Commit 7cb1a5351da8ac499d965a78e94c79ad27891f43

Authored by Darrick J. Wong
Committed by Theodore Ts'o
1 parent ed3ce80a52

ext4: clean up some wait_on_page_writeback calls

wait_on_page_writeback already checks the writeback bit, so callers of it
needn't do that test.

Signed-off-by: Darrick J. Wong <djwong@us.ibm.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>

Showing 2 changed files with 2 additions and 5 deletions Inline Diff

1 /* 1 /*
2 * linux/fs/ext4/inode.c 2 * linux/fs/ext4/inode.c
3 * 3 *
4 * Copyright (C) 1992, 1993, 1994, 1995 4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr) 5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal 6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI) 7 * Universite Pierre et Marie Curie (Paris VI)
8 * 8 *
9 * from 9 * from
10 * 10 *
11 * linux/fs/minix/inode.c 11 * linux/fs/minix/inode.c
12 * 12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds 13 * Copyright (C) 1991, 1992 Linus Torvalds
14 * 14 *
15 * Goal-directed block allocation by Stephen Tweedie 15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998 16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by 17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995 18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek 19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz) 20 * (jj@sunsite.ms.mff.cuni.cz)
21 * 21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */ 23 */
24 24
25 #include <linux/module.h> 25 #include <linux/module.h>
26 #include <linux/fs.h> 26 #include <linux/fs.h>
27 #include <linux/time.h> 27 #include <linux/time.h>
28 #include <linux/jbd2.h> 28 #include <linux/jbd2.h>
29 #include <linux/highuid.h> 29 #include <linux/highuid.h>
30 #include <linux/pagemap.h> 30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h> 31 #include <linux/quotaops.h>
32 #include <linux/string.h> 32 #include <linux/string.h>
33 #include <linux/buffer_head.h> 33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h> 34 #include <linux/writeback.h>
35 #include <linux/pagevec.h> 35 #include <linux/pagevec.h>
36 #include <linux/mpage.h> 36 #include <linux/mpage.h>
37 #include <linux/namei.h> 37 #include <linux/namei.h>
38 #include <linux/uio.h> 38 #include <linux/uio.h>
39 #include <linux/bio.h> 39 #include <linux/bio.h>
40 #include <linux/workqueue.h> 40 #include <linux/workqueue.h>
41 #include <linux/kernel.h> 41 #include <linux/kernel.h>
42 #include <linux/printk.h> 42 #include <linux/printk.h>
43 #include <linux/slab.h> 43 #include <linux/slab.h>
44 #include <linux/ratelimit.h> 44 #include <linux/ratelimit.h>
45 45
46 #include "ext4_jbd2.h" 46 #include "ext4_jbd2.h"
47 #include "xattr.h" 47 #include "xattr.h"
48 #include "acl.h" 48 #include "acl.h"
49 #include "ext4_extents.h" 49 #include "ext4_extents.h"
50 50
51 #include <trace/events/ext4.h> 51 #include <trace/events/ext4.h>
52 52
53 #define MPAGE_DA_EXTENT_TAIL 0x01 53 #define MPAGE_DA_EXTENT_TAIL 0x01
54 54
55 static inline int ext4_begin_ordered_truncate(struct inode *inode, 55 static inline int ext4_begin_ordered_truncate(struct inode *inode,
56 loff_t new_size) 56 loff_t new_size)
57 { 57 {
58 trace_ext4_begin_ordered_truncate(inode, new_size); 58 trace_ext4_begin_ordered_truncate(inode, new_size);
59 /* 59 /*
60 * If jinode is zero, then we never opened the file for 60 * If jinode is zero, then we never opened the file for
61 * writing, so there's no need to call 61 * writing, so there's no need to call
62 * jbd2_journal_begin_ordered_truncate() since there's no 62 * jbd2_journal_begin_ordered_truncate() since there's no
63 * outstanding writes we need to flush. 63 * outstanding writes we need to flush.
64 */ 64 */
65 if (!EXT4_I(inode)->jinode) 65 if (!EXT4_I(inode)->jinode)
66 return 0; 66 return 0;
67 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 67 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
68 EXT4_I(inode)->jinode, 68 EXT4_I(inode)->jinode,
69 new_size); 69 new_size);
70 } 70 }
71 71
72 static void ext4_invalidatepage(struct page *page, unsigned long offset); 72 static void ext4_invalidatepage(struct page *page, unsigned long offset);
73 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 73 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
74 struct buffer_head *bh_result, int create); 74 struct buffer_head *bh_result, int create);
75 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 75 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
76 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 76 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
77 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 77 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
78 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 78 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
79 79
80 /* 80 /*
81 * Test whether an inode is a fast symlink. 81 * Test whether an inode is a fast symlink.
82 */ 82 */
83 static int ext4_inode_is_fast_symlink(struct inode *inode) 83 static int ext4_inode_is_fast_symlink(struct inode *inode)
84 { 84 {
85 int ea_blocks = EXT4_I(inode)->i_file_acl ? 85 int ea_blocks = EXT4_I(inode)->i_file_acl ?
86 (inode->i_sb->s_blocksize >> 9) : 0; 86 (inode->i_sb->s_blocksize >> 9) : 0;
87 87
88 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 88 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
89 } 89 }
90 90
91 /* 91 /*
92 * Work out how many blocks we need to proceed with the next chunk of a 92 * Work out how many blocks we need to proceed with the next chunk of a
93 * truncate transaction. 93 * truncate transaction.
94 */ 94 */
95 static unsigned long blocks_for_truncate(struct inode *inode) 95 static unsigned long blocks_for_truncate(struct inode *inode)
96 { 96 {
97 ext4_lblk_t needed; 97 ext4_lblk_t needed;
98 98
99 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); 99 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
100 100
101 /* Give ourselves just enough room to cope with inodes in which 101 /* Give ourselves just enough room to cope with inodes in which
102 * i_blocks is corrupt: we've seen disk corruptions in the past 102 * i_blocks is corrupt: we've seen disk corruptions in the past
103 * which resulted in random data in an inode which looked enough 103 * which resulted in random data in an inode which looked enough
104 * like a regular file for ext4 to try to delete it. Things 104 * like a regular file for ext4 to try to delete it. Things
105 * will go a bit crazy if that happens, but at least we should 105 * will go a bit crazy if that happens, but at least we should
106 * try not to panic the whole kernel. */ 106 * try not to panic the whole kernel. */
107 if (needed < 2) 107 if (needed < 2)
108 needed = 2; 108 needed = 2;
109 109
110 /* But we need to bound the transaction so we don't overflow the 110 /* But we need to bound the transaction so we don't overflow the
111 * journal. */ 111 * journal. */
112 if (needed > EXT4_MAX_TRANS_DATA) 112 if (needed > EXT4_MAX_TRANS_DATA)
113 needed = EXT4_MAX_TRANS_DATA; 113 needed = EXT4_MAX_TRANS_DATA;
114 114
115 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed; 115 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
116 } 116 }
117 117
118 /* 118 /*
119 * Truncate transactions can be complex and absolutely huge. So we need to 119 * Truncate transactions can be complex and absolutely huge. So we need to
120 * be able to restart the transaction at a conventient checkpoint to make 120 * be able to restart the transaction at a conventient checkpoint to make
121 * sure we don't overflow the journal. 121 * sure we don't overflow the journal.
122 * 122 *
123 * start_transaction gets us a new handle for a truncate transaction, 123 * start_transaction gets us a new handle for a truncate transaction,
124 * and extend_transaction tries to extend the existing one a bit. If 124 * and extend_transaction tries to extend the existing one a bit. If
125 * extend fails, we need to propagate the failure up and restart the 125 * extend fails, we need to propagate the failure up and restart the
126 * transaction in the top-level truncate loop. --sct 126 * transaction in the top-level truncate loop. --sct
127 */ 127 */
128 static handle_t *start_transaction(struct inode *inode) 128 static handle_t *start_transaction(struct inode *inode)
129 { 129 {
130 handle_t *result; 130 handle_t *result;
131 131
132 result = ext4_journal_start(inode, blocks_for_truncate(inode)); 132 result = ext4_journal_start(inode, blocks_for_truncate(inode));
133 if (!IS_ERR(result)) 133 if (!IS_ERR(result))
134 return result; 134 return result;
135 135
136 ext4_std_error(inode->i_sb, PTR_ERR(result)); 136 ext4_std_error(inode->i_sb, PTR_ERR(result));
137 return result; 137 return result;
138 } 138 }
139 139
140 /* 140 /*
141 * Try to extend this transaction for the purposes of truncation. 141 * Try to extend this transaction for the purposes of truncation.
142 * 142 *
143 * Returns 0 if we managed to create more room. If we can't create more 143 * Returns 0 if we managed to create more room. If we can't create more
144 * room, and the transaction must be restarted we return 1. 144 * room, and the transaction must be restarted we return 1.
145 */ 145 */
146 static int try_to_extend_transaction(handle_t *handle, struct inode *inode) 146 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
147 { 147 {
148 if (!ext4_handle_valid(handle)) 148 if (!ext4_handle_valid(handle))
149 return 0; 149 return 0;
150 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) 150 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
151 return 0; 151 return 0;
152 if (!ext4_journal_extend(handle, blocks_for_truncate(inode))) 152 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
153 return 0; 153 return 0;
154 return 1; 154 return 1;
155 } 155 }
156 156
157 /* 157 /*
158 * Restart the transaction associated with *handle. This does a commit, 158 * Restart the transaction associated with *handle. This does a commit,
159 * so before we call here everything must be consistently dirtied against 159 * so before we call here everything must be consistently dirtied against
160 * this transaction. 160 * this transaction.
161 */ 161 */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163 int nblocks) 163 int nblocks)
164 { 164 {
165 int ret; 165 int ret;
166 166
167 /* 167 /*
168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
169 * moment, get_block can be called only for blocks inside i_size since 169 * moment, get_block can be called only for blocks inside i_size since
170 * page cache has been already dropped and writes are blocked by 170 * page cache has been already dropped and writes are blocked by
171 * i_mutex. So we can safely drop the i_data_sem here. 171 * i_mutex. So we can safely drop the i_data_sem here.
172 */ 172 */
173 BUG_ON(EXT4_JOURNAL(inode) == NULL); 173 BUG_ON(EXT4_JOURNAL(inode) == NULL);
174 jbd_debug(2, "restarting handle %p\n", handle); 174 jbd_debug(2, "restarting handle %p\n", handle);
175 up_write(&EXT4_I(inode)->i_data_sem); 175 up_write(&EXT4_I(inode)->i_data_sem);
176 ret = ext4_journal_restart(handle, nblocks); 176 ret = ext4_journal_restart(handle, nblocks);
177 down_write(&EXT4_I(inode)->i_data_sem); 177 down_write(&EXT4_I(inode)->i_data_sem);
178 ext4_discard_preallocations(inode); 178 ext4_discard_preallocations(inode);
179 179
180 return ret; 180 return ret;
181 } 181 }
182 182
183 /* 183 /*
184 * Called at the last iput() if i_nlink is zero. 184 * Called at the last iput() if i_nlink is zero.
185 */ 185 */
186 void ext4_evict_inode(struct inode *inode) 186 void ext4_evict_inode(struct inode *inode)
187 { 187 {
188 handle_t *handle; 188 handle_t *handle;
189 int err; 189 int err;
190 190
191 trace_ext4_evict_inode(inode); 191 trace_ext4_evict_inode(inode);
192 if (inode->i_nlink) { 192 if (inode->i_nlink) {
193 truncate_inode_pages(&inode->i_data, 0); 193 truncate_inode_pages(&inode->i_data, 0);
194 goto no_delete; 194 goto no_delete;
195 } 195 }
196 196
197 if (!is_bad_inode(inode)) 197 if (!is_bad_inode(inode))
198 dquot_initialize(inode); 198 dquot_initialize(inode);
199 199
200 if (ext4_should_order_data(inode)) 200 if (ext4_should_order_data(inode))
201 ext4_begin_ordered_truncate(inode, 0); 201 ext4_begin_ordered_truncate(inode, 0);
202 truncate_inode_pages(&inode->i_data, 0); 202 truncate_inode_pages(&inode->i_data, 0);
203 203
204 if (is_bad_inode(inode)) 204 if (is_bad_inode(inode))
205 goto no_delete; 205 goto no_delete;
206 206
207 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3); 207 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
208 if (IS_ERR(handle)) { 208 if (IS_ERR(handle)) {
209 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 209 ext4_std_error(inode->i_sb, PTR_ERR(handle));
210 /* 210 /*
211 * If we're going to skip the normal cleanup, we still need to 211 * If we're going to skip the normal cleanup, we still need to
212 * make sure that the in-core orphan linked list is properly 212 * make sure that the in-core orphan linked list is properly
213 * cleaned up. 213 * cleaned up.
214 */ 214 */
215 ext4_orphan_del(NULL, inode); 215 ext4_orphan_del(NULL, inode);
216 goto no_delete; 216 goto no_delete;
217 } 217 }
218 218
219 if (IS_SYNC(inode)) 219 if (IS_SYNC(inode))
220 ext4_handle_sync(handle); 220 ext4_handle_sync(handle);
221 inode->i_size = 0; 221 inode->i_size = 0;
222 err = ext4_mark_inode_dirty(handle, inode); 222 err = ext4_mark_inode_dirty(handle, inode);
223 if (err) { 223 if (err) {
224 ext4_warning(inode->i_sb, 224 ext4_warning(inode->i_sb,
225 "couldn't mark inode dirty (err %d)", err); 225 "couldn't mark inode dirty (err %d)", err);
226 goto stop_handle; 226 goto stop_handle;
227 } 227 }
228 if (inode->i_blocks) 228 if (inode->i_blocks)
229 ext4_truncate(inode); 229 ext4_truncate(inode);
230 230
231 /* 231 /*
232 * ext4_ext_truncate() doesn't reserve any slop when it 232 * ext4_ext_truncate() doesn't reserve any slop when it
233 * restarts journal transactions; therefore there may not be 233 * restarts journal transactions; therefore there may not be
234 * enough credits left in the handle to remove the inode from 234 * enough credits left in the handle to remove the inode from
235 * the orphan list and set the dtime field. 235 * the orphan list and set the dtime field.
236 */ 236 */
237 if (!ext4_handle_has_enough_credits(handle, 3)) { 237 if (!ext4_handle_has_enough_credits(handle, 3)) {
238 err = ext4_journal_extend(handle, 3); 238 err = ext4_journal_extend(handle, 3);
239 if (err > 0) 239 if (err > 0)
240 err = ext4_journal_restart(handle, 3); 240 err = ext4_journal_restart(handle, 3);
241 if (err != 0) { 241 if (err != 0) {
242 ext4_warning(inode->i_sb, 242 ext4_warning(inode->i_sb,
243 "couldn't extend journal (err %d)", err); 243 "couldn't extend journal (err %d)", err);
244 stop_handle: 244 stop_handle:
245 ext4_journal_stop(handle); 245 ext4_journal_stop(handle);
246 ext4_orphan_del(NULL, inode); 246 ext4_orphan_del(NULL, inode);
247 goto no_delete; 247 goto no_delete;
248 } 248 }
249 } 249 }
250 250
251 /* 251 /*
252 * Kill off the orphan record which ext4_truncate created. 252 * Kill off the orphan record which ext4_truncate created.
253 * AKPM: I think this can be inside the above `if'. 253 * AKPM: I think this can be inside the above `if'.
254 * Note that ext4_orphan_del() has to be able to cope with the 254 * Note that ext4_orphan_del() has to be able to cope with the
255 * deletion of a non-existent orphan - this is because we don't 255 * deletion of a non-existent orphan - this is because we don't
256 * know if ext4_truncate() actually created an orphan record. 256 * know if ext4_truncate() actually created an orphan record.
257 * (Well, we could do this if we need to, but heck - it works) 257 * (Well, we could do this if we need to, but heck - it works)
258 */ 258 */
259 ext4_orphan_del(handle, inode); 259 ext4_orphan_del(handle, inode);
260 EXT4_I(inode)->i_dtime = get_seconds(); 260 EXT4_I(inode)->i_dtime = get_seconds();
261 261
262 /* 262 /*
263 * One subtle ordering requirement: if anything has gone wrong 263 * One subtle ordering requirement: if anything has gone wrong
264 * (transaction abort, IO errors, whatever), then we can still 264 * (transaction abort, IO errors, whatever), then we can still
265 * do these next steps (the fs will already have been marked as 265 * do these next steps (the fs will already have been marked as
266 * having errors), but we can't free the inode if the mark_dirty 266 * having errors), but we can't free the inode if the mark_dirty
267 * fails. 267 * fails.
268 */ 268 */
269 if (ext4_mark_inode_dirty(handle, inode)) 269 if (ext4_mark_inode_dirty(handle, inode))
270 /* If that failed, just do the required in-core inode clear. */ 270 /* If that failed, just do the required in-core inode clear. */
271 ext4_clear_inode(inode); 271 ext4_clear_inode(inode);
272 else 272 else
273 ext4_free_inode(handle, inode); 273 ext4_free_inode(handle, inode);
274 ext4_journal_stop(handle); 274 ext4_journal_stop(handle);
275 return; 275 return;
276 no_delete: 276 no_delete:
277 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 277 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
278 } 278 }
279 279
280 typedef struct { 280 typedef struct {
281 __le32 *p; 281 __le32 *p;
282 __le32 key; 282 __le32 key;
283 struct buffer_head *bh; 283 struct buffer_head *bh;
284 } Indirect; 284 } Indirect;
285 285
286 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) 286 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
287 { 287 {
288 p->key = *(p->p = v); 288 p->key = *(p->p = v);
289 p->bh = bh; 289 p->bh = bh;
290 } 290 }
291 291
292 /** 292 /**
293 * ext4_block_to_path - parse the block number into array of offsets 293 * ext4_block_to_path - parse the block number into array of offsets
294 * @inode: inode in question (we are only interested in its superblock) 294 * @inode: inode in question (we are only interested in its superblock)
295 * @i_block: block number to be parsed 295 * @i_block: block number to be parsed
296 * @offsets: array to store the offsets in 296 * @offsets: array to store the offsets in
297 * @boundary: set this non-zero if the referred-to block is likely to be 297 * @boundary: set this non-zero if the referred-to block is likely to be
298 * followed (on disk) by an indirect block. 298 * followed (on disk) by an indirect block.
299 * 299 *
300 * To store the locations of file's data ext4 uses a data structure common 300 * To store the locations of file's data ext4 uses a data structure common
301 * for UNIX filesystems - tree of pointers anchored in the inode, with 301 * for UNIX filesystems - tree of pointers anchored in the inode, with
302 * data blocks at leaves and indirect blocks in intermediate nodes. 302 * data blocks at leaves and indirect blocks in intermediate nodes.
303 * This function translates the block number into path in that tree - 303 * This function translates the block number into path in that tree -
304 * return value is the path length and @offsets[n] is the offset of 304 * return value is the path length and @offsets[n] is the offset of
305 * pointer to (n+1)th node in the nth one. If @block is out of range 305 * pointer to (n+1)th node in the nth one. If @block is out of range
306 * (negative or too large) warning is printed and zero returned. 306 * (negative or too large) warning is printed and zero returned.
307 * 307 *
308 * Note: function doesn't find node addresses, so no IO is needed. All 308 * Note: function doesn't find node addresses, so no IO is needed. All
309 * we need to know is the capacity of indirect blocks (taken from the 309 * we need to know is the capacity of indirect blocks (taken from the
310 * inode->i_sb). 310 * inode->i_sb).
311 */ 311 */
312 312
313 /* 313 /*
314 * Portability note: the last comparison (check that we fit into triple 314 * Portability note: the last comparison (check that we fit into triple
315 * indirect block) is spelled differently, because otherwise on an 315 * indirect block) is spelled differently, because otherwise on an
316 * architecture with 32-bit longs and 8Kb pages we might get into trouble 316 * architecture with 32-bit longs and 8Kb pages we might get into trouble
317 * if our filesystem had 8Kb blocks. We might use long long, but that would 317 * if our filesystem had 8Kb blocks. We might use long long, but that would
318 * kill us on x86. Oh, well, at least the sign propagation does not matter - 318 * kill us on x86. Oh, well, at least the sign propagation does not matter -
319 * i_block would have to be negative in the very beginning, so we would not 319 * i_block would have to be negative in the very beginning, so we would not
320 * get there at all. 320 * get there at all.
321 */ 321 */
322 322
323 static int ext4_block_to_path(struct inode *inode, 323 static int ext4_block_to_path(struct inode *inode,
324 ext4_lblk_t i_block, 324 ext4_lblk_t i_block,
325 ext4_lblk_t offsets[4], int *boundary) 325 ext4_lblk_t offsets[4], int *boundary)
326 { 326 {
327 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); 327 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
328 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); 328 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
329 const long direct_blocks = EXT4_NDIR_BLOCKS, 329 const long direct_blocks = EXT4_NDIR_BLOCKS,
330 indirect_blocks = ptrs, 330 indirect_blocks = ptrs,
331 double_blocks = (1 << (ptrs_bits * 2)); 331 double_blocks = (1 << (ptrs_bits * 2));
332 int n = 0; 332 int n = 0;
333 int final = 0; 333 int final = 0;
334 334
335 if (i_block < direct_blocks) { 335 if (i_block < direct_blocks) {
336 offsets[n++] = i_block; 336 offsets[n++] = i_block;
337 final = direct_blocks; 337 final = direct_blocks;
338 } else if ((i_block -= direct_blocks) < indirect_blocks) { 338 } else if ((i_block -= direct_blocks) < indirect_blocks) {
339 offsets[n++] = EXT4_IND_BLOCK; 339 offsets[n++] = EXT4_IND_BLOCK;
340 offsets[n++] = i_block; 340 offsets[n++] = i_block;
341 final = ptrs; 341 final = ptrs;
342 } else if ((i_block -= indirect_blocks) < double_blocks) { 342 } else if ((i_block -= indirect_blocks) < double_blocks) {
343 offsets[n++] = EXT4_DIND_BLOCK; 343 offsets[n++] = EXT4_DIND_BLOCK;
344 offsets[n++] = i_block >> ptrs_bits; 344 offsets[n++] = i_block >> ptrs_bits;
345 offsets[n++] = i_block & (ptrs - 1); 345 offsets[n++] = i_block & (ptrs - 1);
346 final = ptrs; 346 final = ptrs;
347 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 347 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348 offsets[n++] = EXT4_TIND_BLOCK; 348 offsets[n++] = EXT4_TIND_BLOCK;
349 offsets[n++] = i_block >> (ptrs_bits * 2); 349 offsets[n++] = i_block >> (ptrs_bits * 2);
350 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 350 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351 offsets[n++] = i_block & (ptrs - 1); 351 offsets[n++] = i_block & (ptrs - 1);
352 final = ptrs; 352 final = ptrs;
353 } else { 353 } else {
354 ext4_warning(inode->i_sb, "block %lu > max in inode %lu", 354 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
355 i_block + direct_blocks + 355 i_block + direct_blocks +
356 indirect_blocks + double_blocks, inode->i_ino); 356 indirect_blocks + double_blocks, inode->i_ino);
357 } 357 }
358 if (boundary) 358 if (boundary)
359 *boundary = final - 1 - (i_block & (ptrs - 1)); 359 *boundary = final - 1 - (i_block & (ptrs - 1));
360 return n; 360 return n;
361 } 361 }
362 362
363 static int __ext4_check_blockref(const char *function, unsigned int line, 363 static int __ext4_check_blockref(const char *function, unsigned int line,
364 struct inode *inode, 364 struct inode *inode,
365 __le32 *p, unsigned int max) 365 __le32 *p, unsigned int max)
366 { 366 {
367 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 367 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
368 __le32 *bref = p; 368 __le32 *bref = p;
369 unsigned int blk; 369 unsigned int blk;
370 370
371 while (bref < p+max) { 371 while (bref < p+max) {
372 blk = le32_to_cpu(*bref++); 372 blk = le32_to_cpu(*bref++);
373 if (blk && 373 if (blk &&
374 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb), 374 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
375 blk, 1))) { 375 blk, 1))) {
376 es->s_last_error_block = cpu_to_le64(blk); 376 es->s_last_error_block = cpu_to_le64(blk);
377 ext4_error_inode(inode, function, line, blk, 377 ext4_error_inode(inode, function, line, blk,
378 "invalid block"); 378 "invalid block");
379 return -EIO; 379 return -EIO;
380 } 380 }
381 } 381 }
382 return 0; 382 return 0;
383 } 383 }
384 384
385 385
386 #define ext4_check_indirect_blockref(inode, bh) \ 386 #define ext4_check_indirect_blockref(inode, bh) \
387 __ext4_check_blockref(__func__, __LINE__, inode, \ 387 __ext4_check_blockref(__func__, __LINE__, inode, \
388 (__le32 *)(bh)->b_data, \ 388 (__le32 *)(bh)->b_data, \
389 EXT4_ADDR_PER_BLOCK((inode)->i_sb)) 389 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
390 390
391 #define ext4_check_inode_blockref(inode) \ 391 #define ext4_check_inode_blockref(inode) \
392 __ext4_check_blockref(__func__, __LINE__, inode, \ 392 __ext4_check_blockref(__func__, __LINE__, inode, \
393 EXT4_I(inode)->i_data, \ 393 EXT4_I(inode)->i_data, \
394 EXT4_NDIR_BLOCKS) 394 EXT4_NDIR_BLOCKS)
395 395
396 /** 396 /**
397 * ext4_get_branch - read the chain of indirect blocks leading to data 397 * ext4_get_branch - read the chain of indirect blocks leading to data
398 * @inode: inode in question 398 * @inode: inode in question
399 * @depth: depth of the chain (1 - direct pointer, etc.) 399 * @depth: depth of the chain (1 - direct pointer, etc.)
400 * @offsets: offsets of pointers in inode/indirect blocks 400 * @offsets: offsets of pointers in inode/indirect blocks
401 * @chain: place to store the result 401 * @chain: place to store the result
402 * @err: here we store the error value 402 * @err: here we store the error value
403 * 403 *
404 * Function fills the array of triples <key, p, bh> and returns %NULL 404 * Function fills the array of triples <key, p, bh> and returns %NULL
405 * if everything went OK or the pointer to the last filled triple 405 * if everything went OK or the pointer to the last filled triple
406 * (incomplete one) otherwise. Upon the return chain[i].key contains 406 * (incomplete one) otherwise. Upon the return chain[i].key contains
407 * the number of (i+1)-th block in the chain (as it is stored in memory, 407 * the number of (i+1)-th block in the chain (as it is stored in memory,
408 * i.e. little-endian 32-bit), chain[i].p contains the address of that 408 * i.e. little-endian 32-bit), chain[i].p contains the address of that
409 * number (it points into struct inode for i==0 and into the bh->b_data 409 * number (it points into struct inode for i==0 and into the bh->b_data
410 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect 410 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
411 * block for i>0 and NULL for i==0. In other words, it holds the block 411 * block for i>0 and NULL for i==0. In other words, it holds the block
412 * numbers of the chain, addresses they were taken from (and where we can 412 * numbers of the chain, addresses they were taken from (and where we can
413 * verify that chain did not change) and buffer_heads hosting these 413 * verify that chain did not change) and buffer_heads hosting these
414 * numbers. 414 * numbers.
415 * 415 *
416 * Function stops when it stumbles upon zero pointer (absent block) 416 * Function stops when it stumbles upon zero pointer (absent block)
417 * (pointer to last triple returned, *@err == 0) 417 * (pointer to last triple returned, *@err == 0)
418 * or when it gets an IO error reading an indirect block 418 * or when it gets an IO error reading an indirect block
419 * (ditto, *@err == -EIO) 419 * (ditto, *@err == -EIO)
420 * or when it reads all @depth-1 indirect blocks successfully and finds 420 * or when it reads all @depth-1 indirect blocks successfully and finds
421 * the whole chain, all way to the data (returns %NULL, *err == 0). 421 * the whole chain, all way to the data (returns %NULL, *err == 0).
422 * 422 *
423 * Need to be called with 423 * Need to be called with
424 * down_read(&EXT4_I(inode)->i_data_sem) 424 * down_read(&EXT4_I(inode)->i_data_sem)
425 */ 425 */
426 static Indirect *ext4_get_branch(struct inode *inode, int depth, 426 static Indirect *ext4_get_branch(struct inode *inode, int depth,
427 ext4_lblk_t *offsets, 427 ext4_lblk_t *offsets,
428 Indirect chain[4], int *err) 428 Indirect chain[4], int *err)
429 { 429 {
430 struct super_block *sb = inode->i_sb; 430 struct super_block *sb = inode->i_sb;
431 Indirect *p = chain; 431 Indirect *p = chain;
432 struct buffer_head *bh; 432 struct buffer_head *bh;
433 433
434 *err = 0; 434 *err = 0;
435 /* i_data is not going away, no lock needed */ 435 /* i_data is not going away, no lock needed */
436 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); 436 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
437 if (!p->key) 437 if (!p->key)
438 goto no_block; 438 goto no_block;
439 while (--depth) { 439 while (--depth) {
440 bh = sb_getblk(sb, le32_to_cpu(p->key)); 440 bh = sb_getblk(sb, le32_to_cpu(p->key));
441 if (unlikely(!bh)) 441 if (unlikely(!bh))
442 goto failure; 442 goto failure;
443 443
444 if (!bh_uptodate_or_lock(bh)) { 444 if (!bh_uptodate_or_lock(bh)) {
445 if (bh_submit_read(bh) < 0) { 445 if (bh_submit_read(bh) < 0) {
446 put_bh(bh); 446 put_bh(bh);
447 goto failure; 447 goto failure;
448 } 448 }
449 /* validate block references */ 449 /* validate block references */
450 if (ext4_check_indirect_blockref(inode, bh)) { 450 if (ext4_check_indirect_blockref(inode, bh)) {
451 put_bh(bh); 451 put_bh(bh);
452 goto failure; 452 goto failure;
453 } 453 }
454 } 454 }
455 455
456 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); 456 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
457 /* Reader: end */ 457 /* Reader: end */
458 if (!p->key) 458 if (!p->key)
459 goto no_block; 459 goto no_block;
460 } 460 }
461 return NULL; 461 return NULL;
462 462
463 failure: 463 failure:
464 *err = -EIO; 464 *err = -EIO;
465 no_block: 465 no_block:
466 return p; 466 return p;
467 } 467 }
468 468
469 /** 469 /**
470 * ext4_find_near - find a place for allocation with sufficient locality 470 * ext4_find_near - find a place for allocation with sufficient locality
471 * @inode: owner 471 * @inode: owner
472 * @ind: descriptor of indirect block. 472 * @ind: descriptor of indirect block.
473 * 473 *
474 * This function returns the preferred place for block allocation. 474 * This function returns the preferred place for block allocation.
475 * It is used when heuristic for sequential allocation fails. 475 * It is used when heuristic for sequential allocation fails.
476 * Rules are: 476 * Rules are:
477 * + if there is a block to the left of our position - allocate near it. 477 * + if there is a block to the left of our position - allocate near it.
478 * + if pointer will live in indirect block - allocate near that block. 478 * + if pointer will live in indirect block - allocate near that block.
479 * + if pointer will live in inode - allocate in the same 479 * + if pointer will live in inode - allocate in the same
480 * cylinder group. 480 * cylinder group.
481 * 481 *
482 * In the latter case we colour the starting block by the callers PID to 482 * In the latter case we colour the starting block by the callers PID to
483 * prevent it from clashing with concurrent allocations for a different inode 483 * prevent it from clashing with concurrent allocations for a different inode
484 * in the same block group. The PID is used here so that functionally related 484 * in the same block group. The PID is used here so that functionally related
485 * files will be close-by on-disk. 485 * files will be close-by on-disk.
486 * 486 *
487 * Caller must make sure that @ind is valid and will stay that way. 487 * Caller must make sure that @ind is valid and will stay that way.
488 */ 488 */
489 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) 489 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
490 { 490 {
491 struct ext4_inode_info *ei = EXT4_I(inode); 491 struct ext4_inode_info *ei = EXT4_I(inode);
492 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; 492 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
493 __le32 *p; 493 __le32 *p;
494 ext4_fsblk_t bg_start; 494 ext4_fsblk_t bg_start;
495 ext4_fsblk_t last_block; 495 ext4_fsblk_t last_block;
496 ext4_grpblk_t colour; 496 ext4_grpblk_t colour;
497 ext4_group_t block_group; 497 ext4_group_t block_group;
498 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb)); 498 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
499 499
500 /* Try to find previous block */ 500 /* Try to find previous block */
501 for (p = ind->p - 1; p >= start; p--) { 501 for (p = ind->p - 1; p >= start; p--) {
502 if (*p) 502 if (*p)
503 return le32_to_cpu(*p); 503 return le32_to_cpu(*p);
504 } 504 }
505 505
506 /* No such thing, so let's try location of indirect block */ 506 /* No such thing, so let's try location of indirect block */
507 if (ind->bh) 507 if (ind->bh)
508 return ind->bh->b_blocknr; 508 return ind->bh->b_blocknr;
509 509
510 /* 510 /*
511 * It is going to be referred to from the inode itself? OK, just put it 511 * It is going to be referred to from the inode itself? OK, just put it
512 * into the same cylinder group then. 512 * into the same cylinder group then.
513 */ 513 */
514 block_group = ei->i_block_group; 514 block_group = ei->i_block_group;
515 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) { 515 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
516 block_group &= ~(flex_size-1); 516 block_group &= ~(flex_size-1);
517 if (S_ISREG(inode->i_mode)) 517 if (S_ISREG(inode->i_mode))
518 block_group++; 518 block_group++;
519 } 519 }
520 bg_start = ext4_group_first_block_no(inode->i_sb, block_group); 520 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
521 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1; 521 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
522 522
523 /* 523 /*
524 * If we are doing delayed allocation, we don't need take 524 * If we are doing delayed allocation, we don't need take
525 * colour into account. 525 * colour into account.
526 */ 526 */
527 if (test_opt(inode->i_sb, DELALLOC)) 527 if (test_opt(inode->i_sb, DELALLOC))
528 return bg_start; 528 return bg_start;
529 529
530 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block) 530 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
531 colour = (current->pid % 16) * 531 colour = (current->pid % 16) *
532 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16); 532 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
533 else 533 else
534 colour = (current->pid % 16) * ((last_block - bg_start) / 16); 534 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
535 return bg_start + colour; 535 return bg_start + colour;
536 } 536 }
537 537
538 /** 538 /**
539 * ext4_find_goal - find a preferred place for allocation. 539 * ext4_find_goal - find a preferred place for allocation.
540 * @inode: owner 540 * @inode: owner
541 * @block: block we want 541 * @block: block we want
542 * @partial: pointer to the last triple within a chain 542 * @partial: pointer to the last triple within a chain
543 * 543 *
544 * Normally this function find the preferred place for block allocation, 544 * Normally this function find the preferred place for block allocation,
545 * returns it. 545 * returns it.
546 * Because this is only used for non-extent files, we limit the block nr 546 * Because this is only used for non-extent files, we limit the block nr
547 * to 32 bits. 547 * to 32 bits.
548 */ 548 */
549 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, 549 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
550 Indirect *partial) 550 Indirect *partial)
551 { 551 {
552 ext4_fsblk_t goal; 552 ext4_fsblk_t goal;
553 553
554 /* 554 /*
555 * XXX need to get goal block from mballoc's data structures 555 * XXX need to get goal block from mballoc's data structures
556 */ 556 */
557 557
558 goal = ext4_find_near(inode, partial); 558 goal = ext4_find_near(inode, partial);
559 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; 559 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
560 return goal; 560 return goal;
561 } 561 }
562 562
563 /** 563 /**
564 * ext4_blks_to_allocate - Look up the block map and count the number 564 * ext4_blks_to_allocate - Look up the block map and count the number
565 * of direct blocks need to be allocated for the given branch. 565 * of direct blocks need to be allocated for the given branch.
566 * 566 *
567 * @branch: chain of indirect blocks 567 * @branch: chain of indirect blocks
568 * @k: number of blocks need for indirect blocks 568 * @k: number of blocks need for indirect blocks
569 * @blks: number of data blocks to be mapped. 569 * @blks: number of data blocks to be mapped.
570 * @blocks_to_boundary: the offset in the indirect block 570 * @blocks_to_boundary: the offset in the indirect block
571 * 571 *
572 * return the total number of blocks to be allocate, including the 572 * return the total number of blocks to be allocate, including the
573 * direct and indirect blocks. 573 * direct and indirect blocks.
574 */ 574 */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, 575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576 int blocks_to_boundary) 576 int blocks_to_boundary)
577 { 577 {
578 unsigned int count = 0; 578 unsigned int count = 0;
579 579
580 /* 580 /*
581 * Simple case, [t,d]Indirect block(s) has not allocated yet 581 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 * then it's clear blocks on that path have not allocated 582 * then it's clear blocks on that path have not allocated
583 */ 583 */
584 if (k > 0) { 584 if (k > 0) {
585 /* right now we don't handle cross boundary allocation */ 585 /* right now we don't handle cross boundary allocation */
586 if (blks < blocks_to_boundary + 1) 586 if (blks < blocks_to_boundary + 1)
587 count += blks; 587 count += blks;
588 else 588 else
589 count += blocks_to_boundary + 1; 589 count += blocks_to_boundary + 1;
590 return count; 590 return count;
591 } 591 }
592 592
593 count++; 593 count++;
594 while (count < blks && count <= blocks_to_boundary && 594 while (count < blks && count <= blocks_to_boundary &&
595 le32_to_cpu(*(branch[0].p + count)) == 0) { 595 le32_to_cpu(*(branch[0].p + count)) == 0) {
596 count++; 596 count++;
597 } 597 }
598 return count; 598 return count;
599 } 599 }
600 600
601 /** 601 /**
602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch 602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
603 * @handle: handle for this transaction 603 * @handle: handle for this transaction
604 * @inode: inode which needs allocated blocks 604 * @inode: inode which needs allocated blocks
605 * @iblock: the logical block to start allocated at 605 * @iblock: the logical block to start allocated at
606 * @goal: preferred physical block of allocation 606 * @goal: preferred physical block of allocation
607 * @indirect_blks: the number of blocks need to allocate for indirect 607 * @indirect_blks: the number of blocks need to allocate for indirect
608 * blocks 608 * blocks
609 * @blks: number of desired blocks 609 * @blks: number of desired blocks
610 * @new_blocks: on return it will store the new block numbers for 610 * @new_blocks: on return it will store the new block numbers for
611 * the indirect blocks(if needed) and the first direct block, 611 * the indirect blocks(if needed) and the first direct block,
612 * @err: on return it will store the error code 612 * @err: on return it will store the error code
613 * 613 *
614 * This function will return the number of blocks allocated as 614 * This function will return the number of blocks allocated as
615 * requested by the passed-in parameters. 615 * requested by the passed-in parameters.
616 */ 616 */
617 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, 617 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
618 ext4_lblk_t iblock, ext4_fsblk_t goal, 618 ext4_lblk_t iblock, ext4_fsblk_t goal,
619 int indirect_blks, int blks, 619 int indirect_blks, int blks,
620 ext4_fsblk_t new_blocks[4], int *err) 620 ext4_fsblk_t new_blocks[4], int *err)
621 { 621 {
622 struct ext4_allocation_request ar; 622 struct ext4_allocation_request ar;
623 int target, i; 623 int target, i;
624 unsigned long count = 0, blk_allocated = 0; 624 unsigned long count = 0, blk_allocated = 0;
625 int index = 0; 625 int index = 0;
626 ext4_fsblk_t current_block = 0; 626 ext4_fsblk_t current_block = 0;
627 int ret = 0; 627 int ret = 0;
628 628
629 /* 629 /*
630 * Here we try to allocate the requested multiple blocks at once, 630 * Here we try to allocate the requested multiple blocks at once,
631 * on a best-effort basis. 631 * on a best-effort basis.
632 * To build a branch, we should allocate blocks for 632 * To build a branch, we should allocate blocks for
633 * the indirect blocks(if not allocated yet), and at least 633 * the indirect blocks(if not allocated yet), and at least
634 * the first direct block of this branch. That's the 634 * the first direct block of this branch. That's the
635 * minimum number of blocks need to allocate(required) 635 * minimum number of blocks need to allocate(required)
636 */ 636 */
637 /* first we try to allocate the indirect blocks */ 637 /* first we try to allocate the indirect blocks */
638 target = indirect_blks; 638 target = indirect_blks;
639 while (target > 0) { 639 while (target > 0) {
640 count = target; 640 count = target;
641 /* allocating blocks for indirect blocks and direct blocks */ 641 /* allocating blocks for indirect blocks and direct blocks */
642 current_block = ext4_new_meta_blocks(handle, inode, 642 current_block = ext4_new_meta_blocks(handle, inode,
643 goal, &count, err); 643 goal, &count, err);
644 if (*err) 644 if (*err)
645 goto failed_out; 645 goto failed_out;
646 646
647 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) { 647 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
648 EXT4_ERROR_INODE(inode, 648 EXT4_ERROR_INODE(inode,
649 "current_block %llu + count %lu > %d!", 649 "current_block %llu + count %lu > %d!",
650 current_block, count, 650 current_block, count,
651 EXT4_MAX_BLOCK_FILE_PHYS); 651 EXT4_MAX_BLOCK_FILE_PHYS);
652 *err = -EIO; 652 *err = -EIO;
653 goto failed_out; 653 goto failed_out;
654 } 654 }
655 655
656 target -= count; 656 target -= count;
657 /* allocate blocks for indirect blocks */ 657 /* allocate blocks for indirect blocks */
658 while (index < indirect_blks && count) { 658 while (index < indirect_blks && count) {
659 new_blocks[index++] = current_block++; 659 new_blocks[index++] = current_block++;
660 count--; 660 count--;
661 } 661 }
662 if (count > 0) { 662 if (count > 0) {
663 /* 663 /*
664 * save the new block number 664 * save the new block number
665 * for the first direct block 665 * for the first direct block
666 */ 666 */
667 new_blocks[index] = current_block; 667 new_blocks[index] = current_block;
668 printk(KERN_INFO "%s returned more blocks than " 668 printk(KERN_INFO "%s returned more blocks than "
669 "requested\n", __func__); 669 "requested\n", __func__);
670 WARN_ON(1); 670 WARN_ON(1);
671 break; 671 break;
672 } 672 }
673 } 673 }
674 674
675 target = blks - count ; 675 target = blks - count ;
676 blk_allocated = count; 676 blk_allocated = count;
677 if (!target) 677 if (!target)
678 goto allocated; 678 goto allocated;
679 /* Now allocate data blocks */ 679 /* Now allocate data blocks */
680 memset(&ar, 0, sizeof(ar)); 680 memset(&ar, 0, sizeof(ar));
681 ar.inode = inode; 681 ar.inode = inode;
682 ar.goal = goal; 682 ar.goal = goal;
683 ar.len = target; 683 ar.len = target;
684 ar.logical = iblock; 684 ar.logical = iblock;
685 if (S_ISREG(inode->i_mode)) 685 if (S_ISREG(inode->i_mode))
686 /* enable in-core preallocation only for regular files */ 686 /* enable in-core preallocation only for regular files */
687 ar.flags = EXT4_MB_HINT_DATA; 687 ar.flags = EXT4_MB_HINT_DATA;
688 688
689 current_block = ext4_mb_new_blocks(handle, &ar, err); 689 current_block = ext4_mb_new_blocks(handle, &ar, err);
690 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) { 690 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
691 EXT4_ERROR_INODE(inode, 691 EXT4_ERROR_INODE(inode,
692 "current_block %llu + ar.len %d > %d!", 692 "current_block %llu + ar.len %d > %d!",
693 current_block, ar.len, 693 current_block, ar.len,
694 EXT4_MAX_BLOCK_FILE_PHYS); 694 EXT4_MAX_BLOCK_FILE_PHYS);
695 *err = -EIO; 695 *err = -EIO;
696 goto failed_out; 696 goto failed_out;
697 } 697 }
698 698
699 if (*err && (target == blks)) { 699 if (*err && (target == blks)) {
700 /* 700 /*
701 * if the allocation failed and we didn't allocate 701 * if the allocation failed and we didn't allocate
702 * any blocks before 702 * any blocks before
703 */ 703 */
704 goto failed_out; 704 goto failed_out;
705 } 705 }
706 if (!*err) { 706 if (!*err) {
707 if (target == blks) { 707 if (target == blks) {
708 /* 708 /*
709 * save the new block number 709 * save the new block number
710 * for the first direct block 710 * for the first direct block
711 */ 711 */
712 new_blocks[index] = current_block; 712 new_blocks[index] = current_block;
713 } 713 }
714 blk_allocated += ar.len; 714 blk_allocated += ar.len;
715 } 715 }
716 allocated: 716 allocated:
717 /* total number of blocks allocated for direct blocks */ 717 /* total number of blocks allocated for direct blocks */
718 ret = blk_allocated; 718 ret = blk_allocated;
719 *err = 0; 719 *err = 0;
720 return ret; 720 return ret;
721 failed_out: 721 failed_out:
722 for (i = 0; i < index; i++) 722 for (i = 0; i < index; i++)
723 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0); 723 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
724 return ret; 724 return ret;
725 } 725 }
726 726
727 /** 727 /**
728 * ext4_alloc_branch - allocate and set up a chain of blocks. 728 * ext4_alloc_branch - allocate and set up a chain of blocks.
729 * @handle: handle for this transaction 729 * @handle: handle for this transaction
730 * @inode: owner 730 * @inode: owner
731 * @indirect_blks: number of allocated indirect blocks 731 * @indirect_blks: number of allocated indirect blocks
732 * @blks: number of allocated direct blocks 732 * @blks: number of allocated direct blocks
733 * @goal: preferred place for allocation 733 * @goal: preferred place for allocation
734 * @offsets: offsets (in the blocks) to store the pointers to next. 734 * @offsets: offsets (in the blocks) to store the pointers to next.
735 * @branch: place to store the chain in. 735 * @branch: place to store the chain in.
736 * 736 *
737 * This function allocates blocks, zeroes out all but the last one, 737 * This function allocates blocks, zeroes out all but the last one,
738 * links them into chain and (if we are synchronous) writes them to disk. 738 * links them into chain and (if we are synchronous) writes them to disk.
739 * In other words, it prepares a branch that can be spliced onto the 739 * In other words, it prepares a branch that can be spliced onto the
740 * inode. It stores the information about that chain in the branch[], in 740 * inode. It stores the information about that chain in the branch[], in
741 * the same format as ext4_get_branch() would do. We are calling it after 741 * the same format as ext4_get_branch() would do. We are calling it after
742 * we had read the existing part of chain and partial points to the last 742 * we had read the existing part of chain and partial points to the last
743 * triple of that (one with zero ->key). Upon the exit we have the same 743 * triple of that (one with zero ->key). Upon the exit we have the same
744 * picture as after the successful ext4_get_block(), except that in one 744 * picture as after the successful ext4_get_block(), except that in one
745 * place chain is disconnected - *branch->p is still zero (we did not 745 * place chain is disconnected - *branch->p is still zero (we did not
746 * set the last link), but branch->key contains the number that should 746 * set the last link), but branch->key contains the number that should
747 * be placed into *branch->p to fill that gap. 747 * be placed into *branch->p to fill that gap.
748 * 748 *
749 * If allocation fails we free all blocks we've allocated (and forget 749 * If allocation fails we free all blocks we've allocated (and forget
750 * their buffer_heads) and return the error value the from failed 750 * their buffer_heads) and return the error value the from failed
751 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain 751 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
752 * as described above and return 0. 752 * as described above and return 0.
753 */ 753 */
754 static int ext4_alloc_branch(handle_t *handle, struct inode *inode, 754 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
755 ext4_lblk_t iblock, int indirect_blks, 755 ext4_lblk_t iblock, int indirect_blks,
756 int *blks, ext4_fsblk_t goal, 756 int *blks, ext4_fsblk_t goal,
757 ext4_lblk_t *offsets, Indirect *branch) 757 ext4_lblk_t *offsets, Indirect *branch)
758 { 758 {
759 int blocksize = inode->i_sb->s_blocksize; 759 int blocksize = inode->i_sb->s_blocksize;
760 int i, n = 0; 760 int i, n = 0;
761 int err = 0; 761 int err = 0;
762 struct buffer_head *bh; 762 struct buffer_head *bh;
763 int num; 763 int num;
764 ext4_fsblk_t new_blocks[4]; 764 ext4_fsblk_t new_blocks[4];
765 ext4_fsblk_t current_block; 765 ext4_fsblk_t current_block;
766 766
767 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, 767 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
768 *blks, new_blocks, &err); 768 *blks, new_blocks, &err);
769 if (err) 769 if (err)
770 return err; 770 return err;
771 771
772 branch[0].key = cpu_to_le32(new_blocks[0]); 772 branch[0].key = cpu_to_le32(new_blocks[0]);
773 /* 773 /*
774 * metadata blocks and data blocks are allocated. 774 * metadata blocks and data blocks are allocated.
775 */ 775 */
776 for (n = 1; n <= indirect_blks; n++) { 776 for (n = 1; n <= indirect_blks; n++) {
777 /* 777 /*
778 * Get buffer_head for parent block, zero it out 778 * Get buffer_head for parent block, zero it out
779 * and set the pointer to new one, then send 779 * and set the pointer to new one, then send
780 * parent to disk. 780 * parent to disk.
781 */ 781 */
782 bh = sb_getblk(inode->i_sb, new_blocks[n-1]); 782 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
783 if (unlikely(!bh)) { 783 if (unlikely(!bh)) {
784 err = -EIO; 784 err = -EIO;
785 goto failed; 785 goto failed;
786 } 786 }
787 787
788 branch[n].bh = bh; 788 branch[n].bh = bh;
789 lock_buffer(bh); 789 lock_buffer(bh);
790 BUFFER_TRACE(bh, "call get_create_access"); 790 BUFFER_TRACE(bh, "call get_create_access");
791 err = ext4_journal_get_create_access(handle, bh); 791 err = ext4_journal_get_create_access(handle, bh);
792 if (err) { 792 if (err) {
793 /* Don't brelse(bh) here; it's done in 793 /* Don't brelse(bh) here; it's done in
794 * ext4_journal_forget() below */ 794 * ext4_journal_forget() below */
795 unlock_buffer(bh); 795 unlock_buffer(bh);
796 goto failed; 796 goto failed;
797 } 797 }
798 798
799 memset(bh->b_data, 0, blocksize); 799 memset(bh->b_data, 0, blocksize);
800 branch[n].p = (__le32 *) bh->b_data + offsets[n]; 800 branch[n].p = (__le32 *) bh->b_data + offsets[n];
801 branch[n].key = cpu_to_le32(new_blocks[n]); 801 branch[n].key = cpu_to_le32(new_blocks[n]);
802 *branch[n].p = branch[n].key; 802 *branch[n].p = branch[n].key;
803 if (n == indirect_blks) { 803 if (n == indirect_blks) {
804 current_block = new_blocks[n]; 804 current_block = new_blocks[n];
805 /* 805 /*
806 * End of chain, update the last new metablock of 806 * End of chain, update the last new metablock of
807 * the chain to point to the new allocated 807 * the chain to point to the new allocated
808 * data blocks numbers 808 * data blocks numbers
809 */ 809 */
810 for (i = 1; i < num; i++) 810 for (i = 1; i < num; i++)
811 *(branch[n].p + i) = cpu_to_le32(++current_block); 811 *(branch[n].p + i) = cpu_to_le32(++current_block);
812 } 812 }
813 BUFFER_TRACE(bh, "marking uptodate"); 813 BUFFER_TRACE(bh, "marking uptodate");
814 set_buffer_uptodate(bh); 814 set_buffer_uptodate(bh);
815 unlock_buffer(bh); 815 unlock_buffer(bh);
816 816
817 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 817 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
818 err = ext4_handle_dirty_metadata(handle, inode, bh); 818 err = ext4_handle_dirty_metadata(handle, inode, bh);
819 if (err) 819 if (err)
820 goto failed; 820 goto failed;
821 } 821 }
822 *blks = num; 822 *blks = num;
823 return err; 823 return err;
824 failed: 824 failed:
825 /* Allocation failed, free what we already allocated */ 825 /* Allocation failed, free what we already allocated */
826 ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0); 826 ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
827 for (i = 1; i <= n ; i++) { 827 for (i = 1; i <= n ; i++) {
828 /* 828 /*
829 * branch[i].bh is newly allocated, so there is no 829 * branch[i].bh is newly allocated, so there is no
830 * need to revoke the block, which is why we don't 830 * need to revoke the block, which is why we don't
831 * need to set EXT4_FREE_BLOCKS_METADATA. 831 * need to set EXT4_FREE_BLOCKS_METADATA.
832 */ 832 */
833 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 833 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
834 EXT4_FREE_BLOCKS_FORGET); 834 EXT4_FREE_BLOCKS_FORGET);
835 } 835 }
836 for (i = n+1; i < indirect_blks; i++) 836 for (i = n+1; i < indirect_blks; i++)
837 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0); 837 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
838 838
839 ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0); 839 ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
840 840
841 return err; 841 return err;
842 } 842 }
843 843
844 /** 844 /**
845 * ext4_splice_branch - splice the allocated branch onto inode. 845 * ext4_splice_branch - splice the allocated branch onto inode.
846 * @handle: handle for this transaction 846 * @handle: handle for this transaction
847 * @inode: owner 847 * @inode: owner
848 * @block: (logical) number of block we are adding 848 * @block: (logical) number of block we are adding
849 * @chain: chain of indirect blocks (with a missing link - see 849 * @chain: chain of indirect blocks (with a missing link - see
850 * ext4_alloc_branch) 850 * ext4_alloc_branch)
851 * @where: location of missing link 851 * @where: location of missing link
852 * @num: number of indirect blocks we are adding 852 * @num: number of indirect blocks we are adding
853 * @blks: number of direct blocks we are adding 853 * @blks: number of direct blocks we are adding
854 * 854 *
855 * This function fills the missing link and does all housekeeping needed in 855 * This function fills the missing link and does all housekeeping needed in
856 * inode (->i_blocks, etc.). In case of success we end up with the full 856 * inode (->i_blocks, etc.). In case of success we end up with the full
857 * chain to new block and return 0. 857 * chain to new block and return 0.
858 */ 858 */
859 static int ext4_splice_branch(handle_t *handle, struct inode *inode, 859 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
860 ext4_lblk_t block, Indirect *where, int num, 860 ext4_lblk_t block, Indirect *where, int num,
861 int blks) 861 int blks)
862 { 862 {
863 int i; 863 int i;
864 int err = 0; 864 int err = 0;
865 ext4_fsblk_t current_block; 865 ext4_fsblk_t current_block;
866 866
867 /* 867 /*
868 * If we're splicing into a [td]indirect block (as opposed to the 868 * If we're splicing into a [td]indirect block (as opposed to the
869 * inode) then we need to get write access to the [td]indirect block 869 * inode) then we need to get write access to the [td]indirect block
870 * before the splice. 870 * before the splice.
871 */ 871 */
872 if (where->bh) { 872 if (where->bh) {
873 BUFFER_TRACE(where->bh, "get_write_access"); 873 BUFFER_TRACE(where->bh, "get_write_access");
874 err = ext4_journal_get_write_access(handle, where->bh); 874 err = ext4_journal_get_write_access(handle, where->bh);
875 if (err) 875 if (err)
876 goto err_out; 876 goto err_out;
877 } 877 }
878 /* That's it */ 878 /* That's it */
879 879
880 *where->p = where->key; 880 *where->p = where->key;
881 881
882 /* 882 /*
883 * Update the host buffer_head or inode to point to more just allocated 883 * Update the host buffer_head or inode to point to more just allocated
884 * direct blocks blocks 884 * direct blocks blocks
885 */ 885 */
886 if (num == 0 && blks > 1) { 886 if (num == 0 && blks > 1) {
887 current_block = le32_to_cpu(where->key) + 1; 887 current_block = le32_to_cpu(where->key) + 1;
888 for (i = 1; i < blks; i++) 888 for (i = 1; i < blks; i++)
889 *(where->p + i) = cpu_to_le32(current_block++); 889 *(where->p + i) = cpu_to_le32(current_block++);
890 } 890 }
891 891
892 /* We are done with atomic stuff, now do the rest of housekeeping */ 892 /* We are done with atomic stuff, now do the rest of housekeeping */
893 /* had we spliced it onto indirect block? */ 893 /* had we spliced it onto indirect block? */
894 if (where->bh) { 894 if (where->bh) {
895 /* 895 /*
896 * If we spliced it onto an indirect block, we haven't 896 * If we spliced it onto an indirect block, we haven't
897 * altered the inode. Note however that if it is being spliced 897 * altered the inode. Note however that if it is being spliced
898 * onto an indirect block at the very end of the file (the 898 * onto an indirect block at the very end of the file (the
899 * file is growing) then we *will* alter the inode to reflect 899 * file is growing) then we *will* alter the inode to reflect
900 * the new i_size. But that is not done here - it is done in 900 * the new i_size. But that is not done here - it is done in
901 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. 901 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
902 */ 902 */
903 jbd_debug(5, "splicing indirect only\n"); 903 jbd_debug(5, "splicing indirect only\n");
904 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); 904 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
905 err = ext4_handle_dirty_metadata(handle, inode, where->bh); 905 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
906 if (err) 906 if (err)
907 goto err_out; 907 goto err_out;
908 } else { 908 } else {
909 /* 909 /*
910 * OK, we spliced it into the inode itself on a direct block. 910 * OK, we spliced it into the inode itself on a direct block.
911 */ 911 */
912 ext4_mark_inode_dirty(handle, inode); 912 ext4_mark_inode_dirty(handle, inode);
913 jbd_debug(5, "splicing direct\n"); 913 jbd_debug(5, "splicing direct\n");
914 } 914 }
915 return err; 915 return err;
916 916
917 err_out: 917 err_out:
918 for (i = 1; i <= num; i++) { 918 for (i = 1; i <= num; i++) {
919 /* 919 /*
920 * branch[i].bh is newly allocated, so there is no 920 * branch[i].bh is newly allocated, so there is no
921 * need to revoke the block, which is why we don't 921 * need to revoke the block, which is why we don't
922 * need to set EXT4_FREE_BLOCKS_METADATA. 922 * need to set EXT4_FREE_BLOCKS_METADATA.
923 */ 923 */
924 ext4_free_blocks(handle, inode, where[i].bh, 0, 1, 924 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
925 EXT4_FREE_BLOCKS_FORGET); 925 EXT4_FREE_BLOCKS_FORGET);
926 } 926 }
927 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key), 927 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
928 blks, 0); 928 blks, 0);
929 929
930 return err; 930 return err;
931 } 931 }
932 932
933 /* 933 /*
934 * The ext4_ind_map_blocks() function handles non-extents inodes 934 * The ext4_ind_map_blocks() function handles non-extents inodes
935 * (i.e., using the traditional indirect/double-indirect i_blocks 935 * (i.e., using the traditional indirect/double-indirect i_blocks
936 * scheme) for ext4_map_blocks(). 936 * scheme) for ext4_map_blocks().
937 * 937 *
938 * Allocation strategy is simple: if we have to allocate something, we will 938 * Allocation strategy is simple: if we have to allocate something, we will
939 * have to go the whole way to leaf. So let's do it before attaching anything 939 * have to go the whole way to leaf. So let's do it before attaching anything
940 * to tree, set linkage between the newborn blocks, write them if sync is 940 * to tree, set linkage between the newborn blocks, write them if sync is
941 * required, recheck the path, free and repeat if check fails, otherwise 941 * required, recheck the path, free and repeat if check fails, otherwise
942 * set the last missing link (that will protect us from any truncate-generated 942 * set the last missing link (that will protect us from any truncate-generated
943 * removals - all blocks on the path are immune now) and possibly force the 943 * removals - all blocks on the path are immune now) and possibly force the
944 * write on the parent block. 944 * write on the parent block.
945 * That has a nice additional property: no special recovery from the failed 945 * That has a nice additional property: no special recovery from the failed
946 * allocations is needed - we simply release blocks and do not touch anything 946 * allocations is needed - we simply release blocks and do not touch anything
947 * reachable from inode. 947 * reachable from inode.
948 * 948 *
949 * `handle' can be NULL if create == 0. 949 * `handle' can be NULL if create == 0.
950 * 950 *
951 * return > 0, # of blocks mapped or allocated. 951 * return > 0, # of blocks mapped or allocated.
952 * return = 0, if plain lookup failed. 952 * return = 0, if plain lookup failed.
953 * return < 0, error case. 953 * return < 0, error case.
