Commit 9b7131542178f5f948e4bb6bea6e1c545e697b06

Authored by Len Brown
1 parent 81e242d0ef

Revert "cpuidle: build fix for non-x86"

This reverts commit f757397097d0713c949af76dccabb65a2785782e.
which ironically broke the ia64 build

Showing 3 changed files with 1 additions and 17 deletions Inline Diff

1 # x86 configuration 1 # x86 configuration
2 mainmenu "Linux Kernel Configuration for x86" 2 mainmenu "Linux Kernel Configuration for x86"
3 3
4 # Select 32 or 64 bit 4 # Select 32 or 64 bit
5 config 64BIT 5 config 64BIT
6 bool "64-bit kernel" if ARCH = "x86" 6 bool "64-bit kernel" if ARCH = "x86"
7 default ARCH = "x86_64" 7 default ARCH = "x86_64"
8 help 8 help
9 Say yes to build a 64-bit kernel - formerly known as x86_64 9 Say yes to build a 64-bit kernel - formerly known as x86_64
10 Say no to build a 32-bit kernel - formerly known as i386 10 Say no to build a 32-bit kernel - formerly known as i386
11 11
12 config X86_32 12 config X86_32
13 def_bool !64BIT 13 def_bool !64BIT
14 14
15 config X86_64 15 config X86_64
16 def_bool 64BIT 16 def_bool 64BIT
17 17
18 ### Arch settings 18 ### Arch settings
19 config X86 19 config X86
20 def_bool y 20 def_bool y
21 select HAVE_OPROFILE 21 select HAVE_OPROFILE
22 select HAVE_KPROBES 22 select HAVE_KPROBES
23 23
24 config GENERIC_LOCKBREAK 24 config GENERIC_LOCKBREAK
25 def_bool n 25 def_bool n
26 26
27 config GENERIC_TIME 27 config GENERIC_TIME
28 def_bool y 28 def_bool y
29 29
30 config GENERIC_CMOS_UPDATE 30 config GENERIC_CMOS_UPDATE
31 def_bool y 31 def_bool y
32 32
33 config CLOCKSOURCE_WATCHDOG 33 config CLOCKSOURCE_WATCHDOG
34 def_bool y 34 def_bool y
35 35
36 config GENERIC_CLOCKEVENTS 36 config GENERIC_CLOCKEVENTS
37 def_bool y 37 def_bool y
38 38
39 config GENERIC_CLOCKEVENTS_BROADCAST 39 config GENERIC_CLOCKEVENTS_BROADCAST
40 def_bool y 40 def_bool y
41 depends on X86_64 || (X86_32 && X86_LOCAL_APIC) 41 depends on X86_64 || (X86_32 && X86_LOCAL_APIC)
42 42
43 config LOCKDEP_SUPPORT 43 config LOCKDEP_SUPPORT
44 def_bool y 44 def_bool y
45 45
46 config STACKTRACE_SUPPORT 46 config STACKTRACE_SUPPORT
47 def_bool y 47 def_bool y
48 48
49 config HAVE_LATENCYTOP_SUPPORT 49 config HAVE_LATENCYTOP_SUPPORT
50 def_bool y 50 def_bool y
51 51
52 config SEMAPHORE_SLEEPERS 52 config SEMAPHORE_SLEEPERS
53 def_bool y 53 def_bool y
54 54
55 config MMU 55 config MMU
56 def_bool y 56 def_bool y
57 57
58 config ZONE_DMA 58 config ZONE_DMA
59 def_bool y 59 def_bool y
60 60
61 config QUICKLIST 61 config QUICKLIST
62 def_bool X86_32 62 def_bool X86_32
63 63
64 config SBUS 64 config SBUS
65 bool 65 bool
66 66
67 config GENERIC_ISA_DMA 67 config GENERIC_ISA_DMA
68 def_bool y 68 def_bool y
69 69
70 config GENERIC_IOMAP 70 config GENERIC_IOMAP
71 def_bool y 71 def_bool y
72 72
73 config GENERIC_BUG 73 config GENERIC_BUG
74 def_bool y 74 def_bool y
75 depends on BUG 75 depends on BUG
76 76
77 config GENERIC_HWEIGHT 77 config GENERIC_HWEIGHT
78 def_bool y 78 def_bool y
79 79
80 config GENERIC_GPIO 80 config GENERIC_GPIO
81 def_bool n 81 def_bool n
82 82
83 config ARCH_MAY_HAVE_PC_FDC 83 config ARCH_MAY_HAVE_PC_FDC
84 def_bool y 84 def_bool y
85 85
86 config DMI 86 config DMI
87 def_bool y 87 def_bool y
88 88
89 config RWSEM_GENERIC_SPINLOCK 89 config RWSEM_GENERIC_SPINLOCK
90 def_bool !X86_XADD 90 def_bool !X86_XADD
91 91
92 config RWSEM_XCHGADD_ALGORITHM 92 config RWSEM_XCHGADD_ALGORITHM
93 def_bool X86_XADD 93 def_bool X86_XADD
94 94
95 config ARCH_HAS_ILOG2_U32 95 config ARCH_HAS_ILOG2_U32
96 def_bool n 96 def_bool n
97 97
98 config ARCH_HAS_ILOG2_U64 98 config ARCH_HAS_ILOG2_U64
99 def_bool n 99 def_bool n
100 100
101 config ARCH_HAS_CPU_IDLE_WAIT
102 def_bool y
103
104 config GENERIC_CALIBRATE_DELAY 101 config GENERIC_CALIBRATE_DELAY
105 def_bool y 102 def_bool y
106 103
107 config GENERIC_TIME_VSYSCALL 104 config GENERIC_TIME_VSYSCALL
108 bool 105 bool
109 default X86_64 106 default X86_64
110 107
111 config ARCH_HAS_CPU_RELAX 108 config ARCH_HAS_CPU_RELAX
112 def_bool y 109 def_bool y
113 110
114 config HAVE_SETUP_PER_CPU_AREA 111 config HAVE_SETUP_PER_CPU_AREA
115 def_bool X86_64 112 def_bool X86_64
116 113
117 select HAVE_KVM 114 select HAVE_KVM
118 115
119 config ARCH_HIBERNATION_POSSIBLE 116 config ARCH_HIBERNATION_POSSIBLE
120 def_bool y 117 def_bool y
121 depends on !SMP || !X86_VOYAGER 118 depends on !SMP || !X86_VOYAGER
122 119
123 config ARCH_SUSPEND_POSSIBLE 120 config ARCH_SUSPEND_POSSIBLE
124 def_bool y 121 def_bool y
125 depends on !X86_VOYAGER 122 depends on !X86_VOYAGER
126 123
127 config ZONE_DMA32 124 config ZONE_DMA32
128 bool 125 bool
129 default X86_64 126 default X86_64
130 127
131 config ARCH_POPULATES_NODE_MAP 128 config ARCH_POPULATES_NODE_MAP
132 def_bool y 129 def_bool y
133 130
134 config AUDIT_ARCH 131 config AUDIT_ARCH
135 bool 132 bool
136 default X86_64 133 default X86_64
137 134
138 # Use the generic interrupt handling code in kernel/irq/: 135 # Use the generic interrupt handling code in kernel/irq/:
139 config GENERIC_HARDIRQS 136 config GENERIC_HARDIRQS
140 bool 137 bool
141 default y 138 default y
142 139
143 config GENERIC_IRQ_PROBE 140 config GENERIC_IRQ_PROBE
144 bool 141 bool
145 default y 142 default y
146 143
147 config GENERIC_PENDING_IRQ 144 config GENERIC_PENDING_IRQ
148 bool 145 bool
149 depends on GENERIC_HARDIRQS && SMP 146 depends on GENERIC_HARDIRQS && SMP
150 default y 147 default y
151 148
152 config X86_SMP 149 config X86_SMP
153 bool 150 bool
154 depends on SMP && ((X86_32 && !X86_VOYAGER) || X86_64) 151 depends on SMP && ((X86_32 && !X86_VOYAGER) || X86_64)
155 default y 152 default y
156 153
157 config X86_32_SMP 154 config X86_32_SMP
158 def_bool y 155 def_bool y
159 depends on X86_32 && SMP 156 depends on X86_32 && SMP
160 157
161 config X86_64_SMP 158 config X86_64_SMP
162 def_bool y 159 def_bool y
163 depends on X86_64 && SMP 160 depends on X86_64 && SMP
164 161
165 config X86_HT 162 config X86_HT
166 bool 163 bool
167 depends on SMP 164 depends on SMP
168 depends on (X86_32 && !(X86_VISWS || X86_VOYAGER)) || (X86_64 && !MK8) 165 depends on (X86_32 && !(X86_VISWS || X86_VOYAGER)) || (X86_64 && !MK8)
169 default y 166 default y
170 167
171 config X86_BIOS_REBOOT 168 config X86_BIOS_REBOOT
172 bool 169 bool
173 depends on X86_32 && !(X86_VISWS || X86_VOYAGER) 170 depends on X86_32 && !(X86_VISWS || X86_VOYAGER)
174 default y 171 default y
175 172
176 config X86_TRAMPOLINE 173 config X86_TRAMPOLINE
177 bool 174 bool
178 depends on X86_SMP || (X86_VOYAGER && SMP) 175 depends on X86_SMP || (X86_VOYAGER && SMP)
179 default y 176 default y
180 177
181 config KTIME_SCALAR 178 config KTIME_SCALAR
182 def_bool X86_32 179 def_bool X86_32
183 source "init/Kconfig" 180 source "init/Kconfig"
184 181
185 menu "Processor type and features" 182 menu "Processor type and features"
186 183
187 source "kernel/time/Kconfig" 184 source "kernel/time/Kconfig"
188 185
189 config SMP 186 config SMP
190 bool "Symmetric multi-processing support" 187 bool "Symmetric multi-processing support"
191 ---help--- 188 ---help---
192 This enables support for systems with more than one CPU. If you have 189 This enables support for systems with more than one CPU. If you have
193 a system with only one CPU, like most personal computers, say N. If 190 a system with only one CPU, like most personal computers, say N. If
194 you have a system with more than one CPU, say Y. 191 you have a system with more than one CPU, say Y.
195 192
196 If you say N here, the kernel will run on single and multiprocessor 193 If you say N here, the kernel will run on single and multiprocessor
197 machines, but will use only one CPU of a multiprocessor machine. If 194 machines, but will use only one CPU of a multiprocessor machine. If
198 you say Y here, the kernel will run on many, but not all, 195 you say Y here, the kernel will run on many, but not all,
199 singleprocessor machines. On a singleprocessor machine, the kernel 196 singleprocessor machines. On a singleprocessor machine, the kernel
200 will run faster if you say N here. 197 will run faster if you say N here.
201 198
202 Note that if you say Y here and choose architecture "586" or 199 Note that if you say Y here and choose architecture "586" or
203 "Pentium" under "Processor family", the kernel will not work on 486 200 "Pentium" under "Processor family", the kernel will not work on 486
204 architectures. Similarly, multiprocessor kernels for the "PPro" 201 architectures. Similarly, multiprocessor kernels for the "PPro"
205 architecture may not work on all Pentium based boards. 202 architecture may not work on all Pentium based boards.
206 203
207 People using multiprocessor machines who say Y here should also say 204 People using multiprocessor machines who say Y here should also say
208 Y to "Enhanced Real Time Clock Support", below. The "Advanced Power 205 Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
209 Management" code will be disabled if you say Y here. 206 Management" code will be disabled if you say Y here.
210 207
211 See also <file:Documentation/i386/IO-APIC.txt>, 208 See also <file:Documentation/i386/IO-APIC.txt>,
212 <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at 209 <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
213 <http://www.tldp.org/docs.html#howto>. 210 <http://www.tldp.org/docs.html#howto>.
214 211
215 If you don't know what to do here, say N. 212 If you don't know what to do here, say N.
216 213
217 choice 214 choice
218 prompt "Subarchitecture Type" 215 prompt "Subarchitecture Type"
219 default X86_PC 216 default X86_PC
220 217
221 config X86_PC 218 config X86_PC
222 bool "PC-compatible" 219 bool "PC-compatible"
223 help 220 help
224 Choose this option if your computer is a standard PC or compatible. 221 Choose this option if your computer is a standard PC or compatible.
225 222
226 config X86_ELAN 223 config X86_ELAN
227 bool "AMD Elan" 224 bool "AMD Elan"
228 depends on X86_32 225 depends on X86_32
229 help 226 help
230 Select this for an AMD Elan processor. 227 Select this for an AMD Elan processor.
231 228
232 Do not use this option for K6/Athlon/Opteron processors! 229 Do not use this option for K6/Athlon/Opteron processors!
233 230
234 If unsure, choose "PC-compatible" instead. 231 If unsure, choose "PC-compatible" instead.
235 232
236 config X86_VOYAGER 233 config X86_VOYAGER
237 bool "Voyager (NCR)" 234 bool "Voyager (NCR)"
238 depends on X86_32 235 depends on X86_32
239 select SMP if !BROKEN 236 select SMP if !BROKEN
240 help 237 help
241 Voyager is an MCA-based 32-way capable SMP architecture proprietary 238 Voyager is an MCA-based 32-way capable SMP architecture proprietary
242 to NCR Corp. Machine classes 345x/35xx/4100/51xx are Voyager-based. 239 to NCR Corp. Machine classes 345x/35xx/4100/51xx are Voyager-based.
243 240
244 *** WARNING *** 241 *** WARNING ***
245 242
246 If you do not specifically know you have a Voyager based machine, 243 If you do not specifically know you have a Voyager based machine,
247 say N here, otherwise the kernel you build will not be bootable. 244 say N here, otherwise the kernel you build will not be bootable.
248 245
249 config X86_NUMAQ 246 config X86_NUMAQ
250 bool "NUMAQ (IBM/Sequent)" 247 bool "NUMAQ (IBM/Sequent)"
251 select SMP 248 select SMP
252 select NUMA 249 select NUMA
253 depends on X86_32 250 depends on X86_32
254 help 251 help
255 This option is used for getting Linux to run on a (IBM/Sequent) NUMA 252 This option is used for getting Linux to run on a (IBM/Sequent) NUMA
256 multiquad box. This changes the way that processors are bootstrapped, 253 multiquad box. This changes the way that processors are bootstrapped,
257 and uses Clustered Logical APIC addressing mode instead of Flat Logical. 254 and uses Clustered Logical APIC addressing mode instead of Flat Logical.
258 You will need a new lynxer.elf file to flash your firmware with - send 255 You will need a new lynxer.elf file to flash your firmware with - send
259 email to <Martin.Bligh@us.ibm.com>. 256 email to <Martin.Bligh@us.ibm.com>.
260 257
261 config X86_SUMMIT 258 config X86_SUMMIT
262 bool "Summit/EXA (IBM x440)" 259 bool "Summit/EXA (IBM x440)"
263 depends on X86_32 && SMP 260 depends on X86_32 && SMP
264 help 261 help
265 This option is needed for IBM systems that use the Summit/EXA chipset. 262 This option is needed for IBM systems that use the Summit/EXA chipset.
266 In particular, it is needed for the x440. 263 In particular, it is needed for the x440.
267 264
268 If you don't have one of these computers, you should say N here. 265 If you don't have one of these computers, you should say N here.
269 If you want to build a NUMA kernel, you must select ACPI. 266 If you want to build a NUMA kernel, you must select ACPI.
270 267
271 config X86_BIGSMP 268 config X86_BIGSMP
272 bool "Support for other sub-arch SMP systems with more than 8 CPUs" 269 bool "Support for other sub-arch SMP systems with more than 8 CPUs"
273 depends on X86_32 && SMP 270 depends on X86_32 && SMP
274 help 271 help
275 This option is needed for the systems that have more than 8 CPUs 272 This option is needed for the systems that have more than 8 CPUs
276 and if the system is not of any sub-arch type above. 273 and if the system is not of any sub-arch type above.
277 274
278 If you don't have such a system, you should say N here. 275 If you don't have such a system, you should say N here.
279 276
280 config X86_VISWS 277 config X86_VISWS
281 bool "SGI 320/540 (Visual Workstation)" 278 bool "SGI 320/540 (Visual Workstation)"
282 depends on X86_32 279 depends on X86_32
283 help 280 help
284 The SGI Visual Workstation series is an IA32-based workstation 281 The SGI Visual Workstation series is an IA32-based workstation
285 based on SGI systems chips with some legacy PC hardware attached. 282 based on SGI systems chips with some legacy PC hardware attached.
286 283
287 Say Y here to create a kernel to run on the SGI 320 or 540. 284 Say Y here to create a kernel to run on the SGI 320 or 540.
288 285
289 A kernel compiled for the Visual Workstation will not run on PCs 286 A kernel compiled for the Visual Workstation will not run on PCs
290 and vice versa. See <file:Documentation/sgi-visws.txt> for details. 287 and vice versa. See <file:Documentation/sgi-visws.txt> for details.
291 288
292 config X86_GENERICARCH 289 config X86_GENERICARCH
293 bool "Generic architecture (Summit, bigsmp, ES7000, default)" 290 bool "Generic architecture (Summit, bigsmp, ES7000, default)"
294 depends on X86_32 291 depends on X86_32
295 help 292 help
296 This option compiles in the Summit, bigsmp, ES7000, default subarchitectures. 293 This option compiles in the Summit, bigsmp, ES7000, default subarchitectures.
297 It is intended for a generic binary kernel. 294 It is intended for a generic binary kernel.
298 If you want a NUMA kernel, select ACPI. We need SRAT for NUMA. 295 If you want a NUMA kernel, select ACPI. We need SRAT for NUMA.
299 296
300 config X86_ES7000 297 config X86_ES7000
301 bool "Support for Unisys ES7000 IA32 series" 298 bool "Support for Unisys ES7000 IA32 series"
302 depends on X86_32 && SMP 299 depends on X86_32 && SMP
303 help 300 help
304 Support for Unisys ES7000 systems. Say 'Y' here if this kernel is 301 Support for Unisys ES7000 systems. Say 'Y' here if this kernel is
305 supposed to run on an IA32-based Unisys ES7000 system. 302 supposed to run on an IA32-based Unisys ES7000 system.
306 Only choose this option if you have such a system, otherwise you 303 Only choose this option if you have such a system, otherwise you
307 should say N here. 304 should say N here.
308 305
309 config X86_RDC321X 306 config X86_RDC321X
310 bool "RDC R-321x SoC" 307 bool "RDC R-321x SoC"
311 depends on X86_32 308 depends on X86_32
312 select M486 309 select M486
313 select X86_REBOOTFIXUPS 310 select X86_REBOOTFIXUPS
314 select GENERIC_GPIO 311 select GENERIC_GPIO
315 select LEDS_CLASS 312 select LEDS_CLASS
316 select LEDS_GPIO 313 select LEDS_GPIO
317 help 314 help
318 This option is needed for RDC R-321x system-on-chip, also known 315 This option is needed for RDC R-321x system-on-chip, also known
319 as R-8610-(G). 316 as R-8610-(G).
320 If you don't have one of these chips, you should say N here. 317 If you don't have one of these chips, you should say N here.
321 318
322 config X86_VSMP 319 config X86_VSMP
323 bool "Support for ScaleMP vSMP" 320 bool "Support for ScaleMP vSMP"
324 depends on X86_64 && PCI 321 depends on X86_64 && PCI
325 help 322 help
326 Support for ScaleMP vSMP systems. Say 'Y' here if this kernel is 323 Support for ScaleMP vSMP systems. Say 'Y' here if this kernel is
327 supposed to run on these EM64T-based machines. Only choose this option 324 supposed to run on these EM64T-based machines. Only choose this option
328 if you have one of these machines. 325 if you have one of these machines.
