sd = &per_cpu(softnet_data, cpu);
5807 oldsd = &per_cpu(softnet_data, oldcpu); 5806 oldsd = &per_cpu(softnet_data, oldcpu);
5808 5807
5809 /* Find end of our completion_queue. */ 5808 /* Find end of our completion_queue. */
5810 list_skb = &sd->completion_queue; 5809 list_skb = &sd->completion_queue;
5811 while (*list_skb) 5810 while (*list_skb)
5812 list_skb = &(*list_skb)->next; 5811 list_skb = &(*list_skb)->next;
5813 /* Append completion queue from offline CPU. */ 5812 /* Append completion queue from offline CPU. */
5814 *list_skb = oldsd->completion_queue; 5813 *list_skb = oldsd->completion_queue;
5815 oldsd->completion_queue = NULL; 5814 oldsd->completion_queue = NULL;
5816 5815
5817 /* Append output queue from offline CPU. */ 5816 /* Append output queue from offline CPU. */
5818 if (oldsd->output_queue) { 5817 if (oldsd->output_queue) {
5819 *sd->output_queue_tailp = oldsd->output_queue; 5818 *sd->output_queue_tailp = oldsd->output_queue;
5820 sd->output_queue_tailp = oldsd->output_queue_tailp; 5819 sd->output_queue_tailp = oldsd->output_queue_tailp;
5821 oldsd->output_queue = NULL; 5820 oldsd->output_queue = NULL;
5822 oldsd->output_queue_tailp = &oldsd->output_queue; 5821 oldsd->output_queue_tailp = &oldsd->output_queue;
5823 } 5822 }
5824 5823
5825 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5824 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5826 local_irq_enable(); 5825 local_irq_enable();
5827 5826
5828 /* Process offline CPU's input_pkt_queue */ 5827 /* Process offline CPU's input_pkt_queue */
5829 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 5828 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5830 netif_rx(skb); 5829 netif_rx(skb);
5831 input_queue_head_incr(oldsd); 5830 input_queue_head_incr(oldsd);
5832 } 5831 }
5833 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 5832 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5834 netif_rx(skb); 5833 netif_rx(skb);
5835 input_queue_head_incr(oldsd); 5834 input_queue_head_incr(oldsd);
5836 } 5835 }
5837 5836
5838 return NOTIFY_OK; 5837 return NOTIFY_OK;
5839 } 5838 }
5840 5839
5841 5840
5842 /** 5841 /**
5843 * netdev_increment_features - increment feature set by one 5842 * netdev_increment_features - increment feature set by one
5844 * @all: current feature set 5843 * @all: current feature set
5845 * @one: new feature set 5844 * @one: new feature set
5846 * @mask: mask feature set 5845 * @mask: mask feature set
5847 * 5846 *
5848 * Computes a new feature set after adding a device with feature set 5847 * Computes a new feature set after adding a device with feature set
5849 * @one to the master device with current feature set @all. Will not 5848 * @one to the master device with current feature set @all. Will not
5850 * enable anything that is off in @mask. Returns the new feature set. 5849 * enable anything that is off in @mask. Returns the new feature set.
5851 */ 5850 */
5852 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5851 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5853 unsigned long mask) 5852 unsigned long mask)
5854 { 5853 {
5855 /* If device needs checksumming, downgrade to it. */ 5854 /* If device needs checksumming, downgrade to it. */
5856 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5855 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5857 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5856 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5858 else if (mask & NETIF_F_ALL_CSUM) { 5857 else if (mask & NETIF_F_ALL_CSUM) {
5859 /* If one device supports v4/v6 checksumming, set for all. */ 5858 /* If one device supports v4/v6 checksumming, set for all. */
5860 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5859 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5861 !(all & NETIF_F_GEN_CSUM)) { 5860 !(all & NETIF_F_GEN_CSUM)) {
5862 all &= ~NETIF_F_ALL_CSUM; 5861 all &= ~NETIF_F_ALL_CSUM;
5863 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5862 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5864 } 5863 }
5865 5864
5866 /* If one device supports hw checksumming, set for all. */ 5865 /* If one device supports hw checksumming, set for all. */
5867 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5866 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5868 all &= ~NETIF_F_ALL_CSUM; 5867 all &= ~NETIF_F_ALL_CSUM;
5869 all |= NETIF_F_HW_CSUM; 5868 all |= NETIF_F_HW_CSUM;
5870 } 5869 }
5871 } 5870 }
5872 5871
5873 one |= NETIF_F_ALL_CSUM; 5872 one |= NETIF_F_ALL_CSUM;
5874 5873
5875 one |= all & NETIF_F_ONE_FOR_ALL; 5874 one |= all & NETIF_F_ONE_FOR_ALL;
5876 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO; 5875 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5877 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5876 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5878 5877
5879 return all; 5878 return all;
5880 } 5879 }
5881 EXPORT_SYMBOL(netdev_increment_features); 5880 EXPORT_SYMBOL(netdev_increment_features);
5882 5881
5883 static struct hlist_head *netdev_create_hash(void) 5882 static struct hlist_head *netdev_create_hash(void)
5884 { 5883 {
5885 int i; 5884 int i;
5886 struct hlist_head *hash; 5885 struct hlist_head *hash;
5887 5886
5888 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5887 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5889 if (hash != NULL) 5888 if (hash != NULL)
5890 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5889 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5891 INIT_HLIST_HEAD(&hash[i]); 5890 INIT_HLIST_HEAD(&hash[i]);
5892 5891
5893 return hash; 5892 return hash;
5894 } 5893 }
5895 5894
5896 /* Initialize per network namespace state */ 5895 /* Initialize per network namespace state */
5897 static int __net_init netdev_init(struct net *net) 5896 static int __net_init netdev_init(struct net *net)
5898 { 5897 {
5899 INIT_LIST_HEAD(&net->dev_base_head); 5898 INIT_LIST_HEAD(&net->dev_base_head);
5900 5899
5901 net->dev_name_head = netdev_create_hash(); 5900 net->dev_name_head = netdev_create_hash();
5902 if (net->dev_name_head == NULL) 5901 if (net->dev_name_head == NULL)
5903 goto err_name; 5902 goto err_name;
5904 5903
5905 net->dev_index_head = netdev_create_hash(); 5904 net->dev_index_head = netdev_create_hash();
5906 if (net->dev_index_head == NULL) 5905 if (net->dev_index_head == NULL)
5907 goto err_idx; 5906 goto err_idx;
5908 5907
5909 return 0; 5908 return 0;
5910 5909
5911 err_idx: 5910 err_idx:
5912 kfree(net->dev_name_head); 5911 kfree(net->dev_name_head);
5913 err_name: 5912 err_name:
5914 return -ENOMEM; 5913 return -ENOMEM;
5915 } 5914 }
5916 5915
5917 /** 5916 /**
5918 * netdev_drivername - network driver for the device 5917 * netdev_drivername - network driver for the device
5919 * @dev: network device 5918 * @dev: network device
5920 * @buffer: buffer for resulting name 5919 * @buffer: buffer for resulting name
5921 * @len: size of buffer 5920 * @len: size of buffer
5922 * 5921 *
5923 * Determine network driver for device. 5922 * Determine network driver for device.
5924 */ 5923 */
5925 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5924 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5926 { 5925 {
5927 const struct device_driver *driver; 5926 const struct device_driver *driver;
5928 const struct device *parent; 5927 const struct device *parent;
5929 5928
5930 if (len <= 0 || !buffer) 5929 if (len <= 0 || !buffer)
5931 return buffer; 5930 return buffer;
5932 buffer[0] = 0; 5931 buffer[0] = 0;
5933 5932
5934 parent = dev->dev.parent; 5933 parent = dev->dev.parent;
5935 5934
5936 if (!parent) 5935 if (!parent)
5937 return buffer; 5936 return buffer;
5938 5937
5939 driver = parent->driver; 5938 driver = parent->driver;
5940 if (driver && driver->name) 5939 if (driver && driver->name)
5941 strlcpy(buffer, driver->name, len); 5940 strlcpy(buffer, driver->name, len);
5942 return buffer; 5941 return buffer;
5943 } 5942 }
5944 5943
5945 static int __netdev_printk(const char *level, const struct net_device *dev, 5944 static int __netdev_printk(const char *level, const struct net_device *dev,
5946 struct va_format *vaf) 5945 struct va_format *vaf)
5947 { 5946 {
5948 int r; 5947 int r;
5949 5948
5950 if (dev && dev->dev.parent) 5949 if (dev && dev->dev.parent)
5951 r = dev_printk(level, dev->dev.parent, "%s: %pV", 5950 r = dev_printk(level, dev->dev.parent, "%s: %pV",
5952 netdev_name(dev), vaf); 5951 netdev_name(dev), vaf);
5953 else if (dev) 5952 else if (dev)
5954 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 5953 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
5955 else 5954 else
5956 r = printk("%s(NULL net_device): %pV", level, vaf); 5955 r = printk("%s(NULL net_device): %pV", level, vaf);
5957 5956
5958 return r; 5957 return r;
5959 } 5958 }
5960 5959
5961 int netdev_printk(const char *level, const struct net_device *dev, 5960 int netdev_printk(const char *level, const struct net_device *dev,
5962 const char *format, ...) 5961 const char *format, ...)