954 * 954 *
955 * The ext4_ind_get_blocks() function should be called with 955 * The ext4_ind_get_blocks() function should be called with
956 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem 956 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
957 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or 957 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
958 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system 958 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
959 * blocks. 959 * blocks.
960 */ 960 */
961 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, 961 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
962 struct ext4_map_blocks *map, 962 struct ext4_map_blocks *map,
963 int flags) 963 int flags)
964 { 964 {
965 int err = -EIO; 965 int err = -EIO;
966 ext4_lblk_t offsets[4]; 966 ext4_lblk_t offsets[4];
967 Indirect chain[4]; 967 Indirect chain[4];
968 Indirect *partial; 968 Indirect *partial;
969 ext4_fsblk_t goal; 969 ext4_fsblk_t goal;
970 int indirect_blks; 970 int indirect_blks;
971 int blocks_to_boundary = 0; 971 int blocks_to_boundary = 0;
972 int depth; 972 int depth;
973 int count = 0; 973 int count = 0;
974 ext4_fsblk_t first_block = 0; 974 ext4_fsblk_t first_block = 0;
975 975
976 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); 976 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
977 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); 977 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
978 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); 978 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
979 depth = ext4_block_to_path(inode, map->m_lblk, offsets, 979 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
980 &blocks_to_boundary); 980 &blocks_to_boundary);
981 981
982 if (depth == 0) 982 if (depth == 0)
983 goto out; 983 goto out;
984 984
985 partial = ext4_get_branch(inode, depth, offsets, chain, &err); 985 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
986 986
987 /* Simplest case - block found, no allocation needed */ 987 /* Simplest case - block found, no allocation needed */
988 if (!partial) { 988 if (!partial) {
989 first_block = le32_to_cpu(chain[depth - 1].key); 989 first_block = le32_to_cpu(chain[depth - 1].key);
990 count++; 990 count++;
991 /*map more blocks*/ 991 /*map more blocks*/
992 while (count < map->m_len && count <= blocks_to_boundary) { 992 while (count < map->m_len && count <= blocks_to_boundary) {
993 ext4_fsblk_t blk; 993 ext4_fsblk_t blk;
994 994
995 blk = le32_to_cpu(*(chain[depth-1].p + count)); 995 blk = le32_to_cpu(*(chain[depth-1].p + count));
996 996
997 if (blk == first_block + count) 997 if (blk == first_block + count)
998 count++; 998 count++;
999 else 999 else
1000 break; 1000 break;
1001 } 1001 }
1002 goto got_it; 1002 goto got_it;
1003 } 1003 }
1004 1004
1005 /* Next simple case - plain lookup or failed read of indirect block */ 1005 /* Next simple case - plain lookup or failed read of indirect block */
1006 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) 1006 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
1007 goto cleanup; 1007 goto cleanup;
1008 1008
1009 /* 1009 /*
1010 * Okay, we need to do block allocation. 1010 * Okay, we need to do block allocation.
1011 */ 1011 */
1012 goal = ext4_find_goal(inode, map->m_lblk, partial); 1012 goal = ext4_find_goal(inode, map->m_lblk, partial);
1013 1013
1014 /* the number of blocks need to allocate for [d,t]indirect blocks */ 1014 /* the number of blocks need to allocate for [d,t]indirect blocks */
1015 indirect_blks = (chain + depth) - partial - 1; 1015 indirect_blks = (chain + depth) - partial - 1;
1016 1016
1017 /* 1017 /*
1018 * Next look up the indirect map to count the totoal number of 1018 * Next look up the indirect map to count the totoal number of
1019 * direct blocks to allocate for this branch. 1019 * direct blocks to allocate for this branch.
1020 */ 1020 */
1021 count = ext4_blks_to_allocate(partial, indirect_blks, 1021 count = ext4_blks_to_allocate(partial, indirect_blks,
1022 map->m_len, blocks_to_boundary); 1022 map->m_len, blocks_to_boundary);
1023 /* 1023 /*
1024 * Block out ext4_truncate while we alter the tree 1024 * Block out ext4_truncate while we alter the tree
1025 */ 1025 */
1026 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks, 1026 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1027 &count, goal, 1027 &count, goal,
1028 offsets + (partial - chain), partial); 1028 offsets + (partial - chain), partial);
1029 1029
1030 /* 1030 /*
1031 * The ext4_splice_branch call will free and forget any buffers 1031 * The ext4_splice_branch call will free and forget any buffers
1032 * on the new chain if there is a failure, but that risks using 1032 * on the new chain if there is a failure, but that risks using
1033 * up transaction credits, especially for bitmaps where the 1033 * up transaction credits, especially for bitmaps where the
1034 * credits cannot be returned. Can we handle this somehow? We 1034 * credits cannot be returned. Can we handle this somehow? We
1035 * may need to return -EAGAIN upwards in the worst case. --sct 1035 * may need to return -EAGAIN upwards in the worst case. --sct
1036 */ 1036 */
1037 if (!err) 1037 if (!err)
1038 err = ext4_splice_branch(handle, inode, map->m_lblk, 1038 err = ext4_splice_branch(handle, inode, map->m_lblk,
1039 partial, indirect_blks, count); 1039 partial, indirect_blks, count);
1040 if (err) 1040 if (err)
1041 goto cleanup; 1041 goto cleanup;
1042 1042
1043 map->m_flags |= EXT4_MAP_NEW; 1043 map->m_flags |= EXT4_MAP_NEW;
1044 1044
1045 ext4_update_inode_fsync_trans(handle, inode, 1); 1045 ext4_update_inode_fsync_trans(handle, inode, 1);
1046 got_it: 1046 got_it:
1047 map->m_flags |= EXT4_MAP_MAPPED; 1047 map->m_flags |= EXT4_MAP_MAPPED;
1048 map->m_pblk = le32_to_cpu(chain[depth-1].key); 1048 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1049 map->m_len = count; 1049 map->m_len = count;
1050 if (count > blocks_to_boundary) 1050 if (count > blocks_to_boundary)
1051 map->m_flags |= EXT4_MAP_BOUNDARY; 1051 map->m_flags |= EXT4_MAP_BOUNDARY;
1052 err = count; 1052 err = count;
1053 /* Clean up and exit */ 1053 /* Clean up and exit */
1054 partial = chain + depth - 1; /* the whole chain */ 1054 partial = chain + depth - 1; /* the whole chain */
1055 cleanup: 1055 cleanup:
1056 while (partial > chain) { 1056 while (partial > chain) {
1057 BUFFER_TRACE(partial->bh, "call brelse"); 1057 BUFFER_TRACE(partial->bh, "call brelse");
1058 brelse(partial->bh); 1058 brelse(partial->bh);
1059 partial--; 1059 partial--;
1060 } 1060 }
1061 out: 1061 out:
1062 trace_ext4_ind_map_blocks_exit(inode, map->m_lblk, 1062 trace_ext4_ind_map_blocks_exit(inode, map->m_lblk,
1063 map->m_pblk, map->m_len, err); 1063 map->m_pblk, map->m_len, err);
1064 return err; 1064 return err;
1065 } 1065 }
1066 1066
1067 #ifdef CONFIG_QUOTA 1067 #ifdef CONFIG_QUOTA
1068 qsize_t *ext4_get_reserved_space(struct inode *inode) 1068 qsize_t *ext4_get_reserved_space(struct inode *inode)
1069 { 1069 {
1070 return &EXT4_I(inode)->i_reserved_quota; 1070 return &EXT4_I(inode)->i_reserved_quota;
1071 } 1071 }
1072 #endif 1072 #endif
1073 1073
1074 /* 1074 /*
1075 * Calculate the number of metadata blocks need to reserve 1075 * Calculate the number of metadata blocks need to reserve
1076 * to allocate a new block at @lblocks for non extent file based file 1076 * to allocate a new block at @lblocks for non extent file based file
1077 */ 1077 */
1078 static int ext4_indirect_calc_metadata_amount(struct inode *inode, 1078 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1079 sector_t lblock) 1079 sector_t lblock)
1080 { 1080 {
1081 struct ext4_inode_info *ei = EXT4_I(inode); 1081 struct ext4_inode_info *ei = EXT4_I(inode);
1082 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); 1082 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1083 int blk_bits; 1083 int blk_bits;
1084 1084
1085 if (lblock < EXT4_NDIR_BLOCKS) 1085 if (lblock < EXT4_NDIR_BLOCKS)
1086 return 0; 1086 return 0;
1087 1087
1088 lblock -= EXT4_NDIR_BLOCKS; 1088 lblock -= EXT4_NDIR_BLOCKS;
1089 1089
1090 if (ei->i_da_metadata_calc_len && 1090 if (ei->i_da_metadata_calc_len &&
1091 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { 1091 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1092 ei->i_da_metadata_calc_len++; 1092 ei->i_da_metadata_calc_len++;
1093 return 0; 1093 return 0;
1094 } 1094 }
1095 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; 1095 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1096 ei->i_da_metadata_calc_len = 1; 1096 ei->i_da_metadata_calc_len = 1;
1097 blk_bits = order_base_2(lblock); 1097 blk_bits = order_base_2(lblock);
1098 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; 1098 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1099 } 1099 }
1100 1100
1101 /* 1101 /*
1102 * Calculate the number of metadata blocks need to reserve 1102 * Calculate the number of metadata blocks need to reserve
1103 * to allocate a block located at @lblock 1103 * to allocate a block located at @lblock
1104 */ 1104 */
1105 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 1105 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1106 { 1106 {
1107 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1107 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1108 return ext4_ext_calc_metadata_amount(inode, lblock); 1108 return ext4_ext_calc_metadata_amount(inode, lblock);
1109 1109
1110 return ext4_indirect_calc_metadata_amount(inode, lblock); 1110 return ext4_indirect_calc_metadata_amount(inode, lblock);
1111 } 1111 }
1112 1112
1113 /* 1113 /*
1114 * Called with i_data_sem down, which is important since we can call 1114 * Called with i_data_sem down, which is important since we can call
1115 * ext4_discard_preallocations() from here. 1115 * ext4_discard_preallocations() from here.
1116 */ 1116 */
1117 void ext4_da_update_reserve_space(struct inode *inode, 1117 void ext4_da_update_reserve_space(struct inode *inode,
1118 int used, int quota_claim) 1118 int used, int quota_claim)
1119 { 1119 {
1120 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1120 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1121 struct ext4_inode_info *ei = EXT4_I(inode); 1121 struct ext4_inode_info *ei = EXT4_I(inode);
1122 1122
1123 spin_lock(&ei->i_block_reservation_lock); 1123 spin_lock(&ei->i_block_reservation_lock);
1124 trace_ext4_da_update_reserve_space(inode, used); 1124 trace_ext4_da_update_reserve_space(inode, used);
1125 if (unlikely(used > ei->i_reserved_data_blocks)) { 1125 if (unlikely(used > ei->i_reserved_data_blocks)) {
1126 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " 1126 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1127 "with only %d reserved data blocks\n", 1127 "with only %d reserved data blocks\n",
1128 __func__, inode->i_ino, used, 1128 __func__, inode->i_ino, used,
1129 ei->i_reserved_data_blocks); 1129 ei->i_reserved_data_blocks);
1130 WARN_ON(1); 1130 WARN_ON(1);
1131 used = ei->i_reserved_data_blocks; 1131 used = ei->i_reserved_data_blocks;
1132 } 1132 }
1133 1133
1134 /* Update per-inode reservations */ 1134 /* Update per-inode reservations */
1135 ei->i_reserved_data_blocks -= used; 1135 ei->i_reserved_data_blocks -= used;
1136 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 1136 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1137 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1137 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1138 used + ei->i_allocated_meta_blocks); 1138 used + ei->i_allocated_meta_blocks);
1139 ei->i_allocated_meta_blocks = 0; 1139 ei->i_allocated_meta_blocks = 0;
1140 1140
1141 if (ei->i_reserved_data_blocks == 0) { 1141 if (ei->i_reserved_data_blocks == 0) {
1142 /* 1142 /*
1143 * We can release all of the reserved metadata blocks 1143 * We can release all of the reserved metadata blocks
1144 * only when we have written all of the delayed 1144 * only when we have written all of the delayed
1145 * allocation blocks. 1145 * allocation blocks.
1146 */ 1146 */
1147 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1147 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1148 ei->i_reserved_meta_blocks); 1148 ei->i_reserved_meta_blocks);
1149 ei->i_reserved_meta_blocks = 0; 1149 ei->i_reserved_meta_blocks = 0;
1150 ei->i_da_metadata_calc_len = 0; 1150 ei->i_da_metadata_calc_len = 0;
1151 } 1151 }
1152 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1152 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1153 1153
1154 /* Update quota subsystem for data blocks */ 1154 /* Update quota subsystem for data blocks */
1155 if (quota_claim) 1155 if (quota_claim)
1156 dquot_claim_block(inode, used); 1156 dquot_claim_block(inode, used);
1157 else { 1157 else {
1158 /* 1158 /*
1159 * We did fallocate with an offset that is already delayed 1159 * We did fallocate with an offset that is already delayed
1160 * allocated. So on delayed allocated writeback we should 1160 * allocated. So on delayed allocated writeback we should
1161 * not re-claim the quota for fallocated blocks. 1161 * not re-claim the quota for fallocated blocks.
1162 */ 1162 */
1163 dquot_release_reservation_block(inode, used); 1163 dquot_release_reservation_block(inode, used);
1164 } 1164 }
1165 1165
1166 /* 1166 /*
1167 * If we have done all the pending block allocations and if 1167 * If we have done all the pending block allocations and if
1168 * there aren't any writers on the inode, we can discard the 1168 * there aren't any writers on the inode, we can discard the
1169 * inode's preallocations. 1169 * inode's preallocations.
1170 */ 1170 */
1171 if ((ei->i_reserved_data_blocks == 0) && 1171 if ((ei->i_reserved_data_blocks == 0) &&
1172 (atomic_read(&inode->i_writecount) == 0)) 1172 (atomic_read(&inode->i_writecount) == 0))
1173 ext4_discard_preallocations(inode); 1173 ext4_discard_preallocations(inode);
1174 } 1174 }
1175 1175
1176 static int __check_block_validity(struct inode *inode, const char *func, 1176 static int __check_block_validity(struct inode *inode, const char *func,
1177 unsigned int line, 1177 unsigned int line,
1178 struct ext4_map_blocks *map) 1178 struct ext4_map_blocks *map)
1179 { 1179 {
1180 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 1180 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1181 map->m_len)) { 1181 map->m_len)) {
1182 ext4_error_inode(inode, func, line, map->m_pblk, 1182 ext4_error_inode(inode, func, line, map->m_pblk,
1183 "lblock %lu mapped to illegal pblock " 1183 "lblock %lu mapped to illegal pblock "
1184 "(length %d)", (unsigned long) map->m_lblk, 1184 "(length %d)", (unsigned long) map->m_lblk,
1185 map->m_len); 1185 map->m_len);
1186 return -EIO; 1186 return -EIO;
1187 } 1187 }
1188 return 0; 1188 return 0;
1189 } 1189 }
1190 1190
1191 #define check_block_validity(inode, map) \ 1191 #define check_block_validity(inode, map) \
1192 __check_block_validity((inode), __func__, __LINE__, (map)) 1192 __check_block_validity((inode), __func__, __LINE__, (map))
1193 1193
1194 /* 1194 /*
1195 * Return the number of contiguous dirty pages in a given inode 1195 * Return the number of contiguous dirty pages in a given inode
1196 * starting at page frame idx. 1196 * starting at page frame idx.
1197 */ 1197 */
1198 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 1198 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1199 unsigned int max_pages) 1199 unsigned int max_pages)
1200 { 1200 {
1201 struct address_space *mapping = inode->i_mapping; 1201 struct address_space *mapping = inode->i_mapping;
1202 pgoff_t index; 1202 pgoff_t index;
1203 struct pagevec pvec; 1203 struct pagevec pvec;
1204 pgoff_t num = 0; 1204 pgoff_t num = 0;
1205 int i, nr_pages, done = 0; 1205 int i, nr_pages, done = 0;
1206 1206
1207 if (max_pages == 0) 1207 if (max_pages == 0)
1208 return 0; 1208 return 0;
1209 pagevec_init(&pvec, 0); 1209 pagevec_init(&pvec, 0);
1210 while (!done) { 1210 while (!done) {
1211 index = idx; 1211 index = idx;
1212 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 1212 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1213 PAGECACHE_TAG_DIRTY, 1213 PAGECACHE_TAG_DIRTY,
1214 (pgoff_t)PAGEVEC_SIZE); 1214 (pgoff_t)PAGEVEC_SIZE);
1215 if (nr_pages == 0) 1215 if (nr_pages == 0)
1216 break; 1216 break;
1217 for (i = 0; i < nr_pages; i++) { 1217 for (i = 0; i < nr_pages; i++) {
1218 struct page *page = pvec.pages[i]; 1218 struct page *page = pvec.pages[i];
1219 struct buffer_head *bh, *head; 1219 struct buffer_head *bh, *head;
1220 1220
1221 lock_page(page); 1221 lock_page(page);
1222 if (unlikely(page->mapping != mapping) || 1222 if (unlikely(page->mapping != mapping) ||
1223 !PageDirty(page) || 1223 !PageDirty(page) ||
1224 PageWriteback(page) || 1224 PageWriteback(page) ||
1225 page->index != idx) { 1225 page->index != idx) {
1226 done = 1; 1226 done = 1;
1227 unlock_page(page); 1227 unlock_page(page);
1228 break; 1228 break;
1229 } 1229 }
1230 if (page_has_buffers(page)) { 1230 if (page_has_buffers(page)) {
1231 bh = head = page_buffers(page); 1231 bh = head = page_buffers(page);
1232 do { 1232 do {
1233 if (!buffer_delay(bh) && 1233 if (!buffer_delay(bh) &&
1234 !buffer_unwritten(bh)) 1234 !buffer_unwritten(bh))
1235 done = 1; 1235 done = 1;
1236 bh = bh->b_this_page; 1236 bh = bh->b_this_page;
1237 } while (!done && (bh != head)); 1237 } while (!done && (bh != head));
1238 } 1238 }
1239 unlock_page(page); 1239 unlock_page(page);
1240 if (done) 1240 if (done)
1241 break; 1241 break;
1242 idx++; 1242 idx++;
1243 num++; 1243 num++;
1244 if (num >= max_pages) { 1244 if (num >= max_pages) {
1245 done = 1; 1245 done = 1;
1246 break; 1246 break;
1247 } 1247 }
1248 } 1248 }
1249 pagevec_release(&pvec); 1249 pagevec_release(&pvec);
1250 } 1250 }
1251 return num; 1251 return num;
1252 } 1252 }
1253 1253
1254 /* 1254 /*
1255 * The ext4_map_blocks() function tries to look up the requested blocks, 1255 * The ext4_map_blocks() function tries to look up the requested blocks,
1256 * and returns if the blocks are already mapped. 1256 * and returns if the blocks are already mapped.
1257 * 1257 *
1258 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 1258 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1259 * and store the allocated blocks in the result buffer head and mark it 1259 * and store the allocated blocks in the result buffer head and mark it
1260 * mapped. 1260 * mapped.
1261 * 1261 *
1262 * If file type is extents based, it will call ext4_ext_map_blocks(), 1262 * If file type is extents based, it will call ext4_ext_map_blocks(),
1263 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 1263 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1264 * based files 1264 * based files
1265 * 1265 *
1266 * On success, it returns the number of blocks being mapped or allocate. 1266 * On success, it returns the number of blocks being mapped or allocate.
1267 * if create==0 and the blocks are pre-allocated and uninitialized block, 1267 * if create==0 and the blocks are pre-allocated and uninitialized block,
1268 * the result buffer head is unmapped. If the create ==1, it will make sure 1268 * the result buffer head is unmapped. If the create ==1, it will make sure
1269 * the buffer head is mapped. 1269 * the buffer head is mapped.
1270 * 1270 *
1271 * It returns 0 if plain look up failed (blocks have not been allocated), in 1271 * It returns 0 if plain look up failed (blocks have not been allocated), in
1272 * that casem, buffer head is unmapped 1272 * that casem, buffer head is unmapped
1273 * 1273 *
1274 * It returns the error in case of allocation failure. 1274 * It returns the error in case of allocation failure.
1275 */ 1275 */
1276 int ext4_map_blocks(handle_t *handle, struct inode *inode, 1276 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1277 struct ext4_map_blocks *map, int flags) 1277 struct ext4_map_blocks *map, int flags)
1278 { 1278 {
1279 int retval; 1279 int retval;
1280 1280
1281 map->m_flags = 0; 1281 map->m_flags = 0;
1282 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 1282 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1283 "logical block %lu\n", inode->i_ino, flags, map->m_len, 1283 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1284 (unsigned long) map->m_lblk); 1284 (unsigned long) map->m_lblk);
1285 /* 1285 /*
1286 * Try to see if we can get the block without requesting a new 1286 * Try to see if we can get the block without requesting a new
1287 * file system block. 1287 * file system block.
1288 */ 1288 */
1289 down_read((&EXT4_I(inode)->i_data_sem)); 1289 down_read((&EXT4_I(inode)->i_data_sem));
1290 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 1290 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1291 retval = ext4_ext_map_blocks(handle, inode, map, 0); 1291 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1292 } else { 1292 } else {
1293 retval = ext4_ind_map_blocks(handle, inode, map, 0); 1293 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1294 } 1294 }
1295 up_read((&EXT4_I(inode)->i_data_sem)); 1295 up_read((&EXT4_I(inode)->i_data_sem));
1296 1296
1297 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 1297 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1298 int ret = check_block_validity(inode, map); 1298 int ret = check_block_validity(inode, map);
1299 if (ret != 0) 1299 if (ret != 0)
1300 return ret; 1300 return ret;
1301 } 1301 }
1302 1302
1303 /* If it is only a block(s) look up */ 1303 /* If it is only a block(s) look up */
1304 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 1304 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1305 return retval; 1305 return retval;
1306 1306
1307 /* 1307 /*
1308 * Returns if the blocks have already allocated 1308 * Returns if the blocks have already allocated
1309 * 1309 *
1310 * Note that if blocks have been preallocated 1310 * Note that if blocks have been preallocated
1311 * ext4_ext_get_block() returns th create = 0 1311 * ext4_ext_get_block() returns th create = 0
1312 * with buffer head unmapped. 1312 * with buffer head unmapped.
1313 */ 1313 */
1314 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 1314 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1315 return retval; 1315 return retval;
1316 1316
1317 /* 1317 /*
1318 * When we call get_blocks without the create flag, the 1318 * When we call get_blocks without the create flag, the
1319 * BH_Unwritten flag could have gotten set if the blocks 1319 * BH_Unwritten flag could have gotten set if the blocks
1320 * requested were part of a uninitialized extent. We need to 1320 * requested were part of a uninitialized extent. We need to
1321 * clear this flag now that we are committed to convert all or 1321 * clear this flag now that we are committed to convert all or
1322 * part of the uninitialized extent to be an initialized 1322 * part of the uninitialized extent to be an initialized
1323 * extent. This is because we need to avoid the combination 1323 * extent. This is because we need to avoid the combination
1324 * of BH_Unwritten and BH_Mapped flags being simultaneously 1324 * of BH_Unwritten and BH_Mapped flags being simultaneously
1325 * set on the buffer_head. 1325 * set on the buffer_head.
1326 */ 1326 */
1327 map->m_flags &= ~EXT4_MAP_UNWRITTEN; 1327 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1328 1328
1329 /* 1329 /*
1330 * New blocks allocate and/or writing to uninitialized extent 1330 * New blocks allocate and/or writing to uninitialized extent
1331 * will possibly result in updating i_data, so we take 1331 * will possibly result in updating i_data, so we take
1332 * the write lock of i_data_sem, and call get_blocks() 1332 * the write lock of i_data_sem, and call get_blocks()
1333 * with create == 1 flag. 1333 * with create == 1 flag.
1334 */ 1334 */
1335 down_write((&EXT4_I(inode)->i_data_sem)); 1335 down_write((&EXT4_I(inode)->i_data_sem));
1336 1336
1337 /* 1337 /*
1338 * if the caller is from delayed allocation writeout path 1338 * if the caller is from delayed allocation writeout path
1339 * we have already reserved fs blocks for allocation 1339 * we have already reserved fs blocks for allocation
1340 * let the underlying get_block() function know to 1340 * let the underlying get_block() function know to
1341 * avoid double accounting 1341 * avoid double accounting
1342 */ 1342 */
1343 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1343 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1344 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 1344 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1345 /* 1345 /*
1346 * We need to check for EXT4 here because migrate 1346 * We need to check for EXT4 here because migrate
1347 * could have changed the inode type in between 1347 * could have changed the inode type in between
1348 */ 1348 */
1349 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 1349 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1350 retval = ext4_ext_map_blocks(handle, inode, map, flags); 1350 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1351 } else { 1351 } else {
1352 retval = ext4_ind_map_blocks(handle, inode, map, flags); 1352 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1353 1353
1354 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 1354 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1355 /* 1355 /*
1356 * We allocated new blocks which will result in 1356 * We allocated new blocks which will result in
1357 * i_data's format changing. Force the migrate 1357 * i_data's format changing. Force the migrate
1358 * to fail by clearing migrate flags 1358 * to fail by clearing migrate flags
1359 */ 1359 */
1360 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 1360 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1361 } 1361 }
1362 1362
1363 /* 1363 /*
1364 * Update reserved blocks/metadata blocks after successful 1364 * Update reserved blocks/metadata blocks after successful
1365 * block allocation which had been deferred till now. We don't 1365 * block allocation which had been deferred till now. We don't
1366 * support fallocate for non extent files. So we can update 1366 * support fallocate for non extent files. So we can update
1367 * reserve space here. 1367 * reserve space here.
1368 */ 1368 */
1369 if ((retval > 0) && 1369 if ((retval > 0) &&
1370 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 1370 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1371 ext4_da_update_reserve_space(inode, retval, 1); 1371 ext4_da_update_reserve_space(inode, retval, 1);
1372 } 1372 }
1373 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 1373 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1374 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 1374 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1375 1375
1376 up_write((&EXT4_I(inode)->i_data_sem)); 1376 up_write((&EXT4_I(inode)->i_data_sem));
1377 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 1377 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1378 int ret = check_block_validity(inode, map); 1378 int ret = check_block_validity(inode, map);
1379 if (ret != 0) 1379 if (ret != 0)
1380 return ret; 1380 return ret;
1381 } 1381 }
1382 return retval; 1382 return retval;
1383 } 1383 }
1384 1384
1385 /* Maximum number of blocks we map for direct IO at once. */ 1385 /* Maximum number of blocks we map for direct IO at once. */
1386 #define DIO_MAX_BLOCKS 4096 1386 #define DIO_MAX_BLOCKS 4096
1387 1387
1388 static int _ext4_get_block(struct inode *inode, sector_t iblock, 1388 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1389 struct buffer_head *bh, int flags) 1389 struct buffer_head *bh, int flags)
1390 { 1390 {
1391 handle_t *handle = ext4_journal_current_handle(); 1391 handle_t *handle = ext4_journal_current_handle();
1392 struct ext4_map_blocks map; 1392 struct ext4_map_blocks map;
1393 int ret = 0, started = 0; 1393 int ret = 0, started = 0;
1394 int dio_credits; 1394 int dio_credits;
1395 1395
1396 map.m_lblk = iblock; 1396 map.m_lblk = iblock;
1397 map.m_len = bh->b_size >> inode->i_blkbits; 1397 map.m_len = bh->b_size >> inode->i_blkbits;
1398 1398
1399 if (flags && !handle) { 1399 if (flags && !handle) {
1400 /* Direct IO write... */ 1400 /* Direct IO write... */
1401 if (map.m_len > DIO_MAX_BLOCKS) 1401 if (map.m_len > DIO_MAX_BLOCKS)
1402 map.m_len = DIO_MAX_BLOCKS; 1402 map.m_len = DIO_MAX_BLOCKS;
1403 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 1403 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1404 handle = ext4_journal_start(inode, dio_credits); 1404 handle = ext4_journal_start(inode, dio_credits);
1405 if (IS_ERR(handle)) { 1405 if (IS_ERR(handle)) {
1406 ret = PTR_ERR(handle); 1406 ret = PTR_ERR(handle);
1407 return ret; 1407 return ret;
1408 } 1408 }
1409 started = 1; 1409 started = 1;
1410 } 1410 }
1411 1411
1412 ret = ext4_map_blocks(handle, inode, &map, flags); 1412 ret = ext4_map_blocks(handle, inode, &map, flags);
1413 if (ret > 0) { 1413 if (ret > 0) {
1414 map_bh(bh, inode->i_sb, map.m_pblk); 1414 map_bh(bh, inode->i_sb, map.m_pblk);
1415 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 1415 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1416 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 1416 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1417 ret = 0; 1417 ret = 0;
1418 } 1418 }
1419 if (started) 1419 if (started)
1420 ext4_journal_stop(handle); 1420 ext4_journal_stop(handle);
1421 return ret; 1421 return ret;
1422 } 1422 }
1423 1423
1424 int ext4_get_block(struct inode *inode, sector_t iblock, 1424 int ext4_get_block(struct inode *inode, sector_t iblock,
1425 struct buffer_head *bh, int create) 1425 struct buffer_head *bh, int create)
1426 { 1426 {
1427 return _ext4_get_block(inode, iblock, bh, 1427 return _ext4_get_block(inode, iblock, bh,
1428 create ? EXT4_GET_BLOCKS_CREATE : 0); 1428 create ? EXT4_GET_BLOCKS_CREATE : 0);
1429 } 1429 }
1430 1430
1431 /* 1431 /*
1432 * `handle' can be NULL if create is zero 1432 * `handle' can be NULL if create is zero
1433 */ 1433 */
1434 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 1434 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1435 ext4_lblk_t block, int create, int *errp) 1435 ext4_lblk_t block, int create, int *errp)
1436 { 1436 {
1437 struct ext4_map_blocks map; 1437 struct ext4_map_blocks map;
1438 struct buffer_head *bh; 1438 struct buffer_head *bh;
1439 int fatal = 0, err; 1439 int fatal = 0, err;
1440 1440
1441 J_ASSERT(handle != NULL || create == 0); 1441 J_ASSERT(handle != NULL || create == 0);
1442 1442
1443 map.m_lblk = block; 1443 map.m_lblk = block;
1444 map.m_len = 1; 1444 map.m_len = 1;
1445 err = ext4_map_blocks(handle, inode, &map, 1445 err = ext4_map_blocks(handle, inode, &map,
1446 create ? EXT4_GET_BLOCKS_CREATE : 0); 1446 create ? EXT4_GET_BLOCKS_CREATE : 0);
1447 1447
1448 if (err < 0) 1448 if (err < 0)
1449 *errp = err; 1449 *errp = err;
1450 if (err <= 0) 1450 if (err <= 0)
1451 return NULL; 1451 return NULL;
1452 *errp = 0; 1452 *errp = 0;
1453 1453
1454 bh = sb_getblk(inode->i_sb, map.m_pblk); 1454 bh = sb_getblk(inode->i_sb, map.m_pblk);
1455 if (!bh) { 1455 if (!bh) {
1456 *errp = -EIO; 1456 *errp = -EIO;
1457 return NULL; 1457 return NULL;
1458 } 1458 }
1459 if (map.m_flags & EXT4_MAP_NEW) { 1459 if (map.m_flags & EXT4_MAP_NEW) {
1460 J_ASSERT(create != 0); 1460 J_ASSERT(create != 0);
1461 J_ASSERT(handle != NULL); 1461 J_ASSERT(handle != NULL);
1462 1462
1463 /* 1463 /*
1464 * Now that we do not always journal data, we should 1464 * Now that we do not always journal data, we should
1465 * keep in mind whether this should always journal the 1465 * keep in mind whether this should always journal the
1466 * new buffer as metadata. For now, regular file 1466 * new buffer as metadata. For now, regular file
1467 * writes use ext4_get_block instead, so it's not a 1467 * writes use ext4_get_block instead, so it's not a
1468 * problem. 1468 * problem.
1469 */ 1469 */
1470 lock_buffer(bh); 1470 lock_buffer(bh);
1471 BUFFER_TRACE(bh, "call get_create_access"); 1471 BUFFER_TRACE(bh, "call get_create_access");
1472 fatal = ext4_journal_get_create_access(handle, bh); 1472 fatal = ext4_journal_get_create_access(handle, bh);
1473 if (!fatal && !buffer_uptodate(bh)) { 1473 if (!fatal && !buffer_uptodate(bh)) {
1474 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1474 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1475 set_buffer_uptodate(bh); 1475 set_buffer_uptodate(bh);
1476 } 1476 }
1477 unlock_buffer(bh); 1477 unlock_buffer(bh);
1478 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1478 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1479 err = ext4_handle_dirty_metadata(handle, inode, bh); 1479 err = ext4_handle_dirty_metadata(handle, inode, bh);
1480 if (!fatal) 1480 if (!fatal)
1481 fatal = err; 1481 fatal = err;
1482 } else { 1482 } else {
1483 BUFFER_TRACE(bh, "not a new buffer"); 1483 BUFFER_TRACE(bh, "not a new buffer");
1484 } 1484 }
1485 if (fatal) { 1485 if (fatal) {
1486 *errp = fatal; 1486 *errp = fatal;
1487 brelse(bh); 1487 brelse(bh);
1488 bh = NULL; 1488 bh = NULL;
1489 } 1489 }
1490 return bh; 1490 return bh;
1491 } 1491 }
1492 1492
1493 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 1493 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1494 ext4_lblk_t block, int create, int *err) 1494 ext4_lblk_t block, int create, int *err)
1495 { 1495 {
1496 struct buffer_head *bh; 1496 struct buffer_head *bh;
1497 1497
1498 bh = ext4_getblk(handle, inode, block, create, err); 1498 bh = ext4_getblk(handle, inode, block, create, err);
1499 if (!bh) 1499 if (!bh)
1500 return bh; 1500 return bh;
1501 if (buffer_uptodate(bh)) 1501 if (buffer_uptodate(bh))
1502 return bh; 1502 return bh;
1503 ll_rw_block(READ_META, 1, &bh); 1503 ll_rw_block(READ_META, 1, &bh);
1504 wait_on_buffer(bh); 1504 wait_on_buffer(bh);
1505 if (buffer_uptodate(bh)) 1505 if (buffer_uptodate(bh))
1506 return bh; 1506 return bh;
1507 put_bh(bh); 1507 put_bh(bh);
1508 *err = -EIO; 1508 *err = -EIO;
1509 return NULL; 1509 return NULL;
1510 } 1510 }
1511 1511
1512 static int walk_page_buffers(handle_t *handle, 1512 static int walk_page_buffers(handle_t *handle,
1513 struct buffer_head *head, 1513 struct buffer_head *head,
1514 unsigned from, 1514 unsigned from,
1515 unsigned to, 1515 unsigned to,
1516 int *partial, 1516 int *partial,
1517 int (*fn)(handle_t *handle, 1517 int (*fn)(handle_t *handle,
1518 struct buffer_head *bh)) 1518 struct buffer_head *bh))
1519 { 1519 {
1520 struct buffer_head *bh; 1520 struct buffer_head *bh;
1521 unsigned block_start, block_end; 1521 unsigned block_start, block_end;
1522 unsigned blocksize = head->b_size; 1522 unsigned blocksize = head->b_size;
1523 int err, ret = 0; 1523 int err, ret = 0;
1524 struct buffer_head *next; 1524 struct buffer_head *next;
1525 1525
1526 for (bh = head, block_start = 0; 1526 for (bh = head, block_start = 0;
1527 ret == 0 && (bh != head || !block_start); 1527 ret == 0 && (bh != head || !block_start);
1528 block_start = block_end, bh = next) { 1528 block_start = block_end, bh = next) {
1529 next = bh->b_this_page; 1529 next = bh->b_this_page;
1530 block_end = block_start + blocksize; 1530 block_end = block_start + blocksize;
1531 if (block_end <= from || block_start >= to) { 1531 if (block_end <= from || block_start >= to) {
1532 if (partial && !buffer_uptodate(bh)) 1532 if (partial && !buffer_uptodate(bh))
1533 *partial = 1; 1533 *partial = 1;
1534 continue; 1534 continue;
1535 } 1535 }
1536 err = (*fn)(handle, bh); 1536 err = (*fn)(handle, bh);
1537 if (!ret) 1537 if (!ret)
1538 ret = err; 1538 ret = err;
1539 } 1539 }
1540 return ret; 1540 return ret;
1541 } 1541 }
1542 1542
1543 /* 1543 /*
1544 * To preserve ordering, it is essential that the hole instantiation and 1544 * To preserve ordering, it is essential that the hole instantiation and
1545 * the data write be encapsulated in a single transaction. We cannot 1545 * the data write be encapsulated in a single transaction. We cannot
1546 * close off a transaction and start a new one between the ext4_get_block() 1546 * close off a transaction and start a new one between the ext4_get_block()
1547 * and the commit_write(). So doing the jbd2_journal_start at the start of 1547 * and the commit_write(). So doing the jbd2_journal_start at the start of
1548 * prepare_write() is the right place. 1548 * prepare_write() is the right place.
1549 * 1549 *
1550 * Also, this function can nest inside ext4_writepage() -> 1550 * Also, this function can nest inside ext4_writepage() ->
1551 * block_write_full_page(). In that case, we *know* that ext4_writepage() 1551 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1552 * has generated enough buffer credits to do the whole page. So we won't 1552 * has generated enough buffer credits to do the whole page. So we won't
1553 * block on the journal in that case, which is good, because the caller may 1553 * block on the journal in that case, which is good, because the caller may
1554 * be PF_MEMALLOC. 1554 * be PF_MEMALLOC.
1555 * 1555 *
1556 * By accident, ext4 can be reentered when a transaction is open via 1556 * By accident, ext4 can be reentered when a transaction is open via
1557 * quota file writes. If we were to commit the transaction while thus 1557 * quota file writes. If we were to commit the transaction while thus
1558 * reentered, there can be a deadlock - we would be holding a quota 1558 * reentered, there can be a deadlock - we would be holding a quota
1559 * lock, and the commit would never complete if another thread had a 1559 * lock, and the commit would never complete if another thread had a
1560 * transaction open and was blocking on the quota lock - a ranking 1560 * transaction open and was blocking on the quota lock - a ranking
1561 * violation. 1561 * violation.
1562 * 1562 *
1563 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1563 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1564 * will _not_ run commit under these circumstances because handle->h_ref 1564 * will _not_ run commit under these circumstances because handle->h_ref
1565 * is elevated. We'll still have enough credits for the tiny quotafile 1565 * is elevated. We'll still have enough credits for the tiny quotafile
1566 * write. 1566 * write.
1567 */ 1567 */
1568 static int do_journal_get_write_access(handle_t *handle, 1568 static int do_journal_get_write_access(handle_t *handle,
1569 struct buffer_head *bh) 1569 struct buffer_head *bh)
1570 { 1570 {
1571 int dirty = buffer_dirty(bh); 1571 int dirty = buffer_dirty(bh);
1572 int ret; 1572 int ret;
1573 1573
1574 if (!buffer_mapped(bh) || buffer_freed(bh)) 1574 if (!buffer_mapped(bh) || buffer_freed(bh))
1575 return 0; 1575 return 0;
1576 /* 1576 /*
1577 * __block_write_begin() could have dirtied some buffers. Clean 1577 * __block_write_begin() could have dirtied some buffers. Clean
1578 * the dirty bit as jbd2_journal_get_write_access() could complain 1578 * the dirty bit as jbd2_journal_get_write_access() could complain
1579 * otherwise about fs integrity issues. Setting of the dirty bit 1579 * otherwise about fs integrity issues. Setting of the dirty bit
1580 * by __block_write_begin() isn't a real problem here as we clear 1580 * by __block_write_begin() isn't a real problem here as we clear
1581 * the bit before releasing a page lock and thus writeback cannot 1581 * the bit before releasing a page lock and thus writeback cannot
1582 * ever write the buffer. 1582 * ever write the buffer.
1583 */ 1583 */
1584 if (dirty) 1584 if (dirty)
1585 clear_buffer_dirty(bh); 1585 clear_buffer_dirty(bh);
1586 ret = ext4_journal_get_write_access(handle, bh); 1586 ret = ext4_journal_get_write_access(handle, bh);
1587 if (!ret && dirty) 1587 if (!ret && dirty)
1588 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1588 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1589 return ret; 1589 return ret;
1590 } 1590 }
1591 1591
1592 /* 1592 /*
1593 * Truncate blocks that were not used by write. We have to truncate the 1593 * Truncate blocks that were not used by write. We have to truncate the
1594 * pagecache as well so that corresponding buffers get properly unmapped. 1594 * pagecache as well so that corresponding buffers get properly unmapped.
1595 */ 1595 */
1596 static void ext4_truncate_failed_write(struct inode *inode) 1596 static void ext4_truncate_failed_write(struct inode *inode)
1597 { 1597 {
1598 truncate_inode_pages(inode->i_mapping, inode->i_size); 1598 truncate_inode_pages(inode->i_mapping, inode->i_size);
1599 ext4_truncate(inode); 1599 ext4_truncate(inode);
1600 } 1600 }
1601 1601
1602 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 1602 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1603 struct buffer_head *bh_result, int create); 1603 struct buffer_head *bh_result, int create);
1604 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1604 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1605 loff_t pos, unsigned len, unsigned flags, 1605 loff_t pos, unsigned len, unsigned flags,
1606 struct page **pagep, void **fsdata) 1606 struct page **pagep, void **fsdata)
1607 { 1607 {
1608 struct inode *inode = mapping->host; 1608 struct inode *inode = mapping->host;
1609 int ret, needed_blocks; 1609 int ret, needed_blocks;
1610 handle_t *handle; 1610 handle_t *handle;
1611 int retries = 0; 1611 int retries = 0;
1612 struct page *page; 1612 struct page *page;
1613 pgoff_t index; 1613 pgoff_t index;
1614 unsigned from, to; 1614 unsigned from, to;
1615 1615
1616 trace_ext4_write_begin(inode, pos, len, flags); 1616 trace_ext4_write_begin(inode, pos, len, flags);
1617 /* 1617 /*
1618 * Reserve one block more for addition to orphan list in case 1618 * Reserve one block more for addition to orphan list in case
1619 * we allocate blocks but write fails for some reason 1619 * we allocate blocks but write fails for some reason
1620 */ 1620 */
1621 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1621 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1622 index = pos >> PAGE_CACHE_SHIFT; 1622 index = pos >> PAGE_CACHE_SHIFT;
1623 from = pos & (PAGE_CACHE_SIZE - 1); 1623 from = pos & (PAGE_CACHE_SIZE - 1);
1624 to = from + len; 1624 to = from + len;
1625 1625
1626 retry: 1626 retry:
1627 handle = ext4_journal_start(inode, needed_blocks); 1627 handle = ext4_journal_start(inode, needed_blocks);
1628 if (IS_ERR(handle)) { 1628 if (IS_ERR(handle)) {
1629 ret = PTR_ERR(handle); 1629 ret = PTR_ERR(handle);
1630 goto out; 1630 goto out;
1631 } 1631 }
1632 1632
1633 /* We cannot recurse into the filesystem as the transaction is already 1633 /* We cannot recurse into the filesystem as the transaction is already
1634 * started */ 1634 * started */
1635 flags |= AOP_FLAG_NOFS; 1635 flags |= AOP_FLAG_NOFS;
1636 1636
1637 page = grab_cache_page_write_begin(mapping, index, flags); 1637 page = grab_cache_page_write_begin(mapping, index, flags);
1638 if (!page) { 1638 if (!page) {
1639 ext4_journal_stop(handle); 1639 ext4_journal_stop(handle);
1640 ret = -ENOMEM; 1640 ret = -ENOMEM;
1641 goto out; 1641 goto out;
1642 } 1642 }
1643 *pagep = page; 1643 *pagep = page;
1644 1644
1645 if (ext4_should_dioread_nolock(inode)) 1645 if (ext4_should_dioread_nolock(inode))
1646 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1646 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1647 else 1647 else
1648 ret = __block_write_begin(page, pos, len, ext4_get_block); 1648 ret = __block_write_begin(page, pos, len, ext4_get_block);
1649 1649
1650 if (!ret && ext4_should_journal_data(inode)) { 1650 if (!ret && ext4_should_journal_data(inode)) {
1651 ret = walk_page_buffers(handle, page_buffers(page), 1651 ret = walk_page_buffers(handle, page_buffers(page),
1652 from, to, NULL, do_journal_get_write_access); 1652 from, to, NULL, do_journal_get_write_access);
1653 } 1653 }
1654 1654
1655 if (ret) { 1655 if (ret) {
1656 unlock_page(page); 1656 unlock_page(page);
1657 page_cache_release(page); 1657 page_cache_release(page);
1658 /* 1658 /*
1659 * __block_write_begin may have instantiated a few blocks 1659 * __block_write_begin may have instantiated a few blocks
1660 * outside i_size. Trim these off again. Don't need 1660 * outside i_size. Trim these off again. Don't need
1661 * i_size_read because we hold i_mutex. 1661 * i_size_read because we hold i_mutex.
1662 * 1662 *
1663 * Add inode to orphan list in case we crash before 1663 * Add inode to orphan list in case we crash before
1664 * truncate finishes 1664 * truncate finishes
1665 */ 1665 */
1666 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1666 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1667 ext4_orphan_add(handle, inode); 1667 ext4_orphan_add(handle, inode);
1668 1668
1669 ext4_journal_stop(handle); 1669 ext4_journal_stop(handle);
1670 if (pos + len > inode->i_size) { 1670 if (pos + len > inode->i_size) {
1671 ext4_truncate_failed_write(inode); 1671 ext4_truncate_failed_write(inode);
1672 /* 1672 /*
1673 * If truncate failed early the inode might 1673 * If truncate failed early the inode might
1674 * still be on the orphan list; we need to 1674 * still be on the orphan list; we need to
1675 * make sure the inode is removed from the 1675 * make sure the inode is removed from the
1676 * orphan list in that case. 1676 * orphan list in that case.
1677 */ 1677 */
1678 if (inode->i_nlink) 1678 if (inode->i_nlink)
1679 ext4_orphan_del(NULL, inode); 1679 ext4_orphan_del(NULL, inode);
1680 } 1680 }
1681 } 1681 }
1682 1682
1683 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1683 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1684 goto retry; 1684 goto retry;
1685 out: 1685 out:
1686 return ret; 1686 return ret;
1687 } 1687 }
1688 1688
1689 /* For write_end() in data=journal mode */ 1689 /* For write_end() in data=journal mode */
1690 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1690 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1691 { 1691 {
1692 if (!buffer_mapped(bh) || buffer_freed(bh)) 1692 if (!buffer_mapped(bh) || buffer_freed(bh))
1693 return 0; 1693 return 0;
1694 set_buffer_uptodate(bh); 1694 set_buffer_uptodate(bh);
1695 return ext4_handle_dirty_metadata(handle, NULL, bh); 1695 return ext4_handle_dirty_metadata(handle, NULL, bh);
1696 } 1696 }
1697 1697
1698 static int ext4_generic_write_end(struct file *file, 1698 static int ext4_generic_write_end(struct file *file,
1699 struct address_space *mapping, 1699 struct address_space *mapping,
1700 loff_t pos, unsigned len, unsigned copied, 1700 loff_t pos, unsigned len, unsigned copied,
1701 struct page *page, void *fsdata) 1701 struct page *page, void *fsdata)
1702 { 1702 {
1703 int i_size_changed = 0; 1703 int i_size_changed = 0;
1704 struct inode *inode = mapping->host; 1704 struct inode *inode = mapping->host;
1705 handle_t *handle = ext4_journal_current_handle(); 1705 handle_t *handle = ext4_journal_current_handle();
1706 1706
1707 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1707 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1708 1708
1709 /* 1709 /*
1710 * No need to use i_size_read() here, the i_size 1710 * No need to use i_size_read() here, the i_size
1711 * cannot change under us because we hold i_mutex. 1711 * cannot change under us because we hold i_mutex.
1712 * 1712 *
1713 * But it's important to update i_size while still holding page lock: 1713 * But it's important to update i_size while still holding page lock:
1714 * page writeout could otherwise come in and zero beyond i_size. 1714 * page writeout could otherwise come in and zero beyond i_size.
1715 */ 1715 */
1716 if (pos + copied > inode->i_size) { 1716 if (pos + copied > inode->i_size) {
1717 i_size_write(inode, pos + copied); 1717 i_size_write(inode, pos + copied);
1718 i_size_changed = 1; 1718 i_size_changed = 1;
1719 } 1719 }
1720 1720
1721 if (pos + copied > EXT4_I(inode)->i_disksize) { 1721 if (pos + copied > EXT4_I(inode)->i_disksize) {
1722 /* We need to mark inode dirty even if 1722 /* We need to mark inode dirty even if
1723 * new_i_size is less that inode->i_size 1723 * new_i_size is less that inode->i_size
1724 * bu greater than i_disksize.(hint delalloc) 1724 * bu greater than i_disksize.(hint delalloc)
1725 */ 1725 */
1726 ext4_update_i_disksize(inode, (pos + copied)); 1726 ext4_update_i_disksize(inode, (pos + copied));
1727 i_size_changed = 1; 1727 i_size_changed = 1;
1728 } 1728 }
1729 unlock_page(page); 1729 unlock_page(page);
1730 page_cache_release(page); 1730 page_cache_release(page);
1731 1731
1732 /* 1732 /*
1733 * Don't mark the inode dirty under page lock. First, it unnecessarily 1733 * Don't mark the inode dirty under page lock. First, it unnecessarily
1734 * makes the holding time of page lock longer. Second, it forces lock 1734 * makes the holding time of page lock longer. Second, it forces lock
1735 * ordering of page lock and transaction start for journaling 1735 * ordering of page lock and transaction start for journaling
1736 * filesystems. 1736 * filesystems.
1737 */ 1737 */
1738 if (i_size_changed) 1738 if (i_size_changed)
1739 ext4_mark_inode_dirty(handle, inode); 1739 ext4_mark_inode_dirty(handle, inode);
1740 1740
1741 return copied; 1741 return copied;
1742 } 1742 }
1743 1743
1744 /* 1744 /*
1745 * We need to pick up the new inode size which generic_commit_write gave us 1745 * We need to pick up the new inode size which generic_commit_write gave us
1746 * `file' can be NULL - eg, when called from page_symlink(). 1746 * `file' can be NULL - eg, when called from page_symlink().
1747 * 1747 *
1748 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1748 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1749 * buffers are managed internally. 1749 * buffers are managed internally.
1750 */ 1750 */
1751 static int ext4_ordered_write_end(struct file *file, 1751 static int ext4_ordered_write_end(struct file *file,
1752 struct address_space *mapping, 1752 struct address_space *mapping,
1753 loff_t pos, unsigned len, unsigned copied, 1753 loff_t pos, unsigned len, unsigned copied,
1754 struct page *page, void *fsdata) 1754 struct page *page, void *fsdata)
1755 { 1755 {
1756 handle_t *handle = ext4_journal_current_handle(); 1756 handle_t *handle = ext4_journal_current_handle();
1757 struct inode *inode = mapping->host; 1757 struct inode *inode = mapping->host;
1758 int ret = 0, ret2; 1758 int ret = 0, ret2;
1759 1759
1760 trace_ext4_ordered_write_end(inode, pos, len, copied); 1760 trace_ext4_ordered_write_end(inode, pos, len, copied);
1761 ret = ext4_jbd2_file_inode(handle, inode); 1761 ret = ext4_jbd2_file_inode(handle, inode);
1762 1762
1763 if (ret == 0) { 1763 if (ret == 0) {
1764 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1764 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1765 page, fsdata); 1765 page, fsdata);
1766 copied = ret2; 1766 copied = ret2;
1767 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1767 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1768 /* if we have allocated more blocks and copied 1768 /* if we have allocated more blocks and copied
1769 * less. We will have blocks allocated outside 1769 * less. We will have blocks allocated outside
1770 * inode->i_size. So truncate them 1770 * inode->i_size. So truncate them
1771 */ 1771 */
1772 ext4_orphan_add(handle, inode); 1772 ext4_orphan_add(handle, inode);
1773 if (ret2 < 0) 1773 if (ret2 < 0)
1774 ret = ret2; 1774 ret = ret2;
1775 } 1775 }
1776 ret2 = ext4_journal_stop(handle); 1776 ret2 = ext4_journal_stop(handle);
1777 if (!ret) 1777 if (!ret)
1778 ret = ret2; 1778 ret = ret2;
1779 1779
1780 if (pos + len > inode->i_size) { 1780 if (pos + len > inode->i_size) {
1781 ext4_truncate_failed_write(inode); 1781 ext4_truncate_failed_write(inode);
1782 /* 1782 /*
1783 * If truncate failed early the inode might still be 1783 * If truncate failed early the inode might still be
1784 * on the orphan list; we need to make sure the inode 1784 * on the orphan list; we need to make sure the inode
1785 * is removed from the orphan list in that case. 1785 * is removed from the orphan list in that case.
1786 */ 1786 */
1787 if (inode->i_nlink) 1787 if (inode->i_nlink)
1788 ext4_orphan_del(NULL, inode); 1788 ext4_orphan_del(NULL, inode);
1789 } 1789 }
1790 1790
1791 1791
1792 return ret ? ret : copied; 1792 return ret ? ret : copied;
1793 } 1793 }
1794 1794
1795 static int ext4_writeback_write_end(struct file *file, 1795 static int ext4_writeback_write_end(struct file *file,
1796 struct address_space *mapping, 1796 struct address_space *mapping,
1797 loff_t pos, unsigned len, unsigned copied, 1797 loff_t pos, unsigned len, unsigned copied,
1798 struct page *page, void *fsdata) 1798 struct page *page, void *fsdata)
1799 { 1799 {
1800 handle_t *handle = ext4_journal_current_handle(); 1800 handle_t *handle = ext4_journal_current_handle();
1801 struct inode *inode = mapping->host; 1801 struct inode *inode = mapping->host;
1802 int ret = 0, ret2; 1802 int ret = 0, ret2;
1803 1803
1804 trace_ext4_writeback_write_end(inode, pos, len, copied); 1804 trace_ext4_writeback_write_end(inode, pos, len, copied);
1805 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, 1805 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1806 page, fsdata); 1806 page, fsdata);
1807 copied = ret2; 1807 copied = ret2;
1808 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1808 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1809 /* if we have allocated more blocks and copied 1809 /* if we have allocated more blocks and copied
1810 * less. We will have blocks allocated outside 1810 * less. We will have blocks allocated outside
1811 * inode->i_size. So truncate them 1811 * inode->i_size. So truncate them
1812 */ 1812 */
1813 ext4_orphan_add(handle, inode); 1813 ext4_orphan_add(handle, inode);
1814 1814
1815 if (ret2 < 0) 1815 if (ret2 < 0)
1816 ret = ret2; 1816 ret = ret2;
1817 1817
1818 ret2 = ext4_journal_stop(handle); 1818 ret2 = ext4_journal_stop(handle);
1819 if (!ret) 1819 if (!ret)
1820 ret = ret2; 1820 ret = ret2;
1821 1821
1822 if (pos + len > inode->i_size) { 1822 if (pos + len > inode->i_size) {
1823 ext4_truncate_failed_write(inode); 1823 ext4_truncate_failed_write(inode);
1824 /* 1824 /*
1825 * If truncate failed early the inode might still be 1825 * If truncate failed early the inode might still be
1826 * on the orphan list; we need to make sure the inode 1826 * on the orphan list; we need to make sure the inode
1827 * is removed from the orphan list in that case. 1827 * is removed from the orphan list in that case.
1828 */ 1828 */
1829 if (inode->i_nlink) 1829 if (inode->i_nlink)
1830 ext4_orphan_del(NULL, inode); 1830 ext4_orphan_del(NULL, inode);
1831 } 1831 }
1832 1832
1833 return ret ? ret : copied; 1833 return ret ? ret : copied;
1834 } 1834 }
1835 1835
1836 static int ext4_journalled_write_end(struct file *file, 1836 static int ext4_journalled_write_end(struct file *file,
1837 struct address_space *mapping, 1837 struct address_space *mapping,
1838 loff_t pos, unsigned len, unsigned copied, 1838 loff_t pos, unsigned len, unsigned copied,
1839 struct page *page, void *fsdata) 1839 struct page *page, void *fsdata)
1840 { 1840 {
1841 handle_t *handle = ext4_journal_current_handle(); 1841 handle_t *handle = ext4_journal_current_handle();
1842 struct inode *inode = mapping->host; 1842 struct inode *inode = mapping->host;
1843 int ret = 0, ret2; 1843 int ret = 0, ret2;
1844 int partial = 0; 1844 int partial = 0;
1845 unsigned from, to; 1845 unsigned from, to;
1846 loff_t new_i_size; 1846 loff_t new_i_size;
1847 1847
1848 trace_ext4_journalled_write_end(inode, pos, len, copied); 1848 trace_ext4_journalled_write_end(inode, pos, len, copied);
1849 from = pos & (PAGE_CACHE_SIZE - 1); 1849 from = pos & (PAGE_CACHE_SIZE - 1);
1850 to = from + len; 1850 to = from + len;
1851 1851
1852 if (copied < len) { 1852 if (copied < len) {
1853 if (!PageUptodate(page)) 1853 if (!PageUptodate(page))
1854 copied = 0; 1854 copied = 0;
1855 page_zero_new_buffers(page, from+copied, to); 1855 page_zero_new_buffers(page, from+copied, to);
1856 } 1856 }
1857 1857
1858 ret = walk_page_buffers(handle, page_buffers(page), from, 1858 ret = walk_page_buffers(handle, page_buffers(page), from,
1859 to, &partial, write_end_fn); 1859 to, &partial, write_end_fn);
1860 if (!partial) 1860 if (!partial)
1861 SetPageUptodate(page); 1861 SetPageUptodate(page);
1862 new_i_size = pos + copied; 1862 new_i_size = pos + copied;
1863 if (new_i_size > inode->i_size) 1863 if (new_i_size > inode->i_size)
1864 i_size_write(inode, pos+copied); 1864 i_size_write(inode, pos+copied);
1865 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1865 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1866 if (new_i_size > EXT4_I(inode)->i_disksize) { 1866 if (new_i_size > EXT4_I(inode)->i_disksize) {
1867 ext4_update_i_disksize(inode, new_i_size); 1867 ext4_update_i_disksize(inode, new_i_size);
1868 ret2 = ext4_mark_inode_dirty(handle, inode); 1868 ret2 = ext4_mark_inode_dirty(handle, inode);
1869 if (!ret) 1869 if (!ret)
1870 ret = ret2; 1870 ret = ret2;
1871 } 1871 }
1872 1872
1873 unlock_page(page); 1873 unlock_page(page);
1874 page_cache_release(page); 1874 page_cache_release(page);
1875 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1875 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1876 /* if we have allocated more blocks and copied 1876 /* if we have allocated more blocks and copied
1877 * less. We will have blocks allocated outside 1877 * less. We will have blocks allocated outside
1878 * inode->i_size. So truncate them 1878 * inode->i_size. So truncate them
1879 */ 1879 */
1880 ext4_orphan_add(handle, inode); 1880 ext4_orphan_add(handle, inode);
1881 1881
1882 ret2 = ext4_journal_stop(handle); 1882 ret2 = ext4_journal_stop(handle);
1883 if (!ret) 1883 if (!ret)
1884 ret = ret2; 1884 ret = ret2;
1885 if (pos + len > inode->i_size) { 1885 if (pos + len > inode->i_size) {
1886 ext4_truncate_failed_write(inode); 1886 ext4_truncate_failed_write(inode);
1887 /* 1887 /*
1888 * If truncate failed early the inode might still be 1888 * If truncate failed early the inode might still be
1889 * on the orphan list; we need to make sure the inode 1889 * on the orphan list; we need to make sure the inode
1890 * is removed from the orphan list in that case. 1890 * is removed from the orphan list in that case.
