Commit 4ae0ff16efeffe7d06726fd3022cdb2f3e9e6892

Authored by Linus Torvalds

Merge branch 'timer-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kerne…

…l/git/tip/linux-2.6-tip

* 'timer-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  RTC: rtc-omap: Fix a leak of the IRQ during init failure
  posix clocks: Replace mutex with reader/writer semaphore

Showing 3 changed files Inline Diff

drivers/rtc/rtc-omap.c
1 /* 1 /*
2 * TI OMAP1 Real Time Clock interface for Linux 2 * TI OMAP1 Real Time Clock interface for Linux
3 * 3 *
4 * Copyright (C) 2003 MontaVista Software, Inc. 4 * Copyright (C) 2003 MontaVista Software, Inc.
5 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com> 5 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
6 * 6 *
7 * Copyright (C) 2006 David Brownell (new RTC framework) 7 * Copyright (C) 2006 David Brownell (new RTC framework)
8 * 8 *
9 * This program is free software; you can redistribute it and/or 9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License 10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version 11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version. 12 * 2 of the License, or (at your option) any later version.
13 */ 13 */
14 14
15 #include <linux/kernel.h> 15 #include <linux/kernel.h>
16 #include <linux/init.h> 16 #include <linux/init.h>
17 #include <linux/module.h> 17 #include <linux/module.h>
18 #include <linux/ioport.h> 18 #include <linux/ioport.h>
19 #include <linux/delay.h> 19 #include <linux/delay.h>
20 #include <linux/rtc.h> 20 #include <linux/rtc.h>
21 #include <linux/bcd.h> 21 #include <linux/bcd.h>
22 #include <linux/platform_device.h> 22 #include <linux/platform_device.h>
23 23
24 #include <asm/io.h> 24 #include <asm/io.h>
25 25
26 26
27 /* The OMAP1 RTC is a year/month/day/hours/minutes/seconds BCD clock 27 /* The OMAP1 RTC is a year/month/day/hours/minutes/seconds BCD clock
28 * with century-range alarm matching, driven by the 32kHz clock. 28 * with century-range alarm matching, driven by the 32kHz clock.
29 * 29 *
30 * The main user-visible ways it differs from PC RTCs are by omitting 30 * The main user-visible ways it differs from PC RTCs are by omitting
31 * "don't care" alarm fields and sub-second periodic IRQs, and having 31 * "don't care" alarm fields and sub-second periodic IRQs, and having
32 * an autoadjust mechanism to calibrate to the true oscillator rate. 32 * an autoadjust mechanism to calibrate to the true oscillator rate.
33 * 33 *
34 * Board-specific wiring options include using split power mode with 34 * Board-specific wiring options include using split power mode with
35 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset), 35 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
36 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from 36 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
37 * low power modes) for OMAP1 boards (OMAP-L138 has this built into 37 * low power modes) for OMAP1 boards (OMAP-L138 has this built into
38 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment. 38 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
39 */ 39 */
40 40
41 #define OMAP_RTC_BASE 0xfffb4800 41 #define OMAP_RTC_BASE 0xfffb4800
42 42
43 /* RTC registers */ 43 /* RTC registers */
44 #define OMAP_RTC_SECONDS_REG 0x00 44 #define OMAP_RTC_SECONDS_REG 0x00
45 #define OMAP_RTC_MINUTES_REG 0x04 45 #define OMAP_RTC_MINUTES_REG 0x04
46 #define OMAP_RTC_HOURS_REG 0x08 46 #define OMAP_RTC_HOURS_REG 0x08
47 #define OMAP_RTC_DAYS_REG 0x0C 47 #define OMAP_RTC_DAYS_REG 0x0C
48 #define OMAP_RTC_MONTHS_REG 0x10 48 #define OMAP_RTC_MONTHS_REG 0x10
49 #define OMAP_RTC_YEARS_REG 0x14 49 #define OMAP_RTC_YEARS_REG 0x14
50 #define OMAP_RTC_WEEKS_REG 0x18 50 #define OMAP_RTC_WEEKS_REG 0x18
51 51
52 #define OMAP_RTC_ALARM_SECONDS_REG 0x20 52 #define OMAP_RTC_ALARM_SECONDS_REG 0x20
53 #define OMAP_RTC_ALARM_MINUTES_REG 0x24 53 #define OMAP_RTC_ALARM_MINUTES_REG 0x24
54 #define OMAP_RTC_ALARM_HOURS_REG 0x28 54 #define OMAP_RTC_ALARM_HOURS_REG 0x28
55 #define OMAP_RTC_ALARM_DAYS_REG 0x2c 55 #define OMAP_RTC_ALARM_DAYS_REG 0x2c
56 #define OMAP_RTC_ALARM_MONTHS_REG 0x30 56 #define OMAP_RTC_ALARM_MONTHS_REG 0x30
57 #define OMAP_RTC_ALARM_YEARS_REG 0x34 57 #define OMAP_RTC_ALARM_YEARS_REG 0x34
58 58
59 #define OMAP_RTC_CTRL_REG 0x40 59 #define OMAP_RTC_CTRL_REG 0x40
60 #define OMAP_RTC_STATUS_REG 0x44 60 #define OMAP_RTC_STATUS_REG 0x44
61 #define OMAP_RTC_INTERRUPTS_REG 0x48 61 #define OMAP_RTC_INTERRUPTS_REG 0x48
62 62
63 #define OMAP_RTC_COMP_LSB_REG 0x4c 63 #define OMAP_RTC_COMP_LSB_REG 0x4c
64 #define OMAP_RTC_COMP_MSB_REG 0x50 64 #define OMAP_RTC_COMP_MSB_REG 0x50
65 #define OMAP_RTC_OSC_REG 0x54 65 #define OMAP_RTC_OSC_REG 0x54
66 66
67 /* OMAP_RTC_CTRL_REG bit fields: */ 67 /* OMAP_RTC_CTRL_REG bit fields: */
68 #define OMAP_RTC_CTRL_SPLIT (1<<7) 68 #define OMAP_RTC_CTRL_SPLIT (1<<7)
69 #define OMAP_RTC_CTRL_DISABLE (1<<6) 69 #define OMAP_RTC_CTRL_DISABLE (1<<6)
70 #define OMAP_RTC_CTRL_SET_32_COUNTER (1<<5) 70 #define OMAP_RTC_CTRL_SET_32_COUNTER (1<<5)
71 #define OMAP_RTC_CTRL_TEST (1<<4) 71 #define OMAP_RTC_CTRL_TEST (1<<4)
72 #define OMAP_RTC_CTRL_MODE_12_24 (1<<3) 72 #define OMAP_RTC_CTRL_MODE_12_24 (1<<3)
73 #define OMAP_RTC_CTRL_AUTO_COMP (1<<2) 73 #define OMAP_RTC_CTRL_AUTO_COMP (1<<2)
74 #define OMAP_RTC_CTRL_ROUND_30S (1<<1) 74 #define OMAP_RTC_CTRL_ROUND_30S (1<<1)
75 #define OMAP_RTC_CTRL_STOP (1<<0) 75 #define OMAP_RTC_CTRL_STOP (1<<0)
76 76
77 /* OMAP_RTC_STATUS_REG bit fields: */ 77 /* OMAP_RTC_STATUS_REG bit fields: */
78 #define OMAP_RTC_STATUS_POWER_UP (1<<7) 78 #define OMAP_RTC_STATUS_POWER_UP (1<<7)
79 #define OMAP_RTC_STATUS_ALARM (1<<6) 79 #define OMAP_RTC_STATUS_ALARM (1<<6)
80 #define OMAP_RTC_STATUS_1D_EVENT (1<<5) 80 #define OMAP_RTC_STATUS_1D_EVENT (1<<5)
81 #define OMAP_RTC_STATUS_1H_EVENT (1<<4) 81 #define OMAP_RTC_STATUS_1H_EVENT (1<<4)
82 #define OMAP_RTC_STATUS_1M_EVENT (1<<3) 82 #define OMAP_RTC_STATUS_1M_EVENT (1<<3)
83 #define OMAP_RTC_STATUS_1S_EVENT (1<<2) 83 #define OMAP_RTC_STATUS_1S_EVENT (1<<2)
84 #define OMAP_RTC_STATUS_RUN (1<<1) 84 #define OMAP_RTC_STATUS_RUN (1<<1)
85 #define OMAP_RTC_STATUS_BUSY (1<<0) 85 #define OMAP_RTC_STATUS_BUSY (1<<0)
86 86
87 /* OMAP_RTC_INTERRUPTS_REG bit fields: */ 87 /* OMAP_RTC_INTERRUPTS_REG bit fields: */
88 #define OMAP_RTC_INTERRUPTS_IT_ALARM (1<<3) 88 #define OMAP_RTC_INTERRUPTS_IT_ALARM (1<<3)
89 #define OMAP_RTC_INTERRUPTS_IT_TIMER (1<<2) 89 #define OMAP_RTC_INTERRUPTS_IT_TIMER (1<<2)
90 90
91 static void __iomem *rtc_base; 91 static void __iomem *rtc_base;
92 92
93 #define rtc_read(addr) __raw_readb(rtc_base + (addr)) 93 #define rtc_read(addr) __raw_readb(rtc_base + (addr))