5963 { 5962 {
5964 struct va_format vaf; 5963 struct va_format vaf;
5965 va_list args; 5964 va_list args;
5966 int r; 5965 int r;
5967 5966
5968 va_start(args, format); 5967 va_start(args, format);
5969 5968
5970 vaf.fmt = format; 5969 vaf.fmt = format;
5971 vaf.va = &args; 5970 vaf.va = &args;
5972 5971
5973 r = __netdev_printk(level, dev, &vaf); 5972 r = __netdev_printk(level, dev, &vaf);
5974 va_end(args); 5973 va_end(args);
5975 5974
5976 return r; 5975 return r;
5977 } 5976 }
5978 EXPORT_SYMBOL(netdev_printk); 5977 EXPORT_SYMBOL(netdev_printk);
5979 5978
5980 #define define_netdev_printk_level(func, level) \ 5979 #define define_netdev_printk_level(func, level) \
5981 int func(const struct net_device *dev, const char *fmt, ...) \ 5980 int func(const struct net_device *dev, const char *fmt, ...) \
5982 { \ 5981 { \
5983 int r; \ 5982 int r; \
5984 struct va_format vaf; \ 5983 struct va_format vaf; \
5985 va_list args; \ 5984 va_list args; \
5986 \ 5985 \
5987 va_start(args, fmt); \ 5986 va_start(args, fmt); \
5988 \ 5987 \
5989 vaf.fmt = fmt; \ 5988 vaf.fmt = fmt; \
5990 vaf.va = &args; \ 5989 vaf.va = &args; \
5991 \ 5990 \
5992 r = __netdev_printk(level, dev, &vaf); \ 5991 r = __netdev_printk(level, dev, &vaf); \
5993 va_end(args); \ 5992 va_end(args); \
5994 \ 5993 \
5995 return r; \ 5994 return r; \
5996 } \ 5995 } \
5997 EXPORT_SYMBOL(func); 5996 EXPORT_SYMBOL(func);
5998 5997
5999 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 5998 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6000 define_netdev_printk_level(netdev_alert, KERN_ALERT); 5999 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6001 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6000 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6002 define_netdev_printk_level(netdev_err, KERN_ERR); 6001 define_netdev_printk_level(netdev_err, KERN_ERR);
6003 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6002 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6004 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6003 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6005 define_netdev_printk_level(netdev_info, KERN_INFO); 6004 define_netdev_printk_level(netdev_info, KERN_INFO);
6006 6005
6007 static void __net_exit netdev_exit(struct net *net) 6006 static void __net_exit netdev_exit(struct net *net)
6008 { 6007 {
6009 kfree(net->dev_name_head); 6008 kfree(net->dev_name_head);
6010 kfree(net->dev_index_head); 6009 kfree(net->dev_index_head);
6011 } 6010 }
6012 6011
6013 static struct pernet_operations __net_initdata netdev_net_ops = { 6012 static struct pernet_operations __net_initdata netdev_net_ops = {
6014 .init = netdev_init, 6013 .init = netdev_init,
6015 .exit = netdev_exit, 6014 .exit = netdev_exit,
6016 }; 6015 };
6017 6016
6018 static void __net_exit default_device_exit(struct net *net) 6017 static void __net_exit default_device_exit(struct net *net)
6019 { 6018 {
6020 struct net_device *dev, *aux; 6019 struct net_device *dev, *aux;
6021 /* 6020 /*
6022 * Push all migratable network devices back to the 6021 * Push all migratable network devices back to the
6023 * initial network namespace 6022 * initial network namespace
6024 */ 6023 */
6025 rtnl_lock(); 6024 rtnl_lock();
6026 for_each_netdev_safe(net, dev, aux) { 6025 for_each_netdev_safe(net, dev, aux) {
6027 int err; 6026 int err;
6028 char fb_name[IFNAMSIZ]; 6027 char fb_name[IFNAMSIZ];
6029 6028
6030 /* Ignore unmoveable devices (i.e. loopback) */ 6029 /* Ignore unmoveable devices (i.e. loopback) */
6031 if (dev->features & NETIF_F_NETNS_LOCAL) 6030 if (dev->features & NETIF_F_NETNS_LOCAL)
6032 continue; 6031 continue;
6033 6032
6034 /* Leave virtual devices for the generic cleanup */ 6033 /* Leave virtual devices for the generic cleanup */
6035 if (dev->rtnl_link_ops) 6034 if (dev->rtnl_link_ops)
6036 continue; 6035 continue;
6037 6036
6038 /* Push remaing network devices to init_net */ 6037 /* Push remaing network devices to init_net */
6039 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6038 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6040 err = dev_change_net_namespace(dev, &init_net, fb_name); 6039 err = dev_change_net_namespace(dev, &init_net, fb_name);
6041 if (err) { 6040 if (err) {
6042 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 6041 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6043 __func__, dev->name, err); 6042 __func__, dev->name, err);
6044 BUG(); 6043 BUG();
6045 } 6044 }
6046 } 6045 }
6047 rtnl_unlock(); 6046 rtnl_unlock();
6048 } 6047 }
6049 6048
6050 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6049 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6051 { 6050 {
6052 /* At exit all network devices most be removed from a network 6051 /* At exit all network devices most be removed from a network
6053 * namespace. Do this in the reverse order of registeration. 6052 * namespace. Do this in the reverse order of registeration.
6054 * Do this across as many network namespaces as possible to 6053 * Do this across as many network namespaces as possible to
6055 * improve batching efficiency. 6054 * improve batching efficiency.
6056 */ 6055 */
6057 struct net_device *dev; 6056 struct net_device *dev;
6058 struct net *net; 6057 struct net *net;
6059 LIST_HEAD(dev_kill_list); 6058 LIST_HEAD(dev_kill_list);
6060 6059
6061 rtnl_lock(); 6060 rtnl_lock();
6062 list_for_each_entry(net, net_list, exit_list) { 6061 list_for_each_entry(net, net_list, exit_list) {
6063 for_each_netdev_reverse(net, dev) { 6062 for_each_netdev_reverse(net, dev) {
6064 if (dev->rtnl_link_ops) 6063 if (dev->rtnl_link_ops)
6065 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6064 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6066 else 6065 else
6067 unregister_netdevice_queue(dev, &dev_kill_list); 6066 unregister_netdevice_queue(dev, &dev_kill_list);
6068 } 6067 }
6069 } 6068 }
6070 unregister_netdevice_many(&dev_kill_list); 6069 unregister_netdevice_many(&dev_kill_list);
6071 rtnl_unlock(); 6070 rtnl_unlock();
6072 } 6071 }
6073 6072
6074 static struct pernet_operations __net_initdata default_device_ops = { 6073 static struct pernet_operations __net_initdata default_device_ops = {
6075 .exit = default_device_exit, 6074 .exit = default_device_exit,
6076 .exit_batch = default_device_exit_batch, 6075 .exit_batch = default_device_exit_batch,
6077 }; 6076 };
6078 6077
6079 /* 6078 /*
6080 * Initialize the DEV module. At boot time this walks the device list and 6079 * Initialize the DEV module. At boot time this walks the device list and
6081 * unhooks any devices that fail to initialise (normally hardware not 6080 * unhooks any devices that fail to initialise (normally hardware not
6082 * present) and leaves us with a valid list of present and active devices. 6081 * present) and leaves us with a valid list of present and active devices.
6083 * 6082 *
6084 */ 6083 */
6085 6084
6086 /* 6085 /*
6087 * This is called single threaded during boot, so no need 6086 * This is called single threaded during boot, so no need
6088 * to take the rtnl semaphore. 6087 * to take the rtnl semaphore.
6089 */ 6088 */
6090 static int __init net_dev_init(void) 6089 static int __init net_dev_init(void)
6091 { 6090 {
6092 int i, rc = -ENOMEM; 6091 int i, rc = -ENOMEM;
6093 6092
6094 BUG_ON(!dev_boot_phase); 6093 BUG_ON(!dev_boot_phase);
6095 6094
6096 if (dev_proc_init()) 6095 if (dev_proc_init())
6097 goto out; 6096 goto out;
6098 6097
6099 if (netdev_kobject_init()) 6098 if (netdev_kobject_init())
6100 goto out; 6099 goto out;
6101 6100
6102 INIT_LIST_HEAD(&ptype_all); 6101 INIT_LIST_HEAD(&ptype_all);
6103 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6102 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6104 INIT_LIST_HEAD(&ptype_base[i]); 6103 INIT_LIST_HEAD(&ptype_base[i]);
6105 6104
6106 if (register_pernet_subsys(&netdev_net_ops)) 6105 if (register_pernet_subsys(&netdev_net_ops))
6107 goto out; 6106 goto out;
6108 6107
6109 /* 6108 /*
6110 * Initialise the packet receive queues. 6109 * Initialise the packet receive queues.
6111 */ 6110 */
6112 6111
6113 for_each_possible_cpu(i) { 6112 for_each_possible_cpu(i) {
6114 struct softnet_data *sd = &per_cpu(softnet_data, i); 6113 struct softnet_data *sd = &per_cpu(softnet_data, i);
6115 6114
6116 memset(sd, 0, sizeof(*sd)); 6115 memset(sd, 0, sizeof(*sd));
6117 skb_queue_head_init(&sd->input_pkt_queue); 6116 skb_queue_head_init(&sd->input_pkt_queue);
6118 skb_queue_head_init(&sd->process_queue); 6117 skb_queue_head_init(&sd->process_queue);
6119 sd->completion_queue = NULL; 6118 sd->completion_queue = NULL;
6120 INIT_LIST_HEAD(&sd->poll_list); 6119 INIT_LIST_HEAD(&sd->poll_list);
6121 sd->output_queue = NULL; 6120 sd->output_queue = NULL;
6122 sd->output_queue_tailp = &sd->output_queue; 6121 sd->output_queue_tailp = &sd->output_queue;
6123 #ifdef CONFIG_RPS 6122 #ifdef CONFIG_RPS
6124 sd->csd.func = rps_trigger_softirq; 6123 sd->csd.func = rps_trigger_softirq;
6125 sd->csd.info = sd; 6124 sd->csd.info = sd;
6126 sd->csd.flags = 0; 6125 sd->csd.flags = 0;
6127 sd->cpu = i; 6126 sd->cpu = i;
6128 #endif 6127 #endif
6129 6128
6130 sd->backlog.poll = process_backlog; 6129 sd->backlog.poll = process_backlog;
6131 sd->backlog.weight = weight_p; 6130 sd->backlog.weight = weight_p;
6132 sd->backlog.gro_list = NULL; 6131 sd->backlog.gro_list = NULL;
6133 sd->backlog.gro_count = 0; 6132 sd->backlog.gro_count = 0;
6134 } 6133 }
6135 6134
6136 dev_boot_phase = 0; 6135 dev_boot_phase = 0;
6137 6136
6138 /* The loopback device is special if any other network devices 6137 /* The loopback device is special if any other network devices
6139 * is present in a network namespace the loopback device must 6138 * is present in a network namespace the loopback device must
6140 * be present. Since we now dynamically allocate and free the 6139 * be present. Since we now dynamically allocate and free the
6141 * loopback device ensure this invariant is maintained by 6140 * loopback device ensure this invariant is maintained by
6142 * keeping the loopback device as the first device on the 6141 * keeping the loopback device as the first device on the
6143 * list of network devices. Ensuring the loopback devices 6142 * list of network devices. Ensuring the loopback devices
6144 * is the first device that appears and the last network device 6143 * is the first device that appears and the last network device
6145 * that disappears. 6144 * that disappears.