329 326
330 endchoice 327 endchoice
331 328
332 config SCHED_NO_NO_OMIT_FRAME_POINTER 329 config SCHED_NO_NO_OMIT_FRAME_POINTER
333 def_bool y 330 def_bool y
334 prompt "Single-depth WCHAN output" 331 prompt "Single-depth WCHAN output"
335 depends on X86_32 332 depends on X86_32
336 help 333 help
337 Calculate simpler /proc/<PID>/wchan values. If this option 334 Calculate simpler /proc/<PID>/wchan values. If this option
338 is disabled then wchan values will recurse back to the 335 is disabled then wchan values will recurse back to the
339 caller function. This provides more accurate wchan values, 336 caller function. This provides more accurate wchan values,
340 at the expense of slightly more scheduling overhead. 337 at the expense of slightly more scheduling overhead.
341 338
342 If in doubt, say "Y". 339 If in doubt, say "Y".
343 340
344 menuconfig PARAVIRT_GUEST 341 menuconfig PARAVIRT_GUEST
345 bool "Paravirtualized guest support" 342 bool "Paravirtualized guest support"
346 help 343 help
347 Say Y here to get to see options related to running Linux under 344 Say Y here to get to see options related to running Linux under
348 various hypervisors. This option alone does not add any kernel code. 345 various hypervisors. This option alone does not add any kernel code.
349 346
350 If you say N, all options in this submenu will be skipped and disabled. 347 If you say N, all options in this submenu will be skipped and disabled.
351 348
352 if PARAVIRT_GUEST 349 if PARAVIRT_GUEST
353 350
354 source "arch/x86/xen/Kconfig" 351 source "arch/x86/xen/Kconfig"
355 352
356 config VMI 353 config VMI
357 bool "VMI Guest support" 354 bool "VMI Guest support"
358 select PARAVIRT 355 select PARAVIRT
359 depends on X86_32 356 depends on X86_32
360 depends on !(X86_VISWS || X86_VOYAGER) 357 depends on !(X86_VISWS || X86_VOYAGER)
361 help 358 help
362 VMI provides a paravirtualized interface to the VMware ESX server 359 VMI provides a paravirtualized interface to the VMware ESX server
363 (it could be used by other hypervisors in theory too, but is not 360 (it could be used by other hypervisors in theory too, but is not
364 at the moment), by linking the kernel to a GPL-ed ROM module 361 at the moment), by linking the kernel to a GPL-ed ROM module
365 provided by the hypervisor. 362 provided by the hypervisor.
366 363
367 source "arch/x86/lguest/Kconfig" 364 source "arch/x86/lguest/Kconfig"
368 365
369 config PARAVIRT 366 config PARAVIRT
370 bool "Enable paravirtualization code" 367 bool "Enable paravirtualization code"
371 depends on !(X86_VISWS || X86_VOYAGER) 368 depends on !(X86_VISWS || X86_VOYAGER)
372 help 369 help
373 This changes the kernel so it can modify itself when it is run 370 This changes the kernel so it can modify itself when it is run
374 under a hypervisor, potentially improving performance significantly 371 under a hypervisor, potentially improving performance significantly
375 over full virtualization. However, when run without a hypervisor 372 over full virtualization. However, when run without a hypervisor
376 the kernel is theoretically slower and slightly larger. 373 the kernel is theoretically slower and slightly larger.
377 374
378 endif 375 endif
379 376
380 config ACPI_SRAT 377 config ACPI_SRAT
381 def_bool y 378 def_bool y
382 depends on X86_32 && ACPI && NUMA && (X86_SUMMIT || X86_GENERICARCH) 379 depends on X86_32 && ACPI && NUMA && (X86_SUMMIT || X86_GENERICARCH)
383 select ACPI_NUMA 380 select ACPI_NUMA
384 381
385 config HAVE_ARCH_PARSE_SRAT 382 config HAVE_ARCH_PARSE_SRAT
386 def_bool y 383 def_bool y
387 depends on ACPI_SRAT 384 depends on ACPI_SRAT
388 385
389 config X86_SUMMIT_NUMA 386 config X86_SUMMIT_NUMA
390 def_bool y 387 def_bool y
391 depends on X86_32 && NUMA && (X86_SUMMIT || X86_GENERICARCH) 388 depends on X86_32 && NUMA && (X86_SUMMIT || X86_GENERICARCH)
392 389
393 config X86_CYCLONE_TIMER 390 config X86_CYCLONE_TIMER
394 def_bool y 391 def_bool y
395 depends on X86_32 && X86_SUMMIT || X86_GENERICARCH 392 depends on X86_32 && X86_SUMMIT || X86_GENERICARCH
396 393
397 config ES7000_CLUSTERED_APIC 394 config ES7000_CLUSTERED_APIC
398 def_bool y 395 def_bool y
399 depends on SMP && X86_ES7000 && MPENTIUMIII 396 depends on SMP && X86_ES7000 && MPENTIUMIII
400 397
401 source "arch/x86/Kconfig.cpu" 398 source "arch/x86/Kconfig.cpu"
402 399
403 config HPET_TIMER 400 config HPET_TIMER
404 def_bool X86_64 401 def_bool X86_64
405 prompt "HPET Timer Support" if X86_32 402 prompt "HPET Timer Support" if X86_32
406 help 403 help
407 Use the IA-PC HPET (High Precision Event Timer) to manage 404 Use the IA-PC HPET (High Precision Event Timer) to manage
408 time in preference to the PIT and RTC, if a HPET is 405 time in preference to the PIT and RTC, if a HPET is
409 present. 406 present.
410 HPET is the next generation timer replacing legacy 8254s. 407 HPET is the next generation timer replacing legacy 8254s.
411 The HPET provides a stable time base on SMP 408 The HPET provides a stable time base on SMP
412 systems, unlike the TSC, but it is more expensive to access, 409 systems, unlike the TSC, but it is more expensive to access,
413 as it is off-chip. You can find the HPET spec at 410 as it is off-chip. You can find the HPET spec at
414 <http://www.intel.com/hardwaredesign/hpetspec.htm>. 411 <http://www.intel.com/hardwaredesign/hpetspec.htm>.
415 412
416 You can safely choose Y here. However, HPET will only be 413 You can safely choose Y here. However, HPET will only be
417 activated if the platform and the BIOS support this feature. 414 activated if the platform and the BIOS support this feature.
418 Otherwise the 8254 will be used for timing services. 415 Otherwise the 8254 will be used for timing services.
419 416
420 Choose N to continue using the legacy 8254 timer. 417 Choose N to continue using the legacy 8254 timer.
421 418
422 config HPET_EMULATE_RTC 419 config HPET_EMULATE_RTC
423 def_bool y 420 def_bool y
424 depends on HPET_TIMER && (RTC=y || RTC=m || RTC_DRV_CMOS=m || RTC_DRV_CMOS=y) 421 depends on HPET_TIMER && (RTC=y || RTC=m || RTC_DRV_CMOS=m || RTC_DRV_CMOS=y)
425 422
426 # Mark as embedded because too many people got it wrong. 423 # Mark as embedded because too many people got it wrong.
427 # The code disables itself when not needed. 424 # The code disables itself when not needed.
428 config GART_IOMMU 425 config GART_IOMMU
429 bool "GART IOMMU support" if EMBEDDED 426 bool "GART IOMMU support" if EMBEDDED
430 default y 427 default y
431 select SWIOTLB 428 select SWIOTLB
432 select AGP 429 select AGP
433 depends on X86_64 && PCI 430 depends on X86_64 && PCI
434 help 431 help
435 Support for full DMA access of devices with 32bit memory access only 432 Support for full DMA access of devices with 32bit memory access only
436 on systems with more than 3GB. This is usually needed for USB, 433 on systems with more than 3GB. This is usually needed for USB,
437 sound, many IDE/SATA chipsets and some other devices. 434 sound, many IDE/SATA chipsets and some other devices.
438 Provides a driver for the AMD Athlon64/Opteron/Turion/Sempron GART 435 Provides a driver for the AMD Athlon64/Opteron/Turion/Sempron GART
439 based hardware IOMMU and a software bounce buffer based IOMMU used 436 based hardware IOMMU and a software bounce buffer based IOMMU used
440 on Intel systems and as fallback. 437 on Intel systems and as fallback.
441 The code is only active when needed (enough memory and limited 438 The code is only active when needed (enough memory and limited
442 device) unless CONFIG_IOMMU_DEBUG or iommu=force is specified 439 device) unless CONFIG_IOMMU_DEBUG or iommu=force is specified
443 too. 440 too.
444 441
445 config CALGARY_IOMMU 442 config CALGARY_IOMMU
446 bool "IBM Calgary IOMMU support" 443 bool "IBM Calgary IOMMU support"
447 select SWIOTLB 444 select SWIOTLB
448 depends on X86_64 && PCI && EXPERIMENTAL 445 depends on X86_64 && PCI && EXPERIMENTAL
449 help 446 help
450 Support for hardware IOMMUs in IBM's xSeries x366 and x460 447 Support for hardware IOMMUs in IBM's xSeries x366 and x460
451 systems. Needed to run systems with more than 3GB of memory 448 systems. Needed to run systems with more than 3GB of memory
452 properly with 32-bit PCI devices that do not support DAC 449 properly with 32-bit PCI devices that do not support DAC
453 (Double Address Cycle). Calgary also supports bus level 450 (Double Address Cycle). Calgary also supports bus level
454 isolation, where all DMAs pass through the IOMMU. This 451 isolation, where all DMAs pass through the IOMMU. This
455 prevents them from going anywhere except their intended 452 prevents them from going anywhere except their intended
456 destination. This catches hard-to-find kernel bugs and 453 destination. This catches hard-to-find kernel bugs and
457 mis-behaving drivers and devices that do not use the DMA-API 454 mis-behaving drivers and devices that do not use the DMA-API
458 properly to set up their DMA buffers. The IOMMU can be 455 properly to set up their DMA buffers. The IOMMU can be
459 turned off at boot time with the iommu=off parameter. 456 turned off at boot time with the iommu=off parameter.
460 Normally the kernel will make the right choice by itself. 457 Normally the kernel will make the right choice by itself.
461 If unsure, say Y. 458 If unsure, say Y.
462 459
463 config CALGARY_IOMMU_ENABLED_BY_DEFAULT 460 config CALGARY_IOMMU_ENABLED_BY_DEFAULT
464 def_bool y 461 def_bool y
465 prompt "Should Calgary be enabled by default?" 462 prompt "Should Calgary be enabled by default?"
466 depends on CALGARY_IOMMU 463 depends on CALGARY_IOMMU
467 help 464 help
468 Should Calgary be enabled by default? if you choose 'y', Calgary 465 Should Calgary be enabled by default? if you choose 'y', Calgary
469 will be used (if it exists). If you choose 'n', Calgary will not be 466 will be used (if it exists). If you choose 'n', Calgary will not be
470 used even if it exists. If you choose 'n' and would like to use 467 used even if it exists. If you choose 'n' and would like to use
471 Calgary anyway, pass 'iommu=calgary' on the kernel command line. 468 Calgary anyway, pass 'iommu=calgary' on the kernel command line.
472 If unsure, say Y. 469 If unsure, say Y.
473 470
474 config IOMMU_HELPER 471 config IOMMU_HELPER
475 def_bool (CALGARY_IOMMU || GART_IOMMU) 472 def_bool (CALGARY_IOMMU || GART_IOMMU)
476 473
477 # need this always selected by IOMMU for the VIA workaround 474 # need this always selected by IOMMU for the VIA workaround
478 config SWIOTLB 475 config SWIOTLB
479 bool 476 bool
480 help 477 help
481 Support for software bounce buffers used on x86-64 systems 478 Support for software bounce buffers used on x86-64 systems
482 which don't have a hardware IOMMU (e.g. the current generation 479 which don't have a hardware IOMMU (e.g. the current generation
483 of Intel's x86-64 CPUs). Using this PCI devices which can only 480 of Intel's x86-64 CPUs). Using this PCI devices which can only
484 access 32-bits of memory can be used on systems with more than 481 access 32-bits of memory can be used on systems with more than
485 3 GB of memory. If unsure, say Y. 482 3 GB of memory. If unsure, say Y.
486 483
487 484
488 config NR_CPUS 485 config NR_CPUS
489 int "Maximum number of CPUs (2-255)" 486 int "Maximum number of CPUs (2-255)"
490 range 2 255 487 range 2 255
491 depends on SMP 488 depends on SMP
492 default "32" if X86_NUMAQ || X86_SUMMIT || X86_BIGSMP || X86_ES7000 489 default "32" if X86_NUMAQ || X86_SUMMIT || X86_BIGSMP || X86_ES7000
493 default "8" 490 default "8"
494 help 491 help
495 This allows you to specify the maximum number of CPUs which this 492 This allows you to specify the maximum number of CPUs which this
496 kernel will support. The maximum supported value is 255 and the 493 kernel will support. The maximum supported value is 255 and the
497 minimum value which makes sense is 2. 494 minimum value which makes sense is 2.
498 495
499 This is purely to save memory - each supported CPU adds 496 This is purely to save memory - each supported CPU adds
500 approximately eight kilobytes to the kernel image. 497 approximately eight kilobytes to the kernel image.
501 498
502 config SCHED_SMT 499 config SCHED_SMT
503 bool "SMT (Hyperthreading) scheduler support" 500 bool "SMT (Hyperthreading) scheduler support"
504 depends on (X86_64 && SMP) || (X86_32 && X86_HT) 501 depends on (X86_64 && SMP) || (X86_32 && X86_HT)
505 help 502 help
506 SMT scheduler support improves the CPU scheduler's decision making 503 SMT scheduler support improves the CPU scheduler's decision making
507 when dealing with Intel Pentium 4 chips with HyperThreading at a 504 when dealing with Intel Pentium 4 chips with HyperThreading at a
508 cost of slightly increased overhead in some places. If unsure say 505 cost of slightly increased overhead in some places. If unsure say
509 N here. 506 N here.
510 507
511 config SCHED_MC 508 config SCHED_MC
512 def_bool y 509 def_bool y
513 prompt "Multi-core scheduler support" 510 prompt "Multi-core scheduler support"
514 depends on (X86_64 && SMP) || (X86_32 && X86_HT) 511 depends on (X86_64 && SMP) || (X86_32 && X86_HT)
515 help 512 help
516 Multi-core scheduler support improves the CPU scheduler's decision 513 Multi-core scheduler support improves the CPU scheduler's decision
517 making when dealing with multi-core CPU chips at a cost of slightly 514 making when dealing with multi-core CPU chips at a cost of slightly
518 increased overhead in some places. If unsure say N here. 515 increased overhead in some places. If unsure say N here.
519 516
520 source "kernel/Kconfig.preempt" 517 source "kernel/Kconfig.preempt"
521 518
522 config X86_UP_APIC 519 config X86_UP_APIC
523 bool "Local APIC support on uniprocessors" 520 bool "Local APIC support on uniprocessors"
524 depends on X86_32 && !SMP && !(X86_VISWS || X86_VOYAGER || X86_GENERICARCH) 521 depends on X86_32 && !SMP && !(X86_VISWS || X86_VOYAGER || X86_GENERICARCH)
525 help 522 help
526 A local APIC (Advanced Programmable Interrupt Controller) is an 523 A local APIC (Advanced Programmable Interrupt Controller) is an
527 integrated interrupt controller in the CPU. If you have a single-CPU 524 integrated interrupt controller in the CPU. If you have a single-CPU
528 system which has a processor with a local APIC, you can say Y here to 525 system which has a processor with a local APIC, you can say Y here to
529 enable and use it. If you say Y here even though your machine doesn't 526 enable and use it. If you say Y here even though your machine doesn't
530 have a local APIC, then the kernel will still run with no slowdown at 527 have a local APIC, then the kernel will still run with no slowdown at
531 all. The local APIC supports CPU-generated self-interrupts (timer, 528 all. The local APIC supports CPU-generated self-interrupts (timer,
532 performance counters), and the NMI watchdog which detects hard 529 performance counters), and the NMI watchdog which detects hard
533 lockups. 530 lockups.
534 531
535 config X86_UP_IOAPIC 532 config X86_UP_IOAPIC
536 bool "IO-APIC support on uniprocessors" 533 bool "IO-APIC support on uniprocessors"
537 depends on X86_UP_APIC 534 depends on X86_UP_APIC
538 help 535 help
539 An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an 536 An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an
540 SMP-capable replacement for PC-style interrupt controllers. Most 537 SMP-capable replacement for PC-style interrupt controllers. Most
541 SMP systems and many recent uniprocessor systems have one. 538 SMP systems and many recent uniprocessor systems have one.
542 539
543 If you have a single-CPU system with an IO-APIC, you can say Y here 540 If you have a single-CPU system with an IO-APIC, you can say Y here
544 to use it. If you say Y here even though your machine doesn't have 541 to use it. If you say Y here even though your machine doesn't have
545 an IO-APIC, then the kernel will still run with no slowdown at all. 542 an IO-APIC, then the kernel will still run with no slowdown at all.
546 543
547 config X86_LOCAL_APIC 544 config X86_LOCAL_APIC
548 def_bool y 545 def_bool y
549 depends on X86_64 || (X86_32 && (X86_UP_APIC || ((X86_VISWS || SMP) && !X86_VOYAGER) || X86_GENERICARCH)) 546 depends on X86_64 || (X86_32 && (X86_UP_APIC || ((X86_VISWS || SMP) && !X86_VOYAGER) || X86_GENERICARCH))
550 547
551 config X86_IO_APIC 548 config X86_IO_APIC
552 def_bool y 549 def_bool y
553 depends on X86_64 || (X86_32 && (X86_UP_IOAPIC || (SMP && !(X86_VISWS || X86_VOYAGER)) || X86_GENERICARCH)) 550 depends on X86_64 || (X86_32 && (X86_UP_IOAPIC || (SMP && !(X86_VISWS || X86_VOYAGER)) || X86_GENERICARCH))
554 551
555 config X86_VISWS_APIC 552 config X86_VISWS_APIC
556 def_bool y 553 def_bool y
557 depends on X86_32 && X86_VISWS 554 depends on X86_32 && X86_VISWS
558 555
559 config X86_MCE 556 config X86_MCE
560 bool "Machine Check Exception" 557 bool "Machine Check Exception"
561 depends on !X86_VOYAGER 558 depends on !X86_VOYAGER
562 ---help--- 559 ---help---
563 Machine Check Exception support allows the processor to notify the 560 Machine Check Exception support allows the processor to notify the
564 kernel if it detects a problem (e.g. overheating, component failure). 561 kernel if it detects a problem (e.g. overheating, component failure).
565 The action the kernel takes depends on the severity of the problem, 562 The action the kernel takes depends on the severity of the problem,
566 ranging from a warning message on the console, to halting the machine. 563 ranging from a warning message on the console, to halting the machine.
567 Your processor must be a Pentium or newer to support this - check the 564 Your processor must be a Pentium or newer to support this - check the
568 flags in /proc/cpuinfo for mce. Note that some older Pentium systems 565 flags in /proc/cpuinfo for mce. Note that some older Pentium systems
569 have a design flaw which leads to false MCE events - hence MCE is 566 have a design flaw which leads to false MCE events - hence MCE is
570 disabled on all P5 processors, unless explicitly enabled with "mce" 567 disabled on all P5 processors, unless explicitly enabled with "mce"
571 as a boot argument. Similarly, if MCE is built in and creates a 568 as a boot argument. Similarly, if MCE is built in and creates a
572 problem on some new non-standard machine, you can boot with "nomce" 569 problem on some new non-standard machine, you can boot with "nomce"
573 to disable it. MCE support simply ignores non-MCE processors like 570 to disable it. MCE support simply ignores non-MCE processors like
574 the 386 and 486, so nearly everyone can say Y here. 571 the 386 and 486, so nearly everyone can say Y here.
