Commit b29ee87e9b441e72454efd1be56aa1a05ffb2f58
Committed by
Al Viro
1 parent
422b03cf75
Exists in
master
and in
39 other branches
[RFC] AUDIT: do not panic when printk loses messages
On the latest kernels if one was to load about 15 rules, set the failure state to panic, and then run service auditd stop the kernel will panic. This is because auditd stops, then the script deletes all of the rules. These deletions are sent as audit messages out of the printk kernel interface which is already known to be lossy. These will overun the default kernel rate limiting (10 really fast messages) and will call audit_panic(). The same effect can happen if a slew of avc's come through while auditd is stopped. This can be fixed a number of ways but this patch fixes the problem by just not panicing if auditd is not running. We know printk is lossy and if the user chooses to set the failure mode to panic and tries to use printk we can't make any promises no matter how hard we try, so why try? At least in this way we continue to get lost message accounting and will eventually know that things went bad. The other change is to add a new call to audit_log_lost() if auditd disappears. We already pulled the skb off the queue and couldn't send it so that message is lost. At least this way we will account for the last message and panic if the machine is configured to panic. This code path should only be run if auditd dies for unforeseen reasons. If auditd closes correctly audit_pid will get set to 0 and we won't walk this code path. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Showing 1 changed file with 4 additions and 1 deletions Inline Diff
kernel/audit.c
1 | /* audit.c -- Auditing support | 1 | /* audit.c -- Auditing support |
2 | * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. | 2 | * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. |
3 | * System-call specific features have moved to auditsc.c | 3 | * System-call specific features have moved to auditsc.c |
4 | * | 4 | * |
5 | * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. | 5 | * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. |
6 | * All Rights Reserved. | 6 | * All Rights Reserved. |
7 | * | 7 | * |
8 | * This program is free software; you can redistribute it and/or modify | 8 | * This program is free software; you can redistribute it and/or modify |
9 | * it under the terms of the GNU General Public License as published by | 9 | * it under the terms of the GNU General Public License as published by |
10 | * the Free Software Foundation; either version 2 of the License, or | 10 | * the Free Software Foundation; either version 2 of the License, or |
11 | * (at your option) any later version. | 11 | * (at your option) any later version. |
12 | * | 12 | * |
13 | * This program is distributed in the hope that it will be useful, | 13 | * This program is distributed in the hope that it will be useful, |
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
16 | * GNU General Public License for more details. | 16 | * GNU General Public License for more details. |
17 | * | 17 | * |
18 | * You should have received a copy of the GNU General Public License | 18 | * You should have received a copy of the GNU General Public License |
19 | * along with this program; if not, write to the Free Software | 19 | * along with this program; if not, write to the Free Software |
20 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | 20 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
21 | * | 21 | * |
22 | * Written by Rickard E. (Rik) Faith <faith@redhat.com> | 22 | * Written by Rickard E. (Rik) Faith <faith@redhat.com> |
23 | * | 23 | * |
24 | * Goals: 1) Integrate fully with SELinux. | 24 | * Goals: 1) Integrate fully with SELinux. |
25 | * 2) Minimal run-time overhead: | 25 | * 2) Minimal run-time overhead: |
26 | * a) Minimal when syscall auditing is disabled (audit_enable=0). | 26 | * a) Minimal when syscall auditing is disabled (audit_enable=0). |
27 | * b) Small when syscall auditing is enabled and no audit record | 27 | * b) Small when syscall auditing is enabled and no audit record |
28 | * is generated (defer as much work as possible to record | 28 | * is generated (defer as much work as possible to record |
29 | * generation time): | 29 | * generation time): |
30 | * i) context is allocated, | 30 | * i) context is allocated, |
31 | * ii) names from getname are stored without a copy, and | 31 | * ii) names from getname are stored without a copy, and |