6146 */ 6145 */
6147 if (register_pernet_device(&loopback_net_ops)) 6146 if (register_pernet_device(&loopback_net_ops))
6148 goto out; 6147 goto out;
6149 6148
6150 if (register_pernet_device(&default_device_ops)) 6149 if (register_pernet_device(&default_device_ops))
6151 goto out; 6150 goto out;
6152 6151
6153 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6152 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6154 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6153 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6155 6154
6156 hotcpu_notifier(dev_cpu_callback, 0); 6155 hotcpu_notifier(dev_cpu_callback, 0);
6157 dst_init(); 6156 dst_init();
6158 dev_mcast_init(); 6157 dev_mcast_init();
6159 rc = 0; 6158 rc = 0;
6160 out: 6159 out:
6161 return rc; 6160 return rc;
6162 } 6161 }
6163 6162
6164 subsys_initcall(net_dev_init); 6163 subsys_initcall(net_dev_init);
6165 6164
6166 static int __init initialize_hashrnd(void) 6165 static int __init initialize_hashrnd(void)
6167 { 6166 {
6168 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6167 get_random_bytes(&hashrnd, sizeof(hashrnd));
6169 return 0; 6168 return 0;
6170 } 6169 }
6171 6170
6172 late_initcall_sync(initialize_hashrnd); 6171 late_initcall_sync(initialize_hashrnd);
6173 6172
6174 6173
net/core/net-sysfs.c
1 /* 1 /*
2 * net-sysfs.c - network device class and attributes 2 * net-sysfs.c - network device class and attributes
3 * 3 *
4 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org> 4 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
5 * 5 *
6 * This program is free software; you can redistribute it and/or 6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License 7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version. 9 * 2 of the License, or (at your option) any later version.
10 */ 10 */
11 11
12 #include <linux/capability.h> 12 #include <linux/capability.h>
13 #include <linux/kernel.h> 13 #include <linux/kernel.h>
14 #include <linux/netdevice.h> 14 #include <linux/netdevice.h>
15 #include <linux/if_arp.h> 15 #include <linux/if_arp.h>
16 #include <linux/slab.h> 16 #include <linux/slab.h>
17 #include <linux/nsproxy.h> 17 #include <linux/nsproxy.h>
18 #include <net/sock.h> 18 #include <net/sock.h>
19 #include <net/net_namespace.h> 19 #include <net/net_namespace.h>
20 #include <linux/rtnetlink.h> 20 #include <linux/rtnetlink.h>
21 #include <linux/wireless.h> 21 #include <linux/wireless.h>
22 #include <linux/vmalloc.h> 22 #include <linux/vmalloc.h>
23 #include <net/wext.h> 23 #include <net/wext.h>
24 24
25 #include "net-sysfs.h" 25 #include "net-sysfs.h"
26 26
27 #ifdef CONFIG_SYSFS 27 #ifdef CONFIG_SYSFS
28 static const char fmt_hex[] = "%#x\n"; 28 static const char fmt_hex[] = "%#x\n";
29 static const char fmt_long_hex[] = "%#lx\n"; 29 static const char fmt_long_hex[] = "%#lx\n";
30 static const char fmt_dec[] = "%d\n"; 30 static const char fmt_dec[] = "%d\n";
31 static const char fmt_ulong[] = "%lu\n"; 31 static const char fmt_ulong[] = "%lu\n";
32 static const char fmt_u64[] = "%llu\n"; 32 static const char fmt_u64[] = "%llu\n";
33 33
34 static inline int dev_isalive(const struct net_device *dev) 34 static inline int dev_isalive(const struct net_device *dev)
35 { 35 {
36 return dev->reg_state <= NETREG_REGISTERED; 36 return dev->reg_state <= NETREG_REGISTERED;
37 } 37 }
38 38
39 /* use same locking rules as GIF* ioctl's */ 39 /* use same locking rules as GIF* ioctl's */
40 static ssize_t netdev_show(const struct device *dev, 40 static ssize_t netdev_show(const struct device *dev,
41 struct device_attribute *attr, char *buf, 41 struct device_attribute *attr, char *buf,
42 ssize_t (*format)(const struct net_device *, char *)) 42 ssize_t (*format)(const struct net_device *, char *))
43 { 43 {
44 struct net_device *net = to_net_dev(dev); 44 struct net_device *net = to_net_dev(dev);
45 ssize_t ret = -EINVAL; 45 ssize_t ret = -EINVAL;
46 46
47 read_lock(&dev_base_lock); 47 read_lock(&dev_base_lock);
48 if (dev_isalive(net)) 48 if (dev_isalive(net))
49 ret = (*format)(net, buf); 49 ret = (*format)(net, buf);
50 read_unlock(&dev_base_lock); 50 read_unlock(&dev_base_lock);
51 51
52 return ret; 52 return ret;
53 } 53 }
54 54
55 /* generate a show function for simple field */ 55 /* generate a show function for simple field */
56 #define NETDEVICE_SHOW(field, format_string) \ 56 #define NETDEVICE_SHOW(field, format_string) \
57 static ssize_t format_##field(const struct net_device *net, char *buf) \ 57 static ssize_t format_##field(const struct net_device *net, char *buf) \
58 { \ 58 { \
59 return sprintf(buf, format_string, net->field); \ 59 return sprintf(buf, format_string, net->field); \
60 } \ 60 } \
61 static ssize_t show_##field(struct device *dev, \ 61 static ssize_t show_##field(struct device *dev, \
62 struct device_attribute *attr, char *buf) \ 62 struct device_attribute *attr, char *buf) \
63 { \ 63 { \
64 return netdev_show(dev, attr, buf, format_##field); \ 64 return netdev_show(dev, attr, buf, format_##field); \
65 } 65 }
66 66
67 67
68 /* use same locking and permission rules as SIF* ioctl's */ 68 /* use same locking and permission rules as SIF* ioctl's */
69 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr, 69 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
70 const char *buf, size_t len, 70 const char *buf, size_t len,
71 int (*set)(struct net_device *, unsigned long)) 71 int (*set)(struct net_device *, unsigned long))
72 { 72 {
73 struct net_device *net = to_net_dev(dev); 73 struct net_device *net = to_net_dev(dev);
74 char *endp; 74 char *endp;
75 unsigned long new; 75 unsigned long new;
76 int ret = -EINVAL; 76 int ret = -EINVAL;
77 77
78 if (!capable(CAP_NET_ADMIN)) 78 if (!capable(CAP_NET_ADMIN))
79 return -EPERM; 79 return -EPERM;
80 80
81 new = simple_strtoul(buf, &endp, 0); 81 new = simple_strtoul(buf, &endp, 0);
82 if (endp == buf) 82 if (endp == buf)
83 goto err; 83 goto err;
84 84
85 if (!rtnl_trylock()) 85 if (!rtnl_trylock())
86 return restart_syscall(); 86 return restart_syscall();
87 87
88 if (dev_isalive(net)) { 88 if (dev_isalive(net)) {
89 if ((ret = (*set)(net, new)) == 0) 89 if ((ret = (*set)(net, new)) == 0)
90 ret = len; 90 ret = len;
91 } 91 }
92 rtnl_unlock(); 92 rtnl_unlock();
93 err: 93 err:
94 return ret; 94 return ret;
95 } 95 }
96 96
97 NETDEVICE_SHOW(dev_id, fmt_hex); 97 NETDEVICE_SHOW(dev_id, fmt_hex);
98 NETDEVICE_SHOW(addr_assign_type, fmt_dec); 98 NETDEVICE_SHOW(addr_assign_type, fmt_dec);
99 NETDEVICE_SHOW(addr_len, fmt_dec); 99 NETDEVICE_SHOW(addr_len, fmt_dec);
100 NETDEVICE_SHOW(iflink, fmt_dec); 100 NETDEVICE_SHOW(iflink, fmt_dec);
101 NETDEVICE_SHOW(ifindex, fmt_dec); 101 NETDEVICE_SHOW(ifindex, fmt_dec);
102 NETDEVICE_SHOW(features, fmt_long_hex); 102 NETDEVICE_SHOW(features, fmt_long_hex);
103 NETDEVICE_SHOW(type, fmt_dec); 103 NETDEVICE_SHOW(type, fmt_dec);
104 NETDEVICE_SHOW(link_mode, fmt_dec); 104 NETDEVICE_SHOW(link_mode, fmt_dec);
105 105
106 /* use same locking rules as GIFHWADDR ioctl's */ 106 /* use same locking rules as GIFHWADDR ioctl's */
107 static ssize_t show_address(struct device *dev, struct device_attribute *attr, 107 static ssize_t show_address(struct device *dev, struct device_attribute *attr,
108 char *buf) 108 char *buf)
109 { 109 {
110 struct net_device *net = to_net_dev(dev); 110 struct net_device *net = to_net_dev(dev);
111 ssize_t ret = -EINVAL; 111 ssize_t ret = -EINVAL;
112 112
113 read_lock(&dev_base_lock); 113 read_lock(&dev_base_lock);
114 if (dev_isalive(net)) 114 if (dev_isalive(net))
115 ret = sysfs_format_mac(buf, net->dev_addr, net->addr_len); 115 ret = sysfs_format_mac(buf, net->dev_addr, net->addr_len);
116 read_unlock(&dev_base_lock); 116 read_unlock(&dev_base_lock);
117 return ret; 117 return ret;
118 } 118 }
119 119
120 static ssize_t show_broadcast(struct device *dev, 120 static ssize_t show_broadcast(struct device *dev,
121 struct device_attribute *attr, char *buf) 121 struct device_attribute *attr, char *buf)
122 { 122 {
123 struct net_device *net = to_net_dev(dev); 123 struct net_device *net = to_net_dev(dev);
124 if (dev_isalive(net)) 124 if (dev_isalive(net))
125 return sysfs_format_mac(buf, net->broadcast, net->addr_len); 125 return sysfs_format_mac(buf, net->broadcast, net->addr_len);
126 return -EINVAL; 126 return -EINVAL;
127 } 127 }
128 128
129 static ssize_t show_carrier(struct device *dev, 129 static ssize_t show_carrier(struct device *dev,
130 struct device_attribute *attr, char *buf) 130 struct device_attribute *attr, char *buf)
131 { 131 {
132 struct net_device *netdev = to_net_dev(dev); 132 struct net_device *netdev = to_net_dev(dev);
133 if (netif_running(netdev)) { 133 if (netif_running(netdev)) {
134 return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev)); 134 return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev));