94 #define rtc_write(val, addr) __raw_writeb(val, rtc_base + (addr)) 94 #define rtc_write(val, addr) __raw_writeb(val, rtc_base + (addr))
95 95
96 96
97 /* we rely on the rtc framework to handle locking (rtc->ops_lock), 97 /* we rely on the rtc framework to handle locking (rtc->ops_lock),
98 * so the only other requirement is that register accesses which 98 * so the only other requirement is that register accesses which
99 * require BUSY to be clear are made with IRQs locally disabled 99 * require BUSY to be clear are made with IRQs locally disabled
100 */ 100 */
101 static void rtc_wait_not_busy(void) 101 static void rtc_wait_not_busy(void)
102 { 102 {
103 int count = 0; 103 int count = 0;
104 u8 status; 104 u8 status;
105 105
106 /* BUSY may stay active for 1/32768 second (~30 usec) */ 106 /* BUSY may stay active for 1/32768 second (~30 usec) */
107 for (count = 0; count < 50; count++) { 107 for (count = 0; count < 50; count++) {
108 status = rtc_read(OMAP_RTC_STATUS_REG); 108 status = rtc_read(OMAP_RTC_STATUS_REG);
109 if ((status & (u8)OMAP_RTC_STATUS_BUSY) == 0) 109 if ((status & (u8)OMAP_RTC_STATUS_BUSY) == 0)
110 break; 110 break;
111 udelay(1); 111 udelay(1);
112 } 112 }
113 /* now we have ~15 usec to read/write various registers */ 113 /* now we have ~15 usec to read/write various registers */
114 } 114 }
115 115
116 static irqreturn_t rtc_irq(int irq, void *rtc) 116 static irqreturn_t rtc_irq(int irq, void *rtc)
117 { 117 {
118 unsigned long events = 0; 118 unsigned long events = 0;
119 u8 irq_data; 119 u8 irq_data;
120 120
121 irq_data = rtc_read(OMAP_RTC_STATUS_REG); 121 irq_data = rtc_read(OMAP_RTC_STATUS_REG);
122 122
123 /* alarm irq? */ 123 /* alarm irq? */
124 if (irq_data & OMAP_RTC_STATUS_ALARM) { 124 if (irq_data & OMAP_RTC_STATUS_ALARM) {
125 rtc_write(OMAP_RTC_STATUS_ALARM, OMAP_RTC_STATUS_REG); 125 rtc_write(OMAP_RTC_STATUS_ALARM, OMAP_RTC_STATUS_REG);
126 events |= RTC_IRQF | RTC_AF; 126 events |= RTC_IRQF | RTC_AF;
127 } 127 }
128 128
129 /* 1/sec periodic/update irq? */ 129 /* 1/sec periodic/update irq? */
130 if (irq_data & OMAP_RTC_STATUS_1S_EVENT) 130 if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
131 events |= RTC_IRQF | RTC_UF; 131 events |= RTC_IRQF | RTC_UF;
132 132
133 rtc_update_irq(rtc, 1, events); 133 rtc_update_irq(rtc, 1, events);
134 134
135 return IRQ_HANDLED; 135 return IRQ_HANDLED;
136 } 136 }
137 137
138 static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) 138 static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
139 { 139 {
140 u8 reg; 140 u8 reg;
141 141
142 local_irq_disable(); 142 local_irq_disable();
143 rtc_wait_not_busy(); 143 rtc_wait_not_busy();
144 reg = rtc_read(OMAP_RTC_INTERRUPTS_REG); 144 reg = rtc_read(OMAP_RTC_INTERRUPTS_REG);
145 if (enabled) 145 if (enabled)
146 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM; 146 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
147 else 147 else
148 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM; 148 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
149 rtc_wait_not_busy(); 149 rtc_wait_not_busy();
150 rtc_write(reg, OMAP_RTC_INTERRUPTS_REG); 150 rtc_write(reg, OMAP_RTC_INTERRUPTS_REG);
151 local_irq_enable(); 151 local_irq_enable();
152 152
153 return 0; 153 return 0;
154 } 154 }
155 155
156 /* this hardware doesn't support "don't care" alarm fields */ 156 /* this hardware doesn't support "don't care" alarm fields */
157 static int tm2bcd(struct rtc_time *tm) 157 static int tm2bcd(struct rtc_time *tm)
158 { 158 {
159 if (rtc_valid_tm(tm) != 0) 159 if (rtc_valid_tm(tm) != 0)
160 return -EINVAL; 160 return -EINVAL;
161 161
162 tm->tm_sec = bin2bcd(tm->tm_sec); 162 tm->tm_sec = bin2bcd(tm->tm_sec);
163 tm->tm_min = bin2bcd(tm->tm_min); 163 tm->tm_min = bin2bcd(tm->tm_min);
164 tm->tm_hour = bin2bcd(tm->tm_hour); 164 tm->tm_hour = bin2bcd(tm->tm_hour);
165 tm->tm_mday = bin2bcd(tm->tm_mday); 165 tm->tm_mday = bin2bcd(tm->tm_mday);
166 166
167 tm->tm_mon = bin2bcd(tm->tm_mon + 1); 167 tm->tm_mon = bin2bcd(tm->tm_mon + 1);
168 168
169 /* epoch == 1900 */ 169 /* epoch == 1900 */
170 if (tm->tm_year < 100 || tm->tm_year > 199) 170 if (tm->tm_year < 100 || tm->tm_year > 199)
171 return -EINVAL; 171 return -EINVAL;
172 tm->tm_year = bin2bcd(tm->tm_year - 100); 172 tm->tm_year = bin2bcd(tm->tm_year - 100);
173 173
174 return 0; 174 return 0;
175 } 175 }
176 176
177 static void bcd2tm(struct rtc_time *tm) 177 static void bcd2tm(struct rtc_time *tm)
178 { 178 {
179 tm->tm_sec = bcd2bin(tm->tm_sec); 179 tm->tm_sec = bcd2bin(tm->tm_sec);
180 tm->tm_min = bcd2bin(tm->tm_min); 180 tm->tm_min = bcd2bin(tm->tm_min);
181 tm->tm_hour = bcd2bin(tm->tm_hour); 181 tm->tm_hour = bcd2bin(tm->tm_hour);
182 tm->tm_mday = bcd2bin(tm->tm_mday); 182 tm->tm_mday = bcd2bin(tm->tm_mday);
183 tm->tm_mon = bcd2bin(tm->tm_mon) - 1; 183 tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
184 /* epoch == 1900 */ 184 /* epoch == 1900 */
185 tm->tm_year = bcd2bin(tm->tm_year) + 100; 185 tm->tm_year = bcd2bin(tm->tm_year) + 100;
186 } 186 }
187 187
188 188
189 static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm) 189 static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
190 { 190 {
191 /* we don't report wday/yday/isdst ... */ 191 /* we don't report wday/yday/isdst ... */
192 local_irq_disable(); 192 local_irq_disable();
193 rtc_wait_not_busy(); 193 rtc_wait_not_busy();
194 194
195 tm->tm_sec = rtc_read(OMAP_RTC_SECONDS_REG); 195 tm->tm_sec = rtc_read(OMAP_RTC_SECONDS_REG);
196 tm->tm_min = rtc_read(OMAP_RTC_MINUTES_REG); 196 tm->tm_min = rtc_read(OMAP_RTC_MINUTES_REG);
197 tm->tm_hour = rtc_read(OMAP_RTC_HOURS_REG); 197 tm->tm_hour = rtc_read(OMAP_RTC_HOURS_REG);
198 tm->tm_mday = rtc_read(OMAP_RTC_DAYS_REG); 198 tm->tm_mday = rtc_read(OMAP_RTC_DAYS_REG);
199 tm->tm_mon = rtc_read(OMAP_RTC_MONTHS_REG); 199 tm->tm_mon = rtc_read(OMAP_RTC_MONTHS_REG);
200 tm->tm_year = rtc_read(OMAP_RTC_YEARS_REG); 200 tm->tm_year = rtc_read(OMAP_RTC_YEARS_REG);
201 201
202 local_irq_enable(); 202 local_irq_enable();
203 203
204 bcd2tm(tm); 204 bcd2tm(tm);
205 return 0; 205 return 0;
206 } 206 }
207 207
208 static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm) 208 static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
209 { 209 {
210 if (tm2bcd(tm) < 0) 210 if (tm2bcd(tm) < 0)
211 return -EINVAL; 211 return -EINVAL;
212 local_irq_disable(); 212 local_irq_disable();
213 rtc_wait_not_busy(); 213 rtc_wait_not_busy();
214 214
215 rtc_write(tm->tm_year, OMAP_RTC_YEARS_REG); 215 rtc_write(tm->tm_year, OMAP_RTC_YEARS_REG);
216 rtc_write(tm->tm_mon, OMAP_RTC_MONTHS_REG); 216 rtc_write(tm->tm_mon, OMAP_RTC_MONTHS_REG);
217 rtc_write(tm->tm_mday, OMAP_RTC_DAYS_REG); 217 rtc_write(tm->tm_mday, OMAP_RTC_DAYS_REG);