32 | * iii) inode information stored from path_lookup. | 32 | * iii) inode information stored from path_lookup. |
33 | * 3) Ability to disable syscall auditing at boot time (audit=0). | 33 | * 3) Ability to disable syscall auditing at boot time (audit=0). |
34 | * 4) Usable by other parts of the kernel (if audit_log* is called, | 34 | * 4) Usable by other parts of the kernel (if audit_log* is called, |
35 | * then a syscall record will be generated automatically for the | 35 | * then a syscall record will be generated automatically for the |
36 | * current syscall). | 36 | * current syscall). |
37 | * 5) Netlink interface to user-space. | 37 | * 5) Netlink interface to user-space. |
38 | * 6) Support low-overhead kernel-based filtering to minimize the | 38 | * 6) Support low-overhead kernel-based filtering to minimize the |
39 | * information that must be passed to user-space. | 39 | * information that must be passed to user-space. |
40 | * | 40 | * |
41 | * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ | 41 | * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ |
42 | */ | 42 | */ |
43 | 43 | ||
44 | #include <linux/init.h> | 44 | #include <linux/init.h> |
45 | #include <asm/types.h> | 45 | #include <asm/types.h> |
46 | #include <asm/atomic.h> | 46 | #include <asm/atomic.h> |
47 | #include <linux/mm.h> | 47 | #include <linux/mm.h> |
48 | #include <linux/module.h> | 48 | #include <linux/module.h> |
49 | #include <linux/err.h> | 49 | #include <linux/err.h> |
50 | #include <linux/kthread.h> | 50 | #include <linux/kthread.h> |
51 | 51 | ||
52 | #include <linux/audit.h> | 52 | #include <linux/audit.h> |
53 | 53 | ||
54 | #include <net/sock.h> | 54 | #include <net/sock.h> |
55 | #include <net/netlink.h> | 55 | #include <net/netlink.h> |
56 | #include <linux/skbuff.h> | 56 | #include <linux/skbuff.h> |
57 | #include <linux/netlink.h> | 57 | #include <linux/netlink.h> |
58 | #include <linux/selinux.h> | 58 | #include <linux/selinux.h> |
59 | #include <linux/inotify.h> | 59 | #include <linux/inotify.h> |
60 | #include <linux/freezer.h> | 60 | #include <linux/freezer.h> |
61 | #include <linux/tty.h> | 61 | #include <linux/tty.h> |
62 | 62 | ||
63 | #include "audit.h" | 63 | #include "audit.h" |
64 | 64 | ||
65 | /* No auditing will take place until audit_initialized != 0. | 65 | /* No auditing will take place until audit_initialized != 0. |
66 | * (Initialization happens after skb_init is called.) */ | 66 | * (Initialization happens after skb_init is called.) */ |
67 | static int audit_initialized; | 67 | static int audit_initialized; |
68 | 68 | ||
69 | #define AUDIT_OFF 0 | 69 | #define AUDIT_OFF 0 |
70 | #define AUDIT_ON 1 | 70 | #define AUDIT_ON 1 |
71 | #define AUDIT_LOCKED 2 | 71 | #define AUDIT_LOCKED 2 |
72 | int audit_enabled; | 72 | int audit_enabled; |
73 | int audit_ever_enabled; | 73 | int audit_ever_enabled; |
74 | 74 | ||
75 | /* Default state when kernel boots without any parameters. */ | 75 | /* Default state when kernel boots without any parameters. */ |
76 | static int audit_default; | 76 | static int audit_default; |
77 | 77 | ||
78 | /* If auditing cannot proceed, audit_failure selects what happens. */ | 78 | /* If auditing cannot proceed, audit_failure selects what happens. */ |
79 | static int audit_failure = AUDIT_FAIL_PRINTK; | 79 | static int audit_failure = AUDIT_FAIL_PRINTK; |
80 | 80 | ||
81 | /* If audit records are to be written to the netlink socket, audit_pid | 81 | /* If audit records are to be written to the netlink socket, audit_pid |
82 | * contains the (non-zero) pid. */ | 82 | * contains the (non-zero) pid. */ |
83 | int audit_pid; | 83 | int audit_pid; |
84 | 84 | ||
85 | /* If audit_rate_limit is non-zero, limit the rate of sending audit records | 85 | /* If audit_rate_limit is non-zero, limit the rate of sending audit records |
86 | * to that number per second. This prevents DoS attacks, but results in | 86 | * to that number per second. This prevents DoS attacks, but results in |
87 | * audit records being dropped. */ | 87 | * audit records being dropped. */ |
88 | static int audit_rate_limit; | 88 | static int audit_rate_limit; |
89 | 89 | ||
90 | /* Number of outstanding audit_buffers allowed. */ | 90 | /* Number of outstanding audit_buffers allowed. */ |
91 | static int audit_backlog_limit = 64; | 91 | static int audit_backlog_limit = 64; |
92 | static int audit_backlog_wait_time = 60 * HZ; | 92 | static int audit_backlog_wait_time = 60 * HZ; |