135 } 135 }
136 return -EINVAL; 136 return -EINVAL;
137 } 137 }
138 138
139 static ssize_t show_speed(struct device *dev, 139 static ssize_t show_speed(struct device *dev,
140 struct device_attribute *attr, char *buf) 140 struct device_attribute *attr, char *buf)
141 { 141 {
142 struct net_device *netdev = to_net_dev(dev); 142 struct net_device *netdev = to_net_dev(dev);
143 int ret = -EINVAL; 143 int ret = -EINVAL;
144 144
145 if (!rtnl_trylock()) 145 if (!rtnl_trylock())
146 return restart_syscall(); 146 return restart_syscall();
147 147
148 if (netif_running(netdev) && 148 if (netif_running(netdev) &&
149 netdev->ethtool_ops && 149 netdev->ethtool_ops &&
150 netdev->ethtool_ops->get_settings) { 150 netdev->ethtool_ops->get_settings) {
151 struct ethtool_cmd cmd = { ETHTOOL_GSET }; 151 struct ethtool_cmd cmd = { ETHTOOL_GSET };
152 152
153 if (!netdev->ethtool_ops->get_settings(netdev, &cmd)) 153 if (!netdev->ethtool_ops->get_settings(netdev, &cmd))
154 ret = sprintf(buf, fmt_dec, ethtool_cmd_speed(&cmd)); 154 ret = sprintf(buf, fmt_dec, ethtool_cmd_speed(&cmd));
155 } 155 }
156 rtnl_unlock(); 156 rtnl_unlock();
157 return ret; 157 return ret;
158 } 158 }
159 159
160 static ssize_t show_duplex(struct device *dev, 160 static ssize_t show_duplex(struct device *dev,
161 struct device_attribute *attr, char *buf) 161 struct device_attribute *attr, char *buf)
162 { 162 {
163 struct net_device *netdev = to_net_dev(dev); 163 struct net_device *netdev = to_net_dev(dev);
164 int ret = -EINVAL; 164 int ret = -EINVAL;
165 165
166 if (!rtnl_trylock()) 166 if (!rtnl_trylock())
167 return restart_syscall(); 167 return restart_syscall();
168 168
169 if (netif_running(netdev) && 169 if (netif_running(netdev) &&
170 netdev->ethtool_ops && 170 netdev->ethtool_ops &&
171 netdev->ethtool_ops->get_settings) { 171 netdev->ethtool_ops->get_settings) {
172 struct ethtool_cmd cmd = { ETHTOOL_GSET }; 172 struct ethtool_cmd cmd = { ETHTOOL_GSET };
173 173
174 if (!netdev->ethtool_ops->get_settings(netdev, &cmd)) 174 if (!netdev->ethtool_ops->get_settings(netdev, &cmd))
175 ret = sprintf(buf, "%s\n", cmd.duplex ? "full" : "half"); 175 ret = sprintf(buf, "%s\n", cmd.duplex ? "full" : "half");
176 } 176 }
177 rtnl_unlock(); 177 rtnl_unlock();
178 return ret; 178 return ret;
179 } 179 }
180 180
181 static ssize_t show_dormant(struct device *dev, 181 static ssize_t show_dormant(struct device *dev,
182 struct device_attribute *attr, char *buf) 182 struct device_attribute *attr, char *buf)
183 { 183 {
184 struct net_device *netdev = to_net_dev(dev); 184 struct net_device *netdev = to_net_dev(dev);
185 185
186 if (netif_running(netdev)) 186 if (netif_running(netdev))
187 return sprintf(buf, fmt_dec, !!netif_dormant(netdev)); 187 return sprintf(buf, fmt_dec, !!netif_dormant(netdev));
188 188
189 return -EINVAL; 189 return -EINVAL;
190 } 190 }
191 191
192 static const char *const operstates[] = { 192 static const char *const operstates[] = {
193 "unknown", 193 "unknown",
194 "notpresent", /* currently unused */ 194 "notpresent", /* currently unused */
195 "down", 195 "down",
196 "lowerlayerdown", 196 "lowerlayerdown",
197 "testing", /* currently unused */ 197 "testing", /* currently unused */
198 "dormant", 198 "dormant",
199 "up" 199 "up"
200 }; 200 };
201 201
202 static ssize_t show_operstate(struct device *dev, 202 static ssize_t show_operstate(struct device *dev,
203 struct device_attribute *attr, char *buf) 203 struct device_attribute *attr, char *buf)
204 { 204 {
205 const struct net_device *netdev = to_net_dev(dev); 205 const struct net_device *netdev = to_net_dev(dev);
206 unsigned char operstate; 206 unsigned char operstate;
207 207
208 read_lock(&dev_base_lock); 208 read_lock(&dev_base_lock);
209 operstate = netdev->operstate; 209 operstate = netdev->operstate;
210 if (!netif_running(netdev)) 210 if (!netif_running(netdev))
211 operstate = IF_OPER_DOWN; 211 operstate = IF_OPER_DOWN;
212 read_unlock(&dev_base_lock); 212 read_unlock(&dev_base_lock);
213 213
214 if (operstate >= ARRAY_SIZE(operstates)) 214 if (operstate >= ARRAY_SIZE(operstates))
215 return -EINVAL; /* should not happen */ 215 return -EINVAL; /* should not happen */
216 216
217 return sprintf(buf, "%s\n", operstates[operstate]); 217 return sprintf(buf, "%s\n", operstates[operstate]);
218 } 218 }
219 219
220 /* read-write attributes */ 220 /* read-write attributes */
221 NETDEVICE_SHOW(mtu, fmt_dec); 221 NETDEVICE_SHOW(mtu, fmt_dec);
222 222
223 static int change_mtu(struct net_device *net, unsigned long new_mtu) 223 static int change_mtu(struct net_device *net, unsigned long new_mtu)
224 { 224 {
225 return dev_set_mtu(net, (int) new_mtu); 225 return dev_set_mtu(net, (int) new_mtu);
226 } 226 }
227 227
228 static ssize_t store_mtu(struct device *dev, struct device_attribute *attr, 228 static ssize_t store_mtu(struct device *dev, struct device_attribute *attr,
229 const char *buf, size_t len) 229 const char *buf, size_t len)
230 { 230 {
231 return netdev_store(dev, attr, buf, len, change_mtu); 231 return netdev_store(dev, attr, buf, len, change_mtu);
232 } 232 }
233 233
234 NETDEVICE_SHOW(flags, fmt_hex); 234 NETDEVICE_SHOW(flags, fmt_hex);
235 235
236 static int change_flags(struct net_device *net, unsigned long new_flags) 236 static int change_flags(struct net_device *net, unsigned long new_flags)
237 { 237 {
238 return dev_change_flags(net, (unsigned) new_flags); 238 return dev_change_flags(net, (unsigned) new_flags);
239 } 239 }
240 240
241 static ssize_t store_flags(struct device *dev, struct device_attribute *attr, 241 static ssize_t store_flags(struct device *dev, struct device_attribute *attr,
242 const char *buf, size_t len) 242 const char *buf, size_t len)
243 { 243 {
244 return netdev_store(dev, attr, buf, len, change_flags); 244 return netdev_store(dev, attr, buf, len, change_flags);
245 } 245 }
246 246
247 NETDEVICE_SHOW(tx_queue_len, fmt_ulong); 247 NETDEVICE_SHOW(tx_queue_len, fmt_ulong);
248 248
249 static int change_tx_queue_len(struct net_device *net, unsigned long new_len) 249 static int change_tx_queue_len(struct net_device *net, unsigned long new_len)
250 { 250 {
251 net->tx_queue_len = new_len; 251 net->tx_queue_len = new_len;
252 return 0; 252 return 0;
253 } 253 }
254 254
255 static ssize_t store_tx_queue_len(struct device *dev, 255 static ssize_t store_tx_queue_len(struct device *dev,
256 struct device_attribute *attr, 256 struct device_attribute *attr,
257 const char *buf, size_t len) 257 const char *buf, size_t len)
258 { 258 {
259 return netdev_store(dev, attr, buf, len, change_tx_queue_len); 259 return netdev_store(dev, attr, buf, len, change_tx_queue_len);
260 } 260 }
261 261
262 static ssize_t store_ifalias(struct device *dev, struct device_attribute *attr, 262 static ssize_t store_ifalias(struct device *dev, struct device_attribute *attr,
263 const char *buf, size_t len) 263 const char *buf, size_t len)
264 { 264 {
265 struct net_device *netdev = to_net_dev(dev); 265 struct net_device *netdev = to_net_dev(dev);
266 size_t count = len; 266 size_t count = len;
267 ssize_t ret; 267 ssize_t ret;
268 268
269 if (!capable(CAP_NET_ADMIN)) 269 if (!capable(CAP_NET_ADMIN))
270 return -EPERM; 270 return -EPERM;
271 271
272 /* ignore trailing newline */ 272 /* ignore trailing newline */
273 if (len > 0 && buf[len - 1] == '\n') 273 if (len > 0 && buf[len - 1] == '\n')
274 --count; 274 --count;
275 275
276 if (!rtnl_trylock()) 276 if (!rtnl_trylock())
277 return restart_syscall(); 277 return restart_syscall();
278 ret = dev_set_alias(netdev, buf, count); 278 ret = dev_set_alias(netdev, buf, count);
279 rtnl_unlock(); 279 rtnl_unlock();
280 280
281 return ret < 0 ? ret : len; 281 return ret < 0 ? ret : len;
282 } 282 }
283 283
284 static ssize_t show_ifalias(struct device *dev, 284 static ssize_t show_ifalias(struct device *dev,
285 struct device_attribute *attr, char *buf) 285 struct device_attribute *attr, char *buf)
286 { 286 {
287 const struct net_device *netdev = to_net_dev(dev); 287 const struct net_device *netdev = to_net_dev(dev);
288 ssize_t ret = 0; 288 ssize_t ret = 0;
289 289
290 if (!rtnl_trylock()) 290 if (!rtnl_trylock())
291 return restart_syscall(); 291 return restart_syscall();
292 if (netdev->ifalias) 292 if (netdev->ifalias)
293 ret = sprintf(buf, "%s\n", netdev->ifalias); 293 ret = sprintf(buf, "%s\n", netdev->ifalias);
294 rtnl_unlock(); 294 rtnl_unlock();
295 return ret; 295 return ret;
296 } 296 }
297 297
298 static struct device_attribute net_class_attributes[] = { 298 static struct device_attribute net_class_attributes[] = {
299 __ATTR(addr_assign_type, S_IRUGO, show_addr_assign_type, NULL), 299 __ATTR(addr_assign_type, S_IRUGO, show_addr_assign_type, NULL),
300 __ATTR(addr_len, S_IRUGO, show_addr_len, NULL), 300 __ATTR(addr_len, S_IRUGO, show_addr_len, NULL),