218 rtc_write(tm->tm_hour, OMAP_RTC_HOURS_REG); 218 rtc_write(tm->tm_hour, OMAP_RTC_HOURS_REG);
219 rtc_write(tm->tm_min, OMAP_RTC_MINUTES_REG); 219 rtc_write(tm->tm_min, OMAP_RTC_MINUTES_REG);
220 rtc_write(tm->tm_sec, OMAP_RTC_SECONDS_REG); 220 rtc_write(tm->tm_sec, OMAP_RTC_SECONDS_REG);
221 221
222 local_irq_enable(); 222 local_irq_enable();
223 223
224 return 0; 224 return 0;
225 } 225 }
226 226
227 static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm) 227 static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
228 { 228 {
229 local_irq_disable(); 229 local_irq_disable();
230 rtc_wait_not_busy(); 230 rtc_wait_not_busy();
231 231
232 alm->time.tm_sec = rtc_read(OMAP_RTC_ALARM_SECONDS_REG); 232 alm->time.tm_sec = rtc_read(OMAP_RTC_ALARM_SECONDS_REG);
233 alm->time.tm_min = rtc_read(OMAP_RTC_ALARM_MINUTES_REG); 233 alm->time.tm_min = rtc_read(OMAP_RTC_ALARM_MINUTES_REG);
234 alm->time.tm_hour = rtc_read(OMAP_RTC_ALARM_HOURS_REG); 234 alm->time.tm_hour = rtc_read(OMAP_RTC_ALARM_HOURS_REG);
235 alm->time.tm_mday = rtc_read(OMAP_RTC_ALARM_DAYS_REG); 235 alm->time.tm_mday = rtc_read(OMAP_RTC_ALARM_DAYS_REG);
236 alm->time.tm_mon = rtc_read(OMAP_RTC_ALARM_MONTHS_REG); 236 alm->time.tm_mon = rtc_read(OMAP_RTC_ALARM_MONTHS_REG);
237 alm->time.tm_year = rtc_read(OMAP_RTC_ALARM_YEARS_REG); 237 alm->time.tm_year = rtc_read(OMAP_RTC_ALARM_YEARS_REG);
238 238
239 local_irq_enable(); 239 local_irq_enable();
240 240
241 bcd2tm(&alm->time); 241 bcd2tm(&alm->time);
242 alm->enabled = !!(rtc_read(OMAP_RTC_INTERRUPTS_REG) 242 alm->enabled = !!(rtc_read(OMAP_RTC_INTERRUPTS_REG)
243 & OMAP_RTC_INTERRUPTS_IT_ALARM); 243 & OMAP_RTC_INTERRUPTS_IT_ALARM);
244 244
245 return 0; 245 return 0;
246 } 246 }
247 247
248 static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm) 248 static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
249 { 249 {
250 u8 reg; 250 u8 reg;
251 251
252 if (tm2bcd(&alm->time) < 0) 252 if (tm2bcd(&alm->time) < 0)
253 return -EINVAL; 253 return -EINVAL;
254 254
255 local_irq_disable(); 255 local_irq_disable();
256 rtc_wait_not_busy(); 256 rtc_wait_not_busy();
257 257
258 rtc_write(alm->time.tm_year, OMAP_RTC_ALARM_YEARS_REG); 258 rtc_write(alm->time.tm_year, OMAP_RTC_ALARM_YEARS_REG);
259 rtc_write(alm->time.tm_mon, OMAP_RTC_ALARM_MONTHS_REG); 259 rtc_write(alm->time.tm_mon, OMAP_RTC_ALARM_MONTHS_REG);
260 rtc_write(alm->time.tm_mday, OMAP_RTC_ALARM_DAYS_REG); 260 rtc_write(alm->time.tm_mday, OMAP_RTC_ALARM_DAYS_REG);
261 rtc_write(alm->time.tm_hour, OMAP_RTC_ALARM_HOURS_REG); 261 rtc_write(alm->time.tm_hour, OMAP_RTC_ALARM_HOURS_REG);
262 rtc_write(alm->time.tm_min, OMAP_RTC_ALARM_MINUTES_REG); 262 rtc_write(alm->time.tm_min, OMAP_RTC_ALARM_MINUTES_REG);
263 rtc_write(alm->time.tm_sec, OMAP_RTC_ALARM_SECONDS_REG); 263 rtc_write(alm->time.tm_sec, OMAP_RTC_ALARM_SECONDS_REG);
264 264
265 reg = rtc_read(OMAP_RTC_INTERRUPTS_REG); 265 reg = rtc_read(OMAP_RTC_INTERRUPTS_REG);
266 if (alm->enabled) 266 if (alm->enabled)
267 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM; 267 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
268 else 268 else
269 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM; 269 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
270 rtc_write(reg, OMAP_RTC_INTERRUPTS_REG); 270 rtc_write(reg, OMAP_RTC_INTERRUPTS_REG);
271 271
272 local_irq_enable(); 272 local_irq_enable();
273 273
274 return 0; 274 return 0;
275 } 275 }
276 276
277 static struct rtc_class_ops omap_rtc_ops = { 277 static struct rtc_class_ops omap_rtc_ops = {
278 .read_time = omap_rtc_read_time, 278 .read_time = omap_rtc_read_time,
279 .set_time = omap_rtc_set_time, 279 .set_time = omap_rtc_set_time,
280 .read_alarm = omap_rtc_read_alarm, 280 .read_alarm = omap_rtc_read_alarm,
281 .set_alarm = omap_rtc_set_alarm, 281 .set_alarm = omap_rtc_set_alarm,
282 .alarm_irq_enable = omap_rtc_alarm_irq_enable, 282 .alarm_irq_enable = omap_rtc_alarm_irq_enable,
283 }; 283 };
284 284
285 static int omap_rtc_alarm; 285 static int omap_rtc_alarm;
286 static int omap_rtc_timer; 286 static int omap_rtc_timer;
287 287
288 static int __init omap_rtc_probe(struct platform_device *pdev) 288 static int __init omap_rtc_probe(struct platform_device *pdev)
289 { 289 {
290 struct resource *res, *mem; 290 struct resource *res, *mem;
291 struct rtc_device *rtc; 291 struct rtc_device *rtc;
292 u8 reg, new_ctrl; 292 u8 reg, new_ctrl;
293 293
294 omap_rtc_timer = platform_get_irq(pdev, 0); 294 omap_rtc_timer = platform_get_irq(pdev, 0);
295 if (omap_rtc_timer <= 0) { 295 if (omap_rtc_timer <= 0) {
296 pr_debug("%s: no update irq?\n", pdev->name); 296 pr_debug("%s: no update irq?\n", pdev->name);
297 return -ENOENT; 297 return -ENOENT;
298 } 298 }
299 299
300 omap_rtc_alarm = platform_get_irq(pdev, 1); 300 omap_rtc_alarm = platform_get_irq(pdev, 1);
301 if (omap_rtc_alarm <= 0) { 301 if (omap_rtc_alarm <= 0) {
302 pr_debug("%s: no alarm irq?\n", pdev->name); 302 pr_debug("%s: no alarm irq?\n", pdev->name);
303 return -ENOENT; 303 return -ENOENT;
304 } 304 }
305 305
306 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 306 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
307 if (!res) { 307 if (!res) {
308 pr_debug("%s: RTC resource data missing\n", pdev->name); 308 pr_debug("%s: RTC resource data missing\n", pdev->name);
309 return -ENOENT; 309 return -ENOENT;
310 } 310 }
311 311
312 mem = request_mem_region(res->start, resource_size(res), pdev->name); 312 mem = request_mem_region(res->start, resource_size(res), pdev->name);
313 if (!mem) { 313 if (!mem) {
314 pr_debug("%s: RTC registers at %08x are not free\n", 314 pr_debug("%s: RTC registers at %08x are not free\n",
315 pdev->name, res->start); 315 pdev->name, res->start);
316 return -EBUSY; 316 return -EBUSY;
317 } 317 }
318 318
319 rtc_base = ioremap(res->start, resource_size(res)); 319 rtc_base = ioremap(res->start, resource_size(res));
320 if (!rtc_base) { 320 if (!rtc_base) {
321 pr_debug("%s: RTC registers can't be mapped\n", pdev->name); 321 pr_debug("%s: RTC registers can't be mapped\n", pdev->name);
322 goto fail; 322 goto fail;
323 } 323 }
324 324
325 rtc = rtc_device_register(pdev->name, &pdev->dev, 325 rtc = rtc_device_register(pdev->name, &pdev->dev,
326 &omap_rtc_ops, THIS_MODULE); 326 &omap_rtc_ops, THIS_MODULE);
327 if (IS_ERR(rtc)) { 327 if (IS_ERR(rtc)) {
328 pr_debug("%s: can't register RTC device, err %ld\n", 328 pr_debug("%s: can't register RTC device, err %ld\n",
329 pdev->name, PTR_ERR(rtc)); 329 pdev->name, PTR_ERR(rtc));
330 goto fail0; 330 goto fail0;
331 } 331 }
332 platform_set_drvdata(pdev, rtc); 332 platform_set_drvdata(pdev, rtc);
333 dev_set_drvdata(&rtc->dev, mem); 333 dev_set_drvdata(&rtc->dev, mem);
334 334