93 | static int audit_backlog_wait_overflow = 0; | 93 | static int audit_backlog_wait_overflow = 0; |
94 | 94 | ||
95 | /* The identity of the user shutting down the audit system. */ | 95 | /* The identity of the user shutting down the audit system. */ |
96 | uid_t audit_sig_uid = -1; | 96 | uid_t audit_sig_uid = -1; |
97 | pid_t audit_sig_pid = -1; | 97 | pid_t audit_sig_pid = -1; |
98 | u32 audit_sig_sid = 0; | 98 | u32 audit_sig_sid = 0; |
99 | 99 | ||
100 | /* Records can be lost in several ways: | 100 | /* Records can be lost in several ways: |
101 | 0) [suppressed in audit_alloc] | 101 | 0) [suppressed in audit_alloc] |
102 | 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] | 102 | 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] |
103 | 2) out of memory in audit_log_move [alloc_skb] | 103 | 2) out of memory in audit_log_move [alloc_skb] |
104 | 3) suppressed due to audit_rate_limit | 104 | 3) suppressed due to audit_rate_limit |
105 | 4) suppressed due to audit_backlog_limit | 105 | 4) suppressed due to audit_backlog_limit |
106 | */ | 106 | */ |
107 | static atomic_t audit_lost = ATOMIC_INIT(0); | 107 | static atomic_t audit_lost = ATOMIC_INIT(0); |
108 | 108 | ||
109 | /* The netlink socket. */ | 109 | /* The netlink socket. */ |
110 | static struct sock *audit_sock; | 110 | static struct sock *audit_sock; |
111 | 111 | ||
112 | /* Inotify handle. */ | 112 | /* Inotify handle. */ |
113 | struct inotify_handle *audit_ih; | 113 | struct inotify_handle *audit_ih; |
114 | 114 | ||
115 | /* Hash for inode-based rules */ | 115 | /* Hash for inode-based rules */ |
116 | struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; | 116 | struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; |
117 | 117 | ||
118 | /* The audit_freelist is a list of pre-allocated audit buffers (if more | 118 | /* The audit_freelist is a list of pre-allocated audit buffers (if more |
119 | * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of | 119 | * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of |
120 | * being placed on the freelist). */ | 120 | * being placed on the freelist). */ |
121 | static DEFINE_SPINLOCK(audit_freelist_lock); | 121 | static DEFINE_SPINLOCK(audit_freelist_lock); |
122 | static int audit_freelist_count; | 122 | static int audit_freelist_count; |
123 | static LIST_HEAD(audit_freelist); | 123 | static LIST_HEAD(audit_freelist); |
124 | 124 | ||
125 | static struct sk_buff_head audit_skb_queue; | 125 | static struct sk_buff_head audit_skb_queue; |
126 | static struct task_struct *kauditd_task; | 126 | static struct task_struct *kauditd_task; |
127 | static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); | 127 | static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); |
128 | static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); | 128 | static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); |
129 | 129 | ||
130 | /* Serialize requests from userspace. */ | 130 | /* Serialize requests from userspace. */ |
131 | static DEFINE_MUTEX(audit_cmd_mutex); | 131 | static DEFINE_MUTEX(audit_cmd_mutex); |
132 | 132 | ||
133 | /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting | 133 | /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting |
134 | * audit records. Since printk uses a 1024 byte buffer, this buffer | 134 | * audit records. Since printk uses a 1024 byte buffer, this buffer |
135 | * should be at least that large. */ | 135 | * should be at least that large. */ |
136 | #define AUDIT_BUFSIZ 1024 | 136 | #define AUDIT_BUFSIZ 1024 |
137 | 137 | ||
138 | /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the | 138 | /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the |
139 | * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ | 139 | * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ |
140 | #define AUDIT_MAXFREE (2*NR_CPUS) | 140 | #define AUDIT_MAXFREE (2*NR_CPUS) |
141 | 141 | ||
142 | /* The audit_buffer is used when formatting an audit record. The caller | 142 | /* The audit_buffer is used when formatting an audit record. The caller |
143 | * locks briefly to get the record off the freelist or to allocate the | 143 | * locks briefly to get the record off the freelist or to allocate the |
144 | * buffer, and locks briefly to send the buffer to the netlink layer or | 144 | * buffer, and locks briefly to send the buffer to the netlink layer or |
145 | * to place it on a transmit queue. Multiple audit_buffers can be in | 145 | * to place it on a transmit queue. Multiple audit_buffers can be in |