301 __ATTR(dev_id, S_IRUGO, show_dev_id, NULL), 301 __ATTR(dev_id, S_IRUGO, show_dev_id, NULL),
302 __ATTR(ifalias, S_IRUGO | S_IWUSR, show_ifalias, store_ifalias), 302 __ATTR(ifalias, S_IRUGO | S_IWUSR, show_ifalias, store_ifalias),
303 __ATTR(iflink, S_IRUGO, show_iflink, NULL), 303 __ATTR(iflink, S_IRUGO, show_iflink, NULL),
304 __ATTR(ifindex, S_IRUGO, show_ifindex, NULL), 304 __ATTR(ifindex, S_IRUGO, show_ifindex, NULL),
305 __ATTR(features, S_IRUGO, show_features, NULL), 305 __ATTR(features, S_IRUGO, show_features, NULL),
306 __ATTR(type, S_IRUGO, show_type, NULL), 306 __ATTR(type, S_IRUGO, show_type, NULL),
307 __ATTR(link_mode, S_IRUGO, show_link_mode, NULL), 307 __ATTR(link_mode, S_IRUGO, show_link_mode, NULL),
308 __ATTR(address, S_IRUGO, show_address, NULL), 308 __ATTR(address, S_IRUGO, show_address, NULL),
309 __ATTR(broadcast, S_IRUGO, show_broadcast, NULL), 309 __ATTR(broadcast, S_IRUGO, show_broadcast, NULL),
310 __ATTR(carrier, S_IRUGO, show_carrier, NULL), 310 __ATTR(carrier, S_IRUGO, show_carrier, NULL),
311 __ATTR(speed, S_IRUGO, show_speed, NULL), 311 __ATTR(speed, S_IRUGO, show_speed, NULL),
312 __ATTR(duplex, S_IRUGO, show_duplex, NULL), 312 __ATTR(duplex, S_IRUGO, show_duplex, NULL),
313 __ATTR(dormant, S_IRUGO, show_dormant, NULL), 313 __ATTR(dormant, S_IRUGO, show_dormant, NULL),
314 __ATTR(operstate, S_IRUGO, show_operstate, NULL), 314 __ATTR(operstate, S_IRUGO, show_operstate, NULL),
315 __ATTR(mtu, S_IRUGO | S_IWUSR, show_mtu, store_mtu), 315 __ATTR(mtu, S_IRUGO | S_IWUSR, show_mtu, store_mtu),
316 __ATTR(flags, S_IRUGO | S_IWUSR, show_flags, store_flags), 316 __ATTR(flags, S_IRUGO | S_IWUSR, show_flags, store_flags),
317 __ATTR(tx_queue_len, S_IRUGO | S_IWUSR, show_tx_queue_len, 317 __ATTR(tx_queue_len, S_IRUGO | S_IWUSR, show_tx_queue_len,
318 store_tx_queue_len), 318 store_tx_queue_len),
319 {} 319 {}
320 }; 320 };
321 321
322 /* Show a given an attribute in the statistics group */ 322 /* Show a given an attribute in the statistics group */
323 static ssize_t netstat_show(const struct device *d, 323 static ssize_t netstat_show(const struct device *d,
324 struct device_attribute *attr, char *buf, 324 struct device_attribute *attr, char *buf,
325 unsigned long offset) 325 unsigned long offset)
326 { 326 {
327 struct net_device *dev = to_net_dev(d); 327 struct net_device *dev = to_net_dev(d);
328 ssize_t ret = -EINVAL; 328 ssize_t ret = -EINVAL;
329 329
330 WARN_ON(offset > sizeof(struct rtnl_link_stats64) || 330 WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
331 offset % sizeof(u64) != 0); 331 offset % sizeof(u64) != 0);
332 332
333 read_lock(&dev_base_lock); 333 read_lock(&dev_base_lock);
334 if (dev_isalive(dev)) { 334 if (dev_isalive(dev)) {
335 struct rtnl_link_stats64 temp; 335 struct rtnl_link_stats64 temp;
336 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 336 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
337 337
338 ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *) stats) + offset)); 338 ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *) stats) + offset));
339 } 339 }
340 read_unlock(&dev_base_lock); 340 read_unlock(&dev_base_lock);
341 return ret; 341 return ret;
342 } 342 }
343 343
344 /* generate a read-only statistics attribute */ 344 /* generate a read-only statistics attribute */
345 #define NETSTAT_ENTRY(name) \ 345 #define NETSTAT_ENTRY(name) \
346 static ssize_t show_##name(struct device *d, \ 346 static ssize_t show_##name(struct device *d, \
347 struct device_attribute *attr, char *buf) \ 347 struct device_attribute *attr, char *buf) \
348 { \ 348 { \
349 return netstat_show(d, attr, buf, \ 349 return netstat_show(d, attr, buf, \
350 offsetof(struct rtnl_link_stats64, name)); \ 350 offsetof(struct rtnl_link_stats64, name)); \
351 } \ 351 } \
352 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL) 352 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
353 353
354 NETSTAT_ENTRY(rx_packets); 354 NETSTAT_ENTRY(rx_packets);
355 NETSTAT_ENTRY(tx_packets); 355 NETSTAT_ENTRY(tx_packets);
356 NETSTAT_ENTRY(rx_bytes); 356 NETSTAT_ENTRY(rx_bytes);
357 NETSTAT_ENTRY(tx_bytes); 357 NETSTAT_ENTRY(tx_bytes);
358 NETSTAT_ENTRY(rx_errors); 358 NETSTAT_ENTRY(rx_errors);
359 NETSTAT_ENTRY(tx_errors); 359 NETSTAT_ENTRY(tx_errors);
360 NETSTAT_ENTRY(rx_dropped); 360 NETSTAT_ENTRY(rx_dropped);
361 NETSTAT_ENTRY(tx_dropped); 361 NETSTAT_ENTRY(tx_dropped);
362 NETSTAT_ENTRY(multicast); 362 NETSTAT_ENTRY(multicast);
363 NETSTAT_ENTRY(collisions); 363 NETSTAT_ENTRY(collisions);
364 NETSTAT_ENTRY(rx_length_errors); 364 NETSTAT_ENTRY(rx_length_errors);
365 NETSTAT_ENTRY(rx_over_errors); 365 NETSTAT_ENTRY(rx_over_errors);
366 NETSTAT_ENTRY(rx_crc_errors); 366 NETSTAT_ENTRY(rx_crc_errors);
367 NETSTAT_ENTRY(rx_frame_errors); 367 NETSTAT_ENTRY(rx_frame_errors);
368 NETSTAT_ENTRY(rx_fifo_errors); 368 NETSTAT_ENTRY(rx_fifo_errors);
369 NETSTAT_ENTRY(rx_missed_errors); 369 NETSTAT_ENTRY(rx_missed_errors);
370 NETSTAT_ENTRY(tx_aborted_errors); 370 NETSTAT_ENTRY(tx_aborted_errors);
371 NETSTAT_ENTRY(tx_carrier_errors); 371 NETSTAT_ENTRY(tx_carrier_errors);
372 NETSTAT_ENTRY(tx_fifo_errors); 372 NETSTAT_ENTRY(tx_fifo_errors);
373 NETSTAT_ENTRY(tx_heartbeat_errors); 373 NETSTAT_ENTRY(tx_heartbeat_errors);
374 NETSTAT_ENTRY(tx_window_errors); 374 NETSTAT_ENTRY(tx_window_errors);
375 NETSTAT_ENTRY(rx_compressed); 375 NETSTAT_ENTRY(rx_compressed);
376 NETSTAT_ENTRY(tx_compressed); 376 NETSTAT_ENTRY(tx_compressed);
377 377
378 static struct attribute *netstat_attrs[] = { 378 static struct attribute *netstat_attrs[] = {
379 &dev_attr_rx_packets.attr, 379 &dev_attr_rx_packets.attr,
380 &dev_attr_tx_packets.attr, 380 &dev_attr_tx_packets.attr,
381 &dev_attr_rx_bytes.attr, 381 &dev_attr_rx_bytes.attr,
382 &dev_attr_tx_bytes.attr, 382 &dev_attr_tx_bytes.attr,
383 &dev_attr_rx_errors.attr, 383 &dev_attr_rx_errors.attr,
384 &dev_attr_tx_errors.attr, 384 &dev_attr_tx_errors.attr,
385 &dev_attr_rx_dropped.attr, 385 &dev_attr_rx_dropped.attr,
386 &dev_attr_tx_dropped.attr, 386 &dev_attr_tx_dropped.attr,
387 &dev_attr_multicast.attr, 387 &dev_attr_multicast.attr,
388 &dev_attr_collisions.attr, 388 &dev_attr_collisions.attr,
389 &dev_attr_rx_length_errors.attr, 389 &dev_attr_rx_length_errors.attr,
390 &dev_attr_rx_over_errors.attr, 390 &dev_attr_rx_over_errors.attr,
391 &dev_attr_rx_crc_errors.attr, 391 &dev_attr_rx_crc_errors.attr,
392 &dev_attr_rx_frame_errors.attr, 392 &dev_attr_rx_frame_errors.attr,
393 &dev_attr_rx_fifo_errors.attr, 393 &dev_attr_rx_fifo_errors.attr,
394 &dev_attr_rx_missed_errors.attr, 394 &dev_attr_rx_missed_errors.attr,
395 &dev_attr_tx_aborted_errors.attr, 395 &dev_attr_tx_aborted_errors.attr,
396 &dev_attr_tx_carrier_errors.attr, 396 &dev_attr_tx_carrier_errors.attr,
397 &dev_attr_tx_fifo_errors.attr, 397 &dev_attr_tx_fifo_errors.attr,
398 &dev_attr_tx_heartbeat_errors.attr, 398 &dev_attr_tx_heartbeat_errors.attr,
399 &dev_attr_tx_window_errors.attr, 399 &dev_attr_tx_window_errors.attr,
400 &dev_attr_rx_compressed.attr, 400 &dev_attr_rx_compressed.attr,
401 &dev_attr_tx_compressed.attr, 401 &dev_attr_tx_compressed.attr,
402 NULL 402 NULL
403 }; 403 };
404 404
405 405
406 static struct attribute_group netstat_group = { 406 static struct attribute_group netstat_group = {
407 .name = "statistics", 407 .name = "statistics",
408 .attrs = netstat_attrs, 408 .attrs = netstat_attrs,
409 }; 409 };
410 410
411 #ifdef CONFIG_WIRELESS_EXT_SYSFS 411 #ifdef CONFIG_WIRELESS_EXT_SYSFS
412 /* helper function that does all the locking etc for wireless stats */ 412 /* helper function that does all the locking etc for wireless stats */
413 static ssize_t wireless_show(struct device *d, char *buf, 413 static ssize_t wireless_show(struct device *d, char *buf,
414 ssize_t (*format)(const struct iw_statistics *, 414 ssize_t (*format)(const struct iw_statistics *,
415 char *)) 415 char *))
416 { 416 {
417 struct net_device *dev = to_net_dev(d); 417 struct net_device *dev = to_net_dev(d);
418 const struct iw_statistics *iw; 418 const struct iw_statistics *iw;
419 ssize_t ret = -EINVAL; 419 ssize_t ret = -EINVAL;
420 420
421 if (!rtnl_trylock()) 421 if (!rtnl_trylock())
422 return restart_syscall(); 422 return restart_syscall();
423 if (dev_isalive(dev)) { 423 if (dev_isalive(dev)) {
424 iw = get_wireless_stats(dev); 424 iw = get_wireless_stats(dev);
425 if (iw) 425 if (iw)
426 ret = (*format)(iw, buf); 426 ret = (*format)(iw, buf);
427 } 427 }
428 rtnl_unlock(); 428 rtnl_unlock();
429 429
430 return ret; 430 return ret;
431 } 431 }
432 432
433 /* show function template for wireless fields */ 433 /* show function template for wireless fields */
434 #define WIRELESS_SHOW(name, field, format_string) \ 434 #define WIRELESS_SHOW(name, field, format_string) \