335 /* clear pending irqs, and set 1/second periodic, 335 /* clear pending irqs, and set 1/second periodic,
336 * which we'll use instead of update irqs 336 * which we'll use instead of update irqs
337 */ 337 */
338 rtc_write(0, OMAP_RTC_INTERRUPTS_REG); 338 rtc_write(0, OMAP_RTC_INTERRUPTS_REG);
339 339
340 /* clear old status */ 340 /* clear old status */
341 reg = rtc_read(OMAP_RTC_STATUS_REG); 341 reg = rtc_read(OMAP_RTC_STATUS_REG);
342 if (reg & (u8) OMAP_RTC_STATUS_POWER_UP) { 342 if (reg & (u8) OMAP_RTC_STATUS_POWER_UP) {
343 pr_info("%s: RTC power up reset detected\n", 343 pr_info("%s: RTC power up reset detected\n",
344 pdev->name); 344 pdev->name);
345 rtc_write(OMAP_RTC_STATUS_POWER_UP, OMAP_RTC_STATUS_REG); 345 rtc_write(OMAP_RTC_STATUS_POWER_UP, OMAP_RTC_STATUS_REG);
346 } 346 }
347 if (reg & (u8) OMAP_RTC_STATUS_ALARM) 347 if (reg & (u8) OMAP_RTC_STATUS_ALARM)
348 rtc_write(OMAP_RTC_STATUS_ALARM, OMAP_RTC_STATUS_REG); 348 rtc_write(OMAP_RTC_STATUS_ALARM, OMAP_RTC_STATUS_REG);
349 349
350 /* handle periodic and alarm irqs */ 350 /* handle periodic and alarm irqs */
351 if (request_irq(omap_rtc_timer, rtc_irq, IRQF_DISABLED, 351 if (request_irq(omap_rtc_timer, rtc_irq, IRQF_DISABLED,
352 dev_name(&rtc->dev), rtc)) { 352 dev_name(&rtc->dev), rtc)) {
353 pr_debug("%s: RTC timer interrupt IRQ%d already claimed\n", 353 pr_debug("%s: RTC timer interrupt IRQ%d already claimed\n",
354 pdev->name, omap_rtc_timer); 354 pdev->name, omap_rtc_timer);
355 goto fail1; 355 goto fail1;
356 } 356 }
357 if ((omap_rtc_timer != omap_rtc_alarm) && 357 if ((omap_rtc_timer != omap_rtc_alarm) &&
358 (request_irq(omap_rtc_alarm, rtc_irq, IRQF_DISABLED, 358 (request_irq(omap_rtc_alarm, rtc_irq, IRQF_DISABLED,
359 dev_name(&rtc->dev), rtc))) { 359 dev_name(&rtc->dev), rtc))) {
360 pr_debug("%s: RTC alarm interrupt IRQ%d already claimed\n", 360 pr_debug("%s: RTC alarm interrupt IRQ%d already claimed\n",
361 pdev->name, omap_rtc_alarm); 361 pdev->name, omap_rtc_alarm);
362 goto fail2; 362 goto fail2;
363 } 363 }
364 364
365 /* On boards with split power, RTC_ON_NOFF won't reset the RTC */ 365 /* On boards with split power, RTC_ON_NOFF won't reset the RTC */
366 reg = rtc_read(OMAP_RTC_CTRL_REG); 366 reg = rtc_read(OMAP_RTC_CTRL_REG);
367 if (reg & (u8) OMAP_RTC_CTRL_STOP) 367 if (reg & (u8) OMAP_RTC_CTRL_STOP)
368 pr_info("%s: already running\n", pdev->name); 368 pr_info("%s: already running\n", pdev->name);
369 369
370 /* force to 24 hour mode */ 370 /* force to 24 hour mode */
371 new_ctrl = reg & ~(OMAP_RTC_CTRL_SPLIT|OMAP_RTC_CTRL_AUTO_COMP); 371 new_ctrl = reg & ~(OMAP_RTC_CTRL_SPLIT|OMAP_RTC_CTRL_AUTO_COMP);
372 new_ctrl |= OMAP_RTC_CTRL_STOP; 372 new_ctrl |= OMAP_RTC_CTRL_STOP;
373 373
374 /* BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE: 374 /* BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
375 * 375 *
376 * - Device wake-up capability setting should come through chip 376 * - Device wake-up capability setting should come through chip
377 * init logic. OMAP1 boards should initialize the "wakeup capable" 377 * init logic. OMAP1 boards should initialize the "wakeup capable"
378 * flag in the platform device if the board is wired right for 378 * flag in the platform device if the board is wired right for
379 * being woken up by RTC alarm. For OMAP-L138, this capability 379 * being woken up by RTC alarm. For OMAP-L138, this capability
380 * is built into the SoC by the "Deep Sleep" capability. 380 * is built into the SoC by the "Deep Sleep" capability.
381 * 381 *
382 * - Boards wired so RTC_ON_nOFF is used as the reset signal, 382 * - Boards wired so RTC_ON_nOFF is used as the reset signal,
383 * rather than nPWRON_RESET, should forcibly enable split 383 * rather than nPWRON_RESET, should forcibly enable split
384 * power mode. (Some chip errata report that RTC_CTRL_SPLIT 384 * power mode. (Some chip errata report that RTC_CTRL_SPLIT
385 * is write-only, and always reads as zero...) 385 * is write-only, and always reads as zero...)
386 */ 386 */
387 387
388 if (new_ctrl & (u8) OMAP_RTC_CTRL_SPLIT) 388 if (new_ctrl & (u8) OMAP_RTC_CTRL_SPLIT)
389 pr_info("%s: split power mode\n", pdev->name); 389 pr_info("%s: split power mode\n", pdev->name);
390 390
391 if (reg != new_ctrl) 391 if (reg != new_ctrl)
392 rtc_write(new_ctrl, OMAP_RTC_CTRL_REG); 392 rtc_write(new_ctrl, OMAP_RTC_CTRL_REG);
393 393
394 return 0; 394 return 0;
395 395
396 fail2: 396 fail2:
397 free_irq(omap_rtc_timer, NULL); 397 free_irq(omap_rtc_timer, rtc);
398 fail1: 398 fail1:
399 rtc_device_unregister(rtc); 399 rtc_device_unregister(rtc);
400 fail0: 400 fail0:
401 iounmap(rtc_base); 401 iounmap(rtc_base);
402 fail: 402 fail:
403 release_mem_region(mem->start, resource_size(mem)); 403 release_mem_region(mem->start, resource_size(mem));
404 return -EIO; 404 return -EIO;
405 } 405 }
406 406
407 static int __exit omap_rtc_remove(struct platform_device *pdev) 407 static int __exit omap_rtc_remove(struct platform_device *pdev)
408 { 408 {
409 struct rtc_device *rtc = platform_get_drvdata(pdev); 409 struct rtc_device *rtc = platform_get_drvdata(pdev);
410 struct resource *mem = dev_get_drvdata(&rtc->dev); 410 struct resource *mem = dev_get_drvdata(&rtc->dev);
411 411
412 device_init_wakeup(&pdev->dev, 0); 412 device_init_wakeup(&pdev->dev, 0);
413 413
414 /* leave rtc running, but disable irqs */ 414 /* leave rtc running, but disable irqs */
415 rtc_write(0, OMAP_RTC_INTERRUPTS_REG); 415 rtc_write(0, OMAP_RTC_INTERRUPTS_REG);
416 416
417 free_irq(omap_rtc_timer, rtc); 417 free_irq(omap_rtc_timer, rtc);
418 418
419 if (omap_rtc_timer != omap_rtc_alarm) 419 if (omap_rtc_timer != omap_rtc_alarm)
420 free_irq(omap_rtc_alarm, rtc); 420 free_irq(omap_rtc_alarm, rtc);
421 421
422 rtc_device_unregister(rtc); 422 rtc_device_unregister(rtc);
423 iounmap(rtc_base); 423 iounmap(rtc_base);
424 release_mem_region(mem->start, resource_size(mem)); 424 release_mem_region(mem->start, resource_size(mem));
425 return 0; 425 return 0;
426 } 426 }
427 427
428 #ifdef CONFIG_PM 428 #ifdef CONFIG_PM
429 429
430 static u8 irqstat; 430 static u8 irqstat;
431 431
432 static int omap_rtc_suspend(struct platform_device *pdev, pm_message_t state) 432 static int omap_rtc_suspend(struct platform_device *pdev, pm_message_t state)
433 { 433 {
434 irqstat = rtc_read(OMAP_RTC_INTERRUPTS_REG); 434 irqstat = rtc_read(OMAP_RTC_INTERRUPTS_REG);
435 435
436 /* FIXME the RTC alarm is not currently acting as a wakeup event 436 /* FIXME the RTC alarm is not currently acting as a wakeup event
437 * source, and in fact this enable() call is just saving a flag 437 * source, and in fact this enable() call is just saving a flag
438 * that's never used... 438 * that's never used...
