Commit 8a1c17574a01555e5d3fdf56d8d72969904c91ca
Committed by
Linus Torvalds
1 parent
498d0c5711
Exists in
master
and in
39 other branches
[PATCH] schedule_timeout_[un]interruptible() speedup
These functions don't need schedule_timeout()'s barrier. Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Showing 1 changed file with 6 additions and 3 deletions Inline Diff
kernel/timer.c
1 | /* | 1 | /* |
2 | * linux/kernel/timer.c | 2 | * linux/kernel/timer.c |
3 | * | 3 | * |
4 | * Kernel internal timers, kernel timekeeping, basic process system calls | 4 | * Kernel internal timers, kernel timekeeping, basic process system calls |
5 | * | 5 | * |
6 | * Copyright (C) 1991, 1992 Linus Torvalds | 6 | * Copyright (C) 1991, 1992 Linus Torvalds |
7 | * | 7 | * |
8 | * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. | 8 | * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. |
9 | * | 9 | * |
10 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 | 10 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 |
11 | * "A Kernel Model for Precision Timekeeping" by Dave Mills | 11 | * "A Kernel Model for Precision Timekeeping" by Dave Mills |
12 | * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to | 12 | * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to |
13 | * serialize accesses to xtime/lost_ticks). | 13 | * serialize accesses to xtime/lost_ticks). |
14 | * Copyright (C) 1998 Andrea Arcangeli | 14 | * Copyright (C) 1998 Andrea Arcangeli |
15 | * 1999-03-10 Improved NTP compatibility by Ulrich Windl | 15 | * 1999-03-10 Improved NTP compatibility by Ulrich Windl |
16 | * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love | 16 | * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love |
17 | * 2000-10-05 Implemented scalable SMP per-CPU timer handling. | 17 | * 2000-10-05 Implemented scalable SMP per-CPU timer handling. |
18 | * Copyright (C) 2000, 2001, 2002 Ingo Molnar | 18 | * Copyright (C) 2000, 2001, 2002 Ingo Molnar |
19 | * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar | 19 | * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar |
20 | */ | 20 | */ |
21 | 21 | ||
22 | #include <linux/kernel_stat.h> | 22 | #include <linux/kernel_stat.h> |
23 | #include <linux/module.h> | 23 | #include <linux/module.h> |
24 | #include <linux/interrupt.h> | 24 | #include <linux/interrupt.h> |
25 | #include <linux/percpu.h> | 25 | #include <linux/percpu.h> |
26 | #include <linux/init.h> | 26 | #include <linux/init.h> |
27 | #include <linux/mm.h> | 27 | #include <linux/mm.h> |
28 | #include <linux/swap.h> | 28 | #include <linux/swap.h> |
29 | #include <linux/notifier.h> | 29 | #include <linux/notifier.h> |
30 | #include <linux/thread_info.h> | 30 | #include <linux/thread_info.h> |
31 | #include <linux/time.h> | 31 | #include <linux/time.h> |
32 | #include <linux/jiffies.h> | 32 | #include <linux/jiffies.h> |
33 | #include <linux/posix-timers.h> | 33 | #include <linux/posix-timers.h> |
34 | #include <linux/cpu.h> | 34 | #include <linux/cpu.h> |
35 | #include <linux/syscalls.h> | 35 | #include <linux/syscalls.h> |
36 | 36 | ||
37 | #include <asm/uaccess.h> | 37 | #include <asm/uaccess.h> |
38 | #include <asm/unistd.h> | 38 | #include <asm/unistd.h> |
39 | #include <asm/div64.h> | 39 | #include <asm/div64.h> |
40 | #include <asm/timex.h> | 40 | #include <asm/timex.h> |
41 | #include <asm/io.h> | 41 | #include <asm/io.h> |
42 | 42 | ||
43 | #ifdef CONFIG_TIME_INTERPOLATION | 43 | #ifdef CONFIG_TIME_INTERPOLATION |
44 | static void time_interpolator_update(long delta_nsec); | 44 | static void time_interpolator_update(long delta_nsec); |
45 | #else | 45 | #else |
46 | #define time_interpolator_update(x) | 46 | #define time_interpolator_update(x) |
47 | #endif | 47 | #endif |
48 | 48 | ||
49 | /* | 49 | /* |
50 | * per-CPU timer vector definitions: | 50 | * per-CPU timer vector definitions: |
51 | */ | 51 | */ |
52 | 52 | ||
53 | #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) | 53 | #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) |
54 | #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) | 54 | #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) |
55 | #define TVN_SIZE (1 << TVN_BITS) | 55 | #define TVN_SIZE (1 << TVN_BITS) |
56 | #define TVR_SIZE (1 << TVR_BITS) | 56 | #define TVR_SIZE (1 << TVR_BITS) |
57 | #define TVN_MASK (TVN_SIZE - 1) | 57 | #define TVN_MASK (TVN_SIZE - 1) |
58 | #define TVR_MASK (TVR_SIZE - 1) | 58 | #define TVR_MASK (TVR_SIZE - 1) |
59 | 59 | ||
60 | struct timer_base_s { | 60 | struct timer_base_s { |
61 | spinlock_t lock; | 61 | spinlock_t lock; |
62 | struct timer_list *running_timer; | 62 | struct timer_list *running_timer; |
63 | }; | 63 | }; |
64 | 64 | ||
65 | typedef struct tvec_s { | 65 | typedef struct tvec_s { |
66 | struct list_head vec[TVN_SIZE]; | 66 | struct list_head vec[TVN_SIZE]; |
67 | } tvec_t; | 67 | } tvec_t; |
68 | 68 | ||
69 | typedef struct tvec_root_s { | 69 | typedef struct tvec_root_s { |
70 | struct list_head vec[TVR_SIZE]; | 70 | struct list_head vec[TVR_SIZE]; |
71 | } tvec_root_t; | 71 | } tvec_root_t; |
72 | 72 | ||
73 | struct tvec_t_base_s { | 73 | struct tvec_t_base_s { |
74 | struct timer_base_s t_base; | 74 | struct timer_base_s t_base; |
75 | unsigned long timer_jiffies; | 75 | unsigned long timer_jiffies; |
76 | tvec_root_t tv1; | 76 | tvec_root_t tv1; |
77 | tvec_t tv2; | 77 | tvec_t tv2; |
78 | tvec_t tv3; | 78 | tvec_t tv3; |
79 | tvec_t tv4; | 79 | tvec_t tv4; |
80 | tvec_t tv5; | 80 | tvec_t tv5; |
81 | } ____cacheline_aligned_in_smp; | 81 | } ____cacheline_aligned_in_smp; |
82 | 82 | ||
83 | typedef struct tvec_t_base_s tvec_base_t; | 83 | typedef struct tvec_t_base_s tvec_base_t; |
84 | static DEFINE_PER_CPU(tvec_base_t, tvec_bases); | 84 | static DEFINE_PER_CPU(tvec_base_t, tvec_bases); |
85 | 85 | ||
86 | static inline void set_running_timer(tvec_base_t *base, | 86 | static inline void set_running_timer(tvec_base_t *base, |
87 | struct timer_list *timer) | 87 | struct timer_list *timer) |
88 | { | 88 | { |
89 | #ifdef CONFIG_SMP | 89 | #ifdef CONFIG_SMP |
90 | base->t_base.running_timer = timer; | 90 | base->t_base.running_timer = timer; |
91 | #endif | 91 | #endif |
92 | } | 92 | } |
93 | 93 | ||
94 | static void check_timer_failed(struct timer_list *timer) | 94 | static void check_timer_failed(struct timer_list *timer) |
95 | { | 95 | { |
96 | static int whine_count; | 96 | static int whine_count; |
97 | if (whine_count < 16) { | 97 | if (whine_count < 16) { |
98 | whine_count++; | 98 | whine_count++; |
99 | printk("Uninitialised timer!\n"); | 99 | printk("Uninitialised timer!\n"); |
100 | printk("This is just a warning. Your computer is OK\n"); | 100 | printk("This is just a warning. Your computer is OK\n"); |
101 | printk("function=0x%p, data=0x%lx\n", | 101 | printk("function=0x%p, data=0x%lx\n", |
102 | timer->function, timer->data); | 102 | timer->function, timer->data); |
103 | dump_stack(); | 103 | dump_stack(); |
104 | } | 104 | } |
105 | /* | 105 | /* |
106 | * Now fix it up | 106 | * Now fix it up |
107 | */ | 107 | */ |
108 | timer->magic = TIMER_MAGIC; | 108 | timer->magic = TIMER_MAGIC; |
109 | } | 109 | } |
110 | 110 | ||
111 | static inline void check_timer(struct timer_list *timer) | 111 | static inline void check_timer(struct timer_list *timer) |
112 | { | 112 | { |
113 | if (timer->magic != TIMER_MAGIC) | 113 | if (timer->magic != TIMER_MAGIC) |
114 | check_timer_failed(timer); | 114 | check_timer_failed(timer); |
115 | } | 115 | } |
116 | 116 | ||
117 | 117 | ||
118 | static void internal_add_timer(tvec_base_t *base, struct timer_list *timer) | 118 | static void internal_add_timer(tvec_base_t *base, struct timer_list *timer) |
119 | { | 119 | { |
120 | unsigned long expires = timer->expires; | 120 | unsigned long expires = timer->expires; |
121 | unsigned long idx = expires - base->timer_jiffies; | 121 | unsigned long idx = expires - base->timer_jiffies; |
122 | struct list_head *vec; | 122 | struct list_head *vec; |
123 | 123 | ||
124 | if (idx < TVR_SIZE) { | 124 | if (idx < TVR_SIZE) { |
125 | int i = expires & TVR_MASK; | 125 | int i = expires & TVR_MASK; |
126 | vec = base->tv1.vec + i; | 126 | vec = base->tv1.vec + i; |
127 | } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { | 127 | } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { |
128 | int i = (expires >> TVR_BITS) & TVN_MASK; | 128 | int i = (expires >> TVR_BITS) & TVN_MASK; |
129 | vec = base->tv2.vec + i; | 129 | vec = base->tv2.vec + i; |
130 | } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { | 130 | } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { |
131 | int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; | 131 | int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; |
132 | vec = base->tv3.vec + i; | 132 | vec = base->tv3.vec + i; |
133 | } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { | 133 | } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { |
134 | int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; | 134 | int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; |
135 | vec = base->tv4.vec + i; | 135 | vec = base->tv4.vec + i; |
136 | } else if ((signed long) idx < 0) { | 136 | } else if ((signed long) idx < 0) { |
137 | /* | 137 | /* |
138 | * Can happen if you add a timer with expires == jiffies, | 138 | * Can happen if you add a timer with expires == jiffies, |
139 | * or you set a timer to go off in the past | 139 | * or you set a timer to go off in the past |
140 | */ | 140 | */ |
141 | vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); | 141 | vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); |
142 | } else { | 142 | } else { |
143 | int i; | 143 | int i; |
144 | /* If the timeout is larger than 0xffffffff on 64-bit | 144 | /* If the timeout is larger than 0xffffffff on 64-bit |
145 | * architectures then we use the maximum timeout: | 145 | * architectures then we use the maximum timeout: |
146 | */ | 146 | */ |
147 | if (idx > 0xffffffffUL) { | 147 | if (idx > 0xffffffffUL) { |
148 | idx = 0xffffffffUL; | 148 | idx = 0xffffffffUL; |
149 | expires = idx + base->timer_jiffies; | 149 | expires = idx + base->timer_jiffies; |
150 | } | 150 | } |
151 | i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; | 151 | i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; |
152 | vec = base->tv5.vec + i; | 152 | vec = base->tv5.vec + i; |
153 | } | 153 | } |
154 | /* | 154 | /* |
155 | * Timers are FIFO: | 155 | * Timers are FIFO: |
156 | */ | 156 | */ |
157 | list_add_tail(&timer->entry, vec); | 157 | list_add_tail(&timer->entry, vec); |
158 | } | 158 | } |
159 | 159 | ||
160 | typedef struct timer_base_s timer_base_t; | 160 | typedef struct timer_base_s timer_base_t; |
161 | /* | 161 | /* |
162 | * Used by TIMER_INITIALIZER, we can't use per_cpu(tvec_bases) | 162 | * Used by TIMER_INITIALIZER, we can't use per_cpu(tvec_bases) |
163 | * at compile time, and we need timer->base to lock the timer. | 163 | * at compile time, and we need timer->base to lock the timer. |
164 | */ | 164 | */ |
165 | timer_base_t __init_timer_base | 165 | timer_base_t __init_timer_base |
166 | ____cacheline_aligned_in_smp = { .lock = SPIN_LOCK_UNLOCKED }; | 166 | ____cacheline_aligned_in_smp = { .lock = SPIN_LOCK_UNLOCKED }; |
167 | EXPORT_SYMBOL(__init_timer_base); | 167 | EXPORT_SYMBOL(__init_timer_base); |
168 | 168 | ||
169 | /*** | 169 | /*** |
170 | * init_timer - initialize a timer. | 170 | * init_timer - initialize a timer. |
171 | * @timer: the timer to be initialized | 171 | * @timer: the timer to be initialized |
172 | * | 172 | * |
173 | * init_timer() must be done to a timer prior calling *any* of the | 173 | * init_timer() must be done to a timer prior calling *any* of the |
174 | * other timer functions. | 174 | * other timer functions. |
175 | */ | 175 | */ |
176 | void fastcall init_timer(struct timer_list *timer) | 176 | void fastcall init_timer(struct timer_list *timer) |
177 | { | 177 | { |
178 | timer->entry.next = NULL; | 178 | timer->entry.next = NULL; |
179 | timer->base = &per_cpu(tvec_bases, raw_smp_processor_id()).t_base; | 179 | timer->base = &per_cpu(tvec_bases, raw_smp_processor_id()).t_base; |
180 | timer->magic = TIMER_MAGIC; | 180 | timer->magic = TIMER_MAGIC; |
181 | } | 181 | } |
182 | EXPORT_SYMBOL(init_timer); | 182 | EXPORT_SYMBOL(init_timer); |
183 | 183 | ||
184 | static inline void detach_timer(struct timer_list *timer, | 184 | static inline void detach_timer(struct timer_list *timer, |
185 | int clear_pending) | 185 | int clear_pending) |
186 | { | 186 | { |
187 | struct list_head *entry = &timer->entry; | 187 | struct list_head *entry = &timer->entry; |
188 | 188 | ||
189 | __list_del(entry->prev, entry->next); | 189 | __list_del(entry->prev, entry->next); |
190 | if (clear_pending) | 190 | if (clear_pending) |
191 | entry->next = NULL; | 191 | entry->next = NULL; |
192 | entry->prev = LIST_POISON2; | 192 | entry->prev = LIST_POISON2; |
193 | } | 193 | } |
194 | 194 | ||
195 | /* | 195 | /* |
196 | * We are using hashed locking: holding per_cpu(tvec_bases).t_base.lock | 196 | * We are using hashed locking: holding per_cpu(tvec_bases).t_base.lock |
197 | * means that all timers which are tied to this base via timer->base are | 197 | * means that all timers which are tied to this base via timer->base are |
198 | * locked, and the base itself is locked too. | 198 | * locked, and the base itself is locked too. |
199 | * | 199 | * |
200 | * So __run_timers/migrate_timers can safely modify all timers which could | 200 | * So __run_timers/migrate_timers can safely modify all timers which could |