146 | * use simultaneously. */ | 146 | * use simultaneously. */ |
147 | struct audit_buffer { | 147 | struct audit_buffer { |
148 | struct list_head list; | 148 | struct list_head list; |
149 | struct sk_buff *skb; /* formatted skb ready to send */ | 149 | struct sk_buff *skb; /* formatted skb ready to send */ |
150 | struct audit_context *ctx; /* NULL or associated context */ | 150 | struct audit_context *ctx; /* NULL or associated context */ |
151 | gfp_t gfp_mask; | 151 | gfp_t gfp_mask; |
152 | }; | 152 | }; |
153 | 153 | ||
154 | static void audit_set_pid(struct audit_buffer *ab, pid_t pid) | 154 | static void audit_set_pid(struct audit_buffer *ab, pid_t pid) |
155 | { | 155 | { |
156 | if (ab) { | 156 | if (ab) { |
157 | struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); | 157 | struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); |
158 | nlh->nlmsg_pid = pid; | 158 | nlh->nlmsg_pid = pid; |
159 | } | 159 | } |
160 | } | 160 | } |
161 | 161 | ||
162 | void audit_panic(const char *message) | 162 | void audit_panic(const char *message) |
163 | { | 163 | { |
164 | switch (audit_failure) | 164 | switch (audit_failure) |
165 | { | 165 | { |
166 | case AUDIT_FAIL_SILENT: | 166 | case AUDIT_FAIL_SILENT: |
167 | break; | 167 | break; |
168 | case AUDIT_FAIL_PRINTK: | 168 | case AUDIT_FAIL_PRINTK: |
169 | if (printk_ratelimit()) | 169 | if (printk_ratelimit()) |
170 | printk(KERN_ERR "audit: %s\n", message); | 170 | printk(KERN_ERR "audit: %s\n", message); |
171 | break; | 171 | break; |
172 | case AUDIT_FAIL_PANIC: | 172 | case AUDIT_FAIL_PANIC: |
173 | panic("audit: %s\n", message); | 173 | /* test audit_pid since printk is always losey, why bother? */ |
174 | if (audit_pid) | ||
175 | panic("audit: %s\n", message); | ||
174 | break; | 176 | break; |
175 | } | 177 | } |
176 | } | 178 | } |
177 | 179 | ||
178 | static inline int audit_rate_check(void) | 180 | static inline int audit_rate_check(void) |
179 | { | 181 | { |
180 | static unsigned long last_check = 0; | 182 | static unsigned long last_check = 0; |
181 | static int messages = 0; | 183 | static int messages = 0; |
182 | static DEFINE_SPINLOCK(lock); | 184 | static DEFINE_SPINLOCK(lock); |
183 | unsigned long flags; | 185 | unsigned long flags; |
184 | unsigned long now; | 186 | unsigned long now; |
185 | unsigned long elapsed; | 187 | unsigned long elapsed; |
186 | int retval = 0; | 188 | int retval = 0; |
187 | 189 | ||
188 | if (!audit_rate_limit) return 1; | 190 | if (!audit_rate_limit) return 1; |
189 | 191 | ||
190 | spin_lock_irqsave(&lock, flags); | 192 | spin_lock_irqsave(&lock, flags); |
191 | if (++messages < audit_rate_limit) { | 193 | if (++messages < audit_rate_limit) { |
192 | retval = 1; | 194 | retval = 1; |
193 | } else { | 195 | } else { |
194 | now = jiffies; | 196 | now = jiffies; |
195 | elapsed = now - last_check; | 197 | elapsed = now - last_check; |
196 | if (elapsed > HZ) { | 198 | if (elapsed > HZ) { |
197 | last_check = now; | 199 | last_check = now; |
198 | messages = 0; | 200 | messages = 0; |
199 | retval = 1; | 201 | retval = 1; |
200 | } | 202 | } |
201 | } | 203 | } |
202 | spin_unlock_irqrestore(&lock, flags); | 204 | spin_unlock_irqrestore(&lock, flags); |
203 | 205 | ||
204 | return retval; | 206 | return retval; |
205 | } | 207 | } |
206 | 208 | ||
207 | /** | 209 | /** |
208 | * audit_log_lost - conditionally log lost audit message event | 210 | * audit_log_lost - conditionally log lost audit message event |
209 | * @message: the message stating reason for lost audit message | 211 | * @message: the message stating reason for lost audit message |
210 | * | 212 | * |
211 | * Emit at least 1 message per second, even if audit_rate_check is | 213 | * Emit at least 1 message per second, even if audit_rate_check is |
212 | * throttling. | 214 | * throttling. |
213 | * Always increment the lost messages counter. | 215 | * Always increment the lost messages counter. |
214 | */ | 216 | */ |
215 | void audit_log_lost(const char *message) | 217 | void audit_log_lost(const char *message) |
216 | { | 218 | { |
217 | static unsigned long last_msg = 0; | 219 | static unsigned long last_msg = 0; |
218 | static DEFINE_SPINLOCK(lock); | 220 | static DEFINE_SPINLOCK(lock); |
219 | unsigned long flags; | 221 | unsigned long flags; |
220 | unsigned long now; | 222 | unsigned long now; |
221 | int print; | 223 | int print; |
222 | 224 | ||
223 | atomic_inc(&audit_lost); | 225 | atomic_inc(&audit_lost); |