439 */ 439 */
440 if (device_may_wakeup(&pdev->dev)) 440 if (device_may_wakeup(&pdev->dev))
441 enable_irq_wake(omap_rtc_alarm); 441 enable_irq_wake(omap_rtc_alarm);
442 else 442 else
443 rtc_write(0, OMAP_RTC_INTERRUPTS_REG); 443 rtc_write(0, OMAP_RTC_INTERRUPTS_REG);
444 444
445 return 0; 445 return 0;
446 } 446 }
447 447
448 static int omap_rtc_resume(struct platform_device *pdev) 448 static int omap_rtc_resume(struct platform_device *pdev)
449 { 449 {
450 if (device_may_wakeup(&pdev->dev)) 450 if (device_may_wakeup(&pdev->dev))
451 disable_irq_wake(omap_rtc_alarm); 451 disable_irq_wake(omap_rtc_alarm);
452 else 452 else
453 rtc_write(irqstat, OMAP_RTC_INTERRUPTS_REG); 453 rtc_write(irqstat, OMAP_RTC_INTERRUPTS_REG);
454 return 0; 454 return 0;
455 } 455 }
456 456
457 #else 457 #else
458 #define omap_rtc_suspend NULL 458 #define omap_rtc_suspend NULL
459 #define omap_rtc_resume NULL 459 #define omap_rtc_resume NULL
460 #endif 460 #endif
461 461
462 static void omap_rtc_shutdown(struct platform_device *pdev) 462 static void omap_rtc_shutdown(struct platform_device *pdev)
463 { 463 {
464 rtc_write(0, OMAP_RTC_INTERRUPTS_REG); 464 rtc_write(0, OMAP_RTC_INTERRUPTS_REG);
465 } 465 }
466 466
467 MODULE_ALIAS("platform:omap_rtc"); 467 MODULE_ALIAS("platform:omap_rtc");
468 static struct platform_driver omap_rtc_driver = { 468 static struct platform_driver omap_rtc_driver = {
469 .remove = __exit_p(omap_rtc_remove), 469 .remove = __exit_p(omap_rtc_remove),
470 .suspend = omap_rtc_suspend, 470 .suspend = omap_rtc_suspend,
471 .resume = omap_rtc_resume, 471 .resume = omap_rtc_resume,
472 .shutdown = omap_rtc_shutdown, 472 .shutdown = omap_rtc_shutdown,
473 .driver = { 473 .driver = {
474 .name = "omap_rtc", 474 .name = "omap_rtc",
475 .owner = THIS_MODULE, 475 .owner = THIS_MODULE,
476 }, 476 },
477 }; 477 };
478 478
479 static int __init rtc_init(void) 479 static int __init rtc_init(void)
480 { 480 {
481 return platform_driver_probe(&omap_rtc_driver, omap_rtc_probe); 481 return platform_driver_probe(&omap_rtc_driver, omap_rtc_probe);
482 } 482 }
483 module_init(rtc_init); 483 module_init(rtc_init);
484 484
485 static void __exit rtc_exit(void) 485 static void __exit rtc_exit(void)
486 { 486 {
487 platform_driver_unregister(&omap_rtc_driver); 487 platform_driver_unregister(&omap_rtc_driver);
488 } 488 }
489 module_exit(rtc_exit); 489 module_exit(rtc_exit);
490 490
491 MODULE_AUTHOR("George G. Davis (and others)"); 491 MODULE_AUTHOR("George G. Davis (and others)");
492 MODULE_LICENSE("GPL"); 492 MODULE_LICENSE("GPL");
493 493
include/linux/posix-clock.h
1 /* 1 /*
2 * posix-clock.h - support for dynamic clock devices 2 * posix-clock.h - support for dynamic clock devices
3 * 3 *
4 * Copyright (C) 2010 OMICRON electronics GmbH 4 * Copyright (C) 2010 OMICRON electronics GmbH
5 * 5 *
6 * This program is free software; you can redistribute it and/or modify 6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by 7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or 8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version. 9 * (at your option) any later version.
10 * 10 *
11 * This program is distributed in the hope that it will be useful, 11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 14 * GNU General Public License for more details.
15 * 15 *
16 * You should have received a copy of the GNU General Public License 16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software 17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */ 19 */
20 #ifndef _LINUX_POSIX_CLOCK_H_ 20 #ifndef _LINUX_POSIX_CLOCK_H_
21 #define _LINUX_POSIX_CLOCK_H_ 21 #define _LINUX_POSIX_CLOCK_H_
22 22
23 #include <linux/cdev.h> 23 #include <linux/cdev.h>
24 #include <linux/fs.h> 24 #include <linux/fs.h>
25 #include <linux/poll.h> 25 #include <linux/poll.h>
26 #include <linux/posix-timers.h> 26 #include <linux/posix-timers.h>
27 #include <linux/rwsem.h>
27 28
28 struct posix_clock; 29 struct posix_clock;
29 30
30 /** 31 /**
31 * struct posix_clock_operations - functional interface to the clock 32 * struct posix_clock_operations - functional interface to the clock
32 * 33 *
33 * Every posix clock is represented by a character device. Drivers may 34 * Every posix clock is represented by a character device. Drivers may
34 * optionally offer extended capabilities by implementing the 35 * optionally offer extended capabilities by implementing the
35 * character device methods. The character device file operations are 36 * character device methods. The character device file operations are
36 * first handled by the clock device layer, then passed on to the 37 * first handled by the clock device layer, then passed on to the
37 * driver by calling these functions. 38 * driver by calling these functions.
38 * 39 *
39 * @owner: The clock driver should set to THIS_MODULE 40 * @owner: The clock driver should set to THIS_MODULE
40 * @clock_adjtime: Adjust the clock 41 * @clock_adjtime: Adjust the clock
41 * @clock_gettime: Read the current time 42 * @clock_gettime: Read the current time
42 * @clock_getres: Get the clock resolution 43 * @clock_getres: Get the clock resolution
43 * @clock_settime: Set the current time value 44 * @clock_settime: Set the current time value
44 * @timer_create: Create a new timer 45 * @timer_create: Create a new timer
45 * @timer_delete: Remove a previously created timer 46 * @timer_delete: Remove a previously created timer
46 * @timer_gettime: Get remaining time and interval of a timer 47 * @timer_gettime: Get remaining time and interval of a timer
47 * @timer_setttime: Set a timer's initial expiration and interval 48 * @timer_setttime: Set a timer's initial expiration and interval
48 * @fasync: Optional character device fasync method 49 * @fasync: Optional character device fasync method
49 * @mmap: Optional character device mmap method 50 * @mmap: Optional character device mmap method
50 * @open: Optional character device open method 51 * @open: Optional character device open method
51 * @release: Optional character device release method 52 * @release: Optional character device release method
52 * @ioctl: Optional character device ioctl method 53 * @ioctl: Optional character device ioctl method
53 * @read: Optional character device read method 54 * @read: Optional character device read method
54 * @poll: Optional character device poll method 55 * @poll: Optional character device poll method
55 */ 56 */
56 struct posix_clock_operations { 57 struct posix_clock_operations {
57 struct module *owner; 58 struct module *owner;
58 59
59 int (*clock_adjtime)(struct posix_clock *pc, struct timex *tx); 60 int (*clock_adjtime)(struct posix_clock *pc, struct timex *tx);
60 61
61 int (*clock_gettime)(struct posix_clock *pc, struct timespec *ts); 62 int (*clock_gettime)(struct posix_clock *pc, struct timespec *ts);
62 63
63 int (*clock_getres) (struct posix_clock *pc, struct timespec *ts); 64 int (*clock_getres) (struct posix_clock *pc, struct timespec *ts);
64 65
65 int (*clock_settime)(struct posix_clock *pc, 66 int (*clock_settime)(struct posix_clock *pc,
66 const struct timespec *ts); 67 const struct timespec *ts);
67 68
68 int (*timer_create) (struct posix_clock *pc, struct k_itimer *kit); 69 int (*timer_create) (struct posix_clock *pc, struct k_itimer *kit);
69 70
70 int (*timer_delete) (struct posix_clock *pc, struct k_itimer *kit); 71 int (*timer_delete) (struct posix_clock *pc, struct k_itimer *kit);
71 72
72 void (*timer_gettime)(struct posix_clock *pc, 73 void (*timer_gettime)(struct posix_clock *pc,
73 struct k_itimer *kit, struct itimerspec *tsp); 74 struct k_itimer *kit, struct itimerspec *tsp);
74 75
75 int (*timer_settime)(struct posix_clock *pc, 76 int (*timer_settime)(struct posix_clock *pc,
76 struct k_itimer *kit, int flags, 77 struct k_itimer *kit, int flags,
77 struct itimerspec *tsp, struct itimerspec *old); 78 struct itimerspec *tsp, struct itimerspec *old);
78 /* 79 /*
79 * Optional character device methods: 80 * Optional character device methods:
80 */ 81 */
81 int (*fasync) (struct posix_clock *pc, 82 int (*fasync) (struct posix_clock *pc,
82 int fd, struct file *file, int on); 83 int fd, struct file *file, int on);
83 84
84 long (*ioctl) (struct posix_clock *pc, 85 long (*ioctl) (struct posix_clock *pc,
85 unsigned int cmd, unsigned long arg); 86 unsigned int cmd, unsigned long arg);
86 87
87 int (*mmap) (struct posix_clock *pc, 88 int (*mmap) (struct posix_clock *pc,
88 struct vm_area_struct *vma); 89 struct vm_area_struct *vma);
89 90
90 int (*open) (struct posix_clock *pc, fmode_t f_mode); 91 int (*open) (struct posix_clock *pc, fmode_t f_mode);
91 92
92 uint (*poll) (struct posix_clock *pc, 93 uint (*poll) (struct posix_clock *pc,
93 struct file *file, poll_table *wait); 94 struct file *file, poll_table *wait);
94 95
95 int (*release) (struct posix_clock *pc); 96 int (*release) (struct posix_clock *pc);
96 97
97 ssize_t (*read) (struct posix_clock *pc, 98 ssize_t (*read) (struct posix_clock *pc,
98 uint flags, char __user *buf, size_t cnt); 99 uint flags, char __user *buf, size_t cnt);
99 }; 100 };
100 101
101 /** 102 /**
102 * struct posix_clock - represents a dynamic posix clock 103 * struct posix_clock - represents a dynamic posix clock
103 * 104 *
104 * @ops: Functional interface to the clock 105 * @ops: Functional interface to the clock
105 * @cdev: Character device instance for this clock 106 * @cdev: Character device instance for this clock
106 * @kref: Reference count. 107 * @kref: Reference count.