201 | * be found on ->tvX lists. | 201 | * be found on ->tvX lists. |
202 | * | 202 | * |
203 | * When the timer's base is locked, and the timer removed from list, it is | 203 | * When the timer's base is locked, and the timer removed from list, it is |
204 | * possible to set timer->base = NULL and drop the lock: the timer remains | 204 | * possible to set timer->base = NULL and drop the lock: the timer remains |
205 | * locked. | 205 | * locked. |
206 | */ | 206 | */ |
207 | static timer_base_t *lock_timer_base(struct timer_list *timer, | 207 | static timer_base_t *lock_timer_base(struct timer_list *timer, |
208 | unsigned long *flags) | 208 | unsigned long *flags) |
209 | { | 209 | { |
210 | timer_base_t *base; | 210 | timer_base_t *base; |
211 | 211 | ||
212 | for (;;) { | 212 | for (;;) { |
213 | base = timer->base; | 213 | base = timer->base; |
214 | if (likely(base != NULL)) { | 214 | if (likely(base != NULL)) { |
215 | spin_lock_irqsave(&base->lock, *flags); | 215 | spin_lock_irqsave(&base->lock, *flags); |
216 | if (likely(base == timer->base)) | 216 | if (likely(base == timer->base)) |
217 | return base; | 217 | return base; |
218 | /* The timer has migrated to another CPU */ | 218 | /* The timer has migrated to another CPU */ |
219 | spin_unlock_irqrestore(&base->lock, *flags); | 219 | spin_unlock_irqrestore(&base->lock, *flags); |
220 | } | 220 | } |
221 | cpu_relax(); | 221 | cpu_relax(); |
222 | } | 222 | } |
223 | } | 223 | } |
224 | 224 | ||
225 | int __mod_timer(struct timer_list *timer, unsigned long expires) | 225 | int __mod_timer(struct timer_list *timer, unsigned long expires) |
226 | { | 226 | { |
227 | timer_base_t *base; | 227 | timer_base_t *base; |
228 | tvec_base_t *new_base; | 228 | tvec_base_t *new_base; |
229 | unsigned long flags; | 229 | unsigned long flags; |
230 | int ret = 0; | 230 | int ret = 0; |
231 | 231 | ||
232 | BUG_ON(!timer->function); | 232 | BUG_ON(!timer->function); |
233 | check_timer(timer); | 233 | check_timer(timer); |
234 | 234 | ||
235 | base = lock_timer_base(timer, &flags); | 235 | base = lock_timer_base(timer, &flags); |
236 | 236 | ||
237 | if (timer_pending(timer)) { | 237 | if (timer_pending(timer)) { |
238 | detach_timer(timer, 0); | 238 | detach_timer(timer, 0); |
239 | ret = 1; | 239 | ret = 1; |
240 | } | 240 | } |
241 | 241 | ||
242 | new_base = &__get_cpu_var(tvec_bases); | 242 | new_base = &__get_cpu_var(tvec_bases); |
243 | 243 | ||
244 | if (base != &new_base->t_base) { | 244 | if (base != &new_base->t_base) { |
245 | /* | 245 | /* |
246 | * We are trying to schedule the timer on the local CPU. | 246 | * We are trying to schedule the timer on the local CPU. |
247 | * However we can't change timer's base while it is running, | 247 | * However we can't change timer's base while it is running, |
248 | * otherwise del_timer_sync() can't detect that the timer's | 248 | * otherwise del_timer_sync() can't detect that the timer's |
249 | * handler yet has not finished. This also guarantees that | 249 | * handler yet has not finished. This also guarantees that |
250 | * the timer is serialized wrt itself. | 250 | * the timer is serialized wrt itself. |
251 | */ | 251 | */ |
252 | if (unlikely(base->running_timer == timer)) { | 252 | if (unlikely(base->running_timer == timer)) { |
253 | /* The timer remains on a former base */ | 253 | /* The timer remains on a former base */ |
254 | new_base = container_of(base, tvec_base_t, t_base); | 254 | new_base = container_of(base, tvec_base_t, t_base); |
255 | } else { | 255 | } else { |
256 | /* See the comment in lock_timer_base() */ | 256 | /* See the comment in lock_timer_base() */ |
257 | timer->base = NULL; | 257 | timer->base = NULL; |
258 | spin_unlock(&base->lock); | 258 | spin_unlock(&base->lock); |
259 | spin_lock(&new_base->t_base.lock); | 259 | spin_lock(&new_base->t_base.lock); |
260 | timer->base = &new_base->t_base; | 260 | timer->base = &new_base->t_base; |
261 | } | 261 | } |
262 | } | 262 | } |
263 | 263 | ||
264 | timer->expires = expires; | 264 | timer->expires = expires; |
265 | internal_add_timer(new_base, timer); | 265 | internal_add_timer(new_base, timer); |
266 | spin_unlock_irqrestore(&new_base->t_base.lock, flags); | 266 | spin_unlock_irqrestore(&new_base->t_base.lock, flags); |
267 | 267 | ||
268 | return ret; | 268 | return ret; |
269 | } | 269 | } |
270 | 270 | ||
271 | EXPORT_SYMBOL(__mod_timer); | 271 | EXPORT_SYMBOL(__mod_timer); |
272 | 272 | ||
273 | /*** | 273 | /*** |
274 | * add_timer_on - start a timer on a particular CPU | 274 | * add_timer_on - start a timer on a particular CPU |
275 | * @timer: the timer to be added | 275 | * @timer: the timer to be added |
276 | * @cpu: the CPU to start it on | 276 | * @cpu: the CPU to start it on |
277 | * | 277 | * |
278 | * This is not very scalable on SMP. Double adds are not possible. | 278 | * This is not very scalable on SMP. Double adds are not possible. |
279 | */ | 279 | */ |
280 | void add_timer_on(struct timer_list *timer, int cpu) | 280 | void add_timer_on(struct timer_list *timer, int cpu) |
281 | { | 281 | { |
282 | tvec_base_t *base = &per_cpu(tvec_bases, cpu); | 282 | tvec_base_t *base = &per_cpu(tvec_bases, cpu); |
283 | unsigned long flags; | 283 | unsigned long flags; |
284 | 284 | ||
285 | BUG_ON(timer_pending(timer) || !timer->function); | 285 | BUG_ON(timer_pending(timer) || !timer->function); |
286 | 286 | ||
287 | check_timer(timer); | 287 | check_timer(timer); |
288 | 288 | ||
289 | spin_lock_irqsave(&base->t_base.lock, flags); | 289 | spin_lock_irqsave(&base->t_base.lock, flags); |
290 | timer->base = &base->t_base; | 290 | timer->base = &base->t_base; |
291 | internal_add_timer(base, timer); | 291 | internal_add_timer(base, timer); |
292 | spin_unlock_irqrestore(&base->t_base.lock, flags); | 292 | spin_unlock_irqrestore(&base->t_base.lock, flags); |
293 | } | 293 | } |
294 | 294 | ||
295 | 295 | ||
296 | /*** | 296 | /*** |
297 | * mod_timer - modify a timer's timeout | 297 | * mod_timer - modify a timer's timeout |
298 | * @timer: the timer to be modified | 298 | * @timer: the timer to be modified |
299 | * | 299 | * |
300 | * mod_timer is a more efficient way to update the expire field of an | 300 | * mod_timer is a more efficient way to update the expire field of an |
301 | * active timer (if the timer is inactive it will be activated) | 301 | * active timer (if the timer is inactive it will be activated) |
302 | * | 302 | * |
303 | * mod_timer(timer, expires) is equivalent to: | 303 | * mod_timer(timer, expires) is equivalent to: |
304 | * | 304 | * |
305 | * del_timer(timer); timer->expires = expires; add_timer(timer); | 305 | * del_timer(timer); timer->expires = expires; add_timer(timer); |
306 | * | 306 | * |
307 | * Note that if there are multiple unserialized concurrent users of the | 307 | * Note that if there are multiple unserialized concurrent users of the |
308 | * same timer, then mod_timer() is the only safe way to modify the timeout, | 308 | * same timer, then mod_timer() is the only safe way to modify the timeout, |
309 | * since add_timer() cannot modify an already running timer. | 309 | * since add_timer() cannot modify an already running timer. |
310 | * | 310 | * |
311 | * The function returns whether it has modified a pending timer or not. | 311 | * The function returns whether it has modified a pending timer or not. |
312 | * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an | 312 | * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an |
313 | * active timer returns 1.) | 313 | * active timer returns 1.) |
314 | */ | 314 | */ |
315 | int mod_timer(struct timer_list *timer, unsigned long expires) | 315 | int mod_timer(struct timer_list *timer, unsigned long expires) |
316 | { | 316 | { |
317 | BUG_ON(!timer->function); | 317 | BUG_ON(!timer->function); |
318 | 318 | ||
319 | check_timer(timer); | 319 | check_timer(timer); |
320 | 320 | ||
321 | /* | 321 | /* |
322 | * This is a common optimization triggered by the | 322 | * This is a common optimization triggered by the |
323 | * networking code - if the timer is re-modified | 323 | * networking code - if the timer is re-modified |
324 | * to be the same thing then just return: | 324 | * to be the same thing then just return: |
325 | */ | 325 | */ |
326 | if (timer->expires == expires && timer_pending(timer)) | 326 | if (timer->expires == expires && timer_pending(timer)) |
327 | return 1; | 327 | return 1; |
328 | 328 | ||
329 | return __mod_timer(timer, expires); | 329 | return __mod_timer(timer, expires); |
330 | } | 330 | } |
331 | 331 | ||
332 | EXPORT_SYMBOL(mod_timer); | 332 | EXPORT_SYMBOL(mod_timer); |
333 | 333 | ||
334 | /*** | 334 | /*** |
335 | * del_timer - deactive a timer. | 335 | * del_timer - deactive a timer. |
336 | * @timer: the timer to be deactivated | 336 | * @timer: the timer to be deactivated |
337 | * | 337 | * |
338 | * del_timer() deactivates a timer - this works on both active and inactive | 338 | * del_timer() deactivates a timer - this works on both active and inactive |
339 | * timers. | 339 | * timers. |
340 | * | 340 | * |
341 | * The function returns whether it has deactivated a pending timer or not. | 341 | * The function returns whether it has deactivated a pending timer or not. |
342 | * (ie. del_timer() of an inactive timer returns 0, del_timer() of an | 342 | * (ie. del_timer() of an inactive timer returns 0, del_timer() of an |
343 | * active timer returns 1.) | 343 | * active timer returns 1.) |
344 | */ | 344 | */ |
345 | int del_timer(struct timer_list *timer) | 345 | int del_timer(struct timer_list *timer) |
346 | { | 346 | { |
347 | timer_base_t *base; | 347 | timer_base_t *base; |
348 | unsigned long flags; | 348 | unsigned long flags; |
349 | int ret = 0; | 349 | int ret = 0; |
350 | 350 | ||
351 | check_timer(timer); | 351 | check_timer(timer); |
352 | 352 | ||
353 | if (timer_pending(timer)) { | 353 | if (timer_pending(timer)) { |
354 | base = lock_timer_base(timer, &flags); | 354 | base = lock_timer_base(timer, &flags); |
355 | if (timer_pending(timer)) { | 355 | if (timer_pending(timer)) { |
356 | detach_timer(timer, 1); | 356 | detach_timer(timer, 1); |
357 | ret = 1; | 357 | ret = 1; |
358 | } | 358 | } |
359 | spin_unlock_irqrestore(&base->lock, flags); | 359 | spin_unlock_irqrestore(&base->lock, flags); |
360 | } | 360 | } |
361 | 361 | ||
362 | return ret; | 362 | return ret; |
363 | } | 363 | } |
364 | 364 | ||
365 | EXPORT_SYMBOL(del_timer); | 365 | EXPORT_SYMBOL(del_timer); |
366 | 366 | ||
367 | #ifdef CONFIG_SMP | 367 | #ifdef CONFIG_SMP |
368 | /* | 368 | /* |
369 | * This function tries to deactivate a timer. Upon successful (ret >= 0) | 369 | * This function tries to deactivate a timer. Upon successful (ret >= 0) |
370 | * exit the timer is not queued and the handler is not running on any CPU. | 370 | * exit the timer is not queued and the handler is not running on any CPU. |
371 | * | 371 | * |
372 | * It must not be called from interrupt contexts. | 372 | * It must not be called from interrupt contexts. |
373 | */ | 373 | */ |
374 | int try_to_del_timer_sync(struct timer_list *timer) | 374 | int try_to_del_timer_sync(struct timer_list *timer) |
375 | { | 375 | { |
376 | timer_base_t *base; | 376 | timer_base_t *base; |
377 | unsigned long flags; | 377 | unsigned long flags; |
378 | int ret = -1; | 378 | int ret = -1; |
379 | 379 | ||
380 | base = lock_timer_base(timer, &flags); | 380 | base = lock_timer_base(timer, &flags); |
381 | 381 | ||
382 | if (base->running_timer == timer) | 382 | if (base->running_timer == timer) |
383 | goto out; | 383 | goto out; |
384 | 384 | ||
385 | ret = 0; | 385 | ret = 0; |
386 | if (timer_pending(timer)) { | 386 | if (timer_pending(timer)) { |
387 | detach_timer(timer, 1); | 387 | detach_timer(timer, 1); |
388 | ret = 1; | 388 | ret = 1; |
389 | } | 389 | } |
390 | out: | 390 | out: |
391 | spin_unlock_irqrestore(&base->lock, flags); | 391 | spin_unlock_irqrestore(&base->lock, flags); |
392 | 392 | ||
393 | return ret; | 393 | return ret; |
394 | } | 394 | } |
395 | 395 | ||
396 | /*** | 396 | /*** |
397 | * del_timer_sync - deactivate a timer and wait for the handler to finish. | 397 | * del_timer_sync - deactivate a timer and wait for the handler to finish. |
398 | * @timer: the timer to be deactivated | 398 | * @timer: the timer to be deactivated |
399 | * | 399 | * |
400 | * This function only differs from del_timer() on SMP: besides deactivating | 400 | * This function only differs from del_timer() on SMP: besides deactivating |
401 | * the timer it also makes sure the handler has finished executing on other | 401 | * the timer it also makes sure the handler has finished executing on other |
402 | * CPUs. | 402 | * CPUs. |
403 | * | 403 | * |
404 | * Synchronization rules: callers must prevent restarting of the timer, | 404 | * Synchronization rules: callers must prevent restarting of the timer, |
405 | * otherwise this function is meaningless. It must not be called from | 405 | * otherwise this function is meaningless. It must not be called from |
406 | * interrupt contexts. The caller must not hold locks which would prevent | 406 | * interrupt contexts. The caller must not hold locks which would prevent |
407 | * completion of the timer's handler. The timer's handler must not call | 407 | * completion of the timer's handler. The timer's handler must not call |
408 | * add_timer_on(). Upon exit the timer is not queued and the handler is | 408 | * add_timer_on(). Upon exit the timer is not queued and the handler is |
409 | * not running on any CPU. | 409 | * not running on any CPU. |
410 | * | 410 | * |