224 | 226 | ||
225 | print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); | 227 | print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); |
226 | 228 | ||
227 | if (!print) { | 229 | if (!print) { |
228 | spin_lock_irqsave(&lock, flags); | 230 | spin_lock_irqsave(&lock, flags); |
229 | now = jiffies; | 231 | now = jiffies; |
230 | if (now - last_msg > HZ) { | 232 | if (now - last_msg > HZ) { |
231 | print = 1; | 233 | print = 1; |
232 | last_msg = now; | 234 | last_msg = now; |
233 | } | 235 | } |
234 | spin_unlock_irqrestore(&lock, flags); | 236 | spin_unlock_irqrestore(&lock, flags); |
235 | } | 237 | } |
236 | 238 | ||
237 | if (print) { | 239 | if (print) { |
238 | if (printk_ratelimit()) | 240 | if (printk_ratelimit()) |
239 | printk(KERN_WARNING | 241 | printk(KERN_WARNING |
240 | "audit: audit_lost=%d audit_rate_limit=%d " | 242 | "audit: audit_lost=%d audit_rate_limit=%d " |
241 | "audit_backlog_limit=%d\n", | 243 | "audit_backlog_limit=%d\n", |
242 | atomic_read(&audit_lost), | 244 | atomic_read(&audit_lost), |
243 | audit_rate_limit, | 245 | audit_rate_limit, |
244 | audit_backlog_limit); | 246 | audit_backlog_limit); |
245 | audit_panic(message); | 247 | audit_panic(message); |
246 | } | 248 | } |
247 | } | 249 | } |
248 | 250 | ||
249 | static int audit_log_config_change(char *function_name, int new, int old, | 251 | static int audit_log_config_change(char *function_name, int new, int old, |
250 | uid_t loginuid, u32 sid, int allow_changes) | 252 | uid_t loginuid, u32 sid, int allow_changes) |
251 | { | 253 | { |
252 | struct audit_buffer *ab; | 254 | struct audit_buffer *ab; |
253 | int rc = 0; | 255 | int rc = 0; |
254 | 256 | ||
255 | ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); | 257 | ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); |
256 | audit_log_format(ab, "%s=%d old=%d by auid=%u", function_name, new, | 258 | audit_log_format(ab, "%s=%d old=%d by auid=%u", function_name, new, |
257 | old, loginuid); | 259 | old, loginuid); |
258 | if (sid) { | 260 | if (sid) { |
259 | char *ctx = NULL; | 261 | char *ctx = NULL; |
260 | u32 len; | 262 | u32 len; |
261 | 263 | ||
262 | rc = selinux_sid_to_string(sid, &ctx, &len); | 264 | rc = selinux_sid_to_string(sid, &ctx, &len); |
263 | if (rc) { | 265 | if (rc) { |
264 | audit_log_format(ab, " sid=%u", sid); | 266 | audit_log_format(ab, " sid=%u", sid); |
265 | allow_changes = 0; /* Something weird, deny request */ | 267 | allow_changes = 0; /* Something weird, deny request */ |
266 | } else { | 268 | } else { |
267 | audit_log_format(ab, " subj=%s", ctx); | 269 | audit_log_format(ab, " subj=%s", ctx); |
268 | kfree(ctx); | 270 | kfree(ctx); |
269 | } | 271 | } |
270 | } | 272 | } |
271 | audit_log_format(ab, " res=%d", allow_changes); | 273 | audit_log_format(ab, " res=%d", allow_changes); |
272 | audit_log_end(ab); | 274 | audit_log_end(ab); |
273 | return rc; | 275 | return rc; |
274 | } | 276 | } |
275 | 277 | ||
276 | static int audit_do_config_change(char *function_name, int *to_change, | 278 | static int audit_do_config_change(char *function_name, int *to_change, |
277 | int new, uid_t loginuid, u32 sid) | 279 | int new, uid_t loginuid, u32 sid) |
278 | { | 280 | { |
279 | int allow_changes, rc = 0, old = *to_change; | 281 | int allow_changes, rc = 0, old = *to_change; |
280 | 282 | ||
281 | /* check if we are locked */ | 283 | /* check if we are locked */ |
282 | if (audit_enabled == AUDIT_LOCKED) | 284 | if (audit_enabled == AUDIT_LOCKED) |
283 | allow_changes = 0; | 285 | allow_changes = 0; |
284 | else | 286 | else |
285 | allow_changes = 1; | 287 | allow_changes = 1; |
286 | 288 | ||
287 | if (audit_enabled != AUDIT_OFF) { | 289 | if (audit_enabled != AUDIT_OFF) { |
288 | rc = audit_log_config_change(function_name, new, old, | 290 | rc = audit_log_config_change(function_name, new, old, |
289 | loginuid, sid, allow_changes); | 291 | loginuid, sid, allow_changes); |
290 | if (rc) | 292 | if (rc) |
291 | allow_changes = 0; | 293 | allow_changes = 0; |
292 | } | 294 | } |
293 | 295 | ||
294 | /* If we are allowed, make the change */ | 296 | /* If we are allowed, make the change */ |
295 | if (allow_changes == 1) | 297 | if (allow_changes == 1) |
296 | *to_change = new; | 298 | *to_change = new; |
297 | /* Not allowed, update reason */ | 299 | /* Not allowed, update reason */ |
298 | else if (rc == 0) | 300 | else if (rc == 0) |
299 | rc = -EPERM; | 301 | rc = -EPERM; |
300 | return rc; | 302 | return rc; |