107 * @mutex: Protects the 'zombie' field from concurrent access. 108 * @rwsem: Protects the 'zombie' field from concurrent access.
108 * @zombie: If 'zombie' is true, then the hardware has disappeared. 109 * @zombie: If 'zombie' is true, then the hardware has disappeared.
109 * @release: A function to free the structure when the reference count reaches 110 * @release: A function to free the structure when the reference count reaches
110 * zero. May be NULL if structure is statically allocated. 111 * zero. May be NULL if structure is statically allocated.
111 * 112 *
112 * Drivers should embed their struct posix_clock within a private 113 * Drivers should embed their struct posix_clock within a private
113 * structure, obtaining a reference to it during callbacks using 114 * structure, obtaining a reference to it during callbacks using
114 * container_of(). 115 * container_of().
115 */ 116 */
116 struct posix_clock { 117 struct posix_clock {
117 struct posix_clock_operations ops; 118 struct posix_clock_operations ops;
118 struct cdev cdev; 119 struct cdev cdev;
119 struct kref kref; 120 struct kref kref;
120 struct mutex mutex; 121 struct rw_semaphore rwsem;
121 bool zombie; 122 bool zombie;
122 void (*release)(struct posix_clock *clk); 123 void (*release)(struct posix_clock *clk);
123 }; 124 };
124 125
125 /** 126 /**
126 * posix_clock_register() - register a new clock 127 * posix_clock_register() - register a new clock
127 * @clk: Pointer to the clock. Caller must provide 'ops' and 'release' 128 * @clk: Pointer to the clock. Caller must provide 'ops' and 'release'
128 * @devid: Allocated device id 129 * @devid: Allocated device id
129 * 130 *
130 * A clock driver calls this function to register itself with the 131 * A clock driver calls this function to register itself with the
131 * clock device subsystem. If 'clk' points to dynamically allocated 132 * clock device subsystem. If 'clk' points to dynamically allocated
132 * memory, then the caller must provide a 'release' function to free 133 * memory, then the caller must provide a 'release' function to free
133 * that memory. 134 * that memory.
134 * 135 *
135 * Returns zero on success, non-zero otherwise. 136 * Returns zero on success, non-zero otherwise.
136 */ 137 */
137 int posix_clock_register(struct posix_clock *clk, dev_t devid); 138 int posix_clock_register(struct posix_clock *clk, dev_t devid);
138 139
139 /** 140 /**
140 * posix_clock_unregister() - unregister a clock 141 * posix_clock_unregister() - unregister a clock
141 * @clk: Clock instance previously registered via posix_clock_register() 142 * @clk: Clock instance previously registered via posix_clock_register()
142 * 143 *
143 * A clock driver calls this function to remove itself from the clock 144 * A clock driver calls this function to remove itself from the clock
144 * device subsystem. The posix_clock itself will remain (in an 145 * device subsystem. The posix_clock itself will remain (in an
145 * inactive state) until its reference count drops to zero, at which 146 * inactive state) until its reference count drops to zero, at which
146 * point it will be deallocated with its 'release' method. 147 * point it will be deallocated with its 'release' method.
147 */ 148 */
148 void posix_clock_unregister(struct posix_clock *clk); 149 void posix_clock_unregister(struct posix_clock *clk);
149 150
150 #endif 151 #endif
151 152
kernel/time/posix-clock.c
1 /* 1 /*
2 * posix-clock.c - support for dynamic clock devices 2 * posix-clock.c - support for dynamic clock devices
3 * 3 *
4 * Copyright (C) 2010 OMICRON electronics GmbH 4 * Copyright (C) 2010 OMICRON electronics GmbH
5 * 5 *
6 * This program is free software; you can redistribute it and/or modify 6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by 7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or 8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version. 9 * (at your option) any later version.
10 * 10 *
11 * This program is distributed in the hope that it will be useful, 11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 14 * GNU General Public License for more details.
15 * 15 *
16 * You should have received a copy of the GNU General Public License 16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software 17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */ 19 */
20 #include <linux/device.h> 20 #include <linux/device.h>
21 #include <linux/file.h> 21 #include <linux/file.h>
22 #include <linux/mutex.h>
23 #include <linux/posix-clock.h> 22 #include <linux/posix-clock.h>
24 #include <linux/slab.h> 23 #include <linux/slab.h>
25 #include <linux/syscalls.h> 24 #include <linux/syscalls.h>
26 #include <linux/uaccess.h> 25 #include <linux/uaccess.h>
27 26
28 static void delete_clock(struct kref *kref); 27 static void delete_clock(struct kref *kref);
29 28
30 /* 29 /*
31 * Returns NULL if the posix_clock instance attached to 'fp' is old and stale. 30 * Returns NULL if the posix_clock instance attached to 'fp' is old and stale.
32 */ 31 */
33 static struct posix_clock *get_posix_clock(struct file *fp) 32 static struct posix_clock *get_posix_clock(struct file *fp)
34 { 33 {
35 struct posix_clock *clk = fp->private_data; 34 struct posix_clock *clk = fp->private_data;
36 35
37 mutex_lock(&clk->mutex); 36 down_read(&clk->rwsem);
38 37
39 if (!clk->zombie) 38 if (!clk->zombie)
40 return clk; 39 return clk;
41 40
42 mutex_unlock(&clk->mutex); 41 up_read(&clk->rwsem);
43 42
44 return NULL; 43 return NULL;
45 } 44 }
46 45
47 static void put_posix_clock(struct posix_clock *clk) 46 static void put_posix_clock(struct posix_clock *clk)
48 { 47 {
49 mutex_unlock(&clk->mutex); 48 up_read(&clk->rwsem);
50 } 49 }
51 50
52 static ssize_t posix_clock_read(struct file *fp, char __user *buf, 51 static ssize_t posix_clock_read(struct file *fp, char __user *buf,
53 size_t count, loff_t *ppos) 52 size_t count, loff_t *ppos)
54 { 53 {
55 struct posix_clock *clk = get_posix_clock(fp); 54 struct posix_clock *clk = get_posix_clock(fp);
56 int err = -EINVAL; 55 int err = -EINVAL;
57 56
58 if (!clk) 57 if (!clk)
59 return -ENODEV; 58 return -ENODEV;
60 59
61 if (clk->ops.read) 60 if (clk->ops.read)
62 err = clk->ops.read(clk, fp->f_flags, buf, count); 61 err = clk->ops.read(clk, fp->f_flags, buf, count);
63 62
64 put_posix_clock(clk); 63 put_posix_clock(clk);
65 64
66 return err; 65 return err;
67 } 66 }
68 67
69 static unsigned int posix_clock_poll(struct file *fp, poll_table *wait) 68 static unsigned int posix_clock_poll(struct file *fp, poll_table *wait)
70 { 69 {
71 struct posix_clock *clk = get_posix_clock(fp); 70 struct posix_clock *clk = get_posix_clock(fp);
72 int result = 0; 71 int result = 0;
73 72
74 if (!clk) 73 if (!clk)
75 return -ENODEV; 74 return -ENODEV;
76 75
77 if (clk->ops.poll) 76 if (clk->ops.poll)
78 result = clk->ops.poll(clk, fp, wait); 77 result = clk->ops.poll(clk, fp, wait);
79 78
80 put_posix_clock(clk); 79 put_posix_clock(clk);
81 80
82 return result; 81 return result;
83 } 82 }
84 83
85 static int posix_clock_fasync(int fd, struct file *fp, int on) 84 static int posix_clock_fasync(int fd, struct file *fp, int on)
86 { 85 {
87 struct posix_clock *clk = get_posix_clock(fp); 86 struct posix_clock *clk = get_posix_clock(fp);
88 int err = 0; 87 int err = 0;
89 88
90 if (!clk) 89 if (!clk)
91 return -ENODEV; 90 return -ENODEV;
92 91
93 if (clk->ops.fasync) 92 if (clk->ops.fasync)
94 err = clk->ops.fasync(clk, fd, fp, on); 93 err = clk->ops.fasync(clk, fd, fp, on);