575 572
576 config X86_MCE_INTEL 573 config X86_MCE_INTEL
577 def_bool y 574 def_bool y
578 prompt "Intel MCE features" 575 prompt "Intel MCE features"
579 depends on X86_64 && X86_MCE && X86_LOCAL_APIC 576 depends on X86_64 && X86_MCE && X86_LOCAL_APIC
580 help 577 help
581 Additional support for intel specific MCE features such as 578 Additional support for intel specific MCE features such as
582 the thermal monitor. 579 the thermal monitor.
583 580
584 config X86_MCE_AMD 581 config X86_MCE_AMD
585 def_bool y 582 def_bool y
586 prompt "AMD MCE features" 583 prompt "AMD MCE features"
587 depends on X86_64 && X86_MCE && X86_LOCAL_APIC 584 depends on X86_64 && X86_MCE && X86_LOCAL_APIC
588 help 585 help
589 Additional support for AMD specific MCE features such as 586 Additional support for AMD specific MCE features such as
590 the DRAM Error Threshold. 587 the DRAM Error Threshold.
591 588
592 config X86_MCE_NONFATAL 589 config X86_MCE_NONFATAL
593 tristate "Check for non-fatal errors on AMD Athlon/Duron / Intel Pentium 4" 590 tristate "Check for non-fatal errors on AMD Athlon/Duron / Intel Pentium 4"
594 depends on X86_32 && X86_MCE 591 depends on X86_32 && X86_MCE
595 help 592 help
596 Enabling this feature starts a timer that triggers every 5 seconds which 593 Enabling this feature starts a timer that triggers every 5 seconds which
597 will look at the machine check registers to see if anything happened. 594 will look at the machine check registers to see if anything happened.
598 Non-fatal problems automatically get corrected (but still logged). 595 Non-fatal problems automatically get corrected (but still logged).
599 Disable this if you don't want to see these messages. 596 Disable this if you don't want to see these messages.
600 Seeing the messages this option prints out may be indicative of dying 597 Seeing the messages this option prints out may be indicative of dying
601 or out-of-spec (ie, overclocked) hardware. 598 or out-of-spec (ie, overclocked) hardware.
602 This option only does something on certain CPUs. 599 This option only does something on certain CPUs.
603 (AMD Athlon/Duron and Intel Pentium 4) 600 (AMD Athlon/Duron and Intel Pentium 4)
604 601
605 config X86_MCE_P4THERMAL 602 config X86_MCE_P4THERMAL
606 bool "check for P4 thermal throttling interrupt." 603 bool "check for P4 thermal throttling interrupt."
607 depends on X86_32 && X86_MCE && (X86_UP_APIC || SMP) && !X86_VISWS 604 depends on X86_32 && X86_MCE && (X86_UP_APIC || SMP) && !X86_VISWS
608 help 605 help
609 Enabling this feature will cause a message to be printed when the P4 606 Enabling this feature will cause a message to be printed when the P4
610 enters thermal throttling. 607 enters thermal throttling.
611 608
612 config VM86 609 config VM86
613 bool "Enable VM86 support" if EMBEDDED 610 bool "Enable VM86 support" if EMBEDDED
614 default y 611 default y
615 depends on X86_32 612 depends on X86_32
616 help 613 help
617 This option is required by programs like DOSEMU to run 16-bit legacy 614 This option is required by programs like DOSEMU to run 16-bit legacy
618 code on X86 processors. It also may be needed by software like 615 code on X86 processors. It also may be needed by software like
619 XFree86 to initialize some video cards via BIOS. Disabling this 616 XFree86 to initialize some video cards via BIOS. Disabling this
620 option saves about 6k. 617 option saves about 6k.
621 618
622 config TOSHIBA 619 config TOSHIBA
623 tristate "Toshiba Laptop support" 620 tristate "Toshiba Laptop support"
624 depends on X86_32 621 depends on X86_32
625 ---help--- 622 ---help---
626 This adds a driver to safely access the System Management Mode of 623 This adds a driver to safely access the System Management Mode of
627 the CPU on Toshiba portables with a genuine Toshiba BIOS. It does 624 the CPU on Toshiba portables with a genuine Toshiba BIOS. It does
628 not work on models with a Phoenix BIOS. The System Management Mode 625 not work on models with a Phoenix BIOS. The System Management Mode
629 is used to set the BIOS and power saving options on Toshiba portables. 626 is used to set the BIOS and power saving options on Toshiba portables.
630 627
631 For information on utilities to make use of this driver see the 628 For information on utilities to make use of this driver see the
632 Toshiba Linux utilities web site at: 629 Toshiba Linux utilities web site at:
633 <http://www.buzzard.org.uk/toshiba/>. 630 <http://www.buzzard.org.uk/toshiba/>.
634 631
635 Say Y if you intend to run this kernel on a Toshiba portable. 632 Say Y if you intend to run this kernel on a Toshiba portable.
636 Say N otherwise. 633 Say N otherwise.
637 634
638 config I8K 635 config I8K
639 tristate "Dell laptop support" 636 tristate "Dell laptop support"
640 depends on X86_32 637 depends on X86_32
641 ---help--- 638 ---help---
642 This adds a driver to safely access the System Management Mode 639 This adds a driver to safely access the System Management Mode
643 of the CPU on the Dell Inspiron 8000. The System Management Mode 640 of the CPU on the Dell Inspiron 8000. The System Management Mode
644 is used to read cpu temperature and cooling fan status and to 641 is used to read cpu temperature and cooling fan status and to
645 control the fans on the I8K portables. 642 control the fans on the I8K portables.
646 643
647 This driver has been tested only on the Inspiron 8000 but it may 644 This driver has been tested only on the Inspiron 8000 but it may
648 also work with other Dell laptops. You can force loading on other 645 also work with other Dell laptops. You can force loading on other
649 models by passing the parameter `force=1' to the module. Use at 646 models by passing the parameter `force=1' to the module. Use at
650 your own risk. 647 your own risk.
651 648
652 For information on utilities to make use of this driver see the 649 For information on utilities to make use of this driver see the
653 I8K Linux utilities web site at: 650 I8K Linux utilities web site at:
654 <http://people.debian.org/~dz/i8k/> 651 <http://people.debian.org/~dz/i8k/>
655 652
656 Say Y if you intend to run this kernel on a Dell Inspiron 8000. 653 Say Y if you intend to run this kernel on a Dell Inspiron 8000.
657 Say N otherwise. 654 Say N otherwise.
658 655
659 config X86_REBOOTFIXUPS 656 config X86_REBOOTFIXUPS
660 def_bool n 657 def_bool n
661 prompt "Enable X86 board specific fixups for reboot" 658 prompt "Enable X86 board specific fixups for reboot"
662 depends on X86_32 && X86 659 depends on X86_32 && X86
663 ---help--- 660 ---help---
664 This enables chipset and/or board specific fixups to be done 661 This enables chipset and/or board specific fixups to be done
665 in order to get reboot to work correctly. This is only needed on 662 in order to get reboot to work correctly. This is only needed on
666 some combinations of hardware and BIOS. The symptom, for which 663 some combinations of hardware and BIOS. The symptom, for which
667 this config is intended, is when reboot ends with a stalled/hung 664 this config is intended, is when reboot ends with a stalled/hung
668 system. 665 system.
669 666
670 Currently, the only fixup is for the Geode machines using 667 Currently, the only fixup is for the Geode machines using
671 CS5530A and CS5536 chipsets and the RDC R-321x SoC. 668 CS5530A and CS5536 chipsets and the RDC R-321x SoC.
672 669
673 Say Y if you want to enable the fixup. Currently, it's safe to 670 Say Y if you want to enable the fixup. Currently, it's safe to
674 enable this option even if you don't need it. 671 enable this option even if you don't need it.
675 Say N otherwise. 672 Say N otherwise.
676 673
677 config MICROCODE 674 config MICROCODE
678 tristate "/dev/cpu/microcode - Intel IA32 CPU microcode support" 675 tristate "/dev/cpu/microcode - Intel IA32 CPU microcode support"
679 select FW_LOADER 676 select FW_LOADER
680 ---help--- 677 ---help---
681 If you say Y here, you will be able to update the microcode on 678 If you say Y here, you will be able to update the microcode on
682 Intel processors in the IA32 family, e.g. Pentium Pro, Pentium II, 679 Intel processors in the IA32 family, e.g. Pentium Pro, Pentium II,
683 Pentium III, Pentium 4, Xeon etc. You will obviously need the 680 Pentium III, Pentium 4, Xeon etc. You will obviously need the
684 actual microcode binary data itself which is not shipped with the 681 actual microcode binary data itself which is not shipped with the
685 Linux kernel. 682 Linux kernel.
686 683
687 For latest news and information on obtaining all the required 684 For latest news and information on obtaining all the required
688 ingredients for this driver, check: 685 ingredients for this driver, check:
689 <http://www.urbanmyth.org/microcode/>. 686 <http://www.urbanmyth.org/microcode/>.
690 687
691 To compile this driver as a module, choose M here: the 688 To compile this driver as a module, choose M here: the
692 module will be called microcode. 689 module will be called microcode.
693 690
694 config MICROCODE_OLD_INTERFACE 691 config MICROCODE_OLD_INTERFACE
695 def_bool y 692 def_bool y
696 depends on MICROCODE 693 depends on MICROCODE
697 694
698 config X86_MSR 695 config X86_MSR
699 tristate "/dev/cpu/*/msr - Model-specific register support" 696 tristate "/dev/cpu/*/msr - Model-specific register support"
700 help 697 help
701 This device gives privileged processes access to the x86 698 This device gives privileged processes access to the x86
702 Model-Specific Registers (MSRs). It is a character device with 699 Model-Specific Registers (MSRs). It is a character device with
703 major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr. 700 major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr.
704 MSR accesses are directed to a specific CPU on multi-processor 701 MSR accesses are directed to a specific CPU on multi-processor
705 systems. 702 systems.
706 703
707 config X86_CPUID 704 config X86_CPUID
708 tristate "/dev/cpu/*/cpuid - CPU information support" 705 tristate "/dev/cpu/*/cpuid - CPU information support"
709 help 706 help
710 This device gives processes access to the x86 CPUID instruction to 707 This device gives processes access to the x86 CPUID instruction to
711 be executed on a specific processor. It is a character device 708 be executed on a specific processor. It is a character device
712 with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to 709 with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to
713 /dev/cpu/31/cpuid. 710 /dev/cpu/31/cpuid.
714 711
715 choice 712 choice
716 prompt "High Memory Support" 713 prompt "High Memory Support"
717 default HIGHMEM4G if !X86_NUMAQ 714 default HIGHMEM4G if !X86_NUMAQ
718 default HIGHMEM64G if X86_NUMAQ 715 default HIGHMEM64G if X86_NUMAQ
719 depends on X86_32 716 depends on X86_32
720 717
721 config NOHIGHMEM 718 config NOHIGHMEM
722 bool "off" 719 bool "off"
723 depends on !X86_NUMAQ 720 depends on !X86_NUMAQ
724 ---help--- 721 ---help---
725 Linux can use up to 64 Gigabytes of physical memory on x86 systems. 722 Linux can use up to 64 Gigabytes of physical memory on x86 systems.
726 However, the address space of 32-bit x86 processors is only 4 723 However, the address space of 32-bit x86 processors is only 4
727 Gigabytes large. That means that, if you have a large amount of 724 Gigabytes large. That means that, if you have a large amount of
728 physical memory, not all of it can be "permanently mapped" by the 725 physical memory, not all of it can be "permanently mapped" by the
729 kernel. The physical memory that's not permanently mapped is called 726 kernel. The physical memory that's not permanently mapped is called
730 "high memory". 727 "high memory".
731 728
732 If you are compiling a kernel which will never run on a machine with 729 If you are compiling a kernel which will never run on a machine with
733 more than 1 Gigabyte total physical RAM, answer "off" here (default 730 more than 1 Gigabyte total physical RAM, answer "off" here (default
734 choice and suitable for most users). This will result in a "3GB/1GB" 731 choice and suitable for most users). This will result in a "3GB/1GB"
735 split: 3GB are mapped so that each process sees a 3GB virtual memory 732 split: 3GB are mapped so that each process sees a 3GB virtual memory
736 space and the remaining part of the 4GB virtual memory space is used 733 space and the remaining part of the 4GB virtual memory space is used
737 by the kernel to permanently map as much physical memory as 734 by the kernel to permanently map as much physical memory as
738 possible. 735 possible.
739 736
740 If the machine has between 1 and 4 Gigabytes physical RAM, then 737 If the machine has between 1 and 4 Gigabytes physical RAM, then
741 answer "4GB" here. 738 answer "4GB" here.
742 739
743 If more than 4 Gigabytes is used then answer "64GB" here. This 740 If more than 4 Gigabytes is used then answer "64GB" here. This
744 selection turns Intel PAE (Physical Address Extension) mode on. 741 selection turns Intel PAE (Physical Address Extension) mode on.
745 PAE implements 3-level paging on IA32 processors. PAE is fully 742 PAE implements 3-level paging on IA32 processors. PAE is fully
746 supported by Linux, PAE mode is implemented on all recent Intel 743 supported by Linux, PAE mode is implemented on all recent Intel
747 processors (Pentium Pro and better). NOTE: If you say "64GB" here, 744 processors (Pentium Pro and better). NOTE: If you say "64GB" here,
748 then the kernel will not boot on CPUs that don't support PAE! 745 then the kernel will not boot on CPUs that don't support PAE!
749 746
750 The actual amount of total physical memory will either be 747 The actual amount of total physical memory will either be
751 auto detected or can be forced by using a kernel command line option 748 auto detected or can be forced by using a kernel command line option
752 such as "mem=256M". (Try "man bootparam" or see the documentation of 749 such as "mem=256M". (Try "man bootparam" or see the documentation of
753 your boot loader (lilo or loadlin) about how to pass options to the 750 your boot loader (lilo or loadlin) about how to pass options to the
754 kernel at boot time.) 751 kernel at boot time.)
755 752
756 If unsure, say "off". 753 If unsure, say "off".
757 754
758 config HIGHMEM4G 755 config HIGHMEM4G
759 bool "4GB" 756 bool "4GB"
760 depends on !X86_NUMAQ 757 depends on !X86_NUMAQ
761 help 758 help
762 Select this if you have a 32-bit processor and between 1 and 4 759 Select this if you have a 32-bit processor and between 1 and 4
763 gigabytes of physical RAM. 760 gigabytes of physical RAM.
764 761
765 config HIGHMEM64G 762 config HIGHMEM64G
766 bool "64GB" 763 bool "64GB"
767 depends on !M386 && !M486 764 depends on !M386 && !M486
768 select X86_PAE 765 select X86_PAE
769 help 766 help
770 Select this if you have a 32-bit processor and more than 4 767 Select this if you have a 32-bit processor and more than 4
771 gigabytes of physical RAM. 768 gigabytes of physical RAM.
772 769
773 endchoice 770 endchoice
774 771
775 choice 772 choice
776 depends on EXPERIMENTAL 773 depends on EXPERIMENTAL
777 prompt "Memory split" if EMBEDDED 774 prompt "Memory split" if EMBEDDED
778 default VMSPLIT_3G 775 default VMSPLIT_3G
779 depends on X86_32 776 depends on X86_32
780 help 777 help
781 Select the desired split between kernel and user memory. 778 Select the desired split between kernel and user memory.
782 779
783 If the address range available to the kernel is less than the 780 If the address range available to the kernel is less than the
784 physical memory installed, the remaining memory will be available 781 physical memory installed, the remaining memory will be available
785 as "high memory". Accessing high memory is a little more costly 782 as "high memory". Accessing high memory is a little more costly
786 than low memory, as it needs to be mapped into the kernel first. 783 than low memory, as it needs to be mapped into the kernel first.
787 Note that increasing the kernel address space limits the range 784 Note that increasing the kernel address space limits the range
788 available to user programs, making the address space there 785 available to user programs, making the address space there
789 tighter. Selecting anything other than the default 3G/1G split 786 tighter. Selecting anything other than the default 3G/1G split
790 will also likely make your kernel incompatible with binary-only 787 will also likely make your kernel incompatible with binary-only
791 kernel modules. 788 kernel modules.
792 789
793 If you are not absolutely sure what you are doing, leave this 790 If you are not absolutely sure what you are doing, leave this
794 option alone! 791 option alone!
795 792
796 config VMSPLIT_3G 793 config VMSPLIT_3G
797 bool "3G/1G user/kernel split" 794 bool "3G/1G user/kernel split"
798 config VMSPLIT_3G_OPT 795 config VMSPLIT_3G_OPT
799 depends on !X86_PAE 796 depends on !X86_PAE
800 bool "3G/1G user/kernel split (for full 1G low memory)" 797 bool "3G/1G user/kernel split (for full 1G low memory)"
801 config VMSPLIT_2G 798 config VMSPLIT_2G
802 bool "2G/2G user/kernel split" 799 bool "2G/2G user/kernel split"
803 config VMSPLIT_2G_OPT 800 config VMSPLIT_2G_OPT
804 depends on !X86_PAE 801 depends on !X86_PAE
805 bool "2G/2G user/kernel split (for full 2G low memory)" 802 bool "2G/2G user/kernel split (for full 2G low memory)"
806 config VMSPLIT_1G 803 config VMSPLIT_1G
807 bool "1G/3G user/kernel split" 804 bool "1G/3G user/kernel split"
808 endchoice 805 endchoice
809 806
810 config PAGE_OFFSET 807 config PAGE_OFFSET
811 hex 808 hex
812 default 0xB0000000 if VMSPLIT_3G_OPT 809 default 0xB0000000 if VMSPLIT_3G_OPT
813 default 0x80000000 if VMSPLIT_2G 810 default 0x80000000 if VMSPLIT_2G
814 default 0x78000000 if VMSPLIT_2G_OPT 811 default 0x78000000 if VMSPLIT_2G_OPT
815 default 0x40000000 if VMSPLIT_1G 812 default 0x40000000 if VMSPLIT_1G
816 default 0xC0000000 813 default 0xC0000000
817 depends on X86_32 814 depends on X86_32
818 815
819 config HIGHMEM 816 config HIGHMEM
820 def_bool y 817 def_bool y
821 depends on X86_32 && (HIGHMEM64G || HIGHMEM4G) 818 depends on X86_32 && (HIGHMEM64G || HIGHMEM4G)
822 819
823 config X86_PAE 820 config X86_PAE
824 def_bool n 821 def_bool n
825 prompt "PAE (Physical Address Extension) Support" 822 prompt "PAE (Physical Address Extension) Support"
826 depends on X86_32 && !HIGHMEM4G 823 depends on X86_32 && !HIGHMEM4G
827 select RESOURCES_64BIT 824 select RESOURCES_64BIT
828 help 825 help
829 PAE is required for NX support, and furthermore enables 826 PAE is required for NX support, and furthermore enables
830 larger swapspace support for non-overcommit purposes. It 827 larger swapspace support for non-overcommit purposes. It
831 has the cost of more pagetable lookup overhead, and also 828 has the cost of more pagetable lookup overhead, and also
832 consumes more pagetable space per process. 829 consumes more pagetable space per process.