301 | } | 303 | } |
302 | 304 | ||
303 | static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sid) | 305 | static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sid) |
304 | { | 306 | { |
305 | return audit_do_config_change("audit_rate_limit", &audit_rate_limit, | 307 | return audit_do_config_change("audit_rate_limit", &audit_rate_limit, |
306 | limit, loginuid, sid); | 308 | limit, loginuid, sid); |
307 | } | 309 | } |
308 | 310 | ||
309 | static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sid) | 311 | static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sid) |
310 | { | 312 | { |
311 | return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, | 313 | return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, |
312 | limit, loginuid, sid); | 314 | limit, loginuid, sid); |
313 | } | 315 | } |
314 | 316 | ||
315 | static int audit_set_enabled(int state, uid_t loginuid, u32 sid) | 317 | static int audit_set_enabled(int state, uid_t loginuid, u32 sid) |
316 | { | 318 | { |
317 | int rc; | 319 | int rc; |
318 | if (state < AUDIT_OFF || state > AUDIT_LOCKED) | 320 | if (state < AUDIT_OFF || state > AUDIT_LOCKED) |
319 | return -EINVAL; | 321 | return -EINVAL; |
320 | 322 | ||
321 | rc = audit_do_config_change("audit_enabled", &audit_enabled, state, | 323 | rc = audit_do_config_change("audit_enabled", &audit_enabled, state, |
322 | loginuid, sid); | 324 | loginuid, sid); |
323 | 325 | ||
324 | if (!rc) | 326 | if (!rc) |
325 | audit_ever_enabled |= !!state; | 327 | audit_ever_enabled |= !!state; |
326 | 328 | ||
327 | return rc; | 329 | return rc; |
328 | } | 330 | } |
329 | 331 | ||
330 | static int audit_set_failure(int state, uid_t loginuid, u32 sid) | 332 | static int audit_set_failure(int state, uid_t loginuid, u32 sid) |
331 | { | 333 | { |
332 | if (state != AUDIT_FAIL_SILENT | 334 | if (state != AUDIT_FAIL_SILENT |
333 | && state != AUDIT_FAIL_PRINTK | 335 | && state != AUDIT_FAIL_PRINTK |
334 | && state != AUDIT_FAIL_PANIC) | 336 | && state != AUDIT_FAIL_PANIC) |
335 | return -EINVAL; | 337 | return -EINVAL; |
336 | 338 | ||
337 | return audit_do_config_change("audit_failure", &audit_failure, state, | 339 | return audit_do_config_change("audit_failure", &audit_failure, state, |
338 | loginuid, sid); | 340 | loginuid, sid); |
339 | } | 341 | } |
340 | 342 | ||
341 | static int kauditd_thread(void *dummy) | 343 | static int kauditd_thread(void *dummy) |
342 | { | 344 | { |
343 | struct sk_buff *skb; | 345 | struct sk_buff *skb; |
344 | 346 | ||
345 | set_freezable(); | 347 | set_freezable(); |
346 | while (!kthread_should_stop()) { | 348 | while (!kthread_should_stop()) { |
347 | skb = skb_dequeue(&audit_skb_queue); | 349 | skb = skb_dequeue(&audit_skb_queue); |
348 | wake_up(&audit_backlog_wait); | 350 | wake_up(&audit_backlog_wait); |
349 | if (skb) { | 351 | if (skb) { |
350 | if (audit_pid) { | 352 | if (audit_pid) { |
351 | int err = netlink_unicast(audit_sock, skb, audit_pid, 0); | 353 | int err = netlink_unicast(audit_sock, skb, audit_pid, 0); |
352 | if (err < 0) { | 354 | if (err < 0) { |
353 | BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */ | 355 | BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */ |
354 | printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid); | 356 | printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid); |
357 | audit_log_lost("auditd dissapeared\n"); | ||
355 | audit_pid = 0; | 358 | audit_pid = 0; |
356 | } | 359 | } |
357 | } else { | 360 | } else { |
358 | if (printk_ratelimit()) | 361 | if (printk_ratelimit()) |
359 | printk(KERN_NOTICE "%s\n", skb->data + | 362 | printk(KERN_NOTICE "%s\n", skb->data + |
360 | NLMSG_SPACE(0)); | 363 | NLMSG_SPACE(0)); |
361 | else | 364 | else |
362 | audit_log_lost("printk limit exceeded\n"); | 365 | audit_log_lost("printk limit exceeded\n"); |
363 | kfree_skb(skb); | 366 | kfree_skb(skb); |
364 | } | 367 | } |
365 | } else { | 368 | } else { |
366 | DECLARE_WAITQUEUE(wait, current); | 369 | DECLARE_WAITQUEUE(wait, current); |
367 | set_current_state(TASK_INTERRUPTIBLE); | 370 | set_current_state(TASK_INTERRUPTIBLE); |
368 | add_wait_queue(&kauditd_wait, &wait); | 371 | add_wait_queue(&kauditd_wait, &wait); |
369 | 372 | ||
370 | if (!skb_queue_len(&audit_skb_queue)) { | 373 | if (!skb_queue_len(&audit_skb_queue)) { |
371 | try_to_freeze(); | 374 | try_to_freeze(); |
372 | schedule(); | 375 | schedule(); |
373 | } | 376 | } |
374 | 377 | ||