95 94
96 put_posix_clock(clk); 95 put_posix_clock(clk);
97 96
98 return err; 97 return err;
99 } 98 }
100 99
101 static int posix_clock_mmap(struct file *fp, struct vm_area_struct *vma) 100 static int posix_clock_mmap(struct file *fp, struct vm_area_struct *vma)
102 { 101 {
103 struct posix_clock *clk = get_posix_clock(fp); 102 struct posix_clock *clk = get_posix_clock(fp);
104 int err = -ENODEV; 103 int err = -ENODEV;
105 104
106 if (!clk) 105 if (!clk)
107 return -ENODEV; 106 return -ENODEV;
108 107
109 if (clk->ops.mmap) 108 if (clk->ops.mmap)
110 err = clk->ops.mmap(clk, vma); 109 err = clk->ops.mmap(clk, vma);
111 110
112 put_posix_clock(clk); 111 put_posix_clock(clk);
113 112
114 return err; 113 return err;
115 } 114 }
116 115
117 static long posix_clock_ioctl(struct file *fp, 116 static long posix_clock_ioctl(struct file *fp,
118 unsigned int cmd, unsigned long arg) 117 unsigned int cmd, unsigned long arg)
119 { 118 {
120 struct posix_clock *clk = get_posix_clock(fp); 119 struct posix_clock *clk = get_posix_clock(fp);
121 int err = -ENOTTY; 120 int err = -ENOTTY;
122 121
123 if (!clk) 122 if (!clk)
124 return -ENODEV; 123 return -ENODEV;
125 124
126 if (clk->ops.ioctl) 125 if (clk->ops.ioctl)
127 err = clk->ops.ioctl(clk, cmd, arg); 126 err = clk->ops.ioctl(clk, cmd, arg);
128 127
129 put_posix_clock(clk); 128 put_posix_clock(clk);
130 129
131 return err; 130 return err;
132 } 131 }
133 132
134 #ifdef CONFIG_COMPAT 133 #ifdef CONFIG_COMPAT
135 static long posix_clock_compat_ioctl(struct file *fp, 134 static long posix_clock_compat_ioctl(struct file *fp,
136 unsigned int cmd, unsigned long arg) 135 unsigned int cmd, unsigned long arg)
137 { 136 {
138 struct posix_clock *clk = get_posix_clock(fp); 137 struct posix_clock *clk = get_posix_clock(fp);
139 int err = -ENOTTY; 138 int err = -ENOTTY;
140 139
141 if (!clk) 140 if (!clk)
142 return -ENODEV; 141 return -ENODEV;
143 142
144 if (clk->ops.ioctl) 143 if (clk->ops.ioctl)
145 err = clk->ops.ioctl(clk, cmd, arg); 144 err = clk->ops.ioctl(clk, cmd, arg);
146 145
147 put_posix_clock(clk); 146 put_posix_clock(clk);
148 147
149 return err; 148 return err;
150 } 149 }
151 #endif 150 #endif
152 151
153 static int posix_clock_open(struct inode *inode, struct file *fp) 152 static int posix_clock_open(struct inode *inode, struct file *fp)
154 { 153 {
155 int err; 154 int err;
156 struct posix_clock *clk = 155 struct posix_clock *clk =
157 container_of(inode->i_cdev, struct posix_clock, cdev); 156 container_of(inode->i_cdev, struct posix_clock, cdev);
158 157
159 mutex_lock(&clk->mutex); 158 down_read(&clk->rwsem);
160 159
161 if (clk->zombie) { 160 if (clk->zombie) {
162 err = -ENODEV; 161 err = -ENODEV;
163 goto out; 162 goto out;
164 } 163 }
165 if (clk->ops.open) 164 if (clk->ops.open)
166 err = clk->ops.open(clk, fp->f_mode); 165 err = clk->ops.open(clk, fp->f_mode);
167 else 166 else
168 err = 0; 167 err = 0;
169 168
170 if (!err) { 169 if (!err) {
171 kref_get(&clk->kref); 170 kref_get(&clk->kref);
172 fp->private_data = clk; 171 fp->private_data = clk;
173 } 172 }
174 out: 173 out:
175 mutex_unlock(&clk->mutex); 174 up_read(&clk->rwsem);
176 return err; 175 return err;
177 } 176 }
178 177
179 static int posix_clock_release(struct inode *inode, struct file *fp) 178 static int posix_clock_release(struct inode *inode, struct file *fp)
180 { 179 {
181 struct posix_clock *clk = fp->private_data; 180 struct posix_clock *clk = fp->private_data;
182 int err = 0; 181 int err = 0;
183 182
184 if (clk->ops.release) 183 if (clk->ops.release)
185 err = clk->ops.release(clk); 184 err = clk->ops.release(clk);
186 185
187 kref_put(&clk->kref, delete_clock); 186 kref_put(&clk->kref, delete_clock);
188 187
189 fp->private_data = NULL; 188 fp->private_data = NULL;
190 189
191 return err; 190 return err;
192 } 191 }
193 192
194 static const struct file_operations posix_clock_file_operations = { 193 static const struct file_operations posix_clock_file_operations = {
195 .owner = THIS_MODULE, 194 .owner = THIS_MODULE,
196 .llseek = no_llseek, 195 .llseek = no_llseek,
197 .read = posix_clock_read, 196 .read = posix_clock_read,
198 .poll = posix_clock_poll, 197 .poll = posix_clock_poll,
199 .unlocked_ioctl = posix_clock_ioctl, 198 .unlocked_ioctl = posix_clock_ioctl,
200 .open = posix_clock_open, 199 .open = posix_clock_open,
201 .release = posix_clock_release, 200 .release = posix_clock_release,
202 .fasync = posix_clock_fasync, 201 .fasync = posix_clock_fasync,
203 .mmap = posix_clock_mmap, 202 .mmap = posix_clock_mmap,
204 #ifdef CONFIG_COMPAT 203 #ifdef CONFIG_COMPAT
205 .compat_ioctl = posix_clock_compat_ioctl, 204 .compat_ioctl = posix_clock_compat_ioctl,
206 #endif 205 #endif
207 }; 206 };
208 207
209 int posix_clock_register(struct posix_clock *clk, dev_t devid) 208 int posix_clock_register(struct posix_clock *clk, dev_t devid)
210 { 209 {
211 int err; 210 int err;
212 211
213 kref_init(&clk->kref); 212 kref_init(&clk->kref);
214 mutex_init(&clk->mutex); 213 init_rwsem(&clk->rwsem);
215 214
216 cdev_init(&clk->cdev, &posix_clock_file_operations); 215 cdev_init(&clk->cdev, &posix_clock_file_operations);
217 clk->cdev.owner = clk->ops.owner; 216 clk->cdev.owner = clk->ops.owner;
218 err = cdev_add(&clk->cdev, devid, 1); 217 err = cdev_add(&clk->cdev, devid, 1);
219 if (err)
220 goto no_cdev;
221 218
222 return err; 219 return err;
223 no_cdev:
224 mutex_destroy(&clk->mutex);
225 return err;
226 } 220 }
227 EXPORT_SYMBOL_GPL(posix_clock_register); 221 EXPORT_SYMBOL_GPL(posix_clock_register);
228 222
229 static void delete_clock(struct kref *kref) 223 static void delete_clock(struct kref *kref)
230 { 224 {
231 struct posix_clock *clk = container_of(kref, struct posix_clock, kref); 225 struct posix_clock *clk = container_of(kref, struct posix_clock, kref);
232 mutex_destroy(&clk->mutex); 226
233 if (clk->release) 227 if (clk->release)
234 clk->release(clk); 228 clk->release(clk);
235 } 229 }
236 230
237 void posix_clock_unregister(struct posix_clock *clk) 231 void posix_clock_unregister(struct posix_clock *clk)
238 { 232 {
239 cdev_del(&clk->cdev); 233 cdev_del(&clk->cdev);
240 234
241 mutex_lock(&clk->mutex); 235 down_write(&clk->rwsem);
242 clk->zombie = true; 236 clk->zombie = true;
243 mutex_unlock(&clk->mutex); 237 up_write(&clk->rwsem);
244 238
245 kref_put(&clk->kref, delete_clock); 239 kref_put(&clk->kref, delete_clock);
246 } 240 }
247 EXPORT_SYMBOL_GPL(posix_clock_unregister); 241 EXPORT_SYMBOL_GPL(posix_clock_unregister);
248 242
249 struct posix_clock_desc { 243 struct posix_clock_desc {
250 struct file *fp; 244 struct file *fp;
251 struct posix_clock *clk; 245 struct posix_clock *clk;
252 }; 246 };
253 247
254 static int get_clock_desc(const clockid_t id, struct posix_clock_desc *cd) 248 static int get_clock_desc(const clockid_t id, struct posix_clock_desc *cd)
255 { 249 {
256 struct file *fp = fget(CLOCKID_TO_FD(id)); 250 struct file *fp = fget(CLOCKID_TO_FD(id));
257 int err = -EINVAL; 251 int err = -EINVAL;
258 252
259 if (!fp) 253 if (!fp)
260 return err; 254 return err;
261 255
262 if (fp->f_op->open != posix_clock_open || !fp->private_data) 256 if (fp->f_op->open != posix_clock_open || !fp->private_data)
263 goto out; 257 goto out;
264 258
265 cd->fp = fp; 259 cd->fp = fp;
266 cd->clk = get_posix_clock(fp); 260 cd->clk = get_posix_clock(fp);
267 261
268 err = cd->clk ? 0 : -ENODEV; 262 err = cd->clk ? 0 : -ENODEV;