411 | * The function returns whether it has deactivated a pending timer or not. | 411 | * The function returns whether it has deactivated a pending timer or not. |
412 | */ | 412 | */ |
413 | int del_timer_sync(struct timer_list *timer) | 413 | int del_timer_sync(struct timer_list *timer) |
414 | { | 414 | { |
415 | check_timer(timer); | 415 | check_timer(timer); |
416 | 416 | ||
417 | for (;;) { | 417 | for (;;) { |
418 | int ret = try_to_del_timer_sync(timer); | 418 | int ret = try_to_del_timer_sync(timer); |
419 | if (ret >= 0) | 419 | if (ret >= 0) |
420 | return ret; | 420 | return ret; |
421 | } | 421 | } |
422 | } | 422 | } |
423 | 423 | ||
424 | EXPORT_SYMBOL(del_timer_sync); | 424 | EXPORT_SYMBOL(del_timer_sync); |
425 | #endif | 425 | #endif |
426 | 426 | ||
427 | static int cascade(tvec_base_t *base, tvec_t *tv, int index) | 427 | static int cascade(tvec_base_t *base, tvec_t *tv, int index) |
428 | { | 428 | { |
429 | /* cascade all the timers from tv up one level */ | 429 | /* cascade all the timers from tv up one level */ |
430 | struct list_head *head, *curr; | 430 | struct list_head *head, *curr; |
431 | 431 | ||
432 | head = tv->vec + index; | 432 | head = tv->vec + index; |
433 | curr = head->next; | 433 | curr = head->next; |
434 | /* | 434 | /* |
435 | * We are removing _all_ timers from the list, so we don't have to | 435 | * We are removing _all_ timers from the list, so we don't have to |
436 | * detach them individually, just clear the list afterwards. | 436 | * detach them individually, just clear the list afterwards. |
437 | */ | 437 | */ |
438 | while (curr != head) { | 438 | while (curr != head) { |
439 | struct timer_list *tmp; | 439 | struct timer_list *tmp; |
440 | 440 | ||
441 | tmp = list_entry(curr, struct timer_list, entry); | 441 | tmp = list_entry(curr, struct timer_list, entry); |
442 | BUG_ON(tmp->base != &base->t_base); | 442 | BUG_ON(tmp->base != &base->t_base); |
443 | curr = curr->next; | 443 | curr = curr->next; |
444 | internal_add_timer(base, tmp); | 444 | internal_add_timer(base, tmp); |
445 | } | 445 | } |
446 | INIT_LIST_HEAD(head); | 446 | INIT_LIST_HEAD(head); |
447 | 447 | ||
448 | return index; | 448 | return index; |
449 | } | 449 | } |
450 | 450 | ||
451 | /*** | 451 | /*** |
452 | * __run_timers - run all expired timers (if any) on this CPU. | 452 | * __run_timers - run all expired timers (if any) on this CPU. |
453 | * @base: the timer vector to be processed. | 453 | * @base: the timer vector to be processed. |
454 | * | 454 | * |
455 | * This function cascades all vectors and executes all expired timer | 455 | * This function cascades all vectors and executes all expired timer |
456 | * vectors. | 456 | * vectors. |
457 | */ | 457 | */ |
458 | #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK | 458 | #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK |
459 | 459 | ||
460 | static inline void __run_timers(tvec_base_t *base) | 460 | static inline void __run_timers(tvec_base_t *base) |
461 | { | 461 | { |
462 | struct timer_list *timer; | 462 | struct timer_list *timer; |
463 | 463 | ||
464 | spin_lock_irq(&base->t_base.lock); | 464 | spin_lock_irq(&base->t_base.lock); |
465 | while (time_after_eq(jiffies, base->timer_jiffies)) { | 465 | while (time_after_eq(jiffies, base->timer_jiffies)) { |
466 | struct list_head work_list = LIST_HEAD_INIT(work_list); | 466 | struct list_head work_list = LIST_HEAD_INIT(work_list); |
467 | struct list_head *head = &work_list; | 467 | struct list_head *head = &work_list; |
468 | int index = base->timer_jiffies & TVR_MASK; | 468 | int index = base->timer_jiffies & TVR_MASK; |
469 | 469 | ||
470 | /* | 470 | /* |
471 | * Cascade timers: | 471 | * Cascade timers: |
472 | */ | 472 | */ |
473 | if (!index && | 473 | if (!index && |
474 | (!cascade(base, &base->tv2, INDEX(0))) && | 474 | (!cascade(base, &base->tv2, INDEX(0))) && |
475 | (!cascade(base, &base->tv3, INDEX(1))) && | 475 | (!cascade(base, &base->tv3, INDEX(1))) && |
476 | !cascade(base, &base->tv4, INDEX(2))) | 476 | !cascade(base, &base->tv4, INDEX(2))) |
477 | cascade(base, &base->tv5, INDEX(3)); | 477 | cascade(base, &base->tv5, INDEX(3)); |
478 | ++base->timer_jiffies; | 478 | ++base->timer_jiffies; |
479 | list_splice_init(base->tv1.vec + index, &work_list); | 479 | list_splice_init(base->tv1.vec + index, &work_list); |
480 | while (!list_empty(head)) { | 480 | while (!list_empty(head)) { |
481 | void (*fn)(unsigned long); | 481 | void (*fn)(unsigned long); |
482 | unsigned long data; | 482 | unsigned long data; |
483 | 483 | ||
484 | timer = list_entry(head->next,struct timer_list,entry); | 484 | timer = list_entry(head->next,struct timer_list,entry); |
485 | fn = timer->function; | 485 | fn = timer->function; |
486 | data = timer->data; | 486 | data = timer->data; |
487 | 487 | ||
488 | set_running_timer(base, timer); | 488 | set_running_timer(base, timer); |
489 | detach_timer(timer, 1); | 489 | detach_timer(timer, 1); |
490 | spin_unlock_irq(&base->t_base.lock); | 490 | spin_unlock_irq(&base->t_base.lock); |
491 | { | 491 | { |
492 | int preempt_count = preempt_count(); | 492 | int preempt_count = preempt_count(); |
493 | fn(data); | 493 | fn(data); |
494 | if (preempt_count != preempt_count()) { | 494 | if (preempt_count != preempt_count()) { |
495 | printk(KERN_WARNING "huh, entered %p " | 495 | printk(KERN_WARNING "huh, entered %p " |
496 | "with preempt_count %08x, exited" | 496 | "with preempt_count %08x, exited" |
497 | " with %08x?\n", | 497 | " with %08x?\n", |
498 | fn, preempt_count, | 498 | fn, preempt_count, |
499 | preempt_count()); | 499 | preempt_count()); |
500 | BUG(); | 500 | BUG(); |
501 | } | 501 | } |
502 | } | 502 | } |
503 | spin_lock_irq(&base->t_base.lock); | 503 | spin_lock_irq(&base->t_base.lock); |
504 | } | 504 | } |
505 | } | 505 | } |
506 | set_running_timer(base, NULL); | 506 | set_running_timer(base, NULL); |
507 | spin_unlock_irq(&base->t_base.lock); | 507 | spin_unlock_irq(&base->t_base.lock); |
508 | } | 508 | } |
509 | 509 | ||
510 | #ifdef CONFIG_NO_IDLE_HZ | 510 | #ifdef CONFIG_NO_IDLE_HZ |
511 | /* | 511 | /* |
512 | * Find out when the next timer event is due to happen. This | 512 | * Find out when the next timer event is due to happen. This |
513 | * is used on S/390 to stop all activity when a cpus is idle. | 513 | * is used on S/390 to stop all activity when a cpus is idle. |
514 | * This functions needs to be called disabled. | 514 | * This functions needs to be called disabled. |
515 | */ | 515 | */ |
516 | unsigned long next_timer_interrupt(void) | 516 | unsigned long next_timer_interrupt(void) |
517 | { | 517 | { |
518 | tvec_base_t *base; | 518 | tvec_base_t *base; |
519 | struct list_head *list; | 519 | struct list_head *list; |
520 | struct timer_list *nte; | 520 | struct timer_list *nte; |
521 | unsigned long expires; | 521 | unsigned long expires; |
522 | tvec_t *varray[4]; | 522 | tvec_t *varray[4]; |
523 | int i, j; | 523 | int i, j; |
524 | 524 | ||
525 | base = &__get_cpu_var(tvec_bases); | 525 | base = &__get_cpu_var(tvec_bases); |
526 | spin_lock(&base->t_base.lock); | 526 | spin_lock(&base->t_base.lock); |
527 | expires = base->timer_jiffies + (LONG_MAX >> 1); | 527 | expires = base->timer_jiffies + (LONG_MAX >> 1); |
528 | list = 0; | 528 | list = 0; |
529 | 529 | ||
530 | /* Look for timer events in tv1. */ | 530 | /* Look for timer events in tv1. */ |
531 | j = base->timer_jiffies & TVR_MASK; | 531 | j = base->timer_jiffies & TVR_MASK; |
532 | do { | 532 | do { |
533 | list_for_each_entry(nte, base->tv1.vec + j, entry) { | 533 | list_for_each_entry(nte, base->tv1.vec + j, entry) { |
534 | expires = nte->expires; | 534 | expires = nte->expires; |
535 | if (j < (base->timer_jiffies & TVR_MASK)) | 535 | if (j < (base->timer_jiffies & TVR_MASK)) |
536 | list = base->tv2.vec + (INDEX(0)); | 536 | list = base->tv2.vec + (INDEX(0)); |
537 | goto found; | 537 | goto found; |
538 | } | 538 | } |
539 | j = (j + 1) & TVR_MASK; | 539 | j = (j + 1) & TVR_MASK; |
540 | } while (j != (base->timer_jiffies & TVR_MASK)); | 540 | } while (j != (base->timer_jiffies & TVR_MASK)); |
541 | 541 | ||
542 | /* Check tv2-tv5. */ | 542 | /* Check tv2-tv5. */ |
543 | varray[0] = &base->tv2; | 543 | varray[0] = &base->tv2; |
544 | varray[1] = &base->tv3; | 544 | varray[1] = &base->tv3; |
545 | varray[2] = &base->tv4; | 545 | varray[2] = &base->tv4; |
546 | varray[3] = &base->tv5; | 546 | varray[3] = &base->tv5; |
547 | for (i = 0; i < 4; i++) { | 547 | for (i = 0; i < 4; i++) { |
548 | j = INDEX(i); | 548 | j = INDEX(i); |
549 | do { | 549 | do { |
550 | if (list_empty(varray[i]->vec + j)) { | 550 | if (list_empty(varray[i]->vec + j)) { |
551 | j = (j + 1) & TVN_MASK; | 551 | j = (j + 1) & TVN_MASK; |
552 | continue; | 552 | continue; |
553 | } | 553 | } |
554 | list_for_each_entry(nte, varray[i]->vec + j, entry) | 554 | list_for_each_entry(nte, varray[i]->vec + j, entry) |
555 | if (time_before(nte->expires, expires)) | 555 | if (time_before(nte->expires, expires)) |
556 | expires = nte->expires; | 556 | expires = nte->expires; |
557 | if (j < (INDEX(i)) && i < 3) | 557 | if (j < (INDEX(i)) && i < 3) |
558 | list = varray[i + 1]->vec + (INDEX(i + 1)); | 558 | list = varray[i + 1]->vec + (INDEX(i + 1)); |
559 | goto found; | 559 | goto found; |
560 | } while (j != (INDEX(i))); | 560 | } while (j != (INDEX(i))); |
561 | } | 561 | } |
562 | found: | 562 | found: |
563 | if (list) { | 563 | if (list) { |
564 | /* | 564 | /* |
565 | * The search wrapped. We need to look at the next list | 565 | * The search wrapped. We need to look at the next list |
566 | * from next tv element that would cascade into tv element | 566 | * from next tv element that would cascade into tv element |
567 | * where we found the timer element. | 567 | * where we found the timer element. |
568 | */ | 568 | */ |
569 | list_for_each_entry(nte, list, entry) { | 569 | list_for_each_entry(nte, list, entry) { |
570 | if (time_before(nte->expires, expires)) | 570 | if (time_before(nte->expires, expires)) |
571 | expires = nte->expires; | 571 | expires = nte->expires; |
572 | } | 572 | } |
573 | } | 573 | } |
574 | spin_unlock(&base->t_base.lock); | 574 | spin_unlock(&base->t_base.lock); |
575 | return expires; | 575 | return expires; |
576 | } | 576 | } |
577 | #endif | 577 | #endif |
578 | 578 | ||
579 | /******************************************************************/ | 579 | /******************************************************************/ |
580 | 580 | ||
581 | /* | 581 | /* |
582 | * Timekeeping variables | 582 | * Timekeeping variables |
583 | */ | 583 | */ |
584 | unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */ | 584 | unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */ |
585 | unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */ | 585 | unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */ |
586 | 586 | ||
587 | /* | 587 | /* |
588 | * The current time | 588 | * The current time |
589 | * wall_to_monotonic is what we need to add to xtime (or xtime corrected | 589 | * wall_to_monotonic is what we need to add to xtime (or xtime corrected |
590 | * for sub jiffie times) to get to monotonic time. Monotonic is pegged | 590 | * for sub jiffie times) to get to monotonic time. Monotonic is pegged |
591 | * at zero at system boot time, so wall_to_monotonic will be negative, | 591 | * at zero at system boot time, so wall_to_monotonic will be negative, |
592 | * however, we will ALWAYS keep the tv_nsec part positive so we can use | 592 | * however, we will ALWAYS keep the tv_nsec part positive so we can use |
593 | * the usual normalization. | 593 | * the usual normalization. |
594 | */ | 594 | */ |
595 | struct timespec xtime __attribute__ ((aligned (16))); | 595 | struct timespec xtime __attribute__ ((aligned (16))); |
596 | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); | 596 | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); |
597 | 597 | ||
598 | EXPORT_SYMBOL(xtime); | 598 | EXPORT_SYMBOL(xtime); |
599 | 599 | ||
600 | /* Don't completely fail for HZ > 500. */ | 600 | /* Don't completely fail for HZ > 500. */ |
601 | int tickadj = 500/HZ ? : 1; /* microsecs */ | 601 | int tickadj = 500/HZ ? : 1; /* microsecs */ |
602 | 602 | ||
603 | 603 | ||
604 | /* | 604 | /* |
605 | * phase-lock loop variables | 605 | * phase-lock loop variables |
606 | */ | 606 | */ |
607 | /* TIME_ERROR prevents overwriting the CMOS clock */ | 607 | /* TIME_ERROR prevents overwriting the CMOS clock */ |
608 | int time_state = TIME_OK; /* clock synchronization status */ | 608 | int time_state = TIME_OK; /* clock synchronization status */ |
609 | int time_status = STA_UNSYNC; /* clock status bits */ | 609 | int time_status = STA_UNSYNC; /* clock status bits */ |
610 | long time_offset; /* time adjustment (us) */ | 610 | long time_offset; /* time adjustment (us) */ |
611 | long time_constant = 2; /* pll time constant */ | 611 | long time_constant = 2; /* pll time constant */ |
612 | long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */ | 612 | long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */ |
613 | long time_precision = 1; /* clock precision (us) */ | 613 | long time_precision = 1; /* clock precision (us) */ |
614 | long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ | 614 | long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ |
615 | long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ | 615 | long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ |
616 | static long time_phase; /* phase offset (scaled us) */ | 616 | static long time_phase; /* phase offset (scaled us) */ |