833 830
834 # Common NUMA Features 831 # Common NUMA Features
835 config NUMA 832 config NUMA
836 bool "Numa Memory Allocation and Scheduler Support (EXPERIMENTAL)" 833 bool "Numa Memory Allocation and Scheduler Support (EXPERIMENTAL)"
837 depends on SMP 834 depends on SMP
838 depends on X86_64 || (X86_32 && HIGHMEM64G && (X86_NUMAQ || (X86_SUMMIT || X86_GENERICARCH) && ACPI) && EXPERIMENTAL) 835 depends on X86_64 || (X86_32 && HIGHMEM64G && (X86_NUMAQ || (X86_SUMMIT || X86_GENERICARCH) && ACPI) && EXPERIMENTAL)
839 default n if X86_PC 836 default n if X86_PC
840 default y if (X86_NUMAQ || X86_SUMMIT) 837 default y if (X86_NUMAQ || X86_SUMMIT)
841 help 838 help
842 Enable NUMA (Non Uniform Memory Access) support. 839 Enable NUMA (Non Uniform Memory Access) support.
843 The kernel will try to allocate memory used by a CPU on the 840 The kernel will try to allocate memory used by a CPU on the
844 local memory controller of the CPU and add some more 841 local memory controller of the CPU and add some more
845 NUMA awareness to the kernel. 842 NUMA awareness to the kernel.
846 843
847 For i386 this is currently highly experimental and should be only 844 For i386 this is currently highly experimental and should be only
848 used for kernel development. It might also cause boot failures. 845 used for kernel development. It might also cause boot failures.
849 For x86_64 this is recommended on all multiprocessor Opteron systems. 846 For x86_64 this is recommended on all multiprocessor Opteron systems.
850 If the system is EM64T, you should say N unless your system is 847 If the system is EM64T, you should say N unless your system is
851 EM64T NUMA. 848 EM64T NUMA.
852 849
853 comment "NUMA (Summit) requires SMP, 64GB highmem support, ACPI" 850 comment "NUMA (Summit) requires SMP, 64GB highmem support, ACPI"
854 depends on X86_32 && X86_SUMMIT && (!HIGHMEM64G || !ACPI) 851 depends on X86_32 && X86_SUMMIT && (!HIGHMEM64G || !ACPI)
855 852
856 config K8_NUMA 853 config K8_NUMA
857 def_bool y 854 def_bool y
858 prompt "Old style AMD Opteron NUMA detection" 855 prompt "Old style AMD Opteron NUMA detection"
859 depends on X86_64 && NUMA && PCI 856 depends on X86_64 && NUMA && PCI
860 help 857 help
861 Enable K8 NUMA node topology detection. You should say Y here if 858 Enable K8 NUMA node topology detection. You should say Y here if
862 you have a multi processor AMD K8 system. This uses an old 859 you have a multi processor AMD K8 system. This uses an old
863 method to read the NUMA configuration directly from the builtin 860 method to read the NUMA configuration directly from the builtin
864 Northbridge of Opteron. It is recommended to use X86_64_ACPI_NUMA 861 Northbridge of Opteron. It is recommended to use X86_64_ACPI_NUMA
865 instead, which also takes priority if both are compiled in. 862 instead, which also takes priority if both are compiled in.
866 863
867 config X86_64_ACPI_NUMA 864 config X86_64_ACPI_NUMA
868 def_bool y 865 def_bool y
869 prompt "ACPI NUMA detection" 866 prompt "ACPI NUMA detection"
870 depends on X86_64 && NUMA && ACPI && PCI 867 depends on X86_64 && NUMA && ACPI && PCI
871 select ACPI_NUMA 868 select ACPI_NUMA
872 help 869 help
873 Enable ACPI SRAT based node topology detection. 870 Enable ACPI SRAT based node topology detection.
874 871
875 config NUMA_EMU 872 config NUMA_EMU
876 bool "NUMA emulation" 873 bool "NUMA emulation"
877 depends on X86_64 && NUMA 874 depends on X86_64 && NUMA
878 help 875 help
879 Enable NUMA emulation. A flat machine will be split 876 Enable NUMA emulation. A flat machine will be split
880 into virtual nodes when booted with "numa=fake=N", where N is the 877 into virtual nodes when booted with "numa=fake=N", where N is the
881 number of nodes. This is only useful for debugging. 878 number of nodes. This is only useful for debugging.
882 879
883 config NODES_SHIFT 880 config NODES_SHIFT
884 int 881 int
885 range 1 15 if X86_64 882 range 1 15 if X86_64
886 default "6" if X86_64 883 default "6" if X86_64
887 default "4" if X86_NUMAQ 884 default "4" if X86_NUMAQ
888 default "3" 885 default "3"
889 depends on NEED_MULTIPLE_NODES 886 depends on NEED_MULTIPLE_NODES
890 887
891 config HAVE_ARCH_BOOTMEM_NODE 888 config HAVE_ARCH_BOOTMEM_NODE
892 def_bool y 889 def_bool y
893 depends on X86_32 && NUMA 890 depends on X86_32 && NUMA
894 891
895 config ARCH_HAVE_MEMORY_PRESENT 892 config ARCH_HAVE_MEMORY_PRESENT
896 def_bool y 893 def_bool y
897 depends on X86_32 && DISCONTIGMEM 894 depends on X86_32 && DISCONTIGMEM
898 895
899 config NEED_NODE_MEMMAP_SIZE 896 config NEED_NODE_MEMMAP_SIZE
900 def_bool y 897 def_bool y
901 depends on X86_32 && (DISCONTIGMEM || SPARSEMEM) 898 depends on X86_32 && (DISCONTIGMEM || SPARSEMEM)
902 899
903 config HAVE_ARCH_ALLOC_REMAP 900 config HAVE_ARCH_ALLOC_REMAP
904 def_bool y 901 def_bool y
905 depends on X86_32 && NUMA 902 depends on X86_32 && NUMA
906 903
907 config ARCH_FLATMEM_ENABLE 904 config ARCH_FLATMEM_ENABLE
908 def_bool y 905 def_bool y
909 depends on X86_32 && ARCH_SELECT_MEMORY_MODEL && X86_PC && !NUMA 906 depends on X86_32 && ARCH_SELECT_MEMORY_MODEL && X86_PC && !NUMA
910 907
911 config ARCH_DISCONTIGMEM_ENABLE 908 config ARCH_DISCONTIGMEM_ENABLE
912 def_bool y 909 def_bool y
913 depends on NUMA && X86_32 910 depends on NUMA && X86_32
914 911
915 config ARCH_DISCONTIGMEM_DEFAULT 912 config ARCH_DISCONTIGMEM_DEFAULT
916 def_bool y 913 def_bool y
917 depends on NUMA && X86_32 914 depends on NUMA && X86_32
918 915
919 config ARCH_SPARSEMEM_DEFAULT 916 config ARCH_SPARSEMEM_DEFAULT
920 def_bool y 917 def_bool y
921 depends on X86_64 918 depends on X86_64
922 919
923 config ARCH_SPARSEMEM_ENABLE 920 config ARCH_SPARSEMEM_ENABLE
924 def_bool y 921 def_bool y
925 depends on X86_64 || NUMA || (EXPERIMENTAL && X86_PC) 922 depends on X86_64 || NUMA || (EXPERIMENTAL && X86_PC)
926 select SPARSEMEM_STATIC if X86_32 923 select SPARSEMEM_STATIC if X86_32
927 select SPARSEMEM_VMEMMAP_ENABLE if X86_64 924 select SPARSEMEM_VMEMMAP_ENABLE if X86_64
928 925
929 config ARCH_SELECT_MEMORY_MODEL 926 config ARCH_SELECT_MEMORY_MODEL
930 def_bool y 927 def_bool y
931 depends on ARCH_SPARSEMEM_ENABLE 928 depends on ARCH_SPARSEMEM_ENABLE
932 929
933 config ARCH_MEMORY_PROBE 930 config ARCH_MEMORY_PROBE
934 def_bool X86_64 931 def_bool X86_64
935 depends on MEMORY_HOTPLUG 932 depends on MEMORY_HOTPLUG
936 933
937 source "mm/Kconfig" 934 source "mm/Kconfig"
938 935
939 config HIGHPTE 936 config HIGHPTE
940 bool "Allocate 3rd-level pagetables from highmem" 937 bool "Allocate 3rd-level pagetables from highmem"
941 depends on X86_32 && (HIGHMEM4G || HIGHMEM64G) 938 depends on X86_32 && (HIGHMEM4G || HIGHMEM64G)
942 help 939 help
943 The VM uses one page table entry for each page of physical memory. 940 The VM uses one page table entry for each page of physical memory.
944 For systems with a lot of RAM, this can be wasteful of precious 941 For systems with a lot of RAM, this can be wasteful of precious
945 low memory. Setting this option will put user-space page table 942 low memory. Setting this option will put user-space page table
946 entries in high memory. 943 entries in high memory.
947 944
948 config MATH_EMULATION 945 config MATH_EMULATION
949 bool 946 bool
950 prompt "Math emulation" if X86_32 947 prompt "Math emulation" if X86_32
951 ---help--- 948 ---help---
952 Linux can emulate a math coprocessor (used for floating point 949 Linux can emulate a math coprocessor (used for floating point
953 operations) if you don't have one. 486DX and Pentium processors have 950 operations) if you don't have one. 486DX and Pentium processors have
954 a math coprocessor built in, 486SX and 386 do not, unless you added 951 a math coprocessor built in, 486SX and 386 do not, unless you added
955 a 487DX or 387, respectively. (The messages during boot time can 952 a 487DX or 387, respectively. (The messages during boot time can
956 give you some hints here ["man dmesg"].) Everyone needs either a 953 give you some hints here ["man dmesg"].) Everyone needs either a
957 coprocessor or this emulation. 954 coprocessor or this emulation.
958 955
959 If you don't have a math coprocessor, you need to say Y here; if you 956 If you don't have a math coprocessor, you need to say Y here; if you
960 say Y here even though you have a coprocessor, the coprocessor will 957 say Y here even though you have a coprocessor, the coprocessor will
961 be used nevertheless. (This behavior can be changed with the kernel 958 be used nevertheless. (This behavior can be changed with the kernel
962 command line option "no387", which comes handy if your coprocessor 959 command line option "no387", which comes handy if your coprocessor
963 is broken. Try "man bootparam" or see the documentation of your boot 960 is broken. Try "man bootparam" or see the documentation of your boot
964 loader (lilo or loadlin) about how to pass options to the kernel at 961 loader (lilo or loadlin) about how to pass options to the kernel at
965 boot time.) This means that it is a good idea to say Y here if you 962 boot time.) This means that it is a good idea to say Y here if you
966 intend to use this kernel on different machines. 963 intend to use this kernel on different machines.
967 964
968 More information about the internals of the Linux math coprocessor 965 More information about the internals of the Linux math coprocessor
969 emulation can be found in <file:arch/x86/math-emu/README>. 966 emulation can be found in <file:arch/x86/math-emu/README>.
970 967
971 If you are not sure, say Y; apart from resulting in a 66 KB bigger 968 If you are not sure, say Y; apart from resulting in a 66 KB bigger
972 kernel, it won't hurt. 969 kernel, it won't hurt.
973 970
974 config MTRR 971 config MTRR
975 bool "MTRR (Memory Type Range Register) support" 972 bool "MTRR (Memory Type Range Register) support"
976 ---help--- 973 ---help---
977 On Intel P6 family processors (Pentium Pro, Pentium II and later) 974 On Intel P6 family processors (Pentium Pro, Pentium II and later)
978 the Memory Type Range Registers (MTRRs) may be used to control 975 the Memory Type Range Registers (MTRRs) may be used to control
979 processor access to memory ranges. This is most useful if you have 976 processor access to memory ranges. This is most useful if you have
980 a video (VGA) card on a PCI or AGP bus. Enabling write-combining 977 a video (VGA) card on a PCI or AGP bus. Enabling write-combining
981 allows bus write transfers to be combined into a larger transfer 978 allows bus write transfers to be combined into a larger transfer
982 before bursting over the PCI/AGP bus. This can increase performance 979 before bursting over the PCI/AGP bus. This can increase performance
983 of image write operations 2.5 times or more. Saying Y here creates a 980 of image write operations 2.5 times or more. Saying Y here creates a
984 /proc/mtrr file which may be used to manipulate your processor's 981 /proc/mtrr file which may be used to manipulate your processor's
985 MTRRs. Typically the X server should use this. 982 MTRRs. Typically the X server should use this.
986 983
987 This code has a reasonably generic interface so that similar 984 This code has a reasonably generic interface so that similar
988 control registers on other processors can be easily supported 985 control registers on other processors can be easily supported
989 as well: 986 as well:
990 987
991 The Cyrix 6x86, 6x86MX and M II processors have Address Range 988 The Cyrix 6x86, 6x86MX and M II processors have Address Range
992 Registers (ARRs) which provide a similar functionality to MTRRs. For 989 Registers (ARRs) which provide a similar functionality to MTRRs. For
993 these, the ARRs are used to emulate the MTRRs. 990 these, the ARRs are used to emulate the MTRRs.
994 The AMD K6-2 (stepping 8 and above) and K6-3 processors have two 991 The AMD K6-2 (stepping 8 and above) and K6-3 processors have two
995 MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing 992 MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing
996 write-combining. All of these processors are supported by this code 993 write-combining. All of these processors are supported by this code
997 and it makes sense to say Y here if you have one of them. 994 and it makes sense to say Y here if you have one of them.
998 995
999 Saying Y here also fixes a problem with buggy SMP BIOSes which only 996 Saying Y here also fixes a problem with buggy SMP BIOSes which only
1000 set the MTRRs for the boot CPU and not for the secondary CPUs. This 997 set the MTRRs for the boot CPU and not for the secondary CPUs. This
1001 can lead to all sorts of problems, so it's good to say Y here. 998 can lead to all sorts of problems, so it's good to say Y here.
1002 999
1003 You can safely say Y even if your machine doesn't have MTRRs, you'll 1000 You can safely say Y even if your machine doesn't have MTRRs, you'll
1004 just add about 9 KB to your kernel. 1001 just add about 9 KB to your kernel.
1005 1002
1006 See <file:Documentation/mtrr.txt> for more information. 1003 See <file:Documentation/mtrr.txt> for more information.
1007 1004
1008 config EFI 1005 config EFI
1009 def_bool n 1006 def_bool n
1010 prompt "EFI runtime service support" 1007 prompt "EFI runtime service support"
1011 depends on ACPI 1008 depends on ACPI
1012 ---help--- 1009 ---help---
1013 This enables the kernel to use EFI runtime services that are 1010 This enables the kernel to use EFI runtime services that are
1014 available (such as the EFI variable services). 1011 available (such as the EFI variable services).
1015 1012
1016 This option is only useful on systems that have EFI firmware. 1013 This option is only useful on systems that have EFI firmware.
1017 In addition, you should use the latest ELILO loader available 1014 In addition, you should use the latest ELILO loader available
1018 at <http://elilo.sourceforge.net> in order to take advantage 1015 at <http://elilo.sourceforge.net> in order to take advantage
1019 of EFI runtime services. However, even with this option, the 1016 of EFI runtime services. However, even with this option, the
1020 resultant kernel should continue to boot on existing non-EFI 1017 resultant kernel should continue to boot on existing non-EFI
1021 platforms. 1018 platforms.
1022 1019
1023 config IRQBALANCE 1020 config IRQBALANCE
1024 def_bool y 1021 def_bool y
1025 prompt "Enable kernel irq balancing" 1022 prompt "Enable kernel irq balancing"
1026 depends on X86_32 && SMP && X86_IO_APIC 1023 depends on X86_32 && SMP && X86_IO_APIC
1027 help 1024 help
1028 The default yes will allow the kernel to do irq load balancing. 1025 The default yes will allow the kernel to do irq load balancing.
1029 Saying no will keep the kernel from doing irq load balancing. 1026 Saying no will keep the kernel from doing irq load balancing.
1030 1027
1031 config SECCOMP 1028 config SECCOMP
1032 def_bool y 1029 def_bool y
1033 prompt "Enable seccomp to safely compute untrusted bytecode" 1030 prompt "Enable seccomp to safely compute untrusted bytecode"
1034 depends on PROC_FS 1031 depends on PROC_FS
1035 help 1032 help
1036 This kernel feature is useful for number crunching applications 1033 This kernel feature is useful for number crunching applications
1037 that may need to compute untrusted bytecode during their 1034 that may need to compute untrusted bytecode during their
1038 execution. By using pipes or other transports made available to 1035 execution. By using pipes or other transports made available to
1039 the process as file descriptors supporting the read/write 1036 the process as file descriptors supporting the read/write
1040 syscalls, it's possible to isolate those applications in 1037 syscalls, it's possible to isolate those applications in
1041 their own address space using seccomp. Once seccomp is 1038 their own address space using seccomp. Once seccomp is
1042 enabled via /proc/<pid>/seccomp, it cannot be disabled 1039 enabled via /proc/<pid>/seccomp, it cannot be disabled
1043 and the task is only allowed to execute a few safe syscalls 1040 and the task is only allowed to execute a few safe syscalls
1044 defined by each seccomp mode. 1041 defined by each seccomp mode.
1045 1042
1046 If unsure, say Y. Only embedded should say N here. 1043 If unsure, say Y. Only embedded should say N here.
1047 1044
1048 config CC_STACKPROTECTOR 1045 config CC_STACKPROTECTOR
1049 bool "Enable -fstack-protector buffer overflow detection (EXPERIMENTAL)" 1046 bool "Enable -fstack-protector buffer overflow detection (EXPERIMENTAL)"
1050 depends on X86_64 && EXPERIMENTAL 1047 depends on X86_64 && EXPERIMENTAL
1051 help 1048 help
1052 This option turns on the -fstack-protector GCC feature. This 1049 This option turns on the -fstack-protector GCC feature. This
1053 feature puts, at the beginning of critical functions, a canary 1050 feature puts, at the beginning of critical functions, a canary
1054 value on the stack just before the return address, and validates 1051 value on the stack just before the return address, and validates
1055 the value just before actually returning. Stack based buffer 1052 the value just before actually returning. Stack based buffer
1056 overflows (that need to overwrite this return address) now also 1053 overflows (that need to overwrite this return address) now also
1057 overwrite the canary, which gets detected and the attack is then 1054 overwrite the canary, which gets detected and the attack is then
1058 neutralized via a kernel panic. 1055 neutralized via a kernel panic.
1059 1056
1060 This feature requires gcc version 4.2 or above, or a distribution 1057 This feature requires gcc version 4.2 or above, or a distribution
1061 gcc with the feature backported. Older versions are automatically 1058 gcc with the feature backported. Older versions are automatically
1062 detected and for those versions, this configuration option is ignored. 1059 detected and for those versions, this configuration option is ignored.
1063 1060
1064 config CC_STACKPROTECTOR_ALL 1061 config CC_STACKPROTECTOR_ALL
1065 bool "Use stack-protector for all functions" 1062 bool "Use stack-protector for all functions"
1066 depends on CC_STACKPROTECTOR 1063 depends on CC_STACKPROTECTOR
1067 help 1064 help
1068 Normally, GCC only inserts the canary value protection for 1065 Normally, GCC only inserts the canary value protection for
1069 functions that use large-ish on-stack buffers. By enabling 1066 functions that use large-ish on-stack buffers. By enabling
1070 this option, GCC will be asked to do this for ALL functions. 1067 this option, GCC will be asked to do this for ALL functions.