435 static ssize_t format_iw_##name(const struct iw_statistics *iw, char *buf) \ 435 static ssize_t format_iw_##name(const struct iw_statistics *iw, char *buf) \
436 { \ 436 { \
437 return sprintf(buf, format_string, iw->field); \ 437 return sprintf(buf, format_string, iw->field); \
438 } \ 438 } \
439 static ssize_t show_iw_##name(struct device *d, \ 439 static ssize_t show_iw_##name(struct device *d, \
440 struct device_attribute *attr, char *buf) \ 440 struct device_attribute *attr, char *buf) \
441 { \ 441 { \
442 return wireless_show(d, buf, format_iw_##name); \ 442 return wireless_show(d, buf, format_iw_##name); \
443 } \ 443 } \
444 static DEVICE_ATTR(name, S_IRUGO, show_iw_##name, NULL) 444 static DEVICE_ATTR(name, S_IRUGO, show_iw_##name, NULL)
445 445
446 WIRELESS_SHOW(status, status, fmt_hex); 446 WIRELESS_SHOW(status, status, fmt_hex);
447 WIRELESS_SHOW(link, qual.qual, fmt_dec); 447 WIRELESS_SHOW(link, qual.qual, fmt_dec);
448 WIRELESS_SHOW(level, qual.level, fmt_dec); 448 WIRELESS_SHOW(level, qual.level, fmt_dec);
449 WIRELESS_SHOW(noise, qual.noise, fmt_dec); 449 WIRELESS_SHOW(noise, qual.noise, fmt_dec);
450 WIRELESS_SHOW(nwid, discard.nwid, fmt_dec); 450 WIRELESS_SHOW(nwid, discard.nwid, fmt_dec);
451 WIRELESS_SHOW(crypt, discard.code, fmt_dec); 451 WIRELESS_SHOW(crypt, discard.code, fmt_dec);
452 WIRELESS_SHOW(fragment, discard.fragment, fmt_dec); 452 WIRELESS_SHOW(fragment, discard.fragment, fmt_dec);
453 WIRELESS_SHOW(misc, discard.misc, fmt_dec); 453 WIRELESS_SHOW(misc, discard.misc, fmt_dec);
454 WIRELESS_SHOW(retries, discard.retries, fmt_dec); 454 WIRELESS_SHOW(retries, discard.retries, fmt_dec);
455 WIRELESS_SHOW(beacon, miss.beacon, fmt_dec); 455 WIRELESS_SHOW(beacon, miss.beacon, fmt_dec);
456 456
457 static struct attribute *wireless_attrs[] = { 457 static struct attribute *wireless_attrs[] = {
458 &dev_attr_status.attr, 458 &dev_attr_status.attr,
459 &dev_attr_link.attr, 459 &dev_attr_link.attr,
460 &dev_attr_level.attr, 460 &dev_attr_level.attr,
461 &dev_attr_noise.attr, 461 &dev_attr_noise.attr,
462 &dev_attr_nwid.attr, 462 &dev_attr_nwid.attr,
463 &dev_attr_crypt.attr, 463 &dev_attr_crypt.attr,
464 &dev_attr_fragment.attr, 464 &dev_attr_fragment.attr,
465 &dev_attr_retries.attr, 465 &dev_attr_retries.attr,
466 &dev_attr_misc.attr, 466 &dev_attr_misc.attr,
467 &dev_attr_beacon.attr, 467 &dev_attr_beacon.attr,
468 NULL 468 NULL
469 }; 469 };
470 470
471 static struct attribute_group wireless_group = { 471 static struct attribute_group wireless_group = {
472 .name = "wireless", 472 .name = "wireless",
473 .attrs = wireless_attrs, 473 .attrs = wireless_attrs,
474 }; 474 };
475 #endif 475 #endif
476 #endif /* CONFIG_SYSFS */ 476 #endif /* CONFIG_SYSFS */
477 477
478 #ifdef CONFIG_RPS 478 #ifdef CONFIG_RPS
479 /* 479 /*
480 * RX queue sysfs structures and functions. 480 * RX queue sysfs structures and functions.
481 */ 481 */
482 struct rx_queue_attribute { 482 struct rx_queue_attribute {
483 struct attribute attr; 483 struct attribute attr;
484 ssize_t (*show)(struct netdev_rx_queue *queue, 484 ssize_t (*show)(struct netdev_rx_queue *queue,
485 struct rx_queue_attribute *attr, char *buf); 485 struct rx_queue_attribute *attr, char *buf);
486 ssize_t (*store)(struct netdev_rx_queue *queue, 486 ssize_t (*store)(struct netdev_rx_queue *queue,
487 struct rx_queue_attribute *attr, const char *buf, size_t len); 487 struct rx_queue_attribute *attr, const char *buf, size_t len);
488 }; 488 };
489 #define to_rx_queue_attr(_attr) container_of(_attr, \ 489 #define to_rx_queue_attr(_attr) container_of(_attr, \
490 struct rx_queue_attribute, attr) 490 struct rx_queue_attribute, attr)
491 491
492 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj) 492 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
493 493
494 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr, 494 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
495 char *buf) 495 char *buf)
496 { 496 {
497 struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 497 struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
498 struct netdev_rx_queue *queue = to_rx_queue(kobj); 498 struct netdev_rx_queue *queue = to_rx_queue(kobj);
499 499
500 if (!attribute->show) 500 if (!attribute->show)
501 return -EIO; 501 return -EIO;
502 502
503 return attribute->show(queue, attribute, buf); 503 return attribute->show(queue, attribute, buf);
504 } 504 }
505 505
506 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr, 506 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
507 const char *buf, size_t count) 507 const char *buf, size_t count)
508 { 508 {
509 struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 509 struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
510 struct netdev_rx_queue *queue = to_rx_queue(kobj); 510 struct netdev_rx_queue *queue = to_rx_queue(kobj);
511 511
512 if (!attribute->store) 512 if (!attribute->store)
513 return -EIO; 513 return -EIO;
514 514
515 return attribute->store(queue, attribute, buf, count); 515 return attribute->store(queue, attribute, buf, count);
516 } 516 }
517 517
518 static const struct sysfs_ops rx_queue_sysfs_ops = { 518 static const struct sysfs_ops rx_queue_sysfs_ops = {
519 .show = rx_queue_attr_show, 519 .show = rx_queue_attr_show,
520 .store = rx_queue_attr_store, 520 .store = rx_queue_attr_store,
521 }; 521 };
522 522
523 static ssize_t show_rps_map(struct netdev_rx_queue *queue, 523 static ssize_t show_rps_map(struct netdev_rx_queue *queue,
524 struct rx_queue_attribute *attribute, char *buf) 524 struct rx_queue_attribute *attribute, char *buf)
525 { 525 {
526 struct rps_map *map; 526 struct rps_map *map;
527 cpumask_var_t mask; 527 cpumask_var_t mask;
528 size_t len = 0; 528 size_t len = 0;
529 int i; 529 int i;
530 530
531 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 531 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
532 return -ENOMEM; 532 return -ENOMEM;
533 533
534 rcu_read_lock(); 534 rcu_read_lock();
535 map = rcu_dereference(queue->rps_map); 535 map = rcu_dereference(queue->rps_map);
536 if (map) 536 if (map)
537 for (i = 0; i < map->len; i++) 537 for (i = 0; i < map->len; i++)
538 cpumask_set_cpu(map->cpus[i], mask); 538 cpumask_set_cpu(map->cpus[i], mask);
539 539
540 len += cpumask_scnprintf(buf + len, PAGE_SIZE, mask); 540 len += cpumask_scnprintf(buf + len, PAGE_SIZE, mask);
541 if (PAGE_SIZE - len < 3) { 541 if (PAGE_SIZE - len < 3) {
542 rcu_read_unlock(); 542 rcu_read_unlock();
543 free_cpumask_var(mask); 543 free_cpumask_var(mask);
544 return -EINVAL; 544 return -EINVAL;
545 } 545 }
546 rcu_read_unlock(); 546 rcu_read_unlock();
547 547
548 free_cpumask_var(mask); 548 free_cpumask_var(mask);
549 len += sprintf(buf + len, "\n"); 549 len += sprintf(buf + len, "\n");
550 return len; 550 return len;
551 } 551 }
552 552
553 static void rps_map_release(struct rcu_head *rcu) 553 static void rps_map_release(struct rcu_head *rcu)
554 { 554 {
555 struct rps_map *map = container_of(rcu, struct rps_map, rcu); 555 struct rps_map *map = container_of(rcu, struct rps_map, rcu);
556 556
557 kfree(map); 557 kfree(map);
558 } 558 }
559 559
560 static ssize_t store_rps_map(struct netdev_rx_queue *queue, 560 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
561 struct rx_queue_attribute *attribute, 561 struct rx_queue_attribute *attribute,
562 const char *buf, size_t len) 562 const char *buf, size_t len)
563 { 563 {
564 struct rps_map *old_map, *map; 564 struct rps_map *old_map, *map;
565 cpumask_var_t mask; 565 cpumask_var_t mask;
566 int err, cpu, i; 566 int err, cpu, i;
567 static DEFINE_SPINLOCK(rps_map_lock); 567 static DEFINE_SPINLOCK(rps_map_lock);
568 568
569 if (!capable(CAP_NET_ADMIN)) 569 if (!capable(CAP_NET_ADMIN))
570 return -EPERM; 570 return -EPERM;
571 571
572 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 572 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
573 return -ENOMEM; 573 return -ENOMEM;
574 574
575 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 575 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
576 if (err) { 576 if (err) {
577 free_cpumask_var(mask); 577 free_cpumask_var(mask);
578 return err; 578 return err;
579 } 579 }
580 580
581 map = kzalloc(max_t(unsigned, 581 map = kzalloc(max_t(unsigned,
582 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES), 582 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
583 GFP_KERNEL); 583 GFP_KERNEL);
584 if (!map) { 584 if (!map) {
585 free_cpumask_var(mask); 585 free_cpumask_var(mask);
586 return -ENOMEM; 586 return -ENOMEM;
587 } 587 }
588 588
589 i = 0; 589 i = 0;
590 for_each_cpu_and(cpu, mask, cpu_online_mask) 590 for_each_cpu_and(cpu, mask, cpu_online_mask)
591 map->cpus[i++] = cpu; 591 map->cpus[i++] = cpu;
592 592
593 if (i) 593 if (i)
594 map->len = i; 594 map->len = i;
595 else { 595 else {