375 | __set_current_state(TASK_RUNNING); | 378 | __set_current_state(TASK_RUNNING); |
376 | remove_wait_queue(&kauditd_wait, &wait); | 379 | remove_wait_queue(&kauditd_wait, &wait); |
377 | } | 380 | } |
378 | } | 381 | } |
379 | return 0; | 382 | return 0; |
380 | } | 383 | } |
381 | 384 | ||
382 | static int audit_prepare_user_tty(pid_t pid, uid_t loginuid) | 385 | static int audit_prepare_user_tty(pid_t pid, uid_t loginuid) |
383 | { | 386 | { |
384 | struct task_struct *tsk; | 387 | struct task_struct *tsk; |
385 | int err; | 388 | int err; |
386 | 389 | ||
387 | read_lock(&tasklist_lock); | 390 | read_lock(&tasklist_lock); |
388 | tsk = find_task_by_pid(pid); | 391 | tsk = find_task_by_pid(pid); |
389 | err = -ESRCH; | 392 | err = -ESRCH; |
390 | if (!tsk) | 393 | if (!tsk) |
391 | goto out; | 394 | goto out; |
392 | err = 0; | 395 | err = 0; |
393 | 396 | ||
394 | spin_lock_irq(&tsk->sighand->siglock); | 397 | spin_lock_irq(&tsk->sighand->siglock); |
395 | if (!tsk->signal->audit_tty) | 398 | if (!tsk->signal->audit_tty) |
396 | err = -EPERM; | 399 | err = -EPERM; |
397 | spin_unlock_irq(&tsk->sighand->siglock); | 400 | spin_unlock_irq(&tsk->sighand->siglock); |
398 | if (err) | 401 | if (err) |
399 | goto out; | 402 | goto out; |
400 | 403 | ||
401 | tty_audit_push_task(tsk, loginuid); | 404 | tty_audit_push_task(tsk, loginuid); |
402 | out: | 405 | out: |
403 | read_unlock(&tasklist_lock); | 406 | read_unlock(&tasklist_lock); |
404 | return err; | 407 | return err; |
405 | } | 408 | } |
406 | 409 | ||
407 | int audit_send_list(void *_dest) | 410 | int audit_send_list(void *_dest) |
408 | { | 411 | { |
409 | struct audit_netlink_list *dest = _dest; | 412 | struct audit_netlink_list *dest = _dest; |
410 | int pid = dest->pid; | 413 | int pid = dest->pid; |
411 | struct sk_buff *skb; | 414 | struct sk_buff *skb; |
412 | 415 | ||
413 | /* wait for parent to finish and send an ACK */ | 416 | /* wait for parent to finish and send an ACK */ |
414 | mutex_lock(&audit_cmd_mutex); | 417 | mutex_lock(&audit_cmd_mutex); |
415 | mutex_unlock(&audit_cmd_mutex); | 418 | mutex_unlock(&audit_cmd_mutex); |
416 | 419 | ||
417 | while ((skb = __skb_dequeue(&dest->q)) != NULL) | 420 | while ((skb = __skb_dequeue(&dest->q)) != NULL) |
418 | netlink_unicast(audit_sock, skb, pid, 0); | 421 | netlink_unicast(audit_sock, skb, pid, 0); |
419 | 422 | ||
420 | kfree(dest); | 423 | kfree(dest); |
421 | 424 | ||
422 | return 0; | 425 | return 0; |
423 | } | 426 | } |
424 | 427 | ||
425 | #ifdef CONFIG_AUDIT_TREE | 428 | #ifdef CONFIG_AUDIT_TREE |
426 | static int prune_tree_thread(void *unused) | 429 | static int prune_tree_thread(void *unused) |
427 | { | 430 | { |
428 | mutex_lock(&audit_cmd_mutex); | 431 | mutex_lock(&audit_cmd_mutex); |
429 | audit_prune_trees(); | 432 | audit_prune_trees(); |
430 | mutex_unlock(&audit_cmd_mutex); | 433 | mutex_unlock(&audit_cmd_mutex); |
431 | return 0; | 434 | return 0; |
432 | } | 435 | } |
433 | 436 | ||
434 | void audit_schedule_prune(void) | 437 | void audit_schedule_prune(void) |
435 | { | 438 | { |
436 | kthread_run(prune_tree_thread, NULL, "audit_prune_tree"); | 439 | kthread_run(prune_tree_thread, NULL, "audit_prune_tree"); |
437 | } | 440 | } |
438 | #endif | 441 | #endif |
439 | 442 | ||
440 | struct sk_buff *audit_make_reply(int pid, int seq, int type, int done, | 443 | struct sk_buff *audit_make_reply(int pid, int seq, int type, int done, |
441 | int multi, void *payload, int size) | 444 | int multi, void *payload, int size) |
442 | { | 445 | { |
443 | struct sk_buff *skb; | 446 | struct sk_buff *skb; |
444 | struct nlmsghdr *nlh; | 447 | struct nlmsghdr *nlh; |
445 | int len = NLMSG_SPACE(size); | 448 | int len = NLMSG_SPACE(size); |
446 | void *data; | 449 | void *data; |
447 | int flags = multi ? NLM_F_MULTI : 0; | 450 | int flags = multi ? NLM_F_MULTI : 0; |
448 | int t = done ? NLMSG_DONE : type; | 451 | int t = done ? NLMSG_DONE : type; |
449 | 452 | ||
450 | skb = alloc_skb(len, GFP_KERNEL); | 453 | skb = alloc_skb(len, GFP_KERNEL); |
451 | if (!skb) | 454 | if (!skb) |
452 | return NULL; | 455 | return NULL; |
453 | 456 | ||
454 | nlh = NLMSG_PUT(skb, pid, seq, t, size); | 457 | nlh = NLMSG_PUT(skb, pid, seq, t, size); |
455 | nlh->nlmsg_flags = flags; | 458 | nlh->nlmsg_flags = flags; |
456 | data = NLMSG_DATA(nlh); | 459 | data = NLMSG_DATA(nlh); |
457 | memcpy(data, payload, size); | 460 | memcpy(data, payload, size); |
458 | return skb; | 461 | return skb; |
459 | 462 | ||