1071 1068
1072 source kernel/Kconfig.hz 1069 source kernel/Kconfig.hz
1073 1070
1074 config KEXEC 1071 config KEXEC
1075 bool "kexec system call" 1072 bool "kexec system call"
1076 help 1073 help
1077 kexec is a system call that implements the ability to shutdown your 1074 kexec is a system call that implements the ability to shutdown your
1078 current kernel, and to start another kernel. It is like a reboot 1075 current kernel, and to start another kernel. It is like a reboot
1079 but it is independent of the system firmware. And like a reboot 1076 but it is independent of the system firmware. And like a reboot
1080 you can start any kernel with it, not just Linux. 1077 you can start any kernel with it, not just Linux.
1081 1078
1082 The name comes from the similarity to the exec system call. 1079 The name comes from the similarity to the exec system call.
1083 1080
1084 It is an ongoing process to be certain the hardware in a machine 1081 It is an ongoing process to be certain the hardware in a machine
1085 is properly shutdown, so do not be surprised if this code does not 1082 is properly shutdown, so do not be surprised if this code does not
1086 initially work for you. It may help to enable device hotplugging 1083 initially work for you. It may help to enable device hotplugging
1087 support. As of this writing the exact hardware interface is 1084 support. As of this writing the exact hardware interface is
1088 strongly in flux, so no good recommendation can be made. 1085 strongly in flux, so no good recommendation can be made.
1089 1086
1090 config CRASH_DUMP 1087 config CRASH_DUMP
1091 bool "kernel crash dumps (EXPERIMENTAL)" 1088 bool "kernel crash dumps (EXPERIMENTAL)"
1092 depends on EXPERIMENTAL 1089 depends on EXPERIMENTAL
1093 depends on X86_64 || (X86_32 && HIGHMEM) 1090 depends on X86_64 || (X86_32 && HIGHMEM)
1094 help 1091 help
1095 Generate crash dump after being started by kexec. 1092 Generate crash dump after being started by kexec.
1096 This should be normally only set in special crash dump kernels 1093 This should be normally only set in special crash dump kernels
1097 which are loaded in the main kernel with kexec-tools into 1094 which are loaded in the main kernel with kexec-tools into
1098 a specially reserved region and then later executed after 1095 a specially reserved region and then later executed after
1099 a crash by kdump/kexec. The crash dump kernel must be compiled 1096 a crash by kdump/kexec. The crash dump kernel must be compiled
1100 to a memory address not used by the main kernel or BIOS using 1097 to a memory address not used by the main kernel or BIOS using
1101 PHYSICAL_START, or it must be built as a relocatable image 1098 PHYSICAL_START, or it must be built as a relocatable image
1102 (CONFIG_RELOCATABLE=y). 1099 (CONFIG_RELOCATABLE=y).
1103 For more details see Documentation/kdump/kdump.txt 1100 For more details see Documentation/kdump/kdump.txt
1104 1101
1105 config PHYSICAL_START 1102 config PHYSICAL_START
1106 hex "Physical address where the kernel is loaded" if (EMBEDDED || CRASH_DUMP) 1103 hex "Physical address where the kernel is loaded" if (EMBEDDED || CRASH_DUMP)
1107 default "0x1000000" if X86_NUMAQ 1104 default "0x1000000" if X86_NUMAQ
1108 default "0x200000" if X86_64 1105 default "0x200000" if X86_64
1109 default "0x100000" 1106 default "0x100000"
1110 help 1107 help
1111 This gives the physical address where the kernel is loaded. 1108 This gives the physical address where the kernel is loaded.
1112 1109
1113 If kernel is a not relocatable (CONFIG_RELOCATABLE=n) then 1110 If kernel is a not relocatable (CONFIG_RELOCATABLE=n) then
1114 bzImage will decompress itself to above physical address and 1111 bzImage will decompress itself to above physical address and
1115 run from there. Otherwise, bzImage will run from the address where 1112 run from there. Otherwise, bzImage will run from the address where
1116 it has been loaded by the boot loader and will ignore above physical 1113 it has been loaded by the boot loader and will ignore above physical
1117 address. 1114 address.
1118 1115
1119 In normal kdump cases one does not have to set/change this option 1116 In normal kdump cases one does not have to set/change this option
1120 as now bzImage can be compiled as a completely relocatable image 1117 as now bzImage can be compiled as a completely relocatable image
1121 (CONFIG_RELOCATABLE=y) and be used to load and run from a different 1118 (CONFIG_RELOCATABLE=y) and be used to load and run from a different
1122 address. This option is mainly useful for the folks who don't want 1119 address. This option is mainly useful for the folks who don't want
1123 to use a bzImage for capturing the crash dump and want to use a 1120 to use a bzImage for capturing the crash dump and want to use a
1124 vmlinux instead. vmlinux is not relocatable hence a kernel needs 1121 vmlinux instead. vmlinux is not relocatable hence a kernel needs
1125 to be specifically compiled to run from a specific memory area 1122 to be specifically compiled to run from a specific memory area
1126 (normally a reserved region) and this option comes handy. 1123 (normally a reserved region) and this option comes handy.
1127 1124
1128 So if you are using bzImage for capturing the crash dump, leave 1125 So if you are using bzImage for capturing the crash dump, leave
1129 the value here unchanged to 0x100000 and set CONFIG_RELOCATABLE=y. 1126 the value here unchanged to 0x100000 and set CONFIG_RELOCATABLE=y.
1130 Otherwise if you plan to use vmlinux for capturing the crash dump 1127 Otherwise if you plan to use vmlinux for capturing the crash dump
1131 change this value to start of the reserved region (Typically 16MB 1128 change this value to start of the reserved region (Typically 16MB
1132 0x1000000). In other words, it can be set based on the "X" value as 1129 0x1000000). In other words, it can be set based on the "X" value as
1133 specified in the "crashkernel=YM@XM" command line boot parameter 1130 specified in the "crashkernel=YM@XM" command line boot parameter
1134 passed to the panic-ed kernel. Typically this parameter is set as 1131 passed to the panic-ed kernel. Typically this parameter is set as
1135 crashkernel=64M@16M. Please take a look at 1132 crashkernel=64M@16M. Please take a look at
1136 Documentation/kdump/kdump.txt for more details about crash dumps. 1133 Documentation/kdump/kdump.txt for more details about crash dumps.
1137 1134
1138 Usage of bzImage for capturing the crash dump is recommended as 1135 Usage of bzImage for capturing the crash dump is recommended as
1139 one does not have to build two kernels. Same kernel can be used 1136 one does not have to build two kernels. Same kernel can be used
1140 as production kernel and capture kernel. Above option should have 1137 as production kernel and capture kernel. Above option should have
1141 gone away after relocatable bzImage support is introduced. But it 1138 gone away after relocatable bzImage support is introduced. But it
1142 is present because there are users out there who continue to use 1139 is present because there are users out there who continue to use
1143 vmlinux for dump capture. This option should go away down the 1140 vmlinux for dump capture. This option should go away down the
1144 line. 1141 line.
1145 1142
1146 Don't change this unless you know what you are doing. 1143 Don't change this unless you know what you are doing.
1147 1144
1148 config RELOCATABLE 1145 config RELOCATABLE
1149 bool "Build a relocatable kernel (EXPERIMENTAL)" 1146 bool "Build a relocatable kernel (EXPERIMENTAL)"
1150 depends on EXPERIMENTAL 1147 depends on EXPERIMENTAL
1151 help 1148 help
1152 This builds a kernel image that retains relocation information 1149 This builds a kernel image that retains relocation information
1153 so it can be loaded someplace besides the default 1MB. 1150 so it can be loaded someplace besides the default 1MB.
1154 The relocations tend to make the kernel binary about 10% larger, 1151 The relocations tend to make the kernel binary about 10% larger,
1155 but are discarded at runtime. 1152 but are discarded at runtime.
1156 1153
1157 One use is for the kexec on panic case where the recovery kernel 1154 One use is for the kexec on panic case where the recovery kernel
1158 must live at a different physical address than the primary 1155 must live at a different physical address than the primary
1159 kernel. 1156 kernel.
1160 1157
1161 Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address 1158 Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
1162 it has been loaded at and the compile time physical address 1159 it has been loaded at and the compile time physical address
1163 (CONFIG_PHYSICAL_START) is ignored. 1160 (CONFIG_PHYSICAL_START) is ignored.
1164 1161
1165 config PHYSICAL_ALIGN 1162 config PHYSICAL_ALIGN
1166 hex 1163 hex
1167 prompt "Alignment value to which kernel should be aligned" if X86_32 1164 prompt "Alignment value to which kernel should be aligned" if X86_32
1168 default "0x100000" if X86_32 1165 default "0x100000" if X86_32
1169 default "0x200000" if X86_64 1166 default "0x200000" if X86_64
1170 range 0x2000 0x400000 1167 range 0x2000 0x400000
1171 help 1168 help
1172 This value puts the alignment restrictions on physical address 1169 This value puts the alignment restrictions on physical address
1173 where kernel is loaded and run from. Kernel is compiled for an 1170 where kernel is loaded and run from. Kernel is compiled for an
1174 address which meets above alignment restriction. 1171 address which meets above alignment restriction.
1175 1172
1176 If bootloader loads the kernel at a non-aligned address and 1173 If bootloader loads the kernel at a non-aligned address and
1177 CONFIG_RELOCATABLE is set, kernel will move itself to nearest 1174 CONFIG_RELOCATABLE is set, kernel will move itself to nearest
1178 address aligned to above value and run from there. 1175 address aligned to above value and run from there.
1179 1176
1180 If bootloader loads the kernel at a non-aligned address and 1177 If bootloader loads the kernel at a non-aligned address and
1181 CONFIG_RELOCATABLE is not set, kernel will ignore the run time 1178 CONFIG_RELOCATABLE is not set, kernel will ignore the run time
1182 load address and decompress itself to the address it has been 1179 load address and decompress itself to the address it has been
1183 compiled for and run from there. The address for which kernel is 1180 compiled for and run from there. The address for which kernel is
1184 compiled already meets above alignment restrictions. Hence the 1181 compiled already meets above alignment restrictions. Hence the
1185 end result is that kernel runs from a physical address meeting 1182 end result is that kernel runs from a physical address meeting
1186 above alignment restrictions. 1183 above alignment restrictions.
1187 1184
1188 Don't change this unless you know what you are doing. 1185 Don't change this unless you know what you are doing.
1189 1186
1190 config HOTPLUG_CPU 1187 config HOTPLUG_CPU
1191 bool "Support for suspend on SMP and hot-pluggable CPUs (EXPERIMENTAL)" 1188 bool "Support for suspend on SMP and hot-pluggable CPUs (EXPERIMENTAL)"
1192 depends on SMP && HOTPLUG && EXPERIMENTAL && !X86_VOYAGER 1189 depends on SMP && HOTPLUG && EXPERIMENTAL && !X86_VOYAGER
1193 ---help--- 1190 ---help---
1194 Say Y here to experiment with turning CPUs off and on, and to 1191 Say Y here to experiment with turning CPUs off and on, and to
1195 enable suspend on SMP systems. CPUs can be controlled through 1192 enable suspend on SMP systems. CPUs can be controlled through
1196 /sys/devices/system/cpu. 1193 /sys/devices/system/cpu.
1197 Say N if you want to disable CPU hotplug and don't need to 1194 Say N if you want to disable CPU hotplug and don't need to
1198 suspend. 1195 suspend.
1199 1196
1200 config COMPAT_VDSO 1197 config COMPAT_VDSO
1201 def_bool y 1198 def_bool y
1202 prompt "Compat VDSO support" 1199 prompt "Compat VDSO support"
1203 depends on X86_32 || IA32_EMULATION 1200 depends on X86_32 || IA32_EMULATION
1204 help 1201 help
1205 Map the 32-bit VDSO to the predictable old-style address too. 1202 Map the 32-bit VDSO to the predictable old-style address too.
1206 ---help--- 1203 ---help---
1207 Say N here if you are running a sufficiently recent glibc 1204 Say N here if you are running a sufficiently recent glibc
1208 version (2.3.3 or later), to remove the high-mapped 1205 version (2.3.3 or later), to remove the high-mapped
1209 VDSO mapping and to exclusively use the randomized VDSO. 1206 VDSO mapping and to exclusively use the randomized VDSO.
1210 1207
1211 If unsure, say Y. 1208 If unsure, say Y.
1212 1209
1213 endmenu 1210 endmenu
1214 1211
1215 config ARCH_ENABLE_MEMORY_HOTPLUG 1212 config ARCH_ENABLE_MEMORY_HOTPLUG
1216 def_bool y 1213 def_bool y
1217 depends on X86_64 || (X86_32 && HIGHMEM) 1214 depends on X86_64 || (X86_32 && HIGHMEM)
1218 1215
1219 config HAVE_ARCH_EARLY_PFN_TO_NID 1216 config HAVE_ARCH_EARLY_PFN_TO_NID
1220 def_bool X86_64 1217 def_bool X86_64
1221 depends on NUMA 1218 depends on NUMA
1222 1219
1223 menu "Power management options" 1220 menu "Power management options"
1224 depends on !X86_VOYAGER 1221 depends on !X86_VOYAGER
1225 1222
1226 config ARCH_HIBERNATION_HEADER 1223 config ARCH_HIBERNATION_HEADER
1227 def_bool y 1224 def_bool y
1228 depends on X86_64 && HIBERNATION 1225 depends on X86_64 && HIBERNATION
1229 1226
1230 source "kernel/power/Kconfig" 1227 source "kernel/power/Kconfig"
1231 1228
1232 source "drivers/acpi/Kconfig" 1229 source "drivers/acpi/Kconfig"
1233 1230
1234 config X86_APM_BOOT 1231 config X86_APM_BOOT
1235 bool 1232 bool
1236 default y 1233 default y
1237 depends on APM || APM_MODULE 1234 depends on APM || APM_MODULE
1238 1235
1239 menuconfig APM 1236 menuconfig APM
1240 tristate "APM (Advanced Power Management) BIOS support" 1237 tristate "APM (Advanced Power Management) BIOS support"
1241 depends on X86_32 && PM_SLEEP && !X86_VISWS 1238 depends on X86_32 && PM_SLEEP && !X86_VISWS
1242 ---help--- 1239 ---help---
1243 APM is a BIOS specification for saving power using several different 1240 APM is a BIOS specification for saving power using several different
1244 techniques. This is mostly useful for battery powered laptops with 1241 techniques. This is mostly useful for battery powered laptops with
1245 APM compliant BIOSes. If you say Y here, the system time will be 1242 APM compliant BIOSes. If you say Y here, the system time will be
1246 reset after a RESUME operation, the /proc/apm device will provide 1243 reset after a RESUME operation, the /proc/apm device will provide
1247 battery status information, and user-space programs will receive 1244 battery status information, and user-space programs will receive
1248 notification of APM "events" (e.g. battery status change). 1245 notification of APM "events" (e.g. battery status change).
1249 1246
1250 If you select "Y" here, you can disable actual use of the APM 1247 If you select "Y" here, you can disable actual use of the APM
1251 BIOS by passing the "apm=off" option to the kernel at boot time. 1248 BIOS by passing the "apm=off" option to the kernel at boot time.
1252 1249
1253 Note that the APM support is almost completely disabled for 1250 Note that the APM support is almost completely disabled for
1254 machines with more than one CPU. 1251 machines with more than one CPU.
1255 1252
1256 In order to use APM, you will need supporting software. For location 1253 In order to use APM, you will need supporting software. For location
1257 and more information, read <file:Documentation/pm.txt> and the 1254 and more information, read <file:Documentation/pm.txt> and the
1258 Battery Powered Linux mini-HOWTO, available from 1255 Battery Powered Linux mini-HOWTO, available from
1259 <http://www.tldp.org/docs.html#howto>. 1256 <http://www.tldp.org/docs.html#howto>.
1260 1257
1261 This driver does not spin down disk drives (see the hdparm(8) 1258 This driver does not spin down disk drives (see the hdparm(8)
1262 manpage ("man 8 hdparm") for that), and it doesn't turn off 1259 manpage ("man 8 hdparm") for that), and it doesn't turn off
1263 VESA-compliant "green" monitors. 1260 VESA-compliant "green" monitors.
1264 1261
1265 This driver does not support the TI 4000M TravelMate and the ACER 1262 This driver does not support the TI 4000M TravelMate and the ACER
1266 486/DX4/75 because they don't have compliant BIOSes. Many "green" 1263 486/DX4/75 because they don't have compliant BIOSes. Many "green"
1267 desktop machines also don't have compliant BIOSes, and this driver 1264 desktop machines also don't have compliant BIOSes, and this driver
1268 may cause those machines to panic during the boot phase. 1265 may cause those machines to panic during the boot phase.
1269 1266
1270 Generally, if you don't have a battery in your machine, there isn't 1267 Generally, if you don't have a battery in your machine, there isn't
1271 much point in using this driver and you should say N. If you get 1268 much point in using this driver and you should say N. If you get
1272 random kernel OOPSes or reboots that don't seem to be related to 1269 random kernel OOPSes or reboots that don't seem to be related to
1273 anything, try disabling/enabling this option (or disabling/enabling 1270 anything, try disabling/enabling this option (or disabling/enabling
1274 APM in your BIOS). 1271 APM in your BIOS).
1275 1272
1276 Some other things you should try when experiencing seemingly random, 1273 Some other things you should try when experiencing seemingly random,
1277 "weird" problems: 1274 "weird" problems:
1278 1275
1279 1) make sure that you have enough swap space and that it is 1276 1) make sure that you have enough swap space and that it is
1280 enabled. 1277 enabled.
1281 2) pass the "no-hlt" option to the kernel 1278 2) pass the "no-hlt" option to the kernel
1282 3) switch on floating point emulation in the kernel and pass 1279 3) switch on floating point emulation in the kernel and pass
1283 the "no387" option to the kernel 1280 the "no387" option to the kernel
1284 4) pass the "floppy=nodma" option to the kernel 1281 4) pass the "floppy=nodma" option to the kernel
1285 5) pass the "mem=4M" option to the kernel (thereby disabling 1282 5) pass the "mem=4M" option to the kernel (thereby disabling
1286 all but the first 4 MB of RAM) 1283 all but the first 4 MB of RAM)
1287 6) make sure that the CPU is not over clocked. 1284 6) make sure that the CPU is not over clocked.
1288 7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/> 1285 7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
1289 8) disable the cache from your BIOS settings 1286 8) disable the cache from your BIOS settings
1290 9) install a fan for the video card or exchange video RAM 1287 9) install a fan for the video card or exchange video RAM
1291 10) install a better fan for the CPU 1288 10) install a better fan for the CPU
1292 11) exchange RAM chips 1289 11) exchange RAM chips
1293 12) exchange the motherboard. 1290 12) exchange the motherboard.
1294 1291
1295 To compile this driver as a module, choose M here: the 1292 To compile this driver as a module, choose M here: the
1296 module will be called apm. 1293 module will be called apm.
1297 1294
1298 if APM 1295 if APM
1299 1296
1300 config APM_IGNORE_USER_SUSPEND 1297 config APM_IGNORE_USER_SUSPEND
1301 bool "Ignore USER SUSPEND" 1298 bool "Ignore USER SUSPEND"
1302 help 1299 help
1303 This option will ignore USER SUSPEND requests. On machines with a 1300 This option will ignore USER SUSPEND requests. On machines with a
1304 compliant APM BIOS, you want to say N. However, on the NEC Versa M 1301 compliant APM BIOS, you want to say N. However, on the NEC Versa M
1305 series notebooks, it is necessary to say Y because of a BIOS bug. 1302 series notebooks, it is necessary to say Y because of a BIOS bug.