1891 */ 1891 */
1892 if (inode->i_nlink) 1892 if (inode->i_nlink)
1893 ext4_orphan_del(NULL, inode); 1893 ext4_orphan_del(NULL, inode);
1894 } 1894 }
1895 1895
1896 return ret ? ret : copied; 1896 return ret ? ret : copied;
1897 } 1897 }
1898 1898
1899 /* 1899 /*
1900 * Reserve a single block located at lblock 1900 * Reserve a single block located at lblock
1901 */ 1901 */
1902 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1902 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1903 { 1903 {
1904 int retries = 0; 1904 int retries = 0;
1905 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1905 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1906 struct ext4_inode_info *ei = EXT4_I(inode); 1906 struct ext4_inode_info *ei = EXT4_I(inode);
1907 unsigned long md_needed; 1907 unsigned long md_needed;
1908 int ret; 1908 int ret;
1909 1909
1910 /* 1910 /*
1911 * recalculate the amount of metadata blocks to reserve 1911 * recalculate the amount of metadata blocks to reserve
1912 * in order to allocate nrblocks 1912 * in order to allocate nrblocks
1913 * worse case is one extent per block 1913 * worse case is one extent per block
1914 */ 1914 */
1915 repeat: 1915 repeat:
1916 spin_lock(&ei->i_block_reservation_lock); 1916 spin_lock(&ei->i_block_reservation_lock);
1917 md_needed = ext4_calc_metadata_amount(inode, lblock); 1917 md_needed = ext4_calc_metadata_amount(inode, lblock);
1918 trace_ext4_da_reserve_space(inode, md_needed); 1918 trace_ext4_da_reserve_space(inode, md_needed);
1919 spin_unlock(&ei->i_block_reservation_lock); 1919 spin_unlock(&ei->i_block_reservation_lock);
1920 1920
1921 /* 1921 /*
1922 * We will charge metadata quota at writeout time; this saves 1922 * We will charge metadata quota at writeout time; this saves
1923 * us from metadata over-estimation, though we may go over by 1923 * us from metadata over-estimation, though we may go over by
1924 * a small amount in the end. Here we just reserve for data. 1924 * a small amount in the end. Here we just reserve for data.
1925 */ 1925 */
1926 ret = dquot_reserve_block(inode, 1); 1926 ret = dquot_reserve_block(inode, 1);
1927 if (ret) 1927 if (ret)
1928 return ret; 1928 return ret;
1929 /* 1929 /*
1930 * We do still charge estimated metadata to the sb though; 1930 * We do still charge estimated metadata to the sb though;
1931 * we cannot afford to run out of free blocks. 1931 * we cannot afford to run out of free blocks.
1932 */ 1932 */
1933 if (ext4_claim_free_blocks(sbi, md_needed + 1)) { 1933 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1934 dquot_release_reservation_block(inode, 1); 1934 dquot_release_reservation_block(inode, 1);
1935 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1935 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1936 yield(); 1936 yield();
1937 goto repeat; 1937 goto repeat;
1938 } 1938 }
1939 return -ENOSPC; 1939 return -ENOSPC;
1940 } 1940 }
1941 spin_lock(&ei->i_block_reservation_lock); 1941 spin_lock(&ei->i_block_reservation_lock);
1942 ei->i_reserved_data_blocks++; 1942 ei->i_reserved_data_blocks++;
1943 ei->i_reserved_meta_blocks += md_needed; 1943 ei->i_reserved_meta_blocks += md_needed;
1944 spin_unlock(&ei->i_block_reservation_lock); 1944 spin_unlock(&ei->i_block_reservation_lock);
1945 1945
1946 return 0; /* success */ 1946 return 0; /* success */
1947 } 1947 }
1948 1948
1949 static void ext4_da_release_space(struct inode *inode, int to_free) 1949 static void ext4_da_release_space(struct inode *inode, int to_free)
1950 { 1950 {
1951 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1951 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1952 struct ext4_inode_info *ei = EXT4_I(inode); 1952 struct ext4_inode_info *ei = EXT4_I(inode);
1953 1953
1954 if (!to_free) 1954 if (!to_free)
1955 return; /* Nothing to release, exit */ 1955 return; /* Nothing to release, exit */
1956 1956
1957 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1957 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1958 1958
1959 trace_ext4_da_release_space(inode, to_free); 1959 trace_ext4_da_release_space(inode, to_free);
1960 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1960 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1961 /* 1961 /*
1962 * if there aren't enough reserved blocks, then the 1962 * if there aren't enough reserved blocks, then the
1963 * counter is messed up somewhere. Since this 1963 * counter is messed up somewhere. Since this
1964 * function is called from invalidate page, it's 1964 * function is called from invalidate page, it's
1965 * harmless to return without any action. 1965 * harmless to return without any action.
1966 */ 1966 */
1967 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " 1967 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1968 "ino %lu, to_free %d with only %d reserved " 1968 "ino %lu, to_free %d with only %d reserved "
1969 "data blocks\n", inode->i_ino, to_free, 1969 "data blocks\n", inode->i_ino, to_free,
1970 ei->i_reserved_data_blocks); 1970 ei->i_reserved_data_blocks);
1971 WARN_ON(1); 1971 WARN_ON(1);
1972 to_free = ei->i_reserved_data_blocks; 1972 to_free = ei->i_reserved_data_blocks;
1973 } 1973 }
1974 ei->i_reserved_data_blocks -= to_free; 1974 ei->i_reserved_data_blocks -= to_free;
1975 1975
1976 if (ei->i_reserved_data_blocks == 0) { 1976 if (ei->i_reserved_data_blocks == 0) {
1977 /* 1977 /*
1978 * We can release all of the reserved metadata blocks 1978 * We can release all of the reserved metadata blocks
1979 * only when we have written all of the delayed 1979 * only when we have written all of the delayed
1980 * allocation blocks. 1980 * allocation blocks.
1981 */ 1981 */
1982 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 1982 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1983 ei->i_reserved_meta_blocks); 1983 ei->i_reserved_meta_blocks);
1984 ei->i_reserved_meta_blocks = 0; 1984 ei->i_reserved_meta_blocks = 0;
1985 ei->i_da_metadata_calc_len = 0; 1985 ei->i_da_metadata_calc_len = 0;
1986 } 1986 }
1987 1987
1988 /* update fs dirty data blocks counter */ 1988 /* update fs dirty data blocks counter */
1989 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free); 1989 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1990 1990
1991 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1991 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1992 1992
1993 dquot_release_reservation_block(inode, to_free); 1993 dquot_release_reservation_block(inode, to_free);
1994 } 1994 }
1995 1995
1996 static void ext4_da_page_release_reservation(struct page *page, 1996 static void ext4_da_page_release_reservation(struct page *page,
1997 unsigned long offset) 1997 unsigned long offset)
1998 { 1998 {
1999 int to_release = 0; 1999 int to_release = 0;
2000 struct buffer_head *head, *bh; 2000 struct buffer_head *head, *bh;
2001 unsigned int curr_off = 0; 2001 unsigned int curr_off = 0;
2002 2002
2003 head = page_buffers(page); 2003 head = page_buffers(page);
2004 bh = head; 2004 bh = head;
2005 do { 2005 do {
2006 unsigned int next_off = curr_off + bh->b_size; 2006 unsigned int next_off = curr_off + bh->b_size;
2007 2007
2008 if ((offset <= curr_off) && (buffer_delay(bh))) { 2008 if ((offset <= curr_off) && (buffer_delay(bh))) {
2009 to_release++; 2009 to_release++;
2010 clear_buffer_delay(bh); 2010 clear_buffer_delay(bh);
2011 } 2011 }
2012 curr_off = next_off; 2012 curr_off = next_off;
2013 } while ((bh = bh->b_this_page) != head); 2013 } while ((bh = bh->b_this_page) != head);
2014 ext4_da_release_space(page->mapping->host, to_release); 2014 ext4_da_release_space(page->mapping->host, to_release);
2015 } 2015 }
2016 2016
2017 /* 2017 /*
2018 * Delayed allocation stuff 2018 * Delayed allocation stuff
2019 */ 2019 */
2020 2020
2021 /* 2021 /*
2022 * mpage_da_submit_io - walks through extent of pages and try to write 2022 * mpage_da_submit_io - walks through extent of pages and try to write
2023 * them with writepage() call back 2023 * them with writepage() call back
2024 * 2024 *
2025 * @mpd->inode: inode 2025 * @mpd->inode: inode
2026 * @mpd->first_page: first page of the extent 2026 * @mpd->first_page: first page of the extent
2027 * @mpd->next_page: page after the last page of the extent 2027 * @mpd->next_page: page after the last page of the extent
2028 * 2028 *
2029 * By the time mpage_da_submit_io() is called we expect all blocks 2029 * By the time mpage_da_submit_io() is called we expect all blocks
2030 * to be allocated. this may be wrong if allocation failed. 2030 * to be allocated. this may be wrong if allocation failed.
2031 * 2031 *
2032 * As pages are already locked by write_cache_pages(), we can't use it 2032 * As pages are already locked by write_cache_pages(), we can't use it
2033 */ 2033 */
2034 static int mpage_da_submit_io(struct mpage_da_data *mpd, 2034 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2035 struct ext4_map_blocks *map) 2035 struct ext4_map_blocks *map)
2036 { 2036 {
2037 struct pagevec pvec; 2037 struct pagevec pvec;
2038 unsigned long index, end; 2038 unsigned long index, end;
2039 int ret = 0, err, nr_pages, i; 2039 int ret = 0, err, nr_pages, i;
2040 struct inode *inode = mpd->inode; 2040 struct inode *inode = mpd->inode;
2041 struct address_space *mapping = inode->i_mapping; 2041 struct address_space *mapping = inode->i_mapping;
2042 loff_t size = i_size_read(inode); 2042 loff_t size = i_size_read(inode);
2043 unsigned int len, block_start; 2043 unsigned int len, block_start;
2044 struct buffer_head *bh, *page_bufs = NULL; 2044 struct buffer_head *bh, *page_bufs = NULL;
2045 int journal_data = ext4_should_journal_data(inode); 2045 int journal_data = ext4_should_journal_data(inode);
2046 sector_t pblock = 0, cur_logical = 0; 2046 sector_t pblock = 0, cur_logical = 0;
2047 struct ext4_io_submit io_submit; 2047 struct ext4_io_submit io_submit;
2048 2048
2049 BUG_ON(mpd->next_page <= mpd->first_page); 2049 BUG_ON(mpd->next_page <= mpd->first_page);
2050 memset(&io_submit, 0, sizeof(io_submit)); 2050 memset(&io_submit, 0, sizeof(io_submit));
2051 /* 2051 /*
2052 * We need to start from the first_page to the next_page - 1 2052 * We need to start from the first_page to the next_page - 1
2053 * to make sure we also write the mapped dirty buffer_heads. 2053 * to make sure we also write the mapped dirty buffer_heads.
2054 * If we look at mpd->b_blocknr we would only be looking 2054 * If we look at mpd->b_blocknr we would only be looking
2055 * at the currently mapped buffer_heads. 2055 * at the currently mapped buffer_heads.
2056 */ 2056 */
2057 index = mpd->first_page; 2057 index = mpd->first_page;
2058 end = mpd->next_page - 1; 2058 end = mpd->next_page - 1;
2059 2059
2060 pagevec_init(&pvec, 0); 2060 pagevec_init(&pvec, 0);
2061 while (index <= end) { 2061 while (index <= end) {
2062 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2062 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2063 if (nr_pages == 0) 2063 if (nr_pages == 0)
2064 break; 2064 break;
2065 for (i = 0; i < nr_pages; i++) { 2065 for (i = 0; i < nr_pages; i++) {
2066 int commit_write = 0, skip_page = 0; 2066 int commit_write = 0, skip_page = 0;
2067 struct page *page = pvec.pages[i]; 2067 struct page *page = pvec.pages[i];
2068 2068
2069 index = page->index; 2069 index = page->index;
2070 if (index > end) 2070 if (index > end)
2071 break; 2071 break;
2072 2072
2073 if (index == size >> PAGE_CACHE_SHIFT) 2073 if (index == size >> PAGE_CACHE_SHIFT)
2074 len = size & ~PAGE_CACHE_MASK; 2074 len = size & ~PAGE_CACHE_MASK;
2075 else 2075 else
2076 len = PAGE_CACHE_SIZE; 2076 len = PAGE_CACHE_SIZE;
2077 if (map) { 2077 if (map) {
2078 cur_logical = index << (PAGE_CACHE_SHIFT - 2078 cur_logical = index << (PAGE_CACHE_SHIFT -
2079 inode->i_blkbits); 2079 inode->i_blkbits);
2080 pblock = map->m_pblk + (cur_logical - 2080 pblock = map->m_pblk + (cur_logical -
2081 map->m_lblk); 2081 map->m_lblk);
2082 } 2082 }
2083 index++; 2083 index++;
2084 2084
2085 BUG_ON(!PageLocked(page)); 2085 BUG_ON(!PageLocked(page));
2086 BUG_ON(PageWriteback(page)); 2086 BUG_ON(PageWriteback(page));
2087 2087
2088 /* 2088 /*
2089 * If the page does not have buffers (for 2089 * If the page does not have buffers (for
2090 * whatever reason), try to create them using 2090 * whatever reason), try to create them using
2091 * __block_write_begin. If this fails, 2091 * __block_write_begin. If this fails,
2092 * skip the page and move on. 2092 * skip the page and move on.
2093 */ 2093 */
2094 if (!page_has_buffers(page)) { 2094 if (!page_has_buffers(page)) {
2095 if (__block_write_begin(page, 0, len, 2095 if (__block_write_begin(page, 0, len,
2096 noalloc_get_block_write)) { 2096 noalloc_get_block_write)) {
2097 skip_page: 2097 skip_page:
2098 unlock_page(page); 2098 unlock_page(page);
2099 continue; 2099 continue;
2100 } 2100 }
2101 commit_write = 1; 2101 commit_write = 1;
2102 } 2102 }
2103 2103
2104 bh = page_bufs = page_buffers(page); 2104 bh = page_bufs = page_buffers(page);
2105 block_start = 0; 2105 block_start = 0;
2106 do { 2106 do {
2107 if (!bh) 2107 if (!bh)
2108 goto skip_page; 2108 goto skip_page;
2109 if (map && (cur_logical >= map->m_lblk) && 2109 if (map && (cur_logical >= map->m_lblk) &&
2110 (cur_logical <= (map->m_lblk + 2110 (cur_logical <= (map->m_lblk +
2111 (map->m_len - 1)))) { 2111 (map->m_len - 1)))) {
2112 if (buffer_delay(bh)) { 2112 if (buffer_delay(bh)) {
2113 clear_buffer_delay(bh); 2113 clear_buffer_delay(bh);
2114 bh->b_blocknr = pblock; 2114 bh->b_blocknr = pblock;
2115 } 2115 }
2116 if (buffer_unwritten(bh) || 2116 if (buffer_unwritten(bh) ||
2117 buffer_mapped(bh)) 2117 buffer_mapped(bh))
2118 BUG_ON(bh->b_blocknr != pblock); 2118 BUG_ON(bh->b_blocknr != pblock);
2119 if (map->m_flags & EXT4_MAP_UNINIT) 2119 if (map->m_flags & EXT4_MAP_UNINIT)
2120 set_buffer_uninit(bh); 2120 set_buffer_uninit(bh);
2121 clear_buffer_unwritten(bh); 2121 clear_buffer_unwritten(bh);
2122 } 2122 }
2123 2123
2124 /* skip page if block allocation undone */ 2124 /* skip page if block allocation undone */
2125 if (buffer_delay(bh) || buffer_unwritten(bh)) 2125 if (buffer_delay(bh) || buffer_unwritten(bh))
2126 skip_page = 1; 2126 skip_page = 1;
2127 bh = bh->b_this_page; 2127 bh = bh->b_this_page;
2128 block_start += bh->b_size; 2128 block_start += bh->b_size;
2129 cur_logical++; 2129 cur_logical++;
2130 pblock++; 2130 pblock++;
2131 } while (bh != page_bufs); 2131 } while (bh != page_bufs);
2132 2132
2133 if (skip_page) 2133 if (skip_page)
2134 goto skip_page; 2134 goto skip_page;
2135 2135
2136 if (commit_write) 2136 if (commit_write)
2137 /* mark the buffer_heads as dirty & uptodate */ 2137 /* mark the buffer_heads as dirty & uptodate */
2138 block_commit_write(page, 0, len); 2138 block_commit_write(page, 0, len);
2139 2139
2140 clear_page_dirty_for_io(page); 2140 clear_page_dirty_for_io(page);
2141 /* 2141 /*
2142 * Delalloc doesn't support data journalling, 2142 * Delalloc doesn't support data journalling,
2143 * but eventually maybe we'll lift this 2143 * but eventually maybe we'll lift this
2144 * restriction. 2144 * restriction.
2145 */ 2145 */
2146 if (unlikely(journal_data && PageChecked(page))) 2146 if (unlikely(journal_data && PageChecked(page)))
2147 err = __ext4_journalled_writepage(page, len); 2147 err = __ext4_journalled_writepage(page, len);
2148 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT)) 2148 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2149 err = ext4_bio_write_page(&io_submit, page, 2149 err = ext4_bio_write_page(&io_submit, page,
2150 len, mpd->wbc); 2150 len, mpd->wbc);
2151 else 2151 else
2152 err = block_write_full_page(page, 2152 err = block_write_full_page(page,
2153 noalloc_get_block_write, mpd->wbc); 2153 noalloc_get_block_write, mpd->wbc);
2154 2154
2155 if (!err) 2155 if (!err)
2156 mpd->pages_written++; 2156 mpd->pages_written++;
2157 /* 2157 /*
2158 * In error case, we have to continue because 2158 * In error case, we have to continue because
2159 * remaining pages are still locked 2159 * remaining pages are still locked
2160 */ 2160 */
2161 if (ret == 0) 2161 if (ret == 0)
2162 ret = err; 2162 ret = err;
2163 } 2163 }
2164 pagevec_release(&pvec); 2164 pagevec_release(&pvec);
2165 } 2165 }
2166 ext4_io_submit(&io_submit); 2166 ext4_io_submit(&io_submit);
2167 return ret; 2167 return ret;
2168 } 2168 }
2169 2169
2170 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 2170 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
2171 { 2171 {
2172 int nr_pages, i; 2172 int nr_pages, i;
2173 pgoff_t index, end; 2173 pgoff_t index, end;
2174 struct pagevec pvec; 2174 struct pagevec pvec;
2175 struct inode *inode = mpd->inode; 2175 struct inode *inode = mpd->inode;
2176 struct address_space *mapping = inode->i_mapping; 2176 struct address_space *mapping = inode->i_mapping;
2177 2177
2178 index = mpd->first_page; 2178 index = mpd->first_page;
2179 end = mpd->next_page - 1; 2179 end = mpd->next_page - 1;
2180 while (index <= end) { 2180 while (index <= end) {
2181 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 2181 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2182 if (nr_pages == 0) 2182 if (nr_pages == 0)
2183 break; 2183 break;
2184 for (i = 0; i < nr_pages; i++) { 2184 for (i = 0; i < nr_pages; i++) {
2185 struct page *page = pvec.pages[i]; 2185 struct page *page = pvec.pages[i];
2186 if (page->index > end) 2186 if (page->index > end)
2187 break; 2187 break;
2188 BUG_ON(!PageLocked(page)); 2188 BUG_ON(!PageLocked(page));
2189 BUG_ON(PageWriteback(page)); 2189 BUG_ON(PageWriteback(page));
2190 block_invalidatepage(page, 0); 2190 block_invalidatepage(page, 0);
2191 ClearPageUptodate(page); 2191 ClearPageUptodate(page);
2192 unlock_page(page); 2192 unlock_page(page);
2193 } 2193 }
2194 index = pvec.pages[nr_pages - 1]->index + 1; 2194 index = pvec.pages[nr_pages - 1]->index + 1;
2195 pagevec_release(&pvec); 2195 pagevec_release(&pvec);
2196 } 2196 }
2197 return; 2197 return;
2198 } 2198 }
2199 2199
2200 static void ext4_print_free_blocks(struct inode *inode) 2200 static void ext4_print_free_blocks(struct inode *inode)
2201 { 2201 {
2202 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2202 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2203 printk(KERN_CRIT "Total free blocks count %lld\n", 2203 printk(KERN_CRIT "Total free blocks count %lld\n",
2204 ext4_count_free_blocks(inode->i_sb)); 2204 ext4_count_free_blocks(inode->i_sb));
2205 printk(KERN_CRIT "Free/Dirty block details\n"); 2205 printk(KERN_CRIT "Free/Dirty block details\n");
2206 printk(KERN_CRIT "free_blocks=%lld\n", 2206 printk(KERN_CRIT "free_blocks=%lld\n",
2207 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter)); 2207 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2208 printk(KERN_CRIT "dirty_blocks=%lld\n", 2208 printk(KERN_CRIT "dirty_blocks=%lld\n",
2209 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); 2209 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2210 printk(KERN_CRIT "Block reservation details\n"); 2210 printk(KERN_CRIT "Block reservation details\n");
2211 printk(KERN_CRIT "i_reserved_data_blocks=%u\n", 2211 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2212 EXT4_I(inode)->i_reserved_data_blocks); 2212 EXT4_I(inode)->i_reserved_data_blocks);
2213 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n", 2213 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2214 EXT4_I(inode)->i_reserved_meta_blocks); 2214 EXT4_I(inode)->i_reserved_meta_blocks);
2215 return; 2215 return;
2216 } 2216 }
2217 2217
2218 /* 2218 /*
2219 * mpage_da_map_and_submit - go through given space, map them 2219 * mpage_da_map_and_submit - go through given space, map them
2220 * if necessary, and then submit them for I/O 2220 * if necessary, and then submit them for I/O
2221 * 2221 *
2222 * @mpd - bh describing space 2222 * @mpd - bh describing space
2223 * 2223 *
2224 * The function skips space we know is already mapped to disk blocks. 2224 * The function skips space we know is already mapped to disk blocks.
2225 * 2225 *
2226 */ 2226 */
2227 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 2227 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2228 { 2228 {
2229 int err, blks, get_blocks_flags; 2229 int err, blks, get_blocks_flags;
2230 struct ext4_map_blocks map, *mapp = NULL; 2230 struct ext4_map_blocks map, *mapp = NULL;
2231 sector_t next = mpd->b_blocknr; 2231 sector_t next = mpd->b_blocknr;
2232 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 2232 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2233 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 2233 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2234 handle_t *handle = NULL; 2234 handle_t *handle = NULL;
2235 2235
2236 /* 2236 /*
2237 * If the blocks are mapped already, or we couldn't accumulate 2237 * If the blocks are mapped already, or we couldn't accumulate
2238 * any blocks, then proceed immediately to the submission stage. 2238 * any blocks, then proceed immediately to the submission stage.
2239 */ 2239 */
2240 if ((mpd->b_size == 0) || 2240 if ((mpd->b_size == 0) ||
2241 ((mpd->b_state & (1 << BH_Mapped)) && 2241 ((mpd->b_state & (1 << BH_Mapped)) &&
2242 !(mpd->b_state & (1 << BH_Delay)) && 2242 !(mpd->b_state & (1 << BH_Delay)) &&
2243 !(mpd->b_state & (1 << BH_Unwritten)))) 2243 !(mpd->b_state & (1 << BH_Unwritten))))
2244 goto submit_io; 2244 goto submit_io;
2245 2245
2246 handle = ext4_journal_current_handle(); 2246 handle = ext4_journal_current_handle();
2247 BUG_ON(!handle); 2247 BUG_ON(!handle);
2248 2248
2249 /* 2249 /*
2250 * Call ext4_map_blocks() to allocate any delayed allocation 2250 * Call ext4_map_blocks() to allocate any delayed allocation
2251 * blocks, or to convert an uninitialized extent to be 2251 * blocks, or to convert an uninitialized extent to be
2252 * initialized (in the case where we have written into 2252 * initialized (in the case where we have written into
2253 * one or more preallocated blocks). 2253 * one or more preallocated blocks).
2254 * 2254 *
2255 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 2255 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2256 * indicate that we are on the delayed allocation path. This 2256 * indicate that we are on the delayed allocation path. This
2257 * affects functions in many different parts of the allocation 2257 * affects functions in many different parts of the allocation
2258 * call path. This flag exists primarily because we don't 2258 * call path. This flag exists primarily because we don't
2259 * want to change *many* call functions, so ext4_map_blocks() 2259 * want to change *many* call functions, so ext4_map_blocks()
2260 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 2260 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2261 * inode's allocation semaphore is taken. 2261 * inode's allocation semaphore is taken.
2262 * 2262 *
2263 * If the blocks in questions were delalloc blocks, set 2263 * If the blocks in questions were delalloc blocks, set
2264 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 2264 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2265 * variables are updated after the blocks have been allocated. 2265 * variables are updated after the blocks have been allocated.
2266 */ 2266 */
2267 map.m_lblk = next; 2267 map.m_lblk = next;
2268 map.m_len = max_blocks; 2268 map.m_len = max_blocks;
2269 get_blocks_flags = EXT4_GET_BLOCKS_CREATE; 2269 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2270 if (ext4_should_dioread_nolock(mpd->inode)) 2270 if (ext4_should_dioread_nolock(mpd->inode))
2271 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2271 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2272 if (mpd->b_state & (1 << BH_Delay)) 2272 if (mpd->b_state & (1 << BH_Delay))
2273 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2273 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2274 2274
2275 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 2275 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2276 if (blks < 0) { 2276 if (blks < 0) {
2277 struct super_block *sb = mpd->inode->i_sb; 2277 struct super_block *sb = mpd->inode->i_sb;
2278 2278
2279 err = blks; 2279 err = blks;
2280 /* 2280 /*
2281 * If get block returns EAGAIN or ENOSPC and there 2281 * If get block returns EAGAIN or ENOSPC and there
2282 * appears to be free blocks we will just let 2282 * appears to be free blocks we will just let
2283 * mpage_da_submit_io() unlock all of the pages. 2283 * mpage_da_submit_io() unlock all of the pages.
2284 */ 2284 */
2285 if (err == -EAGAIN) 2285 if (err == -EAGAIN)
2286 goto submit_io; 2286 goto submit_io;
2287 2287
2288 if (err == -ENOSPC && 2288 if (err == -ENOSPC &&
2289 ext4_count_free_blocks(sb)) { 2289 ext4_count_free_blocks(sb)) {
2290 mpd->retval = err; 2290 mpd->retval = err;
2291 goto submit_io; 2291 goto submit_io;
2292 } 2292 }
2293 2293
2294 /* 2294 /*
2295 * get block failure will cause us to loop in 2295 * get block failure will cause us to loop in
2296 * writepages, because a_ops->writepage won't be able 2296 * writepages, because a_ops->writepage won't be able
2297 * to make progress. The page will be redirtied by 2297 * to make progress. The page will be redirtied by
2298 * writepage and writepages will again try to write 2298 * writepage and writepages will again try to write
2299 * the same. 2299 * the same.
2300 */ 2300 */
2301 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2301 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2302 ext4_msg(sb, KERN_CRIT, 2302 ext4_msg(sb, KERN_CRIT,
2303 "delayed block allocation failed for inode %lu " 2303 "delayed block allocation failed for inode %lu "
2304 "at logical offset %llu with max blocks %zd " 2304 "at logical offset %llu with max blocks %zd "
2305 "with error %d", mpd->inode->i_ino, 2305 "with error %d", mpd->inode->i_ino,
2306 (unsigned long long) next, 2306 (unsigned long long) next,
2307 mpd->b_size >> mpd->inode->i_blkbits, err); 2307 mpd->b_size >> mpd->inode->i_blkbits, err);
2308 ext4_msg(sb, KERN_CRIT, 2308 ext4_msg(sb, KERN_CRIT,
2309 "This should not happen!! Data will be lost\n"); 2309 "This should not happen!! Data will be lost\n");
2310 if (err == -ENOSPC) 2310 if (err == -ENOSPC)
2311 ext4_print_free_blocks(mpd->inode); 2311 ext4_print_free_blocks(mpd->inode);
2312 } 2312 }
2313 /* invalidate all the pages */ 2313 /* invalidate all the pages */
2314 ext4_da_block_invalidatepages(mpd); 2314 ext4_da_block_invalidatepages(mpd);
2315 2315
2316 /* Mark this page range as having been completed */ 2316 /* Mark this page range as having been completed */
2317 mpd->io_done = 1; 2317 mpd->io_done = 1;
2318 return; 2318 return;
2319 } 2319 }
2320 BUG_ON(blks == 0); 2320 BUG_ON(blks == 0);
2321 2321
2322 mapp = &map; 2322 mapp = &map;
2323 if (map.m_flags & EXT4_MAP_NEW) { 2323 if (map.m_flags & EXT4_MAP_NEW) {
2324 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 2324 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2325 int i; 2325 int i;
2326 2326
2327 for (i = 0; i < map.m_len; i++) 2327 for (i = 0; i < map.m_len; i++)
2328 unmap_underlying_metadata(bdev, map.m_pblk + i); 2328 unmap_underlying_metadata(bdev, map.m_pblk + i);
2329 } 2329 }
2330 2330
2331 if (ext4_should_order_data(mpd->inode)) { 2331 if (ext4_should_order_data(mpd->inode)) {
2332 err = ext4_jbd2_file_inode(handle, mpd->inode); 2332 err = ext4_jbd2_file_inode(handle, mpd->inode);
2333 if (err) 2333 if (err)
2334 /* This only happens if the journal is aborted */ 2334 /* This only happens if the journal is aborted */
2335 return; 2335 return;
2336 } 2336 }
2337 2337
2338 /* 2338 /*
2339 * Update on-disk size along with block allocation. 2339 * Update on-disk size along with block allocation.
2340 */ 2340 */
2341 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 2341 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2342 if (disksize > i_size_read(mpd->inode)) 2342 if (disksize > i_size_read(mpd->inode))
2343 disksize = i_size_read(mpd->inode); 2343 disksize = i_size_read(mpd->inode);
2344 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 2344 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2345 ext4_update_i_disksize(mpd->inode, disksize); 2345 ext4_update_i_disksize(mpd->inode, disksize);
2346 err = ext4_mark_inode_dirty(handle, mpd->inode); 2346 err = ext4_mark_inode_dirty(handle, mpd->inode);
2347 if (err) 2347 if (err)
2348 ext4_error(mpd->inode->i_sb, 2348 ext4_error(mpd->inode->i_sb,
2349 "Failed to mark inode %lu dirty", 2349 "Failed to mark inode %lu dirty",
2350 mpd->inode->i_ino); 2350 mpd->inode->i_ino);
2351 } 2351 }
2352 2352
2353 submit_io: 2353 submit_io:
2354 mpage_da_submit_io(mpd, mapp); 2354 mpage_da_submit_io(mpd, mapp);
2355 mpd->io_done = 1; 2355 mpd->io_done = 1;
2356 } 2356 }
2357 2357
2358 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 2358 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2359 (1 << BH_Delay) | (1 << BH_Unwritten)) 2359 (1 << BH_Delay) | (1 << BH_Unwritten))
2360 2360
2361 /* 2361 /*
2362 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 2362 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2363 * 2363 *
2364 * @mpd->lbh - extent of blocks 2364 * @mpd->lbh - extent of blocks
2365 * @logical - logical number of the block in the file 2365 * @logical - logical number of the block in the file
2366 * @bh - bh of the block (used to access block's state) 2366 * @bh - bh of the block (used to access block's state)
2367 * 2367 *
2368 * the function is used to collect contig. blocks in same state 2368 * the function is used to collect contig. blocks in same state
2369 */ 2369 */
2370 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, 2370 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2371 sector_t logical, size_t b_size, 2371 sector_t logical, size_t b_size,
2372 unsigned long b_state) 2372 unsigned long b_state)
2373 { 2373 {
2374 sector_t next; 2374 sector_t next;
2375 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; 2375 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2376 2376
2377 /* 2377 /*
2378 * XXX Don't go larger than mballoc is willing to allocate 2378 * XXX Don't go larger than mballoc is willing to allocate
2379 * This is a stopgap solution. We eventually need to fold 2379 * This is a stopgap solution. We eventually need to fold
2380 * mpage_da_submit_io() into this function and then call 2380 * mpage_da_submit_io() into this function and then call
2381 * ext4_map_blocks() multiple times in a loop 2381 * ext4_map_blocks() multiple times in a loop
2382 */ 2382 */
2383 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) 2383 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2384 goto flush_it; 2384 goto flush_it;
2385 2385
2386 /* check if thereserved journal credits might overflow */ 2386 /* check if thereserved journal credits might overflow */
2387 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { 2387 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2388 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 2388 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2389 /* 2389 /*
2390 * With non-extent format we are limited by the journal 2390 * With non-extent format we are limited by the journal
2391 * credit available. Total credit needed to insert 2391 * credit available. Total credit needed to insert
2392 * nrblocks contiguous blocks is dependent on the 2392 * nrblocks contiguous blocks is dependent on the
2393 * nrblocks. So limit nrblocks. 2393 * nrblocks. So limit nrblocks.
2394 */ 2394 */
2395 goto flush_it; 2395 goto flush_it;
2396 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > 2396 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2397 EXT4_MAX_TRANS_DATA) { 2397 EXT4_MAX_TRANS_DATA) {
2398 /* 2398 /*
2399 * Adding the new buffer_head would make it cross the 2399 * Adding the new buffer_head would make it cross the
2400 * allowed limit for which we have journal credit 2400 * allowed limit for which we have journal credit
2401 * reserved. So limit the new bh->b_size 2401 * reserved. So limit the new bh->b_size
2402 */ 2402 */
2403 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << 2403 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2404 mpd->inode->i_blkbits; 2404 mpd->inode->i_blkbits;
2405 /* we will do mpage_da_submit_io in the next loop */ 2405 /* we will do mpage_da_submit_io in the next loop */
2406 } 2406 }
2407 } 2407 }
2408 /* 2408 /*
2409 * First block in the extent 2409 * First block in the extent
2410 */ 2410 */
2411 if (mpd->b_size == 0) { 2411 if (mpd->b_size == 0) {
2412 mpd->b_blocknr = logical; 2412 mpd->b_blocknr = logical;
2413 mpd->b_size = b_size; 2413 mpd->b_size = b_size;
2414 mpd->b_state = b_state & BH_FLAGS; 2414 mpd->b_state = b_state & BH_FLAGS;
2415 return; 2415 return;
2416 } 2416 }
2417 2417
2418 next = mpd->b_blocknr + nrblocks; 2418 next = mpd->b_blocknr + nrblocks;
2419 /* 2419 /*
2420 * Can we merge the block to our big extent? 2420 * Can we merge the block to our big extent?
2421 */ 2421 */
2422 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 2422 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2423 mpd->b_size += b_size; 2423 mpd->b_size += b_size;
2424 return; 2424 return;
2425 } 2425 }
2426 2426
2427 flush_it: 2427 flush_it:
2428 /* 2428 /*
2429 * We couldn't merge the block to our extent, so we 2429 * We couldn't merge the block to our extent, so we
2430 * need to flush current extent and start new one 2430 * need to flush current extent and start new one
2431 */ 2431 */
2432 mpage_da_map_and_submit(mpd); 2432 mpage_da_map_and_submit(mpd);
2433 return; 2433 return;
2434 } 2434 }
2435 2435
2436 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 2436 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2437 { 2437 {
2438 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 2438 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2439 } 2439 }
2440 2440
2441 /* 2441 /*
2442 * This is a special get_blocks_t callback which is used by 2442 * This is a special get_blocks_t callback which is used by
2443 * ext4_da_write_begin(). It will either return mapped block or 2443 * ext4_da_write_begin(). It will either return mapped block or
2444 * reserve space for a single block. 2444 * reserve space for a single block.
2445 * 2445 *
2446 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2446 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2447 * We also have b_blocknr = -1 and b_bdev initialized properly 2447 * We also have b_blocknr = -1 and b_bdev initialized properly
2448 * 2448 *
2449 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2449 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2450 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2450 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2451 * initialized properly. 2451 * initialized properly.
2452 */ 2452 */
2453 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2453 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2454 struct buffer_head *bh, int create) 2454 struct buffer_head *bh, int create)
2455 { 2455 {
2456 struct ext4_map_blocks map; 2456 struct ext4_map_blocks map;
2457 int ret = 0; 2457 int ret = 0;
2458 sector_t invalid_block = ~((sector_t) 0xffff); 2458 sector_t invalid_block = ~((sector_t) 0xffff);
2459 2459
2460 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 2460 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2461 invalid_block = ~0; 2461 invalid_block = ~0;
2462 2462
2463 BUG_ON(create == 0); 2463 BUG_ON(create == 0);
2464 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 2464 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2465 2465
2466 map.m_lblk = iblock; 2466 map.m_lblk = iblock;
2467 map.m_len = 1; 2467 map.m_len = 1;
2468 2468
2469 /* 2469 /*
2470 * first, we need to know whether the block is allocated already 2470 * first, we need to know whether the block is allocated already
2471 * preallocated blocks are unmapped but should treated 2471 * preallocated blocks are unmapped but should treated
2472 * the same as allocated blocks. 2472 * the same as allocated blocks.
2473 */ 2473 */
2474 ret = ext4_map_blocks(NULL, inode, &map, 0); 2474 ret = ext4_map_blocks(NULL, inode, &map, 0);
2475 if (ret < 0) 2475 if (ret < 0)
2476 return ret; 2476 return ret;
2477 if (ret == 0) { 2477 if (ret == 0) {
2478 if (buffer_delay(bh)) 2478 if (buffer_delay(bh))
2479 return 0; /* Not sure this could or should happen */ 2479 return 0; /* Not sure this could or should happen */
2480 /* 2480 /*
2481 * XXX: __block_write_begin() unmaps passed block, is it OK? 2481 * XXX: __block_write_begin() unmaps passed block, is it OK?
2482 */ 2482 */
2483 ret = ext4_da_reserve_space(inode, iblock); 2483 ret = ext4_da_reserve_space(inode, iblock);
2484 if (ret) 2484 if (ret)
2485 /* not enough space to reserve */ 2485 /* not enough space to reserve */
2486 return ret; 2486 return ret;
2487 2487
2488 map_bh(bh, inode->i_sb, invalid_block); 2488 map_bh(bh, inode->i_sb, invalid_block);
2489 set_buffer_new(bh); 2489 set_buffer_new(bh);
2490 set_buffer_delay(bh); 2490 set_buffer_delay(bh);
2491 return 0; 2491 return 0;
2492 } 2492 }
2493 2493
2494 map_bh(bh, inode->i_sb, map.m_pblk); 2494 map_bh(bh, inode->i_sb, map.m_pblk);
2495 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 2495 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2496 2496
2497 if (buffer_unwritten(bh)) { 2497 if (buffer_unwritten(bh)) {
2498 /* A delayed write to unwritten bh should be marked 2498 /* A delayed write to unwritten bh should be marked
2499 * new and mapped. Mapped ensures that we don't do 2499 * new and mapped. Mapped ensures that we don't do
2500 * get_block multiple times when we write to the same 2500 * get_block multiple times when we write to the same
2501 * offset and new ensures that we do proper zero out 2501 * offset and new ensures that we do proper zero out
2502 * for partial write. 2502 * for partial write.
2503 */ 2503 */
2504 set_buffer_new(bh); 2504 set_buffer_new(bh);
2505 set_buffer_mapped(bh); 2505 set_buffer_mapped(bh);
2506 } 2506 }
2507 return 0; 2507 return 0;
2508 } 2508 }
2509 2509
2510 /* 2510 /*
2511 * This function is used as a standard get_block_t calback function 2511 * This function is used as a standard get_block_t calback function
2512 * when there is no desire to allocate any blocks. It is used as a 2512 * when there is no desire to allocate any blocks. It is used as a
2513 * callback function for block_write_begin() and block_write_full_page(). 2513 * callback function for block_write_begin() and block_write_full_page().
2514 * These functions should only try to map a single block at a time. 2514 * These functions should only try to map a single block at a time.
2515 * 2515 *
2516 * Since this function doesn't do block allocations even if the caller 2516 * Since this function doesn't do block allocations even if the caller
2517 * requests it by passing in create=1, it is critically important that 2517 * requests it by passing in create=1, it is critically important that
2518 * any caller checks to make sure that any buffer heads are returned 2518 * any caller checks to make sure that any buffer heads are returned
2519 * by this function are either all already mapped or marked for 2519 * by this function are either all already mapped or marked for
2520 * delayed allocation before calling block_write_full_page(). Otherwise, 2520 * delayed allocation before calling block_write_full_page(). Otherwise,
2521 * b_blocknr could be left unitialized, and the page write functions will 2521 * b_blocknr could be left unitialized, and the page write functions will
2522 * be taken by surprise. 2522 * be taken by surprise.
2523 */ 2523 */
2524 static int noalloc_get_block_write(struct inode *inode, sector_t iblock, 2524 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2525 struct buffer_head *bh_result, int create) 2525 struct buffer_head *bh_result, int create)
2526 { 2526 {
2527 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); 2527 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2528 return _ext4_get_block(inode, iblock, bh_result, 0); 2528 return _ext4_get_block(inode, iblock, bh_result, 0);
2529 } 2529 }
2530 2530
2531 static int bget_one(handle_t *handle, struct buffer_head *bh) 2531 static int bget_one(handle_t *handle, struct buffer_head *bh)
2532 { 2532 {
2533 get_bh(bh); 2533 get_bh(bh);
2534 return 0; 2534 return 0;
2535 } 2535 }
2536 2536
2537 static int bput_one(handle_t *handle, struct buffer_head *bh) 2537 static int bput_one(handle_t *handle, struct buffer_head *bh)
2538 { 2538 {
2539 put_bh(bh); 2539 put_bh(bh);
2540 return 0; 2540 return 0;
2541 } 2541 }
2542 2542
2543 static int __ext4_journalled_writepage(struct page *page, 2543 static int __ext4_journalled_writepage(struct page *page,
2544 unsigned int len) 2544 unsigned int len)
2545 { 2545 {
2546 struct address_space *mapping = page->mapping; 2546 struct address_space *mapping = page->mapping;
2547 struct inode *inode = mapping->host; 2547 struct inode *inode = mapping->host;
2548 struct buffer_head *page_bufs; 2548 struct buffer_head *page_bufs;
2549 handle_t *handle = NULL; 2549 handle_t *handle = NULL;
2550 int ret = 0; 2550 int ret = 0;
2551 int err; 2551 int err;
2552 2552
2553 ClearPageChecked(page); 2553 ClearPageChecked(page);
2554 page_bufs = page_buffers(page); 2554 page_bufs = page_buffers(page);
2555 BUG_ON(!page_bufs); 2555 BUG_ON(!page_bufs);
2556 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); 2556 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2557 /* As soon as we unlock the page, it can go away, but we have 2557 /* As soon as we unlock the page, it can go away, but we have
2558 * references to buffers so we are safe */ 2558 * references to buffers so we are safe */
2559 unlock_page(page); 2559 unlock_page(page);
2560 2560
2561 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); 2561 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2562 if (IS_ERR(handle)) { 2562 if (IS_ERR(handle)) {
2563 ret = PTR_ERR(handle); 2563 ret = PTR_ERR(handle);
2564 goto out; 2564 goto out;
2565 } 2565 }
2566 2566
2567 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2567 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2568 do_journal_get_write_access); 2568 do_journal_get_write_access);
2569 2569
2570 err = walk_page_buffers(handle, page_bufs, 0, len, NULL, 2570 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2571 write_end_fn); 2571 write_end_fn);
2572 if (ret == 0) 2572 if (ret == 0)
2573 ret = err; 2573 ret = err;
2574 err = ext4_journal_stop(handle); 2574 err = ext4_journal_stop(handle);
2575 if (!ret) 2575 if (!ret)
2576 ret = err; 2576 ret = err;
2577 2577
2578 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); 2578 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2579 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2579 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2580 out: 2580 out:
2581 return ret; 2581 return ret;
2582 } 2582 }
2583 2583
2584 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); 2584 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2585 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); 2585 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2586 2586
2587 /* 2587 /*
2588 * Note that we don't need to start a transaction unless we're journaling data 2588 * Note that we don't need to start a transaction unless we're journaling data
2589 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2589 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2590 * need to file the inode to the transaction's list in ordered mode because if 2590 * need to file the inode to the transaction's list in ordered mode because if
2591 * we are writing back data added by write(), the inode is already there and if 2591 * we are writing back data added by write(), the inode is already there and if
2592 * we are writing back data modified via mmap(), no one guarantees in which 2592 * we are writing back data modified via mmap(), no one guarantees in which
2593 * transaction the data will hit the disk. In case we are journaling data, we 2593 * transaction the data will hit the disk. In case we are journaling data, we
2594 * cannot start transaction directly because transaction start ranks above page 2594 * cannot start transaction directly because transaction start ranks above page
2595 * lock so we have to do some magic. 2595 * lock so we have to do some magic.
2596 * 2596 *
2597 * This function can get called via... 2597 * This function can get called via...
2598 * - ext4_da_writepages after taking page lock (have journal handle) 2598 * - ext4_da_writepages after taking page lock (have journal handle)
2599 * - journal_submit_inode_data_buffers (no journal handle) 2599 * - journal_submit_inode_data_buffers (no journal handle)
2600 * - shrink_page_list via pdflush (no journal handle) 2600 * - shrink_page_list via pdflush (no journal handle)
2601 * - grab_page_cache when doing write_begin (have journal handle) 2601 * - grab_page_cache when doing write_begin (have journal handle)
2602 * 2602 *
2603 * We don't do any block allocation in this function. If we have page with 2603 * We don't do any block allocation in this function. If we have page with
2604 * multiple blocks we need to write those buffer_heads that are mapped. This 2604 * multiple blocks we need to write those buffer_heads that are mapped. This
2605 * is important for mmaped based write. So if we do with blocksize 1K 2605 * is important for mmaped based write. So if we do with blocksize 1K
2606 * truncate(f, 1024); 2606 * truncate(f, 1024);
2607 * a = mmap(f, 0, 4096); 2607 * a = mmap(f, 0, 4096);
2608 * a[0] = 'a'; 2608 * a[0] = 'a';
2609 * truncate(f, 4096); 2609 * truncate(f, 4096);
2610 * we have in the page first buffer_head mapped via page_mkwrite call back 2610 * we have in the page first buffer_head mapped via page_mkwrite call back
2611 * but other bufer_heads would be unmapped but dirty(dirty done via the 2611 * but other bufer_heads would be unmapped but dirty(dirty done via the
2612 * do_wp_page). So writepage should write the first block. If we modify 2612 * do_wp_page). So writepage should write the first block. If we modify
2613 * the mmap area beyond 1024 we will again get a page_fault and the 2613 * the mmap area beyond 1024 we will again get a page_fault and the
2614 * page_mkwrite callback will do the block allocation and mark the 2614 * page_mkwrite callback will do the block allocation and mark the
2615 * buffer_heads mapped. 2615 * buffer_heads mapped.
2616 * 2616 *
2617 * We redirty the page if we have any buffer_heads that is either delay or 2617 * We redirty the page if we have any buffer_heads that is either delay or
2618 * unwritten in the page. 2618 * unwritten in the page.
2619 * 2619 *
2620 * We can get recursively called as show below. 2620 * We can get recursively called as show below.
2621 * 2621 *
2622 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2622 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2623 * ext4_writepage() 2623 * ext4_writepage()
2624 * 2624 *
2625 * But since we don't do any block allocation we should not deadlock. 2625 * But since we don't do any block allocation we should not deadlock.
2626 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2626 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2627 */ 2627 */
2628 static int ext4_writepage(struct page *page, 2628 static int ext4_writepage(struct page *page,
2629 struct writeback_control *wbc) 2629 struct writeback_control *wbc)
2630 { 2630 {
2631 int ret = 0, commit_write = 0; 2631 int ret = 0, commit_write = 0;
2632 loff_t size; 2632 loff_t size;
2633 unsigned int len; 2633 unsigned int len;
2634 struct buffer_head *page_bufs = NULL; 2634 struct buffer_head *page_bufs = NULL;
2635 struct inode *inode = page->mapping->host; 2635 struct inode *inode = page->mapping->host;
2636 2636
2637 trace_ext4_writepage(inode, page); 2637 trace_ext4_writepage(inode, page);
2638 size = i_size_read(inode); 2638 size = i_size_read(inode);
2639 if (page->index == size >> PAGE_CACHE_SHIFT) 2639 if (page->index == size >> PAGE_CACHE_SHIFT)
2640 len = size & ~PAGE_CACHE_MASK; 2640 len = size & ~PAGE_CACHE_MASK;
2641 else 2641 else
2642 len = PAGE_CACHE_SIZE; 2642 len = PAGE_CACHE_SIZE;
2643 2643
2644 /* 2644 /*
2645 * If the page does not have buffers (for whatever reason), 2645 * If the page does not have buffers (for whatever reason),
2646 * try to create them using __block_write_begin. If this 2646 * try to create them using __block_write_begin. If this
2647 * fails, redirty the page and move on. 2647 * fails, redirty the page and move on.
2648 */ 2648 */
2649 if (!page_has_buffers(page)) { 2649 if (!page_has_buffers(page)) {
2650 if (__block_write_begin(page, 0, len, 2650 if (__block_write_begin(page, 0, len,
2651 noalloc_get_block_write)) { 2651 noalloc_get_block_write)) {
2652 redirty_page: 2652 redirty_page:
2653 redirty_page_for_writepage(wbc, page); 2653 redirty_page_for_writepage(wbc, page);
2654 unlock_page(page); 2654 unlock_page(page);
2655 return 0; 2655 return 0;
2656 } 2656 }
2657 commit_write = 1; 2657 commit_write = 1;
2658 } 2658 }
2659 page_bufs = page_buffers(page); 2659 page_bufs = page_buffers(page);
2660 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2660 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2661 ext4_bh_delay_or_unwritten)) { 2661 ext4_bh_delay_or_unwritten)) {
2662 /* 2662 /*
2663 * We don't want to do block allocation, so redirty 2663 * We don't want to do block allocation, so redirty
2664 * the page and return. We may reach here when we do 2664 * the page and return. We may reach here when we do
2665 * a journal commit via journal_submit_inode_data_buffers. 2665 * a journal commit via journal_submit_inode_data_buffers.
2666 * We can also reach here via shrink_page_list 2666 * We can also reach here via shrink_page_list
2667 */ 2667 */
2668 goto redirty_page; 2668 goto redirty_page;
2669 } 2669 }
2670 if (commit_write) 2670 if (commit_write)
2671 /* now mark the buffer_heads as dirty and uptodate */ 2671 /* now mark the buffer_heads as dirty and uptodate */
2672 block_commit_write(page, 0, len); 2672 block_commit_write(page, 0, len);
2673 2673
2674 if (PageChecked(page) && ext4_should_journal_data(inode)) 2674 if (PageChecked(page) && ext4_should_journal_data(inode))
2675 /* 2675 /*
2676 * It's mmapped pagecache. Add buffers and journal it. There 2676 * It's mmapped pagecache. Add buffers and journal it. There
2677 * doesn't seem much point in redirtying the page here. 2677 * doesn't seem much point in redirtying the page here.
2678 */ 2678 */
2679 return __ext4_journalled_writepage(page, len); 2679 return __ext4_journalled_writepage(page, len);
2680 2680
2681 if (buffer_uninit(page_bufs)) { 2681 if (buffer_uninit(page_bufs)) {
2682 ext4_set_bh_endio(page_bufs, inode); 2682 ext4_set_bh_endio(page_bufs, inode);
2683 ret = block_write_full_page_endio(page, noalloc_get_block_write, 2683 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2684 wbc, ext4_end_io_buffer_write); 2684 wbc, ext4_end_io_buffer_write);
2685 } else 2685 } else
2686 ret = block_write_full_page(page, noalloc_get_block_write, 2686 ret = block_write_full_page(page, noalloc_get_block_write,
2687 wbc); 2687 wbc);
2688 2688
2689 return ret; 2689 return ret;
2690 } 2690 }
2691 2691
2692 /* 2692 /*
2693 * This is called via ext4_da_writepages() to 2693 * This is called via ext4_da_writepages() to
2694 * calculate the total number of credits to reserve to fit 2694 * calculate the total number of credits to reserve to fit
2695 * a single extent allocation into a single transaction, 2695 * a single extent allocation into a single transaction,
2696 * ext4_da_writpeages() will loop calling this before 2696 * ext4_da_writpeages() will loop calling this before
2697 * the block allocation. 2697 * the block allocation.
2698 */ 2698 */
2699 2699
2700 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2700 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2701 { 2701 {
2702 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2702 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2703 2703
2704 /* 2704 /*
2705 * With non-extent format the journal credit needed to 2705 * With non-extent format the journal credit needed to
2706 * insert nrblocks contiguous block is dependent on 2706 * insert nrblocks contiguous block is dependent on
2707 * number of contiguous block. So we will limit 2707 * number of contiguous block. So we will limit
2708 * number of contiguous block to a sane value 2708 * number of contiguous block to a sane value
2709 */ 2709 */
2710 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 2710 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2711 (max_blocks > EXT4_MAX_TRANS_DATA)) 2711 (max_blocks > EXT4_MAX_TRANS_DATA))
2712 max_blocks = EXT4_MAX_TRANS_DATA; 2712 max_blocks = EXT4_MAX_TRANS_DATA;
2713 2713
2714 return ext4_chunk_trans_blocks(inode, max_blocks); 2714 return ext4_chunk_trans_blocks(inode, max_blocks);
2715 } 2715 }
2716 2716
2717 /* 2717 /*
2718 * write_cache_pages_da - walk the list of dirty pages of the given 2718 * write_cache_pages_da - walk the list of dirty pages of the given
2719 * address space and accumulate pages that need writing, and call 2719 * address space and accumulate pages that need writing, and call
2720 * mpage_da_map_and_submit to map a single contiguous memory region 2720 * mpage_da_map_and_submit to map a single contiguous memory region
2721 * and then write them. 2721 * and then write them.
2722 */ 2722 */
2723 static int write_cache_pages_da(struct address_space *mapping, 2723 static int write_cache_pages_da(struct address_space *mapping,
2724 struct writeback_control *wbc, 2724 struct writeback_control *wbc,
2725 struct mpage_da_data *mpd, 2725 struct mpage_da_data *mpd,
2726 pgoff_t *done_index) 2726 pgoff_t *done_index)
2727 { 2727 {
2728 struct buffer_head *bh, *head; 2728 struct buffer_head *bh, *head;
2729 struct inode *inode = mapping->host; 2729 struct inode *inode = mapping->host;
2730 struct pagevec pvec; 2730 struct pagevec pvec;
2731 unsigned int nr_pages; 2731 unsigned int nr_pages;
2732 sector_t logical; 2732 sector_t logical;
2733 pgoff_t index, end; 2733 pgoff_t index, end;
2734 long nr_to_write = wbc->nr_to_write; 2734 long nr_to_write = wbc->nr_to_write;
2735 int i, tag, ret = 0; 2735 int i, tag, ret = 0;
2736 2736
2737 memset(mpd, 0, sizeof(struct mpage_da_data)); 2737 memset(mpd, 0, sizeof(struct mpage_da_data));
2738 mpd->wbc = wbc; 2738 mpd->wbc = wbc;
2739 mpd->inode = inode; 2739 mpd->inode = inode;
2740 pagevec_init(&pvec, 0); 2740 pagevec_init(&pvec, 0);
2741 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2741 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2742 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2742 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2743 2743
2744 if (wbc->sync_mode == WB_SYNC_ALL) 2744 if (wbc->sync_mode == WB_SYNC_ALL)
2745 tag = PAGECACHE_TAG_TOWRITE; 2745 tag = PAGECACHE_TAG_TOWRITE;
2746 else 2746 else
2747 tag = PAGECACHE_TAG_DIRTY; 2747 tag = PAGECACHE_TAG_DIRTY;
2748 2748
2749 *done_index = index; 2749 *done_index = index;
2750 while (index <= end) { 2750 while (index <= end) {
2751 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2751 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2752 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2752 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2753 if (nr_pages == 0) 2753 if (nr_pages == 0)
2754 return 0; 2754 return 0;
2755 2755
2756 for (i = 0; i < nr_pages; i++) { 2756 for (i = 0; i < nr_pages; i++) {
2757 struct page *page = pvec.pages[i]; 2757 struct page *page = pvec.pages[i];
2758 2758
2759 /* 2759 /*
2760 * At this point, the page may be truncated or 2760 * At this point, the page may be truncated or
2761 * invalidated (changing page->mapping to NULL), or 2761 * invalidated (changing page->mapping to NULL), or
2762 * even swizzled back from swapper_space to tmpfs file 2762 * even swizzled back from swapper_space to tmpfs file
2763 * mapping. However, page->index will not change 2763 * mapping. However, page->index will not change
2764 * because we have a reference on the page. 2764 * because we have a reference on the page.
2765 */ 2765 */
2766 if (page->index > end) 2766 if (page->index > end)
2767 goto out; 2767 goto out;
2768 2768
2769 *done_index = page->index + 1; 2769 *done_index = page->index + 1;
2770 2770
2771 /* 2771 /*
2772 * If we can't merge this page, and we have 2772 * If we can't merge this page, and we have
2773 * accumulated an contiguous region, write it 2773 * accumulated an contiguous region, write it
2774 */ 2774 */
2775 if ((mpd->next_page != page->index) && 2775 if ((mpd->next_page != page->index) &&
2776 (mpd->next_page != mpd->first_page)) { 2776 (mpd->next_page != mpd->first_page)) {
2777 mpage_da_map_and_submit(mpd); 2777 mpage_da_map_and_submit(mpd);
2778 goto ret_extent_tail; 2778 goto ret_extent_tail;
2779 } 2779 }
2780 2780
2781 lock_page(page); 2781 lock_page(page);
2782 2782
2783 /* 2783 /*
2784 * If the page is no longer dirty, or its 2784 * If the page is no longer dirty, or its
2785 * mapping no longer corresponds to inode we 2785 * mapping no longer corresponds to inode we
2786 * are writing (which means it has been 2786 * are writing (which means it has been
2787 * truncated or invalidated), or the page is 2787 * truncated or invalidated), or the page is
2788 * already under writeback and we are not 2788 * already under writeback and we are not
2789 * doing a data integrity writeback, skip the page 2789 * doing a data integrity writeback, skip the page
2790 */ 2790 */
2791 if (!PageDirty(page) || 2791 if (!PageDirty(page) ||
2792 (PageWriteback(page) && 2792 (PageWriteback(page) &&
2793 (wbc->sync_mode == WB_SYNC_NONE)) || 2793 (wbc->sync_mode == WB_SYNC_NONE)) ||
2794 unlikely(page->mapping != mapping)) { 2794 unlikely(page->mapping != mapping)) {
2795 unlock_page(page); 2795 unlock_page(page);
2796 continue; 2796 continue;
2797 } 2797 }
2798 2798
2799 if (PageWriteback(page)) 2799 wait_on_page_writeback(page);
2800 wait_on_page_writeback(page);
2801
2802 BUG_ON(PageWriteback(page)); 2800 BUG_ON(PageWriteback(page));
2803 2801
2804 if (mpd->next_page != page->index) 2802 if (mpd->next_page != page->index)
2805 mpd->first_page = page->index; 2803 mpd->first_page = page->index;
2806 mpd->next_page = page->index + 1; 2804 mpd->next_page = page->index + 1;
2807 logical = (sector_t) page->index << 2805 logical = (sector_t) page->index <<
2808 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2806 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2809 2807
2810 if (!page_has_buffers(page)) { 2808 if (!page_has_buffers(page)) {
2811 mpage_add_bh_to_extent(mpd, logical, 2809 mpage_add_bh_to_extent(mpd, logical,
2812 PAGE_CACHE_SIZE, 2810 PAGE_CACHE_SIZE,
2813 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2811 (1 << BH_Dirty) | (1 << BH_Uptodate));
2814 if (mpd->io_done) 2812 if (mpd->io_done)
2815 goto ret_extent_tail; 2813 goto ret_extent_tail;
2816 } else { 2814 } else {
2817 /* 2815 /*
2818 * Page with regular buffer heads, 2816 * Page with regular buffer heads,
2819 * just add all dirty ones 2817 * just add all dirty ones
2820 */ 2818 */
2821 head = page_buffers(page); 2819 head = page_buffers(page);
2822 bh = head; 2820 bh = head;
2823 do { 2821 do {
2824 BUG_ON(buffer_locked(bh)); 2822 BUG_ON(buffer_locked(bh));
2825 /* 2823 /*
2826 * We need to try to allocate 2824 * We need to try to allocate
2827 * unmapped blocks in the same page. 2825 * unmapped blocks in the same page.
2828 * Otherwise we won't make progress 2826 * Otherwise we won't make progress
2829 * with the page in ext4_writepage 2827 * with the page in ext4_writepage
2830 */ 2828 */
2831 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2829 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2832 mpage_add_bh_to_extent(mpd, logical, 2830 mpage_add_bh_to_extent(mpd, logical,
2833 bh->b_size, 2831 bh->b_size,
2834 bh->b_state); 2832 bh->b_state);
2835 if (mpd->io_done) 2833 if (mpd->io_done)
2836 goto ret_extent_tail; 2834 goto ret_extent_tail;
2837 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) { 2835 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2838 /* 2836 /*
2839 * mapped dirty buffer. We need 2837 * mapped dirty buffer. We need
2840 * to update the b_state 2838 * to update the b_state
2841 * because we look at b_state 2839 * because we look at b_state
2842 * in mpage_da_map_blocks. We 2840 * in mpage_da_map_blocks. We
2843 * don't update b_size because 2841 * don't update b_size because
2844 * if we find an unmapped 2842 * if we find an unmapped
2845 * buffer_head later we need to 2843 * buffer_head later we need to
2846 * use the b_state flag of that 2844 * use the b_state flag of that
2847 * buffer_head. 2845 * buffer_head.