596 kfree(map); 596 kfree(map);
597 map = NULL; 597 map = NULL;
598 } 598 }
599 599
600 spin_lock(&rps_map_lock); 600 spin_lock(&rps_map_lock);
601 old_map = queue->rps_map; 601 old_map = queue->rps_map;
602 rcu_assign_pointer(queue->rps_map, map); 602 rcu_assign_pointer(queue->rps_map, map);
603 spin_unlock(&rps_map_lock); 603 spin_unlock(&rps_map_lock);
604 604
605 if (old_map) 605 if (old_map)
606 call_rcu(&old_map->rcu, rps_map_release); 606 call_rcu(&old_map->rcu, rps_map_release);
607 607
608 free_cpumask_var(mask); 608 free_cpumask_var(mask);
609 return len; 609 return len;
610 } 610 }
611 611
612 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 612 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
613 struct rx_queue_attribute *attr, 613 struct rx_queue_attribute *attr,
614 char *buf) 614 char *buf)
615 { 615 {
616 struct rps_dev_flow_table *flow_table; 616 struct rps_dev_flow_table *flow_table;
617 unsigned int val = 0; 617 unsigned int val = 0;
618 618
619 rcu_read_lock(); 619 rcu_read_lock();
620 flow_table = rcu_dereference(queue->rps_flow_table); 620 flow_table = rcu_dereference(queue->rps_flow_table);
621 if (flow_table) 621 if (flow_table)
622 val = flow_table->mask + 1; 622 val = flow_table->mask + 1;
623 rcu_read_unlock(); 623 rcu_read_unlock();
624 624
625 return sprintf(buf, "%u\n", val); 625 return sprintf(buf, "%u\n", val);
626 } 626 }
627 627
628 static void rps_dev_flow_table_release_work(struct work_struct *work) 628 static void rps_dev_flow_table_release_work(struct work_struct *work)
629 { 629 {
630 struct rps_dev_flow_table *table = container_of(work, 630 struct rps_dev_flow_table *table = container_of(work,
631 struct rps_dev_flow_table, free_work); 631 struct rps_dev_flow_table, free_work);
632 632
633 vfree(table); 633 vfree(table);
634 } 634 }
635 635
636 static void rps_dev_flow_table_release(struct rcu_head *rcu) 636 static void rps_dev_flow_table_release(struct rcu_head *rcu)
637 { 637 {
638 struct rps_dev_flow_table *table = container_of(rcu, 638 struct rps_dev_flow_table *table = container_of(rcu,
639 struct rps_dev_flow_table, rcu); 639 struct rps_dev_flow_table, rcu);
640 640
641 INIT_WORK(&table->free_work, rps_dev_flow_table_release_work); 641 INIT_WORK(&table->free_work, rps_dev_flow_table_release_work);
642 schedule_work(&table->free_work); 642 schedule_work(&table->free_work);
643 } 643 }
644 644
645 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 645 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
646 struct rx_queue_attribute *attr, 646 struct rx_queue_attribute *attr,
647 const char *buf, size_t len) 647 const char *buf, size_t len)
648 { 648 {
649 unsigned int count; 649 unsigned int count;
650 char *endp; 650 char *endp;
651 struct rps_dev_flow_table *table, *old_table; 651 struct rps_dev_flow_table *table, *old_table;
652 static DEFINE_SPINLOCK(rps_dev_flow_lock); 652 static DEFINE_SPINLOCK(rps_dev_flow_lock);
653 653
654 if (!capable(CAP_NET_ADMIN)) 654 if (!capable(CAP_NET_ADMIN))
655 return -EPERM; 655 return -EPERM;
656 656
657 count = simple_strtoul(buf, &endp, 0); 657 count = simple_strtoul(buf, &endp, 0);
658 if (endp == buf) 658 if (endp == buf)
659 return -EINVAL; 659 return -EINVAL;
660 660
661 if (count) { 661 if (count) {
662 int i; 662 int i;
663 663
664 if (count > 1<<30) { 664 if (count > 1<<30) {
665 /* Enforce a limit to prevent overflow */ 665 /* Enforce a limit to prevent overflow */
666 return -EINVAL; 666 return -EINVAL;
667 } 667 }
668 count = roundup_pow_of_two(count); 668 count = roundup_pow_of_two(count);
669 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(count)); 669 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(count));
670 if (!table) 670 if (!table)
671 return -ENOMEM; 671 return -ENOMEM;
672 672
673 table->mask = count - 1; 673 table->mask = count - 1;
674 for (i = 0; i < count; i++) 674 for (i = 0; i < count; i++)
675 table->flows[i].cpu = RPS_NO_CPU; 675 table->flows[i].cpu = RPS_NO_CPU;
676 } else 676 } else
677 table = NULL; 677 table = NULL;
678 678
679 spin_lock(&rps_dev_flow_lock); 679 spin_lock(&rps_dev_flow_lock);
680 old_table = queue->rps_flow_table; 680 old_table = queue->rps_flow_table;
681 rcu_assign_pointer(queue->rps_flow_table, table); 681 rcu_assign_pointer(queue->rps_flow_table, table);
682 spin_unlock(&rps_dev_flow_lock); 682 spin_unlock(&rps_dev_flow_lock);
683 683
684 if (old_table) 684 if (old_table)
685 call_rcu(&old_table->rcu, rps_dev_flow_table_release); 685 call_rcu(&old_table->rcu, rps_dev_flow_table_release);
686 686
687 return len; 687 return len;
688 } 688 }
689 689
690 static struct rx_queue_attribute rps_cpus_attribute = 690 static struct rx_queue_attribute rps_cpus_attribute =
691 __ATTR(rps_cpus, S_IRUGO | S_IWUSR, show_rps_map, store_rps_map); 691 __ATTR(rps_cpus, S_IRUGO | S_IWUSR, show_rps_map, store_rps_map);
692 692
693 693
694 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute = 694 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute =
695 __ATTR(rps_flow_cnt, S_IRUGO | S_IWUSR, 695 __ATTR(rps_flow_cnt, S_IRUGO | S_IWUSR,
696 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt); 696 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
697 697
698 static struct attribute *rx_queue_default_attrs[] = { 698 static struct attribute *rx_queue_default_attrs[] = {
699 &rps_cpus_attribute.attr, 699 &rps_cpus_attribute.attr,
700 &rps_dev_flow_table_cnt_attribute.attr, 700 &rps_dev_flow_table_cnt_attribute.attr,
701 NULL 701 NULL
702 }; 702 };
703 703
704 static void rx_queue_release(struct kobject *kobj) 704 static void rx_queue_release(struct kobject *kobj)
705 { 705 {
706 struct netdev_rx_queue *queue = to_rx_queue(kobj); 706 struct netdev_rx_queue *queue = to_rx_queue(kobj);
707 struct netdev_rx_queue *first = queue->first; 707 struct netdev_rx_queue *first = queue->first;
708 708
709 if (queue->rps_map) 709 if (queue->rps_map)
710 call_rcu(&queue->rps_map->rcu, rps_map_release); 710 call_rcu(&queue->rps_map->rcu, rps_map_release);
711 711
712 if (queue->rps_flow_table) 712 if (queue->rps_flow_table)
713 call_rcu(&queue->rps_flow_table->rcu, 713 call_rcu(&queue->rps_flow_table->rcu,
714 rps_dev_flow_table_release); 714 rps_dev_flow_table_release);
715 715
716 if (atomic_dec_and_test(&first->count)) 716 if (atomic_dec_and_test(&first->count))
717 kfree(first); 717 kfree(first);
718 } 718 }
719 719
720 static struct kobj_type rx_queue_ktype = { 720 static struct kobj_type rx_queue_ktype = {
721 .sysfs_ops = &rx_queue_sysfs_ops, 721 .sysfs_ops = &rx_queue_sysfs_ops,
722 .release = rx_queue_release, 722 .release = rx_queue_release,
723 .default_attrs = rx_queue_default_attrs, 723 .default_attrs = rx_queue_default_attrs,
724 }; 724 };
725 725
726 static int rx_queue_add_kobject(struct net_device *net, int index) 726 static int rx_queue_add_kobject(struct net_device *net, int index)
727 { 727 {
728 struct netdev_rx_queue *queue = net->_rx + index; 728 struct netdev_rx_queue *queue = net->_rx + index;
729 struct netdev_rx_queue *first = queue->first;
729 struct kobject *kobj = &queue->kobj; 730 struct kobject *kobj = &queue->kobj;
730 int error = 0; 731 int error = 0;
731 732
732 kobj->kset = net->queues_kset; 733 kobj->kset = net->queues_kset;
733 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL, 734 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
734 "rx-%u", index); 735 "rx-%u", index);
735 if (error) { 736 if (error) {
736 kobject_put(kobj); 737 kobject_put(kobj);
737 return error; 738 return error;
738 } 739 }
739 740
740 kobject_uevent(kobj, KOBJ_ADD); 741 kobject_uevent(kobj, KOBJ_ADD);
742 atomic_inc(&first->count);
741 743
742 return error; 744 return error;
743 } 745 }
744 746
745 int 747 int
746 net_rx_queue_update_kobjects(struct net_device *net, int old_num, int new_num) 748 net_rx_queue_update_kobjects(struct net_device *net, int old_num, int new_num)
747 { 749 {
748 int i; 750 int i;
749 int error = 0; 751 int error = 0;
750 752
751 for (i = old_num; i < new_num; i++) { 753 for (i = old_num; i < new_num; i++) {
752 error = rx_queue_add_kobject(net, i); 754 error = rx_queue_add_kobject(net, i);
753 if (error) { 755 if (error) {
754 new_num = old_num; 756 new_num = old_num;
755 break; 757 break;
756 } 758 }
757 } 759 }
758 760
759 while (--i >= new_num) 761 while (--i >= new_num)
760 kobject_put(&net->_rx[i].kobj); 762 kobject_put(&net->_rx[i].kobj);
761 763
762 return error; 764 return error;
763 } 765 }
764 766
765 static int rx_queue_register_kobjects(struct net_device *net) 767 static int rx_queue_register_kobjects(struct net_device *net)
766 { 768 {
767 net->queues_kset = kset_create_and_add("queues", 769 net->queues_kset = kset_create_and_add("queues",
768 NULL, &net->dev.kobj); 770 NULL, &net->dev.kobj);
769 if (!net->queues_kset) 771 if (!net->queues_kset)