1306 1303
1307 config APM_DO_ENABLE 1304 config APM_DO_ENABLE
1308 bool "Enable PM at boot time" 1305 bool "Enable PM at boot time"
1309 ---help--- 1306 ---help---
1310 Enable APM features at boot time. From page 36 of the APM BIOS 1307 Enable APM features at boot time. From page 36 of the APM BIOS
1311 specification: "When disabled, the APM BIOS does not automatically 1308 specification: "When disabled, the APM BIOS does not automatically
1312 power manage devices, enter the Standby State, enter the Suspend 1309 power manage devices, enter the Standby State, enter the Suspend
1313 State, or take power saving steps in response to CPU Idle calls." 1310 State, or take power saving steps in response to CPU Idle calls."
1314 This driver will make CPU Idle calls when Linux is idle (unless this 1311 This driver will make CPU Idle calls when Linux is idle (unless this
1315 feature is turned off -- see "Do CPU IDLE calls", below). This 1312 feature is turned off -- see "Do CPU IDLE calls", below). This
1316 should always save battery power, but more complicated APM features 1313 should always save battery power, but more complicated APM features
1317 will be dependent on your BIOS implementation. You may need to turn 1314 will be dependent on your BIOS implementation. You may need to turn
1318 this option off if your computer hangs at boot time when using APM 1315 this option off if your computer hangs at boot time when using APM
1319 support, or if it beeps continuously instead of suspending. Turn 1316 support, or if it beeps continuously instead of suspending. Turn
1320 this off if you have a NEC UltraLite Versa 33/C or a Toshiba 1317 this off if you have a NEC UltraLite Versa 33/C or a Toshiba
1321 T400CDT. This is off by default since most machines do fine without 1318 T400CDT. This is off by default since most machines do fine without
1322 this feature. 1319 this feature.
1323 1320
1324 config APM_CPU_IDLE 1321 config APM_CPU_IDLE
1325 bool "Make CPU Idle calls when idle" 1322 bool "Make CPU Idle calls when idle"
1326 help 1323 help
1327 Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop. 1324 Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop.
1328 On some machines, this can activate improved power savings, such as 1325 On some machines, this can activate improved power savings, such as
1329 a slowed CPU clock rate, when the machine is idle. These idle calls 1326 a slowed CPU clock rate, when the machine is idle. These idle calls
1330 are made after the idle loop has run for some length of time (e.g., 1327 are made after the idle loop has run for some length of time (e.g.,
1331 333 mS). On some machines, this will cause a hang at boot time or 1328 333 mS). On some machines, this will cause a hang at boot time or
1332 whenever the CPU becomes idle. (On machines with more than one CPU, 1329 whenever the CPU becomes idle. (On machines with more than one CPU,
1333 this option does nothing.) 1330 this option does nothing.)
1334 1331
1335 config APM_DISPLAY_BLANK 1332 config APM_DISPLAY_BLANK
1336 bool "Enable console blanking using APM" 1333 bool "Enable console blanking using APM"
1337 help 1334 help
1338 Enable console blanking using the APM. Some laptops can use this to 1335 Enable console blanking using the APM. Some laptops can use this to
1339 turn off the LCD backlight when the screen blanker of the Linux 1336 turn off the LCD backlight when the screen blanker of the Linux
1340 virtual console blanks the screen. Note that this is only used by 1337 virtual console blanks the screen. Note that this is only used by
1341 the virtual console screen blanker, and won't turn off the backlight 1338 the virtual console screen blanker, and won't turn off the backlight
1342 when using the X Window system. This also doesn't have anything to 1339 when using the X Window system. This also doesn't have anything to
1343 do with your VESA-compliant power-saving monitor. Further, this 1340 do with your VESA-compliant power-saving monitor. Further, this
1344 option doesn't work for all laptops -- it might not turn off your 1341 option doesn't work for all laptops -- it might not turn off your
1345 backlight at all, or it might print a lot of errors to the console, 1342 backlight at all, or it might print a lot of errors to the console,
1346 especially if you are using gpm. 1343 especially if you are using gpm.
1347 1344
1348 config APM_ALLOW_INTS 1345 config APM_ALLOW_INTS
1349 bool "Allow interrupts during APM BIOS calls" 1346 bool "Allow interrupts during APM BIOS calls"
1350 help 1347 help
1351 Normally we disable external interrupts while we are making calls to 1348 Normally we disable external interrupts while we are making calls to
1352 the APM BIOS as a measure to lessen the effects of a badly behaving 1349 the APM BIOS as a measure to lessen the effects of a badly behaving
1353 BIOS implementation. The BIOS should reenable interrupts if it 1350 BIOS implementation. The BIOS should reenable interrupts if it
1354 needs to. Unfortunately, some BIOSes do not -- especially those in 1351 needs to. Unfortunately, some BIOSes do not -- especially those in
1355 many of the newer IBM Thinkpads. If you experience hangs when you 1352 many of the newer IBM Thinkpads. If you experience hangs when you
1356 suspend, try setting this to Y. Otherwise, say N. 1353 suspend, try setting this to Y. Otherwise, say N.
1357 1354
1358 config APM_REAL_MODE_POWER_OFF 1355 config APM_REAL_MODE_POWER_OFF
1359 bool "Use real mode APM BIOS call to power off" 1356 bool "Use real mode APM BIOS call to power off"
1360 help 1357 help
1361 Use real mode APM BIOS calls to switch off the computer. This is 1358 Use real mode APM BIOS calls to switch off the computer. This is
1362 a work-around for a number of buggy BIOSes. Switch this option on if 1359 a work-around for a number of buggy BIOSes. Switch this option on if
1363 your computer crashes instead of powering off properly. 1360 your computer crashes instead of powering off properly.
1364 1361
1365 endif # APM 1362 endif # APM
1366 1363
1367 source "arch/x86/kernel/cpu/cpufreq/Kconfig" 1364 source "arch/x86/kernel/cpu/cpufreq/Kconfig"
1368 1365
1369 source "drivers/cpuidle/Kconfig" 1366 source "drivers/cpuidle/Kconfig"
1370 1367
1371 endmenu 1368 endmenu
1372 1369
1373 1370
1374 menu "Bus options (PCI etc.)" 1371 menu "Bus options (PCI etc.)"
1375 1372
1376 config PCI 1373 config PCI
1377 bool "PCI support" if !X86_VISWS 1374 bool "PCI support" if !X86_VISWS
1378 depends on !X86_VOYAGER 1375 depends on !X86_VOYAGER
1379 default y 1376 default y
1380 select ARCH_SUPPORTS_MSI if (X86_LOCAL_APIC && X86_IO_APIC) 1377 select ARCH_SUPPORTS_MSI if (X86_LOCAL_APIC && X86_IO_APIC)
1381 help 1378 help
1382 Find out whether you have a PCI motherboard. PCI is the name of a 1379 Find out whether you have a PCI motherboard. PCI is the name of a
1383 bus system, i.e. the way the CPU talks to the other stuff inside 1380 bus system, i.e. the way the CPU talks to the other stuff inside
1384 your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or 1381 your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
1385 VESA. If you have PCI, say Y, otherwise N. 1382 VESA. If you have PCI, say Y, otherwise N.
1386 1383
1387 choice 1384 choice
1388 prompt "PCI access mode" 1385 prompt "PCI access mode"
1389 depends on X86_32 && PCI && !X86_VISWS 1386 depends on X86_32 && PCI && !X86_VISWS
1390 default PCI_GOANY 1387 default PCI_GOANY
1391 ---help--- 1388 ---help---
1392 On PCI systems, the BIOS can be used to detect the PCI devices and 1389 On PCI systems, the BIOS can be used to detect the PCI devices and
1393 determine their configuration. However, some old PCI motherboards 1390 determine their configuration. However, some old PCI motherboards
1394 have BIOS bugs and may crash if this is done. Also, some embedded 1391 have BIOS bugs and may crash if this is done. Also, some embedded
1395 PCI-based systems don't have any BIOS at all. Linux can also try to 1392 PCI-based systems don't have any BIOS at all. Linux can also try to
1396 detect the PCI hardware directly without using the BIOS. 1393 detect the PCI hardware directly without using the BIOS.
1397 1394
1398 With this option, you can specify how Linux should detect the 1395 With this option, you can specify how Linux should detect the
1399 PCI devices. If you choose "BIOS", the BIOS will be used, 1396 PCI devices. If you choose "BIOS", the BIOS will be used,
1400 if you choose "Direct", the BIOS won't be used, and if you 1397 if you choose "Direct", the BIOS won't be used, and if you
1401 choose "MMConfig", then PCI Express MMCONFIG will be used. 1398 choose "MMConfig", then PCI Express MMCONFIG will be used.
1402 If you choose "Any", the kernel will try MMCONFIG, then the 1399 If you choose "Any", the kernel will try MMCONFIG, then the
1403 direct access method and falls back to the BIOS if that doesn't 1400 direct access method and falls back to the BIOS if that doesn't
1404 work. If unsure, go with the default, which is "Any". 1401 work. If unsure, go with the default, which is "Any".
1405 1402
1406 config PCI_GOBIOS 1403 config PCI_GOBIOS
1407 bool "BIOS" 1404 bool "BIOS"
1408 1405
1409 config PCI_GOMMCONFIG 1406 config PCI_GOMMCONFIG
1410 bool "MMConfig" 1407 bool "MMConfig"
1411 1408
1412 config PCI_GODIRECT 1409 config PCI_GODIRECT
1413 bool "Direct" 1410 bool "Direct"
1414 1411
1415 config PCI_GOANY 1412 config PCI_GOANY
1416 bool "Any" 1413 bool "Any"
1417 1414
1418 endchoice 1415 endchoice
1419 1416
1420 config PCI_BIOS 1417 config PCI_BIOS
1421 def_bool y 1418 def_bool y
1422 depends on X86_32 && !X86_VISWS && PCI && (PCI_GOBIOS || PCI_GOANY) 1419 depends on X86_32 && !X86_VISWS && PCI && (PCI_GOBIOS || PCI_GOANY)
1423 1420
1424 # x86-64 doesn't support PCI BIOS access from long mode so always go direct. 1421 # x86-64 doesn't support PCI BIOS access from long mode so always go direct.
1425 config PCI_DIRECT 1422 config PCI_DIRECT
1426 def_bool y 1423 def_bool y
1427 depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY) || X86_VISWS) 1424 depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY) || X86_VISWS)
1428 1425
1429 config PCI_MMCONFIG 1426 config PCI_MMCONFIG
1430 def_bool y 1427 def_bool y
1431 depends on X86_32 && PCI && ACPI && (PCI_GOMMCONFIG || PCI_GOANY) 1428 depends on X86_32 && PCI && ACPI && (PCI_GOMMCONFIG || PCI_GOANY)
1432 1429
1433 config PCI_DOMAINS 1430 config PCI_DOMAINS
1434 def_bool y 1431 def_bool y
1435 depends on PCI 1432 depends on PCI
1436 1433
1437 config PCI_MMCONFIG 1434 config PCI_MMCONFIG
1438 bool "Support mmconfig PCI config space access" 1435 bool "Support mmconfig PCI config space access"
1439 depends on X86_64 && PCI && ACPI 1436 depends on X86_64 && PCI && ACPI
1440 1437
1441 config DMAR 1438 config DMAR
1442 bool "Support for DMA Remapping Devices (EXPERIMENTAL)" 1439 bool "Support for DMA Remapping Devices (EXPERIMENTAL)"
1443 depends on X86_64 && PCI_MSI && ACPI && EXPERIMENTAL 1440 depends on X86_64 && PCI_MSI && ACPI && EXPERIMENTAL
1444 help 1441 help
1445 DMA remapping (DMAR) devices support enables independent address 1442 DMA remapping (DMAR) devices support enables independent address
1446 translations for Direct Memory Access (DMA) from devices. 1443 translations for Direct Memory Access (DMA) from devices.
1447 These DMA remapping devices are reported via ACPI tables 1444 These DMA remapping devices are reported via ACPI tables
1448 and include PCI device scope covered by these DMA 1445 and include PCI device scope covered by these DMA
1449 remapping devices. 1446 remapping devices.
1450 1447
1451 config DMAR_GFX_WA 1448 config DMAR_GFX_WA
1452 def_bool y 1449 def_bool y
1453 prompt "Support for Graphics workaround" 1450 prompt "Support for Graphics workaround"
1454 depends on DMAR 1451 depends on DMAR
1455 help 1452 help
1456 Current Graphics drivers tend to use physical address 1453 Current Graphics drivers tend to use physical address
1457 for DMA and avoid using DMA APIs. Setting this config 1454 for DMA and avoid using DMA APIs. Setting this config
1458 option permits the IOMMU driver to set a unity map for 1455 option permits the IOMMU driver to set a unity map for
1459 all the OS-visible memory. Hence the driver can continue 1456 all the OS-visible memory. Hence the driver can continue
1460 to use physical addresses for DMA. 1457 to use physical addresses for DMA.
1461 1458
1462 config DMAR_FLOPPY_WA 1459 config DMAR_FLOPPY_WA
1463 def_bool y 1460 def_bool y
1464 depends on DMAR 1461 depends on DMAR
1465 help 1462 help
1466 Floppy disk drivers are know to bypass DMA API calls 1463 Floppy disk drivers are know to bypass DMA API calls
1467 thereby failing to work when IOMMU is enabled. This 1464 thereby failing to work when IOMMU is enabled. This
1468 workaround will setup a 1:1 mapping for the first 1465 workaround will setup a 1:1 mapping for the first
1469 16M to make floppy (an ISA device) work. 1466 16M to make floppy (an ISA device) work.
1470 1467
1471 source "drivers/pci/pcie/Kconfig" 1468 source "drivers/pci/pcie/Kconfig"
1472 1469
1473 source "drivers/pci/Kconfig" 1470 source "drivers/pci/Kconfig"
1474 1471
1475 # x86_64 have no ISA slots, but do have ISA-style DMA. 1472 # x86_64 have no ISA slots, but do have ISA-style DMA.
1476 config ISA_DMA_API 1473 config ISA_DMA_API
1477 def_bool y 1474 def_bool y
1478 1475
1479 if X86_32 1476 if X86_32
1480 1477
1481 config ISA 1478 config ISA
1482 bool "ISA support" 1479 bool "ISA support"
1483 depends on !(X86_VOYAGER || X86_VISWS) 1480 depends on !(X86_VOYAGER || X86_VISWS)
1484 help 1481 help
1485 Find out whether you have ISA slots on your motherboard. ISA is the 1482 Find out whether you have ISA slots on your motherboard. ISA is the
1486 name of a bus system, i.e. the way the CPU talks to the other stuff 1483 name of a bus system, i.e. the way the CPU talks to the other stuff
1487 inside your box. Other bus systems are PCI, EISA, MicroChannel 1484 inside your box. Other bus systems are PCI, EISA, MicroChannel
1488 (MCA) or VESA. ISA is an older system, now being displaced by PCI; 1485 (MCA) or VESA. ISA is an older system, now being displaced by PCI;
1489 newer boards don't support it. If you have ISA, say Y, otherwise N. 1486 newer boards don't support it. If you have ISA, say Y, otherwise N.
1490 1487
1491 config EISA 1488 config EISA
1492 bool "EISA support" 1489 bool "EISA support"
1493 depends on ISA 1490 depends on ISA
1494 ---help--- 1491 ---help---
1495 The Extended Industry Standard Architecture (EISA) bus was 1492 The Extended Industry Standard Architecture (EISA) bus was
1496 developed as an open alternative to the IBM MicroChannel bus. 1493 developed as an open alternative to the IBM MicroChannel bus.
1497 1494
1498 The EISA bus provided some of the features of the IBM MicroChannel 1495 The EISA bus provided some of the features of the IBM MicroChannel
1499 bus while maintaining backward compatibility with cards made for 1496 bus while maintaining backward compatibility with cards made for
1500 the older ISA bus. The EISA bus saw limited use between 1988 and 1497 the older ISA bus. The EISA bus saw limited use between 1988 and
1501 1995 when it was made obsolete by the PCI bus. 1498 1995 when it was made obsolete by the PCI bus.
1502 1499
1503 Say Y here if you are building a kernel for an EISA-based machine. 1500 Say Y here if you are building a kernel for an EISA-based machine.
1504 1501
1505 Otherwise, say N. 1502 Otherwise, say N.
1506 1503
1507 source "drivers/eisa/Kconfig" 1504 source "drivers/eisa/Kconfig"
1508 1505
1509 config MCA 1506 config MCA
1510 bool "MCA support" if !(X86_VISWS || X86_VOYAGER) 1507 bool "MCA support" if !(X86_VISWS || X86_VOYAGER)
1511 default y if X86_VOYAGER 1508 default y if X86_VOYAGER
1512 help 1509 help
1513 MicroChannel Architecture is found in some IBM PS/2 machines and 1510 MicroChannel Architecture is found in some IBM PS/2 machines and
1514 laptops. It is a bus system similar to PCI or ISA. See 1511 laptops. It is a bus system similar to PCI or ISA. See
1515 <file:Documentation/mca.txt> (and especially the web page given 1512 <file:Documentation/mca.txt> (and especially the web page given
1516 there) before attempting to build an MCA bus kernel. 1513 there) before attempting to build an MCA bus kernel.
1517 1514
1518 source "drivers/mca/Kconfig" 1515 source "drivers/mca/Kconfig"
1519 1516
1520 config SCx200 1517 config SCx200
1521 tristate "NatSemi SCx200 support" 1518 tristate "NatSemi SCx200 support"
1522 depends on !X86_VOYAGER 1519 depends on !X86_VOYAGER
1523 help 1520 help
1524 This provides basic support for National Semiconductor's 1521 This provides basic support for National Semiconductor's
1525 (now AMD's) Geode processors. The driver probes for the 1522 (now AMD's) Geode processors. The driver probes for the
1526 PCI-IDs of several on-chip devices, so its a good dependency 1523 PCI-IDs of several on-chip devices, so its a good dependency
1527 for other scx200_* drivers. 1524 for other scx200_* drivers.
1528 1525
1529 If compiled as a module, the driver is named scx200. 1526 If compiled as a module, the driver is named scx200.
1530 1527
1531 config SCx200HR_TIMER 1528 config SCx200HR_TIMER
1532 tristate "NatSemi SCx200 27MHz High-Resolution Timer Support" 1529 tristate "NatSemi SCx200 27MHz High-Resolution Timer Support"
1533 depends on SCx200 && GENERIC_TIME 1530 depends on SCx200 && GENERIC_TIME
1534 default y 1531 default y
1535 help 1532 help
1536 This driver provides a clocksource built upon the on-chip 1533 This driver provides a clocksource built upon the on-chip
1537 27MHz high-resolution timer. Its also a workaround for 1534 27MHz high-resolution timer. Its also a workaround for
1538 NSC Geode SC-1100's buggy TSC, which loses time when the 1535 NSC Geode SC-1100's buggy TSC, which loses time when the
1539 processor goes idle (as is done by the scheduler). The 1536 processor goes idle (as is done by the scheduler). The
1540 other workaround is idle=poll boot option. 1537 other workaround is idle=poll boot option.