2848 */ 2846 */
2849 if (mpd->b_size == 0) 2847 if (mpd->b_size == 0)
2850 mpd->b_state = bh->b_state & BH_FLAGS; 2848 mpd->b_state = bh->b_state & BH_FLAGS;
2851 } 2849 }
2852 logical++; 2850 logical++;
2853 } while ((bh = bh->b_this_page) != head); 2851 } while ((bh = bh->b_this_page) != head);
2854 } 2852 }
2855 2853
2856 if (nr_to_write > 0) { 2854 if (nr_to_write > 0) {
2857 nr_to_write--; 2855 nr_to_write--;
2858 if (nr_to_write == 0 && 2856 if (nr_to_write == 0 &&
2859 wbc->sync_mode == WB_SYNC_NONE) 2857 wbc->sync_mode == WB_SYNC_NONE)
2860 /* 2858 /*
2861 * We stop writing back only if we are 2859 * We stop writing back only if we are
2862 * not doing integrity sync. In case of 2860 * not doing integrity sync. In case of
2863 * integrity sync we have to keep going 2861 * integrity sync we have to keep going
2864 * because someone may be concurrently 2862 * because someone may be concurrently
2865 * dirtying pages, and we might have 2863 * dirtying pages, and we might have
2866 * synced a lot of newly appeared dirty 2864 * synced a lot of newly appeared dirty
2867 * pages, but have not synced all of the 2865 * pages, but have not synced all of the
2868 * old dirty pages. 2866 * old dirty pages.
2869 */ 2867 */
2870 goto out; 2868 goto out;
2871 } 2869 }
2872 } 2870 }
2873 pagevec_release(&pvec); 2871 pagevec_release(&pvec);
2874 cond_resched(); 2872 cond_resched();
2875 } 2873 }
2876 return 0; 2874 return 0;
2877 ret_extent_tail: 2875 ret_extent_tail:
2878 ret = MPAGE_DA_EXTENT_TAIL; 2876 ret = MPAGE_DA_EXTENT_TAIL;
2879 out: 2877 out:
2880 pagevec_release(&pvec); 2878 pagevec_release(&pvec);
2881 cond_resched(); 2879 cond_resched();
2882 return ret; 2880 return ret;
2883 } 2881 }
2884 2882
2885 2883
2886 static int ext4_da_writepages(struct address_space *mapping, 2884 static int ext4_da_writepages(struct address_space *mapping,
2887 struct writeback_control *wbc) 2885 struct writeback_control *wbc)
2888 { 2886 {
2889 pgoff_t index; 2887 pgoff_t index;
2890 int range_whole = 0; 2888 int range_whole = 0;
2891 handle_t *handle = NULL; 2889 handle_t *handle = NULL;
2892 struct mpage_da_data mpd; 2890 struct mpage_da_data mpd;
2893 struct inode *inode = mapping->host; 2891 struct inode *inode = mapping->host;
2894 int pages_written = 0; 2892 int pages_written = 0;
2895 unsigned int max_pages; 2893 unsigned int max_pages;
2896 int range_cyclic, cycled = 1, io_done = 0; 2894 int range_cyclic, cycled = 1, io_done = 0;
2897 int needed_blocks, ret = 0; 2895 int needed_blocks, ret = 0;
2898 long desired_nr_to_write, nr_to_writebump = 0; 2896 long desired_nr_to_write, nr_to_writebump = 0;
2899 loff_t range_start = wbc->range_start; 2897 loff_t range_start = wbc->range_start;
2900 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2898 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2901 pgoff_t done_index = 0; 2899 pgoff_t done_index = 0;
2902 pgoff_t end; 2900 pgoff_t end;
2903 2901
2904 trace_ext4_da_writepages(inode, wbc); 2902 trace_ext4_da_writepages(inode, wbc);
2905 2903
2906 /* 2904 /*
2907 * No pages to write? This is mainly a kludge to avoid starting 2905 * No pages to write? This is mainly a kludge to avoid starting
2908 * a transaction for special inodes like journal inode on last iput() 2906 * a transaction for special inodes like journal inode on last iput()
2909 * because that could violate lock ordering on umount 2907 * because that could violate lock ordering on umount
2910 */ 2908 */
2911 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2909 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2912 return 0; 2910 return 0;
2913 2911
2914 /* 2912 /*
2915 * If the filesystem has aborted, it is read-only, so return 2913 * If the filesystem has aborted, it is read-only, so return
2916 * right away instead of dumping stack traces later on that 2914 * right away instead of dumping stack traces later on that
2917 * will obscure the real source of the problem. We test 2915 * will obscure the real source of the problem. We test
2918 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2916 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2919 * the latter could be true if the filesystem is mounted 2917 * the latter could be true if the filesystem is mounted
2920 * read-only, and in that case, ext4_da_writepages should 2918 * read-only, and in that case, ext4_da_writepages should
2921 * *never* be called, so if that ever happens, we would want 2919 * *never* be called, so if that ever happens, we would want
2922 * the stack trace. 2920 * the stack trace.
2923 */ 2921 */
2924 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2922 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2925 return -EROFS; 2923 return -EROFS;
2926 2924
2927 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2925 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2928 range_whole = 1; 2926 range_whole = 1;
2929 2927
2930 range_cyclic = wbc->range_cyclic; 2928 range_cyclic = wbc->range_cyclic;
2931 if (wbc->range_cyclic) { 2929 if (wbc->range_cyclic) {
2932 index = mapping->writeback_index; 2930 index = mapping->writeback_index;
2933 if (index) 2931 if (index)
2934 cycled = 0; 2932 cycled = 0;
2935 wbc->range_start = index << PAGE_CACHE_SHIFT; 2933 wbc->range_start = index << PAGE_CACHE_SHIFT;
2936 wbc->range_end = LLONG_MAX; 2934 wbc->range_end = LLONG_MAX;
2937 wbc->range_cyclic = 0; 2935 wbc->range_cyclic = 0;
2938 end = -1; 2936 end = -1;
2939 } else { 2937 } else {
2940 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2938 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2941 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2939 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2942 } 2940 }
2943 2941
2944 /* 2942 /*
2945 * This works around two forms of stupidity. The first is in 2943 * This works around two forms of stupidity. The first is in
2946 * the writeback code, which caps the maximum number of pages 2944 * the writeback code, which caps the maximum number of pages
2947 * written to be 1024 pages. This is wrong on multiple 2945 * written to be 1024 pages. This is wrong on multiple
2948 * levels; different architectues have a different page size, 2946 * levels; different architectues have a different page size,
2949 * which changes the maximum amount of data which gets 2947 * which changes the maximum amount of data which gets
2950 * written. Secondly, 4 megabytes is way too small. XFS 2948 * written. Secondly, 4 megabytes is way too small. XFS
2951 * forces this value to be 16 megabytes by multiplying 2949 * forces this value to be 16 megabytes by multiplying
2952 * nr_to_write parameter by four, and then relies on its 2950 * nr_to_write parameter by four, and then relies on its
2953 * allocator to allocate larger extents to make them 2951 * allocator to allocate larger extents to make them
2954 * contiguous. Unfortunately this brings us to the second 2952 * contiguous. Unfortunately this brings us to the second
2955 * stupidity, which is that ext4's mballoc code only allocates 2953 * stupidity, which is that ext4's mballoc code only allocates
2956 * at most 2048 blocks. So we force contiguous writes up to 2954 * at most 2048 blocks. So we force contiguous writes up to
2957 * the number of dirty blocks in the inode, or 2955 * the number of dirty blocks in the inode, or
2958 * sbi->max_writeback_mb_bump whichever is smaller. 2956 * sbi->max_writeback_mb_bump whichever is smaller.
2959 */ 2957 */
2960 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2958 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2961 if (!range_cyclic && range_whole) { 2959 if (!range_cyclic && range_whole) {
2962 if (wbc->nr_to_write == LONG_MAX) 2960 if (wbc->nr_to_write == LONG_MAX)
2963 desired_nr_to_write = wbc->nr_to_write; 2961 desired_nr_to_write = wbc->nr_to_write;
2964 else 2962 else
2965 desired_nr_to_write = wbc->nr_to_write * 8; 2963 desired_nr_to_write = wbc->nr_to_write * 8;
2966 } else 2964 } else
2967 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2965 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2968 max_pages); 2966 max_pages);
2969 if (desired_nr_to_write > max_pages) 2967 if (desired_nr_to_write > max_pages)
2970 desired_nr_to_write = max_pages; 2968 desired_nr_to_write = max_pages;
2971 2969
2972 if (wbc->nr_to_write < desired_nr_to_write) { 2970 if (wbc->nr_to_write < desired_nr_to_write) {
2973 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2971 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2974 wbc->nr_to_write = desired_nr_to_write; 2972 wbc->nr_to_write = desired_nr_to_write;
2975 } 2973 }
2976 2974
2977 retry: 2975 retry:
2978 if (wbc->sync_mode == WB_SYNC_ALL) 2976 if (wbc->sync_mode == WB_SYNC_ALL)
2979 tag_pages_for_writeback(mapping, index, end); 2977 tag_pages_for_writeback(mapping, index, end);
2980 2978
2981 while (!ret && wbc->nr_to_write > 0) { 2979 while (!ret && wbc->nr_to_write > 0) {
2982 2980
2983 /* 2981 /*
2984 * we insert one extent at a time. So we need 2982 * we insert one extent at a time. So we need
2985 * credit needed for single extent allocation. 2983 * credit needed for single extent allocation.
2986 * journalled mode is currently not supported 2984 * journalled mode is currently not supported
2987 * by delalloc 2985 * by delalloc
2988 */ 2986 */
2989 BUG_ON(ext4_should_journal_data(inode)); 2987 BUG_ON(ext4_should_journal_data(inode));
2990 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2988 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2991 2989
2992 /* start a new transaction*/ 2990 /* start a new transaction*/
2993 handle = ext4_journal_start(inode, needed_blocks); 2991 handle = ext4_journal_start(inode, needed_blocks);
2994 if (IS_ERR(handle)) { 2992 if (IS_ERR(handle)) {
2995 ret = PTR_ERR(handle); 2993 ret = PTR_ERR(handle);
2996 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2994 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2997 "%ld pages, ino %lu; err %d", __func__, 2995 "%ld pages, ino %lu; err %d", __func__,
2998 wbc->nr_to_write, inode->i_ino, ret); 2996 wbc->nr_to_write, inode->i_ino, ret);
2999 goto out_writepages; 2997 goto out_writepages;
3000 } 2998 }
3001 2999
3002 /* 3000 /*
3003 * Now call write_cache_pages_da() to find the next 3001 * Now call write_cache_pages_da() to find the next
3004 * contiguous region of logical blocks that need 3002 * contiguous region of logical blocks that need
3005 * blocks to be allocated by ext4 and submit them. 3003 * blocks to be allocated by ext4 and submit them.
3006 */ 3004 */
3007 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index); 3005 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3008 /* 3006 /*
3009 * If we have a contiguous extent of pages and we 3007 * If we have a contiguous extent of pages and we
3010 * haven't done the I/O yet, map the blocks and submit 3008 * haven't done the I/O yet, map the blocks and submit
3011 * them for I/O. 3009 * them for I/O.
3012 */ 3010 */
3013 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 3011 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3014 mpage_da_map_and_submit(&mpd); 3012 mpage_da_map_and_submit(&mpd);
3015 ret = MPAGE_DA_EXTENT_TAIL; 3013 ret = MPAGE_DA_EXTENT_TAIL;
3016 } 3014 }
3017 trace_ext4_da_write_pages(inode, &mpd); 3015 trace_ext4_da_write_pages(inode, &mpd);
3018 wbc->nr_to_write -= mpd.pages_written; 3016 wbc->nr_to_write -= mpd.pages_written;
3019 3017
3020 ext4_journal_stop(handle); 3018 ext4_journal_stop(handle);
3021 3019
3022 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 3020 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3023 /* commit the transaction which would 3021 /* commit the transaction which would
3024 * free blocks released in the transaction 3022 * free blocks released in the transaction
3025 * and try again 3023 * and try again
3026 */ 3024 */
3027 jbd2_journal_force_commit_nested(sbi->s_journal); 3025 jbd2_journal_force_commit_nested(sbi->s_journal);
3028 ret = 0; 3026 ret = 0;
3029 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 3027 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3030 /* 3028 /*
3031 * got one extent now try with 3029 * got one extent now try with
3032 * rest of the pages 3030 * rest of the pages
3033 */ 3031 */
3034 pages_written += mpd.pages_written; 3032 pages_written += mpd.pages_written;
3035 ret = 0; 3033 ret = 0;
3036 io_done = 1; 3034 io_done = 1;
3037 } else if (wbc->nr_to_write) 3035 } else if (wbc->nr_to_write)
3038 /* 3036 /*
3039 * There is no more writeout needed 3037 * There is no more writeout needed
3040 * or we requested for a noblocking writeout 3038 * or we requested for a noblocking writeout
3041 * and we found the device congested 3039 * and we found the device congested
3042 */ 3040 */
3043 break; 3041 break;
3044 } 3042 }
3045 if (!io_done && !cycled) { 3043 if (!io_done && !cycled) {
3046 cycled = 1; 3044 cycled = 1;
3047 index = 0; 3045 index = 0;
3048 wbc->range_start = index << PAGE_CACHE_SHIFT; 3046 wbc->range_start = index << PAGE_CACHE_SHIFT;
3049 wbc->range_end = mapping->writeback_index - 1; 3047 wbc->range_end = mapping->writeback_index - 1;
3050 goto retry; 3048 goto retry;
3051 } 3049 }
3052 3050
3053 /* Update index */ 3051 /* Update index */
3054 wbc->range_cyclic = range_cyclic; 3052 wbc->range_cyclic = range_cyclic;
3055 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3053 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3056 /* 3054 /*
3057 * set the writeback_index so that range_cyclic 3055 * set the writeback_index so that range_cyclic
3058 * mode will write it back later 3056 * mode will write it back later
3059 */ 3057 */
3060 mapping->writeback_index = done_index; 3058 mapping->writeback_index = done_index;
3061 3059
3062 out_writepages: 3060 out_writepages:
3063 wbc->nr_to_write -= nr_to_writebump; 3061 wbc->nr_to_write -= nr_to_writebump;
3064 wbc->range_start = range_start; 3062 wbc->range_start = range_start;
3065 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 3063 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3066 return ret; 3064 return ret;
3067 } 3065 }
3068 3066
3069 #define FALL_BACK_TO_NONDELALLOC 1 3067 #define FALL_BACK_TO_NONDELALLOC 1
3070 static int ext4_nonda_switch(struct super_block *sb) 3068 static int ext4_nonda_switch(struct super_block *sb)
3071 { 3069 {
3072 s64 free_blocks, dirty_blocks; 3070 s64 free_blocks, dirty_blocks;
3073 struct ext4_sb_info *sbi = EXT4_SB(sb); 3071 struct ext4_sb_info *sbi = EXT4_SB(sb);
3074 3072
3075 /* 3073 /*
3076 * switch to non delalloc mode if we are running low 3074 * switch to non delalloc mode if we are running low
3077 * on free block. The free block accounting via percpu 3075 * on free block. The free block accounting via percpu
3078 * counters can get slightly wrong with percpu_counter_batch getting 3076 * counters can get slightly wrong with percpu_counter_batch getting
3079 * accumulated on each CPU without updating global counters 3077 * accumulated on each CPU without updating global counters
3080 * Delalloc need an accurate free block accounting. So switch 3078 * Delalloc need an accurate free block accounting. So switch
3081 * to non delalloc when we are near to error range. 3079 * to non delalloc when we are near to error range.
3082 */ 3080 */
3083 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); 3081 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3084 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter); 3082 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3085 if (2 * free_blocks < 3 * dirty_blocks || 3083 if (2 * free_blocks < 3 * dirty_blocks ||
3086 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) { 3084 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3087 /* 3085 /*
3088 * free block count is less than 150% of dirty blocks 3086 * free block count is less than 150% of dirty blocks
3089 * or free blocks is less than watermark 3087 * or free blocks is less than watermark
3090 */ 3088 */
3091 return 1; 3089 return 1;
3092 } 3090 }
3093 /* 3091 /*
3094 * Even if we don't switch but are nearing capacity, 3092 * Even if we don't switch but are nearing capacity,
3095 * start pushing delalloc when 1/2 of free blocks are dirty. 3093 * start pushing delalloc when 1/2 of free blocks are dirty.
3096 */ 3094 */
3097 if (free_blocks < 2 * dirty_blocks) 3095 if (free_blocks < 2 * dirty_blocks)
3098 writeback_inodes_sb_if_idle(sb); 3096 writeback_inodes_sb_if_idle(sb);
3099 3097
3100 return 0; 3098 return 0;
3101 } 3099 }
3102 3100
3103 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 3101 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3104 loff_t pos, unsigned len, unsigned flags, 3102 loff_t pos, unsigned len, unsigned flags,
3105 struct page **pagep, void **fsdata) 3103 struct page **pagep, void **fsdata)
3106 { 3104 {
3107 int ret, retries = 0; 3105 int ret, retries = 0;
3108 struct page *page; 3106 struct page *page;
3109 pgoff_t index; 3107 pgoff_t index;
3110 struct inode *inode = mapping->host; 3108 struct inode *inode = mapping->host;
3111 handle_t *handle; 3109 handle_t *handle;
3112 3110
3113 index = pos >> PAGE_CACHE_SHIFT; 3111 index = pos >> PAGE_CACHE_SHIFT;
3114 3112
3115 if (ext4_nonda_switch(inode->i_sb)) { 3113 if (ext4_nonda_switch(inode->i_sb)) {
3116 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 3114 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3117 return ext4_write_begin(file, mapping, pos, 3115 return ext4_write_begin(file, mapping, pos,
3118 len, flags, pagep, fsdata); 3116 len, flags, pagep, fsdata);
3119 } 3117 }
3120 *fsdata = (void *)0; 3118 *fsdata = (void *)0;
3121 trace_ext4_da_write_begin(inode, pos, len, flags); 3119 trace_ext4_da_write_begin(inode, pos, len, flags);
3122 retry: 3120 retry:
3123 /* 3121 /*
3124 * With delayed allocation, we don't log the i_disksize update 3122 * With delayed allocation, we don't log the i_disksize update
3125 * if there is delayed block allocation. But we still need 3123 * if there is delayed block allocation. But we still need
3126 * to journalling the i_disksize update if writes to the end 3124 * to journalling the i_disksize update if writes to the end
3127 * of file which has an already mapped buffer. 3125 * of file which has an already mapped buffer.
3128 */ 3126 */
3129 handle = ext4_journal_start(inode, 1); 3127 handle = ext4_journal_start(inode, 1);
3130 if (IS_ERR(handle)) { 3128 if (IS_ERR(handle)) {
3131 ret = PTR_ERR(handle); 3129 ret = PTR_ERR(handle);
3132 goto out; 3130 goto out;
3133 } 3131 }
3134 /* We cannot recurse into the filesystem as the transaction is already 3132 /* We cannot recurse into the filesystem as the transaction is already
3135 * started */ 3133 * started */
3136 flags |= AOP_FLAG_NOFS; 3134 flags |= AOP_FLAG_NOFS;
3137 3135
3138 page = grab_cache_page_write_begin(mapping, index, flags); 3136 page = grab_cache_page_write_begin(mapping, index, flags);
3139 if (!page) { 3137 if (!page) {
3140 ext4_journal_stop(handle); 3138 ext4_journal_stop(handle);
3141 ret = -ENOMEM; 3139 ret = -ENOMEM;
3142 goto out; 3140 goto out;
3143 } 3141 }
3144 *pagep = page; 3142 *pagep = page;
3145 3143
3146 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3144 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3147 if (ret < 0) { 3145 if (ret < 0) {
3148 unlock_page(page); 3146 unlock_page(page);
3149 ext4_journal_stop(handle); 3147 ext4_journal_stop(handle);
3150 page_cache_release(page); 3148 page_cache_release(page);
3151 /* 3149 /*
3152 * block_write_begin may have instantiated a few blocks 3150 * block_write_begin may have instantiated a few blocks
3153 * outside i_size. Trim these off again. Don't need 3151 * outside i_size. Trim these off again. Don't need
3154 * i_size_read because we hold i_mutex. 3152 * i_size_read because we hold i_mutex.
3155 */ 3153 */
3156 if (pos + len > inode->i_size) 3154 if (pos + len > inode->i_size)
3157 ext4_truncate_failed_write(inode); 3155 ext4_truncate_failed_write(inode);
3158 } 3156 }
3159 3157
3160 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3158 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3161 goto retry; 3159 goto retry;
3162 out: 3160 out:
3163 return ret; 3161 return ret;
3164 } 3162 }
3165 3163
3166 /* 3164 /*
3167 * Check if we should update i_disksize 3165 * Check if we should update i_disksize
3168 * when write to the end of file but not require block allocation 3166 * when write to the end of file but not require block allocation
3169 */ 3167 */
3170 static int ext4_da_should_update_i_disksize(struct page *page, 3168 static int ext4_da_should_update_i_disksize(struct page *page,
3171 unsigned long offset) 3169 unsigned long offset)
3172 { 3170 {
3173 struct buffer_head *bh; 3171 struct buffer_head *bh;
3174 struct inode *inode = page->mapping->host; 3172 struct inode *inode = page->mapping->host;
3175 unsigned int idx; 3173 unsigned int idx;
3176 int i; 3174 int i;
3177 3175
3178 bh = page_buffers(page); 3176 bh = page_buffers(page);
3179 idx = offset >> inode->i_blkbits; 3177 idx = offset >> inode->i_blkbits;
3180 3178
3181 for (i = 0; i < idx; i++) 3179 for (i = 0; i < idx; i++)
3182 bh = bh->b_this_page; 3180 bh = bh->b_this_page;
3183 3181
3184 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3182 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3185 return 0; 3183 return 0;
3186 return 1; 3184 return 1;
3187 } 3185 }
3188 3186
3189 static int ext4_da_write_end(struct file *file, 3187 static int ext4_da_write_end(struct file *file,
3190 struct address_space *mapping, 3188 struct address_space *mapping,
3191 loff_t pos, unsigned len, unsigned copied, 3189 loff_t pos, unsigned len, unsigned copied,
3192 struct page *page, void *fsdata) 3190 struct page *page, void *fsdata)
3193 { 3191 {
3194 struct inode *inode = mapping->host; 3192 struct inode *inode = mapping->host;
3195 int ret = 0, ret2; 3193 int ret = 0, ret2;
3196 handle_t *handle = ext4_journal_current_handle(); 3194 handle_t *handle = ext4_journal_current_handle();
3197 loff_t new_i_size; 3195 loff_t new_i_size;
3198 unsigned long start, end; 3196 unsigned long start, end;
3199 int write_mode = (int)(unsigned long)fsdata; 3197 int write_mode = (int)(unsigned long)fsdata;
3200 3198
3201 if (write_mode == FALL_BACK_TO_NONDELALLOC) { 3199 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3202 if (ext4_should_order_data(inode)) { 3200 if (ext4_should_order_data(inode)) {
3203 return ext4_ordered_write_end(file, mapping, pos, 3201 return ext4_ordered_write_end(file, mapping, pos,
3204 len, copied, page, fsdata); 3202 len, copied, page, fsdata);
3205 } else if (ext4_should_writeback_data(inode)) { 3203 } else if (ext4_should_writeback_data(inode)) {
3206 return ext4_writeback_write_end(file, mapping, pos, 3204 return ext4_writeback_write_end(file, mapping, pos,
3207 len, copied, page, fsdata); 3205 len, copied, page, fsdata);
3208 } else { 3206 } else {
3209 BUG(); 3207 BUG();
3210 } 3208 }
3211 } 3209 }
3212 3210
3213 trace_ext4_da_write_end(inode, pos, len, copied); 3211 trace_ext4_da_write_end(inode, pos, len, copied);
3214 start = pos & (PAGE_CACHE_SIZE - 1); 3212 start = pos & (PAGE_CACHE_SIZE - 1);
3215 end = start + copied - 1; 3213 end = start + copied - 1;
3216 3214
3217 /* 3215 /*
3218 * generic_write_end() will run mark_inode_dirty() if i_size 3216 * generic_write_end() will run mark_inode_dirty() if i_size
3219 * changes. So let's piggyback the i_disksize mark_inode_dirty 3217 * changes. So let's piggyback the i_disksize mark_inode_dirty
3220 * into that. 3218 * into that.
3221 */ 3219 */
3222 3220
3223 new_i_size = pos + copied; 3221 new_i_size = pos + copied;
3224 if (new_i_size > EXT4_I(inode)->i_disksize) { 3222 if (new_i_size > EXT4_I(inode)->i_disksize) {
3225 if (ext4_da_should_update_i_disksize(page, end)) { 3223 if (ext4_da_should_update_i_disksize(page, end)) {
3226 down_write(&EXT4_I(inode)->i_data_sem); 3224 down_write(&EXT4_I(inode)->i_data_sem);
3227 if (new_i_size > EXT4_I(inode)->i_disksize) { 3225 if (new_i_size > EXT4_I(inode)->i_disksize) {
3228 /* 3226 /*
3229 * Updating i_disksize when extending file 3227 * Updating i_disksize when extending file
3230 * without needing block allocation 3228 * without needing block allocation
3231 */ 3229 */
3232 if (ext4_should_order_data(inode)) 3230 if (ext4_should_order_data(inode))
3233 ret = ext4_jbd2_file_inode(handle, 3231 ret = ext4_jbd2_file_inode(handle,
3234 inode); 3232 inode);
3235 3233
3236 EXT4_I(inode)->i_disksize = new_i_size; 3234 EXT4_I(inode)->i_disksize = new_i_size;
3237 } 3235 }
3238 up_write(&EXT4_I(inode)->i_data_sem); 3236 up_write(&EXT4_I(inode)->i_data_sem);
3239 /* We need to mark inode dirty even if 3237 /* We need to mark inode dirty even if
3240 * new_i_size is less that inode->i_size 3238 * new_i_size is less that inode->i_size
3241 * bu greater than i_disksize.(hint delalloc) 3239 * bu greater than i_disksize.(hint delalloc)
3242 */ 3240 */
3243 ext4_mark_inode_dirty(handle, inode); 3241 ext4_mark_inode_dirty(handle, inode);
3244 } 3242 }
3245 } 3243 }
3246 ret2 = generic_write_end(file, mapping, pos, len, copied, 3244 ret2 = generic_write_end(file, mapping, pos, len, copied,
3247 page, fsdata); 3245 page, fsdata);
3248 copied = ret2; 3246 copied = ret2;
3249 if (ret2 < 0) 3247 if (ret2 < 0)
3250 ret = ret2; 3248 ret = ret2;
3251 ret2 = ext4_journal_stop(handle); 3249 ret2 = ext4_journal_stop(handle);
3252 if (!ret) 3250 if (!ret)
3253 ret = ret2; 3251 ret = ret2;
3254 3252
3255 return ret ? ret : copied; 3253 return ret ? ret : copied;
3256 } 3254 }
3257 3255
3258 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 3256 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3259 { 3257 {
3260 /* 3258 /*
3261 * Drop reserved blocks 3259 * Drop reserved blocks
3262 */ 3260 */
3263 BUG_ON(!PageLocked(page)); 3261 BUG_ON(!PageLocked(page));
3264 if (!page_has_buffers(page)) 3262 if (!page_has_buffers(page))
3265 goto out; 3263 goto out;
3266 3264
3267 ext4_da_page_release_reservation(page, offset); 3265 ext4_da_page_release_reservation(page, offset);
3268 3266
3269 out: 3267 out:
3270 ext4_invalidatepage(page, offset); 3268 ext4_invalidatepage(page, offset);
3271 3269
3272 return; 3270 return;
3273 } 3271 }
3274 3272
3275 /* 3273 /*
3276 * Force all delayed allocation blocks to be allocated for a given inode. 3274 * Force all delayed allocation blocks to be allocated for a given inode.
3277 */ 3275 */
3278 int ext4_alloc_da_blocks(struct inode *inode) 3276 int ext4_alloc_da_blocks(struct inode *inode)
3279 { 3277 {
3280 trace_ext4_alloc_da_blocks(inode); 3278 trace_ext4_alloc_da_blocks(inode);
3281 3279
3282 if (!EXT4_I(inode)->i_reserved_data_blocks && 3280 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3283 !EXT4_I(inode)->i_reserved_meta_blocks) 3281 !EXT4_I(inode)->i_reserved_meta_blocks)
3284 return 0; 3282 return 0;
3285 3283
3286 /* 3284 /*
3287 * We do something simple for now. The filemap_flush() will 3285 * We do something simple for now. The filemap_flush() will
3288 * also start triggering a write of the data blocks, which is 3286 * also start triggering a write of the data blocks, which is
3289 * not strictly speaking necessary (and for users of 3287 * not strictly speaking necessary (and for users of
3290 * laptop_mode, not even desirable). However, to do otherwise 3288 * laptop_mode, not even desirable). However, to do otherwise
3291 * would require replicating code paths in: 3289 * would require replicating code paths in:
3292 * 3290 *
3293 * ext4_da_writepages() -> 3291 * ext4_da_writepages() ->
3294 * write_cache_pages() ---> (via passed in callback function) 3292 * write_cache_pages() ---> (via passed in callback function)
3295 * __mpage_da_writepage() --> 3293 * __mpage_da_writepage() -->
3296 * mpage_add_bh_to_extent() 3294 * mpage_add_bh_to_extent()
3297 * mpage_da_map_blocks() 3295 * mpage_da_map_blocks()
3298 * 3296 *
3299 * The problem is that write_cache_pages(), located in 3297 * The problem is that write_cache_pages(), located in
3300 * mm/page-writeback.c, marks pages clean in preparation for 3298 * mm/page-writeback.c, marks pages clean in preparation for
3301 * doing I/O, which is not desirable if we're not planning on 3299 * doing I/O, which is not desirable if we're not planning on
3302 * doing I/O at all. 3300 * doing I/O at all.
3303 * 3301 *
3304 * We could call write_cache_pages(), and then redirty all of 3302 * We could call write_cache_pages(), and then redirty all of
3305 * the pages by calling redirty_page_for_writepage() but that 3303 * the pages by calling redirty_page_for_writepage() but that
3306 * would be ugly in the extreme. So instead we would need to 3304 * would be ugly in the extreme. So instead we would need to
3307 * replicate parts of the code in the above functions, 3305 * replicate parts of the code in the above functions,
3308 * simplifying them because we wouldn't actually intend to 3306 * simplifying them because we wouldn't actually intend to
3309 * write out the pages, but rather only collect contiguous 3307 * write out the pages, but rather only collect contiguous
3310 * logical block extents, call the multi-block allocator, and 3308 * logical block extents, call the multi-block allocator, and
3311 * then update the buffer heads with the block allocations. 3309 * then update the buffer heads with the block allocations.
3312 * 3310 *
3313 * For now, though, we'll cheat by calling filemap_flush(), 3311 * For now, though, we'll cheat by calling filemap_flush(),
3314 * which will map the blocks, and start the I/O, but not 3312 * which will map the blocks, and start the I/O, but not
3315 * actually wait for the I/O to complete. 3313 * actually wait for the I/O to complete.
3316 */ 3314 */
3317 return filemap_flush(inode->i_mapping); 3315 return filemap_flush(inode->i_mapping);
3318 } 3316 }
3319 3317
3320 /* 3318 /*
3321 * bmap() is special. It gets used by applications such as lilo and by 3319 * bmap() is special. It gets used by applications such as lilo and by
3322 * the swapper to find the on-disk block of a specific piece of data. 3320 * the swapper to find the on-disk block of a specific piece of data.
3323 * 3321 *
3324 * Naturally, this is dangerous if the block concerned is still in the 3322 * Naturally, this is dangerous if the block concerned is still in the
3325 * journal. If somebody makes a swapfile on an ext4 data-journaling 3323 * journal. If somebody makes a swapfile on an ext4 data-journaling
3326 * filesystem and enables swap, then they may get a nasty shock when the 3324 * filesystem and enables swap, then they may get a nasty shock when the
3327 * data getting swapped to that swapfile suddenly gets overwritten by 3325 * data getting swapped to that swapfile suddenly gets overwritten by
3328 * the original zero's written out previously to the journal and 3326 * the original zero's written out previously to the journal and
3329 * awaiting writeback in the kernel's buffer cache. 3327 * awaiting writeback in the kernel's buffer cache.
3330 * 3328 *
3331 * So, if we see any bmap calls here on a modified, data-journaled file, 3329 * So, if we see any bmap calls here on a modified, data-journaled file,
3332 * take extra steps to flush any blocks which might be in the cache. 3330 * take extra steps to flush any blocks which might be in the cache.
3333 */ 3331 */
3334 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3332 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3335 { 3333 {
3336 struct inode *inode = mapping->host; 3334 struct inode *inode = mapping->host;
3337 journal_t *journal; 3335 journal_t *journal;
3338 int err; 3336 int err;
3339 3337
3340 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3338 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3341 test_opt(inode->i_sb, DELALLOC)) { 3339 test_opt(inode->i_sb, DELALLOC)) {
3342 /* 3340 /*
3343 * With delalloc we want to sync the file 3341 * With delalloc we want to sync the file
3344 * so that we can make sure we allocate 3342 * so that we can make sure we allocate
3345 * blocks for file 3343 * blocks for file
3346 */ 3344 */
3347 filemap_write_and_wait(mapping); 3345 filemap_write_and_wait(mapping);
3348 } 3346 }
3349 3347
3350 if (EXT4_JOURNAL(inode) && 3348 if (EXT4_JOURNAL(inode) &&
3351 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3349 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3352 /* 3350 /*
3353 * This is a REALLY heavyweight approach, but the use of 3351 * This is a REALLY heavyweight approach, but the use of
3354 * bmap on dirty files is expected to be extremely rare: 3352 * bmap on dirty files is expected to be extremely rare:
3355 * only if we run lilo or swapon on a freshly made file 3353 * only if we run lilo or swapon on a freshly made file
3356 * do we expect this to happen. 3354 * do we expect this to happen.
3357 * 3355 *
3358 * (bmap requires CAP_SYS_RAWIO so this does not 3356 * (bmap requires CAP_SYS_RAWIO so this does not
3359 * represent an unprivileged user DOS attack --- we'd be 3357 * represent an unprivileged user DOS attack --- we'd be
3360 * in trouble if mortal users could trigger this path at 3358 * in trouble if mortal users could trigger this path at
3361 * will.) 3359 * will.)
3362 * 3360 *
3363 * NB. EXT4_STATE_JDATA is not set on files other than 3361 * NB. EXT4_STATE_JDATA is not set on files other than
3364 * regular files. If somebody wants to bmap a directory 3362 * regular files. If somebody wants to bmap a directory
3365 * or symlink and gets confused because the buffer 3363 * or symlink and gets confused because the buffer
3366 * hasn't yet been flushed to disk, they deserve 3364 * hasn't yet been flushed to disk, they deserve
3367 * everything they get. 3365 * everything they get.
3368 */ 3366 */
3369 3367
3370 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3368 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3371 journal = EXT4_JOURNAL(inode); 3369 journal = EXT4_JOURNAL(inode);
3372 jbd2_journal_lock_updates(journal); 3370 jbd2_journal_lock_updates(journal);
3373 err = jbd2_journal_flush(journal); 3371 err = jbd2_journal_flush(journal);
3374 jbd2_journal_unlock_updates(journal); 3372 jbd2_journal_unlock_updates(journal);
3375 3373
3376 if (err) 3374 if (err)
3377 return 0; 3375 return 0;
3378 } 3376 }
3379 3377
3380 return generic_block_bmap(mapping, block, ext4_get_block); 3378 return generic_block_bmap(mapping, block, ext4_get_block);
3381 } 3379 }
3382 3380
3383 static int ext4_readpage(struct file *file, struct page *page) 3381 static int ext4_readpage(struct file *file, struct page *page)
3384 { 3382 {
3385 trace_ext4_readpage(page); 3383 trace_ext4_readpage(page);
3386 return mpage_readpage(page, ext4_get_block); 3384 return mpage_readpage(page, ext4_get_block);
3387 } 3385 }
3388 3386
3389 static int 3387 static int
3390 ext4_readpages(struct file *file, struct address_space *mapping, 3388 ext4_readpages(struct file *file, struct address_space *mapping,
3391 struct list_head *pages, unsigned nr_pages) 3389 struct list_head *pages, unsigned nr_pages)
3392 { 3390 {
3393 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 3391 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3394 } 3392 }
3395 3393
3396 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) 3394 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3397 { 3395 {
3398 struct buffer_head *head, *bh; 3396 struct buffer_head *head, *bh;
3399 unsigned int curr_off = 0; 3397 unsigned int curr_off = 0;
3400 3398
3401 if (!page_has_buffers(page)) 3399 if (!page_has_buffers(page))
3402 return; 3400 return;
3403 head = bh = page_buffers(page); 3401 head = bh = page_buffers(page);
3404 do { 3402 do {
3405 if (offset <= curr_off && test_clear_buffer_uninit(bh) 3403 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3406 && bh->b_private) { 3404 && bh->b_private) {
3407 ext4_free_io_end(bh->b_private); 3405 ext4_free_io_end(bh->b_private);
3408 bh->b_private = NULL; 3406 bh->b_private = NULL;
3409 bh->b_end_io = NULL; 3407 bh->b_end_io = NULL;
3410 } 3408 }
3411 curr_off = curr_off + bh->b_size; 3409 curr_off = curr_off + bh->b_size;
3412 bh = bh->b_this_page; 3410 bh = bh->b_this_page;
3413 } while (bh != head); 3411 } while (bh != head);
3414 } 3412 }
3415 3413
3416 static void ext4_invalidatepage(struct page *page, unsigned long offset) 3414 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3417 { 3415 {
3418 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3416 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3419 3417
3420 trace_ext4_invalidatepage(page, offset); 3418 trace_ext4_invalidatepage(page, offset);
3421 3419
3422 /* 3420 /*
3423 * free any io_end structure allocated for buffers to be discarded 3421 * free any io_end structure allocated for buffers to be discarded
3424 */ 3422 */
3425 if (ext4_should_dioread_nolock(page->mapping->host)) 3423 if (ext4_should_dioread_nolock(page->mapping->host))
3426 ext4_invalidatepage_free_endio(page, offset); 3424 ext4_invalidatepage_free_endio(page, offset);
3427 /* 3425 /*
3428 * If it's a full truncate we just forget about the pending dirtying 3426 * If it's a full truncate we just forget about the pending dirtying
3429 */ 3427 */
3430 if (offset == 0) 3428 if (offset == 0)
3431 ClearPageChecked(page); 3429 ClearPageChecked(page);
3432 3430
3433 if (journal) 3431 if (journal)
3434 jbd2_journal_invalidatepage(journal, page, offset); 3432 jbd2_journal_invalidatepage(journal, page, offset);
3435 else 3433 else
3436 block_invalidatepage(page, offset); 3434 block_invalidatepage(page, offset);
3437 } 3435 }
3438 3436
3439 static int ext4_releasepage(struct page *page, gfp_t wait) 3437 static int ext4_releasepage(struct page *page, gfp_t wait)
3440 { 3438 {
3441 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3439 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3442 3440
3443 trace_ext4_releasepage(page); 3441 trace_ext4_releasepage(page);
3444 3442
3445 WARN_ON(PageChecked(page)); 3443 WARN_ON(PageChecked(page));
3446 if (!page_has_buffers(page)) 3444 if (!page_has_buffers(page))
3447 return 0; 3445 return 0;
3448 if (journal) 3446 if (journal)
3449 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3447 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3450 else 3448 else
3451 return try_to_free_buffers(page); 3449 return try_to_free_buffers(page);
3452 } 3450 }
3453 3451
3454 /* 3452 /*
3455 * O_DIRECT for ext3 (or indirect map) based files 3453 * O_DIRECT for ext3 (or indirect map) based files
3456 * 3454 *
3457 * If the O_DIRECT write will extend the file then add this inode to the 3455 * If the O_DIRECT write will extend the file then add this inode to the
3458 * orphan list. So recovery will truncate it back to the original size 3456 * orphan list. So recovery will truncate it back to the original size
3459 * if the machine crashes during the write. 3457 * if the machine crashes during the write.
3460 * 3458 *
3461 * If the O_DIRECT write is intantiating holes inside i_size and the machine 3459 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3462 * crashes then stale disk data _may_ be exposed inside the file. But current 3460 * crashes then stale disk data _may_ be exposed inside the file. But current
3463 * VFS code falls back into buffered path in that case so we are safe. 3461 * VFS code falls back into buffered path in that case so we are safe.
3464 */ 3462 */
3465 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, 3463 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3466 const struct iovec *iov, loff_t offset, 3464 const struct iovec *iov, loff_t offset,
3467 unsigned long nr_segs) 3465 unsigned long nr_segs)
3468 { 3466 {
3469 struct file *file = iocb->ki_filp; 3467 struct file *file = iocb->ki_filp;
3470 struct inode *inode = file->f_mapping->host; 3468 struct inode *inode = file->f_mapping->host;
3471 struct ext4_inode_info *ei = EXT4_I(inode); 3469 struct ext4_inode_info *ei = EXT4_I(inode);
3472 handle_t *handle; 3470 handle_t *handle;
3473 ssize_t ret; 3471 ssize_t ret;
3474 int orphan = 0; 3472 int orphan = 0;
3475 size_t count = iov_length(iov, nr_segs); 3473 size_t count = iov_length(iov, nr_segs);
3476 int retries = 0; 3474 int retries = 0;
3477 3475
3478 if (rw == WRITE) { 3476 if (rw == WRITE) {
3479 loff_t final_size = offset + count; 3477 loff_t final_size = offset + count;
3480 3478
3481 if (final_size > inode->i_size) { 3479 if (final_size > inode->i_size) {
3482 /* Credits for sb + inode write */ 3480 /* Credits for sb + inode write */
3483 handle = ext4_journal_start(inode, 2); 3481 handle = ext4_journal_start(inode, 2);
3484 if (IS_ERR(handle)) { 3482 if (IS_ERR(handle)) {
3485 ret = PTR_ERR(handle); 3483 ret = PTR_ERR(handle);
3486 goto out; 3484 goto out;
3487 } 3485 }
3488 ret = ext4_orphan_add(handle, inode); 3486 ret = ext4_orphan_add(handle, inode);
3489 if (ret) { 3487 if (ret) {
3490 ext4_journal_stop(handle); 3488 ext4_journal_stop(handle);
3491 goto out; 3489 goto out;
3492 } 3490 }
3493 orphan = 1; 3491 orphan = 1;
3494 ei->i_disksize = inode->i_size; 3492 ei->i_disksize = inode->i_size;
3495 ext4_journal_stop(handle); 3493 ext4_journal_stop(handle);
3496 } 3494 }
3497 } 3495 }
3498 3496
3499 retry: 3497 retry:
3500 if (rw == READ && ext4_should_dioread_nolock(inode)) 3498 if (rw == READ && ext4_should_dioread_nolock(inode))
3501 ret = __blockdev_direct_IO(rw, iocb, inode, 3499 ret = __blockdev_direct_IO(rw, iocb, inode,
3502 inode->i_sb->s_bdev, iov, 3500 inode->i_sb->s_bdev, iov,
3503 offset, nr_segs, 3501 offset, nr_segs,
3504 ext4_get_block, NULL, NULL, 0); 3502 ext4_get_block, NULL, NULL, 0);
3505 else { 3503 else {
3506 ret = blockdev_direct_IO(rw, iocb, inode, 3504 ret = blockdev_direct_IO(rw, iocb, inode,
3507 inode->i_sb->s_bdev, iov, 3505 inode->i_sb->s_bdev, iov,
3508 offset, nr_segs, 3506 offset, nr_segs,
3509 ext4_get_block, NULL); 3507 ext4_get_block, NULL);
3510 3508
3511 if (unlikely((rw & WRITE) && ret < 0)) { 3509 if (unlikely((rw & WRITE) && ret < 0)) {
3512 loff_t isize = i_size_read(inode); 3510 loff_t isize = i_size_read(inode);
3513 loff_t end = offset + iov_length(iov, nr_segs); 3511 loff_t end = offset + iov_length(iov, nr_segs);
3514 3512
3515 if (end > isize) 3513 if (end > isize)
3516 vmtruncate(inode, isize); 3514 vmtruncate(inode, isize);
3517 } 3515 }
3518 } 3516 }
3519 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3517 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3520 goto retry; 3518 goto retry;
3521 3519
3522 if (orphan) { 3520 if (orphan) {
3523 int err; 3521 int err;
3524 3522
3525 /* Credits for sb + inode write */ 3523 /* Credits for sb + inode write */
3526 handle = ext4_journal_start(inode, 2); 3524 handle = ext4_journal_start(inode, 2);
3527 if (IS_ERR(handle)) { 3525 if (IS_ERR(handle)) {
3528 /* This is really bad luck. We've written the data 3526 /* This is really bad luck. We've written the data
3529 * but cannot extend i_size. Bail out and pretend 3527 * but cannot extend i_size. Bail out and pretend
3530 * the write failed... */ 3528 * the write failed... */
3531 ret = PTR_ERR(handle); 3529 ret = PTR_ERR(handle);
3532 if (inode->i_nlink) 3530 if (inode->i_nlink)
3533 ext4_orphan_del(NULL, inode); 3531 ext4_orphan_del(NULL, inode);
3534 3532
3535 goto out; 3533 goto out;
3536 } 3534 }
3537 if (inode->i_nlink) 3535 if (inode->i_nlink)
3538 ext4_orphan_del(handle, inode); 3536 ext4_orphan_del(handle, inode);
3539 if (ret > 0) { 3537 if (ret > 0) {
3540 loff_t end = offset + ret; 3538 loff_t end = offset + ret;
3541 if (end > inode->i_size) { 3539 if (end > inode->i_size) {
3542 ei->i_disksize = end; 3540 ei->i_disksize = end;
3543 i_size_write(inode, end); 3541 i_size_write(inode, end);
3544 /* 3542 /*
3545 * We're going to return a positive `ret' 3543 * We're going to return a positive `ret'
3546 * here due to non-zero-length I/O, so there's 3544 * here due to non-zero-length I/O, so there's
3547 * no way of reporting error returns from 3545 * no way of reporting error returns from
3548 * ext4_mark_inode_dirty() to userspace. So 3546 * ext4_mark_inode_dirty() to userspace. So
3549 * ignore it. 3547 * ignore it.
3550 */ 3548 */
3551 ext4_mark_inode_dirty(handle, inode); 3549 ext4_mark_inode_dirty(handle, inode);
3552 } 3550 }
3553 } 3551 }
3554 err = ext4_journal_stop(handle); 3552 err = ext4_journal_stop(handle);
3555 if (ret == 0) 3553 if (ret == 0)
3556 ret = err; 3554 ret = err;
3557 } 3555 }
3558 out: 3556 out:
3559 return ret; 3557 return ret;
3560 } 3558 }
3561 3559
3562 /* 3560 /*
3563 * ext4_get_block used when preparing for a DIO write or buffer write. 3561 * ext4_get_block used when preparing for a DIO write or buffer write.
3564 * We allocate an uinitialized extent if blocks haven't been allocated. 3562 * We allocate an uinitialized extent if blocks haven't been allocated.
3565 * The extent will be converted to initialized after the IO is complete. 3563 * The extent will be converted to initialized after the IO is complete.
3566 */ 3564 */
3567 static int ext4_get_block_write(struct inode *inode, sector_t iblock, 3565 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3568 struct buffer_head *bh_result, int create) 3566 struct buffer_head *bh_result, int create)
3569 { 3567 {
3570 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3568 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3571 inode->i_ino, create); 3569 inode->i_ino, create);
3572 return _ext4_get_block(inode, iblock, bh_result, 3570 return _ext4_get_block(inode, iblock, bh_result,
3573 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3571 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3574 } 3572 }
3575 3573
3576 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3574 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3577 ssize_t size, void *private, int ret, 3575 ssize_t size, void *private, int ret,
3578 bool is_async) 3576 bool is_async)
3579 { 3577 {
3580 ext4_io_end_t *io_end = iocb->private; 3578 ext4_io_end_t *io_end = iocb->private;
3581 struct workqueue_struct *wq; 3579 struct workqueue_struct *wq;
3582 unsigned long flags; 3580 unsigned long flags;
3583 struct ext4_inode_info *ei; 3581 struct ext4_inode_info *ei;
3584 3582
3585 /* if not async direct IO or dio with 0 bytes write, just return */ 3583 /* if not async direct IO or dio with 0 bytes write, just return */
3586 if (!io_end || !size) 3584 if (!io_end || !size)
3587 goto out; 3585 goto out;
3588 3586
3589 ext_debug("ext4_end_io_dio(): io_end 0x%p" 3587 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3590 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n", 3588 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3591 iocb->private, io_end->inode->i_ino, iocb, offset, 3589 iocb->private, io_end->inode->i_ino, iocb, offset,
3592 size); 3590 size);
3593 3591
3594 /* if not aio dio with unwritten extents, just free io and return */ 3592 /* if not aio dio with unwritten extents, just free io and return */
3595 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 3593 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3596 ext4_free_io_end(io_end); 3594 ext4_free_io_end(io_end);
3597 iocb->private = NULL; 3595 iocb->private = NULL;
3598 out: 3596 out:
3599 if (is_async) 3597 if (is_async)
3600 aio_complete(iocb, ret, 0); 3598 aio_complete(iocb, ret, 0);
3601 return; 3599 return;
3602 } 3600 }
3603 3601
3604 io_end->offset = offset; 3602 io_end->offset = offset;
3605 io_end->size = size; 3603 io_end->size = size;
3606 if (is_async) { 3604 if (is_async) {
3607 io_end->iocb = iocb; 3605 io_end->iocb = iocb;
3608 io_end->result = ret; 3606 io_end->result = ret;
3609 } 3607 }
3610 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 3608 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3611 3609
3612 /* Add the io_end to per-inode completed aio dio list*/ 3610 /* Add the io_end to per-inode completed aio dio list*/
3613 ei = EXT4_I(io_end->inode); 3611 ei = EXT4_I(io_end->inode);
3614 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 3612 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3615 list_add_tail(&io_end->list, &ei->i_completed_io_list); 3613 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3616 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 3614 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3617 3615
3618 /* queue the work to convert unwritten extents to written */ 3616 /* queue the work to convert unwritten extents to written */
3619 queue_work(wq, &io_end->work); 3617 queue_work(wq, &io_end->work);
3620 iocb->private = NULL; 3618 iocb->private = NULL;
3621 } 3619 }
3622 3620
3623 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) 3621 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3624 { 3622 {
3625 ext4_io_end_t *io_end = bh->b_private; 3623 ext4_io_end_t *io_end = bh->b_private;
3626 struct workqueue_struct *wq; 3624 struct workqueue_struct *wq;
3627 struct inode *inode; 3625 struct inode *inode;
3628 unsigned long flags; 3626 unsigned long flags;
3629 3627
3630 if (!test_clear_buffer_uninit(bh) || !io_end) 3628 if (!test_clear_buffer_uninit(bh) || !io_end)
3631 goto out; 3629 goto out;
3632 3630
3633 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { 3631 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3634 printk("sb umounted, discard end_io request for inode %lu\n", 3632 printk("sb umounted, discard end_io request for inode %lu\n",
3635 io_end->inode->i_ino); 3633 io_end->inode->i_ino);
3636 ext4_free_io_end(io_end); 3634 ext4_free_io_end(io_end);
3637 goto out; 3635 goto out;
3638 } 3636 }
3639 3637
3640 io_end->flag = EXT4_IO_END_UNWRITTEN; 3638 io_end->flag = EXT4_IO_END_UNWRITTEN;
3641 inode = io_end->inode; 3639 inode = io_end->inode;
3642 3640
3643 /* Add the io_end to per-inode completed io list*/ 3641 /* Add the io_end to per-inode completed io list*/
3644 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); 3642 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3645 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); 3643 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3646 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); 3644 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3647 3645
3648 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; 3646 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3649 /* queue the work to convert unwritten extents to written */ 3647 /* queue the work to convert unwritten extents to written */
3650 queue_work(wq, &io_end->work); 3648 queue_work(wq, &io_end->work);
3651 out: 3649 out:
3652 bh->b_private = NULL; 3650 bh->b_private = NULL;
3653 bh->b_end_io = NULL; 3651 bh->b_end_io = NULL;
3654 clear_buffer_uninit(bh); 3652 clear_buffer_uninit(bh);
3655 end_buffer_async_write(bh, uptodate); 3653 end_buffer_async_write(bh, uptodate);
3656 } 3654 }
3657 3655
3658 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) 3656 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3659 { 3657 {
3660 ext4_io_end_t *io_end; 3658 ext4_io_end_t *io_end;
3661 struct page *page = bh->b_page; 3659 struct page *page = bh->b_page;
3662 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; 3660 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3663 size_t size = bh->b_size; 3661 size_t size = bh->b_size;
3664 3662
3665 retry: 3663 retry:
3666 io_end = ext4_init_io_end(inode, GFP_ATOMIC); 3664 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3667 if (!io_end) { 3665 if (!io_end) {
3668 pr_warn_ratelimited("%s: allocation fail\n", __func__); 3666 pr_warn_ratelimited("%s: allocation fail\n", __func__);
3669 schedule(); 3667 schedule();
3670 goto retry; 3668 goto retry;
3671 } 3669 }
3672 io_end->offset = offset; 3670 io_end->offset = offset;
3673 io_end->size = size; 3671 io_end->size = size;
3674 /* 3672 /*
3675 * We need to hold a reference to the page to make sure it 3673 * We need to hold a reference to the page to make sure it
3676 * doesn't get evicted before ext4_end_io_work() has a chance 3674 * doesn't get evicted before ext4_end_io_work() has a chance
3677 * to convert the extent from written to unwritten. 3675 * to convert the extent from written to unwritten.
3678 */ 3676 */
3679 io_end->page = page; 3677 io_end->page = page;
3680 get_page(io_end->page); 3678 get_page(io_end->page);
3681 3679
3682 bh->b_private = io_end; 3680 bh->b_private = io_end;
3683 bh->b_end_io = ext4_end_io_buffer_write; 3681 bh->b_end_io = ext4_end_io_buffer_write;
3684 return 0; 3682 return 0;
3685 } 3683 }
3686 3684
3687 /* 3685 /*
3688 * For ext4 extent files, ext4 will do direct-io write to holes, 3686 * For ext4 extent files, ext4 will do direct-io write to holes,
3689 * preallocated extents, and those write extend the file, no need to 3687 * preallocated extents, and those write extend the file, no need to
3690 * fall back to buffered IO. 3688 * fall back to buffered IO.
3691 * 3689 *
3692 * For holes, we fallocate those blocks, mark them as uninitialized 3690 * For holes, we fallocate those blocks, mark them as uninitialized
3693 * If those blocks were preallocated, we mark sure they are splited, but 3691 * If those blocks were preallocated, we mark sure they are splited, but
3694 * still keep the range to write as uninitialized. 3692 * still keep the range to write as uninitialized.
3695 * 3693 *
3696 * The unwrritten extents will be converted to written when DIO is completed. 3694 * The unwrritten extents will be converted to written when DIO is completed.
3697 * For async direct IO, since the IO may still pending when return, we 3695 * For async direct IO, since the IO may still pending when return, we
3698 * set up an end_io call back function, which will do the conversion 3696 * set up an end_io call back function, which will do the conversion
3699 * when async direct IO completed. 3697 * when async direct IO completed.
3700 * 3698 *
3701 * If the O_DIRECT write will extend the file then add this inode to the 3699 * If the O_DIRECT write will extend the file then add this inode to the
3702 * orphan list. So recovery will truncate it back to the original size 3700 * orphan list. So recovery will truncate it back to the original size
3703 * if the machine crashes during the write. 3701 * if the machine crashes during the write.
3704 * 3702 *
3705 */ 3703 */
3706 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3704 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3707 const struct iovec *iov, loff_t offset, 3705 const struct iovec *iov, loff_t offset,
3708 unsigned long nr_segs) 3706 unsigned long nr_segs)
3709 { 3707 {
3710 struct file *file = iocb->ki_filp; 3708 struct file *file = iocb->ki_filp;
3711 struct inode *inode = file->f_mapping->host; 3709 struct inode *inode = file->f_mapping->host;
3712 ssize_t ret; 3710 ssize_t ret;
3713 size_t count = iov_length(iov, nr_segs); 3711 size_t count = iov_length(iov, nr_segs);
3714 3712
3715 loff_t final_size = offset + count; 3713 loff_t final_size = offset + count;
3716 if (rw == WRITE && final_size <= inode->i_size) { 3714 if (rw == WRITE && final_size <= inode->i_size) {
3717 /* 3715 /*
3718 * We could direct write to holes and fallocate. 3716 * We could direct write to holes and fallocate.
3719 * 3717 *
3720 * Allocated blocks to fill the hole are marked as uninitialized 3718 * Allocated blocks to fill the hole are marked as uninitialized
3721 * to prevent parallel buffered read to expose the stale data 3719 * to prevent parallel buffered read to expose the stale data
3722 * before DIO complete the data IO. 3720 * before DIO complete the data IO.
3723 * 3721 *
3724 * As to previously fallocated extents, ext4 get_block 3722 * As to previously fallocated extents, ext4 get_block
3725 * will just simply mark the buffer mapped but still 3723 * will just simply mark the buffer mapped but still
3726 * keep the extents uninitialized. 3724 * keep the extents uninitialized.
3727 * 3725 *
3728 * for non AIO case, we will convert those unwritten extents 3726 * for non AIO case, we will convert those unwritten extents
3729 * to written after return back from blockdev_direct_IO. 3727 * to written after return back from blockdev_direct_IO.
3730 * 3728 *
3731 * for async DIO, the conversion needs to be defered when 3729 * for async DIO, the conversion needs to be defered when
3732 * the IO is completed. The ext4 end_io callback function 3730 * the IO is completed. The ext4 end_io callback function
3733 * will be called to take care of the conversion work. 3731 * will be called to take care of the conversion work.
3734 * Here for async case, we allocate an io_end structure to 3732 * Here for async case, we allocate an io_end structure to
3735 * hook to the iocb. 3733 * hook to the iocb.
3736 */ 3734 */
3737 iocb->private = NULL; 3735 iocb->private = NULL;
3738 EXT4_I(inode)->cur_aio_dio = NULL; 3736 EXT4_I(inode)->cur_aio_dio = NULL;
3739 if (!is_sync_kiocb(iocb)) { 3737 if (!is_sync_kiocb(iocb)) {
3740 iocb->private = ext4_init_io_end(inode, GFP_NOFS); 3738 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3741 if (!iocb->private) 3739 if (!iocb->private)
3742 return -ENOMEM; 3740 return -ENOMEM;
3743 /* 3741 /*
3744 * we save the io structure for current async 3742 * we save the io structure for current async
3745 * direct IO, so that later ext4_map_blocks() 3743 * direct IO, so that later ext4_map_blocks()
3746 * could flag the io structure whether there 3744 * could flag the io structure whether there
3747 * is a unwritten extents needs to be converted 3745 * is a unwritten extents needs to be converted
3748 * when IO is completed. 3746 * when IO is completed.
3749 */ 3747 */
3750 EXT4_I(inode)->cur_aio_dio = iocb->private; 3748 EXT4_I(inode)->cur_aio_dio = iocb->private;
3751 } 3749 }
3752 3750
3753 ret = blockdev_direct_IO(rw, iocb, inode, 3751 ret = blockdev_direct_IO(rw, iocb, inode,
3754 inode->i_sb->s_bdev, iov, 3752 inode->i_sb->s_bdev, iov,
3755 offset, nr_segs, 3753 offset, nr_segs,
3756 ext4_get_block_write, 3754 ext4_get_block_write,
3757 ext4_end_io_dio); 3755 ext4_end_io_dio);
3758 if (iocb->private) 3756 if (iocb->private)
3759 EXT4_I(inode)->cur_aio_dio = NULL; 3757 EXT4_I(inode)->cur_aio_dio = NULL;
3760 /* 3758 /*
3761 * The io_end structure takes a reference to the inode, 3759 * The io_end structure takes a reference to the inode,
3762 * that structure needs to be destroyed and the 3760 * that structure needs to be destroyed and the
3763 * reference to the inode need to be dropped, when IO is 3761 * reference to the inode need to be dropped, when IO is
3764 * complete, even with 0 byte write, or failed. 3762 * complete, even with 0 byte write, or failed.