617 | long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC; | 617 | long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC; |
618 | /* frequency offset (scaled ppm)*/ | 618 | /* frequency offset (scaled ppm)*/ |
619 | static long time_adj; /* tick adjust (scaled 1 / HZ) */ | 619 | static long time_adj; /* tick adjust (scaled 1 / HZ) */ |
620 | long time_reftime; /* time at last adjustment (s) */ | 620 | long time_reftime; /* time at last adjustment (s) */ |
621 | long time_adjust; | 621 | long time_adjust; |
622 | long time_next_adjust; | 622 | long time_next_adjust; |
623 | 623 | ||
624 | /* | 624 | /* |
625 | * this routine handles the overflow of the microsecond field | 625 | * this routine handles the overflow of the microsecond field |
626 | * | 626 | * |
627 | * The tricky bits of code to handle the accurate clock support | 627 | * The tricky bits of code to handle the accurate clock support |
628 | * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. | 628 | * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. |
629 | * They were originally developed for SUN and DEC kernels. | 629 | * They were originally developed for SUN and DEC kernels. |
630 | * All the kudos should go to Dave for this stuff. | 630 | * All the kudos should go to Dave for this stuff. |
631 | * | 631 | * |
632 | */ | 632 | */ |
633 | static void second_overflow(void) | 633 | static void second_overflow(void) |
634 | { | 634 | { |
635 | long ltemp; | 635 | long ltemp; |
636 | 636 | ||
637 | /* Bump the maxerror field */ | 637 | /* Bump the maxerror field */ |
638 | time_maxerror += time_tolerance >> SHIFT_USEC; | 638 | time_maxerror += time_tolerance >> SHIFT_USEC; |
639 | if ( time_maxerror > NTP_PHASE_LIMIT ) { | 639 | if ( time_maxerror > NTP_PHASE_LIMIT ) { |
640 | time_maxerror = NTP_PHASE_LIMIT; | 640 | time_maxerror = NTP_PHASE_LIMIT; |
641 | time_status |= STA_UNSYNC; | 641 | time_status |= STA_UNSYNC; |
642 | } | 642 | } |
643 | 643 | ||
644 | /* | 644 | /* |
645 | * Leap second processing. If in leap-insert state at | 645 | * Leap second processing. If in leap-insert state at |
646 | * the end of the day, the system clock is set back one | 646 | * the end of the day, the system clock is set back one |
647 | * second; if in leap-delete state, the system clock is | 647 | * second; if in leap-delete state, the system clock is |
648 | * set ahead one second. The microtime() routine or | 648 | * set ahead one second. The microtime() routine or |
649 | * external clock driver will insure that reported time | 649 | * external clock driver will insure that reported time |
650 | * is always monotonic. The ugly divides should be | 650 | * is always monotonic. The ugly divides should be |
651 | * replaced. | 651 | * replaced. |
652 | */ | 652 | */ |
653 | switch (time_state) { | 653 | switch (time_state) { |
654 | 654 | ||
655 | case TIME_OK: | 655 | case TIME_OK: |
656 | if (time_status & STA_INS) | 656 | if (time_status & STA_INS) |
657 | time_state = TIME_INS; | 657 | time_state = TIME_INS; |
658 | else if (time_status & STA_DEL) | 658 | else if (time_status & STA_DEL) |
659 | time_state = TIME_DEL; | 659 | time_state = TIME_DEL; |
660 | break; | 660 | break; |
661 | 661 | ||
662 | case TIME_INS: | 662 | case TIME_INS: |
663 | if (xtime.tv_sec % 86400 == 0) { | 663 | if (xtime.tv_sec % 86400 == 0) { |
664 | xtime.tv_sec--; | 664 | xtime.tv_sec--; |
665 | wall_to_monotonic.tv_sec++; | 665 | wall_to_monotonic.tv_sec++; |
666 | /* The timer interpolator will make time change gradually instead | 666 | /* The timer interpolator will make time change gradually instead |
667 | * of an immediate jump by one second. | 667 | * of an immediate jump by one second. |
668 | */ | 668 | */ |
669 | time_interpolator_update(-NSEC_PER_SEC); | 669 | time_interpolator_update(-NSEC_PER_SEC); |
670 | time_state = TIME_OOP; | 670 | time_state = TIME_OOP; |
671 | clock_was_set(); | 671 | clock_was_set(); |
672 | printk(KERN_NOTICE "Clock: inserting leap second 23:59:60 UTC\n"); | 672 | printk(KERN_NOTICE "Clock: inserting leap second 23:59:60 UTC\n"); |
673 | } | 673 | } |
674 | break; | 674 | break; |
675 | 675 | ||
676 | case TIME_DEL: | 676 | case TIME_DEL: |
677 | if ((xtime.tv_sec + 1) % 86400 == 0) { | 677 | if ((xtime.tv_sec + 1) % 86400 == 0) { |
678 | xtime.tv_sec++; | 678 | xtime.tv_sec++; |
679 | wall_to_monotonic.tv_sec--; | 679 | wall_to_monotonic.tv_sec--; |
680 | /* Use of time interpolator for a gradual change of time */ | 680 | /* Use of time interpolator for a gradual change of time */ |
681 | time_interpolator_update(NSEC_PER_SEC); | 681 | time_interpolator_update(NSEC_PER_SEC); |
682 | time_state = TIME_WAIT; | 682 | time_state = TIME_WAIT; |
683 | clock_was_set(); | 683 | clock_was_set(); |
684 | printk(KERN_NOTICE "Clock: deleting leap second 23:59:59 UTC\n"); | 684 | printk(KERN_NOTICE "Clock: deleting leap second 23:59:59 UTC\n"); |
685 | } | 685 | } |
686 | break; | 686 | break; |
687 | 687 | ||
688 | case TIME_OOP: | 688 | case TIME_OOP: |
689 | time_state = TIME_WAIT; | 689 | time_state = TIME_WAIT; |
690 | break; | 690 | break; |
691 | 691 | ||
692 | case TIME_WAIT: | 692 | case TIME_WAIT: |
693 | if (!(time_status & (STA_INS | STA_DEL))) | 693 | if (!(time_status & (STA_INS | STA_DEL))) |
694 | time_state = TIME_OK; | 694 | time_state = TIME_OK; |
695 | } | 695 | } |
696 | 696 | ||
697 | /* | 697 | /* |
698 | * Compute the phase adjustment for the next second. In | 698 | * Compute the phase adjustment for the next second. In |
699 | * PLL mode, the offset is reduced by a fixed factor | 699 | * PLL mode, the offset is reduced by a fixed factor |
700 | * times the time constant. In FLL mode the offset is | 700 | * times the time constant. In FLL mode the offset is |
701 | * used directly. In either mode, the maximum phase | 701 | * used directly. In either mode, the maximum phase |
702 | * adjustment for each second is clamped so as to spread | 702 | * adjustment for each second is clamped so as to spread |
703 | * the adjustment over not more than the number of | 703 | * the adjustment over not more than the number of |
704 | * seconds between updates. | 704 | * seconds between updates. |
705 | */ | 705 | */ |
706 | if (time_offset < 0) { | 706 | if (time_offset < 0) { |
707 | ltemp = -time_offset; | 707 | ltemp = -time_offset; |
708 | if (!(time_status & STA_FLL)) | 708 | if (!(time_status & STA_FLL)) |
709 | ltemp >>= SHIFT_KG + time_constant; | 709 | ltemp >>= SHIFT_KG + time_constant; |
710 | if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) | 710 | if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) |
711 | ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE; | 711 | ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE; |
712 | time_offset += ltemp; | 712 | time_offset += ltemp; |
713 | time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); | 713 | time_adj = -ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); |
714 | } else { | 714 | } else { |
715 | ltemp = time_offset; | 715 | ltemp = time_offset; |
716 | if (!(time_status & STA_FLL)) | 716 | if (!(time_status & STA_FLL)) |
717 | ltemp >>= SHIFT_KG + time_constant; | 717 | ltemp >>= SHIFT_KG + time_constant; |
718 | if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) | 718 | if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) |
719 | ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE; | 719 | ltemp = (MAXPHASE / MINSEC) << SHIFT_UPDATE; |
720 | time_offset -= ltemp; | 720 | time_offset -= ltemp; |
721 | time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); | 721 | time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); |
722 | } | 722 | } |
723 | 723 | ||
724 | /* | 724 | /* |
725 | * Compute the frequency estimate and additional phase | 725 | * Compute the frequency estimate and additional phase |
726 | * adjustment due to frequency error for the next | 726 | * adjustment due to frequency error for the next |
727 | * second. When the PPS signal is engaged, gnaw on the | 727 | * second. When the PPS signal is engaged, gnaw on the |
728 | * watchdog counter and update the frequency computed by | 728 | * watchdog counter and update the frequency computed by |
729 | * the pll and the PPS signal. | 729 | * the pll and the PPS signal. |
730 | */ | 730 | */ |
731 | pps_valid++; | 731 | pps_valid++; |
732 | if (pps_valid == PPS_VALID) { /* PPS signal lost */ | 732 | if (pps_valid == PPS_VALID) { /* PPS signal lost */ |
733 | pps_jitter = MAXTIME; | 733 | pps_jitter = MAXTIME; |
734 | pps_stabil = MAXFREQ; | 734 | pps_stabil = MAXFREQ; |
735 | time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | | 735 | time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | |
736 | STA_PPSWANDER | STA_PPSERROR); | 736 | STA_PPSWANDER | STA_PPSERROR); |
737 | } | 737 | } |
738 | ltemp = time_freq + pps_freq; | 738 | ltemp = time_freq + pps_freq; |
739 | if (ltemp < 0) | 739 | if (ltemp < 0) |
740 | time_adj -= -ltemp >> | 740 | time_adj -= -ltemp >> |
741 | (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); | 741 | (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); |
742 | else | 742 | else |
743 | time_adj += ltemp >> | 743 | time_adj += ltemp >> |
744 | (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); | 744 | (SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE); |
745 | 745 | ||
746 | #if HZ == 100 | 746 | #if HZ == 100 |
747 | /* Compensate for (HZ==100) != (1 << SHIFT_HZ). | 747 | /* Compensate for (HZ==100) != (1 << SHIFT_HZ). |
748 | * Add 25% and 3.125% to get 128.125; => only 0.125% error (p. 14) | 748 | * Add 25% and 3.125% to get 128.125; => only 0.125% error (p. 14) |
749 | */ | 749 | */ |
750 | if (time_adj < 0) | 750 | if (time_adj < 0) |
751 | time_adj -= (-time_adj >> 2) + (-time_adj >> 5); | 751 | time_adj -= (-time_adj >> 2) + (-time_adj >> 5); |
752 | else | 752 | else |
753 | time_adj += (time_adj >> 2) + (time_adj >> 5); | 753 | time_adj += (time_adj >> 2) + (time_adj >> 5); |
754 | #endif | 754 | #endif |
755 | #if HZ == 1000 | 755 | #if HZ == 1000 |
756 | /* Compensate for (HZ==1000) != (1 << SHIFT_HZ). | 756 | /* Compensate for (HZ==1000) != (1 << SHIFT_HZ). |
757 | * Add 1.5625% and 0.78125% to get 1023.4375; => only 0.05% error (p. 14) | 757 | * Add 1.5625% and 0.78125% to get 1023.4375; => only 0.05% error (p. 14) |
758 | */ | 758 | */ |
759 | if (time_adj < 0) | 759 | if (time_adj < 0) |
760 | time_adj -= (-time_adj >> 6) + (-time_adj >> 7); | 760 | time_adj -= (-time_adj >> 6) + (-time_adj >> 7); |
761 | else | 761 | else |
762 | time_adj += (time_adj >> 6) + (time_adj >> 7); | 762 | time_adj += (time_adj >> 6) + (time_adj >> 7); |
763 | #endif | 763 | #endif |
764 | } | 764 | } |
765 | 765 | ||
766 | /* in the NTP reference this is called "hardclock()" */ | 766 | /* in the NTP reference this is called "hardclock()" */ |
767 | static void update_wall_time_one_tick(void) | 767 | static void update_wall_time_one_tick(void) |
768 | { | 768 | { |
769 | long time_adjust_step, delta_nsec; | 769 | long time_adjust_step, delta_nsec; |
770 | 770 | ||
771 | if ( (time_adjust_step = time_adjust) != 0 ) { | 771 | if ( (time_adjust_step = time_adjust) != 0 ) { |
772 | /* We are doing an adjtime thing. | 772 | /* We are doing an adjtime thing. |
773 | * | 773 | * |
774 | * Prepare time_adjust_step to be within bounds. | 774 | * Prepare time_adjust_step to be within bounds. |
775 | * Note that a positive time_adjust means we want the clock | 775 | * Note that a positive time_adjust means we want the clock |
776 | * to run faster. | 776 | * to run faster. |
777 | * | 777 | * |
778 | * Limit the amount of the step to be in the range | 778 | * Limit the amount of the step to be in the range |
779 | * -tickadj .. +tickadj | 779 | * -tickadj .. +tickadj |
780 | */ | 780 | */ |
781 | if (time_adjust > tickadj) | 781 | if (time_adjust > tickadj) |
782 | time_adjust_step = tickadj; | 782 | time_adjust_step = tickadj; |
783 | else if (time_adjust < -tickadj) | 783 | else if (time_adjust < -tickadj) |
784 | time_adjust_step = -tickadj; | 784 | time_adjust_step = -tickadj; |
785 | 785 | ||
786 | /* Reduce by this step the amount of time left */ | 786 | /* Reduce by this step the amount of time left */ |
787 | time_adjust -= time_adjust_step; | 787 | time_adjust -= time_adjust_step; |
788 | } | 788 | } |
789 | delta_nsec = tick_nsec + time_adjust_step * 1000; | 789 | delta_nsec = tick_nsec + time_adjust_step * 1000; |
790 | /* | 790 | /* |
791 | * Advance the phase, once it gets to one microsecond, then | 791 | * Advance the phase, once it gets to one microsecond, then |
792 | * advance the tick more. | 792 | * advance the tick more. |
793 | */ | 793 | */ |
794 | time_phase += time_adj; | 794 | time_phase += time_adj; |
795 | if (time_phase <= -FINENSEC) { | 795 | if (time_phase <= -FINENSEC) { |
796 | long ltemp = -time_phase >> (SHIFT_SCALE - 10); | 796 | long ltemp = -time_phase >> (SHIFT_SCALE - 10); |
797 | time_phase += ltemp << (SHIFT_SCALE - 10); | 797 | time_phase += ltemp << (SHIFT_SCALE - 10); |
798 | delta_nsec -= ltemp; | 798 | delta_nsec -= ltemp; |
799 | } | 799 | } |
800 | else if (time_phase >= FINENSEC) { | 800 | else if (time_phase >= FINENSEC) { |
801 | long ltemp = time_phase >> (SHIFT_SCALE - 10); | 801 | long ltemp = time_phase >> (SHIFT_SCALE - 10); |
802 | time_phase -= ltemp << (SHIFT_SCALE - 10); | 802 | time_phase -= ltemp << (SHIFT_SCALE - 10); |
803 | delta_nsec += ltemp; | 803 | delta_nsec += ltemp; |
804 | } | 804 | } |
805 | xtime.tv_nsec += delta_nsec; | 805 | xtime.tv_nsec += delta_nsec; |
806 | time_interpolator_update(delta_nsec); | 806 | time_interpolator_update(delta_nsec); |