770 return -ENOMEM; 772 return -ENOMEM;
771 return net_rx_queue_update_kobjects(net, 0, net->real_num_rx_queues); 773 return net_rx_queue_update_kobjects(net, 0, net->real_num_rx_queues);
772 } 774 }
773 775
774 static void rx_queue_remove_kobjects(struct net_device *net) 776 static void rx_queue_remove_kobjects(struct net_device *net)
775 { 777 {
776 net_rx_queue_update_kobjects(net, net->real_num_rx_queues, 0); 778 net_rx_queue_update_kobjects(net, net->real_num_rx_queues, 0);
777 kset_unregister(net->queues_kset); 779 kset_unregister(net->queues_kset);
778 } 780 }
779 #endif /* CONFIG_RPS */ 781 #endif /* CONFIG_RPS */
780 782
781 static const void *net_current_ns(void) 783 static const void *net_current_ns(void)
782 { 784 {
783 return current->nsproxy->net_ns; 785 return current->nsproxy->net_ns;
784 } 786 }
785 787
786 static const void *net_initial_ns(void) 788 static const void *net_initial_ns(void)
787 { 789 {
788 return &init_net; 790 return &init_net;
789 } 791 }
790 792
791 static const void *net_netlink_ns(struct sock *sk) 793 static const void *net_netlink_ns(struct sock *sk)
792 { 794 {
793 return sock_net(sk); 795 return sock_net(sk);
794 } 796 }
795 797
796 struct kobj_ns_type_operations net_ns_type_operations = { 798 struct kobj_ns_type_operations net_ns_type_operations = {
797 .type = KOBJ_NS_TYPE_NET, 799 .type = KOBJ_NS_TYPE_NET,
798 .current_ns = net_current_ns, 800 .current_ns = net_current_ns,
799 .netlink_ns = net_netlink_ns, 801 .netlink_ns = net_netlink_ns,
800 .initial_ns = net_initial_ns, 802 .initial_ns = net_initial_ns,
801 }; 803 };
802 EXPORT_SYMBOL_GPL(net_ns_type_operations); 804 EXPORT_SYMBOL_GPL(net_ns_type_operations);
803 805
804 static void net_kobj_ns_exit(struct net *net) 806 static void net_kobj_ns_exit(struct net *net)
805 { 807 {
806 kobj_ns_exit(KOBJ_NS_TYPE_NET, net); 808 kobj_ns_exit(KOBJ_NS_TYPE_NET, net);
807 } 809 }
808 810
809 static struct pernet_operations kobj_net_ops = { 811 static struct pernet_operations kobj_net_ops = {
810 .exit = net_kobj_ns_exit, 812 .exit = net_kobj_ns_exit,
811 }; 813 };
812 814
813 815
814 #ifdef CONFIG_HOTPLUG 816 #ifdef CONFIG_HOTPLUG
815 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env) 817 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env)
816 { 818 {
817 struct net_device *dev = to_net_dev(d); 819 struct net_device *dev = to_net_dev(d);
818 int retval; 820 int retval;
819 821
820 /* pass interface to uevent. */ 822 /* pass interface to uevent. */
821 retval = add_uevent_var(env, "INTERFACE=%s", dev->name); 823 retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
822 if (retval) 824 if (retval)
823 goto exit; 825 goto exit;
824 826
825 /* pass ifindex to uevent. 827 /* pass ifindex to uevent.
826 * ifindex is useful as it won't change (interface name may change) 828 * ifindex is useful as it won't change (interface name may change)
827 * and is what RtNetlink uses natively. */ 829 * and is what RtNetlink uses natively. */
828 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex); 830 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
829 831
830 exit: 832 exit:
831 return retval; 833 return retval;
832 } 834 }
833 #endif 835 #endif
834 836
835 /* 837 /*
836 * netdev_release -- destroy and free a dead device. 838 * netdev_release -- destroy and free a dead device.
837 * Called when last reference to device kobject is gone. 839 * Called when last reference to device kobject is gone.
838 */ 840 */
839 static void netdev_release(struct device *d) 841 static void netdev_release(struct device *d)
840 { 842 {
841 struct net_device *dev = to_net_dev(d); 843 struct net_device *dev = to_net_dev(d);
842 844
843 BUG_ON(dev->reg_state != NETREG_RELEASED); 845 BUG_ON(dev->reg_state != NETREG_RELEASED);
844 846
845 kfree(dev->ifalias); 847 kfree(dev->ifalias);
846 kfree((char *)dev - dev->padded); 848 kfree((char *)dev - dev->padded);
847 } 849 }
848 850
849 static const void *net_namespace(struct device *d) 851 static const void *net_namespace(struct device *d)
850 { 852 {
851 struct net_device *dev; 853 struct net_device *dev;
852 dev = container_of(d, struct net_device, dev); 854 dev = container_of(d, struct net_device, dev);
853 return dev_net(dev); 855 return dev_net(dev);
854 } 856 }
855 857
856 static struct class net_class = { 858 static struct class net_class = {
857 .name = "net", 859 .name = "net",
858 .dev_release = netdev_release, 860 .dev_release = netdev_release,
859 #ifdef CONFIG_SYSFS 861 #ifdef CONFIG_SYSFS
860 .dev_attrs = net_class_attributes, 862 .dev_attrs = net_class_attributes,
861 #endif /* CONFIG_SYSFS */ 863 #endif /* CONFIG_SYSFS */
862 #ifdef CONFIG_HOTPLUG 864 #ifdef CONFIG_HOTPLUG
863 .dev_uevent = netdev_uevent, 865 .dev_uevent = netdev_uevent,
864 #endif 866 #endif
865 .ns_type = &net_ns_type_operations, 867 .ns_type = &net_ns_type_operations,
866 .namespace = net_namespace, 868 .namespace = net_namespace,
867 }; 869 };
868 870
869 /* Delete sysfs entries but hold kobject reference until after all 871 /* Delete sysfs entries but hold kobject reference until after all
870 * netdev references are gone. 872 * netdev references are gone.
871 */ 873 */
872 void netdev_unregister_kobject(struct net_device * net) 874 void netdev_unregister_kobject(struct net_device * net)
873 { 875 {
874 struct device *dev = &(net->dev); 876 struct device *dev = &(net->dev);
875 877
876 kobject_get(&dev->kobj); 878 kobject_get(&dev->kobj);
877 879
878 #ifdef CONFIG_RPS 880 #ifdef CONFIG_RPS
879 rx_queue_remove_kobjects(net); 881 rx_queue_remove_kobjects(net);
880 #endif 882 #endif
881 883
882 device_del(dev); 884 device_del(dev);
883 } 885 }
884 886
885 /* Create sysfs entries for network device. */ 887 /* Create sysfs entries for network device. */
886 int netdev_register_kobject(struct net_device *net) 888 int netdev_register_kobject(struct net_device *net)
887 { 889 {
888 struct device *dev = &(net->dev); 890 struct device *dev = &(net->dev);
889 const struct attribute_group **groups = net->sysfs_groups; 891 const struct attribute_group **groups = net->sysfs_groups;
890 int error = 0; 892 int error = 0;
891 893
892 device_initialize(dev); 894 device_initialize(dev);
893 dev->class = &net_class; 895 dev->class = &net_class;
894 dev->platform_data = net; 896 dev->platform_data = net;
895 dev->groups = groups; 897 dev->groups = groups;
896 898
897 dev_set_name(dev, "%s", net->name); 899 dev_set_name(dev, "%s", net->name);
898 900
899 #ifdef CONFIG_SYSFS 901 #ifdef CONFIG_SYSFS
900 /* Allow for a device specific group */ 902 /* Allow for a device specific group */
901 if (*groups) 903 if (*groups)
902 groups++; 904 groups++;
903 905
904 *groups++ = &netstat_group; 906 *groups++ = &netstat_group;
905 #ifdef CONFIG_WIRELESS_EXT_SYSFS 907 #ifdef CONFIG_WIRELESS_EXT_SYSFS
906 if (net->ieee80211_ptr) 908 if (net->ieee80211_ptr)
907 *groups++ = &wireless_group; 909 *groups++ = &wireless_group;
908 #ifdef CONFIG_WIRELESS_EXT 910 #ifdef CONFIG_WIRELESS_EXT
909 else if (net->wireless_handlers) 911 else if (net->wireless_handlers)
910 *groups++ = &wireless_group; 912 *groups++ = &wireless_group;
911 #endif 913 #endif
912 #endif 914 #endif
913 #endif /* CONFIG_SYSFS */ 915 #endif /* CONFIG_SYSFS */
914 916
915 error = device_add(dev); 917 error = device_add(dev);
916 if (error) 918 if (error)
917 return error; 919 return error;
918 920
919 #ifdef CONFIG_RPS 921 #ifdef CONFIG_RPS
920 error = rx_queue_register_kobjects(net); 922 error = rx_queue_register_kobjects(net);
921 if (error) { 923 if (error) {
922 device_del(dev); 924 device_del(dev);
923 return error; 925 return error;
924 } 926 }
925 #endif 927 #endif
926 928
927 return error; 929 return error;
928 } 930 }
929 931
930 int netdev_class_create_file(struct class_attribute *class_attr) 932 int netdev_class_create_file(struct class_attribute *class_attr)
931 { 933 {
932 return class_create_file(&net_class, class_attr); 934 return class_create_file(&net_class, class_attr);
933 } 935 }
934 EXPORT_SYMBOL(netdev_class_create_file); 936 EXPORT_SYMBOL(netdev_class_create_file);
935 937
936 void netdev_class_remove_file(struct class_attribute *class_attr) 938 void netdev_class_remove_file(struct class_attribute *class_attr)
937 { 939 {
938 class_remove_file(&net_class, class_attr); 940 class_remove_file(&net_class, class_attr);
939 } 941 }
940 EXPORT_SYMBOL(netdev_class_remove_file); 942 EXPORT_SYMBOL(netdev_class_remove_file);
941 943
942 int netdev_kobject_init(void) 944 int netdev_kobject_init(void)
943 { 945 {
944 kobj_ns_type_register(&net_ns_type_operations); 946 kobj_ns_type_register(&net_ns_type_operations);
945 register_pernet_subsys(&kobj_net_ops); 947 register_pernet_subsys(&kobj_net_ops);
946 return class_register(&net_class); 948 return class_register(&net_class);
947 } 949 }
948 950