3765 * 3763 *
3766 * In the successful AIO DIO case, the io_end structure will be 3764 * In the successful AIO DIO case, the io_end structure will be
3767 * desctroyed and the reference to the inode will be dropped 3765 * desctroyed and the reference to the inode will be dropped
3768 * after the end_io call back function is called. 3766 * after the end_io call back function is called.
3769 * 3767 *
3770 * In the case there is 0 byte write, or error case, since 3768 * In the case there is 0 byte write, or error case, since
3771 * VFS direct IO won't invoke the end_io call back function, 3769 * VFS direct IO won't invoke the end_io call back function,
3772 * we need to free the end_io structure here. 3770 * we need to free the end_io structure here.
3773 */ 3771 */
3774 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { 3772 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3775 ext4_free_io_end(iocb->private); 3773 ext4_free_io_end(iocb->private);
3776 iocb->private = NULL; 3774 iocb->private = NULL;
3777 } else if (ret > 0 && ext4_test_inode_state(inode, 3775 } else if (ret > 0 && ext4_test_inode_state(inode,
3778 EXT4_STATE_DIO_UNWRITTEN)) { 3776 EXT4_STATE_DIO_UNWRITTEN)) {
3779 int err; 3777 int err;
3780 /* 3778 /*
3781 * for non AIO case, since the IO is already 3779 * for non AIO case, since the IO is already
3782 * completed, we could do the conversion right here 3780 * completed, we could do the conversion right here
3783 */ 3781 */
3784 err = ext4_convert_unwritten_extents(inode, 3782 err = ext4_convert_unwritten_extents(inode,
3785 offset, ret); 3783 offset, ret);
3786 if (err < 0) 3784 if (err < 0)
3787 ret = err; 3785 ret = err;
3788 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3786 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3789 } 3787 }
3790 return ret; 3788 return ret;
3791 } 3789 }
3792 3790
3793 /* for write the the end of file case, we fall back to old way */ 3791 /* for write the the end of file case, we fall back to old way */
3794 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3792 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3795 } 3793 }
3796 3794
3797 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3795 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3798 const struct iovec *iov, loff_t offset, 3796 const struct iovec *iov, loff_t offset,
3799 unsigned long nr_segs) 3797 unsigned long nr_segs)
3800 { 3798 {
3801 struct file *file = iocb->ki_filp; 3799 struct file *file = iocb->ki_filp;
3802 struct inode *inode = file->f_mapping->host; 3800 struct inode *inode = file->f_mapping->host;
3803 ssize_t ret; 3801 ssize_t ret;
3804 3802
3805 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3803 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3806 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3804 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3807 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3805 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3808 else 3806 else
3809 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3807 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3810 trace_ext4_direct_IO_exit(inode, offset, 3808 trace_ext4_direct_IO_exit(inode, offset,
3811 iov_length(iov, nr_segs), rw, ret); 3809 iov_length(iov, nr_segs), rw, ret);
3812 return ret; 3810 return ret;
3813 } 3811 }
3814 3812
3815 /* 3813 /*
3816 * Pages can be marked dirty completely asynchronously from ext4's journalling 3814 * Pages can be marked dirty completely asynchronously from ext4's journalling
3817 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3815 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3818 * much here because ->set_page_dirty is called under VFS locks. The page is 3816 * much here because ->set_page_dirty is called under VFS locks. The page is
3819 * not necessarily locked. 3817 * not necessarily locked.
3820 * 3818 *
3821 * We cannot just dirty the page and leave attached buffers clean, because the 3819 * We cannot just dirty the page and leave attached buffers clean, because the
3822 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3820 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3823 * or jbddirty because all the journalling code will explode. 3821 * or jbddirty because all the journalling code will explode.
3824 * 3822 *
3825 * So what we do is to mark the page "pending dirty" and next time writepage 3823 * So what we do is to mark the page "pending dirty" and next time writepage
3826 * is called, propagate that into the buffers appropriately. 3824 * is called, propagate that into the buffers appropriately.
3827 */ 3825 */
3828 static int ext4_journalled_set_page_dirty(struct page *page) 3826 static int ext4_journalled_set_page_dirty(struct page *page)
3829 { 3827 {
3830 SetPageChecked(page); 3828 SetPageChecked(page);
3831 return __set_page_dirty_nobuffers(page); 3829 return __set_page_dirty_nobuffers(page);
3832 } 3830 }
3833 3831
3834 static const struct address_space_operations ext4_ordered_aops = { 3832 static const struct address_space_operations ext4_ordered_aops = {
3835 .readpage = ext4_readpage, 3833 .readpage = ext4_readpage,
3836 .readpages = ext4_readpages, 3834 .readpages = ext4_readpages,
3837 .writepage = ext4_writepage, 3835 .writepage = ext4_writepage,
3838 .write_begin = ext4_write_begin, 3836 .write_begin = ext4_write_begin,
3839 .write_end = ext4_ordered_write_end, 3837 .write_end = ext4_ordered_write_end,
3840 .bmap = ext4_bmap, 3838 .bmap = ext4_bmap,
3841 .invalidatepage = ext4_invalidatepage, 3839 .invalidatepage = ext4_invalidatepage,
3842 .releasepage = ext4_releasepage, 3840 .releasepage = ext4_releasepage,
3843 .direct_IO = ext4_direct_IO, 3841 .direct_IO = ext4_direct_IO,
3844 .migratepage = buffer_migrate_page, 3842 .migratepage = buffer_migrate_page,
3845 .is_partially_uptodate = block_is_partially_uptodate, 3843 .is_partially_uptodate = block_is_partially_uptodate,
3846 .error_remove_page = generic_error_remove_page, 3844 .error_remove_page = generic_error_remove_page,
3847 }; 3845 };
3848 3846
3849 static const struct address_space_operations ext4_writeback_aops = { 3847 static const struct address_space_operations ext4_writeback_aops = {
3850 .readpage = ext4_readpage, 3848 .readpage = ext4_readpage,
3851 .readpages = ext4_readpages, 3849 .readpages = ext4_readpages,
3852 .writepage = ext4_writepage, 3850 .writepage = ext4_writepage,
3853 .write_begin = ext4_write_begin, 3851 .write_begin = ext4_write_begin,
3854 .write_end = ext4_writeback_write_end, 3852 .write_end = ext4_writeback_write_end,
3855 .bmap = ext4_bmap, 3853 .bmap = ext4_bmap,
3856 .invalidatepage = ext4_invalidatepage, 3854 .invalidatepage = ext4_invalidatepage,
3857 .releasepage = ext4_releasepage, 3855 .releasepage = ext4_releasepage,
3858 .direct_IO = ext4_direct_IO, 3856 .direct_IO = ext4_direct_IO,
3859 .migratepage = buffer_migrate_page, 3857 .migratepage = buffer_migrate_page,
3860 .is_partially_uptodate = block_is_partially_uptodate, 3858 .is_partially_uptodate = block_is_partially_uptodate,
3861 .error_remove_page = generic_error_remove_page, 3859 .error_remove_page = generic_error_remove_page,
3862 }; 3860 };
3863 3861
3864 static const struct address_space_operations ext4_journalled_aops = { 3862 static const struct address_space_operations ext4_journalled_aops = {
3865 .readpage = ext4_readpage, 3863 .readpage = ext4_readpage,
3866 .readpages = ext4_readpages, 3864 .readpages = ext4_readpages,
3867 .writepage = ext4_writepage, 3865 .writepage = ext4_writepage,
3868 .write_begin = ext4_write_begin, 3866 .write_begin = ext4_write_begin,
3869 .write_end = ext4_journalled_write_end, 3867 .write_end = ext4_journalled_write_end,
3870 .set_page_dirty = ext4_journalled_set_page_dirty, 3868 .set_page_dirty = ext4_journalled_set_page_dirty,
3871 .bmap = ext4_bmap, 3869 .bmap = ext4_bmap,
3872 .invalidatepage = ext4_invalidatepage, 3870 .invalidatepage = ext4_invalidatepage,
3873 .releasepage = ext4_releasepage, 3871 .releasepage = ext4_releasepage,
3874 .is_partially_uptodate = block_is_partially_uptodate, 3872 .is_partially_uptodate = block_is_partially_uptodate,
3875 .error_remove_page = generic_error_remove_page, 3873 .error_remove_page = generic_error_remove_page,
3876 }; 3874 };
3877 3875
3878 static const struct address_space_operations ext4_da_aops = { 3876 static const struct address_space_operations ext4_da_aops = {
3879 .readpage = ext4_readpage, 3877 .readpage = ext4_readpage,
3880 .readpages = ext4_readpages, 3878 .readpages = ext4_readpages,
3881 .writepage = ext4_writepage, 3879 .writepage = ext4_writepage,
3882 .writepages = ext4_da_writepages, 3880 .writepages = ext4_da_writepages,
3883 .write_begin = ext4_da_write_begin, 3881 .write_begin = ext4_da_write_begin,
3884 .write_end = ext4_da_write_end, 3882 .write_end = ext4_da_write_end,
3885 .bmap = ext4_bmap, 3883 .bmap = ext4_bmap,
3886 .invalidatepage = ext4_da_invalidatepage, 3884 .invalidatepage = ext4_da_invalidatepage,
3887 .releasepage = ext4_releasepage, 3885 .releasepage = ext4_releasepage,
3888 .direct_IO = ext4_direct_IO, 3886 .direct_IO = ext4_direct_IO,
3889 .migratepage = buffer_migrate_page, 3887 .migratepage = buffer_migrate_page,
3890 .is_partially_uptodate = block_is_partially_uptodate, 3888 .is_partially_uptodate = block_is_partially_uptodate,
3891 .error_remove_page = generic_error_remove_page, 3889 .error_remove_page = generic_error_remove_page,
3892 }; 3890 };
3893 3891
3894 void ext4_set_aops(struct inode *inode) 3892 void ext4_set_aops(struct inode *inode)
3895 { 3893 {
3896 if (ext4_should_order_data(inode) && 3894 if (ext4_should_order_data(inode) &&
3897 test_opt(inode->i_sb, DELALLOC)) 3895 test_opt(inode->i_sb, DELALLOC))
3898 inode->i_mapping->a_ops = &ext4_da_aops; 3896 inode->i_mapping->a_ops = &ext4_da_aops;
3899 else if (ext4_should_order_data(inode)) 3897 else if (ext4_should_order_data(inode))
3900 inode->i_mapping->a_ops = &ext4_ordered_aops; 3898 inode->i_mapping->a_ops = &ext4_ordered_aops;
3901 else if (ext4_should_writeback_data(inode) && 3899 else if (ext4_should_writeback_data(inode) &&
3902 test_opt(inode->i_sb, DELALLOC)) 3900 test_opt(inode->i_sb, DELALLOC))
3903 inode->i_mapping->a_ops = &ext4_da_aops; 3901 inode->i_mapping->a_ops = &ext4_da_aops;
3904 else if (ext4_should_writeback_data(inode)) 3902 else if (ext4_should_writeback_data(inode))
3905 inode->i_mapping->a_ops = &ext4_writeback_aops; 3903 inode->i_mapping->a_ops = &ext4_writeback_aops;
3906 else 3904 else
3907 inode->i_mapping->a_ops = &ext4_journalled_aops; 3905 inode->i_mapping->a_ops = &ext4_journalled_aops;
3908 } 3906 }
3909 3907
3910 /* 3908 /*
3911 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3909 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3912 * up to the end of the block which corresponds to `from'. 3910 * up to the end of the block which corresponds to `from'.
3913 * This required during truncate. We need to physically zero the tail end 3911 * This required during truncate. We need to physically zero the tail end
3914 * of that block so it doesn't yield old data if the file is later grown. 3912 * of that block so it doesn't yield old data if the file is later grown.
3915 */ 3913 */
3916 int ext4_block_truncate_page(handle_t *handle, 3914 int ext4_block_truncate_page(handle_t *handle,
3917 struct address_space *mapping, loff_t from) 3915 struct address_space *mapping, loff_t from)
3918 { 3916 {
3919 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3917 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3920 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3918 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3921 unsigned blocksize, length, pos; 3919 unsigned blocksize, length, pos;
3922 ext4_lblk_t iblock; 3920 ext4_lblk_t iblock;
3923 struct inode *inode = mapping->host; 3921 struct inode *inode = mapping->host;
3924 struct buffer_head *bh; 3922 struct buffer_head *bh;
3925 struct page *page; 3923 struct page *page;
3926 int err = 0; 3924 int err = 0;
3927 3925
3928 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3926 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3929 mapping_gfp_mask(mapping) & ~__GFP_FS); 3927 mapping_gfp_mask(mapping) & ~__GFP_FS);
3930 if (!page) 3928 if (!page)
3931 return -EINVAL; 3929 return -EINVAL;
3932 3930
3933 blocksize = inode->i_sb->s_blocksize; 3931 blocksize = inode->i_sb->s_blocksize;
3934 length = blocksize - (offset & (blocksize - 1)); 3932 length = blocksize - (offset & (blocksize - 1));
3935 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3933 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3936 3934
3937 if (!page_has_buffers(page)) 3935 if (!page_has_buffers(page))
3938 create_empty_buffers(page, blocksize, 0); 3936 create_empty_buffers(page, blocksize, 0);
3939 3937
3940 /* Find the buffer that contains "offset" */ 3938 /* Find the buffer that contains "offset" */
3941 bh = page_buffers(page); 3939 bh = page_buffers(page);
3942 pos = blocksize; 3940 pos = blocksize;
3943 while (offset >= pos) { 3941 while (offset >= pos) {
3944 bh = bh->b_this_page; 3942 bh = bh->b_this_page;
3945 iblock++; 3943 iblock++;
3946 pos += blocksize; 3944 pos += blocksize;
3947 } 3945 }
3948 3946
3949 err = 0; 3947 err = 0;
3950 if (buffer_freed(bh)) { 3948 if (buffer_freed(bh)) {
3951 BUFFER_TRACE(bh, "freed: skip"); 3949 BUFFER_TRACE(bh, "freed: skip");
3952 goto unlock; 3950 goto unlock;
3953 } 3951 }
3954 3952
3955 if (!buffer_mapped(bh)) { 3953 if (!buffer_mapped(bh)) {
3956 BUFFER_TRACE(bh, "unmapped"); 3954 BUFFER_TRACE(bh, "unmapped");
3957 ext4_get_block(inode, iblock, bh, 0); 3955 ext4_get_block(inode, iblock, bh, 0);
3958 /* unmapped? It's a hole - nothing to do */ 3956 /* unmapped? It's a hole - nothing to do */
3959 if (!buffer_mapped(bh)) { 3957 if (!buffer_mapped(bh)) {
3960 BUFFER_TRACE(bh, "still unmapped"); 3958 BUFFER_TRACE(bh, "still unmapped");
3961 goto unlock; 3959 goto unlock;
3962 } 3960 }
3963 } 3961 }
3964 3962
3965 /* Ok, it's mapped. Make sure it's up-to-date */ 3963 /* Ok, it's mapped. Make sure it's up-to-date */
3966 if (PageUptodate(page)) 3964 if (PageUptodate(page))
3967 set_buffer_uptodate(bh); 3965 set_buffer_uptodate(bh);
3968 3966
3969 if (!buffer_uptodate(bh)) { 3967 if (!buffer_uptodate(bh)) {
3970 err = -EIO; 3968 err = -EIO;
3971 ll_rw_block(READ, 1, &bh); 3969 ll_rw_block(READ, 1, &bh);
3972 wait_on_buffer(bh); 3970 wait_on_buffer(bh);
3973 /* Uhhuh. Read error. Complain and punt. */ 3971 /* Uhhuh. Read error. Complain and punt. */
3974 if (!buffer_uptodate(bh)) 3972 if (!buffer_uptodate(bh))
3975 goto unlock; 3973 goto unlock;
3976 } 3974 }
3977 3975
3978 if (ext4_should_journal_data(inode)) { 3976 if (ext4_should_journal_data(inode)) {
3979 BUFFER_TRACE(bh, "get write access"); 3977 BUFFER_TRACE(bh, "get write access");
3980 err = ext4_journal_get_write_access(handle, bh); 3978 err = ext4_journal_get_write_access(handle, bh);
3981 if (err) 3979 if (err)
3982 goto unlock; 3980 goto unlock;
3983 } 3981 }
3984 3982
3985 zero_user(page, offset, length); 3983 zero_user(page, offset, length);
3986 3984
3987 BUFFER_TRACE(bh, "zeroed end of block"); 3985 BUFFER_TRACE(bh, "zeroed end of block");
3988 3986
3989 err = 0; 3987 err = 0;
3990 if (ext4_should_journal_data(inode)) { 3988 if (ext4_should_journal_data(inode)) {
3991 err = ext4_handle_dirty_metadata(handle, inode, bh); 3989 err = ext4_handle_dirty_metadata(handle, inode, bh);
3992 } else { 3990 } else {
3993 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode) 3991 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3994 err = ext4_jbd2_file_inode(handle, inode); 3992 err = ext4_jbd2_file_inode(handle, inode);
3995 mark_buffer_dirty(bh); 3993 mark_buffer_dirty(bh);
3996 } 3994 }
3997 3995
3998 unlock: 3996 unlock:
3999 unlock_page(page); 3997 unlock_page(page);
4000 page_cache_release(page); 3998 page_cache_release(page);
4001 return err; 3999 return err;
4002 } 4000 }
4003 4001
4004 /* 4002 /*
4005 * Probably it should be a library function... search for first non-zero word 4003 * Probably it should be a library function... search for first non-zero word
4006 * or memcmp with zero_page, whatever is better for particular architecture. 4004 * or memcmp with zero_page, whatever is better for particular architecture.
4007 * Linus? 4005 * Linus?
4008 */ 4006 */
4009 static inline int all_zeroes(__le32 *p, __le32 *q) 4007 static inline int all_zeroes(__le32 *p, __le32 *q)
4010 { 4008 {
4011 while (p < q) 4009 while (p < q)
4012 if (*p++) 4010 if (*p++)
4013 return 0; 4011 return 0;
4014 return 1; 4012 return 1;
4015 } 4013 }
4016 4014
4017 /** 4015 /**
4018 * ext4_find_shared - find the indirect blocks for partial truncation. 4016 * ext4_find_shared - find the indirect blocks for partial truncation.
4019 * @inode: inode in question 4017 * @inode: inode in question
4020 * @depth: depth of the affected branch 4018 * @depth: depth of the affected branch
4021 * @offsets: offsets of pointers in that branch (see ext4_block_to_path) 4019 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4022 * @chain: place to store the pointers to partial indirect blocks 4020 * @chain: place to store the pointers to partial indirect blocks
4023 * @top: place to the (detached) top of branch 4021 * @top: place to the (detached) top of branch
4024 * 4022 *
4025 * This is a helper function used by ext4_truncate(). 4023 * This is a helper function used by ext4_truncate().
4026 * 4024 *
4027 * When we do truncate() we may have to clean the ends of several 4025 * When we do truncate() we may have to clean the ends of several
4028 * indirect blocks but leave the blocks themselves alive. Block is 4026 * indirect blocks but leave the blocks themselves alive. Block is
4029 * partially truncated if some data below the new i_size is referred 4027 * partially truncated if some data below the new i_size is referred
4030 * from it (and it is on the path to the first completely truncated 4028 * from it (and it is on the path to the first completely truncated
4031 * data block, indeed). We have to free the top of that path along 4029 * data block, indeed). We have to free the top of that path along
4032 * with everything to the right of the path. Since no allocation 4030 * with everything to the right of the path. Since no allocation
4033 * past the truncation point is possible until ext4_truncate() 4031 * past the truncation point is possible until ext4_truncate()
4034 * finishes, we may safely do the latter, but top of branch may 4032 * finishes, we may safely do the latter, but top of branch may
4035 * require special attention - pageout below the truncation point 4033 * require special attention - pageout below the truncation point
4036 * might try to populate it. 4034 * might try to populate it.
4037 * 4035 *
4038 * We atomically detach the top of branch from the tree, store the 4036 * We atomically detach the top of branch from the tree, store the
4039 * block number of its root in *@top, pointers to buffer_heads of 4037 * block number of its root in *@top, pointers to buffer_heads of
4040 * partially truncated blocks - in @chain[].bh and pointers to 4038 * partially truncated blocks - in @chain[].bh and pointers to
4041 * their last elements that should not be removed - in 4039 * their last elements that should not be removed - in
4042 * @chain[].p. Return value is the pointer to last filled element 4040 * @chain[].p. Return value is the pointer to last filled element
4043 * of @chain. 4041 * of @chain.
4044 * 4042 *
4045 * The work left to caller to do the actual freeing of subtrees: 4043 * The work left to caller to do the actual freeing of subtrees:
4046 * a) free the subtree starting from *@top 4044 * a) free the subtree starting from *@top
4047 * b) free the subtrees whose roots are stored in 4045 * b) free the subtrees whose roots are stored in
4048 * (@chain[i].p+1 .. end of @chain[i].bh->b_data) 4046 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4049 * c) free the subtrees growing from the inode past the @chain[0]. 4047 * c) free the subtrees growing from the inode past the @chain[0].
4050 * (no partially truncated stuff there). */ 4048 * (no partially truncated stuff there). */
4051 4049
4052 static Indirect *ext4_find_shared(struct inode *inode, int depth, 4050 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4053 ext4_lblk_t offsets[4], Indirect chain[4], 4051 ext4_lblk_t offsets[4], Indirect chain[4],
4054 __le32 *top) 4052 __le32 *top)
4055 { 4053 {
4056 Indirect *partial, *p; 4054 Indirect *partial, *p;
4057 int k, err; 4055 int k, err;
4058 4056
4059 *top = 0; 4057 *top = 0;
4060 /* Make k index the deepest non-null offset + 1 */ 4058 /* Make k index the deepest non-null offset + 1 */
4061 for (k = depth; k > 1 && !offsets[k-1]; k--) 4059 for (k = depth; k > 1 && !offsets[k-1]; k--)
4062 ; 4060 ;
4063 partial = ext4_get_branch(inode, k, offsets, chain, &err); 4061 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4064 /* Writer: pointers */ 4062 /* Writer: pointers */
4065 if (!partial) 4063 if (!partial)
4066 partial = chain + k-1; 4064 partial = chain + k-1;
4067 /* 4065 /*
4068 * If the branch acquired continuation since we've looked at it - 4066 * If the branch acquired continuation since we've looked at it -
4069 * fine, it should all survive and (new) top doesn't belong to us. 4067 * fine, it should all survive and (new) top doesn't belong to us.
4070 */ 4068 */
4071 if (!partial->key && *partial->p) 4069 if (!partial->key && *partial->p)
4072 /* Writer: end */ 4070 /* Writer: end */
4073 goto no_top; 4071 goto no_top;
4074 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) 4072 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4075 ; 4073 ;
4076 /* 4074 /*
4077 * OK, we've found the last block that must survive. The rest of our 4075 * OK, we've found the last block that must survive. The rest of our
4078 * branch should be detached before unlocking. However, if that rest 4076 * branch should be detached before unlocking. However, if that rest
4079 * of branch is all ours and does not grow immediately from the inode 4077 * of branch is all ours and does not grow immediately from the inode
4080 * it's easier to cheat and just decrement partial->p. 4078 * it's easier to cheat and just decrement partial->p.
4081 */ 4079 */
4082 if (p == chain + k - 1 && p > chain) { 4080 if (p == chain + k - 1 && p > chain) {
4083 p->p--; 4081 p->p--;
4084 } else { 4082 } else {
4085 *top = *p->p; 4083 *top = *p->p;
4086 /* Nope, don't do this in ext4. Must leave the tree intact */ 4084 /* Nope, don't do this in ext4. Must leave the tree intact */
4087 #if 0 4085 #if 0
4088 *p->p = 0; 4086 *p->p = 0;
4089 #endif 4087 #endif
4090 } 4088 }
4091 /* Writer: end */ 4089 /* Writer: end */
4092 4090
4093 while (partial > p) { 4091 while (partial > p) {
4094 brelse(partial->bh); 4092 brelse(partial->bh);
4095 partial--; 4093 partial--;
4096 } 4094 }
4097 no_top: 4095 no_top:
4098 return partial; 4096 return partial;
4099 } 4097 }
4100 4098
4101 /* 4099 /*
4102 * Zero a number of block pointers in either an inode or an indirect block. 4100 * Zero a number of block pointers in either an inode or an indirect block.
4103 * If we restart the transaction we must again get write access to the 4101 * If we restart the transaction we must again get write access to the
4104 * indirect block for further modification. 4102 * indirect block for further modification.
4105 * 4103 *
4106 * We release `count' blocks on disk, but (last - first) may be greater 4104 * We release `count' blocks on disk, but (last - first) may be greater
4107 * than `count' because there can be holes in there. 4105 * than `count' because there can be holes in there.
4108 * 4106 *
4109 * Return 0 on success, 1 on invalid block range 4107 * Return 0 on success, 1 on invalid block range
4110 * and < 0 on fatal error. 4108 * and < 0 on fatal error.
4111 */ 4109 */
4112 static int ext4_clear_blocks(handle_t *handle, struct inode *inode, 4110 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4113 struct buffer_head *bh, 4111 struct buffer_head *bh,
4114 ext4_fsblk_t block_to_free, 4112 ext4_fsblk_t block_to_free,
4115 unsigned long count, __le32 *first, 4113 unsigned long count, __le32 *first,
4116 __le32 *last) 4114 __le32 *last)
4117 { 4115 {
4118 __le32 *p; 4116 __le32 *p;
4119 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED; 4117 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4120 int err; 4118 int err;
4121 4119
4122 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 4120 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4123 flags |= EXT4_FREE_BLOCKS_METADATA; 4121 flags |= EXT4_FREE_BLOCKS_METADATA;
4124 4122
4125 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, 4123 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4126 count)) { 4124 count)) {
4127 EXT4_ERROR_INODE(inode, "attempt to clear invalid " 4125 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4128 "blocks %llu len %lu", 4126 "blocks %llu len %lu",
4129 (unsigned long long) block_to_free, count); 4127 (unsigned long long) block_to_free, count);
4130 return 1; 4128 return 1;
4131 } 4129 }
4132 4130
4133 if (try_to_extend_transaction(handle, inode)) { 4131 if (try_to_extend_transaction(handle, inode)) {
4134 if (bh) { 4132 if (bh) {
4135 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4133 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4136 err = ext4_handle_dirty_metadata(handle, inode, bh); 4134 err = ext4_handle_dirty_metadata(handle, inode, bh);
4137 if (unlikely(err)) 4135 if (unlikely(err))
4138 goto out_err; 4136 goto out_err;
4139 } 4137 }
4140 err = ext4_mark_inode_dirty(handle, inode); 4138 err = ext4_mark_inode_dirty(handle, inode);
4141 if (unlikely(err)) 4139 if (unlikely(err))
4142 goto out_err; 4140 goto out_err;
4143 err = ext4_truncate_restart_trans(handle, inode, 4141 err = ext4_truncate_restart_trans(handle, inode,
4144 blocks_for_truncate(inode)); 4142 blocks_for_truncate(inode));
4145 if (unlikely(err)) 4143 if (unlikely(err))
4146 goto out_err; 4144 goto out_err;
4147 if (bh) { 4145 if (bh) {
4148 BUFFER_TRACE(bh, "retaking write access"); 4146 BUFFER_TRACE(bh, "retaking write access");
4149 err = ext4_journal_get_write_access(handle, bh); 4147 err = ext4_journal_get_write_access(handle, bh);
4150 if (unlikely(err)) 4148 if (unlikely(err))
4151 goto out_err; 4149 goto out_err;
4152 } 4150 }
4153 } 4151 }
4154 4152
4155 for (p = first; p < last; p++) 4153 for (p = first; p < last; p++)
4156 *p = 0; 4154 *p = 0;
4157 4155
4158 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags); 4156 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
4159 return 0; 4157 return 0;
4160 out_err: 4158 out_err:
4161 ext4_std_error(inode->i_sb, err); 4159 ext4_std_error(inode->i_sb, err);
4162 return err; 4160 return err;
4163 } 4161 }
4164 4162
4165 /** 4163 /**
4166 * ext4_free_data - free a list of data blocks 4164 * ext4_free_data - free a list of data blocks
4167 * @handle: handle for this transaction 4165 * @handle: handle for this transaction
4168 * @inode: inode we are dealing with 4166 * @inode: inode we are dealing with
4169 * @this_bh: indirect buffer_head which contains *@first and *@last 4167 * @this_bh: indirect buffer_head which contains *@first and *@last
4170 * @first: array of block numbers 4168 * @first: array of block numbers
4171 * @last: points immediately past the end of array 4169 * @last: points immediately past the end of array
4172 * 4170 *
4173 * We are freeing all blocks referred from that array (numbers are stored as 4171 * We are freeing all blocks referred from that array (numbers are stored as
4174 * little-endian 32-bit) and updating @inode->i_blocks appropriately. 4172 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4175 * 4173 *
4176 * We accumulate contiguous runs of blocks to free. Conveniently, if these 4174 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4177 * blocks are contiguous then releasing them at one time will only affect one 4175 * blocks are contiguous then releasing them at one time will only affect one
4178 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't 4176 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4179 * actually use a lot of journal space. 4177 * actually use a lot of journal space.
4180 * 4178 *
4181 * @this_bh will be %NULL if @first and @last point into the inode's direct 4179 * @this_bh will be %NULL if @first and @last point into the inode's direct
4182 * block pointers. 4180 * block pointers.
4183 */ 4181 */
4184 static void ext4_free_data(handle_t *handle, struct inode *inode, 4182 static void ext4_free_data(handle_t *handle, struct inode *inode,
4185 struct buffer_head *this_bh, 4183 struct buffer_head *this_bh,
4186 __le32 *first, __le32 *last) 4184 __le32 *first, __le32 *last)
4187 { 4185 {
4188 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */ 4186 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4189 unsigned long count = 0; /* Number of blocks in the run */ 4187 unsigned long count = 0; /* Number of blocks in the run */
4190 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind 4188 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4191 corresponding to 4189 corresponding to
4192 block_to_free */ 4190 block_to_free */
4193 ext4_fsblk_t nr; /* Current block # */ 4191 ext4_fsblk_t nr; /* Current block # */
4194 __le32 *p; /* Pointer into inode/ind 4192 __le32 *p; /* Pointer into inode/ind
4195 for current block */ 4193 for current block */
4196 int err = 0; 4194 int err = 0;
4197 4195
4198 if (this_bh) { /* For indirect block */ 4196 if (this_bh) { /* For indirect block */
4199 BUFFER_TRACE(this_bh, "get_write_access"); 4197 BUFFER_TRACE(this_bh, "get_write_access");
4200 err = ext4_journal_get_write_access(handle, this_bh); 4198 err = ext4_journal_get_write_access(handle, this_bh);
4201 /* Important: if we can't update the indirect pointers 4199 /* Important: if we can't update the indirect pointers
4202 * to the blocks, we can't free them. */ 4200 * to the blocks, we can't free them. */
4203 if (err) 4201 if (err)
4204 return; 4202 return;
4205 } 4203 }
4206 4204
4207 for (p = first; p < last; p++) { 4205 for (p = first; p < last; p++) {
4208 nr = le32_to_cpu(*p); 4206 nr = le32_to_cpu(*p);
4209 if (nr) { 4207 if (nr) {
4210 /* accumulate blocks to free if they're contiguous */ 4208 /* accumulate blocks to free if they're contiguous */
4211 if (count == 0) { 4209 if (count == 0) {
4212 block_to_free = nr; 4210 block_to_free = nr;
4213 block_to_free_p = p; 4211 block_to_free_p = p;
4214 count = 1; 4212 count = 1;
4215 } else if (nr == block_to_free + count) { 4213 } else if (nr == block_to_free + count) {
4216 count++; 4214 count++;
4217 } else { 4215 } else {
4218 err = ext4_clear_blocks(handle, inode, this_bh, 4216 err = ext4_clear_blocks(handle, inode, this_bh,
4219 block_to_free, count, 4217 block_to_free, count,
4220 block_to_free_p, p); 4218 block_to_free_p, p);
4221 if (err) 4219 if (err)
4222 break; 4220 break;
4223 block_to_free = nr; 4221 block_to_free = nr;
4224 block_to_free_p = p; 4222 block_to_free_p = p;
4225 count = 1; 4223 count = 1;
4226 } 4224 }
4227 } 4225 }
4228 } 4226 }
4229 4227
4230 if (!err && count > 0) 4228 if (!err && count > 0)
4231 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free, 4229 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4232 count, block_to_free_p, p); 4230 count, block_to_free_p, p);
4233 if (err < 0) 4231 if (err < 0)
4234 /* fatal error */ 4232 /* fatal error */
4235 return; 4233 return;
4236 4234
4237 if (this_bh) { 4235 if (this_bh) {
4238 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); 4236 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4239 4237
4240 /* 4238 /*
4241 * The buffer head should have an attached journal head at this 4239 * The buffer head should have an attached journal head at this
4242 * point. However, if the data is corrupted and an indirect 4240 * point. However, if the data is corrupted and an indirect
4243 * block pointed to itself, it would have been detached when 4241 * block pointed to itself, it would have been detached when
4244 * the block was cleared. Check for this instead of OOPSing. 4242 * the block was cleared. Check for this instead of OOPSing.
4245 */ 4243 */
4246 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) 4244 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4247 ext4_handle_dirty_metadata(handle, inode, this_bh); 4245 ext4_handle_dirty_metadata(handle, inode, this_bh);
4248 else 4246 else
4249 EXT4_ERROR_INODE(inode, 4247 EXT4_ERROR_INODE(inode,
4250 "circular indirect block detected at " 4248 "circular indirect block detected at "
4251 "block %llu", 4249 "block %llu",
4252 (unsigned long long) this_bh->b_blocknr); 4250 (unsigned long long) this_bh->b_blocknr);
4253 } 4251 }
4254 } 4252 }
4255 4253
4256 /** 4254 /**
4257 * ext4_free_branches - free an array of branches 4255 * ext4_free_branches - free an array of branches
4258 * @handle: JBD handle for this transaction 4256 * @handle: JBD handle for this transaction
4259 * @inode: inode we are dealing with 4257 * @inode: inode we are dealing with
4260 * @parent_bh: the buffer_head which contains *@first and *@last 4258 * @parent_bh: the buffer_head which contains *@first and *@last
4261 * @first: array of block numbers 4259 * @first: array of block numbers
4262 * @last: pointer immediately past the end of array 4260 * @last: pointer immediately past the end of array
4263 * @depth: depth of the branches to free 4261 * @depth: depth of the branches to free
4264 * 4262 *
4265 * We are freeing all blocks referred from these branches (numbers are 4263 * We are freeing all blocks referred from these branches (numbers are
4266 * stored as little-endian 32-bit) and updating @inode->i_blocks 4264 * stored as little-endian 32-bit) and updating @inode->i_blocks
4267 * appropriately. 4265 * appropriately.
4268 */ 4266 */
4269 static void ext4_free_branches(handle_t *handle, struct inode *inode, 4267 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4270 struct buffer_head *parent_bh, 4268 struct buffer_head *parent_bh,
4271 __le32 *first, __le32 *last, int depth) 4269 __le32 *first, __le32 *last, int depth)
4272 { 4270 {
4273 ext4_fsblk_t nr; 4271 ext4_fsblk_t nr;
4274 __le32 *p; 4272 __le32 *p;
4275 4273
4276 if (ext4_handle_is_aborted(handle)) 4274 if (ext4_handle_is_aborted(handle))
4277 return; 4275 return;
4278 4276
4279 if (depth--) { 4277 if (depth--) {
4280 struct buffer_head *bh; 4278 struct buffer_head *bh;
4281 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4279 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4282 p = last; 4280 p = last;
4283 while (--p >= first) { 4281 while (--p >= first) {
4284 nr = le32_to_cpu(*p); 4282 nr = le32_to_cpu(*p);
4285 if (!nr) 4283 if (!nr)
4286 continue; /* A hole */ 4284 continue; /* A hole */
4287 4285
4288 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), 4286 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4289 nr, 1)) { 4287 nr, 1)) {
4290 EXT4_ERROR_INODE(inode, 4288 EXT4_ERROR_INODE(inode,
4291 "invalid indirect mapped " 4289 "invalid indirect mapped "
4292 "block %lu (level %d)", 4290 "block %lu (level %d)",
4293 (unsigned long) nr, depth); 4291 (unsigned long) nr, depth);
4294 break; 4292 break;
4295 } 4293 }
4296 4294
4297 /* Go read the buffer for the next level down */ 4295 /* Go read the buffer for the next level down */
4298 bh = sb_bread(inode->i_sb, nr); 4296 bh = sb_bread(inode->i_sb, nr);
4299 4297
4300 /* 4298 /*
4301 * A read failure? Report error and clear slot 4299 * A read failure? Report error and clear slot
4302 * (should be rare). 4300 * (should be rare).
4303 */ 4301 */
4304 if (!bh) { 4302 if (!bh) {
4305 EXT4_ERROR_INODE_BLOCK(inode, nr, 4303 EXT4_ERROR_INODE_BLOCK(inode, nr,
4306 "Read failure"); 4304 "Read failure");
4307 continue; 4305 continue;
4308 } 4306 }
4309 4307
4310 /* This zaps the entire block. Bottom up. */ 4308 /* This zaps the entire block. Bottom up. */
4311 BUFFER_TRACE(bh, "free child branches"); 4309 BUFFER_TRACE(bh, "free child branches");
4312 ext4_free_branches(handle, inode, bh, 4310 ext4_free_branches(handle, inode, bh,
4313 (__le32 *) bh->b_data, 4311 (__le32 *) bh->b_data,
4314 (__le32 *) bh->b_data + addr_per_block, 4312 (__le32 *) bh->b_data + addr_per_block,
4315 depth); 4313 depth);
4316 brelse(bh); 4314 brelse(bh);
4317 4315
4318 /* 4316 /*
4319 * Everything below this this pointer has been 4317 * Everything below this this pointer has been
4320 * released. Now let this top-of-subtree go. 4318 * released. Now let this top-of-subtree go.
4321 * 4319 *
4322 * We want the freeing of this indirect block to be 4320 * We want the freeing of this indirect block to be
4323 * atomic in the journal with the updating of the 4321 * atomic in the journal with the updating of the
4324 * bitmap block which owns it. So make some room in 4322 * bitmap block which owns it. So make some room in
4325 * the journal. 4323 * the journal.
4326 * 4324 *
4327 * We zero the parent pointer *after* freeing its 4325 * We zero the parent pointer *after* freeing its
4328 * pointee in the bitmaps, so if extend_transaction() 4326 * pointee in the bitmaps, so if extend_transaction()
4329 * for some reason fails to put the bitmap changes and 4327 * for some reason fails to put the bitmap changes and
4330 * the release into the same transaction, recovery 4328 * the release into the same transaction, recovery
4331 * will merely complain about releasing a free block, 4329 * will merely complain about releasing a free block,
4332 * rather than leaking blocks. 4330 * rather than leaking blocks.
4333 */ 4331 */
4334 if (ext4_handle_is_aborted(handle)) 4332 if (ext4_handle_is_aborted(handle))
4335 return; 4333 return;
4336 if (try_to_extend_transaction(handle, inode)) { 4334 if (try_to_extend_transaction(handle, inode)) {
4337 ext4_mark_inode_dirty(handle, inode); 4335 ext4_mark_inode_dirty(handle, inode);
4338 ext4_truncate_restart_trans(handle, inode, 4336 ext4_truncate_restart_trans(handle, inode,
4339 blocks_for_truncate(inode)); 4337 blocks_for_truncate(inode));
4340 } 4338 }
4341 4339
4342 /* 4340 /*
4343 * The forget flag here is critical because if 4341 * The forget flag here is critical because if
4344 * we are journaling (and not doing data 4342 * we are journaling (and not doing data
4345 * journaling), we have to make sure a revoke 4343 * journaling), we have to make sure a revoke
4346 * record is written to prevent the journal 4344 * record is written to prevent the journal
4347 * replay from overwriting the (former) 4345 * replay from overwriting the (former)
4348 * indirect block if it gets reallocated as a 4346 * indirect block if it gets reallocated as a
4349 * data block. This must happen in the same 4347 * data block. This must happen in the same
4350 * transaction where the data blocks are 4348 * transaction where the data blocks are
4351 * actually freed. 4349 * actually freed.
4352 */ 4350 */
4353 ext4_free_blocks(handle, inode, NULL, nr, 1, 4351 ext4_free_blocks(handle, inode, NULL, nr, 1,
4354 EXT4_FREE_BLOCKS_METADATA| 4352 EXT4_FREE_BLOCKS_METADATA|
4355 EXT4_FREE_BLOCKS_FORGET); 4353 EXT4_FREE_BLOCKS_FORGET);
4356 4354
4357 if (parent_bh) { 4355 if (parent_bh) {
4358 /* 4356 /*
4359 * The block which we have just freed is 4357 * The block which we have just freed is
4360 * pointed to by an indirect block: journal it 4358 * pointed to by an indirect block: journal it
4361 */ 4359 */
4362 BUFFER_TRACE(parent_bh, "get_write_access"); 4360 BUFFER_TRACE(parent_bh, "get_write_access");
4363 if (!ext4_journal_get_write_access(handle, 4361 if (!ext4_journal_get_write_access(handle,
4364 parent_bh)){ 4362 parent_bh)){
4365 *p = 0; 4363 *p = 0;
4366 BUFFER_TRACE(parent_bh, 4364 BUFFER_TRACE(parent_bh,
4367 "call ext4_handle_dirty_metadata"); 4365 "call ext4_handle_dirty_metadata");
4368 ext4_handle_dirty_metadata(handle, 4366 ext4_handle_dirty_metadata(handle,
4369 inode, 4367 inode,
4370 parent_bh); 4368 parent_bh);
4371 } 4369 }
4372 } 4370 }
4373 } 4371 }
4374 } else { 4372 } else {
4375 /* We have reached the bottom of the tree. */ 4373 /* We have reached the bottom of the tree. */
4376 BUFFER_TRACE(parent_bh, "free data blocks"); 4374 BUFFER_TRACE(parent_bh, "free data blocks");
4377 ext4_free_data(handle, inode, parent_bh, first, last); 4375 ext4_free_data(handle, inode, parent_bh, first, last);
4378 } 4376 }
4379 } 4377 }
4380 4378
4381 int ext4_can_truncate(struct inode *inode) 4379 int ext4_can_truncate(struct inode *inode)
4382 { 4380 {
4383 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4381 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4384 return 0; 4382 return 0;
4385 if (S_ISREG(inode->i_mode)) 4383 if (S_ISREG(inode->i_mode))
4386 return 1; 4384 return 1;
4387 if (S_ISDIR(inode->i_mode)) 4385 if (S_ISDIR(inode->i_mode))
4388 return 1; 4386 return 1;
4389 if (S_ISLNK(inode->i_mode)) 4387 if (S_ISLNK(inode->i_mode))
4390 return !ext4_inode_is_fast_symlink(inode); 4388 return !ext4_inode_is_fast_symlink(inode);
4391 return 0; 4389 return 0;
4392 } 4390 }
4393 4391
4394 /* 4392 /*
4395 * ext4_truncate() 4393 * ext4_truncate()
4396 * 4394 *
4397 * We block out ext4_get_block() block instantiations across the entire 4395 * We block out ext4_get_block() block instantiations across the entire
4398 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4396 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4399 * simultaneously on behalf of the same inode. 4397 * simultaneously on behalf of the same inode.
4400 * 4398 *
4401 * As we work through the truncate and commmit bits of it to the journal there 4399 * As we work through the truncate and commmit bits of it to the journal there
4402 * is one core, guiding principle: the file's tree must always be consistent on 4400 * is one core, guiding principle: the file's tree must always be consistent on
4403 * disk. We must be able to restart the truncate after a crash. 4401 * disk. We must be able to restart the truncate after a crash.
4404 * 4402 *
4405 * The file's tree may be transiently inconsistent in memory (although it 4403 * The file's tree may be transiently inconsistent in memory (although it
4406 * probably isn't), but whenever we close off and commit a journal transaction, 4404 * probably isn't), but whenever we close off and commit a journal transaction,
4407 * the contents of (the filesystem + the journal) must be consistent and 4405 * the contents of (the filesystem + the journal) must be consistent and
4408 * restartable. It's pretty simple, really: bottom up, right to left (although 4406 * restartable. It's pretty simple, really: bottom up, right to left (although
4409 * left-to-right works OK too). 4407 * left-to-right works OK too).
4410 * 4408 *
4411 * Note that at recovery time, journal replay occurs *before* the restart of 4409 * Note that at recovery time, journal replay occurs *before* the restart of
4412 * truncate against the orphan inode list. 4410 * truncate against the orphan inode list.
4413 * 4411 *
4414 * The committed inode has the new, desired i_size (which is the same as 4412 * The committed inode has the new, desired i_size (which is the same as
4415 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4413 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4416 * that this inode's truncate did not complete and it will again call 4414 * that this inode's truncate did not complete and it will again call
4417 * ext4_truncate() to have another go. So there will be instantiated blocks 4415 * ext4_truncate() to have another go. So there will be instantiated blocks
4418 * to the right of the truncation point in a crashed ext4 filesystem. But 4416 * to the right of the truncation point in a crashed ext4 filesystem. But
4419 * that's fine - as long as they are linked from the inode, the post-crash 4417 * that's fine - as long as they are linked from the inode, the post-crash
4420 * ext4_truncate() run will find them and release them. 4418 * ext4_truncate() run will find them and release them.
4421 */ 4419 */
4422 void ext4_truncate(struct inode *inode) 4420 void ext4_truncate(struct inode *inode)
4423 { 4421 {
4424 handle_t *handle; 4422 handle_t *handle;
4425 struct ext4_inode_info *ei = EXT4_I(inode); 4423 struct ext4_inode_info *ei = EXT4_I(inode);
4426 __le32 *i_data = ei->i_data; 4424 __le32 *i_data = ei->i_data;
4427 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); 4425 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4428 struct address_space *mapping = inode->i_mapping; 4426 struct address_space *mapping = inode->i_mapping;
4429 ext4_lblk_t offsets[4]; 4427 ext4_lblk_t offsets[4];
4430 Indirect chain[4]; 4428 Indirect chain[4];
4431 Indirect *partial; 4429 Indirect *partial;
4432 __le32 nr = 0; 4430 __le32 nr = 0;
4433 int n = 0; 4431 int n = 0;
4434 ext4_lblk_t last_block, max_block; 4432 ext4_lblk_t last_block, max_block;
4435 unsigned blocksize = inode->i_sb->s_blocksize; 4433 unsigned blocksize = inode->i_sb->s_blocksize;
4436 4434
4437 trace_ext4_truncate_enter(inode); 4435 trace_ext4_truncate_enter(inode);
4438 4436
4439 if (!ext4_can_truncate(inode)) 4437 if (!ext4_can_truncate(inode))
4440 return; 4438 return;
4441 4439
4442 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4440 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4443 4441
4444 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4442 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4445 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4443 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4446 4444
4447 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4445 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4448 ext4_ext_truncate(inode); 4446 ext4_ext_truncate(inode);
4449 trace_ext4_truncate_exit(inode); 4447 trace_ext4_truncate_exit(inode);
4450 return; 4448 return;
4451 } 4449 }
4452 4450
4453 handle = start_transaction(inode); 4451 handle = start_transaction(inode);
4454 if (IS_ERR(handle)) 4452 if (IS_ERR(handle))
4455 return; /* AKPM: return what? */ 4453 return; /* AKPM: return what? */
4456 4454
4457 last_block = (inode->i_size + blocksize-1) 4455 last_block = (inode->i_size + blocksize-1)
4458 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 4456 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4459 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) 4457 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
4460 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb); 4458 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4461 4459
4462 if (inode->i_size & (blocksize - 1)) 4460 if (inode->i_size & (blocksize - 1))
4463 if (ext4_block_truncate_page(handle, mapping, inode->i_size)) 4461 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4464 goto out_stop; 4462 goto out_stop;
4465 4463
4466 if (last_block != max_block) { 4464 if (last_block != max_block) {
4467 n = ext4_block_to_path(inode, last_block, offsets, NULL); 4465 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4468 if (n == 0) 4466 if (n == 0)
4469 goto out_stop; /* error */ 4467 goto out_stop; /* error */
4470 } 4468 }
4471 4469
4472 /* 4470 /*
4473 * OK. This truncate is going to happen. We add the inode to the 4471 * OK. This truncate is going to happen. We add the inode to the
4474 * orphan list, so that if this truncate spans multiple transactions, 4472 * orphan list, so that if this truncate spans multiple transactions,
4475 * and we crash, we will resume the truncate when the filesystem 4473 * and we crash, we will resume the truncate when the filesystem
4476 * recovers. It also marks the inode dirty, to catch the new size. 4474 * recovers. It also marks the inode dirty, to catch the new size.
4477 * 4475 *
4478 * Implication: the file must always be in a sane, consistent 4476 * Implication: the file must always be in a sane, consistent
4479 * truncatable state while each transaction commits. 4477 * truncatable state while each transaction commits.
4480 */ 4478 */
4481 if (ext4_orphan_add(handle, inode)) 4479 if (ext4_orphan_add(handle, inode))
4482 goto out_stop; 4480 goto out_stop;
4483 4481
4484 /* 4482 /*
4485 * From here we block out all ext4_get_block() callers who want to 4483 * From here we block out all ext4_get_block() callers who want to
4486 * modify the block allocation tree. 4484 * modify the block allocation tree.
4487 */ 4485 */
4488 down_write(&ei->i_data_sem); 4486 down_write(&ei->i_data_sem);
4489 4487
4490 ext4_discard_preallocations(inode); 4488 ext4_discard_preallocations(inode);
4491 4489
4492 /* 4490 /*
4493 * The orphan list entry will now protect us from any crash which 4491 * The orphan list entry will now protect us from any crash which
4494 * occurs before the truncate completes, so it is now safe to propagate 4492 * occurs before the truncate completes, so it is now safe to propagate
4495 * the new, shorter inode size (held for now in i_size) into the 4493 * the new, shorter inode size (held for now in i_size) into the
4496 * on-disk inode. We do this via i_disksize, which is the value which 4494 * on-disk inode. We do this via i_disksize, which is the value which
4497 * ext4 *really* writes onto the disk inode. 4495 * ext4 *really* writes onto the disk inode.
4498 */ 4496 */
4499 ei->i_disksize = inode->i_size; 4497 ei->i_disksize = inode->i_size;
4500 4498
4501 if (last_block == max_block) { 4499 if (last_block == max_block) {
4502 /* 4500 /*
4503 * It is unnecessary to free any data blocks if last_block is 4501 * It is unnecessary to free any data blocks if last_block is
4504 * equal to the indirect block limit. 4502 * equal to the indirect block limit.
4505 */ 4503 */
4506 goto out_unlock; 4504 goto out_unlock;
4507 } else if (n == 1) { /* direct blocks */ 4505 } else if (n == 1) { /* direct blocks */
4508 ext4_free_data(handle, inode, NULL, i_data+offsets[0], 4506 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4509 i_data + EXT4_NDIR_BLOCKS); 4507 i_data + EXT4_NDIR_BLOCKS);
4510 goto do_indirects; 4508 goto do_indirects;
4511 } 4509 }
4512 4510
4513 partial = ext4_find_shared(inode, n, offsets, chain, &nr); 4511 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4514 /* Kill the top of shared branch (not detached) */ 4512 /* Kill the top of shared branch (not detached) */
4515 if (nr) { 4513 if (nr) {
4516 if (partial == chain) { 4514 if (partial == chain) {
4517 /* Shared branch grows from the inode */ 4515 /* Shared branch grows from the inode */
4518 ext4_free_branches(handle, inode, NULL, 4516 ext4_free_branches(handle, inode, NULL,
4519 &nr, &nr+1, (chain+n-1) - partial); 4517 &nr, &nr+1, (chain+n-1) - partial);
4520 *partial->p = 0; 4518 *partial->p = 0;
4521 /* 4519 /*
4522 * We mark the inode dirty prior to restart, 4520 * We mark the inode dirty prior to restart,
4523 * and prior to stop. No need for it here. 4521 * and prior to stop. No need for it here.
4524 */ 4522 */
4525 } else { 4523 } else {
4526 /* Shared branch grows from an indirect block */ 4524 /* Shared branch grows from an indirect block */
4527 BUFFER_TRACE(partial->bh, "get_write_access"); 4525 BUFFER_TRACE(partial->bh, "get_write_access");
4528 ext4_free_branches(handle, inode, partial->bh, 4526 ext4_free_branches(handle, inode, partial->bh,
4529 partial->p, 4527 partial->p,
4530 partial->p+1, (chain+n-1) - partial); 4528 partial->p+1, (chain+n-1) - partial);
4531 } 4529 }
4532 } 4530 }
4533 /* Clear the ends of indirect blocks on the shared branch */ 4531 /* Clear the ends of indirect blocks on the shared branch */
4534 while (partial > chain) { 4532 while (partial > chain) {
4535 ext4_free_branches(handle, inode, partial->bh, partial->p + 1, 4533 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4536 (__le32*)partial->bh->b_data+addr_per_block, 4534 (__le32*)partial->bh->b_data+addr_per_block,
4537 (chain+n-1) - partial); 4535 (chain+n-1) - partial);
4538 BUFFER_TRACE(partial->bh, "call brelse"); 4536 BUFFER_TRACE(partial->bh, "call brelse");
4539 brelse(partial->bh); 4537 brelse(partial->bh);
4540 partial--; 4538 partial--;
4541 } 4539 }
4542 do_indirects: 4540 do_indirects:
4543 /* Kill the remaining (whole) subtrees */ 4541 /* Kill the remaining (whole) subtrees */
4544 switch (offsets[0]) { 4542 switch (offsets[0]) {
4545 default: 4543 default:
4546 nr = i_data[EXT4_IND_BLOCK]; 4544 nr = i_data[EXT4_IND_BLOCK];
4547 if (nr) { 4545 if (nr) {
4548 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); 4546 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4549 i_data[EXT4_IND_BLOCK] = 0; 4547 i_data[EXT4_IND_BLOCK] = 0;
4550 } 4548 }
4551 case EXT4_IND_BLOCK: 4549 case EXT4_IND_BLOCK:
4552 nr = i_data[EXT4_DIND_BLOCK]; 4550 nr = i_data[EXT4_DIND_BLOCK];
4553 if (nr) { 4551 if (nr) {
4554 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); 4552 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4555 i_data[EXT4_DIND_BLOCK] = 0; 4553 i_data[EXT4_DIND_BLOCK] = 0;
4556 } 4554 }
4557 case EXT4_DIND_BLOCK: 4555 case EXT4_DIND_BLOCK:
4558 nr = i_data[EXT4_TIND_BLOCK]; 4556 nr = i_data[EXT4_TIND_BLOCK];
4559 if (nr) { 4557 if (nr) {
4560 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); 4558 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4561 i_data[EXT4_TIND_BLOCK] = 0; 4559 i_data[EXT4_TIND_BLOCK] = 0;
4562 } 4560 }
4563 case EXT4_TIND_BLOCK: 4561 case EXT4_TIND_BLOCK:
4564 ; 4562 ;
4565 } 4563 }
4566 4564
4567 out_unlock: 4565 out_unlock:
4568 up_write(&ei->i_data_sem); 4566 up_write(&ei->i_data_sem);
4569 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 4567 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4570 ext4_mark_inode_dirty(handle, inode); 4568 ext4_mark_inode_dirty(handle, inode);
4571 4569
4572 /* 4570 /*
4573 * In a multi-transaction truncate, we only make the final transaction 4571 * In a multi-transaction truncate, we only make the final transaction
4574 * synchronous 4572 * synchronous
4575 */ 4573 */
4576 if (IS_SYNC(inode)) 4574 if (IS_SYNC(inode))
4577 ext4_handle_sync(handle); 4575 ext4_handle_sync(handle);
4578 out_stop: 4576 out_stop:
4579 /* 4577 /*
4580 * If this was a simple ftruncate(), and the file will remain alive 4578 * If this was a simple ftruncate(), and the file will remain alive
4581 * then we need to clear up the orphan record which we created above. 4579 * then we need to clear up the orphan record which we created above.
4582 * However, if this was a real unlink then we were called by 4580 * However, if this was a real unlink then we were called by
4583 * ext4_delete_inode(), and we allow that function to clean up the 4581 * ext4_delete_inode(), and we allow that function to clean up the
4584 * orphan info for us. 4582 * orphan info for us.
4585 */ 4583 */
4586 if (inode->i_nlink) 4584 if (inode->i_nlink)
4587 ext4_orphan_del(handle, inode); 4585 ext4_orphan_del(handle, inode);
4588 4586
4589 ext4_journal_stop(handle); 4587 ext4_journal_stop(handle);
4590 trace_ext4_truncate_exit(inode); 4588 trace_ext4_truncate_exit(inode);
4591 } 4589 }
4592 4590
4593 /* 4591 /*
4594 * ext4_get_inode_loc returns with an extra refcount against the inode's 4592 * ext4_get_inode_loc returns with an extra refcount against the inode's
4595 * underlying buffer_head on success. If 'in_mem' is true, we have all 4593 * underlying buffer_head on success. If 'in_mem' is true, we have all
4596 * data in memory that is needed to recreate the on-disk version of this 4594 * data in memory that is needed to recreate the on-disk version of this
4597 * inode. 4595 * inode.
4598 */ 4596 */
4599 static int __ext4_get_inode_loc(struct inode *inode, 4597 static int __ext4_get_inode_loc(struct inode *inode,
4600 struct ext4_iloc *iloc, int in_mem) 4598 struct ext4_iloc *iloc, int in_mem)
4601 { 4599 {
4602 struct ext4_group_desc *gdp; 4600 struct ext4_group_desc *gdp;
4603 struct buffer_head *bh; 4601 struct buffer_head *bh;
4604 struct super_block *sb = inode->i_sb; 4602 struct super_block *sb = inode->i_sb;
4605 ext4_fsblk_t block; 4603 ext4_fsblk_t block;
4606 int inodes_per_block, inode_offset; 4604 int inodes_per_block, inode_offset;
4607 4605
4608 iloc->bh = NULL; 4606 iloc->bh = NULL;
4609 if (!ext4_valid_inum(sb, inode->i_ino)) 4607 if (!ext4_valid_inum(sb, inode->i_ino))
4610 return -EIO; 4608 return -EIO;
4611 4609
4612 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4610 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4613 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4611 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4614 if (!gdp) 4612 if (!gdp)
4615 return -EIO; 4613 return -EIO;
4616 4614
4617 /* 4615 /*
4618 * Figure out the offset within the block group inode table 4616 * Figure out the offset within the block group inode table
4619 */ 4617 */
4620 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4618 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4621 inode_offset = ((inode->i_ino - 1) % 4619 inode_offset = ((inode->i_ino - 1) %
4622 EXT4_INODES_PER_GROUP(sb)); 4620 EXT4_INODES_PER_GROUP(sb));
4623 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4621 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4624 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4622 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4625 4623
4626 bh = sb_getblk(sb, block); 4624 bh = sb_getblk(sb, block);
4627 if (!bh) { 4625 if (!bh) {
4628 EXT4_ERROR_INODE_BLOCK(inode, block, 4626 EXT4_ERROR_INODE_BLOCK(inode, block,
4629 "unable to read itable block"); 4627 "unable to read itable block");
4630 return -EIO; 4628 return -EIO;
4631 } 4629 }
4632 if (!buffer_uptodate(bh)) { 4630 if (!buffer_uptodate(bh)) {
4633 lock_buffer(bh); 4631 lock_buffer(bh);
4634 4632
4635 /* 4633 /*
4636 * If the buffer has the write error flag, we have failed 4634 * If the buffer has the write error flag, we have failed
4637 * to write out another inode in the same block. In this 4635 * to write out another inode in the same block. In this
4638 * case, we don't have to read the block because we may 4636 * case, we don't have to read the block because we may
4639 * read the old inode data successfully. 4637 * read the old inode data successfully.