807 | 807 | ||
808 | /* Changes by adjtime() do not take effect till next tick. */ | 808 | /* Changes by adjtime() do not take effect till next tick. */ |
809 | if (time_next_adjust != 0) { | 809 | if (time_next_adjust != 0) { |
810 | time_adjust = time_next_adjust; | 810 | time_adjust = time_next_adjust; |
811 | time_next_adjust = 0; | 811 | time_next_adjust = 0; |
812 | } | 812 | } |
813 | } | 813 | } |
814 | 814 | ||
815 | /* | 815 | /* |
816 | * Using a loop looks inefficient, but "ticks" is | 816 | * Using a loop looks inefficient, but "ticks" is |
817 | * usually just one (we shouldn't be losing ticks, | 817 | * usually just one (we shouldn't be losing ticks, |
818 | * we're doing this this way mainly for interrupt | 818 | * we're doing this this way mainly for interrupt |
819 | * latency reasons, not because we think we'll | 819 | * latency reasons, not because we think we'll |
820 | * have lots of lost timer ticks | 820 | * have lots of lost timer ticks |
821 | */ | 821 | */ |
822 | static void update_wall_time(unsigned long ticks) | 822 | static void update_wall_time(unsigned long ticks) |
823 | { | 823 | { |
824 | do { | 824 | do { |
825 | ticks--; | 825 | ticks--; |
826 | update_wall_time_one_tick(); | 826 | update_wall_time_one_tick(); |
827 | if (xtime.tv_nsec >= 1000000000) { | 827 | if (xtime.tv_nsec >= 1000000000) { |
828 | xtime.tv_nsec -= 1000000000; | 828 | xtime.tv_nsec -= 1000000000; |
829 | xtime.tv_sec++; | 829 | xtime.tv_sec++; |
830 | second_overflow(); | 830 | second_overflow(); |
831 | } | 831 | } |
832 | } while (ticks); | 832 | } while (ticks); |
833 | } | 833 | } |
834 | 834 | ||
835 | /* | 835 | /* |
836 | * Called from the timer interrupt handler to charge one tick to the current | 836 | * Called from the timer interrupt handler to charge one tick to the current |
837 | * process. user_tick is 1 if the tick is user time, 0 for system. | 837 | * process. user_tick is 1 if the tick is user time, 0 for system. |
838 | */ | 838 | */ |
839 | void update_process_times(int user_tick) | 839 | void update_process_times(int user_tick) |
840 | { | 840 | { |
841 | struct task_struct *p = current; | 841 | struct task_struct *p = current; |
842 | int cpu = smp_processor_id(); | 842 | int cpu = smp_processor_id(); |
843 | 843 | ||
844 | /* Note: this timer irq context must be accounted for as well. */ | 844 | /* Note: this timer irq context must be accounted for as well. */ |
845 | if (user_tick) | 845 | if (user_tick) |
846 | account_user_time(p, jiffies_to_cputime(1)); | 846 | account_user_time(p, jiffies_to_cputime(1)); |
847 | else | 847 | else |
848 | account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1)); | 848 | account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1)); |
849 | run_local_timers(); | 849 | run_local_timers(); |
850 | if (rcu_pending(cpu)) | 850 | if (rcu_pending(cpu)) |
851 | rcu_check_callbacks(cpu, user_tick); | 851 | rcu_check_callbacks(cpu, user_tick); |
852 | scheduler_tick(); | 852 | scheduler_tick(); |
853 | run_posix_cpu_timers(p); | 853 | run_posix_cpu_timers(p); |
854 | } | 854 | } |
855 | 855 | ||
856 | /* | 856 | /* |
857 | * Nr of active tasks - counted in fixed-point numbers | 857 | * Nr of active tasks - counted in fixed-point numbers |
858 | */ | 858 | */ |
859 | static unsigned long count_active_tasks(void) | 859 | static unsigned long count_active_tasks(void) |
860 | { | 860 | { |
861 | return (nr_running() + nr_uninterruptible()) * FIXED_1; | 861 | return (nr_running() + nr_uninterruptible()) * FIXED_1; |
862 | } | 862 | } |
863 | 863 | ||
864 | /* | 864 | /* |
865 | * Hmm.. Changed this, as the GNU make sources (load.c) seems to | 865 | * Hmm.. Changed this, as the GNU make sources (load.c) seems to |
866 | * imply that avenrun[] is the standard name for this kind of thing. | 866 | * imply that avenrun[] is the standard name for this kind of thing. |
867 | * Nothing else seems to be standardized: the fractional size etc | 867 | * Nothing else seems to be standardized: the fractional size etc |
868 | * all seem to differ on different machines. | 868 | * all seem to differ on different machines. |
869 | * | 869 | * |
870 | * Requires xtime_lock to access. | 870 | * Requires xtime_lock to access. |
871 | */ | 871 | */ |
872 | unsigned long avenrun[3]; | 872 | unsigned long avenrun[3]; |
873 | 873 | ||
874 | EXPORT_SYMBOL(avenrun); | 874 | EXPORT_SYMBOL(avenrun); |
875 | 875 | ||
876 | /* | 876 | /* |
877 | * calc_load - given tick count, update the avenrun load estimates. | 877 | * calc_load - given tick count, update the avenrun load estimates. |
878 | * This is called while holding a write_lock on xtime_lock. | 878 | * This is called while holding a write_lock on xtime_lock. |
879 | */ | 879 | */ |
880 | static inline void calc_load(unsigned long ticks) | 880 | static inline void calc_load(unsigned long ticks) |
881 | { | 881 | { |
882 | unsigned long active_tasks; /* fixed-point */ | 882 | unsigned long active_tasks; /* fixed-point */ |
883 | static int count = LOAD_FREQ; | 883 | static int count = LOAD_FREQ; |
884 | 884 | ||
885 | count -= ticks; | 885 | count -= ticks; |
886 | if (count < 0) { | 886 | if (count < 0) { |
887 | count += LOAD_FREQ; | 887 | count += LOAD_FREQ; |
888 | active_tasks = count_active_tasks(); | 888 | active_tasks = count_active_tasks(); |
889 | CALC_LOAD(avenrun[0], EXP_1, active_tasks); | 889 | CALC_LOAD(avenrun[0], EXP_1, active_tasks); |
890 | CALC_LOAD(avenrun[1], EXP_5, active_tasks); | 890 | CALC_LOAD(avenrun[1], EXP_5, active_tasks); |
891 | CALC_LOAD(avenrun[2], EXP_15, active_tasks); | 891 | CALC_LOAD(avenrun[2], EXP_15, active_tasks); |
892 | } | 892 | } |
893 | } | 893 | } |
894 | 894 | ||
895 | /* jiffies at the most recent update of wall time */ | 895 | /* jiffies at the most recent update of wall time */ |
896 | unsigned long wall_jiffies = INITIAL_JIFFIES; | 896 | unsigned long wall_jiffies = INITIAL_JIFFIES; |
897 | 897 | ||
898 | /* | 898 | /* |
899 | * This read-write spinlock protects us from races in SMP while | 899 | * This read-write spinlock protects us from races in SMP while |
900 | * playing with xtime and avenrun. | 900 | * playing with xtime and avenrun. |
901 | */ | 901 | */ |
902 | #ifndef ARCH_HAVE_XTIME_LOCK | 902 | #ifndef ARCH_HAVE_XTIME_LOCK |
903 | seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED; | 903 | seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED; |
904 | 904 | ||
905 | EXPORT_SYMBOL(xtime_lock); | 905 | EXPORT_SYMBOL(xtime_lock); |
906 | #endif | 906 | #endif |
907 | 907 | ||
908 | /* | 908 | /* |
909 | * This function runs timers and the timer-tq in bottom half context. | 909 | * This function runs timers and the timer-tq in bottom half context. |
910 | */ | 910 | */ |
911 | static void run_timer_softirq(struct softirq_action *h) | 911 | static void run_timer_softirq(struct softirq_action *h) |
912 | { | 912 | { |
913 | tvec_base_t *base = &__get_cpu_var(tvec_bases); | 913 | tvec_base_t *base = &__get_cpu_var(tvec_bases); |
914 | 914 | ||
915 | if (time_after_eq(jiffies, base->timer_jiffies)) | 915 | if (time_after_eq(jiffies, base->timer_jiffies)) |
916 | __run_timers(base); | 916 | __run_timers(base); |
917 | } | 917 | } |
918 | 918 | ||
919 | /* | 919 | /* |
920 | * Called by the local, per-CPU timer interrupt on SMP. | 920 | * Called by the local, per-CPU timer interrupt on SMP. |
921 | */ | 921 | */ |
922 | void run_local_timers(void) | 922 | void run_local_timers(void) |
923 | { | 923 | { |
924 | raise_softirq(TIMER_SOFTIRQ); | 924 | raise_softirq(TIMER_SOFTIRQ); |
925 | } | 925 | } |
926 | 926 | ||
927 | /* | 927 | /* |
928 | * Called by the timer interrupt. xtime_lock must already be taken | 928 | * Called by the timer interrupt. xtime_lock must already be taken |
929 | * by the timer IRQ! | 929 | * by the timer IRQ! |
930 | */ | 930 | */ |
931 | static inline void update_times(void) | 931 | static inline void update_times(void) |
932 | { | 932 | { |
933 | unsigned long ticks; | 933 | unsigned long ticks; |
934 | 934 | ||
935 | ticks = jiffies - wall_jiffies; | 935 | ticks = jiffies - wall_jiffies; |
936 | if (ticks) { | 936 | if (ticks) { |
937 | wall_jiffies += ticks; | 937 | wall_jiffies += ticks; |
938 | update_wall_time(ticks); | 938 | update_wall_time(ticks); |
939 | } | 939 | } |
940 | calc_load(ticks); | 940 | calc_load(ticks); |
941 | } | 941 | } |
942 | 942 | ||
943 | /* | 943 | /* |
944 | * The 64-bit jiffies value is not atomic - you MUST NOT read it | 944 | * The 64-bit jiffies value is not atomic - you MUST NOT read it |
945 | * without sampling the sequence number in xtime_lock. | 945 | * without sampling the sequence number in xtime_lock. |
946 | * jiffies is defined in the linker script... | 946 | * jiffies is defined in the linker script... |
947 | */ | 947 | */ |
948 | 948 | ||
949 | void do_timer(struct pt_regs *regs) | 949 | void do_timer(struct pt_regs *regs) |
950 | { | 950 | { |
951 | jiffies_64++; | 951 | jiffies_64++; |
952 | update_times(); | 952 | update_times(); |
953 | softlockup_tick(regs); | 953 | softlockup_tick(regs); |
954 | } | 954 | } |
955 | 955 | ||
956 | #ifdef __ARCH_WANT_SYS_ALARM | 956 | #ifdef __ARCH_WANT_SYS_ALARM |
957 | 957 | ||
958 | /* | 958 | /* |
959 | * For backwards compatibility? This can be done in libc so Alpha | 959 | * For backwards compatibility? This can be done in libc so Alpha |
960 | * and all newer ports shouldn't need it. | 960 | * and all newer ports shouldn't need it. |
961 | */ | 961 | */ |
962 | asmlinkage unsigned long sys_alarm(unsigned int seconds) | 962 | asmlinkage unsigned long sys_alarm(unsigned int seconds) |
963 | { | 963 | { |
964 | struct itimerval it_new, it_old; | 964 | struct itimerval it_new, it_old; |
965 | unsigned int oldalarm; | 965 | unsigned int oldalarm; |
966 | 966 | ||
967 | it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0; | 967 | it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0; |
968 | it_new.it_value.tv_sec = seconds; | 968 | it_new.it_value.tv_sec = seconds; |
969 | it_new.it_value.tv_usec = 0; | 969 | it_new.it_value.tv_usec = 0; |
970 | do_setitimer(ITIMER_REAL, &it_new, &it_old); | 970 | do_setitimer(ITIMER_REAL, &it_new, &it_old); |
971 | oldalarm = it_old.it_value.tv_sec; | 971 | oldalarm = it_old.it_value.tv_sec; |
972 | /* ehhh.. We can't return 0 if we have an alarm pending.. */ | 972 | /* ehhh.. We can't return 0 if we have an alarm pending.. */ |
973 | /* And we'd better return too much than too little anyway */ | 973 | /* And we'd better return too much than too little anyway */ |
974 | if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000) | 974 | if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000) |
975 | oldalarm++; | 975 | oldalarm++; |
976 | return oldalarm; | 976 | return oldalarm; |
977 | } | 977 | } |
978 | 978 | ||
979 | #endif | 979 | #endif |
980 | 980 | ||
981 | #ifndef __alpha__ | 981 | #ifndef __alpha__ |
982 | 982 | ||
983 | /* | 983 | /* |
984 | * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this | 984 | * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this |
985 | * should be moved into arch/i386 instead? | 985 | * should be moved into arch/i386 instead? |
986 | */ | 986 | */ |
987 | 987 | ||
988 | /** | 988 | /** |
989 | * sys_getpid - return the thread group id of the current process | 989 | * sys_getpid - return the thread group id of the current process |
990 | * | 990 | * |
991 | * Note, despite the name, this returns the tgid not the pid. The tgid and | 991 | * Note, despite the name, this returns the tgid not the pid. The tgid and |
992 | * the pid are identical unless CLONE_THREAD was specified on clone() in | 992 | * the pid are identical unless CLONE_THREAD was specified on clone() in |
993 | * which case the tgid is the same in all threads of the same group. | 993 | * which case the tgid is the same in all threads of the same group. |
994 | * | 994 | * |
995 | * This is SMP safe as current->tgid does not change. | 995 | * This is SMP safe as current->tgid does not change. |
996 | */ | 996 | */ |
997 | asmlinkage long sys_getpid(void) | 997 | asmlinkage long sys_getpid(void) |
998 | { | 998 | { |
999 | return current->tgid; | 999 | return current->tgid; |
1000 | } | 1000 | } |
1001 | 1001 | ||
1002 | /* | 1002 | /* |
1003 | * Accessing ->group_leader->real_parent is not SMP-safe, it could | 1003 | * Accessing ->group_leader->real_parent is not SMP-safe, it could |
1004 | * change from under us. However, rather than getting any lock | 1004 | * change from under us. However, rather than getting any lock |
1005 | * we can use an optimistic algorithm: get the parent | 1005 | * we can use an optimistic algorithm: get the parent |
1006 | * pid, and go back and check that the parent is still | 1006 | * pid, and go back and check that the parent is still |
1007 | * the same. If it has changed (which is extremely unlikely | 1007 | * the same. If it has changed (which is extremely unlikely |
1008 | * indeed), we just try again.. | 1008 | * indeed), we just try again.. |
1009 | * | 1009 | * |
1010 | * NOTE! This depends on the fact that even if we _do_ | 1010 | * NOTE! This depends on the fact that even if we _do_ |
1011 | * get an old value of "parent", we can happily dereference | 1011 | * get an old value of "parent", we can happily dereference |
1012 | * the pointer (it was and remains a dereferencable kernel pointer | 1012 | * the pointer (it was and remains a dereferencable kernel pointer |
1013 | * no matter what): we just can't necessarily trust the result | 1013 | * no matter what): we just can't necessarily trust the result |