269 out: 263 out:
270 if (err) 264 if (err)
271 fput(fp); 265 fput(fp);
272 return err; 266 return err;
273 } 267 }
274 268
275 static void put_clock_desc(struct posix_clock_desc *cd) 269 static void put_clock_desc(struct posix_clock_desc *cd)
276 { 270 {
277 put_posix_clock(cd->clk); 271 put_posix_clock(cd->clk);
278 fput(cd->fp); 272 fput(cd->fp);
279 } 273 }
280 274
281 static int pc_clock_adjtime(clockid_t id, struct timex *tx) 275 static int pc_clock_adjtime(clockid_t id, struct timex *tx)
282 { 276 {
283 struct posix_clock_desc cd; 277 struct posix_clock_desc cd;
284 int err; 278 int err;
285 279
286 err = get_clock_desc(id, &cd); 280 err = get_clock_desc(id, &cd);
287 if (err) 281 if (err)
288 return err; 282 return err;
289 283
290 if ((cd.fp->f_mode & FMODE_WRITE) == 0) { 284 if ((cd.fp->f_mode & FMODE_WRITE) == 0) {
291 err = -EACCES; 285 err = -EACCES;
292 goto out; 286 goto out;
293 } 287 }
294 288
295 if (cd.clk->ops.clock_adjtime) 289 if (cd.clk->ops.clock_adjtime)
296 err = cd.clk->ops.clock_adjtime(cd.clk, tx); 290 err = cd.clk->ops.clock_adjtime(cd.clk, tx);
297 else 291 else
298 err = -EOPNOTSUPP; 292 err = -EOPNOTSUPP;
299 out: 293 out:
300 put_clock_desc(&cd); 294 put_clock_desc(&cd);
301 295
302 return err; 296 return err;
303 } 297 }
304 298
305 static int pc_clock_gettime(clockid_t id, struct timespec *ts) 299 static int pc_clock_gettime(clockid_t id, struct timespec *ts)
306 { 300 {
307 struct posix_clock_desc cd; 301 struct posix_clock_desc cd;
308 int err; 302 int err;
309 303
310 err = get_clock_desc(id, &cd); 304 err = get_clock_desc(id, &cd);
311 if (err) 305 if (err)
312 return err; 306 return err;
313 307
314 if (cd.clk->ops.clock_gettime) 308 if (cd.clk->ops.clock_gettime)
315 err = cd.clk->ops.clock_gettime(cd.clk, ts); 309 err = cd.clk->ops.clock_gettime(cd.clk, ts);
316 else 310 else
317 err = -EOPNOTSUPP; 311 err = -EOPNOTSUPP;
318 312
319 put_clock_desc(&cd); 313 put_clock_desc(&cd);
320 314
321 return err; 315 return err;
322 } 316 }
323 317
324 static int pc_clock_getres(clockid_t id, struct timespec *ts) 318 static int pc_clock_getres(clockid_t id, struct timespec *ts)
325 { 319 {
326 struct posix_clock_desc cd; 320 struct posix_clock_desc cd;
327 int err; 321 int err;
328 322
329 err = get_clock_desc(id, &cd); 323 err = get_clock_desc(id, &cd);
330 if (err) 324 if (err)
331 return err; 325 return err;
332 326
333 if (cd.clk->ops.clock_getres) 327 if (cd.clk->ops.clock_getres)
334 err = cd.clk->ops.clock_getres(cd.clk, ts); 328 err = cd.clk->ops.clock_getres(cd.clk, ts);
335 else 329 else
336 err = -EOPNOTSUPP; 330 err = -EOPNOTSUPP;
337 331
338 put_clock_desc(&cd); 332 put_clock_desc(&cd);
339 333
340 return err; 334 return err;
341 } 335 }
342 336
343 static int pc_clock_settime(clockid_t id, const struct timespec *ts) 337 static int pc_clock_settime(clockid_t id, const struct timespec *ts)
344 { 338 {
345 struct posix_clock_desc cd; 339 struct posix_clock_desc cd;
346 int err; 340 int err;
347 341
348 err = get_clock_desc(id, &cd); 342 err = get_clock_desc(id, &cd);
349 if (err) 343 if (err)
350 return err; 344 return err;
351 345
352 if ((cd.fp->f_mode & FMODE_WRITE) == 0) { 346 if ((cd.fp->f_mode & FMODE_WRITE) == 0) {
353 err = -EACCES; 347 err = -EACCES;
354 goto out; 348 goto out;
355 } 349 }
356 350
357 if (cd.clk->ops.clock_settime) 351 if (cd.clk->ops.clock_settime)
358 err = cd.clk->ops.clock_settime(cd.clk, ts); 352 err = cd.clk->ops.clock_settime(cd.clk, ts);
359 else 353 else
360 err = -EOPNOTSUPP; 354 err = -EOPNOTSUPP;
361 out: 355 out:
362 put_clock_desc(&cd); 356 put_clock_desc(&cd);
363 357
364 return err; 358 return err;
365 } 359 }
366 360
367 static int pc_timer_create(struct k_itimer *kit) 361 static int pc_timer_create(struct k_itimer *kit)
368 { 362 {
369 clockid_t id = kit->it_clock; 363 clockid_t id = kit->it_clock;
370 struct posix_clock_desc cd; 364 struct posix_clock_desc cd;
371 int err; 365 int err;
372 366
373 err = get_clock_desc(id, &cd); 367 err = get_clock_desc(id, &cd);
374 if (err) 368 if (err)
375 return err; 369 return err;
376 370
377 if (cd.clk->ops.timer_create) 371 if (cd.clk->ops.timer_create)
378 err = cd.clk->ops.timer_create(cd.clk, kit); 372 err = cd.clk->ops.timer_create(cd.clk, kit);
379 else 373 else
380 err = -EOPNOTSUPP; 374 err = -EOPNOTSUPP;
381 375
382 put_clock_desc(&cd); 376 put_clock_desc(&cd);
383 377
384 return err; 378 return err;
385 } 379 }
386 380
387 static int pc_timer_delete(struct k_itimer *kit) 381 static int pc_timer_delete(struct k_itimer *kit)
388 { 382 {
389 clockid_t id = kit->it_clock; 383 clockid_t id = kit->it_clock;
390 struct posix_clock_desc cd; 384 struct posix_clock_desc cd;
391 int err; 385 int err;
392 386
393 err = get_clock_desc(id, &cd); 387 err = get_clock_desc(id, &cd);
394 if (err) 388 if (err)
395 return err; 389 return err;
396 390
397 if (cd.clk->ops.timer_delete) 391 if (cd.clk->ops.timer_delete)
398 err = cd.clk->ops.timer_delete(cd.clk, kit); 392 err = cd.clk->ops.timer_delete(cd.clk, kit);
399 else 393 else
400 err = -EOPNOTSUPP; 394 err = -EOPNOTSUPP;
401 395
402 put_clock_desc(&cd); 396 put_clock_desc(&cd);
403 397
404 return err; 398 return err;
405 } 399 }
406 400
407 static void pc_timer_gettime(struct k_itimer *kit, struct itimerspec *ts) 401 static void pc_timer_gettime(struct k_itimer *kit, struct itimerspec *ts)
408 { 402 {
409 clockid_t id = kit->it_clock; 403 clockid_t id = kit->it_clock;
410 struct posix_clock_desc cd; 404 struct posix_clock_desc cd;
411 405
412 if (get_clock_desc(id, &cd)) 406 if (get_clock_desc(id, &cd))
413 return; 407 return;
414 408
415 if (cd.clk->ops.timer_gettime) 409 if (cd.clk->ops.timer_gettime)
416 cd.clk->ops.timer_gettime(cd.clk, kit, ts); 410 cd.clk->ops.timer_gettime(cd.clk, kit, ts);
417 411
418 put_clock_desc(&cd); 412 put_clock_desc(&cd);
419 } 413 }
420 414
421 static int pc_timer_settime(struct k_itimer *kit, int flags, 415 static int pc_timer_settime(struct k_itimer *kit, int flags,
422 struct itimerspec *ts, struct itimerspec *old) 416 struct itimerspec *ts, struct itimerspec *old)
423 { 417 {
424 clockid_t id = kit->it_clock; 418 clockid_t id = kit->it_clock;
425 struct posix_clock_desc cd; 419 struct posix_clock_desc cd;
426 int err; 420 int err;
427 421
428 err = get_clock_desc(id, &cd); 422 err = get_clock_desc(id, &cd);
429 if (err) 423 if (err)
430 return err; 424 return err;
431 425
432 if (cd.clk->ops.timer_settime) 426 if (cd.clk->ops.timer_settime)
433 err = cd.clk->ops.timer_settime(cd.clk, kit, flags, ts, old); 427 err = cd.clk->ops.timer_settime(cd.clk, kit, flags, ts, old);
434 else 428 else
435 err = -EOPNOTSUPP; 429 err = -EOPNOTSUPP;
436 430
437 put_clock_desc(&cd); 431 put_clock_desc(&cd);
438 432
439 return err; 433 return err;
440 } 434 }
441 435
442 struct k_clock clock_posix_dynamic = { 436 struct k_clock clock_posix_dynamic = {
443 .clock_getres = pc_clock_getres, 437 .clock_getres = pc_clock_getres,
444 .clock_set = pc_clock_settime, 438 .clock_set = pc_clock_settime,
445 .clock_get = pc_clock_gettime, 439 .clock_get = pc_clock_gettime,
446 .clock_adj = pc_clock_adjtime, 440 .clock_adj = pc_clock_adjtime,
447 .timer_create = pc_timer_create, 441 .timer_create = pc_timer_create,
448 .timer_set = pc_timer_settime, 442 .timer_set = pc_timer_settime,
449 .timer_del = pc_timer_delete, 443 .timer_del = pc_timer_delete,
450 .timer_get = pc_timer_gettime, 444 .timer_get = pc_timer_gettime,
451 }; 445 };
452 446