4640 */ 4638 */
4641 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4639 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4642 set_buffer_uptodate(bh); 4640 set_buffer_uptodate(bh);
4643 4641
4644 if (buffer_uptodate(bh)) { 4642 if (buffer_uptodate(bh)) {
4645 /* someone brought it uptodate while we waited */ 4643 /* someone brought it uptodate while we waited */
4646 unlock_buffer(bh); 4644 unlock_buffer(bh);
4647 goto has_buffer; 4645 goto has_buffer;
4648 } 4646 }
4649 4647
4650 /* 4648 /*
4651 * If we have all information of the inode in memory and this 4649 * If we have all information of the inode in memory and this
4652 * is the only valid inode in the block, we need not read the 4650 * is the only valid inode in the block, we need not read the
4653 * block. 4651 * block.
4654 */ 4652 */
4655 if (in_mem) { 4653 if (in_mem) {
4656 struct buffer_head *bitmap_bh; 4654 struct buffer_head *bitmap_bh;
4657 int i, start; 4655 int i, start;
4658 4656
4659 start = inode_offset & ~(inodes_per_block - 1); 4657 start = inode_offset & ~(inodes_per_block - 1);
4660 4658
4661 /* Is the inode bitmap in cache? */ 4659 /* Is the inode bitmap in cache? */
4662 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4660 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4663 if (!bitmap_bh) 4661 if (!bitmap_bh)
4664 goto make_io; 4662 goto make_io;
4665 4663
4666 /* 4664 /*
4667 * If the inode bitmap isn't in cache then the 4665 * If the inode bitmap isn't in cache then the
4668 * optimisation may end up performing two reads instead 4666 * optimisation may end up performing two reads instead
4669 * of one, so skip it. 4667 * of one, so skip it.
4670 */ 4668 */
4671 if (!buffer_uptodate(bitmap_bh)) { 4669 if (!buffer_uptodate(bitmap_bh)) {
4672 brelse(bitmap_bh); 4670 brelse(bitmap_bh);
4673 goto make_io; 4671 goto make_io;
4674 } 4672 }
4675 for (i = start; i < start + inodes_per_block; i++) { 4673 for (i = start; i < start + inodes_per_block; i++) {
4676 if (i == inode_offset) 4674 if (i == inode_offset)
4677 continue; 4675 continue;
4678 if (ext4_test_bit(i, bitmap_bh->b_data)) 4676 if (ext4_test_bit(i, bitmap_bh->b_data))
4679 break; 4677 break;
4680 } 4678 }
4681 brelse(bitmap_bh); 4679 brelse(bitmap_bh);
4682 if (i == start + inodes_per_block) { 4680 if (i == start + inodes_per_block) {
4683 /* all other inodes are free, so skip I/O */ 4681 /* all other inodes are free, so skip I/O */
4684 memset(bh->b_data, 0, bh->b_size); 4682 memset(bh->b_data, 0, bh->b_size);
4685 set_buffer_uptodate(bh); 4683 set_buffer_uptodate(bh);
4686 unlock_buffer(bh); 4684 unlock_buffer(bh);
4687 goto has_buffer; 4685 goto has_buffer;
4688 } 4686 }
4689 } 4687 }
4690 4688
4691 make_io: 4689 make_io:
4692 /* 4690 /*
4693 * If we need to do any I/O, try to pre-readahead extra 4691 * If we need to do any I/O, try to pre-readahead extra
4694 * blocks from the inode table. 4692 * blocks from the inode table.
4695 */ 4693 */
4696 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4694 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4697 ext4_fsblk_t b, end, table; 4695 ext4_fsblk_t b, end, table;
4698 unsigned num; 4696 unsigned num;
4699 4697
4700 table = ext4_inode_table(sb, gdp); 4698 table = ext4_inode_table(sb, gdp);
4701 /* s_inode_readahead_blks is always a power of 2 */ 4699 /* s_inode_readahead_blks is always a power of 2 */
4702 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); 4700 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4703 if (table > b) 4701 if (table > b)
4704 b = table; 4702 b = table;
4705 end = b + EXT4_SB(sb)->s_inode_readahead_blks; 4703 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4706 num = EXT4_INODES_PER_GROUP(sb); 4704 num = EXT4_INODES_PER_GROUP(sb);
4707 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4705 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4708 EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 4706 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4709 num -= ext4_itable_unused_count(sb, gdp); 4707 num -= ext4_itable_unused_count(sb, gdp);
4710 table += num / inodes_per_block; 4708 table += num / inodes_per_block;
4711 if (end > table) 4709 if (end > table)
4712 end = table; 4710 end = table;
4713 while (b <= end) 4711 while (b <= end)
4714 sb_breadahead(sb, b++); 4712 sb_breadahead(sb, b++);
4715 } 4713 }
4716 4714
4717 /* 4715 /*
4718 * There are other valid inodes in the buffer, this inode 4716 * There are other valid inodes in the buffer, this inode
4719 * has in-inode xattrs, or we don't have this inode in memory. 4717 * has in-inode xattrs, or we don't have this inode in memory.
4720 * Read the block from disk. 4718 * Read the block from disk.
4721 */ 4719 */
4722 trace_ext4_load_inode(inode); 4720 trace_ext4_load_inode(inode);
4723 get_bh(bh); 4721 get_bh(bh);
4724 bh->b_end_io = end_buffer_read_sync; 4722 bh->b_end_io = end_buffer_read_sync;
4725 submit_bh(READ_META, bh); 4723 submit_bh(READ_META, bh);
4726 wait_on_buffer(bh); 4724 wait_on_buffer(bh);
4727 if (!buffer_uptodate(bh)) { 4725 if (!buffer_uptodate(bh)) {
4728 EXT4_ERROR_INODE_BLOCK(inode, block, 4726 EXT4_ERROR_INODE_BLOCK(inode, block,
4729 "unable to read itable block"); 4727 "unable to read itable block");
4730 brelse(bh); 4728 brelse(bh);
4731 return -EIO; 4729 return -EIO;
4732 } 4730 }
4733 } 4731 }
4734 has_buffer: 4732 has_buffer:
4735 iloc->bh = bh; 4733 iloc->bh = bh;
4736 return 0; 4734 return 0;
4737 } 4735 }
4738 4736
4739 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4737 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4740 { 4738 {
4741 /* We have all inode data except xattrs in memory here. */ 4739 /* We have all inode data except xattrs in memory here. */
4742 return __ext4_get_inode_loc(inode, iloc, 4740 return __ext4_get_inode_loc(inode, iloc,
4743 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4741 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4744 } 4742 }
4745 4743
4746 void ext4_set_inode_flags(struct inode *inode) 4744 void ext4_set_inode_flags(struct inode *inode)
4747 { 4745 {
4748 unsigned int flags = EXT4_I(inode)->i_flags; 4746 unsigned int flags = EXT4_I(inode)->i_flags;
4749 4747
4750 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 4748 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4751 if (flags & EXT4_SYNC_FL) 4749 if (flags & EXT4_SYNC_FL)
4752 inode->i_flags |= S_SYNC; 4750 inode->i_flags |= S_SYNC;
4753 if (flags & EXT4_APPEND_FL) 4751 if (flags & EXT4_APPEND_FL)
4754 inode->i_flags |= S_APPEND; 4752 inode->i_flags |= S_APPEND;
4755 if (flags & EXT4_IMMUTABLE_FL) 4753 if (flags & EXT4_IMMUTABLE_FL)
4756 inode->i_flags |= S_IMMUTABLE; 4754 inode->i_flags |= S_IMMUTABLE;
4757 if (flags & EXT4_NOATIME_FL) 4755 if (flags & EXT4_NOATIME_FL)
4758 inode->i_flags |= S_NOATIME; 4756 inode->i_flags |= S_NOATIME;
4759 if (flags & EXT4_DIRSYNC_FL) 4757 if (flags & EXT4_DIRSYNC_FL)
4760 inode->i_flags |= S_DIRSYNC; 4758 inode->i_flags |= S_DIRSYNC;
4761 } 4759 }
4762 4760
4763 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4761 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4764 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4762 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4765 { 4763 {
4766 unsigned int vfs_fl; 4764 unsigned int vfs_fl;
4767 unsigned long old_fl, new_fl; 4765 unsigned long old_fl, new_fl;
4768 4766
4769 do { 4767 do {
4770 vfs_fl = ei->vfs_inode.i_flags; 4768 vfs_fl = ei->vfs_inode.i_flags;
4771 old_fl = ei->i_flags; 4769 old_fl = ei->i_flags;
4772 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4770 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4773 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4771 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4774 EXT4_DIRSYNC_FL); 4772 EXT4_DIRSYNC_FL);
4775 if (vfs_fl & S_SYNC) 4773 if (vfs_fl & S_SYNC)
4776 new_fl |= EXT4_SYNC_FL; 4774 new_fl |= EXT4_SYNC_FL;
4777 if (vfs_fl & S_APPEND) 4775 if (vfs_fl & S_APPEND)
4778 new_fl |= EXT4_APPEND_FL; 4776 new_fl |= EXT4_APPEND_FL;
4779 if (vfs_fl & S_IMMUTABLE) 4777 if (vfs_fl & S_IMMUTABLE)
4780 new_fl |= EXT4_IMMUTABLE_FL; 4778 new_fl |= EXT4_IMMUTABLE_FL;
4781 if (vfs_fl & S_NOATIME) 4779 if (vfs_fl & S_NOATIME)
4782 new_fl |= EXT4_NOATIME_FL; 4780 new_fl |= EXT4_NOATIME_FL;
4783 if (vfs_fl & S_DIRSYNC) 4781 if (vfs_fl & S_DIRSYNC)
4784 new_fl |= EXT4_DIRSYNC_FL; 4782 new_fl |= EXT4_DIRSYNC_FL;
4785 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4783 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4786 } 4784 }
4787 4785
4788 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4786 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4789 struct ext4_inode_info *ei) 4787 struct ext4_inode_info *ei)
4790 { 4788 {
4791 blkcnt_t i_blocks ; 4789 blkcnt_t i_blocks ;
4792 struct inode *inode = &(ei->vfs_inode); 4790 struct inode *inode = &(ei->vfs_inode);
4793 struct super_block *sb = inode->i_sb; 4791 struct super_block *sb = inode->i_sb;
4794 4792
4795 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4793 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4796 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4794 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4797 /* we are using combined 48 bit field */ 4795 /* we are using combined 48 bit field */
4798 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4796 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4799 le32_to_cpu(raw_inode->i_blocks_lo); 4797 le32_to_cpu(raw_inode->i_blocks_lo);
4800 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4798 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4801 /* i_blocks represent file system block size */ 4799 /* i_blocks represent file system block size */
4802 return i_blocks << (inode->i_blkbits - 9); 4800 return i_blocks << (inode->i_blkbits - 9);
4803 } else { 4801 } else {
4804 return i_blocks; 4802 return i_blocks;
4805 } 4803 }
4806 } else { 4804 } else {
4807 return le32_to_cpu(raw_inode->i_blocks_lo); 4805 return le32_to_cpu(raw_inode->i_blocks_lo);
4808 } 4806 }
4809 } 4807 }
4810 4808
4811 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4809 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4812 { 4810 {
4813 struct ext4_iloc iloc; 4811 struct ext4_iloc iloc;
4814 struct ext4_inode *raw_inode; 4812 struct ext4_inode *raw_inode;
4815 struct ext4_inode_info *ei; 4813 struct ext4_inode_info *ei;
4816 struct inode *inode; 4814 struct inode *inode;
4817 journal_t *journal = EXT4_SB(sb)->s_journal; 4815 journal_t *journal = EXT4_SB(sb)->s_journal;
4818 long ret; 4816 long ret;
4819 int block; 4817 int block;
4820 4818
4821 inode = iget_locked(sb, ino); 4819 inode = iget_locked(sb, ino);
4822 if (!inode) 4820 if (!inode)
4823 return ERR_PTR(-ENOMEM); 4821 return ERR_PTR(-ENOMEM);
4824 if (!(inode->i_state & I_NEW)) 4822 if (!(inode->i_state & I_NEW))
4825 return inode; 4823 return inode;
4826 4824
4827 ei = EXT4_I(inode); 4825 ei = EXT4_I(inode);
4828 iloc.bh = NULL; 4826 iloc.bh = NULL;
4829 4827
4830 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4828 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4831 if (ret < 0) 4829 if (ret < 0)
4832 goto bad_inode; 4830 goto bad_inode;
4833 raw_inode = ext4_raw_inode(&iloc); 4831 raw_inode = ext4_raw_inode(&iloc);
4834 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4832 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4835 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4833 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4836 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4834 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4837 if (!(test_opt(inode->i_sb, NO_UID32))) { 4835 if (!(test_opt(inode->i_sb, NO_UID32))) {
4838 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4836 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4839 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4837 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4840 } 4838 }
4841 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); 4839 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4842 4840
4843 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4841 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4844 ei->i_dir_start_lookup = 0; 4842 ei->i_dir_start_lookup = 0;
4845 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4843 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4846 /* We now have enough fields to check if the inode was active or not. 4844 /* We now have enough fields to check if the inode was active or not.
4847 * This is needed because nfsd might try to access dead inodes 4845 * This is needed because nfsd might try to access dead inodes
4848 * the test is that same one that e2fsck uses 4846 * the test is that same one that e2fsck uses
4849 * NeilBrown 1999oct15 4847 * NeilBrown 1999oct15
4850 */ 4848 */
4851 if (inode->i_nlink == 0) { 4849 if (inode->i_nlink == 0) {
4852 if (inode->i_mode == 0 || 4850 if (inode->i_mode == 0 ||
4853 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { 4851 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4854 /* this inode is deleted */ 4852 /* this inode is deleted */
4855 ret = -ESTALE; 4853 ret = -ESTALE;
4856 goto bad_inode; 4854 goto bad_inode;
4857 } 4855 }
4858 /* The only unlinked inodes we let through here have 4856 /* The only unlinked inodes we let through here have
4859 * valid i_mode and are being read by the orphan 4857 * valid i_mode and are being read by the orphan
4860 * recovery code: that's fine, we're about to complete 4858 * recovery code: that's fine, we're about to complete
4861 * the process of deleting those. */ 4859 * the process of deleting those. */
4862 } 4860 }
4863 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4861 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4864 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4862 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4865 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4863 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4866 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4864 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4867 ei->i_file_acl |= 4865 ei->i_file_acl |=
4868 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4866 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4869 inode->i_size = ext4_isize(raw_inode); 4867 inode->i_size = ext4_isize(raw_inode);
4870 ei->i_disksize = inode->i_size; 4868 ei->i_disksize = inode->i_size;
4871 #ifdef CONFIG_QUOTA 4869 #ifdef CONFIG_QUOTA
4872 ei->i_reserved_quota = 0; 4870 ei->i_reserved_quota = 0;
4873 #endif 4871 #endif
4874 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4872 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4875 ei->i_block_group = iloc.block_group; 4873 ei->i_block_group = iloc.block_group;
4876 ei->i_last_alloc_group = ~0; 4874 ei->i_last_alloc_group = ~0;
4877 /* 4875 /*
4878 * NOTE! The in-memory inode i_data array is in little-endian order 4876 * NOTE! The in-memory inode i_data array is in little-endian order
4879 * even on big-endian machines: we do NOT byteswap the block numbers! 4877 * even on big-endian machines: we do NOT byteswap the block numbers!
4880 */ 4878 */
4881 for (block = 0; block < EXT4_N_BLOCKS; block++) 4879 for (block = 0; block < EXT4_N_BLOCKS; block++)
4882 ei->i_data[block] = raw_inode->i_block[block]; 4880 ei->i_data[block] = raw_inode->i_block[block];
4883 INIT_LIST_HEAD(&ei->i_orphan); 4881 INIT_LIST_HEAD(&ei->i_orphan);
4884 4882
4885 /* 4883 /*
4886 * Set transaction id's of transactions that have to be committed 4884 * Set transaction id's of transactions that have to be committed
4887 * to finish f[data]sync. We set them to currently running transaction 4885 * to finish f[data]sync. We set them to currently running transaction
4888 * as we cannot be sure that the inode or some of its metadata isn't 4886 * as we cannot be sure that the inode or some of its metadata isn't
4889 * part of the transaction - the inode could have been reclaimed and 4887 * part of the transaction - the inode could have been reclaimed and
4890 * now it is reread from disk. 4888 * now it is reread from disk.
4891 */ 4889 */
4892 if (journal) { 4890 if (journal) {
4893 transaction_t *transaction; 4891 transaction_t *transaction;
4894 tid_t tid; 4892 tid_t tid;
4895 4893
4896 read_lock(&journal->j_state_lock); 4894 read_lock(&journal->j_state_lock);
4897 if (journal->j_running_transaction) 4895 if (journal->j_running_transaction)
4898 transaction = journal->j_running_transaction; 4896 transaction = journal->j_running_transaction;
4899 else 4897 else
4900 transaction = journal->j_committing_transaction; 4898 transaction = journal->j_committing_transaction;
4901 if (transaction) 4899 if (transaction)
4902 tid = transaction->t_tid; 4900 tid = transaction->t_tid;
4903 else 4901 else
4904 tid = journal->j_commit_sequence; 4902 tid = journal->j_commit_sequence;
4905 read_unlock(&journal->j_state_lock); 4903 read_unlock(&journal->j_state_lock);
4906 ei->i_sync_tid = tid; 4904 ei->i_sync_tid = tid;
4907 ei->i_datasync_tid = tid; 4905 ei->i_datasync_tid = tid;
4908 } 4906 }
4909 4907
4910 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4908 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4911 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4909 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4912 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4910 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4913 EXT4_INODE_SIZE(inode->i_sb)) { 4911 EXT4_INODE_SIZE(inode->i_sb)) {
4914 ret = -EIO; 4912 ret = -EIO;
4915 goto bad_inode; 4913 goto bad_inode;
4916 } 4914 }
4917 if (ei->i_extra_isize == 0) { 4915 if (ei->i_extra_isize == 0) {
4918 /* The extra space is currently unused. Use it. */ 4916 /* The extra space is currently unused. Use it. */
4919 ei->i_extra_isize = sizeof(struct ext4_inode) - 4917 ei->i_extra_isize = sizeof(struct ext4_inode) -
4920 EXT4_GOOD_OLD_INODE_SIZE; 4918 EXT4_GOOD_OLD_INODE_SIZE;
4921 } else { 4919 } else {
4922 __le32 *magic = (void *)raw_inode + 4920 __le32 *magic = (void *)raw_inode +
4923 EXT4_GOOD_OLD_INODE_SIZE + 4921 EXT4_GOOD_OLD_INODE_SIZE +
4924 ei->i_extra_isize; 4922 ei->i_extra_isize;
4925 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) 4923 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4926 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4924 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4927 } 4925 }
4928 } else 4926 } else
4929 ei->i_extra_isize = 0; 4927 ei->i_extra_isize = 0;
4930 4928
4931 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4929 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4932 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4930 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4933 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4931 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4934 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4932 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4935 4933
4936 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4934 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4937 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4935 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4938 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4936 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4939 inode->i_version |= 4937 inode->i_version |=
4940 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4938 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4941 } 4939 }
4942 4940
4943 ret = 0; 4941 ret = 0;
4944 if (ei->i_file_acl && 4942 if (ei->i_file_acl &&
4945 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4943 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4946 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4944 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4947 ei->i_file_acl); 4945 ei->i_file_acl);
4948 ret = -EIO; 4946 ret = -EIO;
4949 goto bad_inode; 4947 goto bad_inode;
4950 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4948 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4951 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4949 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4952 (S_ISLNK(inode->i_mode) && 4950 (S_ISLNK(inode->i_mode) &&
4953 !ext4_inode_is_fast_symlink(inode))) 4951 !ext4_inode_is_fast_symlink(inode)))
4954 /* Validate extent which is part of inode */ 4952 /* Validate extent which is part of inode */
4955 ret = ext4_ext_check_inode(inode); 4953 ret = ext4_ext_check_inode(inode);
4956 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4954 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4957 (S_ISLNK(inode->i_mode) && 4955 (S_ISLNK(inode->i_mode) &&
4958 !ext4_inode_is_fast_symlink(inode))) { 4956 !ext4_inode_is_fast_symlink(inode))) {
4959 /* Validate block references which are part of inode */ 4957 /* Validate block references which are part of inode */
4960 ret = ext4_check_inode_blockref(inode); 4958 ret = ext4_check_inode_blockref(inode);
4961 } 4959 }
4962 if (ret) 4960 if (ret)
4963 goto bad_inode; 4961 goto bad_inode;
4964 4962
4965 if (S_ISREG(inode->i_mode)) { 4963 if (S_ISREG(inode->i_mode)) {
4966 inode->i_op = &ext4_file_inode_operations; 4964 inode->i_op = &ext4_file_inode_operations;
4967 inode->i_fop = &ext4_file_operations; 4965 inode->i_fop = &ext4_file_operations;
4968 ext4_set_aops(inode); 4966 ext4_set_aops(inode);
4969 } else if (S_ISDIR(inode->i_mode)) { 4967 } else if (S_ISDIR(inode->i_mode)) {
4970 inode->i_op = &ext4_dir_inode_operations; 4968 inode->i_op = &ext4_dir_inode_operations;
4971 inode->i_fop = &ext4_dir_operations; 4969 inode->i_fop = &ext4_dir_operations;
4972 } else if (S_ISLNK(inode->i_mode)) { 4970 } else if (S_ISLNK(inode->i_mode)) {
4973 if (ext4_inode_is_fast_symlink(inode)) { 4971 if (ext4_inode_is_fast_symlink(inode)) {
4974 inode->i_op = &ext4_fast_symlink_inode_operations; 4972 inode->i_op = &ext4_fast_symlink_inode_operations;
4975 nd_terminate_link(ei->i_data, inode->i_size, 4973 nd_terminate_link(ei->i_data, inode->i_size,
4976 sizeof(ei->i_data) - 1); 4974 sizeof(ei->i_data) - 1);
4977 } else { 4975 } else {
4978 inode->i_op = &ext4_symlink_inode_operations; 4976 inode->i_op = &ext4_symlink_inode_operations;
4979 ext4_set_aops(inode); 4977 ext4_set_aops(inode);
4980 } 4978 }
4981 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4979 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4982 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4980 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4983 inode->i_op = &ext4_special_inode_operations; 4981 inode->i_op = &ext4_special_inode_operations;
4984 if (raw_inode->i_block[0]) 4982 if (raw_inode->i_block[0])
4985 init_special_inode(inode, inode->i_mode, 4983 init_special_inode(inode, inode->i_mode,
4986 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4984 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4987 else 4985 else
4988 init_special_inode(inode, inode->i_mode, 4986 init_special_inode(inode, inode->i_mode,
4989 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4987 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4990 } else { 4988 } else {
4991 ret = -EIO; 4989 ret = -EIO;
4992 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4990 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4993 goto bad_inode; 4991 goto bad_inode;
4994 } 4992 }
4995 brelse(iloc.bh); 4993 brelse(iloc.bh);
4996 ext4_set_inode_flags(inode); 4994 ext4_set_inode_flags(inode);
4997 unlock_new_inode(inode); 4995 unlock_new_inode(inode);
4998 return inode; 4996 return inode;
4999 4997
5000 bad_inode: 4998 bad_inode:
5001 brelse(iloc.bh); 4999 brelse(iloc.bh);
5002 iget_failed(inode); 5000 iget_failed(inode);
5003 return ERR_PTR(ret); 5001 return ERR_PTR(ret);
5004 } 5002 }
5005 5003
5006 static int ext4_inode_blocks_set(handle_t *handle, 5004 static int ext4_inode_blocks_set(handle_t *handle,
5007 struct ext4_inode *raw_inode, 5005 struct ext4_inode *raw_inode,
5008 struct ext4_inode_info *ei) 5006 struct ext4_inode_info *ei)
5009 { 5007 {
5010 struct inode *inode = &(ei->vfs_inode); 5008 struct inode *inode = &(ei->vfs_inode);
5011 u64 i_blocks = inode->i_blocks; 5009 u64 i_blocks = inode->i_blocks;
5012 struct super_block *sb = inode->i_sb; 5010 struct super_block *sb = inode->i_sb;
5013 5011
5014 if (i_blocks <= ~0U) { 5012 if (i_blocks <= ~0U) {
5015 /* 5013 /*
5016 * i_blocks can be represnted in a 32 bit variable 5014 * i_blocks can be represnted in a 32 bit variable
5017 * as multiple of 512 bytes 5015 * as multiple of 512 bytes
5018 */ 5016 */
5019 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5017 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5020 raw_inode->i_blocks_high = 0; 5018 raw_inode->i_blocks_high = 0;
5021 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5019 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5022 return 0; 5020 return 0;
5023 } 5021 }
5024 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 5022 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5025 return -EFBIG; 5023 return -EFBIG;
5026 5024
5027 if (i_blocks <= 0xffffffffffffULL) { 5025 if (i_blocks <= 0xffffffffffffULL) {
5028 /* 5026 /*
5029 * i_blocks can be represented in a 48 bit variable 5027 * i_blocks can be represented in a 48 bit variable
5030 * as multiple of 512 bytes 5028 * as multiple of 512 bytes
5031 */ 5029 */
5032 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5030 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5033 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5031 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5034 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5032 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5035 } else { 5033 } else {
5036 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 5034 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5037 /* i_block is stored in file system block size */ 5035 /* i_block is stored in file system block size */
5038 i_blocks = i_blocks >> (inode->i_blkbits - 9); 5036 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5039 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 5037 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5040 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 5038 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5041 } 5039 }
5042 return 0; 5040 return 0;
5043 } 5041 }
5044 5042
5045 /* 5043 /*
5046 * Post the struct inode info into an on-disk inode location in the 5044 * Post the struct inode info into an on-disk inode location in the
5047 * buffer-cache. This gobbles the caller's reference to the 5045 * buffer-cache. This gobbles the caller's reference to the
5048 * buffer_head in the inode location struct. 5046 * buffer_head in the inode location struct.
5049 * 5047 *
5050 * The caller must have write access to iloc->bh. 5048 * The caller must have write access to iloc->bh.
5051 */ 5049 */
5052 static int ext4_do_update_inode(handle_t *handle, 5050 static int ext4_do_update_inode(handle_t *handle,
5053 struct inode *inode, 5051 struct inode *inode,
5054 struct ext4_iloc *iloc) 5052 struct ext4_iloc *iloc)
5055 { 5053 {
5056 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5054 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5057 struct ext4_inode_info *ei = EXT4_I(inode); 5055 struct ext4_inode_info *ei = EXT4_I(inode);
5058 struct buffer_head *bh = iloc->bh; 5056 struct buffer_head *bh = iloc->bh;
5059 int err = 0, rc, block; 5057 int err = 0, rc, block;
5060 5058
5061 /* For fields not not tracking in the in-memory inode, 5059 /* For fields not not tracking in the in-memory inode,
5062 * initialise them to zero for new inodes. */ 5060 * initialise them to zero for new inodes. */
5063 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5061 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5064 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5062 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5065 5063
5066 ext4_get_inode_flags(ei); 5064 ext4_get_inode_flags(ei);
5067 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 5065 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5068 if (!(test_opt(inode->i_sb, NO_UID32))) { 5066 if (!(test_opt(inode->i_sb, NO_UID32))) {
5069 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); 5067 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5070 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); 5068 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5071 /* 5069 /*
5072 * Fix up interoperability with old kernels. Otherwise, old inodes get 5070 * Fix up interoperability with old kernels. Otherwise, old inodes get
5073 * re-used with the upper 16 bits of the uid/gid intact 5071 * re-used with the upper 16 bits of the uid/gid intact
5074 */ 5072 */
5075 if (!ei->i_dtime) { 5073 if (!ei->i_dtime) {
5076 raw_inode->i_uid_high = 5074 raw_inode->i_uid_high =
5077 cpu_to_le16(high_16_bits(inode->i_uid)); 5075 cpu_to_le16(high_16_bits(inode->i_uid));
5078 raw_inode->i_gid_high = 5076 raw_inode->i_gid_high =
5079 cpu_to_le16(high_16_bits(inode->i_gid)); 5077 cpu_to_le16(high_16_bits(inode->i_gid));
5080 } else { 5078 } else {
5081 raw_inode->i_uid_high = 0; 5079 raw_inode->i_uid_high = 0;
5082 raw_inode->i_gid_high = 0; 5080 raw_inode->i_gid_high = 0;
5083 } 5081 }
5084 } else { 5082 } else {
5085 raw_inode->i_uid_low = 5083 raw_inode->i_uid_low =
5086 cpu_to_le16(fs_high2lowuid(inode->i_uid)); 5084 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5087 raw_inode->i_gid_low = 5085 raw_inode->i_gid_low =
5088 cpu_to_le16(fs_high2lowgid(inode->i_gid)); 5086 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5089 raw_inode->i_uid_high = 0; 5087 raw_inode->i_uid_high = 0;
5090 raw_inode->i_gid_high = 0; 5088 raw_inode->i_gid_high = 0;
5091 } 5089 }
5092 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 5090 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5093 5091
5094 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5092 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5095 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5093 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5096 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5094 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5097 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 5095 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5098 5096
5099 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 5097 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5100 goto out_brelse; 5098 goto out_brelse;
5101 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 5099 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5102 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5100 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 5101 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5104 cpu_to_le32(EXT4_OS_HURD)) 5102 cpu_to_le32(EXT4_OS_HURD))
5105 raw_inode->i_file_acl_high = 5103 raw_inode->i_file_acl_high =
5106 cpu_to_le16(ei->i_file_acl >> 32); 5104 cpu_to_le16(ei->i_file_acl >> 32);
5107 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5105 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5108 ext4_isize_set(raw_inode, ei->i_disksize); 5106 ext4_isize_set(raw_inode, ei->i_disksize);
5109 if (ei->i_disksize > 0x7fffffffULL) { 5107 if (ei->i_disksize > 0x7fffffffULL) {
5110 struct super_block *sb = inode->i_sb; 5108 struct super_block *sb = inode->i_sb;
5111 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 5109 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5112 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 5110 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5113 EXT4_SB(sb)->s_es->s_rev_level == 5111 EXT4_SB(sb)->s_es->s_rev_level ==
5114 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 5112 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5115 /* If this is the first large file 5113 /* If this is the first large file
5116 * created, add a flag to the superblock. 5114 * created, add a flag to the superblock.
5117 */ 5115 */
5118 err = ext4_journal_get_write_access(handle, 5116 err = ext4_journal_get_write_access(handle,
5119 EXT4_SB(sb)->s_sbh); 5117 EXT4_SB(sb)->s_sbh);
5120 if (err) 5118 if (err)
5121 goto out_brelse; 5119 goto out_brelse;
5122 ext4_update_dynamic_rev(sb); 5120 ext4_update_dynamic_rev(sb);
5123 EXT4_SET_RO_COMPAT_FEATURE(sb, 5121 EXT4_SET_RO_COMPAT_FEATURE(sb,
5124 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 5122 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5125 sb->s_dirt = 1; 5123 sb->s_dirt = 1;
5126 ext4_handle_sync(handle); 5124 ext4_handle_sync(handle);
5127 err = ext4_handle_dirty_metadata(handle, NULL, 5125 err = ext4_handle_dirty_metadata(handle, NULL,
5128 EXT4_SB(sb)->s_sbh); 5126 EXT4_SB(sb)->s_sbh);
5129 } 5127 }
5130 } 5128 }
5131 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5129 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5132 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5130 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5133 if (old_valid_dev(inode->i_rdev)) { 5131 if (old_valid_dev(inode->i_rdev)) {
5134 raw_inode->i_block[0] = 5132 raw_inode->i_block[0] =
5135 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5133 cpu_to_le32(old_encode_dev(inode->i_rdev));
5136 raw_inode->i_block[1] = 0; 5134 raw_inode->i_block[1] = 0;
5137 } else { 5135 } else {
5138 raw_inode->i_block[0] = 0; 5136 raw_inode->i_block[0] = 0;
5139 raw_inode->i_block[1] = 5137 raw_inode->i_block[1] =
5140 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5138 cpu_to_le32(new_encode_dev(inode->i_rdev));
5141 raw_inode->i_block[2] = 0; 5139 raw_inode->i_block[2] = 0;
5142 } 5140 }
5143 } else 5141 } else
5144 for (block = 0; block < EXT4_N_BLOCKS; block++) 5142 for (block = 0; block < EXT4_N_BLOCKS; block++)
5145 raw_inode->i_block[block] = ei->i_data[block]; 5143 raw_inode->i_block[block] = ei->i_data[block];
5146 5144
5147 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 5145 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5148 if (ei->i_extra_isize) { 5146 if (ei->i_extra_isize) {
5149 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5147 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5150 raw_inode->i_version_hi = 5148 raw_inode->i_version_hi =
5151 cpu_to_le32(inode->i_version >> 32); 5149 cpu_to_le32(inode->i_version >> 32);
5152 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 5150 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5153 } 5151 }
5154 5152
5155 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5153 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5156 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5154 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5157 if (!err) 5155 if (!err)
5158 err = rc; 5156 err = rc;
5159 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5157 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5160 5158
5161 ext4_update_inode_fsync_trans(handle, inode, 0); 5159 ext4_update_inode_fsync_trans(handle, inode, 0);
5162 out_brelse: 5160 out_brelse:
5163 brelse(bh); 5161 brelse(bh);
5164 ext4_std_error(inode->i_sb, err); 5162 ext4_std_error(inode->i_sb, err);
5165 return err; 5163 return err;
5166 } 5164 }
5167 5165
5168 /* 5166 /*
5169 * ext4_write_inode() 5167 * ext4_write_inode()
5170 * 5168 *
5171 * We are called from a few places: 5169 * We are called from a few places:
5172 * 5170 *
5173 * - Within generic_file_write() for O_SYNC files. 5171 * - Within generic_file_write() for O_SYNC files.
5174 * Here, there will be no transaction running. We wait for any running 5172 * Here, there will be no transaction running. We wait for any running
5175 * trasnaction to commit. 5173 * trasnaction to commit.
5176 * 5174 *
5177 * - Within sys_sync(), kupdate and such. 5175 * - Within sys_sync(), kupdate and such.
5178 * We wait on commit, if tol to. 5176 * We wait on commit, if tol to.
5179 * 5177 *
5180 * - Within prune_icache() (PF_MEMALLOC == true) 5178 * - Within prune_icache() (PF_MEMALLOC == true)
5181 * Here we simply return. We can't afford to block kswapd on the 5179 * Here we simply return. We can't afford to block kswapd on the
5182 * journal commit. 5180 * journal commit.
5183 * 5181 *
5184 * In all cases it is actually safe for us to return without doing anything, 5182 * In all cases it is actually safe for us to return without doing anything,
5185 * because the inode has been copied into a raw inode buffer in 5183 * because the inode has been copied into a raw inode buffer in
5186 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 5184 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5187 * knfsd. 5185 * knfsd.
5188 * 5186 *
5189 * Note that we are absolutely dependent upon all inode dirtiers doing the 5187 * Note that we are absolutely dependent upon all inode dirtiers doing the
5190 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5188 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5191 * which we are interested. 5189 * which we are interested.
5192 * 5190 *
5193 * It would be a bug for them to not do this. The code: 5191 * It would be a bug for them to not do this. The code:
5194 * 5192 *
5195 * mark_inode_dirty(inode) 5193 * mark_inode_dirty(inode)
5196 * stuff(); 5194 * stuff();
5197 * inode->i_size = expr; 5195 * inode->i_size = expr;
5198 * 5196 *
5199 * is in error because a kswapd-driven write_inode() could occur while 5197 * is in error because a kswapd-driven write_inode() could occur while
5200 * `stuff()' is running, and the new i_size will be lost. Plus the inode 5198 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5201 * will no longer be on the superblock's dirty inode list. 5199 * will no longer be on the superblock's dirty inode list.
5202 */ 5200 */
5203 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5201 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5204 { 5202 {
5205 int err; 5203 int err;
5206 5204
5207 if (current->flags & PF_MEMALLOC) 5205 if (current->flags & PF_MEMALLOC)
5208 return 0; 5206 return 0;
5209 5207
5210 if (EXT4_SB(inode->i_sb)->s_journal) { 5208 if (EXT4_SB(inode->i_sb)->s_journal) {
5211 if (ext4_journal_current_handle()) { 5209 if (ext4_journal_current_handle()) {
5212 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5210 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5213 dump_stack(); 5211 dump_stack();
5214 return -EIO; 5212 return -EIO;
5215 } 5213 }
5216 5214
5217 if (wbc->sync_mode != WB_SYNC_ALL) 5215 if (wbc->sync_mode != WB_SYNC_ALL)
5218 return 0; 5216 return 0;
5219 5217
5220 err = ext4_force_commit(inode->i_sb); 5218 err = ext4_force_commit(inode->i_sb);
5221 } else { 5219 } else {
5222 struct ext4_iloc iloc; 5220 struct ext4_iloc iloc;
5223 5221
5224 err = __ext4_get_inode_loc(inode, &iloc, 0); 5222 err = __ext4_get_inode_loc(inode, &iloc, 0);
5225 if (err) 5223 if (err)
5226 return err; 5224 return err;
5227 if (wbc->sync_mode == WB_SYNC_ALL) 5225 if (wbc->sync_mode == WB_SYNC_ALL)
5228 sync_dirty_buffer(iloc.bh); 5226 sync_dirty_buffer(iloc.bh);
5229 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5227 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5230 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5228 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5231 "IO error syncing inode"); 5229 "IO error syncing inode");
5232 err = -EIO; 5230 err = -EIO;
5233 } 5231 }
5234 brelse(iloc.bh); 5232 brelse(iloc.bh);
5235 } 5233 }
5236 return err; 5234 return err;
5237 } 5235 }
5238 5236
5239 /* 5237 /*
5240 * ext4_setattr() 5238 * ext4_setattr()
5241 * 5239 *
5242 * Called from notify_change. 5240 * Called from notify_change.
5243 * 5241 *
5244 * We want to trap VFS attempts to truncate the file as soon as 5242 * We want to trap VFS attempts to truncate the file as soon as
5245 * possible. In particular, we want to make sure that when the VFS 5243 * possible. In particular, we want to make sure that when the VFS
5246 * shrinks i_size, we put the inode on the orphan list and modify 5244 * shrinks i_size, we put the inode on the orphan list and modify
5247 * i_disksize immediately, so that during the subsequent flushing of 5245 * i_disksize immediately, so that during the subsequent flushing of
5248 * dirty pages and freeing of disk blocks, we can guarantee that any 5246 * dirty pages and freeing of disk blocks, we can guarantee that any
5249 * commit will leave the blocks being flushed in an unused state on 5247 * commit will leave the blocks being flushed in an unused state on
5250 * disk. (On recovery, the inode will get truncated and the blocks will 5248 * disk. (On recovery, the inode will get truncated and the blocks will
5251 * be freed, so we have a strong guarantee that no future commit will 5249 * be freed, so we have a strong guarantee that no future commit will
5252 * leave these blocks visible to the user.) 5250 * leave these blocks visible to the user.)
5253 * 5251 *
5254 * Another thing we have to assure is that if we are in ordered mode 5252 * Another thing we have to assure is that if we are in ordered mode
5255 * and inode is still attached to the committing transaction, we must 5253 * and inode is still attached to the committing transaction, we must
5256 * we start writeout of all the dirty pages which are being truncated. 5254 * we start writeout of all the dirty pages which are being truncated.
5257 * This way we are sure that all the data written in the previous 5255 * This way we are sure that all the data written in the previous
5258 * transaction are already on disk (truncate waits for pages under 5256 * transaction are already on disk (truncate waits for pages under
5259 * writeback). 5257 * writeback).
5260 * 5258 *
5261 * Called with inode->i_mutex down. 5259 * Called with inode->i_mutex down.
5262 */ 5260 */
5263 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5261 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5264 { 5262 {
5265 struct inode *inode = dentry->d_inode; 5263 struct inode *inode = dentry->d_inode;
5266 int error, rc = 0; 5264 int error, rc = 0;
5267 int orphan = 0; 5265 int orphan = 0;
5268 const unsigned int ia_valid = attr->ia_valid; 5266 const unsigned int ia_valid = attr->ia_valid;
5269 5267
5270 error = inode_change_ok(inode, attr); 5268 error = inode_change_ok(inode, attr);
5271 if (error) 5269 if (error)
5272 return error; 5270 return error;
5273 5271
5274 if (is_quota_modification(inode, attr)) 5272 if (is_quota_modification(inode, attr))
5275 dquot_initialize(inode); 5273 dquot_initialize(inode);
5276 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 5274 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5277 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 5275 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5278 handle_t *handle; 5276 handle_t *handle;
5279 5277
5280 /* (user+group)*(old+new) structure, inode write (sb, 5278 /* (user+group)*(old+new) structure, inode write (sb,
5281 * inode block, ? - but truncate inode update has it) */ 5279 * inode block, ? - but truncate inode update has it) */
5282 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ 5280 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5283 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); 5281 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5284 if (IS_ERR(handle)) { 5282 if (IS_ERR(handle)) {
5285 error = PTR_ERR(handle); 5283 error = PTR_ERR(handle);
5286 goto err_out; 5284 goto err_out;
5287 } 5285 }
5288 error = dquot_transfer(inode, attr); 5286 error = dquot_transfer(inode, attr);
5289 if (error) { 5287 if (error) {
5290 ext4_journal_stop(handle); 5288 ext4_journal_stop(handle);
5291 return error; 5289 return error;
5292 } 5290 }
5293 /* Update corresponding info in inode so that everything is in 5291 /* Update corresponding info in inode so that everything is in
5294 * one transaction */ 5292 * one transaction */
5295 if (attr->ia_valid & ATTR_UID) 5293 if (attr->ia_valid & ATTR_UID)
5296 inode->i_uid = attr->ia_uid; 5294 inode->i_uid = attr->ia_uid;
5297 if (attr->ia_valid & ATTR_GID) 5295 if (attr->ia_valid & ATTR_GID)
5298 inode->i_gid = attr->ia_gid; 5296 inode->i_gid = attr->ia_gid;
5299 error = ext4_mark_inode_dirty(handle, inode); 5297 error = ext4_mark_inode_dirty(handle, inode);
5300 ext4_journal_stop(handle); 5298 ext4_journal_stop(handle);
5301 } 5299 }
5302 5300
5303 if (attr->ia_valid & ATTR_SIZE) { 5301 if (attr->ia_valid & ATTR_SIZE) {
5304 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5302 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5305 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5303 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5306 5304
5307 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5305 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5308 return -EFBIG; 5306 return -EFBIG;
5309 } 5307 }
5310 } 5308 }
5311 5309
5312 if (S_ISREG(inode->i_mode) && 5310 if (S_ISREG(inode->i_mode) &&
5313 attr->ia_valid & ATTR_SIZE && 5311 attr->ia_valid & ATTR_SIZE &&
5314 (attr->ia_size < inode->i_size || 5312 (attr->ia_size < inode->i_size ||
5315 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) { 5313 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5316 handle_t *handle; 5314 handle_t *handle;
5317 5315
5318 handle = ext4_journal_start(inode, 3); 5316 handle = ext4_journal_start(inode, 3);
5319 if (IS_ERR(handle)) { 5317 if (IS_ERR(handle)) {
5320 error = PTR_ERR(handle); 5318 error = PTR_ERR(handle);
5321 goto err_out; 5319 goto err_out;
5322 } 5320 }
5323 if (ext4_handle_valid(handle)) { 5321 if (ext4_handle_valid(handle)) {
5324 error = ext4_orphan_add(handle, inode); 5322 error = ext4_orphan_add(handle, inode);
5325 orphan = 1; 5323 orphan = 1;
5326 } 5324 }
5327 EXT4_I(inode)->i_disksize = attr->ia_size; 5325 EXT4_I(inode)->i_disksize = attr->ia_size;
5328 rc = ext4_mark_inode_dirty(handle, inode); 5326 rc = ext4_mark_inode_dirty(handle, inode);
5329 if (!error) 5327 if (!error)
5330 error = rc; 5328 error = rc;
5331 ext4_journal_stop(handle); 5329 ext4_journal_stop(handle);
5332 5330
5333 if (ext4_should_order_data(inode)) { 5331 if (ext4_should_order_data(inode)) {
5334 error = ext4_begin_ordered_truncate(inode, 5332 error = ext4_begin_ordered_truncate(inode,
5335 attr->ia_size); 5333 attr->ia_size);
5336 if (error) { 5334 if (error) {
5337 /* Do as much error cleanup as possible */ 5335 /* Do as much error cleanup as possible */
5338 handle = ext4_journal_start(inode, 3); 5336 handle = ext4_journal_start(inode, 3);
5339 if (IS_ERR(handle)) { 5337 if (IS_ERR(handle)) {
5340 ext4_orphan_del(NULL, inode); 5338 ext4_orphan_del(NULL, inode);
5341 goto err_out; 5339 goto err_out;
5342 } 5340 }
5343 ext4_orphan_del(handle, inode); 5341 ext4_orphan_del(handle, inode);
5344 orphan = 0; 5342 orphan = 0;
5345 ext4_journal_stop(handle); 5343 ext4_journal_stop(handle);
5346 goto err_out; 5344 goto err_out;
5347 } 5345 }
5348 } 5346 }
5349 /* ext4_truncate will clear the flag */ 5347 /* ext4_truncate will clear the flag */
5350 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))) 5348 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5351 ext4_truncate(inode); 5349 ext4_truncate(inode);
5352 } 5350 }
5353 5351
5354 if ((attr->ia_valid & ATTR_SIZE) && 5352 if ((attr->ia_valid & ATTR_SIZE) &&
5355 attr->ia_size != i_size_read(inode)) 5353 attr->ia_size != i_size_read(inode))
5356 rc = vmtruncate(inode, attr->ia_size); 5354 rc = vmtruncate(inode, attr->ia_size);
5357 5355
5358 if (!rc) { 5356 if (!rc) {
5359 setattr_copy(inode, attr); 5357 setattr_copy(inode, attr);
5360 mark_inode_dirty(inode); 5358 mark_inode_dirty(inode);
5361 } 5359 }
5362 5360
5363 /* 5361 /*
5364 * If the call to ext4_truncate failed to get a transaction handle at 5362 * If the call to ext4_truncate failed to get a transaction handle at
5365 * all, we need to clean up the in-core orphan list manually. 5363 * all, we need to clean up the in-core orphan list manually.
5366 */ 5364 */
5367 if (orphan && inode->i_nlink) 5365 if (orphan && inode->i_nlink)
5368 ext4_orphan_del(NULL, inode); 5366 ext4_orphan_del(NULL, inode);
5369 5367
5370 if (!rc && (ia_valid & ATTR_MODE)) 5368 if (!rc && (ia_valid & ATTR_MODE))
5371 rc = ext4_acl_chmod(inode); 5369 rc = ext4_acl_chmod(inode);
5372 5370
5373 err_out: 5371 err_out:
5374 ext4_std_error(inode->i_sb, error); 5372 ext4_std_error(inode->i_sb, error);
5375 if (!error) 5373 if (!error)
5376 error = rc; 5374 error = rc;
5377 return error; 5375 return error;
5378 } 5376 }
5379 5377
5380 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 5378 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5381 struct kstat *stat) 5379 struct kstat *stat)
5382 { 5380 {
5383 struct inode *inode; 5381 struct inode *inode;
5384 unsigned long delalloc_blocks; 5382 unsigned long delalloc_blocks;
5385 5383
5386 inode = dentry->d_inode; 5384 inode = dentry->d_inode;
5387 generic_fillattr(inode, stat); 5385 generic_fillattr(inode, stat);
5388 5386
5389 /* 5387 /*
5390 * We can't update i_blocks if the block allocation is delayed 5388 * We can't update i_blocks if the block allocation is delayed
5391 * otherwise in the case of system crash before the real block 5389 * otherwise in the case of system crash before the real block
5392 * allocation is done, we will have i_blocks inconsistent with 5390 * allocation is done, we will have i_blocks inconsistent with
5393 * on-disk file blocks. 5391 * on-disk file blocks.
5394 * We always keep i_blocks updated together with real 5392 * We always keep i_blocks updated together with real
5395 * allocation. But to not confuse with user, stat 5393 * allocation. But to not confuse with user, stat
5396 * will return the blocks that include the delayed allocation 5394 * will return the blocks that include the delayed allocation
5397 * blocks for this file. 5395 * blocks for this file.
5398 */ 5396 */
5399 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; 5397 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5400 5398
5401 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 5399 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5402 return 0; 5400 return 0;
5403 } 5401 }
5404 5402
5405 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks, 5403 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5406 int chunk) 5404 int chunk)
5407 { 5405 {
5408 int indirects; 5406 int indirects;
5409 5407
5410 /* if nrblocks are contiguous */ 5408 /* if nrblocks are contiguous */
5411 if (chunk) { 5409 if (chunk) {
5412 /* 5410 /*
5413 * With N contiguous data blocks, we need at most 5411 * With N contiguous data blocks, we need at most
5414 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks, 5412 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
5415 * 2 dindirect blocks, and 1 tindirect block 5413 * 2 dindirect blocks, and 1 tindirect block
5416 */ 5414 */
5417 return DIV_ROUND_UP(nrblocks, 5415 return DIV_ROUND_UP(nrblocks,
5418 EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4; 5416 EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
5419 } 5417 }
5420 /* 5418 /*
5421 * if nrblocks are not contiguous, worse case, each block touch 5419 * if nrblocks are not contiguous, worse case, each block touch
5422 * a indirect block, and each indirect block touch a double indirect 5420 * a indirect block, and each indirect block touch a double indirect
5423 * block, plus a triple indirect block 5421 * block, plus a triple indirect block
5424 */ 5422 */
5425 indirects = nrblocks * 2 + 1; 5423 indirects = nrblocks * 2 + 1;
5426 return indirects; 5424 return indirects;
5427 } 5425 }
5428 5426
5429 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5427 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5430 { 5428 {
5431 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5429 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5432 return ext4_indirect_trans_blocks(inode, nrblocks, chunk); 5430 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5433 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 5431 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5434 } 5432 }
5435 5433
5436 /* 5434 /*
5437 * Account for index blocks, block groups bitmaps and block group 5435 * Account for index blocks, block groups bitmaps and block group
5438 * descriptor blocks if modify datablocks and index blocks 5436 * descriptor blocks if modify datablocks and index blocks
5439 * worse case, the indexs blocks spread over different block groups 5437 * worse case, the indexs blocks spread over different block groups
5440 * 5438 *
5441 * If datablocks are discontiguous, they are possible to spread over 5439 * If datablocks are discontiguous, they are possible to spread over
5442 * different block groups too. If they are contiuguous, with flexbg, 5440 * different block groups too. If they are contiuguous, with flexbg,
5443 * they could still across block group boundary. 5441 * they could still across block group boundary.
5444 * 5442 *
5445 * Also account for superblock, inode, quota and xattr blocks 5443 * Also account for superblock, inode, quota and xattr blocks
5446 */ 5444 */
5447 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 5445 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5448 { 5446 {
5449 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5447 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5450 int gdpblocks; 5448 int gdpblocks;
5451 int idxblocks; 5449 int idxblocks;
5452 int ret = 0; 5450 int ret = 0;
5453 5451
5454 /* 5452 /*
5455 * How many index blocks need to touch to modify nrblocks? 5453 * How many index blocks need to touch to modify nrblocks?
5456 * The "Chunk" flag indicating whether the nrblocks is 5454 * The "Chunk" flag indicating whether the nrblocks is
5457 * physically contiguous on disk 5455 * physically contiguous on disk
5458 * 5456 *
5459 * For Direct IO and fallocate, they calls get_block to allocate 5457 * For Direct IO and fallocate, they calls get_block to allocate
5460 * one single extent at a time, so they could set the "Chunk" flag 5458 * one single extent at a time, so they could set the "Chunk" flag
5461 */ 5459 */
5462 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 5460 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5463 5461
5464 ret = idxblocks; 5462 ret = idxblocks;
5465 5463
5466 /* 5464 /*
5467 * Now let's see how many group bitmaps and group descriptors need 5465 * Now let's see how many group bitmaps and group descriptors need
5468 * to account 5466 * to account
5469 */ 5467 */
5470 groups = idxblocks; 5468 groups = idxblocks;
5471 if (chunk) 5469 if (chunk)
5472 groups += 1; 5470 groups += 1;
5473 else 5471 else
5474 groups += nrblocks; 5472 groups += nrblocks;
5475 5473
5476 gdpblocks = groups; 5474 gdpblocks = groups;
5477 if (groups > ngroups) 5475 if (groups > ngroups)
5478 groups = ngroups; 5476 groups = ngroups;
5479 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5477 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5480 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5478 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5481 5479
5482 /* bitmaps and block group descriptor blocks */ 5480 /* bitmaps and block group descriptor blocks */
5483 ret += groups + gdpblocks; 5481 ret += groups + gdpblocks;
5484 5482
5485 /* Blocks for super block, inode, quota and xattr blocks */ 5483 /* Blocks for super block, inode, quota and xattr blocks */
5486 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5484 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5487 5485
5488 return ret; 5486 return ret;
5489 } 5487 }
5490 5488
5491 /* 5489 /*
5492 * Calculate the total number of credits to reserve to fit 5490 * Calculate the total number of credits to reserve to fit
5493 * the modification of a single pages into a single transaction, 5491 * the modification of a single pages into a single transaction,
5494 * which may include multiple chunks of block allocations. 5492 * which may include multiple chunks of block allocations.
5495 * 5493 *
5496 * This could be called via ext4_write_begin() 5494 * This could be called via ext4_write_begin()
5497 * 5495 *
5498 * We need to consider the worse case, when 5496 * We need to consider the worse case, when
5499 * one new block per extent. 5497 * one new block per extent.
5500 */ 5498 */
5501 int ext4_writepage_trans_blocks(struct inode *inode) 5499 int ext4_writepage_trans_blocks(struct inode *inode)
5502 { 5500 {
5503 int bpp = ext4_journal_blocks_per_page(inode); 5501 int bpp = ext4_journal_blocks_per_page(inode);
5504 int ret; 5502 int ret;
5505 5503
5506 ret = ext4_meta_trans_blocks(inode, bpp, 0); 5504 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5507 5505
5508 /* Account for data blocks for journalled mode */ 5506 /* Account for data blocks for journalled mode */
5509 if (ext4_should_journal_data(inode)) 5507 if (ext4_should_journal_data(inode))
5510 ret += bpp; 5508 ret += bpp;
5511 return ret; 5509 return ret;
5512 } 5510 }
5513 5511
5514 /* 5512 /*
5515 * Calculate the journal credits for a chunk of data modification. 5513 * Calculate the journal credits for a chunk of data modification.
5516 * 5514 *
5517 * This is called from DIO, fallocate or whoever calling 5515 * This is called from DIO, fallocate or whoever calling
5518 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5516 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5519 * 5517 *
5520 * journal buffers for data blocks are not included here, as DIO 5518 * journal buffers for data blocks are not included here, as DIO
5521 * and fallocate do no need to journal data buffers. 5519 * and fallocate do no need to journal data buffers.
5522 */ 5520 */
5523 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5521 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5524 { 5522 {
5525 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5523 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5526 } 5524 }
5527 5525
5528 /* 5526 /*
5529 * The caller must have previously called ext4_reserve_inode_write(). 5527 * The caller must have previously called ext4_reserve_inode_write().
5530 * Give this, we know that the caller already has write access to iloc->bh. 5528 * Give this, we know that the caller already has write access to iloc->bh.
5531 */ 5529 */
5532 int ext4_mark_iloc_dirty(handle_t *handle, 5530 int ext4_mark_iloc_dirty(handle_t *handle,
5533 struct inode *inode, struct ext4_iloc *iloc) 5531 struct inode *inode, struct ext4_iloc *iloc)
5534 { 5532 {
5535 int err = 0; 5533 int err = 0;
5536 5534
5537 if (test_opt(inode->i_sb, I_VERSION)) 5535 if (test_opt(inode->i_sb, I_VERSION))
5538 inode_inc_iversion(inode); 5536 inode_inc_iversion(inode);
5539 5537
5540 /* the do_update_inode consumes one bh->b_count */ 5538 /* the do_update_inode consumes one bh->b_count */
5541 get_bh(iloc->bh); 5539 get_bh(iloc->bh);
5542 5540
5543 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5541 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5544 err = ext4_do_update_inode(handle, inode, iloc); 5542 err = ext4_do_update_inode(handle, inode, iloc);
5545 put_bh(iloc->bh); 5543 put_bh(iloc->bh);
5546 return err; 5544 return err;
5547 } 5545 }
5548 5546
5549 /* 5547 /*
5550 * On success, We end up with an outstanding reference count against 5548 * On success, We end up with an outstanding reference count against
5551 * iloc->bh. This _must_ be cleaned up later. 5549 * iloc->bh. This _must_ be cleaned up later.
5552 */ 5550 */
5553 5551
5554 int 5552 int
5555 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5553 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5556 struct ext4_iloc *iloc) 5554 struct ext4_iloc *iloc)
5557 { 5555 {
5558 int err; 5556 int err;
5559 5557
5560 err = ext4_get_inode_loc(inode, iloc); 5558 err = ext4_get_inode_loc(inode, iloc);
5561 if (!err) { 5559 if (!err) {
5562 BUFFER_TRACE(iloc->bh, "get_write_access"); 5560 BUFFER_TRACE(iloc->bh, "get_write_access");
5563 err = ext4_journal_get_write_access(handle, iloc->bh); 5561 err = ext4_journal_get_write_access(handle, iloc->bh);
5564 if (err) { 5562 if (err) {
5565 brelse(iloc->bh); 5563 brelse(iloc->bh);
5566 iloc->bh = NULL; 5564 iloc->bh = NULL;
5567 } 5565 }
5568 } 5566 }
5569 ext4_std_error(inode->i_sb, err); 5567 ext4_std_error(inode->i_sb, err);
5570 return err; 5568 return err;
5571 } 5569 }
5572 5570
5573 /* 5571 /*
5574 * Expand an inode by new_extra_isize bytes. 5572 * Expand an inode by new_extra_isize bytes.
5575 * Returns 0 on success or negative error number on failure. 5573 * Returns 0 on success or negative error number on failure.
5576 */ 5574 */
5577 static int ext4_expand_extra_isize(struct inode *inode, 5575 static int ext4_expand_extra_isize(struct inode *inode,
5578 unsigned int new_extra_isize, 5576 unsigned int new_extra_isize,
5579 struct ext4_iloc iloc, 5577 struct ext4_iloc iloc,
5580 handle_t *handle) 5578 handle_t *handle)
5581 { 5579 {
5582 struct ext4_inode *raw_inode; 5580 struct ext4_inode *raw_inode;
5583 struct ext4_xattr_ibody_header *header; 5581 struct ext4_xattr_ibody_header *header;
5584 5582
5585 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5583 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5586 return 0; 5584 return 0;
5587 5585
5588 raw_inode = ext4_raw_inode(&iloc); 5586 raw_inode = ext4_raw_inode(&iloc);
5589 5587
5590 header = IHDR(inode, raw_inode); 5588 header = IHDR(inode, raw_inode);
5591 5589
5592 /* No extended attributes present */ 5590 /* No extended attributes present */
5593 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5591 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5594 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5592 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5595 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5593 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5596 new_extra_isize); 5594 new_extra_isize);
5597 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5595 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5598 return 0; 5596 return 0;
5599 } 5597 }
5600 5598
5601 /* try to expand with EAs present */ 5599 /* try to expand with EAs present */
5602 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5600 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5603 raw_inode, handle); 5601 raw_inode, handle);
5604 } 5602 }
5605 5603
5606 /* 5604 /*
5607 * What we do here is to mark the in-core inode as clean with respect to inode 5605 * What we do here is to mark the in-core inode as clean with respect to inode
5608 * dirtiness (it may still be data-dirty). 5606 * dirtiness (it may still be data-dirty).
5609 * This means that the in-core inode may be reaped by prune_icache 5607 * This means that the in-core inode may be reaped by prune_icache
5610 * without having to perform any I/O. This is a very good thing, 5608 * without having to perform any I/O. This is a very good thing,
5611 * because *any* task may call prune_icache - even ones which 5609 * because *any* task may call prune_icache - even ones which
5612 * have a transaction open against a different journal. 5610 * have a transaction open against a different journal.
5613 * 5611 *
5614 * Is this cheating? Not really. Sure, we haven't written the 5612 * Is this cheating? Not really. Sure, we haven't written the
5615 * inode out, but prune_icache isn't a user-visible syncing function. 5613 * inode out, but prune_icache isn't a user-visible syncing function.
5616 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5614 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5617 * we start and wait on commits. 5615 * we start and wait on commits.