1014 | * until we know that the parent pointer is valid. | 1014 | * until we know that the parent pointer is valid. |
1015 | * | 1015 | * |
1016 | * NOTE2: ->group_leader never changes from under us. | 1016 | * NOTE2: ->group_leader never changes from under us. |
1017 | */ | 1017 | */ |
1018 | asmlinkage long sys_getppid(void) | 1018 | asmlinkage long sys_getppid(void) |
1019 | { | 1019 | { |
1020 | int pid; | 1020 | int pid; |
1021 | struct task_struct *me = current; | 1021 | struct task_struct *me = current; |
1022 | struct task_struct *parent; | 1022 | struct task_struct *parent; |
1023 | 1023 | ||
1024 | parent = me->group_leader->real_parent; | 1024 | parent = me->group_leader->real_parent; |
1025 | for (;;) { | 1025 | for (;;) { |
1026 | pid = parent->tgid; | 1026 | pid = parent->tgid; |
1027 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | 1027 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) |
1028 | { | 1028 | { |
1029 | struct task_struct *old = parent; | 1029 | struct task_struct *old = parent; |
1030 | 1030 | ||
1031 | /* | 1031 | /* |
1032 | * Make sure we read the pid before re-reading the | 1032 | * Make sure we read the pid before re-reading the |
1033 | * parent pointer: | 1033 | * parent pointer: |
1034 | */ | 1034 | */ |
1035 | smp_rmb(); | 1035 | smp_rmb(); |
1036 | parent = me->group_leader->real_parent; | 1036 | parent = me->group_leader->real_parent; |
1037 | if (old != parent) | 1037 | if (old != parent) |
1038 | continue; | 1038 | continue; |
1039 | } | 1039 | } |
1040 | #endif | 1040 | #endif |
1041 | break; | 1041 | break; |
1042 | } | 1042 | } |
1043 | return pid; | 1043 | return pid; |
1044 | } | 1044 | } |
1045 | 1045 | ||
1046 | asmlinkage long sys_getuid(void) | 1046 | asmlinkage long sys_getuid(void) |
1047 | { | 1047 | { |
1048 | /* Only we change this so SMP safe */ | 1048 | /* Only we change this so SMP safe */ |
1049 | return current->uid; | 1049 | return current->uid; |
1050 | } | 1050 | } |
1051 | 1051 | ||
1052 | asmlinkage long sys_geteuid(void) | 1052 | asmlinkage long sys_geteuid(void) |
1053 | { | 1053 | { |
1054 | /* Only we change this so SMP safe */ | 1054 | /* Only we change this so SMP safe */ |
1055 | return current->euid; | 1055 | return current->euid; |
1056 | } | 1056 | } |
1057 | 1057 | ||
1058 | asmlinkage long sys_getgid(void) | 1058 | asmlinkage long sys_getgid(void) |
1059 | { | 1059 | { |
1060 | /* Only we change this so SMP safe */ | 1060 | /* Only we change this so SMP safe */ |
1061 | return current->gid; | 1061 | return current->gid; |
1062 | } | 1062 | } |
1063 | 1063 | ||
1064 | asmlinkage long sys_getegid(void) | 1064 | asmlinkage long sys_getegid(void) |
1065 | { | 1065 | { |
1066 | /* Only we change this so SMP safe */ | 1066 | /* Only we change this so SMP safe */ |
1067 | return current->egid; | 1067 | return current->egid; |
1068 | } | 1068 | } |
1069 | 1069 | ||
1070 | #endif | 1070 | #endif |
1071 | 1071 | ||
1072 | static void process_timeout(unsigned long __data) | 1072 | static void process_timeout(unsigned long __data) |
1073 | { | 1073 | { |
1074 | wake_up_process((task_t *)__data); | 1074 | wake_up_process((task_t *)__data); |
1075 | } | 1075 | } |
1076 | 1076 | ||
1077 | /** | 1077 | /** |
1078 | * schedule_timeout - sleep until timeout | 1078 | * schedule_timeout - sleep until timeout |
1079 | * @timeout: timeout value in jiffies | 1079 | * @timeout: timeout value in jiffies |
1080 | * | 1080 | * |
1081 | * Make the current task sleep until @timeout jiffies have | 1081 | * Make the current task sleep until @timeout jiffies have |
1082 | * elapsed. The routine will return immediately unless | 1082 | * elapsed. The routine will return immediately unless |
1083 | * the current task state has been set (see set_current_state()). | 1083 | * the current task state has been set (see set_current_state()). |
1084 | * | 1084 | * |
1085 | * You can set the task state as follows - | 1085 | * You can set the task state as follows - |
1086 | * | 1086 | * |
1087 | * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to | 1087 | * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to |
1088 | * pass before the routine returns. The routine will return 0 | 1088 | * pass before the routine returns. The routine will return 0 |
1089 | * | 1089 | * |
1090 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | 1090 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is |
1091 | * delivered to the current task. In this case the remaining time | 1091 | * delivered to the current task. In this case the remaining time |
1092 | * in jiffies will be returned, or 0 if the timer expired in time | 1092 | * in jiffies will be returned, or 0 if the timer expired in time |
1093 | * | 1093 | * |
1094 | * The current task state is guaranteed to be TASK_RUNNING when this | 1094 | * The current task state is guaranteed to be TASK_RUNNING when this |
1095 | * routine returns. | 1095 | * routine returns. |
1096 | * | 1096 | * |
1097 | * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule | 1097 | * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule |
1098 | * the CPU away without a bound on the timeout. In this case the return | 1098 | * the CPU away without a bound on the timeout. In this case the return |
1099 | * value will be %MAX_SCHEDULE_TIMEOUT. | 1099 | * value will be %MAX_SCHEDULE_TIMEOUT. |
1100 | * | 1100 | * |
1101 | * In all cases the return value is guaranteed to be non-negative. | 1101 | * In all cases the return value is guaranteed to be non-negative. |
1102 | */ | 1102 | */ |
1103 | fastcall signed long __sched schedule_timeout(signed long timeout) | 1103 | fastcall signed long __sched schedule_timeout(signed long timeout) |
1104 | { | 1104 | { |
1105 | struct timer_list timer; | 1105 | struct timer_list timer; |
1106 | unsigned long expire; | 1106 | unsigned long expire; |
1107 | 1107 | ||
1108 | switch (timeout) | 1108 | switch (timeout) |
1109 | { | 1109 | { |
1110 | case MAX_SCHEDULE_TIMEOUT: | 1110 | case MAX_SCHEDULE_TIMEOUT: |
1111 | /* | 1111 | /* |
1112 | * These two special cases are useful to be comfortable | 1112 | * These two special cases are useful to be comfortable |
1113 | * in the caller. Nothing more. We could take | 1113 | * in the caller. Nothing more. We could take |
1114 | * MAX_SCHEDULE_TIMEOUT from one of the negative value | 1114 | * MAX_SCHEDULE_TIMEOUT from one of the negative value |
1115 | * but I' d like to return a valid offset (>=0) to allow | 1115 | * but I' d like to return a valid offset (>=0) to allow |
1116 | * the caller to do everything it want with the retval. | 1116 | * the caller to do everything it want with the retval. |
1117 | */ | 1117 | */ |
1118 | schedule(); | 1118 | schedule(); |
1119 | goto out; | 1119 | goto out; |
1120 | default: | 1120 | default: |
1121 | /* | 1121 | /* |
1122 | * Another bit of PARANOID. Note that the retval will be | 1122 | * Another bit of PARANOID. Note that the retval will be |
1123 | * 0 since no piece of kernel is supposed to do a check | 1123 | * 0 since no piece of kernel is supposed to do a check |
1124 | * for a negative retval of schedule_timeout() (since it | 1124 | * for a negative retval of schedule_timeout() (since it |
1125 | * should never happens anyway). You just have the printk() | 1125 | * should never happens anyway). You just have the printk() |
1126 | * that will tell you if something is gone wrong and where. | 1126 | * that will tell you if something is gone wrong and where. |
1127 | */ | 1127 | */ |
1128 | if (timeout < 0) | 1128 | if (timeout < 0) |
1129 | { | 1129 | { |
1130 | printk(KERN_ERR "schedule_timeout: wrong timeout " | 1130 | printk(KERN_ERR "schedule_timeout: wrong timeout " |
1131 | "value %lx from %p\n", timeout, | 1131 | "value %lx from %p\n", timeout, |
1132 | __builtin_return_address(0)); | 1132 | __builtin_return_address(0)); |
1133 | current->state = TASK_RUNNING; | 1133 | current->state = TASK_RUNNING; |
1134 | goto out; | 1134 | goto out; |
1135 | } | 1135 | } |
1136 | } | 1136 | } |
1137 | 1137 | ||
1138 | expire = timeout + jiffies; | 1138 | expire = timeout + jiffies; |
1139 | 1139 | ||
1140 | init_timer(&timer); | 1140 | init_timer(&timer); |
1141 | timer.expires = expire; | 1141 | timer.expires = expire; |
1142 | timer.data = (unsigned long) current; | 1142 | timer.data = (unsigned long) current; |
1143 | timer.function = process_timeout; | 1143 | timer.function = process_timeout; |
1144 | 1144 | ||
1145 | add_timer(&timer); | 1145 | add_timer(&timer); |
1146 | schedule(); | 1146 | schedule(); |
1147 | del_singleshot_timer_sync(&timer); | 1147 | del_singleshot_timer_sync(&timer); |
1148 | 1148 | ||
1149 | timeout = expire - jiffies; | 1149 | timeout = expire - jiffies; |
1150 | 1150 | ||
1151 | out: | 1151 | out: |
1152 | return timeout < 0 ? 0 : timeout; | 1152 | return timeout < 0 ? 0 : timeout; |
1153 | } | 1153 | } |
1154 | |||
1155 | EXPORT_SYMBOL(schedule_timeout); | 1154 | EXPORT_SYMBOL(schedule_timeout); |
1156 | 1155 | ||
1156 | /* | ||
1157 | * We can use __set_current_state() here because schedule_timeout() calls | ||
1158 | * schedule() unconditionally. | ||
1159 | */ | ||
1157 | signed long __sched schedule_timeout_interruptible(signed long timeout) | 1160 | signed long __sched schedule_timeout_interruptible(signed long timeout) |
1158 | { | 1161 | { |
1159 | set_current_state(TASK_INTERRUPTIBLE); | 1162 | __set_current_state(TASK_INTERRUPTIBLE); |
1160 | return schedule_timeout(timeout); | 1163 | return schedule_timeout(timeout); |
1161 | } | 1164 | } |
1162 | EXPORT_SYMBOL(schedule_timeout_interruptible); | 1165 | EXPORT_SYMBOL(schedule_timeout_interruptible); |
1163 | 1166 | ||
1164 | signed long __sched schedule_timeout_uninterruptible(signed long timeout) | 1167 | signed long __sched schedule_timeout_uninterruptible(signed long timeout) |
1165 | { | 1168 | { |
1166 | set_current_state(TASK_UNINTERRUPTIBLE); | 1169 | __set_current_state(TASK_UNINTERRUPTIBLE); |
1167 | return schedule_timeout(timeout); | 1170 | return schedule_timeout(timeout); |
1168 | } | 1171 | } |
1169 | EXPORT_SYMBOL(schedule_timeout_uninterruptible); | 1172 | EXPORT_SYMBOL(schedule_timeout_uninterruptible); |
1170 | 1173 | ||
1171 | /* Thread ID - the internal kernel "pid" */ | 1174 | /* Thread ID - the internal kernel "pid" */ |
1172 | asmlinkage long sys_gettid(void) | 1175 | asmlinkage long sys_gettid(void) |
1173 | { | 1176 | { |
1174 | return current->pid; | 1177 | return current->pid; |
1175 | } | 1178 | } |
1176 | 1179 | ||
1177 | static long __sched nanosleep_restart(struct restart_block *restart) | 1180 | static long __sched nanosleep_restart(struct restart_block *restart) |
1178 | { | 1181 | { |
1179 | unsigned long expire = restart->arg0, now = jiffies; | 1182 | unsigned long expire = restart->arg0, now = jiffies; |
1180 | struct timespec __user *rmtp = (struct timespec __user *) restart->arg1; | 1183 | struct timespec __user *rmtp = (struct timespec __user *) restart->arg1; |
1181 | long ret; | 1184 | long ret; |
1182 | 1185 | ||
1183 | /* Did it expire while we handled signals? */ | 1186 | /* Did it expire while we handled signals? */ |
1184 | if (!time_after(expire, now)) | 1187 | if (!time_after(expire, now)) |
1185 | return 0; | 1188 | return 0; |
1186 | 1189 | ||
1187 | expire = schedule_timeout_interruptible(expire - now); | 1190 | expire = schedule_timeout_interruptible(expire - now); |
1188 | 1191 | ||
1189 | ret = 0; | 1192 | ret = 0; |
1190 | if (expire) { | 1193 | if (expire) { |
1191 | struct timespec t; | 1194 | struct timespec t; |
1192 | jiffies_to_timespec(expire, &t); | 1195 | jiffies_to_timespec(expire, &t); |
1193 | 1196 | ||
1194 | ret = -ERESTART_RESTARTBLOCK; | 1197 | ret = -ERESTART_RESTARTBLOCK; |
1195 | if (rmtp && copy_to_user(rmtp, &t, sizeof(t))) | 1198 | if (rmtp && copy_to_user(rmtp, &t, sizeof(t))) |
1196 | ret = -EFAULT; | 1199 | ret = -EFAULT; |
1197 | /* The 'restart' block is already filled in */ | 1200 | /* The 'restart' block is already filled in */ |
1198 | } | 1201 | } |
1199 | return ret; | 1202 | return ret; |
1200 | } | 1203 | } |
1201 | 1204 | ||
1202 | asmlinkage long sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp) | 1205 | asmlinkage long sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp) |
1203 | { | 1206 | { |
1204 | struct timespec t; | 1207 | struct timespec t; |
1205 | unsigned long expire; | 1208 | unsigned long expire; |
1206 | long ret; | 1209 | long ret; |
1207 | 1210 | ||
1208 | if (copy_from_user(&t, rqtp, sizeof(t))) | 1211 | if (copy_from_user(&t, rqtp, sizeof(t))) |
1209 | return -EFAULT; | 1212 | return -EFAULT; |
1210 | 1213 | ||
1211 | if ((t.tv_nsec >= 1000000000L) || (t.tv_nsec < 0) || (t.tv_sec < 0)) | 1214 | if ((t.tv_nsec >= 1000000000L) || (t.tv_nsec < 0) || (t.tv_sec < 0)) |
1212 | return -EINVAL; | 1215 | return -EINVAL; |
1213 | 1216 | ||
1214 | expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec); | 1217 | expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec); |
1215 | expire = schedule_timeout_interruptible(expire); | 1218 | expire = schedule_timeout_interruptible(expire); |
1216 | 1219 | ||
1217 | ret = 0; | 1220 | ret = 0; |
1218 | if (expire) { | 1221 | if (expire) { |
1219 | struct restart_block *restart; | 1222 | struct restart_block *restart; |
1220 | jiffies_to_timespec(expire, &t); | 1223 | jiffies_to_timespec(expire, &t); |
1221 | if (rmtp && copy_to_user(rmtp, &t, sizeof(t))) | 1224 | if (rmtp && copy_to_user(rmtp, &t, sizeof(t))) |
1222 | return -EFAULT; | 1225 | return -EFAULT; |
1223 | 1226 | ||
1224 | restart = ¤t_thread_info()->restart_block; | 1227 | restart = ¤t_thread_info()->restart_block; |