1541 1538
1542 config GEODE_MFGPT_TIMER 1539 config GEODE_MFGPT_TIMER
1543 def_bool y 1540 def_bool y
1544 prompt "Geode Multi-Function General Purpose Timer (MFGPT) events" 1541 prompt "Geode Multi-Function General Purpose Timer (MFGPT) events"
1545 depends on MGEODE_LX && GENERIC_TIME && GENERIC_CLOCKEVENTS 1542 depends on MGEODE_LX && GENERIC_TIME && GENERIC_CLOCKEVENTS
1546 help 1543 help
1547 This driver provides a clock event source based on the MFGPT 1544 This driver provides a clock event source based on the MFGPT
1548 timer(s) in the CS5535 and CS5536 companion chip for the geode. 1545 timer(s) in the CS5535 and CS5536 companion chip for the geode.
1549 MFGPTs have a better resolution and max interval than the 1546 MFGPTs have a better resolution and max interval than the
1550 generic PIT, and are suitable for use as high-res timers. 1547 generic PIT, and are suitable for use as high-res timers.
1551 1548
1552 endif # X86_32 1549 endif # X86_32
1553 1550
1554 config K8_NB 1551 config K8_NB
1555 def_bool y 1552 def_bool y
1556 depends on AGP_AMD64 || (X86_64 && (GART_IOMMU || (PCI && NUMA))) 1553 depends on AGP_AMD64 || (X86_64 && (GART_IOMMU || (PCI && NUMA)))
1557 1554
1558 source "drivers/pcmcia/Kconfig" 1555 source "drivers/pcmcia/Kconfig"
1559 1556
1560 source "drivers/pci/hotplug/Kconfig" 1557 source "drivers/pci/hotplug/Kconfig"
1561 1558
1562 endmenu 1559 endmenu
1563 1560
1564 1561
1565 menu "Executable file formats / Emulations" 1562 menu "Executable file formats / Emulations"
1566 1563
1567 source "fs/Kconfig.binfmt" 1564 source "fs/Kconfig.binfmt"
1568 1565
1569 config IA32_EMULATION 1566 config IA32_EMULATION
1570 bool "IA32 Emulation" 1567 bool "IA32 Emulation"
1571 depends on X86_64 1568 depends on X86_64
1572 select COMPAT_BINFMT_ELF 1569 select COMPAT_BINFMT_ELF
1573 help 1570 help
1574 Include code to run 32-bit programs under a 64-bit kernel. You should 1571 Include code to run 32-bit programs under a 64-bit kernel. You should
1575 likely turn this on, unless you're 100% sure that you don't have any 1572 likely turn this on, unless you're 100% sure that you don't have any
1576 32-bit programs left. 1573 32-bit programs left.
1577 1574
1578 config IA32_AOUT 1575 config IA32_AOUT
1579 tristate "IA32 a.out support" 1576 tristate "IA32 a.out support"
1580 depends on IA32_EMULATION 1577 depends on IA32_EMULATION
1581 help 1578 help
1582 Support old a.out binaries in the 32bit emulation. 1579 Support old a.out binaries in the 32bit emulation.
1583 1580
1584 config COMPAT 1581 config COMPAT
1585 def_bool y 1582 def_bool y
1586 depends on IA32_EMULATION 1583 depends on IA32_EMULATION
1587 1584
1588 config COMPAT_FOR_U64_ALIGNMENT 1585 config COMPAT_FOR_U64_ALIGNMENT
1589 def_bool COMPAT 1586 def_bool COMPAT
1590 depends on X86_64 1587 depends on X86_64
1591 1588
1592 config SYSVIPC_COMPAT 1589 config SYSVIPC_COMPAT
1593 def_bool y 1590 def_bool y
1594 depends on X86_64 && COMPAT && SYSVIPC 1591 depends on X86_64 && COMPAT && SYSVIPC
1595 1592
1596 endmenu 1593 endmenu
1597 1594
1598 1595
1599 source "net/Kconfig" 1596 source "net/Kconfig"
1600 1597
1601 source "drivers/Kconfig" 1598 source "drivers/Kconfig"
1602 1599
1603 source "drivers/firmware/Kconfig" 1600 source "drivers/firmware/Kconfig"
1604 1601
1605 source "fs/Kconfig" 1602 source "fs/Kconfig"
1606 1603
1607 source "arch/x86/Kconfig.debug" 1604 source "arch/x86/Kconfig.debug"
1608 1605
1609 source "security/Kconfig" 1606 source "security/Kconfig"
1610 1607
1611 source "crypto/Kconfig" 1608 source "crypto/Kconfig"
1612 1609
1613 source "arch/x86/kvm/Kconfig" 1610 source "arch/x86/kvm/Kconfig"
1614 1611
1615 source "lib/Kconfig" 1612 source "lib/Kconfig"
1616 1613
drivers/cpuidle/cpuidle.c
1 /* 1 /*
2 * cpuidle.c - core cpuidle infrastructure 2 * cpuidle.c - core cpuidle infrastructure
3 * 3 *
4 * (C) 2006-2007 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 4 * (C) 2006-2007 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 * Shaohua Li <shaohua.li@intel.com> 5 * Shaohua Li <shaohua.li@intel.com>
6 * Adam Belay <abelay@novell.com> 6 * Adam Belay <abelay@novell.com>
7 * 7 *
8 * This code is licenced under the GPL. 8 * This code is licenced under the GPL.
9 */ 9 */
10 10
11 #include <linux/kernel.h> 11 #include <linux/kernel.h>
12 #include <linux/mutex.h> 12 #include <linux/mutex.h>
13 #include <linux/sched.h> 13 #include <linux/sched.h>
14 #include <linux/notifier.h> 14 #include <linux/notifier.h>
15 #include <linux/pm_qos_params.h> 15 #include <linux/pm_qos_params.h>
16 #include <linux/cpu.h> 16 #include <linux/cpu.h>
17 #include <linux/cpuidle.h> 17 #include <linux/cpuidle.h>
18 #include <linux/ktime.h> 18 #include <linux/ktime.h>
19 19
20 #include "cpuidle.h" 20 #include "cpuidle.h"
21 21
22 DEFINE_PER_CPU(struct cpuidle_device *, cpuidle_devices); 22 DEFINE_PER_CPU(struct cpuidle_device *, cpuidle_devices);
23 23
24 DEFINE_MUTEX(cpuidle_lock); 24 DEFINE_MUTEX(cpuidle_lock);
25 LIST_HEAD(cpuidle_detected_devices); 25 LIST_HEAD(cpuidle_detected_devices);
26 static void (*pm_idle_old)(void); 26 static void (*pm_idle_old)(void);
27 27
28 static int enabled_devices; 28 static int enabled_devices;
29 29
30 /** 30 /**
31 * cpuidle_idle_call - the main idle loop 31 * cpuidle_idle_call - the main idle loop
32 * 32 *
33 * NOTE: no locks or semaphores should be used here 33 * NOTE: no locks or semaphores should be used here
34 */ 34 */
35 static void cpuidle_idle_call(void) 35 static void cpuidle_idle_call(void)
36 { 36 {
37 struct cpuidle_device *dev = __get_cpu_var(cpuidle_devices); 37 struct cpuidle_device *dev = __get_cpu_var(cpuidle_devices);
38 struct cpuidle_state *target_state; 38 struct cpuidle_state *target_state;
39 int next_state; 39 int next_state;
40 40
41 /* check if the device is ready */ 41 /* check if the device is ready */
42 if (!dev || !dev->enabled) { 42 if (!dev || !dev->enabled) {
43 if (pm_idle_old) 43 if (pm_idle_old)
44 pm_idle_old(); 44 pm_idle_old();
45 else 45 else
46 local_irq_enable(); 46 local_irq_enable();
47 return; 47 return;
48 } 48 }
49 49
50 /* ask the governor for the next state */ 50 /* ask the governor for the next state */
51 next_state = cpuidle_curr_governor->select(dev); 51 next_state = cpuidle_curr_governor->select(dev);
52 if (need_resched()) 52 if (need_resched())
53 return; 53 return;
54 target_state = &dev->states[next_state]; 54 target_state = &dev->states[next_state];
55 55
56 /* enter the state and update stats */ 56 /* enter the state and update stats */
57 dev->last_residency = target_state->enter(dev, target_state); 57 dev->last_residency = target_state->enter(dev, target_state);
58 dev->last_state = target_state; 58 dev->last_state = target_state;
59 target_state->time += dev->last_residency; 59 target_state->time += dev->last_residency;
60 target_state->usage++; 60 target_state->usage++;
61 61
62 /* give the governor an opportunity to reflect on the outcome */ 62 /* give the governor an opportunity to reflect on the outcome */
63 if (cpuidle_curr_governor->reflect) 63 if (cpuidle_curr_governor->reflect)
64 cpuidle_curr_governor->reflect(dev); 64 cpuidle_curr_governor->reflect(dev);
65 } 65 }
66 66
67 /** 67 /**
68 * cpuidle_install_idle_handler - installs the cpuidle idle loop handler 68 * cpuidle_install_idle_handler - installs the cpuidle idle loop handler
69 */ 69 */
70 void cpuidle_install_idle_handler(void) 70 void cpuidle_install_idle_handler(void)
71 { 71 {
72 if (enabled_devices && (pm_idle != cpuidle_idle_call)) { 72 if (enabled_devices && (pm_idle != cpuidle_idle_call)) {
73 /* Make sure all changes finished before we switch to new idle */ 73 /* Make sure all changes finished before we switch to new idle */
74 smp_wmb(); 74 smp_wmb();
75 pm_idle = cpuidle_idle_call; 75 pm_idle = cpuidle_idle_call;
76 } 76 }
77 } 77 }
78 78
79 /** 79 /**
80 * cpuidle_uninstall_idle_handler - uninstalls the cpuidle idle loop handler 80 * cpuidle_uninstall_idle_handler - uninstalls the cpuidle idle loop handler
81 */ 81 */
82 void cpuidle_uninstall_idle_handler(void) 82 void cpuidle_uninstall_idle_handler(void)
83 { 83 {
84 if (enabled_devices && (pm_idle != pm_idle_old)) { 84 if (enabled_devices && (pm_idle != pm_idle_old)) {
85 pm_idle = pm_idle_old; 85 pm_idle = pm_idle_old;
86 cpuidle_kick_cpus(); 86 cpu_idle_wait();
87 } 87 }
88 } 88 }
89 89
90 /** 90 /**
91 * cpuidle_pause_and_lock - temporarily disables CPUIDLE 91 * cpuidle_pause_and_lock - temporarily disables CPUIDLE
92 */ 92 */
93 void cpuidle_pause_and_lock(void) 93 void cpuidle_pause_and_lock(void)
94 { 94 {
95 mutex_lock(&cpuidle_lock); 95 mutex_lock(&cpuidle_lock);
96 cpuidle_uninstall_idle_handler(); 96 cpuidle_uninstall_idle_handler();
97 } 97 }
98 98
99 EXPORT_SYMBOL_GPL(cpuidle_pause_and_lock); 99 EXPORT_SYMBOL_GPL(cpuidle_pause_and_lock);
100 100
101 /** 101 /**
102 * cpuidle_resume_and_unlock - resumes CPUIDLE operation 102 * cpuidle_resume_and_unlock - resumes CPUIDLE operation
103 */ 103 */
104 void cpuidle_resume_and_unlock(void) 104 void cpuidle_resume_and_unlock(void)
105 { 105 {
106 cpuidle_install_idle_handler(); 106 cpuidle_install_idle_handler();
107 mutex_unlock(&cpuidle_lock); 107 mutex_unlock(&cpuidle_lock);
108 } 108 }
109 109
110 EXPORT_SYMBOL_GPL(cpuidle_resume_and_unlock); 110 EXPORT_SYMBOL_GPL(cpuidle_resume_and_unlock);
111 111
112 /** 112 /**
113 * cpuidle_enable_device - enables idle PM for a CPU 113 * cpuidle_enable_device - enables idle PM for a CPU
114 * @dev: the CPU 114 * @dev: the CPU
115 * 115 *
116 * This function must be called between cpuidle_pause_and_lock and 116 * This function must be called between cpuidle_pause_and_lock and
117 * cpuidle_resume_and_unlock when used externally. 117 * cpuidle_resume_and_unlock when used externally.
118 */ 118 */
119 int cpuidle_enable_device(struct cpuidle_device *dev) 119 int cpuidle_enable_device(struct cpuidle_device *dev)
120 { 120 {
121 int ret, i; 121 int ret, i;
122 122
123 if (dev->enabled) 123 if (dev->enabled)
124 return 0; 124 return 0;
125 if (!cpuidle_curr_driver || !cpuidle_curr_governor) 125 if (!cpuidle_curr_driver || !cpuidle_curr_governor)
126 return -EIO; 126 return -EIO;
127 if (!dev->state_count) 127 if (!dev->state_count)
128 return -EINVAL; 128 return -EINVAL;
129 129
130 if ((ret = cpuidle_add_state_sysfs(dev))) 130 if ((ret = cpuidle_add_state_sysfs(dev)))
131 return ret; 131 return ret;
132 132
133 if (cpuidle_curr_governor->enable && 133 if (cpuidle_curr_governor->enable &&
134 (ret = cpuidle_curr_governor->enable(dev))) 134 (ret = cpuidle_curr_governor->enable(dev)))
135 goto fail_sysfs; 135 goto fail_sysfs;
136 136
137 for (i = 0; i < dev->state_count; i++) { 137 for (i = 0; i < dev->state_count; i++) {
138 dev->states[i].usage = 0; 138 dev->states[i].usage = 0;
139 dev->states[i].time = 0; 139 dev->states[i].time = 0;
140 } 140 }
141 dev->last_residency = 0; 141 dev->last_residency = 0;
142 dev->last_state = NULL; 142 dev->last_state = NULL;
143 143
144 smp_wmb(); 144 smp_wmb();
145 145
146 dev->enabled = 1; 146 dev->enabled = 1;
147 147
148 enabled_devices++; 148 enabled_devices++;
149 return 0; 149 return 0;
150 150
151 fail_sysfs: 151 fail_sysfs:
152 cpuidle_remove_state_sysfs(dev); 152 cpuidle_remove_state_sysfs(dev);
153 153
154 return ret; 154 return ret;
155 } 155 }
156 156
157 EXPORT_SYMBOL_GPL(cpuidle_enable_device); 157 EXPORT_SYMBOL_GPL(cpuidle_enable_device);
158 158
159 /** 159 /**
160 * cpuidle_disable_device - disables idle PM for a CPU 160 * cpuidle_disable_device - disables idle PM for a CPU
161 * @dev: the CPU 161 * @dev: the CPU
162 * 162 *
163 * This function must be called between cpuidle_pause_and_lock and 163 * This function must be called between cpuidle_pause_and_lock and
164 * cpuidle_resume_and_unlock when used externally. 164 * cpuidle_resume_and_unlock when used externally.
165 */ 165 */
166 void cpuidle_disable_device(struct cpuidle_device *dev) 166 void cpuidle_disable_device(struct cpuidle_device *dev)
167 { 167 {
168 if (!dev->enabled) 168 if (!dev->enabled)
169 return; 169 return;
170 if (!cpuidle_curr_driver || !cpuidle_curr_governor) 170 if (!cpuidle_curr_driver || !cpuidle_curr_governor)
171 return; 171 return;
172 172
173 dev->enabled = 0; 173 dev->enabled = 0;
174 174
175 if (cpuidle_curr_governor->disable) 175 if (cpuidle_curr_governor->disable)
176 cpuidle_curr_governor->disable(dev); 176 cpuidle_curr_governor->disable(dev);
177 177
178 cpuidle_remove_state_sysfs(dev); 178 cpuidle_remove_state_sysfs(dev);
179 enabled_devices--; 179 enabled_devices--;
180 } 180 }
181 181
182 EXPORT_SYMBOL_GPL(cpuidle_disable_device); 182 EXPORT_SYMBOL_GPL(cpuidle_disable_device);
183 183
184 #ifdef CONFIG_ARCH_HAS_CPU_RELAX 184 #ifdef CONFIG_ARCH_HAS_CPU_RELAX
185 static int poll_idle(struct cpuidle_device *dev, struct cpuidle_state *st) 185 static int poll_idle(struct cpuidle_device *dev, struct cpuidle_state *st)
186 { 186 {
187 ktime_t t1, t2; 187 ktime_t t1, t2;
188 s64 diff; 188 s64 diff;
189 int ret; 189 int ret;
190 190
191 t1 = ktime_get(); 191 t1 = ktime_get();
192 local_irq_enable(); 192 local_irq_enable();
193 while (!need_resched()) 193 while (!need_resched())
194 cpu_relax(); 194 cpu_relax();
195 195
196 t2 = ktime_get(); 196 t2 = ktime_get();
197 diff = ktime_to_us(ktime_sub(t2, t1)); 197 diff = ktime_to_us(ktime_sub(t2, t1));
198 if (diff > INT_MAX) 198 if (diff > INT_MAX)
199 diff = INT_MAX; 199 diff = INT_MAX;
200 200
201 ret = (int) diff; 201 ret = (int) diff;
202 return ret; 202 return ret;
203 } 203 }
204 204
205 static void poll_idle_init(struct cpuidle_device *dev) 205 static void poll_idle_init(struct cpuidle_device *dev)
206 { 206 {
207 struct cpuidle_state *state = &dev->states[0]; 207 struct cpuidle_state *state = &dev->states[0];
208 208
209 cpuidle_set_statedata(state, NULL); 209 cpuidle_set_statedata(state, NULL);
210 210
211 snprintf(state->name, CPUIDLE_NAME_LEN, "C0 (poll idle)"); 211 snprintf(state->name, CPUIDLE_NAME_LEN, "C0 (poll idle)");
212 state->exit_latency = 0; 212 state->exit_latency = 0;
213 state->target_residency = 0; 213 state->target_residency = 0;
214 state->power_usage = -1; 214 state->power_usage = -1;
215 state->flags = CPUIDLE_FLAG_POLL | CPUIDLE_FLAG_TIME_VALID; 215 state->flags = CPUIDLE_FLAG_POLL | CPUIDLE_FLAG_TIME_VALID;
216 state->enter = poll_idle; 216 state->enter = poll_idle;
217 } 217 }
218 #else 218 #else
219 static void poll_idle_init(struct cpuidle_device *dev) {} 219 static void poll_idle_init(struct cpuidle_device *dev) {}
220 #endif /* CONFIG_ARCH_HAS_CPU_RELAX */ 220 #endif /* CONFIG_ARCH_HAS_CPU_RELAX */
221 221
222 /** 222 /**
223 * cpuidle_register_device - registers a CPU's idle PM feature 223 * cpuidle_register_device - registers a CPU's idle PM feature
224 * @dev: the cpu 224 * @dev: the cpu
225 */ 225 */
226 int cpuidle_register_device(struct cpuidle_device *dev) 226 int cpuidle_register_device(struct cpuidle_device *dev)
227 { 227 {
228 int ret; 228 int ret;
229 struct sys_device *sys_dev = get_cpu_sysdev((unsigned long)dev->cpu); 229 struct sys_device *sys_dev = get_cpu_sysdev((unsigned long)dev->cpu);
230 230
231 if (!sys_dev) 231 if (!sys_dev)
232 return -EINVAL; 232 return -EINVAL;
233 if (!try_module_get(cpuidle_curr_driver->owner)) 233 if (!try_module_get(cpuidle_curr_driver->owner))
234 return -EINVAL; 234 return -EINVAL;
235 235
236 init_completion(&dev->kobj_unregister); 236 init_completion(&dev->kobj_unregister);
237 237
238 mutex_lock(&cpuidle_lock); 238 mutex_lock(&cpuidle_lock);
239 239
240 poll_idle_init(dev); 240 poll_idle_init(dev);
241 241
242 per_cpu(cpuidle_devices, dev->cpu) = dev; 242 per_cpu(cpuidle_devices, dev->cpu) = dev;
243 list_add(&dev->device_list, &cpuidle_detected_devices); 243 list_add(&dev->device_list, &cpuidle_detected_devices);
244 if ((ret = cpuidle_add_sysfs(sys_dev))) { 244 if ((ret = cpuidle_add_sysfs(sys_dev))) {
245 mutex_unlock(&cpuidle_lock); 245 mutex_unlock(&cpuidle_lock);
246 module_put(cpuidle_curr_driver->owner); 246 module_put(cpuidle_curr_driver->owner);
247 return ret; 247 return ret;
248 } 248 }
249 249
250 cpuidle_enable_device(dev); 250 cpuidle_enable_device(dev);
251 cpuidle_install_idle_handler(); 251 cpuidle_install_idle_handler();
252 252
253 mutex_unlock(&cpuidle_lock); 253 mutex_unlock(&cpuidle_lock);
254 254
255 return 0; 255 return 0;
256 256
257 } 257 }
258 258
259 EXPORT_SYMBOL_GPL(cpuidle_register_device); 259 EXPORT_SYMBOL_GPL(cpuidle_register_device);
260 260
261 /** 261 /**
262 * cpuidle_unregister_device - unregisters a CPU's idle PM feature 262 * cpuidle_unregister_device - unregisters a CPU's idle PM feature
263 * @dev: the cpu 263 * @dev: the cpu
264 */ 264 */
265 void cpuidle_unregister_device(struct cpuidle_device *dev) 265 void cpuidle_unregister_device(struct cpuidle_device *dev)
266 { 266 {
267 struct sys_device *sys_dev = get_cpu_sysdev((unsigned long)dev->cpu); 267 struct sys_device *sys_dev = get_cpu_sysdev((unsigned long)dev->cpu);
268 268
269 cpuidle_pause_and_lock(); 269 cpuidle_pause_and_lock();
270 270
271 cpuidle_disable_device(dev); 271 cpuidle_disable_device(dev);
272 272
273 cpuidle_remove_sysfs(sys_dev); 273 cpuidle_remove_sysfs(sys_dev);
274 list_del(&dev->device_list); 274 list_del(&dev->device_list);
275 wait_for_completion(&dev->kobj_unregister); 275 wait_for_completion(&dev->kobj_unregister);
276 per_cpu(cpuidle_devices, dev->cpu) = NULL; 276 per_cpu(cpuidle_devices, dev->cpu) = NULL;
277 277
278 cpuidle_resume_and_unlock(); 278 cpuidle_resume_and_unlock();
279 279
280 module_put(cpuidle_curr_driver->owner); 280 module_put(cpuidle_curr_driver->owner);
281 } 281 }
282 282
283 EXPORT_SYMBOL_GPL(cpuidle_unregister_device); 283 EXPORT_SYMBOL_GPL(cpuidle_unregister_device);
284 284
285 #ifdef CONFIG_SMP 285 #ifdef CONFIG_SMP
286 286
287 static void smp_callback(void *v) 287 static void smp_callback(void *v)
288 { 288 {
289 /* we already woke the CPU up, nothing more to do */ 289 /* we already woke the CPU up, nothing more to do */
290 } 290 }
291 291
292 /* 292 /*
293 * This function gets called when a part of the kernel has a new latency 293 * This function gets called when a part of the kernel has a new latency
294 * requirement. This means we need to get all processors out of their C-state, 294 * requirement. This means we need to get all processors out of their C-state,
295 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that 295 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
296 * wakes them all right up. 296 * wakes them all right up.