5618 * 5616 *
5619 * Is this efficient/effective? Well, we're being nice to the system 5617 * Is this efficient/effective? Well, we're being nice to the system
5620 * by cleaning up our inodes proactively so they can be reaped 5618 * by cleaning up our inodes proactively so they can be reaped
5621 * without I/O. But we are potentially leaving up to five seconds' 5619 * without I/O. But we are potentially leaving up to five seconds'
5622 * worth of inodes floating about which prune_icache wants us to 5620 * worth of inodes floating about which prune_icache wants us to
5623 * write out. One way to fix that would be to get prune_icache() 5621 * write out. One way to fix that would be to get prune_icache()
5624 * to do a write_super() to free up some memory. It has the desired 5622 * to do a write_super() to free up some memory. It has the desired
5625 * effect. 5623 * effect.
5626 */ 5624 */
5627 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5625 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5628 { 5626 {
5629 struct ext4_iloc iloc; 5627 struct ext4_iloc iloc;
5630 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5628 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5631 static unsigned int mnt_count; 5629 static unsigned int mnt_count;
5632 int err, ret; 5630 int err, ret;
5633 5631
5634 might_sleep(); 5632 might_sleep();
5635 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5633 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5636 err = ext4_reserve_inode_write(handle, inode, &iloc); 5634 err = ext4_reserve_inode_write(handle, inode, &iloc);
5637 if (ext4_handle_valid(handle) && 5635 if (ext4_handle_valid(handle) &&
5638 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5636 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5639 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5637 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5640 /* 5638 /*
5641 * We need extra buffer credits since we may write into EA block 5639 * We need extra buffer credits since we may write into EA block
5642 * with this same handle. If journal_extend fails, then it will 5640 * with this same handle. If journal_extend fails, then it will
5643 * only result in a minor loss of functionality for that inode. 5641 * only result in a minor loss of functionality for that inode.
5644 * If this is felt to be critical, then e2fsck should be run to 5642 * If this is felt to be critical, then e2fsck should be run to
5645 * force a large enough s_min_extra_isize. 5643 * force a large enough s_min_extra_isize.
5646 */ 5644 */
5647 if ((jbd2_journal_extend(handle, 5645 if ((jbd2_journal_extend(handle,
5648 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5646 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5649 ret = ext4_expand_extra_isize(inode, 5647 ret = ext4_expand_extra_isize(inode,
5650 sbi->s_want_extra_isize, 5648 sbi->s_want_extra_isize,
5651 iloc, handle); 5649 iloc, handle);
5652 if (ret) { 5650 if (ret) {
5653 ext4_set_inode_state(inode, 5651 ext4_set_inode_state(inode,
5654 EXT4_STATE_NO_EXPAND); 5652 EXT4_STATE_NO_EXPAND);
5655 if (mnt_count != 5653 if (mnt_count !=
5656 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5654 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5657 ext4_warning(inode->i_sb, 5655 ext4_warning(inode->i_sb,
5658 "Unable to expand inode %lu. Delete" 5656 "Unable to expand inode %lu. Delete"
5659 " some EAs or run e2fsck.", 5657 " some EAs or run e2fsck.",
5660 inode->i_ino); 5658 inode->i_ino);
5661 mnt_count = 5659 mnt_count =
5662 le16_to_cpu(sbi->s_es->s_mnt_count); 5660 le16_to_cpu(sbi->s_es->s_mnt_count);
5663 } 5661 }
5664 } 5662 }
5665 } 5663 }
5666 } 5664 }
5667 if (!err) 5665 if (!err)
5668 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5666 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5669 return err; 5667 return err;
5670 } 5668 }
5671 5669
5672 /* 5670 /*
5673 * ext4_dirty_inode() is called from __mark_inode_dirty() 5671 * ext4_dirty_inode() is called from __mark_inode_dirty()
5674 * 5672 *
5675 * We're really interested in the case where a file is being extended. 5673 * We're really interested in the case where a file is being extended.
5676 * i_size has been changed by generic_commit_write() and we thus need 5674 * i_size has been changed by generic_commit_write() and we thus need
5677 * to include the updated inode in the current transaction. 5675 * to include the updated inode in the current transaction.
5678 * 5676 *
5679 * Also, dquot_alloc_block() will always dirty the inode when blocks 5677 * Also, dquot_alloc_block() will always dirty the inode when blocks
5680 * are allocated to the file. 5678 * are allocated to the file.
5681 * 5679 *
5682 * If the inode is marked synchronous, we don't honour that here - doing 5680 * If the inode is marked synchronous, we don't honour that here - doing
5683 * so would cause a commit on atime updates, which we don't bother doing. 5681 * so would cause a commit on atime updates, which we don't bother doing.
5684 * We handle synchronous inodes at the highest possible level. 5682 * We handle synchronous inodes at the highest possible level.
5685 */ 5683 */
5686 void ext4_dirty_inode(struct inode *inode) 5684 void ext4_dirty_inode(struct inode *inode)
5687 { 5685 {
5688 handle_t *handle; 5686 handle_t *handle;
5689 5687
5690 handle = ext4_journal_start(inode, 2); 5688 handle = ext4_journal_start(inode, 2);
5691 if (IS_ERR(handle)) 5689 if (IS_ERR(handle))
5692 goto out; 5690 goto out;
5693 5691
5694 ext4_mark_inode_dirty(handle, inode); 5692 ext4_mark_inode_dirty(handle, inode);
5695 5693
5696 ext4_journal_stop(handle); 5694 ext4_journal_stop(handle);
5697 out: 5695 out:
5698 return; 5696 return;
5699 } 5697 }
5700 5698
5701 #if 0 5699 #if 0
5702 /* 5700 /*
5703 * Bind an inode's backing buffer_head into this transaction, to prevent 5701 * Bind an inode's backing buffer_head into this transaction, to prevent
5704 * it from being flushed to disk early. Unlike 5702 * it from being flushed to disk early. Unlike
5705 * ext4_reserve_inode_write, this leaves behind no bh reference and 5703 * ext4_reserve_inode_write, this leaves behind no bh reference and
5706 * returns no iloc structure, so the caller needs to repeat the iloc 5704 * returns no iloc structure, so the caller needs to repeat the iloc
5707 * lookup to mark the inode dirty later. 5705 * lookup to mark the inode dirty later.
5708 */ 5706 */
5709 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5707 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5710 { 5708 {
5711 struct ext4_iloc iloc; 5709 struct ext4_iloc iloc;
5712 5710
5713 int err = 0; 5711 int err = 0;
5714 if (handle) { 5712 if (handle) {
5715 err = ext4_get_inode_loc(inode, &iloc); 5713 err = ext4_get_inode_loc(inode, &iloc);
5716 if (!err) { 5714 if (!err) {
5717 BUFFER_TRACE(iloc.bh, "get_write_access"); 5715 BUFFER_TRACE(iloc.bh, "get_write_access");
5718 err = jbd2_journal_get_write_access(handle, iloc.bh); 5716 err = jbd2_journal_get_write_access(handle, iloc.bh);
5719 if (!err) 5717 if (!err)
5720 err = ext4_handle_dirty_metadata(handle, 5718 err = ext4_handle_dirty_metadata(handle,
5721 NULL, 5719 NULL,
5722 iloc.bh); 5720 iloc.bh);
5723 brelse(iloc.bh); 5721 brelse(iloc.bh);
5724 } 5722 }
5725 } 5723 }
5726 ext4_std_error(inode->i_sb, err); 5724 ext4_std_error(inode->i_sb, err);
5727 return err; 5725 return err;
5728 } 5726 }
5729 #endif 5727 #endif
5730 5728
5731 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5729 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5732 { 5730 {
5733 journal_t *journal; 5731 journal_t *journal;
5734 handle_t *handle; 5732 handle_t *handle;
5735 int err; 5733 int err;
5736 5734
5737 /* 5735 /*
5738 * We have to be very careful here: changing a data block's 5736 * We have to be very careful here: changing a data block's
5739 * journaling status dynamically is dangerous. If we write a 5737 * journaling status dynamically is dangerous. If we write a
5740 * data block to the journal, change the status and then delete 5738 * data block to the journal, change the status and then delete
5741 * that block, we risk forgetting to revoke the old log record 5739 * that block, we risk forgetting to revoke the old log record
5742 * from the journal and so a subsequent replay can corrupt data. 5740 * from the journal and so a subsequent replay can corrupt data.
5743 * So, first we make sure that the journal is empty and that 5741 * So, first we make sure that the journal is empty and that
5744 * nobody is changing anything. 5742 * nobody is changing anything.
5745 */ 5743 */
5746 5744
5747 journal = EXT4_JOURNAL(inode); 5745 journal = EXT4_JOURNAL(inode);
5748 if (!journal) 5746 if (!journal)
5749 return 0; 5747 return 0;
5750 if (is_journal_aborted(journal)) 5748 if (is_journal_aborted(journal))
5751 return -EROFS; 5749 return -EROFS;
5752 5750
5753 jbd2_journal_lock_updates(journal); 5751 jbd2_journal_lock_updates(journal);
5754 jbd2_journal_flush(journal); 5752 jbd2_journal_flush(journal);
5755 5753
5756 /* 5754 /*
5757 * OK, there are no updates running now, and all cached data is 5755 * OK, there are no updates running now, and all cached data is
5758 * synced to disk. We are now in a completely consistent state 5756 * synced to disk. We are now in a completely consistent state
5759 * which doesn't have anything in the journal, and we know that 5757 * which doesn't have anything in the journal, and we know that
5760 * no filesystem updates are running, so it is safe to modify 5758 * no filesystem updates are running, so it is safe to modify
5761 * the inode's in-core data-journaling state flag now. 5759 * the inode's in-core data-journaling state flag now.
5762 */ 5760 */
5763 5761
5764 if (val) 5762 if (val)
5765 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5763 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5766 else 5764 else
5767 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5765 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5768 ext4_set_aops(inode); 5766 ext4_set_aops(inode);
5769 5767
5770 jbd2_journal_unlock_updates(journal); 5768 jbd2_journal_unlock_updates(journal);
5771 5769
5772 /* Finally we can mark the inode as dirty. */ 5770 /* Finally we can mark the inode as dirty. */
5773 5771
5774 handle = ext4_journal_start(inode, 1); 5772 handle = ext4_journal_start(inode, 1);
5775 if (IS_ERR(handle)) 5773 if (IS_ERR(handle))
5776 return PTR_ERR(handle); 5774 return PTR_ERR(handle);
5777 5775
5778 err = ext4_mark_inode_dirty(handle, inode); 5776 err = ext4_mark_inode_dirty(handle, inode);
5779 ext4_handle_sync(handle); 5777 ext4_handle_sync(handle);
5780 ext4_journal_stop(handle); 5778 ext4_journal_stop(handle);
5781 ext4_std_error(inode->i_sb, err); 5779 ext4_std_error(inode->i_sb, err);
5782 5780
5783 return err; 5781 return err;
5784 } 5782 }
5785 5783
5786 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5784 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5787 { 5785 {
5788 return !buffer_mapped(bh); 5786 return !buffer_mapped(bh);
5789 } 5787 }
5790 5788
5791 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5789 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5792 { 5790 {
5793 struct page *page = vmf->page; 5791 struct page *page = vmf->page;
5794 loff_t size; 5792 loff_t size;
5795 unsigned long len; 5793 unsigned long len;
5796 int ret = -EINVAL; 5794 int ret = -EINVAL;
5797 void *fsdata; 5795 void *fsdata;
5798 struct file *file = vma->vm_file; 5796 struct file *file = vma->vm_file;
5799 struct inode *inode = file->f_path.dentry->d_inode; 5797 struct inode *inode = file->f_path.dentry->d_inode;
5800 struct address_space *mapping = inode->i_mapping; 5798 struct address_space *mapping = inode->i_mapping;
5801 5799
5802 /* 5800 /*
5803 * Get i_alloc_sem to stop truncates messing with the inode. We cannot 5801 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5804 * get i_mutex because we are already holding mmap_sem. 5802 * get i_mutex because we are already holding mmap_sem.
5805 */ 5803 */
5806 down_read(&inode->i_alloc_sem); 5804 down_read(&inode->i_alloc_sem);
5807 size = i_size_read(inode); 5805 size = i_size_read(inode);
5808 if (page->mapping != mapping || size <= page_offset(page) 5806 if (page->mapping != mapping || size <= page_offset(page)
5809 || !PageUptodate(page)) { 5807 || !PageUptodate(page)) {
5810 /* page got truncated from under us? */ 5808 /* page got truncated from under us? */
5811 goto out_unlock; 5809 goto out_unlock;
5812 } 5810 }
5813 ret = 0; 5811 ret = 0;
5814 if (PageMappedToDisk(page)) 5812 if (PageMappedToDisk(page))
5815 goto out_unlock; 5813 goto out_unlock;
5816 5814
5817 if (page->index == size >> PAGE_CACHE_SHIFT) 5815 if (page->index == size >> PAGE_CACHE_SHIFT)
5818 len = size & ~PAGE_CACHE_MASK; 5816 len = size & ~PAGE_CACHE_MASK;
5819 else 5817 else
5820 len = PAGE_CACHE_SIZE; 5818 len = PAGE_CACHE_SIZE;
5821 5819
5822 lock_page(page); 5820 lock_page(page);
5823 /* 5821 /*
5824 * return if we have all the buffers mapped. This avoid 5822 * return if we have all the buffers mapped. This avoid
5825 * the need to call write_begin/write_end which does a 5823 * the need to call write_begin/write_end which does a
5826 * journal_start/journal_stop which can block and take 5824 * journal_start/journal_stop which can block and take
5827 * long time 5825 * long time
5828 */ 5826 */
5829 if (page_has_buffers(page)) { 5827 if (page_has_buffers(page)) {
5830 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, 5828 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5831 ext4_bh_unmapped)) { 5829 ext4_bh_unmapped)) {
5832 unlock_page(page); 5830 unlock_page(page);
5833 goto out_unlock; 5831 goto out_unlock;
5834 } 5832 }
5835 } 5833 }
5836 unlock_page(page); 5834 unlock_page(page);
5837 /* 5835 /*
5838 * OK, we need to fill the hole... Do write_begin write_end 5836 * OK, we need to fill the hole... Do write_begin write_end
5839 * to do block allocation/reservation.We are not holding 5837 * to do block allocation/reservation.We are not holding
5840 * inode.i__mutex here. That allow * parallel write_begin, 5838 * inode.i__mutex here. That allow * parallel write_begin,
5841 * write_end call. lock_page prevent this from happening 5839 * write_end call. lock_page prevent this from happening
5842 * on the same page though 5840 * on the same page though
5843 */ 5841 */
5844 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page), 5842 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5845 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 5843 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5846 if (ret < 0) 5844 if (ret < 0)
5847 goto out_unlock; 5845 goto out_unlock;
5848 ret = mapping->a_ops->write_end(file, mapping, page_offset(page), 5846 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5849 len, len, page, fsdata); 5847 len, len, page, fsdata);
5850 if (ret < 0) 5848 if (ret < 0)
5851 goto out_unlock; 5849 goto out_unlock;
5852 ret = 0; 5850 ret = 0;
5853 out_unlock: 5851 out_unlock:
5854 if (ret) 5852 if (ret)
5855 ret = VM_FAULT_SIGBUS; 5853 ret = VM_FAULT_SIGBUS;
5856 up_read(&inode->i_alloc_sem); 5854 up_read(&inode->i_alloc_sem);
5857 return ret; 5855 return ret;
5858 } 5856 }
5859 5857
fs/ext4/move_extent.c
1 /* 1 /*
2 * Copyright (c) 2008,2009 NEC Software Tohoku, Ltd. 2 * Copyright (c) 2008,2009 NEC Software Tohoku, Ltd.
3 * Written by Takashi Sato <t-sato@yk.jp.nec.com> 3 * Written by Takashi Sato <t-sato@yk.jp.nec.com>
4 * Akira Fujita <a-fujita@rs.jp.nec.com> 4 * Akira Fujita <a-fujita@rs.jp.nec.com>
5 * 5 *
6 * This program is free software; you can redistribute it and/or modify it 6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of version 2.1 of the GNU Lesser General Public License 7 * under the terms of version 2.1 of the GNU Lesser General Public License
8 * as published by the Free Software Foundation. 8 * as published by the Free Software Foundation.
9 * 9 *
10 * This program is distributed in the hope that it will be useful, 10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details. 13 * GNU General Public License for more details.
14 */ 14 */
15 15
16 #include <linux/fs.h> 16 #include <linux/fs.h>
17 #include <linux/quotaops.h> 17 #include <linux/quotaops.h>
18 #include <linux/slab.h> 18 #include <linux/slab.h>
19 #include "ext4_jbd2.h" 19 #include "ext4_jbd2.h"
20 #include "ext4_extents.h" 20 #include "ext4_extents.h"
21 #include "ext4.h" 21 #include "ext4.h"
22 22
23 /** 23 /**
24 * get_ext_path - Find an extent path for designated logical block number. 24 * get_ext_path - Find an extent path for designated logical block number.
25 * 25 *
26 * @inode: an inode which is searched 26 * @inode: an inode which is searched
27 * @lblock: logical block number to find an extent path 27 * @lblock: logical block number to find an extent path
28 * @path: pointer to an extent path pointer (for output) 28 * @path: pointer to an extent path pointer (for output)
29 * 29 *
30 * ext4_ext_find_extent wrapper. Return 0 on success, or a negative error value 30 * ext4_ext_find_extent wrapper. Return 0 on success, or a negative error value
31 * on failure. 31 * on failure.
32 */ 32 */
33 static inline int 33 static inline int
34 get_ext_path(struct inode *inode, ext4_lblk_t lblock, 34 get_ext_path(struct inode *inode, ext4_lblk_t lblock,
35 struct ext4_ext_path **path) 35 struct ext4_ext_path **path)
36 { 36 {
37 int ret = 0; 37 int ret = 0;
38 38
39 *path = ext4_ext_find_extent(inode, lblock, *path); 39 *path = ext4_ext_find_extent(inode, lblock, *path);
40 if (IS_ERR(*path)) { 40 if (IS_ERR(*path)) {
41 ret = PTR_ERR(*path); 41 ret = PTR_ERR(*path);
42 *path = NULL; 42 *path = NULL;
43 } else if ((*path)[ext_depth(inode)].p_ext == NULL) 43 } else if ((*path)[ext_depth(inode)].p_ext == NULL)
44 ret = -ENODATA; 44 ret = -ENODATA;
45 45
46 return ret; 46 return ret;
47 } 47 }
48 48
49 /** 49 /**
50 * copy_extent_status - Copy the extent's initialization status 50 * copy_extent_status - Copy the extent's initialization status
51 * 51 *
52 * @src: an extent for getting initialize status 52 * @src: an extent for getting initialize status
53 * @dest: an extent to be set the status 53 * @dest: an extent to be set the status
54 */ 54 */
55 static void 55 static void
56 copy_extent_status(struct ext4_extent *src, struct ext4_extent *dest) 56 copy_extent_status(struct ext4_extent *src, struct ext4_extent *dest)
57 { 57 {
58 if (ext4_ext_is_uninitialized(src)) 58 if (ext4_ext_is_uninitialized(src))
59 ext4_ext_mark_uninitialized(dest); 59 ext4_ext_mark_uninitialized(dest);
60 else 60 else
61 dest->ee_len = cpu_to_le16(ext4_ext_get_actual_len(dest)); 61 dest->ee_len = cpu_to_le16(ext4_ext_get_actual_len(dest));
62 } 62 }
63 63
64 /** 64 /**
65 * mext_next_extent - Search for the next extent and set it to "extent" 65 * mext_next_extent - Search for the next extent and set it to "extent"
66 * 66 *
67 * @inode: inode which is searched 67 * @inode: inode which is searched
68 * @path: this will obtain data for the next extent 68 * @path: this will obtain data for the next extent
69 * @extent: pointer to the next extent we have just gotten 69 * @extent: pointer to the next extent we have just gotten
70 * 70 *
71 * Search the next extent in the array of ext4_ext_path structure (@path) 71 * Search the next extent in the array of ext4_ext_path structure (@path)
72 * and set it to ext4_extent structure (@extent). In addition, the member of 72 * and set it to ext4_extent structure (@extent). In addition, the member of
73 * @path (->p_ext) also points the next extent. Return 0 on success, 1 if 73 * @path (->p_ext) also points the next extent. Return 0 on success, 1 if
74 * ext4_ext_path structure refers to the last extent, or a negative error 74 * ext4_ext_path structure refers to the last extent, or a negative error
75 * value on failure. 75 * value on failure.
76 */ 76 */
77 static int 77 static int
78 mext_next_extent(struct inode *inode, struct ext4_ext_path *path, 78 mext_next_extent(struct inode *inode, struct ext4_ext_path *path,
79 struct ext4_extent **extent) 79 struct ext4_extent **extent)
80 { 80 {
81 struct ext4_extent_header *eh; 81 struct ext4_extent_header *eh;
82 int ppos, leaf_ppos = path->p_depth; 82 int ppos, leaf_ppos = path->p_depth;
83 83
84 ppos = leaf_ppos; 84 ppos = leaf_ppos;
85 if (EXT_LAST_EXTENT(path[ppos].p_hdr) > path[ppos].p_ext) { 85 if (EXT_LAST_EXTENT(path[ppos].p_hdr) > path[ppos].p_ext) {
86 /* leaf block */ 86 /* leaf block */
87 *extent = ++path[ppos].p_ext; 87 *extent = ++path[ppos].p_ext;
88 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); 88 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
89 return 0; 89 return 0;
90 } 90 }
91 91
92 while (--ppos >= 0) { 92 while (--ppos >= 0) {
93 if (EXT_LAST_INDEX(path[ppos].p_hdr) > 93 if (EXT_LAST_INDEX(path[ppos].p_hdr) >
94 path[ppos].p_idx) { 94 path[ppos].p_idx) {
95 int cur_ppos = ppos; 95 int cur_ppos = ppos;
96 96
97 /* index block */ 97 /* index block */
98 path[ppos].p_idx++; 98 path[ppos].p_idx++;
99 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); 99 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
100 if (path[ppos+1].p_bh) 100 if (path[ppos+1].p_bh)
101 brelse(path[ppos+1].p_bh); 101 brelse(path[ppos+1].p_bh);
102 path[ppos+1].p_bh = 102 path[ppos+1].p_bh =
103 sb_bread(inode->i_sb, path[ppos].p_block); 103 sb_bread(inode->i_sb, path[ppos].p_block);
104 if (!path[ppos+1].p_bh) 104 if (!path[ppos+1].p_bh)
105 return -EIO; 105 return -EIO;
106 path[ppos+1].p_hdr = 106 path[ppos+1].p_hdr =
107 ext_block_hdr(path[ppos+1].p_bh); 107 ext_block_hdr(path[ppos+1].p_bh);
108 108
109 /* Halfway index block */ 109 /* Halfway index block */
110 while (++cur_ppos < leaf_ppos) { 110 while (++cur_ppos < leaf_ppos) {
111 path[cur_ppos].p_idx = 111 path[cur_ppos].p_idx =
112 EXT_FIRST_INDEX(path[cur_ppos].p_hdr); 112 EXT_FIRST_INDEX(path[cur_ppos].p_hdr);
113 path[cur_ppos].p_block = 113 path[cur_ppos].p_block =
114 ext4_idx_pblock(path[cur_ppos].p_idx); 114 ext4_idx_pblock(path[cur_ppos].p_idx);
115 if (path[cur_ppos+1].p_bh) 115 if (path[cur_ppos+1].p_bh)
116 brelse(path[cur_ppos+1].p_bh); 116 brelse(path[cur_ppos+1].p_bh);
117 path[cur_ppos+1].p_bh = sb_bread(inode->i_sb, 117 path[cur_ppos+1].p_bh = sb_bread(inode->i_sb,
118 path[cur_ppos].p_block); 118 path[cur_ppos].p_block);
119 if (!path[cur_ppos+1].p_bh) 119 if (!path[cur_ppos+1].p_bh)
120 return -EIO; 120 return -EIO;
121 path[cur_ppos+1].p_hdr = 121 path[cur_ppos+1].p_hdr =
122 ext_block_hdr(path[cur_ppos+1].p_bh); 122 ext_block_hdr(path[cur_ppos+1].p_bh);
123 } 123 }
124 124
125 path[leaf_ppos].p_ext = *extent = NULL; 125 path[leaf_ppos].p_ext = *extent = NULL;
126 126
127 eh = path[leaf_ppos].p_hdr; 127 eh = path[leaf_ppos].p_hdr;
128 if (le16_to_cpu(eh->eh_entries) == 0) 128 if (le16_to_cpu(eh->eh_entries) == 0)
129 /* empty leaf is found */ 129 /* empty leaf is found */
130 return -ENODATA; 130 return -ENODATA;
131 131
132 /* leaf block */ 132 /* leaf block */
133 path[leaf_ppos].p_ext = *extent = 133 path[leaf_ppos].p_ext = *extent =
134 EXT_FIRST_EXTENT(path[leaf_ppos].p_hdr); 134 EXT_FIRST_EXTENT(path[leaf_ppos].p_hdr);
135 path[leaf_ppos].p_block = 135 path[leaf_ppos].p_block =
136 ext4_ext_pblock(path[leaf_ppos].p_ext); 136 ext4_ext_pblock(path[leaf_ppos].p_ext);
137 return 0; 137 return 0;
138 } 138 }
139 } 139 }
140 /* We found the last extent */ 140 /* We found the last extent */
141 return 1; 141 return 1;
142 } 142 }
143 143
144 /** 144 /**
145 * mext_check_null_inode - NULL check for two inodes 145 * mext_check_null_inode - NULL check for two inodes
146 * 146 *
147 * If inode1 or inode2 is NULL, return -EIO. Otherwise, return 0. 147 * If inode1 or inode2 is NULL, return -EIO. Otherwise, return 0.
148 */ 148 */
149 static int 149 static int
150 mext_check_null_inode(struct inode *inode1, struct inode *inode2, 150 mext_check_null_inode(struct inode *inode1, struct inode *inode2,
151 const char *function, unsigned int line) 151 const char *function, unsigned int line)
152 { 152 {
153 int ret = 0; 153 int ret = 0;
154 154
155 if (inode1 == NULL) { 155 if (inode1 == NULL) {
156 __ext4_error(inode2->i_sb, function, line, 156 __ext4_error(inode2->i_sb, function, line,
157 "Both inodes should not be NULL: " 157 "Both inodes should not be NULL: "
158 "inode1 NULL inode2 %lu", inode2->i_ino); 158 "inode1 NULL inode2 %lu", inode2->i_ino);
159 ret = -EIO; 159 ret = -EIO;
160 } else if (inode2 == NULL) { 160 } else if (inode2 == NULL) {
161 __ext4_error(inode1->i_sb, function, line, 161 __ext4_error(inode1->i_sb, function, line,
162 "Both inodes should not be NULL: " 162 "Both inodes should not be NULL: "
163 "inode1 %lu inode2 NULL", inode1->i_ino); 163 "inode1 %lu inode2 NULL", inode1->i_ino);
164 ret = -EIO; 164 ret = -EIO;
165 } 165 }
166 return ret; 166 return ret;
167 } 167 }
168 168
169 /** 169 /**
170 * double_down_write_data_sem - Acquire two inodes' write lock of i_data_sem 170 * double_down_write_data_sem - Acquire two inodes' write lock of i_data_sem
171 * 171 *
172 * @orig_inode: original inode structure 172 * @orig_inode: original inode structure
173 * @donor_inode: donor inode structure 173 * @donor_inode: donor inode structure
174 * Acquire write lock of i_data_sem of the two inodes (orig and donor) by 174 * Acquire write lock of i_data_sem of the two inodes (orig and donor) by
175 * i_ino order. 175 * i_ino order.
176 */ 176 */
177 static void 177 static void
178 double_down_write_data_sem(struct inode *orig_inode, struct inode *donor_inode) 178 double_down_write_data_sem(struct inode *orig_inode, struct inode *donor_inode)
179 { 179 {
180 struct inode *first = orig_inode, *second = donor_inode; 180 struct inode *first = orig_inode, *second = donor_inode;
181 181
182 /* 182 /*
183 * Use the inode number to provide the stable locking order instead 183 * Use the inode number to provide the stable locking order instead
184 * of its address, because the C language doesn't guarantee you can 184 * of its address, because the C language doesn't guarantee you can
185 * compare pointers that don't come from the same array. 185 * compare pointers that don't come from the same array.
186 */ 186 */
187 if (donor_inode->i_ino < orig_inode->i_ino) { 187 if (donor_inode->i_ino < orig_inode->i_ino) {
188 first = donor_inode; 188 first = donor_inode;
189 second = orig_inode; 189 second = orig_inode;
190 } 190 }
191 191
192 down_write(&EXT4_I(first)->i_data_sem); 192 down_write(&EXT4_I(first)->i_data_sem);
193 down_write_nested(&EXT4_I(second)->i_data_sem, SINGLE_DEPTH_NESTING); 193 down_write_nested(&EXT4_I(second)->i_data_sem, SINGLE_DEPTH_NESTING);
194 } 194 }
195 195
196 /** 196 /**
197 * double_up_write_data_sem - Release two inodes' write lock of i_data_sem 197 * double_up_write_data_sem - Release two inodes' write lock of i_data_sem
198 * 198 *
199 * @orig_inode: original inode structure to be released its lock first 199 * @orig_inode: original inode structure to be released its lock first
200 * @donor_inode: donor inode structure to be released its lock second 200 * @donor_inode: donor inode structure to be released its lock second
201 * Release write lock of i_data_sem of two inodes (orig and donor). 201 * Release write lock of i_data_sem of two inodes (orig and donor).
202 */ 202 */
203 static void 203 static void
204 double_up_write_data_sem(struct inode *orig_inode, struct inode *donor_inode) 204 double_up_write_data_sem(struct inode *orig_inode, struct inode *donor_inode)
205 { 205 {
206 up_write(&EXT4_I(orig_inode)->i_data_sem); 206 up_write(&EXT4_I(orig_inode)->i_data_sem);
207 up_write(&EXT4_I(donor_inode)->i_data_sem); 207 up_write(&EXT4_I(donor_inode)->i_data_sem);
208 } 208 }
209 209
210 /** 210 /**
211 * mext_insert_across_blocks - Insert extents across leaf block 211 * mext_insert_across_blocks - Insert extents across leaf block
212 * 212 *
213 * @handle: journal handle 213 * @handle: journal handle
214 * @orig_inode: original inode 214 * @orig_inode: original inode
215 * @o_start: first original extent to be changed 215 * @o_start: first original extent to be changed
216 * @o_end: last original extent to be changed 216 * @o_end: last original extent to be changed
217 * @start_ext: first new extent to be inserted 217 * @start_ext: first new extent to be inserted
218 * @new_ext: middle of new extent to be inserted 218 * @new_ext: middle of new extent to be inserted
219 * @end_ext: last new extent to be inserted 219 * @end_ext: last new extent to be inserted
220 * 220 *
221 * Allocate a new leaf block and insert extents into it. Return 0 on success, 221 * Allocate a new leaf block and insert extents into it. Return 0 on success,
222 * or a negative error value on failure. 222 * or a negative error value on failure.
223 */ 223 */
224 static int 224 static int
225 mext_insert_across_blocks(handle_t *handle, struct inode *orig_inode, 225 mext_insert_across_blocks(handle_t *handle, struct inode *orig_inode,
226 struct ext4_extent *o_start, struct ext4_extent *o_end, 226 struct ext4_extent *o_start, struct ext4_extent *o_end,
227 struct ext4_extent *start_ext, struct ext4_extent *new_ext, 227 struct ext4_extent *start_ext, struct ext4_extent *new_ext,
228 struct ext4_extent *end_ext) 228 struct ext4_extent *end_ext)
229 { 229 {
230 struct ext4_ext_path *orig_path = NULL; 230 struct ext4_ext_path *orig_path = NULL;
231 ext4_lblk_t eblock = 0; 231 ext4_lblk_t eblock = 0;
232 int new_flag = 0; 232 int new_flag = 0;
233 int end_flag = 0; 233 int end_flag = 0;
234 int err = 0; 234 int err = 0;
235 235
236 if (start_ext->ee_len && new_ext->ee_len && end_ext->ee_len) { 236 if (start_ext->ee_len && new_ext->ee_len && end_ext->ee_len) {
237 if (o_start == o_end) { 237 if (o_start == o_end) {
238 238
239 /* start_ext new_ext end_ext 239 /* start_ext new_ext end_ext
240 * donor |---------|-----------|--------| 240 * donor |---------|-----------|--------|
241 * orig |------------------------------| 241 * orig |------------------------------|
242 */ 242 */
243 end_flag = 1; 243 end_flag = 1;
244 } else { 244 } else {
245 245
246 /* start_ext new_ext end_ext 246 /* start_ext new_ext end_ext
247 * donor |---------|----------|---------| 247 * donor |---------|----------|---------|
248 * orig |---------------|--------------| 248 * orig |---------------|--------------|
249 */ 249 */
250 o_end->ee_block = end_ext->ee_block; 250 o_end->ee_block = end_ext->ee_block;
251 o_end->ee_len = end_ext->ee_len; 251 o_end->ee_len = end_ext->ee_len;
252 ext4_ext_store_pblock(o_end, ext4_ext_pblock(end_ext)); 252 ext4_ext_store_pblock(o_end, ext4_ext_pblock(end_ext));
253 } 253 }
254 254
255 o_start->ee_len = start_ext->ee_len; 255 o_start->ee_len = start_ext->ee_len;
256 eblock = le32_to_cpu(start_ext->ee_block); 256 eblock = le32_to_cpu(start_ext->ee_block);
257 new_flag = 1; 257 new_flag = 1;
258 258
259 } else if (start_ext->ee_len && new_ext->ee_len && 259 } else if (start_ext->ee_len && new_ext->ee_len &&
260 !end_ext->ee_len && o_start == o_end) { 260 !end_ext->ee_len && o_start == o_end) {
261 261
262 /* start_ext new_ext 262 /* start_ext new_ext
263 * donor |--------------|---------------| 263 * donor |--------------|---------------|
264 * orig |------------------------------| 264 * orig |------------------------------|
265 */ 265 */
266 o_start->ee_len = start_ext->ee_len; 266 o_start->ee_len = start_ext->ee_len;
267 eblock = le32_to_cpu(start_ext->ee_block); 267 eblock = le32_to_cpu(start_ext->ee_block);
268 new_flag = 1; 268 new_flag = 1;
269 269
270 } else if (!start_ext->ee_len && new_ext->ee_len && 270 } else if (!start_ext->ee_len && new_ext->ee_len &&
271 end_ext->ee_len && o_start == o_end) { 271 end_ext->ee_len && o_start == o_end) {
272 272
273 /* new_ext end_ext 273 /* new_ext end_ext
274 * donor |--------------|---------------| 274 * donor |--------------|---------------|
275 * orig |------------------------------| 275 * orig |------------------------------|
276 */ 276 */
277 o_end->ee_block = end_ext->ee_block; 277 o_end->ee_block = end_ext->ee_block;
278 o_end->ee_len = end_ext->ee_len; 278 o_end->ee_len = end_ext->ee_len;
279 ext4_ext_store_pblock(o_end, ext4_ext_pblock(end_ext)); 279 ext4_ext_store_pblock(o_end, ext4_ext_pblock(end_ext));
280 280
281 /* 281 /*
282 * Set 0 to the extent block if new_ext was 282 * Set 0 to the extent block if new_ext was
283 * the first block. 283 * the first block.
284 */ 284 */
285 if (new_ext->ee_block) 285 if (new_ext->ee_block)
286 eblock = le32_to_cpu(new_ext->ee_block); 286 eblock = le32_to_cpu(new_ext->ee_block);
287 287
288 new_flag = 1; 288 new_flag = 1;
289 } else { 289 } else {
290 ext4_debug("ext4 move extent: Unexpected insert case\n"); 290 ext4_debug("ext4 move extent: Unexpected insert case\n");
291 return -EIO; 291 return -EIO;
292 } 292 }
293 293
294 if (new_flag) { 294 if (new_flag) {
295 err = get_ext_path(orig_inode, eblock, &orig_path); 295 err = get_ext_path(orig_inode, eblock, &orig_path);
296 if (err) 296 if (err)
297 goto out; 297 goto out;
298 298
299 if (ext4_ext_insert_extent(handle, orig_inode, 299 if (ext4_ext_insert_extent(handle, orig_inode,
300 orig_path, new_ext, 0)) 300 orig_path, new_ext, 0))
301 goto out; 301 goto out;
302 } 302 }
303 303
304 if (end_flag) { 304 if (end_flag) {
305 err = get_ext_path(orig_inode, 305 err = get_ext_path(orig_inode,
306 le32_to_cpu(end_ext->ee_block) - 1, &orig_path); 306 le32_to_cpu(end_ext->ee_block) - 1, &orig_path);
307 if (err) 307 if (err)
308 goto out; 308 goto out;
309 309
310 if (ext4_ext_insert_extent(handle, orig_inode, 310 if (ext4_ext_insert_extent(handle, orig_inode,
311 orig_path, end_ext, 0)) 311 orig_path, end_ext, 0))
312 goto out; 312 goto out;
313 } 313 }
314 out: 314 out:
315 if (orig_path) { 315 if (orig_path) {
316 ext4_ext_drop_refs(orig_path); 316 ext4_ext_drop_refs(orig_path);
317 kfree(orig_path); 317 kfree(orig_path);
318 } 318 }
319 319
320 return err; 320 return err;
321 321
322 } 322 }
323 323
324 /** 324 /**
325 * mext_insert_inside_block - Insert new extent to the extent block 325 * mext_insert_inside_block - Insert new extent to the extent block
326 * 326 *
327 * @o_start: first original extent to be moved 327 * @o_start: first original extent to be moved
328 * @o_end: last original extent to be moved 328 * @o_end: last original extent to be moved
329 * @start_ext: first new extent to be inserted 329 * @start_ext: first new extent to be inserted
330 * @new_ext: middle of new extent to be inserted 330 * @new_ext: middle of new extent to be inserted
331 * @end_ext: last new extent to be inserted 331 * @end_ext: last new extent to be inserted
332 * @eh: extent header of target leaf block 332 * @eh: extent header of target leaf block
333 * @range_to_move: used to decide how to insert extent 333 * @range_to_move: used to decide how to insert extent
334 * 334 *
335 * Insert extents into the leaf block. The extent (@o_start) is overwritten 335 * Insert extents into the leaf block. The extent (@o_start) is overwritten
336 * by inserted extents. 336 * by inserted extents.
337 */ 337 */
338 static void 338 static void
339 mext_insert_inside_block(struct ext4_extent *o_start, 339 mext_insert_inside_block(struct ext4_extent *o_start,
340 struct ext4_extent *o_end, 340 struct ext4_extent *o_end,
341 struct ext4_extent *start_ext, 341 struct ext4_extent *start_ext,
342 struct ext4_extent *new_ext, 342 struct ext4_extent *new_ext,
343 struct ext4_extent *end_ext, 343 struct ext4_extent *end_ext,
344 struct ext4_extent_header *eh, 344 struct ext4_extent_header *eh,
345 int range_to_move) 345 int range_to_move)
346 { 346 {
347 int i = 0; 347 int i = 0;
348 unsigned long len; 348 unsigned long len;
349 349
350 /* Move the existing extents */ 350 /* Move the existing extents */
351 if (range_to_move && o_end < EXT_LAST_EXTENT(eh)) { 351 if (range_to_move && o_end < EXT_LAST_EXTENT(eh)) {
352 len = (unsigned long)(EXT_LAST_EXTENT(eh) + 1) - 352 len = (unsigned long)(EXT_LAST_EXTENT(eh) + 1) -
353 (unsigned long)(o_end + 1); 353 (unsigned long)(o_end + 1);
354 memmove(o_end + 1 + range_to_move, o_end + 1, len); 354 memmove(o_end + 1 + range_to_move, o_end + 1, len);
355 } 355 }
356 356
357 /* Insert start entry */ 357 /* Insert start entry */
358 if (start_ext->ee_len) 358 if (start_ext->ee_len)
359 o_start[i++].ee_len = start_ext->ee_len; 359 o_start[i++].ee_len = start_ext->ee_len;
360 360
361 /* Insert new entry */ 361 /* Insert new entry */
362 if (new_ext->ee_len) { 362 if (new_ext->ee_len) {
363 o_start[i] = *new_ext; 363 o_start[i] = *new_ext;
364 ext4_ext_store_pblock(&o_start[i++], ext4_ext_pblock(new_ext)); 364 ext4_ext_store_pblock(&o_start[i++], ext4_ext_pblock(new_ext));
365 } 365 }
366 366
367 /* Insert end entry */ 367 /* Insert end entry */
368 if (end_ext->ee_len) 368 if (end_ext->ee_len)
369 o_start[i] = *end_ext; 369 o_start[i] = *end_ext;
370 370
371 /* Increment the total entries counter on the extent block */ 371 /* Increment the total entries counter on the extent block */
372 le16_add_cpu(&eh->eh_entries, range_to_move); 372 le16_add_cpu(&eh->eh_entries, range_to_move);
373 } 373 }
374 374
375 /** 375 /**
376 * mext_insert_extents - Insert new extent 376 * mext_insert_extents - Insert new extent
377 * 377 *
378 * @handle: journal handle 378 * @handle: journal handle
379 * @orig_inode: original inode 379 * @orig_inode: original inode
380 * @orig_path: path indicates first extent to be changed 380 * @orig_path: path indicates first extent to be changed
381 * @o_start: first original extent to be changed 381 * @o_start: first original extent to be changed
382 * @o_end: last original extent to be changed 382 * @o_end: last original extent to be changed
383 * @start_ext: first new extent to be inserted 383 * @start_ext: first new extent to be inserted
384 * @new_ext: middle of new extent to be inserted 384 * @new_ext: middle of new extent to be inserted
385 * @end_ext: last new extent to be inserted 385 * @end_ext: last new extent to be inserted
386 * 386 *
387 * Call the function to insert extents. If we cannot add more extents into 387 * Call the function to insert extents. If we cannot add more extents into
388 * the leaf block, we call mext_insert_across_blocks() to create a 388 * the leaf block, we call mext_insert_across_blocks() to create a
389 * new leaf block. Otherwise call mext_insert_inside_block(). Return 0 389 * new leaf block. Otherwise call mext_insert_inside_block(). Return 0
390 * on success, or a negative error value on failure. 390 * on success, or a negative error value on failure.
391 */ 391 */
392 static int 392 static int
393 mext_insert_extents(handle_t *handle, struct inode *orig_inode, 393 mext_insert_extents(handle_t *handle, struct inode *orig_inode,
394 struct ext4_ext_path *orig_path, 394 struct ext4_ext_path *orig_path,
395 struct ext4_extent *o_start, 395 struct ext4_extent *o_start,
396 struct ext4_extent *o_end, 396 struct ext4_extent *o_end,
397 struct ext4_extent *start_ext, 397 struct ext4_extent *start_ext,
398 struct ext4_extent *new_ext, 398 struct ext4_extent *new_ext,
399 struct ext4_extent *end_ext) 399 struct ext4_extent *end_ext)
400 { 400 {
401 struct ext4_extent_header *eh; 401 struct ext4_extent_header *eh;
402 unsigned long need_slots, slots_range; 402 unsigned long need_slots, slots_range;
403 int range_to_move, depth, ret; 403 int range_to_move, depth, ret;
404 404
405 /* 405 /*
406 * The extents need to be inserted 406 * The extents need to be inserted
407 * start_extent + new_extent + end_extent. 407 * start_extent + new_extent + end_extent.
408 */ 408 */
409 need_slots = (start_ext->ee_len ? 1 : 0) + (end_ext->ee_len ? 1 : 0) + 409 need_slots = (start_ext->ee_len ? 1 : 0) + (end_ext->ee_len ? 1 : 0) +
410 (new_ext->ee_len ? 1 : 0); 410 (new_ext->ee_len ? 1 : 0);
411 411
412 /* The number of slots between start and end */ 412 /* The number of slots between start and end */
413 slots_range = ((unsigned long)(o_end + 1) - (unsigned long)o_start + 1) 413 slots_range = ((unsigned long)(o_end + 1) - (unsigned long)o_start + 1)
414 / sizeof(struct ext4_extent); 414 / sizeof(struct ext4_extent);
415 415
416 /* Range to move the end of extent */ 416 /* Range to move the end of extent */
417 range_to_move = need_slots - slots_range; 417 range_to_move = need_slots - slots_range;
418 depth = orig_path->p_depth; 418 depth = orig_path->p_depth;
419 orig_path += depth; 419 orig_path += depth;
420 eh = orig_path->p_hdr; 420 eh = orig_path->p_hdr;
421 421
422 if (depth) { 422 if (depth) {
423 /* Register to journal */ 423 /* Register to journal */
424 ret = ext4_journal_get_write_access(handle, orig_path->p_bh); 424 ret = ext4_journal_get_write_access(handle, orig_path->p_bh);
425 if (ret) 425 if (ret)
426 return ret; 426 return ret;
427 } 427 }
428 428
429 /* Expansion */ 429 /* Expansion */
430 if (range_to_move > 0 && 430 if (range_to_move > 0 &&
431 (range_to_move > le16_to_cpu(eh->eh_max) 431 (range_to_move > le16_to_cpu(eh->eh_max)
432 - le16_to_cpu(eh->eh_entries))) { 432 - le16_to_cpu(eh->eh_entries))) {
433 433
434 ret = mext_insert_across_blocks(handle, orig_inode, o_start, 434 ret = mext_insert_across_blocks(handle, orig_inode, o_start,
435 o_end, start_ext, new_ext, end_ext); 435 o_end, start_ext, new_ext, end_ext);
436 if (ret < 0) 436 if (ret < 0)
437 return ret; 437 return ret;
438 } else 438 } else
439 mext_insert_inside_block(o_start, o_end, start_ext, new_ext, 439 mext_insert_inside_block(o_start, o_end, start_ext, new_ext,
440 end_ext, eh, range_to_move); 440 end_ext, eh, range_to_move);
441 441
442 if (depth) { 442 if (depth) {
443 ret = ext4_handle_dirty_metadata(handle, orig_inode, 443 ret = ext4_handle_dirty_metadata(handle, orig_inode,
444 orig_path->p_bh); 444 orig_path->p_bh);
445 if (ret) 445 if (ret)
446 return ret; 446 return ret;
447 } else { 447 } else {
448 ret = ext4_mark_inode_dirty(handle, orig_inode); 448 ret = ext4_mark_inode_dirty(handle, orig_inode);
449 if (ret < 0) 449 if (ret < 0)
450 return ret; 450 return ret;
451 } 451 }
452 452
453 return 0; 453 return 0;
454 } 454 }
455 455
456 /** 456 /**
457 * mext_leaf_block - Move one leaf extent block into the inode. 457 * mext_leaf_block - Move one leaf extent block into the inode.
458 * 458 *
459 * @handle: journal handle 459 * @handle: journal handle
460 * @orig_inode: original inode 460 * @orig_inode: original inode
461 * @orig_path: path indicates first extent to be changed 461 * @orig_path: path indicates first extent to be changed
462 * @dext: donor extent 462 * @dext: donor extent
463 * @from: start offset on the target file 463 * @from: start offset on the target file
464 * 464 *
465 * In order to insert extents into the leaf block, we must divide the extent 465 * In order to insert extents into the leaf block, we must divide the extent
466 * in the leaf block into three extents. The one is located to be inserted 466 * in the leaf block into three extents. The one is located to be inserted
467 * extents, and the others are located around it. 467 * extents, and the others are located around it.
468 * 468 *
469 * Therefore, this function creates structures to save extents of the leaf 469 * Therefore, this function creates structures to save extents of the leaf
470 * block, and inserts extents by calling mext_insert_extents() with 470 * block, and inserts extents by calling mext_insert_extents() with
471 * created extents. Return 0 on success, or a negative error value on failure. 471 * created extents. Return 0 on success, or a negative error value on failure.
472 */ 472 */
473 static int 473 static int
474 mext_leaf_block(handle_t *handle, struct inode *orig_inode, 474 mext_leaf_block(handle_t *handle, struct inode *orig_inode,
475 struct ext4_ext_path *orig_path, struct ext4_extent *dext, 475 struct ext4_ext_path *orig_path, struct ext4_extent *dext,
476 ext4_lblk_t *from) 476 ext4_lblk_t *from)
477 { 477 {
478 struct ext4_extent *oext, *o_start, *o_end, *prev_ext; 478 struct ext4_extent *oext, *o_start, *o_end, *prev_ext;
479 struct ext4_extent new_ext, start_ext, end_ext; 479 struct ext4_extent new_ext, start_ext, end_ext;
480 ext4_lblk_t new_ext_end; 480 ext4_lblk_t new_ext_end;
481 int oext_alen, new_ext_alen, end_ext_alen; 481 int oext_alen, new_ext_alen, end_ext_alen;
482 int depth = ext_depth(orig_inode); 482 int depth = ext_depth(orig_inode);
483 int ret; 483 int ret;
484 484
485 start_ext.ee_block = end_ext.ee_block = 0; 485 start_ext.ee_block = end_ext.ee_block = 0;
486 o_start = o_end = oext = orig_path[depth].p_ext; 486 o_start = o_end = oext = orig_path[depth].p_ext;
487 oext_alen = ext4_ext_get_actual_len(oext); 487 oext_alen = ext4_ext_get_actual_len(oext);
488 start_ext.ee_len = end_ext.ee_len = 0; 488 start_ext.ee_len = end_ext.ee_len = 0;
489 489
490 new_ext.ee_block = cpu_to_le32(*from); 490 new_ext.ee_block = cpu_to_le32(*from);
491 ext4_ext_store_pblock(&new_ext, ext4_ext_pblock(dext)); 491 ext4_ext_store_pblock(&new_ext, ext4_ext_pblock(dext));
492 new_ext.ee_len = dext->ee_len; 492 new_ext.ee_len = dext->ee_len;
493 new_ext_alen = ext4_ext_get_actual_len(&new_ext); 493 new_ext_alen = ext4_ext_get_actual_len(&new_ext);
494 new_ext_end = le32_to_cpu(new_ext.ee_block) + new_ext_alen - 1; 494 new_ext_end = le32_to_cpu(new_ext.ee_block) + new_ext_alen - 1;
495 495
496 /* 496 /*
497 * Case: original extent is first 497 * Case: original extent is first
498 * oext |--------| 498 * oext |--------|
499 * new_ext |--| 499 * new_ext |--|
500 * start_ext |--| 500 * start_ext |--|
501 */ 501 */
502 if (le32_to_cpu(oext->ee_block) < le32_to_cpu(new_ext.ee_block) && 502 if (le32_to_cpu(oext->ee_block) < le32_to_cpu(new_ext.ee_block) &&
503 le32_to_cpu(new_ext.ee_block) < 503 le32_to_cpu(new_ext.ee_block) <
504 le32_to_cpu(oext->ee_block) + oext_alen) { 504 le32_to_cpu(oext->ee_block) + oext_alen) {
505 start_ext.ee_len = cpu_to_le16(le32_to_cpu(new_ext.ee_block) - 505 start_ext.ee_len = cpu_to_le16(le32_to_cpu(new_ext.ee_block) -
506 le32_to_cpu(oext->ee_block)); 506 le32_to_cpu(oext->ee_block));
507 start_ext.ee_block = oext->ee_block; 507 start_ext.ee_block = oext->ee_block;
508 copy_extent_status(oext, &start_ext); 508 copy_extent_status(oext, &start_ext);
509 } else if (oext > EXT_FIRST_EXTENT(orig_path[depth].p_hdr)) { 509 } else if (oext > EXT_FIRST_EXTENT(orig_path[depth].p_hdr)) {
510 prev_ext = oext - 1; 510 prev_ext = oext - 1;
511 /* 511 /*
512 * We can merge new_ext into previous extent, 512 * We can merge new_ext into previous extent,
513 * if these are contiguous and same extent type. 513 * if these are contiguous and same extent type.
514 */ 514 */
515 if (ext4_can_extents_be_merged(orig_inode, prev_ext, 515 if (ext4_can_extents_be_merged(orig_inode, prev_ext,
516 &new_ext)) { 516 &new_ext)) {
517 o_start = prev_ext; 517 o_start = prev_ext;
518 start_ext.ee_len = cpu_to_le16( 518 start_ext.ee_len = cpu_to_le16(
519 ext4_ext_get_actual_len(prev_ext) + 519 ext4_ext_get_actual_len(prev_ext) +
520 new_ext_alen); 520 new_ext_alen);
521 start_ext.ee_block = oext->ee_block; 521 start_ext.ee_block = oext->ee_block;
522 copy_extent_status(prev_ext, &start_ext); 522 copy_extent_status(prev_ext, &start_ext);
523 new_ext.ee_len = 0; 523 new_ext.ee_len = 0;
524 } 524 }
525 } 525 }
526 526
527 /* 527 /*
528 * Case: new_ext_end must be less than oext 528 * Case: new_ext_end must be less than oext
529 * oext |-----------| 529 * oext |-----------|
530 * new_ext |-------| 530 * new_ext |-------|
531 */ 531 */
532 if (le32_to_cpu(oext->ee_block) + oext_alen - 1 < new_ext_end) { 532 if (le32_to_cpu(oext->ee_block) + oext_alen - 1 < new_ext_end) {
533 EXT4_ERROR_INODE(orig_inode, 533 EXT4_ERROR_INODE(orig_inode,
534 "new_ext_end(%u) should be less than or equal to " 534 "new_ext_end(%u) should be less than or equal to "
535 "oext->ee_block(%u) + oext_alen(%d) - 1", 535 "oext->ee_block(%u) + oext_alen(%d) - 1",
536 new_ext_end, le32_to_cpu(oext->ee_block), 536 new_ext_end, le32_to_cpu(oext->ee_block),
537 oext_alen); 537 oext_alen);
538 ret = -EIO; 538 ret = -EIO;
539 goto out; 539 goto out;
540 } 540 }
541 541
542 /* 542 /*
543 * Case: new_ext is smaller than original extent 543 * Case: new_ext is smaller than original extent
544 * oext |---------------| 544 * oext |---------------|
545 * new_ext |-----------| 545 * new_ext |-----------|
546 * end_ext |---| 546 * end_ext |---|
547 */ 547 */
548 if (le32_to_cpu(oext->ee_block) <= new_ext_end && 548 if (le32_to_cpu(oext->ee_block) <= new_ext_end &&
549 new_ext_end < le32_to_cpu(oext->ee_block) + oext_alen - 1) { 549 new_ext_end < le32_to_cpu(oext->ee_block) + oext_alen - 1) {
550 end_ext.ee_len = 550 end_ext.ee_len =
551 cpu_to_le16(le32_to_cpu(oext->ee_block) + 551 cpu_to_le16(le32_to_cpu(oext->ee_block) +
552 oext_alen - 1 - new_ext_end); 552 oext_alen - 1 - new_ext_end);
553 copy_extent_status(oext, &end_ext); 553 copy_extent_status(oext, &end_ext);
554 end_ext_alen = ext4_ext_get_actual_len(&end_ext); 554 end_ext_alen = ext4_ext_get_actual_len(&end_ext);
555 ext4_ext_store_pblock(&end_ext, 555 ext4_ext_store_pblock(&end_ext,
556 (ext4_ext_pblock(o_end) + oext_alen - end_ext_alen)); 556 (ext4_ext_pblock(o_end) + oext_alen - end_ext_alen));
557 end_ext.ee_block = 557 end_ext.ee_block =
558 cpu_to_le32(le32_to_cpu(o_end->ee_block) + 558 cpu_to_le32(le32_to_cpu(o_end->ee_block) +
559 oext_alen - end_ext_alen); 559 oext_alen - end_ext_alen);
560 } 560 }
561 561
562 ret = mext_insert_extents(handle, orig_inode, orig_path, o_start, 562 ret = mext_insert_extents(handle, orig_inode, orig_path, o_start,
563 o_end, &start_ext, &new_ext, &end_ext); 563 o_end, &start_ext, &new_ext, &end_ext);
564 out: 564 out:
565 return ret; 565 return ret;
566 } 566 }
567 567
568 /** 568 /**
569 * mext_calc_swap_extents - Calculate extents for extent swapping. 569 * mext_calc_swap_extents - Calculate extents for extent swapping.
570 * 570 *
571 * @tmp_dext: the extent that will belong to the original inode 571 * @tmp_dext: the extent that will belong to the original inode
572 * @tmp_oext: the extent that will belong to the donor inode 572 * @tmp_oext: the extent that will belong to the donor inode
573 * @orig_off: block offset of original inode 573 * @orig_off: block offset of original inode
574 * @donor_off: block offset of donor inode 574 * @donor_off: block offset of donor inode
575 * @max_count: the maximum length of extents 575 * @max_count: the maximum length of extents
576 * 576 *
577 * Return 0 on success, or a negative error value on failure. 577 * Return 0 on success, or a negative error value on failure.
578 */ 578 */
579 static int 579 static int
580 mext_calc_swap_extents(struct ext4_extent *tmp_dext, 580 mext_calc_swap_extents(struct ext4_extent *tmp_dext,
581 struct ext4_extent *tmp_oext, 581 struct ext4_extent *tmp_oext,
582 ext4_lblk_t orig_off, ext4_lblk_t donor_off, 582 ext4_lblk_t orig_off, ext4_lblk_t donor_off,
583 ext4_lblk_t max_count) 583 ext4_lblk_t max_count)
584 { 584 {
585 ext4_lblk_t diff, orig_diff; 585 ext4_lblk_t diff, orig_diff;
586 struct ext4_extent dext_old, oext_old; 586 struct ext4_extent dext_old, oext_old;
587 587
588 BUG_ON(orig_off != donor_off); 588 BUG_ON(orig_off != donor_off);
589 589
590 /* original and donor extents have to cover the same block offset */ 590 /* original and donor extents have to cover the same block offset */
591 if (orig_off < le32_to_cpu(tmp_oext->ee_block) || 591 if (orig_off < le32_to_cpu(tmp_oext->ee_block) ||
592 le32_to_cpu(tmp_oext->ee_block) + 592 le32_to_cpu(tmp_oext->ee_block) +
593 ext4_ext_get_actual_len(tmp_oext) - 1 < orig_off) 593 ext4_ext_get_actual_len(tmp_oext) - 1 < orig_off)
594 return -ENODATA; 594 return -ENODATA;
595 595
596 if (orig_off < le32_to_cpu(tmp_dext->ee_block) || 596 if (orig_off < le32_to_cpu(tmp_dext->ee_block) ||
597 le32_to_cpu(tmp_dext->ee_block) + 597 le32_to_cpu(tmp_dext->ee_block) +
598 ext4_ext_get_actual_len(tmp_dext) - 1 < orig_off) 598 ext4_ext_get_actual_len(tmp_dext) - 1 < orig_off)
599 return -ENODATA; 599 return -ENODATA;
600 600
601 dext_old = *tmp_dext; 601 dext_old = *tmp_dext;
602 oext_old = *tmp_oext; 602 oext_old = *tmp_oext;
603 603
604 /* When tmp_dext is too large, pick up the target range. */ 604 /* When tmp_dext is too large, pick up the target range. */
605 diff = donor_off - le32_to_cpu(tmp_dext->ee_block); 605 diff = donor_off - le32_to_cpu(tmp_dext->ee_block);
606 606
607 ext4_ext_store_pblock(tmp_dext, ext4_ext_pblock(tmp_dext) + diff); 607 ext4_ext_store_pblock(tmp_dext, ext4_ext_pblock(tmp_dext) + diff);
608 tmp_dext->ee_block = 608 tmp_dext->ee_block =
609 cpu_to_le32(le32_to_cpu(tmp_dext->ee_block) + diff); 609 cpu_to_le32(le32_to_cpu(tmp_dext->ee_block) + diff);
610 tmp_dext->ee_len = cpu_to_le16(le16_to_cpu(tmp_dext->ee_len) - diff); 610 tmp_dext->ee_len = cpu_to_le16(le16_to_cpu(tmp_dext->ee_len) - diff);
611 611
612 if (max_count < ext4_ext_get_actual_len(tmp_dext)) 612 if (max_count < ext4_ext_get_actual_len(tmp_dext))
613 tmp_dext->ee_len = cpu_to_le16(max_count); 613 tmp_dext->ee_len = cpu_to_le16(max_count);
614 614
615 orig_diff = orig_off - le32_to_cpu(tmp_oext->ee_block); 615 orig_diff = orig_off - le32_to_cpu(tmp_oext->ee_block);
616 ext4_ext_store_pblock(tmp_oext, ext4_ext_pblock(tmp_oext) + orig_diff); 616 ext4_ext_store_pblock(tmp_oext, ext4_ext_pblock(tmp_oext) + orig_diff);
617 617
618 /* Adjust extent length if donor extent is larger than orig */ 618 /* Adjust extent length if donor extent is larger than orig */
619 if (ext4_ext_get_actual_len(tmp_dext) > 619 if (ext4_ext_get_actual_len(tmp_dext) >
620 ext4_ext_get_actual_len(tmp_oext) - orig_diff) 620 ext4_ext_get_actual_len(tmp_oext) - orig_diff)
621 tmp_dext->ee_len = cpu_to_le16(le16_to_cpu(tmp_oext->ee_len) - 621 tmp_dext->ee_len = cpu_to_le16(le16_to_cpu(tmp_oext->ee_len) -
622 orig_diff); 622 orig_diff);
623 623
624 tmp_oext->ee_len = cpu_to_le16(ext4_ext_get_actual_len(tmp_dext)); 624 tmp_oext->ee_len = cpu_to_le16(ext4_ext_get_actual_len(tmp_dext));
625 625
626 copy_extent_status(&oext_old, tmp_dext); 626 copy_extent_status(&oext_old, tmp_dext);
627 copy_extent_status(&dext_old, tmp_oext); 627 copy_extent_status(&dext_old, tmp_oext);
628 628
629 return 0; 629 return 0;
630 } 630 }
631 631
632 /** 632 /**
633 * mext_replace_branches - Replace original extents with new extents 633 * mext_replace_branches - Replace original extents with new extents
634 * 634 *
635 * @handle: journal handle 635 * @handle: journal handle
636 * @orig_inode: original inode 636 * @orig_inode: original inode
637 * @donor_inode: donor inode 637 * @donor_inode: donor inode
638 * @from: block offset of orig_inode 638 * @from: block offset of orig_inode
639 * @count: block count to be replaced 639 * @count: block count to be replaced
640 * @err: pointer to save return value 640 * @err: pointer to save return value
641 * 641 *
642 * Replace original inode extents and donor inode extents page by page. 642 * Replace original inode extents and donor inode extents page by page.