1225 | restart->fn = nanosleep_restart; | 1228 | restart->fn = nanosleep_restart; |
1226 | restart->arg0 = jiffies + expire; | 1229 | restart->arg0 = jiffies + expire; |
1227 | restart->arg1 = (unsigned long) rmtp; | 1230 | restart->arg1 = (unsigned long) rmtp; |
1228 | ret = -ERESTART_RESTARTBLOCK; | 1231 | ret = -ERESTART_RESTARTBLOCK; |
1229 | } | 1232 | } |
1230 | return ret; | 1233 | return ret; |
1231 | } | 1234 | } |
1232 | 1235 | ||
1233 | /* | 1236 | /* |
1234 | * sys_sysinfo - fill in sysinfo struct | 1237 | * sys_sysinfo - fill in sysinfo struct |
1235 | */ | 1238 | */ |
1236 | asmlinkage long sys_sysinfo(struct sysinfo __user *info) | 1239 | asmlinkage long sys_sysinfo(struct sysinfo __user *info) |
1237 | { | 1240 | { |
1238 | struct sysinfo val; | 1241 | struct sysinfo val; |
1239 | unsigned long mem_total, sav_total; | 1242 | unsigned long mem_total, sav_total; |
1240 | unsigned int mem_unit, bitcount; | 1243 | unsigned int mem_unit, bitcount; |
1241 | unsigned long seq; | 1244 | unsigned long seq; |
1242 | 1245 | ||
1243 | memset((char *)&val, 0, sizeof(struct sysinfo)); | 1246 | memset((char *)&val, 0, sizeof(struct sysinfo)); |
1244 | 1247 | ||
1245 | do { | 1248 | do { |
1246 | struct timespec tp; | 1249 | struct timespec tp; |
1247 | seq = read_seqbegin(&xtime_lock); | 1250 | seq = read_seqbegin(&xtime_lock); |
1248 | 1251 | ||
1249 | /* | 1252 | /* |
1250 | * This is annoying. The below is the same thing | 1253 | * This is annoying. The below is the same thing |
1251 | * posix_get_clock_monotonic() does, but it wants to | 1254 | * posix_get_clock_monotonic() does, but it wants to |
1252 | * take the lock which we want to cover the loads stuff | 1255 | * take the lock which we want to cover the loads stuff |
1253 | * too. | 1256 | * too. |
1254 | */ | 1257 | */ |
1255 | 1258 | ||
1256 | getnstimeofday(&tp); | 1259 | getnstimeofday(&tp); |
1257 | tp.tv_sec += wall_to_monotonic.tv_sec; | 1260 | tp.tv_sec += wall_to_monotonic.tv_sec; |
1258 | tp.tv_nsec += wall_to_monotonic.tv_nsec; | 1261 | tp.tv_nsec += wall_to_monotonic.tv_nsec; |
1259 | if (tp.tv_nsec - NSEC_PER_SEC >= 0) { | 1262 | if (tp.tv_nsec - NSEC_PER_SEC >= 0) { |
1260 | tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC; | 1263 | tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC; |
1261 | tp.tv_sec++; | 1264 | tp.tv_sec++; |
1262 | } | 1265 | } |
1263 | val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); | 1266 | val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); |
1264 | 1267 | ||
1265 | val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT); | 1268 | val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT); |
1266 | val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT); | 1269 | val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT); |
1267 | val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT); | 1270 | val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT); |
1268 | 1271 | ||
1269 | val.procs = nr_threads; | 1272 | val.procs = nr_threads; |
1270 | } while (read_seqretry(&xtime_lock, seq)); | 1273 | } while (read_seqretry(&xtime_lock, seq)); |
1271 | 1274 | ||
1272 | si_meminfo(&val); | 1275 | si_meminfo(&val); |
1273 | si_swapinfo(&val); | 1276 | si_swapinfo(&val); |
1274 | 1277 | ||
1275 | /* | 1278 | /* |
1276 | * If the sum of all the available memory (i.e. ram + swap) | 1279 | * If the sum of all the available memory (i.e. ram + swap) |
1277 | * is less than can be stored in a 32 bit unsigned long then | 1280 | * is less than can be stored in a 32 bit unsigned long then |
1278 | * we can be binary compatible with 2.2.x kernels. If not, | 1281 | * we can be binary compatible with 2.2.x kernels. If not, |
1279 | * well, in that case 2.2.x was broken anyways... | 1282 | * well, in that case 2.2.x was broken anyways... |
1280 | * | 1283 | * |
1281 | * -Erik Andersen <andersee@debian.org> | 1284 | * -Erik Andersen <andersee@debian.org> |
1282 | */ | 1285 | */ |
1283 | 1286 | ||
1284 | mem_total = val.totalram + val.totalswap; | 1287 | mem_total = val.totalram + val.totalswap; |
1285 | if (mem_total < val.totalram || mem_total < val.totalswap) | 1288 | if (mem_total < val.totalram || mem_total < val.totalswap) |
1286 | goto out; | 1289 | goto out; |
1287 | bitcount = 0; | 1290 | bitcount = 0; |
1288 | mem_unit = val.mem_unit; | 1291 | mem_unit = val.mem_unit; |
1289 | while (mem_unit > 1) { | 1292 | while (mem_unit > 1) { |
1290 | bitcount++; | 1293 | bitcount++; |
1291 | mem_unit >>= 1; | 1294 | mem_unit >>= 1; |
1292 | sav_total = mem_total; | 1295 | sav_total = mem_total; |
1293 | mem_total <<= 1; | 1296 | mem_total <<= 1; |
1294 | if (mem_total < sav_total) | 1297 | if (mem_total < sav_total) |
1295 | goto out; | 1298 | goto out; |
1296 | } | 1299 | } |
1297 | 1300 | ||
1298 | /* | 1301 | /* |
1299 | * If mem_total did not overflow, multiply all memory values by | 1302 | * If mem_total did not overflow, multiply all memory values by |
1300 | * val.mem_unit and set it to 1. This leaves things compatible | 1303 | * val.mem_unit and set it to 1. This leaves things compatible |
1301 | * with 2.2.x, and also retains compatibility with earlier 2.4.x | 1304 | * with 2.2.x, and also retains compatibility with earlier 2.4.x |
1302 | * kernels... | 1305 | * kernels... |
1303 | */ | 1306 | */ |
1304 | 1307 | ||
1305 | val.mem_unit = 1; | 1308 | val.mem_unit = 1; |
1306 | val.totalram <<= bitcount; | 1309 | val.totalram <<= bitcount; |
1307 | val.freeram <<= bitcount; | 1310 | val.freeram <<= bitcount; |
1308 | val.sharedram <<= bitcount; | 1311 | val.sharedram <<= bitcount; |
1309 | val.bufferram <<= bitcount; | 1312 | val.bufferram <<= bitcount; |
1310 | val.totalswap <<= bitcount; | 1313 | val.totalswap <<= bitcount; |
1311 | val.freeswap <<= bitcount; | 1314 | val.freeswap <<= bitcount; |
1312 | val.totalhigh <<= bitcount; | 1315 | val.totalhigh <<= bitcount; |
1313 | val.freehigh <<= bitcount; | 1316 | val.freehigh <<= bitcount; |
1314 | 1317 | ||
1315 | out: | 1318 | out: |
1316 | if (copy_to_user(info, &val, sizeof(struct sysinfo))) | 1319 | if (copy_to_user(info, &val, sizeof(struct sysinfo))) |
1317 | return -EFAULT; | 1320 | return -EFAULT; |
1318 | 1321 | ||
1319 | return 0; | 1322 | return 0; |
1320 | } | 1323 | } |
1321 | 1324 | ||
1322 | static void __devinit init_timers_cpu(int cpu) | 1325 | static void __devinit init_timers_cpu(int cpu) |
1323 | { | 1326 | { |
1324 | int j; | 1327 | int j; |
1325 | tvec_base_t *base; | 1328 | tvec_base_t *base; |
1326 | 1329 | ||
1327 | base = &per_cpu(tvec_bases, cpu); | 1330 | base = &per_cpu(tvec_bases, cpu); |
1328 | spin_lock_init(&base->t_base.lock); | 1331 | spin_lock_init(&base->t_base.lock); |
1329 | for (j = 0; j < TVN_SIZE; j++) { | 1332 | for (j = 0; j < TVN_SIZE; j++) { |
1330 | INIT_LIST_HEAD(base->tv5.vec + j); | 1333 | INIT_LIST_HEAD(base->tv5.vec + j); |
1331 | INIT_LIST_HEAD(base->tv4.vec + j); | 1334 | INIT_LIST_HEAD(base->tv4.vec + j); |
1332 | INIT_LIST_HEAD(base->tv3.vec + j); | 1335 | INIT_LIST_HEAD(base->tv3.vec + j); |
1333 | INIT_LIST_HEAD(base->tv2.vec + j); | 1336 | INIT_LIST_HEAD(base->tv2.vec + j); |
1334 | } | 1337 | } |
1335 | for (j = 0; j < TVR_SIZE; j++) | 1338 | for (j = 0; j < TVR_SIZE; j++) |
1336 | INIT_LIST_HEAD(base->tv1.vec + j); | 1339 | INIT_LIST_HEAD(base->tv1.vec + j); |
1337 | 1340 | ||
1338 | base->timer_jiffies = jiffies; | 1341 | base->timer_jiffies = jiffies; |
1339 | } | 1342 | } |
1340 | 1343 | ||
1341 | #ifdef CONFIG_HOTPLUG_CPU | 1344 | #ifdef CONFIG_HOTPLUG_CPU |
1342 | static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head) | 1345 | static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head) |
1343 | { | 1346 | { |
1344 | struct timer_list *timer; | 1347 | struct timer_list *timer; |
1345 | 1348 | ||
1346 | while (!list_empty(head)) { | 1349 | while (!list_empty(head)) { |
1347 | timer = list_entry(head->next, struct timer_list, entry); | 1350 | timer = list_entry(head->next, struct timer_list, entry); |
1348 | detach_timer(timer, 0); | 1351 | detach_timer(timer, 0); |
1349 | timer->base = &new_base->t_base; | 1352 | timer->base = &new_base->t_base; |
1350 | internal_add_timer(new_base, timer); | 1353 | internal_add_timer(new_base, timer); |
1351 | } | 1354 | } |
1352 | } | 1355 | } |
1353 | 1356 | ||
1354 | static void __devinit migrate_timers(int cpu) | 1357 | static void __devinit migrate_timers(int cpu) |
1355 | { | 1358 | { |
1356 | tvec_base_t *old_base; | 1359 | tvec_base_t *old_base; |
1357 | tvec_base_t *new_base; | 1360 | tvec_base_t *new_base; |
1358 | int i; | 1361 | int i; |
1359 | 1362 | ||
1360 | BUG_ON(cpu_online(cpu)); | 1363 | BUG_ON(cpu_online(cpu)); |
1361 | old_base = &per_cpu(tvec_bases, cpu); | 1364 | old_base = &per_cpu(tvec_bases, cpu); |
1362 | new_base = &get_cpu_var(tvec_bases); | 1365 | new_base = &get_cpu_var(tvec_bases); |
1363 | 1366 | ||
1364 | local_irq_disable(); | 1367 | local_irq_disable(); |
1365 | spin_lock(&new_base->t_base.lock); | 1368 | spin_lock(&new_base->t_base.lock); |
1366 | spin_lock(&old_base->t_base.lock); | 1369 | spin_lock(&old_base->t_base.lock); |
1367 | 1370 | ||
1368 | if (old_base->t_base.running_timer) | 1371 | if (old_base->t_base.running_timer) |
1369 | BUG(); | 1372 | BUG(); |
1370 | for (i = 0; i < TVR_SIZE; i++) | 1373 | for (i = 0; i < TVR_SIZE; i++) |
1371 | migrate_timer_list(new_base, old_base->tv1.vec + i); | 1374 | migrate_timer_list(new_base, old_base->tv1.vec + i); |
1372 | for (i = 0; i < TVN_SIZE; i++) { | 1375 | for (i = 0; i < TVN_SIZE; i++) { |
1373 | migrate_timer_list(new_base, old_base->tv2.vec + i); | 1376 | migrate_timer_list(new_base, old_base->tv2.vec + i); |
1374 | migrate_timer_list(new_base, old_base->tv3.vec + i); | 1377 | migrate_timer_list(new_base, old_base->tv3.vec + i); |
1375 | migrate_timer_list(new_base, old_base->tv4.vec + i); | 1378 | migrate_timer_list(new_base, old_base->tv4.vec + i); |
1376 | migrate_timer_list(new_base, old_base->tv5.vec + i); | 1379 | migrate_timer_list(new_base, old_base->tv5.vec + i); |
1377 | } | 1380 | } |
1378 | 1381 | ||
1379 | spin_unlock(&old_base->t_base.lock); | 1382 | spin_unlock(&old_base->t_base.lock); |
1380 | spin_unlock(&new_base->t_base.lock); | 1383 | spin_unlock(&new_base->t_base.lock); |
1381 | local_irq_enable(); | 1384 | local_irq_enable(); |
1382 | put_cpu_var(tvec_bases); | 1385 | put_cpu_var(tvec_bases); |
1383 | } | 1386 | } |
1384 | #endif /* CONFIG_HOTPLUG_CPU */ | 1387 | #endif /* CONFIG_HOTPLUG_CPU */ |
1385 | 1388 | ||
1386 | static int __devinit timer_cpu_notify(struct notifier_block *self, | 1389 | static int __devinit timer_cpu_notify(struct notifier_block *self, |
1387 | unsigned long action, void *hcpu) | 1390 | unsigned long action, void *hcpu) |
1388 | { | 1391 | { |
1389 | long cpu = (long)hcpu; | 1392 | long cpu = (long)hcpu; |
1390 | switch(action) { | 1393 | switch(action) { |
1391 | case CPU_UP_PREPARE: | 1394 | case CPU_UP_PREPARE: |
1392 | init_timers_cpu(cpu); | 1395 | init_timers_cpu(cpu); |
1393 | break; | 1396 | break; |
1394 | #ifdef CONFIG_HOTPLUG_CPU | 1397 | #ifdef CONFIG_HOTPLUG_CPU |
1395 | case CPU_DEAD: | 1398 | case CPU_DEAD: |
1396 | migrate_timers(cpu); | 1399 | migrate_timers(cpu); |
1397 | break; | 1400 | break; |
1398 | #endif | 1401 | #endif |
1399 | default: | 1402 | default: |
1400 | break; | 1403 | break; |
1401 | } | 1404 | } |
1402 | return NOTIFY_OK; | 1405 | return NOTIFY_OK; |
1403 | } | 1406 | } |
1404 | 1407 | ||
1405 | static struct notifier_block __devinitdata timers_nb = { | 1408 | static struct notifier_block __devinitdata timers_nb = { |
1406 | .notifier_call = timer_cpu_notify, | 1409 | .notifier_call = timer_cpu_notify, |
1407 | }; | 1410 | }; |
1408 | 1411 | ||
1409 | 1412 | ||
1410 | void __init init_timers(void) | 1413 | void __init init_timers(void) |
1411 | { | 1414 | { |
1412 | timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, | 1415 | timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, |
1413 | (void *)(long)smp_processor_id()); | 1416 | (void *)(long)smp_processor_id()); |
1414 | register_cpu_notifier(&timers_nb); | 1417 | register_cpu_notifier(&timers_nb); |
1415 | open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL); | 1418 | open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL); |
1416 | } | 1419 | } |
1417 | 1420 | ||
1418 | #ifdef CONFIG_TIME_INTERPOLATION | 1421 | #ifdef CONFIG_TIME_INTERPOLATION |
1419 | 1422 | ||
1420 | struct time_interpolator *time_interpolator; | 1423 | struct time_interpolator *time_interpolator; |
1421 | static struct time_interpolator *time_interpolator_list; | 1424 | static struct time_interpolator *time_interpolator_list; |
1422 | static DEFINE_SPINLOCK(time_interpolator_lock); | 1425 | static DEFINE_SPINLOCK(time_interpolator_lock); |
1423 | 1426 | ||
1424 | static inline u64 time_interpolator_get_cycles(unsigned int src) | 1427 | static inline u64 time_interpolator_get_cycles(unsigned int src) |
1425 | { | 1428 | { |
1426 | unsigned long (*x)(void); | 1429 | unsigned long (*x)(void); |
1427 | 1430 | ||
1428 | switch (src) | 1431 | switch (src) |
1429 | { | 1432 | { |
1430 | case TIME_SOURCE_FUNCTION: | 1433 | case TIME_SOURCE_FUNCTION: |
1431 | x = time_interpolator->addr; | 1434 | x = time_interpolator->addr; |
1432 | return x(); | 1435 | return x(); |
1433 | 1436 | ||
1434 | case TIME_SOURCE_MMIO64 : | 1437 | case TIME_SOURCE_MMIO64 : |
1435 | return readq((void __iomem *) time_interpolator->addr); | 1438 | return readq((void __iomem *) time_interpolator->addr); |
1436 | 1439 | ||
1437 | case TIME_SOURCE_MMIO32 : | 1440 | case TIME_SOURCE_MMIO32 : |