297 */ 297 */
298 static int cpuidle_latency_notify(struct notifier_block *b, 298 static int cpuidle_latency_notify(struct notifier_block *b,
299 unsigned long l, void *v) 299 unsigned long l, void *v)
300 { 300 {
301 smp_call_function(smp_callback, NULL, 0, 1); 301 smp_call_function(smp_callback, NULL, 0, 1);
302 return NOTIFY_OK; 302 return NOTIFY_OK;
303 } 303 }
304 304
305 static struct notifier_block cpuidle_latency_notifier = { 305 static struct notifier_block cpuidle_latency_notifier = {
306 .notifier_call = cpuidle_latency_notify, 306 .notifier_call = cpuidle_latency_notify,
307 }; 307 };
308 308
309 static inline void latency_notifier_init(struct notifier_block *n) 309 static inline void latency_notifier_init(struct notifier_block *n)
310 { 310 {
311 pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY, n); 311 pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY, n);
312 } 312 }
313 313
314 #else /* CONFIG_SMP */ 314 #else /* CONFIG_SMP */
315 315
316 #define latency_notifier_init(x) do { } while (0) 316 #define latency_notifier_init(x) do { } while (0)
317 317
318 #endif /* CONFIG_SMP */ 318 #endif /* CONFIG_SMP */
319 319
320 /** 320 /**
321 * cpuidle_init - core initializer 321 * cpuidle_init - core initializer
322 */ 322 */
323 static int __init cpuidle_init(void) 323 static int __init cpuidle_init(void)
324 { 324 {
325 int ret; 325 int ret;
326 326
327 pm_idle_old = pm_idle; 327 pm_idle_old = pm_idle;
328 328
329 ret = cpuidle_add_class_sysfs(&cpu_sysdev_class); 329 ret = cpuidle_add_class_sysfs(&cpu_sysdev_class);
330 if (ret) 330 if (ret)
331 return ret; 331 return ret;
332 332
333 latency_notifier_init(&cpuidle_latency_notifier); 333 latency_notifier_init(&cpuidle_latency_notifier);
334 334
335 return 0; 335 return 0;
336 } 336 }
337 337
338 core_initcall(cpuidle_init); 338 core_initcall(cpuidle_init);
339 339
include/linux/cpuidle.h
1 /* 1 /*
2 * cpuidle.h - a generic framework for CPU idle power management 2 * cpuidle.h - a generic framework for CPU idle power management
3 * 3 *
4 * (C) 2007 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 4 * (C) 2007 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 * Shaohua Li <shaohua.li@intel.com> 5 * Shaohua Li <shaohua.li@intel.com>
6 * Adam Belay <abelay@novell.com> 6 * Adam Belay <abelay@novell.com>
7 * 7 *
8 * This code is licenced under the GPL. 8 * This code is licenced under the GPL.
9 */ 9 */
10 10
11 #ifndef _LINUX_CPUIDLE_H 11 #ifndef _LINUX_CPUIDLE_H
12 #define _LINUX_CPUIDLE_H 12 #define _LINUX_CPUIDLE_H
13 13
14 #include <linux/percpu.h> 14 #include <linux/percpu.h>
15 #include <linux/list.h> 15 #include <linux/list.h>
16 #include <linux/module.h> 16 #include <linux/module.h>
17 #include <linux/kobject.h> 17 #include <linux/kobject.h>
18 #include <linux/completion.h> 18 #include <linux/completion.h>
19 19
20 #define CPUIDLE_STATE_MAX 8 20 #define CPUIDLE_STATE_MAX 8
21 #define CPUIDLE_NAME_LEN 16 21 #define CPUIDLE_NAME_LEN 16
22 22
23 struct cpuidle_device; 23 struct cpuidle_device;
24 24
25 25
26 /**************************** 26 /****************************
27 * CPUIDLE DEVICE INTERFACE * 27 * CPUIDLE DEVICE INTERFACE *
28 ****************************/ 28 ****************************/
29 29
30 struct cpuidle_state { 30 struct cpuidle_state {
31 char name[CPUIDLE_NAME_LEN]; 31 char name[CPUIDLE_NAME_LEN];
32 void *driver_data; 32 void *driver_data;
33 33
34 unsigned int flags; 34 unsigned int flags;
35 unsigned int exit_latency; /* in US */ 35 unsigned int exit_latency; /* in US */
36 unsigned int power_usage; /* in mW */ 36 unsigned int power_usage; /* in mW */
37 unsigned int target_residency; /* in US */ 37 unsigned int target_residency; /* in US */
38 38
39 unsigned int usage; 39 unsigned int usage;
40 unsigned int time; /* in US */ 40 unsigned int time; /* in US */
41 41
42 int (*enter) (struct cpuidle_device *dev, 42 int (*enter) (struct cpuidle_device *dev,
43 struct cpuidle_state *state); 43 struct cpuidle_state *state);
44 }; 44 };
45 45
46 /* Idle State Flags */ 46 /* Idle State Flags */
47 #define CPUIDLE_FLAG_TIME_VALID (0x01) /* is residency time measurable? */ 47 #define CPUIDLE_FLAG_TIME_VALID (0x01) /* is residency time measurable? */
48 #define CPUIDLE_FLAG_CHECK_BM (0x02) /* BM activity will exit state */ 48 #define CPUIDLE_FLAG_CHECK_BM (0x02) /* BM activity will exit state */
49 #define CPUIDLE_FLAG_POLL (0x10) /* no latency, no savings */ 49 #define CPUIDLE_FLAG_POLL (0x10) /* no latency, no savings */
50 #define CPUIDLE_FLAG_SHALLOW (0x20) /* low latency, minimal savings */ 50 #define CPUIDLE_FLAG_SHALLOW (0x20) /* low latency, minimal savings */
51 #define CPUIDLE_FLAG_BALANCED (0x40) /* medium latency, moderate savings */ 51 #define CPUIDLE_FLAG_BALANCED (0x40) /* medium latency, moderate savings */
52 #define CPUIDLE_FLAG_DEEP (0x80) /* high latency, large savings */ 52 #define CPUIDLE_FLAG_DEEP (0x80) /* high latency, large savings */
53 53
54 #define CPUIDLE_DRIVER_FLAGS_MASK (0xFFFF0000) 54 #define CPUIDLE_DRIVER_FLAGS_MASK (0xFFFF0000)
55 55
56 /** 56 /**
57 * cpuidle_get_statedata - retrieves private driver state data 57 * cpuidle_get_statedata - retrieves private driver state data
58 * @state: the state 58 * @state: the state
59 */ 59 */
60 static inline void * cpuidle_get_statedata(struct cpuidle_state *state) 60 static inline void * cpuidle_get_statedata(struct cpuidle_state *state)
61 { 61 {
62 return state->driver_data; 62 return state->driver_data;
63 } 63 }
64 64
65 /** 65 /**
66 * cpuidle_set_statedata - stores private driver state data 66 * cpuidle_set_statedata - stores private driver state data
67 * @state: the state 67 * @state: the state
68 * @data: the private data 68 * @data: the private data
69 */ 69 */
70 static inline void 70 static inline void
71 cpuidle_set_statedata(struct cpuidle_state *state, void *data) 71 cpuidle_set_statedata(struct cpuidle_state *state, void *data)
72 { 72 {
73 state->driver_data = data; 73 state->driver_data = data;
74 } 74 }
75 75
76 #ifdef CONFIG_SMP
77 #ifdef CONFIG_ARCH_HAS_CPU_IDLE_WAIT
78 static inline void cpuidle_kick_cpus(void)
79 {
80 cpu_idle_wait();
81 }
82 #else /* !CONFIG_ARCH_HAS_CPU_IDLE_WAIT */
83 #error "Arch needs cpu_idle_wait() equivalent here"
84 #endif /* !CONFIG_ARCH_HAS_CPU_IDLE_WAIT */
85 #else /* !CONFIG_SMP */
86 static inline void cpuidle_kick_cpus(void) {}
87 #endif /* !CONFIG_SMP */
88
89 struct cpuidle_state_kobj { 76 struct cpuidle_state_kobj {
90 struct cpuidle_state *state; 77 struct cpuidle_state *state;
91 struct completion kobj_unregister; 78 struct completion kobj_unregister;
92 struct kobject kobj; 79 struct kobject kobj;
93 }; 80 };
94 81
95 struct cpuidle_device { 82 struct cpuidle_device {
96 unsigned int enabled:1; 83 unsigned int enabled:1;
97 unsigned int cpu; 84 unsigned int cpu;
98 85
99 int last_residency; 86 int last_residency;
100 int state_count; 87 int state_count;
101 struct cpuidle_state states[CPUIDLE_STATE_MAX]; 88 struct cpuidle_state states[CPUIDLE_STATE_MAX];
102 struct cpuidle_state_kobj *kobjs[CPUIDLE_STATE_MAX]; 89 struct cpuidle_state_kobj *kobjs[CPUIDLE_STATE_MAX];
103 struct cpuidle_state *last_state; 90 struct cpuidle_state *last_state;
104 91
105 struct list_head device_list; 92 struct list_head device_list;
106 struct kobject kobj; 93 struct kobject kobj;
107 struct completion kobj_unregister; 94 struct completion kobj_unregister;
108 void *governor_data; 95 void *governor_data;
109 struct cpuidle_state *safe_state; 96 struct cpuidle_state *safe_state;
110 }; 97 };
111 98
112 DECLARE_PER_CPU(struct cpuidle_device *, cpuidle_devices); 99 DECLARE_PER_CPU(struct cpuidle_device *, cpuidle_devices);
113 100
114 /** 101 /**
115 * cpuidle_get_last_residency - retrieves the last state's residency time 102 * cpuidle_get_last_residency - retrieves the last state's residency time
116 * @dev: the target CPU 103 * @dev: the target CPU
117 * 104 *
118 * NOTE: this value is invalid if CPUIDLE_FLAG_TIME_VALID isn't set 105 * NOTE: this value is invalid if CPUIDLE_FLAG_TIME_VALID isn't set
119 */ 106 */
120 static inline int cpuidle_get_last_residency(struct cpuidle_device *dev) 107 static inline int cpuidle_get_last_residency(struct cpuidle_device *dev)
121 { 108 {
122 return dev->last_residency; 109 return dev->last_residency;
123 } 110 }
124 111
125 112
126 /**************************** 113 /****************************
127 * CPUIDLE DRIVER INTERFACE * 114 * CPUIDLE DRIVER INTERFACE *
128 ****************************/ 115 ****************************/
129 116
130 struct cpuidle_driver { 117 struct cpuidle_driver {
131 char name[CPUIDLE_NAME_LEN]; 118 char name[CPUIDLE_NAME_LEN];
132 struct module *owner; 119 struct module *owner;
133 }; 120 };
134 121
135 #ifdef CONFIG_CPU_IDLE 122 #ifdef CONFIG_CPU_IDLE
136 123
137 extern int cpuidle_register_driver(struct cpuidle_driver *drv); 124 extern int cpuidle_register_driver(struct cpuidle_driver *drv);
138 extern void cpuidle_unregister_driver(struct cpuidle_driver *drv); 125 extern void cpuidle_unregister_driver(struct cpuidle_driver *drv);
139 extern int cpuidle_register_device(struct cpuidle_device *dev); 126 extern int cpuidle_register_device(struct cpuidle_device *dev);
140 extern void cpuidle_unregister_device(struct cpuidle_device *dev); 127 extern void cpuidle_unregister_device(struct cpuidle_device *dev);
141 128
142 extern void cpuidle_pause_and_lock(void); 129 extern void cpuidle_pause_and_lock(void);
143 extern void cpuidle_resume_and_unlock(void); 130 extern void cpuidle_resume_and_unlock(void);
144 extern int cpuidle_enable_device(struct cpuidle_device *dev); 131 extern int cpuidle_enable_device(struct cpuidle_device *dev);
145 extern void cpuidle_disable_device(struct cpuidle_device *dev); 132 extern void cpuidle_disable_device(struct cpuidle_device *dev);
146 133
147 #else 134 #else
148 135
149 static inline int cpuidle_register_driver(struct cpuidle_driver *drv) 136 static inline int cpuidle_register_driver(struct cpuidle_driver *drv)
150 {return 0;} 137 {return 0;}
151 static inline void cpuidle_unregister_driver(struct cpuidle_driver *drv) { } 138 static inline void cpuidle_unregister_driver(struct cpuidle_driver *drv) { }
152 static inline int cpuidle_register_device(struct cpuidle_device *dev) 139 static inline int cpuidle_register_device(struct cpuidle_device *dev)
153 {return 0;} 140 {return 0;}
154 static inline void cpuidle_unregister_device(struct cpuidle_device *dev) { } 141 static inline void cpuidle_unregister_device(struct cpuidle_device *dev) { }
155 142
156 static inline void cpuidle_pause_and_lock(void) { } 143 static inline void cpuidle_pause_and_lock(void) { }
157 static inline void cpuidle_resume_and_unlock(void) { } 144 static inline void cpuidle_resume_and_unlock(void) { }
158 static inline int cpuidle_enable_device(struct cpuidle_device *dev) 145 static inline int cpuidle_enable_device(struct cpuidle_device *dev)
159 {return 0;} 146 {return 0;}
160 static inline void cpuidle_disable_device(struct cpuidle_device *dev) { } 147 static inline void cpuidle_disable_device(struct cpuidle_device *dev) { }
161 148
162 #endif 149 #endif
163 150
164 /****************************** 151 /******************************
165 * CPUIDLE GOVERNOR INTERFACE * 152 * CPUIDLE GOVERNOR INTERFACE *
166 ******************************/ 153 ******************************/
167 154
168 struct cpuidle_governor { 155 struct cpuidle_governor {
169 char name[CPUIDLE_NAME_LEN]; 156 char name[CPUIDLE_NAME_LEN];
170 struct list_head governor_list; 157 struct list_head governor_list;
171 unsigned int rating; 158 unsigned int rating;
172 159
173 int (*enable) (struct cpuidle_device *dev); 160 int (*enable) (struct cpuidle_device *dev);
174 void (*disable) (struct cpuidle_device *dev); 161 void (*disable) (struct cpuidle_device *dev);
175 162
176 int (*select) (struct cpuidle_device *dev); 163 int (*select) (struct cpuidle_device *dev);
177 void (*reflect) (struct cpuidle_device *dev); 164 void (*reflect) (struct cpuidle_device *dev);
178 165
179 struct module *owner; 166 struct module *owner;
180 }; 167 };
181 168
182 #ifdef CONFIG_CPU_IDLE 169 #ifdef CONFIG_CPU_IDLE
183 170
184 extern int cpuidle_register_governor(struct cpuidle_governor *gov); 171 extern int cpuidle_register_governor(struct cpuidle_governor *gov);
185 extern void cpuidle_unregister_governor(struct cpuidle_governor *gov); 172 extern void cpuidle_unregister_governor(struct cpuidle_governor *gov);
186 173
187 #else 174 #else
188 175
189 static inline int cpuidle_register_governor(struct cpuidle_governor *gov) 176 static inline int cpuidle_register_governor(struct cpuidle_governor *gov)
190 {return 0;} 177 {return 0;}
191 static inline void cpuidle_unregister_governor(struct cpuidle_governor *gov) { } 178 static inline void cpuidle_unregister_governor(struct cpuidle_governor *gov) { }
192 179
193 #endif 180 #endif
194 181
195 #ifdef CONFIG_ARCH_HAS_CPU_RELAX 182 #ifdef CONFIG_ARCH_HAS_CPU_RELAX
196 #define CPUIDLE_DRIVER_STATE_START 1 183 #define CPUIDLE_DRIVER_STATE_START 1
197 #else 184 #else
198 #define CPUIDLE_DRIVER_STATE_START 0 185 #define CPUIDLE_DRIVER_STATE_START 0
199 #endif 186 #endif
200 187
201 #endif /* _LINUX_CPUIDLE_H */ 188 #endif /* _LINUX_CPUIDLE_H */
202 189