643 * We implement this replacement in the following three steps: 643 * We implement this replacement in the following three steps:
644 * 1. Save the block information of original and donor inodes into 644 * 1. Save the block information of original and donor inodes into
645 * dummy extents. 645 * dummy extents.
646 * 2. Change the block information of original inode to point at the 646 * 2. Change the block information of original inode to point at the
647 * donor inode blocks. 647 * donor inode blocks.
648 * 3. Change the block information of donor inode to point at the saved 648 * 3. Change the block information of donor inode to point at the saved
649 * original inode blocks in the dummy extents. 649 * original inode blocks in the dummy extents.
650 * 650 *
651 * Return replaced block count. 651 * Return replaced block count.
652 */ 652 */
653 static int 653 static int
654 mext_replace_branches(handle_t *handle, struct inode *orig_inode, 654 mext_replace_branches(handle_t *handle, struct inode *orig_inode,
655 struct inode *donor_inode, ext4_lblk_t from, 655 struct inode *donor_inode, ext4_lblk_t from,
656 ext4_lblk_t count, int *err) 656 ext4_lblk_t count, int *err)
657 { 657 {
658 struct ext4_ext_path *orig_path = NULL; 658 struct ext4_ext_path *orig_path = NULL;
659 struct ext4_ext_path *donor_path = NULL; 659 struct ext4_ext_path *donor_path = NULL;
660 struct ext4_extent *oext, *dext; 660 struct ext4_extent *oext, *dext;
661 struct ext4_extent tmp_dext, tmp_oext; 661 struct ext4_extent tmp_dext, tmp_oext;
662 ext4_lblk_t orig_off = from, donor_off = from; 662 ext4_lblk_t orig_off = from, donor_off = from;
663 int depth; 663 int depth;
664 int replaced_count = 0; 664 int replaced_count = 0;
665 int dext_alen; 665 int dext_alen;
666 666
667 /* Protect extent trees against block allocations via delalloc */ 667 /* Protect extent trees against block allocations via delalloc */
668 double_down_write_data_sem(orig_inode, donor_inode); 668 double_down_write_data_sem(orig_inode, donor_inode);
669 669
670 /* Get the original extent for the block "orig_off" */ 670 /* Get the original extent for the block "orig_off" */
671 *err = get_ext_path(orig_inode, orig_off, &orig_path); 671 *err = get_ext_path(orig_inode, orig_off, &orig_path);
672 if (*err) 672 if (*err)
673 goto out; 673 goto out;
674 674
675 /* Get the donor extent for the head */ 675 /* Get the donor extent for the head */
676 *err = get_ext_path(donor_inode, donor_off, &donor_path); 676 *err = get_ext_path(donor_inode, donor_off, &donor_path);
677 if (*err) 677 if (*err)
678 goto out; 678 goto out;
679 depth = ext_depth(orig_inode); 679 depth = ext_depth(orig_inode);
680 oext = orig_path[depth].p_ext; 680 oext = orig_path[depth].p_ext;
681 tmp_oext = *oext; 681 tmp_oext = *oext;
682 682
683 depth = ext_depth(donor_inode); 683 depth = ext_depth(donor_inode);
684 dext = donor_path[depth].p_ext; 684 dext = donor_path[depth].p_ext;
685 tmp_dext = *dext; 685 tmp_dext = *dext;
686 686
687 *err = mext_calc_swap_extents(&tmp_dext, &tmp_oext, orig_off, 687 *err = mext_calc_swap_extents(&tmp_dext, &tmp_oext, orig_off,
688 donor_off, count); 688 donor_off, count);
689 if (*err) 689 if (*err)
690 goto out; 690 goto out;
691 691
692 /* Loop for the donor extents */ 692 /* Loop for the donor extents */
693 while (1) { 693 while (1) {
694 /* The extent for donor must be found. */ 694 /* The extent for donor must be found. */
695 if (!dext) { 695 if (!dext) {
696 EXT4_ERROR_INODE(donor_inode, 696 EXT4_ERROR_INODE(donor_inode,
697 "The extent for donor must be found"); 697 "The extent for donor must be found");
698 *err = -EIO; 698 *err = -EIO;
699 goto out; 699 goto out;
700 } else if (donor_off != le32_to_cpu(tmp_dext.ee_block)) { 700 } else if (donor_off != le32_to_cpu(tmp_dext.ee_block)) {
701 EXT4_ERROR_INODE(donor_inode, 701 EXT4_ERROR_INODE(donor_inode,
702 "Donor offset(%u) and the first block of donor " 702 "Donor offset(%u) and the first block of donor "
703 "extent(%u) should be equal", 703 "extent(%u) should be equal",
704 donor_off, 704 donor_off,
705 le32_to_cpu(tmp_dext.ee_block)); 705 le32_to_cpu(tmp_dext.ee_block));
706 *err = -EIO; 706 *err = -EIO;
707 goto out; 707 goto out;
708 } 708 }
709 709
710 /* Set donor extent to orig extent */ 710 /* Set donor extent to orig extent */
711 *err = mext_leaf_block(handle, orig_inode, 711 *err = mext_leaf_block(handle, orig_inode,
712 orig_path, &tmp_dext, &orig_off); 712 orig_path, &tmp_dext, &orig_off);
713 if (*err) 713 if (*err)
714 goto out; 714 goto out;
715 715
716 /* Set orig extent to donor extent */ 716 /* Set orig extent to donor extent */
717 *err = mext_leaf_block(handle, donor_inode, 717 *err = mext_leaf_block(handle, donor_inode,
718 donor_path, &tmp_oext, &donor_off); 718 donor_path, &tmp_oext, &donor_off);
719 if (*err) 719 if (*err)
720 goto out; 720 goto out;
721 721
722 dext_alen = ext4_ext_get_actual_len(&tmp_dext); 722 dext_alen = ext4_ext_get_actual_len(&tmp_dext);
723 replaced_count += dext_alen; 723 replaced_count += dext_alen;
724 donor_off += dext_alen; 724 donor_off += dext_alen;
725 orig_off += dext_alen; 725 orig_off += dext_alen;
726 726
727 /* Already moved the expected blocks */ 727 /* Already moved the expected blocks */
728 if (replaced_count >= count) 728 if (replaced_count >= count)
729 break; 729 break;
730 730
731 if (orig_path) 731 if (orig_path)
732 ext4_ext_drop_refs(orig_path); 732 ext4_ext_drop_refs(orig_path);
733 *err = get_ext_path(orig_inode, orig_off, &orig_path); 733 *err = get_ext_path(orig_inode, orig_off, &orig_path);
734 if (*err) 734 if (*err)
735 goto out; 735 goto out;
736 depth = ext_depth(orig_inode); 736 depth = ext_depth(orig_inode);
737 oext = orig_path[depth].p_ext; 737 oext = orig_path[depth].p_ext;
738 tmp_oext = *oext; 738 tmp_oext = *oext;
739 739
740 if (donor_path) 740 if (donor_path)
741 ext4_ext_drop_refs(donor_path); 741 ext4_ext_drop_refs(donor_path);
742 *err = get_ext_path(donor_inode, donor_off, &donor_path); 742 *err = get_ext_path(donor_inode, donor_off, &donor_path);
743 if (*err) 743 if (*err)
744 goto out; 744 goto out;
745 depth = ext_depth(donor_inode); 745 depth = ext_depth(donor_inode);
746 dext = donor_path[depth].p_ext; 746 dext = donor_path[depth].p_ext;
747 tmp_dext = *dext; 747 tmp_dext = *dext;
748 748
749 *err = mext_calc_swap_extents(&tmp_dext, &tmp_oext, orig_off, 749 *err = mext_calc_swap_extents(&tmp_dext, &tmp_oext, orig_off,
750 donor_off, count - replaced_count); 750 donor_off, count - replaced_count);
751 if (*err) 751 if (*err)
752 goto out; 752 goto out;
753 } 753 }
754 754
755 out: 755 out:
756 if (orig_path) { 756 if (orig_path) {
757 ext4_ext_drop_refs(orig_path); 757 ext4_ext_drop_refs(orig_path);
758 kfree(orig_path); 758 kfree(orig_path);
759 } 759 }
760 if (donor_path) { 760 if (donor_path) {
761 ext4_ext_drop_refs(donor_path); 761 ext4_ext_drop_refs(donor_path);
762 kfree(donor_path); 762 kfree(donor_path);
763 } 763 }
764 764
765 ext4_ext_invalidate_cache(orig_inode); 765 ext4_ext_invalidate_cache(orig_inode);
766 ext4_ext_invalidate_cache(donor_inode); 766 ext4_ext_invalidate_cache(donor_inode);
767 767
768 double_up_write_data_sem(orig_inode, donor_inode); 768 double_up_write_data_sem(orig_inode, donor_inode);
769 769
770 return replaced_count; 770 return replaced_count;
771 } 771 }
772 772
773 /** 773 /**
774 * move_extent_per_page - Move extent data per page 774 * move_extent_per_page - Move extent data per page
775 * 775 *
776 * @o_filp: file structure of original file 776 * @o_filp: file structure of original file
777 * @donor_inode: donor inode 777 * @donor_inode: donor inode
778 * @orig_page_offset: page index on original file 778 * @orig_page_offset: page index on original file
779 * @data_offset_in_page: block index where data swapping starts 779 * @data_offset_in_page: block index where data swapping starts
780 * @block_len_in_page: the number of blocks to be swapped 780 * @block_len_in_page: the number of blocks to be swapped
781 * @uninit: orig extent is uninitialized or not 781 * @uninit: orig extent is uninitialized or not
782 * @err: pointer to save return value 782 * @err: pointer to save return value
783 * 783 *
784 * Save the data in original inode blocks and replace original inode extents 784 * Save the data in original inode blocks and replace original inode extents
785 * with donor inode extents by calling mext_replace_branches(). 785 * with donor inode extents by calling mext_replace_branches().
786 * Finally, write out the saved data in new original inode blocks. Return 786 * Finally, write out the saved data in new original inode blocks. Return
787 * replaced block count. 787 * replaced block count.
788 */ 788 */
789 static int 789 static int
790 move_extent_per_page(struct file *o_filp, struct inode *donor_inode, 790 move_extent_per_page(struct file *o_filp, struct inode *donor_inode,
791 pgoff_t orig_page_offset, int data_offset_in_page, 791 pgoff_t orig_page_offset, int data_offset_in_page,
792 int block_len_in_page, int uninit, int *err) 792 int block_len_in_page, int uninit, int *err)
793 { 793 {
794 struct inode *orig_inode = o_filp->f_dentry->d_inode; 794 struct inode *orig_inode = o_filp->f_dentry->d_inode;
795 struct address_space *mapping = orig_inode->i_mapping; 795 struct address_space *mapping = orig_inode->i_mapping;
796 struct buffer_head *bh; 796 struct buffer_head *bh;
797 struct page *page = NULL; 797 struct page *page = NULL;
798 const struct address_space_operations *a_ops = mapping->a_ops; 798 const struct address_space_operations *a_ops = mapping->a_ops;
799 handle_t *handle; 799 handle_t *handle;
800 ext4_lblk_t orig_blk_offset; 800 ext4_lblk_t orig_blk_offset;
801 long long offs = orig_page_offset << PAGE_CACHE_SHIFT; 801 long long offs = orig_page_offset << PAGE_CACHE_SHIFT;
802 unsigned long blocksize = orig_inode->i_sb->s_blocksize; 802 unsigned long blocksize = orig_inode->i_sb->s_blocksize;
803 unsigned int w_flags = 0; 803 unsigned int w_flags = 0;
804 unsigned int tmp_data_size, data_size, replaced_size; 804 unsigned int tmp_data_size, data_size, replaced_size;
805 void *fsdata; 805 void *fsdata;
806 int i, jblocks; 806 int i, jblocks;
807 int err2 = 0; 807 int err2 = 0;
808 int replaced_count = 0; 808 int replaced_count = 0;
809 int blocks_per_page = PAGE_CACHE_SIZE >> orig_inode->i_blkbits; 809 int blocks_per_page = PAGE_CACHE_SIZE >> orig_inode->i_blkbits;
810 810
811 /* 811 /*
812 * It needs twice the amount of ordinary journal buffers because 812 * It needs twice the amount of ordinary journal buffers because
813 * inode and donor_inode may change each different metadata blocks. 813 * inode and donor_inode may change each different metadata blocks.
814 */ 814 */
815 jblocks = ext4_writepage_trans_blocks(orig_inode) * 2; 815 jblocks = ext4_writepage_trans_blocks(orig_inode) * 2;
816 handle = ext4_journal_start(orig_inode, jblocks); 816 handle = ext4_journal_start(orig_inode, jblocks);
817 if (IS_ERR(handle)) { 817 if (IS_ERR(handle)) {
818 *err = PTR_ERR(handle); 818 *err = PTR_ERR(handle);
819 return 0; 819 return 0;
820 } 820 }
821 821
822 if (segment_eq(get_fs(), KERNEL_DS)) 822 if (segment_eq(get_fs(), KERNEL_DS))
823 w_flags |= AOP_FLAG_UNINTERRUPTIBLE; 823 w_flags |= AOP_FLAG_UNINTERRUPTIBLE;
824 824
825 orig_blk_offset = orig_page_offset * blocks_per_page + 825 orig_blk_offset = orig_page_offset * blocks_per_page +
826 data_offset_in_page; 826 data_offset_in_page;
827 827
828 /* 828 /*
829 * If orig extent is uninitialized one, 829 * If orig extent is uninitialized one,
830 * it's not necessary force the page into memory 830 * it's not necessary force the page into memory
831 * and then force it to be written out again. 831 * and then force it to be written out again.
832 * Just swap data blocks between orig and donor. 832 * Just swap data blocks between orig and donor.
833 */ 833 */
834 if (uninit) { 834 if (uninit) {
835 replaced_count = mext_replace_branches(handle, orig_inode, 835 replaced_count = mext_replace_branches(handle, orig_inode,
836 donor_inode, orig_blk_offset, 836 donor_inode, orig_blk_offset,
837 block_len_in_page, err); 837 block_len_in_page, err);
838 goto out2; 838 goto out2;
839 } 839 }
840 840
841 offs = (long long)orig_blk_offset << orig_inode->i_blkbits; 841 offs = (long long)orig_blk_offset << orig_inode->i_blkbits;
842 842
843 /* Calculate data_size */ 843 /* Calculate data_size */
844 if ((orig_blk_offset + block_len_in_page - 1) == 844 if ((orig_blk_offset + block_len_in_page - 1) ==
845 ((orig_inode->i_size - 1) >> orig_inode->i_blkbits)) { 845 ((orig_inode->i_size - 1) >> orig_inode->i_blkbits)) {
846 /* Replace the last block */ 846 /* Replace the last block */
847 tmp_data_size = orig_inode->i_size & (blocksize - 1); 847 tmp_data_size = orig_inode->i_size & (blocksize - 1);
848 /* 848 /*
849 * If data_size equal zero, it shows data_size is multiples of 849 * If data_size equal zero, it shows data_size is multiples of
850 * blocksize. So we set appropriate value. 850 * blocksize. So we set appropriate value.
851 */ 851 */
852 if (tmp_data_size == 0) 852 if (tmp_data_size == 0)
853 tmp_data_size = blocksize; 853 tmp_data_size = blocksize;
854 854
855 data_size = tmp_data_size + 855 data_size = tmp_data_size +
856 ((block_len_in_page - 1) << orig_inode->i_blkbits); 856 ((block_len_in_page - 1) << orig_inode->i_blkbits);
857 } else 857 } else
858 data_size = block_len_in_page << orig_inode->i_blkbits; 858 data_size = block_len_in_page << orig_inode->i_blkbits;
859 859
860 replaced_size = data_size; 860 replaced_size = data_size;
861 861
862 *err = a_ops->write_begin(o_filp, mapping, offs, data_size, w_flags, 862 *err = a_ops->write_begin(o_filp, mapping, offs, data_size, w_flags,
863 &page, &fsdata); 863 &page, &fsdata);
864 if (unlikely(*err < 0)) 864 if (unlikely(*err < 0))
865 goto out; 865 goto out;
866 866
867 if (!PageUptodate(page)) { 867 if (!PageUptodate(page)) {
868 mapping->a_ops->readpage(o_filp, page); 868 mapping->a_ops->readpage(o_filp, page);
869 lock_page(page); 869 lock_page(page);
870 } 870 }
871 871
872 /* 872 /*
873 * try_to_release_page() doesn't call releasepage in writeback mode. 873 * try_to_release_page() doesn't call releasepage in writeback mode.
874 * We should care about the order of writing to the same file 874 * We should care about the order of writing to the same file
875 * by multiple move extent processes. 875 * by multiple move extent processes.
876 * It needs to call wait_on_page_writeback() to wait for the 876 * It needs to call wait_on_page_writeback() to wait for the
877 * writeback of the page. 877 * writeback of the page.
878 */ 878 */
879 if (PageWriteback(page)) 879 wait_on_page_writeback(page);
880 wait_on_page_writeback(page);
881 880
882 /* Release old bh and drop refs */ 881 /* Release old bh and drop refs */
883 try_to_release_page(page, 0); 882 try_to_release_page(page, 0);
884 883
885 replaced_count = mext_replace_branches(handle, orig_inode, donor_inode, 884 replaced_count = mext_replace_branches(handle, orig_inode, donor_inode,
886 orig_blk_offset, block_len_in_page, 885 orig_blk_offset, block_len_in_page,
887 &err2); 886 &err2);
888 if (err2) { 887 if (err2) {
889 if (replaced_count) { 888 if (replaced_count) {
890 block_len_in_page = replaced_count; 889 block_len_in_page = replaced_count;
891 replaced_size = 890 replaced_size =
892 block_len_in_page << orig_inode->i_blkbits; 891 block_len_in_page << orig_inode->i_blkbits;
893 } else 892 } else
894 goto out; 893 goto out;
895 } 894 }
896 895
897 if (!page_has_buffers(page)) 896 if (!page_has_buffers(page))
898 create_empty_buffers(page, 1 << orig_inode->i_blkbits, 0); 897 create_empty_buffers(page, 1 << orig_inode->i_blkbits, 0);
899 898
900 bh = page_buffers(page); 899 bh = page_buffers(page);
901 for (i = 0; i < data_offset_in_page; i++) 900 for (i = 0; i < data_offset_in_page; i++)
902 bh = bh->b_this_page; 901 bh = bh->b_this_page;
903 902
904 for (i = 0; i < block_len_in_page; i++) { 903 for (i = 0; i < block_len_in_page; i++) {
905 *err = ext4_get_block(orig_inode, 904 *err = ext4_get_block(orig_inode,
906 (sector_t)(orig_blk_offset + i), bh, 0); 905 (sector_t)(orig_blk_offset + i), bh, 0);
907 if (*err < 0) 906 if (*err < 0)
908 goto out; 907 goto out;
909 908
910 if (bh->b_this_page != NULL) 909 if (bh->b_this_page != NULL)
911 bh = bh->b_this_page; 910 bh = bh->b_this_page;
912 } 911 }
913 912
914 *err = a_ops->write_end(o_filp, mapping, offs, data_size, replaced_size, 913 *err = a_ops->write_end(o_filp, mapping, offs, data_size, replaced_size,
915 page, fsdata); 914 page, fsdata);
916 page = NULL; 915 page = NULL;
917 916
918 out: 917 out:
919 if (unlikely(page)) { 918 if (unlikely(page)) {
920 if (PageLocked(page)) 919 if (PageLocked(page))
921 unlock_page(page); 920 unlock_page(page);
922 page_cache_release(page); 921 page_cache_release(page);
923 ext4_journal_stop(handle); 922 ext4_journal_stop(handle);
924 } 923 }
925 out2: 924 out2:
926 ext4_journal_stop(handle); 925 ext4_journal_stop(handle);
927 926
928 if (err2) 927 if (err2)
929 *err = err2; 928 *err = err2;
930 929
931 return replaced_count; 930 return replaced_count;
932 } 931 }
933 932
934 /** 933 /**
935 * mext_check_arguments - Check whether move extent can be done 934 * mext_check_arguments - Check whether move extent can be done
936 * 935 *
937 * @orig_inode: original inode 936 * @orig_inode: original inode
938 * @donor_inode: donor inode 937 * @donor_inode: donor inode
939 * @orig_start: logical start offset in block for orig 938 * @orig_start: logical start offset in block for orig
940 * @donor_start: logical start offset in block for donor 939 * @donor_start: logical start offset in block for donor
941 * @len: the number of blocks to be moved 940 * @len: the number of blocks to be moved
942 * 941 *
943 * Check the arguments of ext4_move_extents() whether the files can be 942 * Check the arguments of ext4_move_extents() whether the files can be
944 * exchanged with each other. 943 * exchanged with each other.
945 * Return 0 on success, or a negative error value on failure. 944 * Return 0 on success, or a negative error value on failure.
946 */ 945 */
947 static int 946 static int
948 mext_check_arguments(struct inode *orig_inode, 947 mext_check_arguments(struct inode *orig_inode,
949 struct inode *donor_inode, __u64 orig_start, 948 struct inode *donor_inode, __u64 orig_start,
950 __u64 donor_start, __u64 *len) 949 __u64 donor_start, __u64 *len)
951 { 950 {
952 ext4_lblk_t orig_blocks, donor_blocks; 951 ext4_lblk_t orig_blocks, donor_blocks;
953 unsigned int blkbits = orig_inode->i_blkbits; 952 unsigned int blkbits = orig_inode->i_blkbits;
954 unsigned int blocksize = 1 << blkbits; 953 unsigned int blocksize = 1 << blkbits;
955 954
956 if (donor_inode->i_mode & (S_ISUID|S_ISGID)) { 955 if (donor_inode->i_mode & (S_ISUID|S_ISGID)) {
957 ext4_debug("ext4 move extent: suid or sgid is set" 956 ext4_debug("ext4 move extent: suid or sgid is set"
958 " to donor file [ino:orig %lu, donor %lu]\n", 957 " to donor file [ino:orig %lu, donor %lu]\n",
959 orig_inode->i_ino, donor_inode->i_ino); 958 orig_inode->i_ino, donor_inode->i_ino);
960 return -EINVAL; 959 return -EINVAL;
961 } 960 }
962 961
963 if (IS_IMMUTABLE(donor_inode) || IS_APPEND(donor_inode)) 962 if (IS_IMMUTABLE(donor_inode) || IS_APPEND(donor_inode))
964 return -EPERM; 963 return -EPERM;
965 964
966 /* Ext4 move extent does not support swapfile */ 965 /* Ext4 move extent does not support swapfile */
967 if (IS_SWAPFILE(orig_inode) || IS_SWAPFILE(donor_inode)) { 966 if (IS_SWAPFILE(orig_inode) || IS_SWAPFILE(donor_inode)) {
968 ext4_debug("ext4 move extent: The argument files should " 967 ext4_debug("ext4 move extent: The argument files should "
969 "not be swapfile [ino:orig %lu, donor %lu]\n", 968 "not be swapfile [ino:orig %lu, donor %lu]\n",
970 orig_inode->i_ino, donor_inode->i_ino); 969 orig_inode->i_ino, donor_inode->i_ino);
971 return -EINVAL; 970 return -EINVAL;
972 } 971 }
973 972
974 /* Files should be in the same ext4 FS */ 973 /* Files should be in the same ext4 FS */
975 if (orig_inode->i_sb != donor_inode->i_sb) { 974 if (orig_inode->i_sb != donor_inode->i_sb) {
976 ext4_debug("ext4 move extent: The argument files " 975 ext4_debug("ext4 move extent: The argument files "
977 "should be in same FS [ino:orig %lu, donor %lu]\n", 976 "should be in same FS [ino:orig %lu, donor %lu]\n",
978 orig_inode->i_ino, donor_inode->i_ino); 977 orig_inode->i_ino, donor_inode->i_ino);
979 return -EINVAL; 978 return -EINVAL;
980 } 979 }
981 980
982 /* Ext4 move extent supports only extent based file */ 981 /* Ext4 move extent supports only extent based file */
983 if (!(ext4_test_inode_flag(orig_inode, EXT4_INODE_EXTENTS))) { 982 if (!(ext4_test_inode_flag(orig_inode, EXT4_INODE_EXTENTS))) {
984 ext4_debug("ext4 move extent: orig file is not extents " 983 ext4_debug("ext4 move extent: orig file is not extents "
985 "based file [ino:orig %lu]\n", orig_inode->i_ino); 984 "based file [ino:orig %lu]\n", orig_inode->i_ino);
986 return -EOPNOTSUPP; 985 return -EOPNOTSUPP;
987 } else if (!(ext4_test_inode_flag(donor_inode, EXT4_INODE_EXTENTS))) { 986 } else if (!(ext4_test_inode_flag(donor_inode, EXT4_INODE_EXTENTS))) {
988 ext4_debug("ext4 move extent: donor file is not extents " 987 ext4_debug("ext4 move extent: donor file is not extents "
989 "based file [ino:donor %lu]\n", donor_inode->i_ino); 988 "based file [ino:donor %lu]\n", donor_inode->i_ino);
990 return -EOPNOTSUPP; 989 return -EOPNOTSUPP;
991 } 990 }
992 991
993 if ((!orig_inode->i_size) || (!donor_inode->i_size)) { 992 if ((!orig_inode->i_size) || (!donor_inode->i_size)) {
994 ext4_debug("ext4 move extent: File size is 0 byte\n"); 993 ext4_debug("ext4 move extent: File size is 0 byte\n");
995 return -EINVAL; 994 return -EINVAL;
996 } 995 }
997 996
998 /* Start offset should be same */ 997 /* Start offset should be same */
999 if (orig_start != donor_start) { 998 if (orig_start != donor_start) {
1000 ext4_debug("ext4 move extent: orig and donor's start " 999 ext4_debug("ext4 move extent: orig and donor's start "
1001 "offset are not same [ino:orig %lu, donor %lu]\n", 1000 "offset are not same [ino:orig %lu, donor %lu]\n",
1002 orig_inode->i_ino, donor_inode->i_ino); 1001 orig_inode->i_ino, donor_inode->i_ino);
1003 return -EINVAL; 1002 return -EINVAL;
1004 } 1003 }
1005 1004
1006 if ((orig_start > EXT_MAX_BLOCK) || 1005 if ((orig_start > EXT_MAX_BLOCK) ||
1007 (donor_start > EXT_MAX_BLOCK) || 1006 (donor_start > EXT_MAX_BLOCK) ||
1008 (*len > EXT_MAX_BLOCK) || 1007 (*len > EXT_MAX_BLOCK) ||
1009 (orig_start + *len > EXT_MAX_BLOCK)) { 1008 (orig_start + *len > EXT_MAX_BLOCK)) {
1010 ext4_debug("ext4 move extent: Can't handle over [%u] blocks " 1009 ext4_debug("ext4 move extent: Can't handle over [%u] blocks "
1011 "[ino:orig %lu, donor %lu]\n", EXT_MAX_BLOCK, 1010 "[ino:orig %lu, donor %lu]\n", EXT_MAX_BLOCK,
1012 orig_inode->i_ino, donor_inode->i_ino); 1011 orig_inode->i_ino, donor_inode->i_ino);
1013 return -EINVAL; 1012 return -EINVAL;
1014 } 1013 }
1015 1014
1016 if (orig_inode->i_size > donor_inode->i_size) { 1015 if (orig_inode->i_size > donor_inode->i_size) {
1017 donor_blocks = (donor_inode->i_size + blocksize - 1) >> blkbits; 1016 donor_blocks = (donor_inode->i_size + blocksize - 1) >> blkbits;
1018 /* TODO: eliminate this artificial restriction */ 1017 /* TODO: eliminate this artificial restriction */
1019 if (orig_start >= donor_blocks) { 1018 if (orig_start >= donor_blocks) {
1020 ext4_debug("ext4 move extent: orig start offset " 1019 ext4_debug("ext4 move extent: orig start offset "
1021 "[%llu] should be less than donor file blocks " 1020 "[%llu] should be less than donor file blocks "
1022 "[%u] [ino:orig %lu, donor %lu]\n", 1021 "[%u] [ino:orig %lu, donor %lu]\n",
1023 orig_start, donor_blocks, 1022 orig_start, donor_blocks,
1024 orig_inode->i_ino, donor_inode->i_ino); 1023 orig_inode->i_ino, donor_inode->i_ino);
1025 return -EINVAL; 1024 return -EINVAL;
1026 } 1025 }
1027 1026
1028 /* TODO: eliminate this artificial restriction */ 1027 /* TODO: eliminate this artificial restriction */
1029 if (orig_start + *len > donor_blocks) { 1028 if (orig_start + *len > donor_blocks) {
1030 ext4_debug("ext4 move extent: End offset [%llu] should " 1029 ext4_debug("ext4 move extent: End offset [%llu] should "
1031 "be less than donor file blocks [%u]." 1030 "be less than donor file blocks [%u]."
1032 "So adjust length from %llu to %llu " 1031 "So adjust length from %llu to %llu "
1033 "[ino:orig %lu, donor %lu]\n", 1032 "[ino:orig %lu, donor %lu]\n",
1034 orig_start + *len, donor_blocks, 1033 orig_start + *len, donor_blocks,
1035 *len, donor_blocks - orig_start, 1034 *len, donor_blocks - orig_start,
1036 orig_inode->i_ino, donor_inode->i_ino); 1035 orig_inode->i_ino, donor_inode->i_ino);
1037 *len = donor_blocks - orig_start; 1036 *len = donor_blocks - orig_start;
1038 } 1037 }
1039 } else { 1038 } else {
1040 orig_blocks = (orig_inode->i_size + blocksize - 1) >> blkbits; 1039 orig_blocks = (orig_inode->i_size + blocksize - 1) >> blkbits;
1041 if (orig_start >= orig_blocks) { 1040 if (orig_start >= orig_blocks) {
1042 ext4_debug("ext4 move extent: start offset [%llu] " 1041 ext4_debug("ext4 move extent: start offset [%llu] "
1043 "should be less than original file blocks " 1042 "should be less than original file blocks "
1044 "[%u] [ino:orig %lu, donor %lu]\n", 1043 "[%u] [ino:orig %lu, donor %lu]\n",
1045 orig_start, orig_blocks, 1044 orig_start, orig_blocks,
1046 orig_inode->i_ino, donor_inode->i_ino); 1045 orig_inode->i_ino, donor_inode->i_ino);
1047 return -EINVAL; 1046 return -EINVAL;
1048 } 1047 }
1049 1048
1050 if (orig_start + *len > orig_blocks) { 1049 if (orig_start + *len > orig_blocks) {
1051 ext4_debug("ext4 move extent: Adjust length " 1050 ext4_debug("ext4 move extent: Adjust length "
1052 "from %llu to %llu. Because it should be " 1051 "from %llu to %llu. Because it should be "
1053 "less than original file blocks " 1052 "less than original file blocks "
1054 "[ino:orig %lu, donor %lu]\n", 1053 "[ino:orig %lu, donor %lu]\n",
1055 *len, orig_blocks - orig_start, 1054 *len, orig_blocks - orig_start,
1056 orig_inode->i_ino, donor_inode->i_ino); 1055 orig_inode->i_ino, donor_inode->i_ino);
1057 *len = orig_blocks - orig_start; 1056 *len = orig_blocks - orig_start;
1058 } 1057 }
1059 } 1058 }
1060 1059
1061 if (!*len) { 1060 if (!*len) {
1062 ext4_debug("ext4 move extent: len should not be 0 " 1061 ext4_debug("ext4 move extent: len should not be 0 "
1063 "[ino:orig %lu, donor %lu]\n", orig_inode->i_ino, 1062 "[ino:orig %lu, donor %lu]\n", orig_inode->i_ino,
1064 donor_inode->i_ino); 1063 donor_inode->i_ino);
1065 return -EINVAL; 1064 return -EINVAL;
1066 } 1065 }
1067 1066
1068 return 0; 1067 return 0;
1069 } 1068 }
1070 1069
1071 /** 1070 /**
1072 * mext_inode_double_lock - Lock i_mutex on both @inode1 and @inode2 1071 * mext_inode_double_lock - Lock i_mutex on both @inode1 and @inode2
1073 * 1072 *
1074 * @inode1: the inode structure 1073 * @inode1: the inode structure
1075 * @inode2: the inode structure 1074 * @inode2: the inode structure
1076 * 1075 *
1077 * Lock two inodes' i_mutex by i_ino order. 1076 * Lock two inodes' i_mutex by i_ino order.
1078 * If inode1 or inode2 is NULL, return -EIO. Otherwise, return 0. 1077 * If inode1 or inode2 is NULL, return -EIO. Otherwise, return 0.
1079 */ 1078 */
1080 static int 1079 static int
1081 mext_inode_double_lock(struct inode *inode1, struct inode *inode2) 1080 mext_inode_double_lock(struct inode *inode1, struct inode *inode2)
1082 { 1081 {
1083 int ret = 0; 1082 int ret = 0;
1084 1083
1085 BUG_ON(inode1 == NULL && inode2 == NULL); 1084 BUG_ON(inode1 == NULL && inode2 == NULL);
1086 1085
1087 ret = mext_check_null_inode(inode1, inode2, __func__, __LINE__); 1086 ret = mext_check_null_inode(inode1, inode2, __func__, __LINE__);
1088 if (ret < 0) 1087 if (ret < 0)
1089 goto out; 1088 goto out;
1090 1089
1091 if (inode1 == inode2) { 1090 if (inode1 == inode2) {
1092 mutex_lock(&inode1->i_mutex); 1091 mutex_lock(&inode1->i_mutex);
1093 goto out; 1092 goto out;
1094 } 1093 }
1095 1094
1096 if (inode1->i_ino < inode2->i_ino) { 1095 if (inode1->i_ino < inode2->i_ino) {
1097 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT); 1096 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1098 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD); 1097 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1099 } else { 1098 } else {
1100 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT); 1099 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1101 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD); 1100 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1102 } 1101 }
1103 1102
1104 out: 1103 out:
1105 return ret; 1104 return ret;
1106 } 1105 }
1107 1106
1108 /** 1107 /**
1109 * mext_inode_double_unlock - Release i_mutex on both @inode1 and @inode2 1108 * mext_inode_double_unlock - Release i_mutex on both @inode1 and @inode2
1110 * 1109 *
1111 * @inode1: the inode that is released first 1110 * @inode1: the inode that is released first
1112 * @inode2: the inode that is released second 1111 * @inode2: the inode that is released second
1113 * 1112 *
1114 * If inode1 or inode2 is NULL, return -EIO. Otherwise, return 0. 1113 * If inode1 or inode2 is NULL, return -EIO. Otherwise, return 0.
1115 */ 1114 */
1116 1115
1117 static int 1116 static int
1118 mext_inode_double_unlock(struct inode *inode1, struct inode *inode2) 1117 mext_inode_double_unlock(struct inode *inode1, struct inode *inode2)
1119 { 1118 {
1120 int ret = 0; 1119 int ret = 0;
1121 1120
1122 BUG_ON(inode1 == NULL && inode2 == NULL); 1121 BUG_ON(inode1 == NULL && inode2 == NULL);
1123 1122
1124 ret = mext_check_null_inode(inode1, inode2, __func__, __LINE__); 1123 ret = mext_check_null_inode(inode1, inode2, __func__, __LINE__);
1125 if (ret < 0) 1124 if (ret < 0)
1126 goto out; 1125 goto out;
1127 1126
1128 if (inode1) 1127 if (inode1)
1129 mutex_unlock(&inode1->i_mutex); 1128 mutex_unlock(&inode1->i_mutex);
1130 1129
1131 if (inode2 && inode2 != inode1) 1130 if (inode2 && inode2 != inode1)
1132 mutex_unlock(&inode2->i_mutex); 1131 mutex_unlock(&inode2->i_mutex);
1133 1132
1134 out: 1133 out:
1135 return ret; 1134 return ret;
1136 } 1135 }
1137 1136
1138 /** 1137 /**
1139 * ext4_move_extents - Exchange the specified range of a file 1138 * ext4_move_extents - Exchange the specified range of a file
1140 * 1139 *
1141 * @o_filp: file structure of the original file 1140 * @o_filp: file structure of the original file
1142 * @d_filp: file structure of the donor file 1141 * @d_filp: file structure of the donor file
1143 * @orig_start: start offset in block for orig 1142 * @orig_start: start offset in block for orig
1144 * @donor_start: start offset in block for donor 1143 * @donor_start: start offset in block for donor
1145 * @len: the number of blocks to be moved 1144 * @len: the number of blocks to be moved
1146 * @moved_len: moved block length 1145 * @moved_len: moved block length
1147 * 1146 *
1148 * This function returns 0 and moved block length is set in moved_len 1147 * This function returns 0 and moved block length is set in moved_len
1149 * if succeed, otherwise returns error value. 1148 * if succeed, otherwise returns error value.
1150 * 1149 *
1151 * Note: ext4_move_extents() proceeds the following order. 1150 * Note: ext4_move_extents() proceeds the following order.
1152 * 1:ext4_move_extents() calculates the last block number of moving extent 1151 * 1:ext4_move_extents() calculates the last block number of moving extent
1153 * function by the start block number (orig_start) and the number of blocks 1152 * function by the start block number (orig_start) and the number of blocks
1154 * to be moved (len) specified as arguments. 1153 * to be moved (len) specified as arguments.
1155 * If the {orig, donor}_start points a hole, the extent's start offset 1154 * If the {orig, donor}_start points a hole, the extent's start offset
1156 * pointed by ext_cur (current extent), holecheck_path, orig_path are set 1155 * pointed by ext_cur (current extent), holecheck_path, orig_path are set
1157 * after hole behind. 1156 * after hole behind.
1158 * 2:Continue step 3 to step 5, until the holecheck_path points to last_extent 1157 * 2:Continue step 3 to step 5, until the holecheck_path points to last_extent
1159 * or the ext_cur exceeds the block_end which is last logical block number. 1158 * or the ext_cur exceeds the block_end which is last logical block number.
1160 * 3:To get the length of continues area, call mext_next_extent() 1159 * 3:To get the length of continues area, call mext_next_extent()
1161 * specified with the ext_cur (initial value is holecheck_path) re-cursive, 1160 * specified with the ext_cur (initial value is holecheck_path) re-cursive,
1162 * until find un-continuous extent, the start logical block number exceeds 1161 * until find un-continuous extent, the start logical block number exceeds
1163 * the block_end or the extent points to the last extent. 1162 * the block_end or the extent points to the last extent.
1164 * 4:Exchange the original inode data with donor inode data 1163 * 4:Exchange the original inode data with donor inode data
1165 * from orig_page_offset to seq_end_page. 1164 * from orig_page_offset to seq_end_page.
1166 * The start indexes of data are specified as arguments. 1165 * The start indexes of data are specified as arguments.
1167 * That of the original inode is orig_page_offset, 1166 * That of the original inode is orig_page_offset,
1168 * and the donor inode is also orig_page_offset 1167 * and the donor inode is also orig_page_offset
1169 * (To easily handle blocksize != pagesize case, the offset for the 1168 * (To easily handle blocksize != pagesize case, the offset for the
1170 * donor inode is block unit). 1169 * donor inode is block unit).
1171 * 5:Update holecheck_path and orig_path to points a next proceeding extent, 1170 * 5:Update holecheck_path and orig_path to points a next proceeding extent,
1172 * then returns to step 2. 1171 * then returns to step 2.
1173 * 6:Release holecheck_path, orig_path and set the len to moved_len 1172 * 6:Release holecheck_path, orig_path and set the len to moved_len
1174 * which shows the number of moved blocks. 1173 * which shows the number of moved blocks.
1175 * The moved_len is useful for the command to calculate the file offset 1174 * The moved_len is useful for the command to calculate the file offset
1176 * for starting next move extent ioctl. 1175 * for starting next move extent ioctl.
1177 * 7:Return 0 on success, or a negative error value on failure. 1176 * 7:Return 0 on success, or a negative error value on failure.
1178 */ 1177 */
1179 int 1178 int
1180 ext4_move_extents(struct file *o_filp, struct file *d_filp, 1179 ext4_move_extents(struct file *o_filp, struct file *d_filp,
1181 __u64 orig_start, __u64 donor_start, __u64 len, 1180 __u64 orig_start, __u64 donor_start, __u64 len,
1182 __u64 *moved_len) 1181 __u64 *moved_len)
1183 { 1182 {
1184 struct inode *orig_inode = o_filp->f_dentry->d_inode; 1183 struct inode *orig_inode = o_filp->f_dentry->d_inode;
1185 struct inode *donor_inode = d_filp->f_dentry->d_inode; 1184 struct inode *donor_inode = d_filp->f_dentry->d_inode;
1186 struct ext4_ext_path *orig_path = NULL, *holecheck_path = NULL; 1185 struct ext4_ext_path *orig_path = NULL, *holecheck_path = NULL;
1187 struct ext4_extent *ext_prev, *ext_cur, *ext_dummy; 1186 struct ext4_extent *ext_prev, *ext_cur, *ext_dummy;
1188 ext4_lblk_t block_start = orig_start; 1187 ext4_lblk_t block_start = orig_start;
1189 ext4_lblk_t block_end, seq_start, add_blocks, file_end, seq_blocks = 0; 1188 ext4_lblk_t block_end, seq_start, add_blocks, file_end, seq_blocks = 0;
1190 ext4_lblk_t rest_blocks; 1189 ext4_lblk_t rest_blocks;
1191 pgoff_t orig_page_offset = 0, seq_end_page; 1190 pgoff_t orig_page_offset = 0, seq_end_page;
1192 int ret1, ret2, depth, last_extent = 0; 1191 int ret1, ret2, depth, last_extent = 0;
1193 int blocks_per_page = PAGE_CACHE_SIZE >> orig_inode->i_blkbits; 1192 int blocks_per_page = PAGE_CACHE_SIZE >> orig_inode->i_blkbits;
1194 int data_offset_in_page; 1193 int data_offset_in_page;
1195 int block_len_in_page; 1194 int block_len_in_page;
1196 int uninit; 1195 int uninit;
1197 1196
1198 /* orig and donor should be different file */ 1197 /* orig and donor should be different file */
1199 if (orig_inode->i_ino == donor_inode->i_ino) { 1198 if (orig_inode->i_ino == donor_inode->i_ino) {
1200 ext4_debug("ext4 move extent: The argument files should not " 1199 ext4_debug("ext4 move extent: The argument files should not "
1201 "be same file [ino:orig %lu, donor %lu]\n", 1200 "be same file [ino:orig %lu, donor %lu]\n",
1202 orig_inode->i_ino, donor_inode->i_ino); 1201 orig_inode->i_ino, donor_inode->i_ino);
1203 return -EINVAL; 1202 return -EINVAL;
1204 } 1203 }
1205 1204
1206 /* Regular file check */ 1205 /* Regular file check */
1207 if (!S_ISREG(orig_inode->i_mode) || !S_ISREG(donor_inode->i_mode)) { 1206 if (!S_ISREG(orig_inode->i_mode) || !S_ISREG(donor_inode->i_mode)) {
1208 ext4_debug("ext4 move extent: The argument files should be " 1207 ext4_debug("ext4 move extent: The argument files should be "
1209 "regular file [ino:orig %lu, donor %lu]\n", 1208 "regular file [ino:orig %lu, donor %lu]\n",
1210 orig_inode->i_ino, donor_inode->i_ino); 1209 orig_inode->i_ino, donor_inode->i_ino);
1211 return -EINVAL; 1210 return -EINVAL;
1212 } 1211 }
1213 1212
1214 /* Protect orig and donor inodes against a truncate */ 1213 /* Protect orig and donor inodes against a truncate */
1215 ret1 = mext_inode_double_lock(orig_inode, donor_inode); 1214 ret1 = mext_inode_double_lock(orig_inode, donor_inode);
1216 if (ret1 < 0) 1215 if (ret1 < 0)
1217 return ret1; 1216 return ret1;
1218 1217
1219 /* Protect extent tree against block allocations via delalloc */ 1218 /* Protect extent tree against block allocations via delalloc */
1220 double_down_write_data_sem(orig_inode, donor_inode); 1219 double_down_write_data_sem(orig_inode, donor_inode);
1221 /* Check the filesystem environment whether move_extent can be done */ 1220 /* Check the filesystem environment whether move_extent can be done */
1222 ret1 = mext_check_arguments(orig_inode, donor_inode, orig_start, 1221 ret1 = mext_check_arguments(orig_inode, donor_inode, orig_start,
1223 donor_start, &len); 1222 donor_start, &len);
1224 if (ret1) 1223 if (ret1)
1225 goto out; 1224 goto out;
1226 1225
1227 file_end = (i_size_read(orig_inode) - 1) >> orig_inode->i_blkbits; 1226 file_end = (i_size_read(orig_inode) - 1) >> orig_inode->i_blkbits;
1228 block_end = block_start + len - 1; 1227 block_end = block_start + len - 1;
1229 if (file_end < block_end) 1228 if (file_end < block_end)
1230 len -= block_end - file_end; 1229 len -= block_end - file_end;
1231 1230
1232 ret1 = get_ext_path(orig_inode, block_start, &orig_path); 1231 ret1 = get_ext_path(orig_inode, block_start, &orig_path);
1233 if (ret1) 1232 if (ret1)
1234 goto out; 1233 goto out;
1235 1234
1236 /* Get path structure to check the hole */ 1235 /* Get path structure to check the hole */
1237 ret1 = get_ext_path(orig_inode, block_start, &holecheck_path); 1236 ret1 = get_ext_path(orig_inode, block_start, &holecheck_path);
1238 if (ret1) 1237 if (ret1)
1239 goto out; 1238 goto out;
1240 1239
1241 depth = ext_depth(orig_inode); 1240 depth = ext_depth(orig_inode);
1242 ext_cur = holecheck_path[depth].p_ext; 1241 ext_cur = holecheck_path[depth].p_ext;
1243 1242
1244 /* 1243 /*
1245 * Get proper starting location of block replacement if block_start was 1244 * Get proper starting location of block replacement if block_start was
1246 * within the hole. 1245 * within the hole.
1247 */ 1246 */
1248 if (le32_to_cpu(ext_cur->ee_block) + 1247 if (le32_to_cpu(ext_cur->ee_block) +
1249 ext4_ext_get_actual_len(ext_cur) - 1 < block_start) { 1248 ext4_ext_get_actual_len(ext_cur) - 1 < block_start) {
1250 /* 1249 /*
1251 * The hole exists between extents or the tail of 1250 * The hole exists between extents or the tail of
1252 * original file. 1251 * original file.
1253 */ 1252 */
1254 last_extent = mext_next_extent(orig_inode, 1253 last_extent = mext_next_extent(orig_inode,
1255 holecheck_path, &ext_cur); 1254 holecheck_path, &ext_cur);
1256 if (last_extent < 0) { 1255 if (last_extent < 0) {
1257 ret1 = last_extent; 1256 ret1 = last_extent;
1258 goto out; 1257 goto out;
1259 } 1258 }
1260 last_extent = mext_next_extent(orig_inode, orig_path, 1259 last_extent = mext_next_extent(orig_inode, orig_path,
1261 &ext_dummy); 1260 &ext_dummy);
1262 if (last_extent < 0) { 1261 if (last_extent < 0) {
1263 ret1 = last_extent; 1262 ret1 = last_extent;
1264 goto out; 1263 goto out;
1265 } 1264 }
1266 seq_start = le32_to_cpu(ext_cur->ee_block); 1265 seq_start = le32_to_cpu(ext_cur->ee_block);
1267 } else if (le32_to_cpu(ext_cur->ee_block) > block_start) 1266 } else if (le32_to_cpu(ext_cur->ee_block) > block_start)
1268 /* The hole exists at the beginning of original file. */ 1267 /* The hole exists at the beginning of original file. */
1269 seq_start = le32_to_cpu(ext_cur->ee_block); 1268 seq_start = le32_to_cpu(ext_cur->ee_block);
1270 else 1269 else
1271 seq_start = block_start; 1270 seq_start = block_start;
1272 1271
1273 /* No blocks within the specified range. */ 1272 /* No blocks within the specified range. */
1274 if (le32_to_cpu(ext_cur->ee_block) > block_end) { 1273 if (le32_to_cpu(ext_cur->ee_block) > block_end) {
1275 ext4_debug("ext4 move extent: The specified range of file " 1274 ext4_debug("ext4 move extent: The specified range of file "
1276 "may be the hole\n"); 1275 "may be the hole\n");
1277 ret1 = -EINVAL; 1276 ret1 = -EINVAL;
1278 goto out; 1277 goto out;
1279 } 1278 }
1280 1279
1281 /* Adjust start blocks */ 1280 /* Adjust start blocks */
1282 add_blocks = min(le32_to_cpu(ext_cur->ee_block) + 1281 add_blocks = min(le32_to_cpu(ext_cur->ee_block) +
1283 ext4_ext_get_actual_len(ext_cur), block_end + 1) - 1282 ext4_ext_get_actual_len(ext_cur), block_end + 1) -
1284 max(le32_to_cpu(ext_cur->ee_block), block_start); 1283 max(le32_to_cpu(ext_cur->ee_block), block_start);
1285 1284
1286 while (!last_extent && le32_to_cpu(ext_cur->ee_block) <= block_end) { 1285 while (!last_extent && le32_to_cpu(ext_cur->ee_block) <= block_end) {
1287 seq_blocks += add_blocks; 1286 seq_blocks += add_blocks;
1288 1287
1289 /* Adjust tail blocks */ 1288 /* Adjust tail blocks */
1290 if (seq_start + seq_blocks - 1 > block_end) 1289 if (seq_start + seq_blocks - 1 > block_end)
1291 seq_blocks = block_end - seq_start + 1; 1290 seq_blocks = block_end - seq_start + 1;
1292 1291
1293 ext_prev = ext_cur; 1292 ext_prev = ext_cur;
1294 last_extent = mext_next_extent(orig_inode, holecheck_path, 1293 last_extent = mext_next_extent(orig_inode, holecheck_path,
1295 &ext_cur); 1294 &ext_cur);
1296 if (last_extent < 0) { 1295 if (last_extent < 0) {
1297 ret1 = last_extent; 1296 ret1 = last_extent;
1298 break; 1297 break;
1299 } 1298 }
1300 add_blocks = ext4_ext_get_actual_len(ext_cur); 1299 add_blocks = ext4_ext_get_actual_len(ext_cur);
1301 1300
1302 /* 1301 /*
1303 * Extend the length of contiguous block (seq_blocks) 1302 * Extend the length of contiguous block (seq_blocks)
1304 * if extents are contiguous. 1303 * if extents are contiguous.
1305 */ 1304 */
1306 if (ext4_can_extents_be_merged(orig_inode, 1305 if (ext4_can_extents_be_merged(orig_inode,
1307 ext_prev, ext_cur) && 1306 ext_prev, ext_cur) &&
1308 block_end >= le32_to_cpu(ext_cur->ee_block) && 1307 block_end >= le32_to_cpu(ext_cur->ee_block) &&
1309 !last_extent) 1308 !last_extent)
1310 continue; 1309 continue;
1311 1310
1312 /* Is original extent is uninitialized */ 1311 /* Is original extent is uninitialized */
1313 uninit = ext4_ext_is_uninitialized(ext_prev); 1312 uninit = ext4_ext_is_uninitialized(ext_prev);
1314 1313
1315 data_offset_in_page = seq_start % blocks_per_page; 1314 data_offset_in_page = seq_start % blocks_per_page;
1316 1315
1317 /* 1316 /*
1318 * Calculate data blocks count that should be swapped 1317 * Calculate data blocks count that should be swapped
1319 * at the first page. 1318 * at the first page.
1320 */ 1319 */
1321 if (data_offset_in_page + seq_blocks > blocks_per_page) { 1320 if (data_offset_in_page + seq_blocks > blocks_per_page) {
1322 /* Swapped blocks are across pages */ 1321 /* Swapped blocks are across pages */
1323 block_len_in_page = 1322 block_len_in_page =
1324 blocks_per_page - data_offset_in_page; 1323 blocks_per_page - data_offset_in_page;
1325 } else { 1324 } else {
1326 /* Swapped blocks are in a page */ 1325 /* Swapped blocks are in a page */
1327 block_len_in_page = seq_blocks; 1326 block_len_in_page = seq_blocks;
1328 } 1327 }
1329 1328
1330 orig_page_offset = seq_start >> 1329 orig_page_offset = seq_start >>
1331 (PAGE_CACHE_SHIFT - orig_inode->i_blkbits); 1330 (PAGE_CACHE_SHIFT - orig_inode->i_blkbits);
1332 seq_end_page = (seq_start + seq_blocks - 1) >> 1331 seq_end_page = (seq_start + seq_blocks - 1) >>
1333 (PAGE_CACHE_SHIFT - orig_inode->i_blkbits); 1332 (PAGE_CACHE_SHIFT - orig_inode->i_blkbits);
1334 seq_start = le32_to_cpu(ext_cur->ee_block); 1333 seq_start = le32_to_cpu(ext_cur->ee_block);
1335 rest_blocks = seq_blocks; 1334 rest_blocks = seq_blocks;
1336 1335
1337 /* 1336 /*
1338 * Up semaphore to avoid following problems: 1337 * Up semaphore to avoid following problems:
1339 * a. transaction deadlock among ext4_journal_start, 1338 * a. transaction deadlock among ext4_journal_start,
1340 * ->write_begin via pagefault, and jbd2_journal_commit 1339 * ->write_begin via pagefault, and jbd2_journal_commit
1341 * b. racing with ->readpage, ->write_begin, and ext4_get_block 1340 * b. racing with ->readpage, ->write_begin, and ext4_get_block
1342 * in move_extent_per_page 1341 * in move_extent_per_page
1343 */ 1342 */
1344 double_up_write_data_sem(orig_inode, donor_inode); 1343 double_up_write_data_sem(orig_inode, donor_inode);
1345 1344
1346 while (orig_page_offset <= seq_end_page) { 1345 while (orig_page_offset <= seq_end_page) {
1347 1346
1348 /* Swap original branches with new branches */ 1347 /* Swap original branches with new branches */
1349 block_len_in_page = move_extent_per_page( 1348 block_len_in_page = move_extent_per_page(
1350 o_filp, donor_inode, 1349 o_filp, donor_inode,
1351 orig_page_offset, 1350 orig_page_offset,
1352 data_offset_in_page, 1351 data_offset_in_page,
1353 block_len_in_page, uninit, 1352 block_len_in_page, uninit,
1354 &ret1); 1353 &ret1);
1355 1354
1356 /* Count how many blocks we have exchanged */ 1355 /* Count how many blocks we have exchanged */
1357 *moved_len += block_len_in_page; 1356 *moved_len += block_len_in_page;
1358 if (ret1 < 0) 1357 if (ret1 < 0)
1359 break; 1358 break;
1360 if (*moved_len > len) { 1359 if (*moved_len > len) {
1361 EXT4_ERROR_INODE(orig_inode, 1360 EXT4_ERROR_INODE(orig_inode,
1362 "We replaced blocks too much! " 1361 "We replaced blocks too much! "
1363 "sum of replaced: %llu requested: %llu", 1362 "sum of replaced: %llu requested: %llu",
1364 *moved_len, len); 1363 *moved_len, len);
1365 ret1 = -EIO; 1364 ret1 = -EIO;
1366 break; 1365 break;
1367 } 1366 }
1368 1367
1369 orig_page_offset++; 1368 orig_page_offset++;
1370 data_offset_in_page = 0; 1369 data_offset_in_page = 0;
1371 rest_blocks -= block_len_in_page; 1370 rest_blocks -= block_len_in_page;
1372 if (rest_blocks > blocks_per_page) 1371 if (rest_blocks > blocks_per_page)
1373 block_len_in_page = blocks_per_page; 1372 block_len_in_page = blocks_per_page;
1374 else 1373 else
1375 block_len_in_page = rest_blocks; 1374 block_len_in_page = rest_blocks;
1376 } 1375 }
1377 1376
1378 double_down_write_data_sem(orig_inode, donor_inode); 1377 double_down_write_data_sem(orig_inode, donor_inode);
1379 if (ret1 < 0) 1378 if (ret1 < 0)
1380 break; 1379 break;
1381 1380
1382 /* Decrease buffer counter */ 1381 /* Decrease buffer counter */
1383 if (holecheck_path) 1382 if (holecheck_path)
1384 ext4_ext_drop_refs(holecheck_path); 1383 ext4_ext_drop_refs(holecheck_path);
1385 ret1 = get_ext_path(orig_inode, seq_start, &holecheck_path); 1384 ret1 = get_ext_path(orig_inode, seq_start, &holecheck_path);
1386 if (ret1) 1385 if (ret1)
1387 break; 1386 break;
1388 depth = holecheck_path->p_depth; 1387 depth = holecheck_path->p_depth;
1389 1388
1390 /* Decrease buffer counter */ 1389 /* Decrease buffer counter */
1391 if (orig_path) 1390 if (orig_path)
1392 ext4_ext_drop_refs(orig_path); 1391 ext4_ext_drop_refs(orig_path);
1393 ret1 = get_ext_path(orig_inode, seq_start, &orig_path); 1392 ret1 = get_ext_path(orig_inode, seq_start, &orig_path);
1394 if (ret1) 1393 if (ret1)
1395 break; 1394 break;
1396 1395
1397 ext_cur = holecheck_path[depth].p_ext; 1396 ext_cur = holecheck_path[depth].p_ext;
1398 add_blocks = ext4_ext_get_actual_len(ext_cur); 1397 add_blocks = ext4_ext_get_actual_len(ext_cur);
1399 seq_blocks = 0; 1398 seq_blocks = 0;
1400 1399
1401 } 1400 }
1402 out: 1401 out:
1403 if (*moved_len) { 1402 if (*moved_len) {
1404 ext4_discard_preallocations(orig_inode); 1403 ext4_discard_preallocations(orig_inode);
1405 ext4_discard_preallocations(donor_inode); 1404 ext4_discard_preallocations(donor_inode);
1406 } 1405 }
1407 1406
1408 if (orig_path) { 1407 if (orig_path) {
1409 ext4_ext_drop_refs(orig_path); 1408 ext4_ext_drop_refs(orig_path);
1410 kfree(orig_path); 1409 kfree(orig_path);
1411 } 1410 }
1412 if (holecheck_path) { 1411 if (holecheck_path) {
1413 ext4_ext_drop_refs(holecheck_path); 1412 ext4_ext_drop_refs(holecheck_path);
1414 kfree(holecheck_path); 1413 kfree(holecheck_path);
1415 } 1414 }
1416 double_up_write_data_sem(orig_inode, donor_inode); 1415 double_up_write_data_sem(orig_inode, donor_inode);
1417 ret2 = mext_inode_double_unlock(orig_inode, donor_inode); 1416 ret2 = mext_inode_double_unlock(orig_inode, donor_inode);
1418 1417
1419 if (ret1) 1418 if (ret1)
1420 return ret1; 1419 return ret1;
1421 else if (ret2) 1420 else if (ret2)
1422 return ret2; 1421 return ret2;
1423 1422
1424 return 0; 1423 return 0;
1425 } 1424 }
1426 1425