1438 | return readl((void __iomem *) time_interpolator->addr); | 1441 | return readl((void __iomem *) time_interpolator->addr); |
1439 | 1442 | ||
1440 | default: return get_cycles(); | 1443 | default: return get_cycles(); |
1441 | } | 1444 | } |
1442 | } | 1445 | } |
1443 | 1446 | ||
1444 | static inline u64 time_interpolator_get_counter(int writelock) | 1447 | static inline u64 time_interpolator_get_counter(int writelock) |
1445 | { | 1448 | { |
1446 | unsigned int src = time_interpolator->source; | 1449 | unsigned int src = time_interpolator->source; |
1447 | 1450 | ||
1448 | if (time_interpolator->jitter) | 1451 | if (time_interpolator->jitter) |
1449 | { | 1452 | { |
1450 | u64 lcycle; | 1453 | u64 lcycle; |
1451 | u64 now; | 1454 | u64 now; |
1452 | 1455 | ||
1453 | do { | 1456 | do { |
1454 | lcycle = time_interpolator->last_cycle; | 1457 | lcycle = time_interpolator->last_cycle; |
1455 | now = time_interpolator_get_cycles(src); | 1458 | now = time_interpolator_get_cycles(src); |
1456 | if (lcycle && time_after(lcycle, now)) | 1459 | if (lcycle && time_after(lcycle, now)) |
1457 | return lcycle; | 1460 | return lcycle; |
1458 | 1461 | ||
1459 | /* When holding the xtime write lock, there's no need | 1462 | /* When holding the xtime write lock, there's no need |
1460 | * to add the overhead of the cmpxchg. Readers are | 1463 | * to add the overhead of the cmpxchg. Readers are |
1461 | * force to retry until the write lock is released. | 1464 | * force to retry until the write lock is released. |
1462 | */ | 1465 | */ |
1463 | if (writelock) { | 1466 | if (writelock) { |
1464 | time_interpolator->last_cycle = now; | 1467 | time_interpolator->last_cycle = now; |
1465 | return now; | 1468 | return now; |
1466 | } | 1469 | } |
1467 | /* Keep track of the last timer value returned. The use of cmpxchg here | 1470 | /* Keep track of the last timer value returned. The use of cmpxchg here |
1468 | * will cause contention in an SMP environment. | 1471 | * will cause contention in an SMP environment. |
1469 | */ | 1472 | */ |
1470 | } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle)); | 1473 | } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle)); |
1471 | return now; | 1474 | return now; |
1472 | } | 1475 | } |
1473 | else | 1476 | else |
1474 | return time_interpolator_get_cycles(src); | 1477 | return time_interpolator_get_cycles(src); |
1475 | } | 1478 | } |
1476 | 1479 | ||
1477 | void time_interpolator_reset(void) | 1480 | void time_interpolator_reset(void) |
1478 | { | 1481 | { |
1479 | time_interpolator->offset = 0; | 1482 | time_interpolator->offset = 0; |
1480 | time_interpolator->last_counter = time_interpolator_get_counter(1); | 1483 | time_interpolator->last_counter = time_interpolator_get_counter(1); |
1481 | } | 1484 | } |
1482 | 1485 | ||
1483 | #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift) | 1486 | #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift) |
1484 | 1487 | ||
1485 | unsigned long time_interpolator_get_offset(void) | 1488 | unsigned long time_interpolator_get_offset(void) |
1486 | { | 1489 | { |
1487 | /* If we do not have a time interpolator set up then just return zero */ | 1490 | /* If we do not have a time interpolator set up then just return zero */ |
1488 | if (!time_interpolator) | 1491 | if (!time_interpolator) |
1489 | return 0; | 1492 | return 0; |
1490 | 1493 | ||
1491 | return time_interpolator->offset + | 1494 | return time_interpolator->offset + |
1492 | GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator); | 1495 | GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator); |
1493 | } | 1496 | } |
1494 | 1497 | ||
1495 | #define INTERPOLATOR_ADJUST 65536 | 1498 | #define INTERPOLATOR_ADJUST 65536 |
1496 | #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST | 1499 | #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST |
1497 | 1500 | ||
1498 | static void time_interpolator_update(long delta_nsec) | 1501 | static void time_interpolator_update(long delta_nsec) |
1499 | { | 1502 | { |
1500 | u64 counter; | 1503 | u64 counter; |
1501 | unsigned long offset; | 1504 | unsigned long offset; |
1502 | 1505 | ||
1503 | /* If there is no time interpolator set up then do nothing */ | 1506 | /* If there is no time interpolator set up then do nothing */ |
1504 | if (!time_interpolator) | 1507 | if (!time_interpolator) |
1505 | return; | 1508 | return; |
1506 | 1509 | ||
1507 | /* The interpolator compensates for late ticks by accumulating | 1510 | /* The interpolator compensates for late ticks by accumulating |
1508 | * the late time in time_interpolator->offset. A tick earlier than | 1511 | * the late time in time_interpolator->offset. A tick earlier than |
1509 | * expected will lead to a reset of the offset and a corresponding | 1512 | * expected will lead to a reset of the offset and a corresponding |
1510 | * jump of the clock forward. Again this only works if the | 1513 | * jump of the clock forward. Again this only works if the |
1511 | * interpolator clock is running slightly slower than the regular clock | 1514 | * interpolator clock is running slightly slower than the regular clock |
1512 | * and the tuning logic insures that. | 1515 | * and the tuning logic insures that. |
1513 | */ | 1516 | */ |
1514 | 1517 | ||
1515 | counter = time_interpolator_get_counter(1); | 1518 | counter = time_interpolator_get_counter(1); |
1516 | offset = time_interpolator->offset + GET_TI_NSECS(counter, time_interpolator); | 1519 | offset = time_interpolator->offset + GET_TI_NSECS(counter, time_interpolator); |
1517 | 1520 | ||
1518 | if (delta_nsec < 0 || (unsigned long) delta_nsec < offset) | 1521 | if (delta_nsec < 0 || (unsigned long) delta_nsec < offset) |
1519 | time_interpolator->offset = offset - delta_nsec; | 1522 | time_interpolator->offset = offset - delta_nsec; |
1520 | else { | 1523 | else { |
1521 | time_interpolator->skips++; | 1524 | time_interpolator->skips++; |
1522 | time_interpolator->ns_skipped += delta_nsec - offset; | 1525 | time_interpolator->ns_skipped += delta_nsec - offset; |
1523 | time_interpolator->offset = 0; | 1526 | time_interpolator->offset = 0; |
1524 | } | 1527 | } |
1525 | time_interpolator->last_counter = counter; | 1528 | time_interpolator->last_counter = counter; |
1526 | 1529 | ||
1527 | /* Tuning logic for time interpolator invoked every minute or so. | 1530 | /* Tuning logic for time interpolator invoked every minute or so. |
1528 | * Decrease interpolator clock speed if no skips occurred and an offset is carried. | 1531 | * Decrease interpolator clock speed if no skips occurred and an offset is carried. |
1529 | * Increase interpolator clock speed if we skip too much time. | 1532 | * Increase interpolator clock speed if we skip too much time. |
1530 | */ | 1533 | */ |
1531 | if (jiffies % INTERPOLATOR_ADJUST == 0) | 1534 | if (jiffies % INTERPOLATOR_ADJUST == 0) |
1532 | { | 1535 | { |
1533 | if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC) | 1536 | if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC) |
1534 | time_interpolator->nsec_per_cyc--; | 1537 | time_interpolator->nsec_per_cyc--; |
1535 | if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0) | 1538 | if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0) |
1536 | time_interpolator->nsec_per_cyc++; | 1539 | time_interpolator->nsec_per_cyc++; |
1537 | time_interpolator->skips = 0; | 1540 | time_interpolator->skips = 0; |
1538 | time_interpolator->ns_skipped = 0; | 1541 | time_interpolator->ns_skipped = 0; |
1539 | } | 1542 | } |
1540 | } | 1543 | } |
1541 | 1544 | ||
1542 | static inline int | 1545 | static inline int |
1543 | is_better_time_interpolator(struct time_interpolator *new) | 1546 | is_better_time_interpolator(struct time_interpolator *new) |
1544 | { | 1547 | { |
1545 | if (!time_interpolator) | 1548 | if (!time_interpolator) |
1546 | return 1; | 1549 | return 1; |
1547 | return new->frequency > 2*time_interpolator->frequency || | 1550 | return new->frequency > 2*time_interpolator->frequency || |
1548 | (unsigned long)new->drift < (unsigned long)time_interpolator->drift; | 1551 | (unsigned long)new->drift < (unsigned long)time_interpolator->drift; |
1549 | } | 1552 | } |
1550 | 1553 | ||
1551 | void | 1554 | void |
1552 | register_time_interpolator(struct time_interpolator *ti) | 1555 | register_time_interpolator(struct time_interpolator *ti) |
1553 | { | 1556 | { |
1554 | unsigned long flags; | 1557 | unsigned long flags; |
1555 | 1558 | ||
1556 | /* Sanity check */ | 1559 | /* Sanity check */ |
1557 | if (ti->frequency == 0 || ti->mask == 0) | 1560 | if (ti->frequency == 0 || ti->mask == 0) |
1558 | BUG(); | 1561 | BUG(); |
1559 | 1562 | ||
1560 | ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency; | 1563 | ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency; |
1561 | spin_lock(&time_interpolator_lock); | 1564 | spin_lock(&time_interpolator_lock); |
1562 | write_seqlock_irqsave(&xtime_lock, flags); | 1565 | write_seqlock_irqsave(&xtime_lock, flags); |
1563 | if (is_better_time_interpolator(ti)) { | 1566 | if (is_better_time_interpolator(ti)) { |
1564 | time_interpolator = ti; | 1567 | time_interpolator = ti; |
1565 | time_interpolator_reset(); | 1568 | time_interpolator_reset(); |
1566 | } | 1569 | } |
1567 | write_sequnlock_irqrestore(&xtime_lock, flags); | 1570 | write_sequnlock_irqrestore(&xtime_lock, flags); |
1568 | 1571 | ||
1569 | ti->next = time_interpolator_list; | 1572 | ti->next = time_interpolator_list; |
1570 | time_interpolator_list = ti; | 1573 | time_interpolator_list = ti; |
1571 | spin_unlock(&time_interpolator_lock); | 1574 | spin_unlock(&time_interpolator_lock); |
1572 | } | 1575 | } |
1573 | 1576 | ||
1574 | void | 1577 | void |
1575 | unregister_time_interpolator(struct time_interpolator *ti) | 1578 | unregister_time_interpolator(struct time_interpolator *ti) |
1576 | { | 1579 | { |
1577 | struct time_interpolator *curr, **prev; | 1580 | struct time_interpolator *curr, **prev; |
1578 | unsigned long flags; | 1581 | unsigned long flags; |
1579 | 1582 | ||
1580 | spin_lock(&time_interpolator_lock); | 1583 | spin_lock(&time_interpolator_lock); |
1581 | prev = &time_interpolator_list; | 1584 | prev = &time_interpolator_list; |
1582 | for (curr = *prev; curr; curr = curr->next) { | 1585 | for (curr = *prev; curr; curr = curr->next) { |
1583 | if (curr == ti) { | 1586 | if (curr == ti) { |
1584 | *prev = curr->next; | 1587 | *prev = curr->next; |
1585 | break; | 1588 | break; |
1586 | } | 1589 | } |
1587 | prev = &curr->next; | 1590 | prev = &curr->next; |
1588 | } | 1591 | } |
1589 | 1592 | ||
1590 | write_seqlock_irqsave(&xtime_lock, flags); | 1593 | write_seqlock_irqsave(&xtime_lock, flags); |
1591 | if (ti == time_interpolator) { | 1594 | if (ti == time_interpolator) { |
1592 | /* we lost the best time-interpolator: */ | 1595 | /* we lost the best time-interpolator: */ |
1593 | time_interpolator = NULL; | 1596 | time_interpolator = NULL; |
1594 | /* find the next-best interpolator */ | 1597 | /* find the next-best interpolator */ |
1595 | for (curr = time_interpolator_list; curr; curr = curr->next) | 1598 | for (curr = time_interpolator_list; curr; curr = curr->next) |
1596 | if (is_better_time_interpolator(curr)) | 1599 | if (is_better_time_interpolator(curr)) |
1597 | time_interpolator = curr; | 1600 | time_interpolator = curr; |
1598 | time_interpolator_reset(); | 1601 | time_interpolator_reset(); |
1599 | } | 1602 | } |
1600 | write_sequnlock_irqrestore(&xtime_lock, flags); | 1603 | write_sequnlock_irqrestore(&xtime_lock, flags); |
1601 | spin_unlock(&time_interpolator_lock); | 1604 | spin_unlock(&time_interpolator_lock); |
1602 | } | 1605 | } |
1603 | #endif /* CONFIG_TIME_INTERPOLATION */ | 1606 | #endif /* CONFIG_TIME_INTERPOLATION */ |
1604 | 1607 | ||
1605 | /** | 1608 | /** |
1606 | * msleep - sleep safely even with waitqueue interruptions | 1609 | * msleep - sleep safely even with waitqueue interruptions |
1607 | * @msecs: Time in milliseconds to sleep for | 1610 | * @msecs: Time in milliseconds to sleep for |
1608 | */ | 1611 | */ |
1609 | void msleep(unsigned int msecs) | 1612 | void msleep(unsigned int msecs) |
1610 | { | 1613 | { |
1611 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | 1614 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; |
1612 | 1615 | ||
1613 | while (timeout) | 1616 | while (timeout) |
1614 | timeout = schedule_timeout_uninterruptible(timeout); | 1617 | timeout = schedule_timeout_uninterruptible(timeout); |
1615 | } | 1618 | } |
1616 | 1619 | ||
1617 | EXPORT_SYMBOL(msleep); | 1620 | EXPORT_SYMBOL(msleep); |
1618 | 1621 | ||
1619 | /** | 1622 | /** |
1620 | * msleep_interruptible - sleep waiting for signals | 1623 | * msleep_interruptible - sleep waiting for signals |
1621 | * @msecs: Time in milliseconds to sleep for | 1624 | * @msecs: Time in milliseconds to sleep for |
1622 | */ | 1625 | */ |
1623 | unsigned long msleep_interruptible(unsigned int msecs) | 1626 | unsigned long msleep_interruptible(unsigned int msecs) |
1624 | { | 1627 | { |
1625 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | 1628 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; |
1626 | 1629 | ||
1627 | while (timeout && !signal_pending(current)) | 1630 | while (timeout && !signal_pending(current)) |
1628 | timeout = schedule_timeout_interruptible(timeout); | 1631 | timeout = schedule_timeout_interruptible(timeout); |
1629 | return jiffies_to_msecs(timeout); | 1632 | return jiffies_to_msecs(timeout); |
1630 | } | 1633 | } |
1631 | 1634 | ||
1632 | EXPORT_SYMBOL(msleep_interruptible); | 1635 | EXPORT_SYMBOL(msleep_interruptible); |