460 | nlmsg_failure: /* Used by NLMSG_PUT */ | 463 | nlmsg_failure: /* Used by NLMSG_PUT */ |
461 | if (skb) | 464 | if (skb) |
462 | kfree_skb(skb); | 465 | kfree_skb(skb); |
463 | return NULL; | 466 | return NULL; |
464 | } | 467 | } |
465 | 468 | ||
466 | /** | 469 | /** |
467 | * audit_send_reply - send an audit reply message via netlink | 470 | * audit_send_reply - send an audit reply message via netlink |
468 | * @pid: process id to send reply to | 471 | * @pid: process id to send reply to |
469 | * @seq: sequence number | 472 | * @seq: sequence number |
470 | * @type: audit message type | 473 | * @type: audit message type |
471 | * @done: done (last) flag | 474 | * @done: done (last) flag |
472 | * @multi: multi-part message flag | 475 | * @multi: multi-part message flag |
473 | * @payload: payload data | 476 | * @payload: payload data |
474 | * @size: payload size | 477 | * @size: payload size |
475 | * | 478 | * |
476 | * Allocates an skb, builds the netlink message, and sends it to the pid. | 479 | * Allocates an skb, builds the netlink message, and sends it to the pid. |
477 | * No failure notifications. | 480 | * No failure notifications. |
478 | */ | 481 | */ |
479 | void audit_send_reply(int pid, int seq, int type, int done, int multi, | 482 | void audit_send_reply(int pid, int seq, int type, int done, int multi, |
480 | void *payload, int size) | 483 | void *payload, int size) |
481 | { | 484 | { |
482 | struct sk_buff *skb; | 485 | struct sk_buff *skb; |
483 | skb = audit_make_reply(pid, seq, type, done, multi, payload, size); | 486 | skb = audit_make_reply(pid, seq, type, done, multi, payload, size); |
484 | if (!skb) | 487 | if (!skb) |
485 | return; | 488 | return; |
486 | /* Ignore failure. It'll only happen if the sender goes away, | 489 | /* Ignore failure. It'll only happen if the sender goes away, |
487 | because our timeout is set to infinite. */ | 490 | because our timeout is set to infinite. */ |
488 | netlink_unicast(audit_sock, skb, pid, 0); | 491 | netlink_unicast(audit_sock, skb, pid, 0); |
489 | return; | 492 | return; |
490 | } | 493 | } |
491 | 494 | ||
492 | /* | 495 | /* |
493 | * Check for appropriate CAP_AUDIT_ capabilities on incoming audit | 496 | * Check for appropriate CAP_AUDIT_ capabilities on incoming audit |
494 | * control messages. | 497 | * control messages. |
495 | */ | 498 | */ |
496 | static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) | 499 | static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) |
497 | { | 500 | { |
498 | int err = 0; | 501 | int err = 0; |
499 | 502 | ||
500 | switch (msg_type) { | 503 | switch (msg_type) { |
501 | case AUDIT_GET: | 504 | case AUDIT_GET: |
502 | case AUDIT_LIST: | 505 | case AUDIT_LIST: |
503 | case AUDIT_LIST_RULES: | 506 | case AUDIT_LIST_RULES: |
504 | case AUDIT_SET: | 507 | case AUDIT_SET: |
505 | case AUDIT_ADD: | 508 | case AUDIT_ADD: |
506 | case AUDIT_ADD_RULE: | 509 | case AUDIT_ADD_RULE: |
507 | case AUDIT_DEL: | 510 | case AUDIT_DEL: |
508 | case AUDIT_DEL_RULE: | 511 | case AUDIT_DEL_RULE: |
509 | case AUDIT_SIGNAL_INFO: | 512 | case AUDIT_SIGNAL_INFO: |
510 | case AUDIT_TTY_GET: | 513 | case AUDIT_TTY_GET: |
511 | case AUDIT_TTY_SET: | 514 | case AUDIT_TTY_SET: |
512 | case AUDIT_TRIM: | 515 | case AUDIT_TRIM: |
513 | case AUDIT_MAKE_EQUIV: | 516 | case AUDIT_MAKE_EQUIV: |
514 | if (security_netlink_recv(skb, CAP_AUDIT_CONTROL)) | 517 | if (security_netlink_recv(skb, CAP_AUDIT_CONTROL)) |
515 | err = -EPERM; | 518 | err = -EPERM; |
516 | break; | 519 | break; |
517 | case AUDIT_USER: | 520 | case AUDIT_USER: |
518 | case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: | 521 | case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: |
519 | case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: | 522 | case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: |
520 | if (security_netlink_recv(skb, CAP_AUDIT_WRITE)) | 523 | if (security_netlink_recv(skb, CAP_AUDIT_WRITE)) |
521 | err = -EPERM; | 524 | err = -EPERM; |
522 | break; | 525 | break; |
523 | default: /* bad msg */ | 526 | default: /* bad msg */ |
524 | err = -EINVAL; | 527 | err = -EINVAL; |
525 | } | 528 | } |
526 | 529 | ||
527 | return err; | 530 | return err; |
528 | } | 531 | } |
529 | 532 | ||
530 | static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type, | 533 | static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type, |
531 | u32 pid, u32 uid, uid_t auid, u32 sid) | 534 | u32 pid, u32 uid, uid_t auid, u32 sid) |
532 | { | 535 | { |
533 | int rc = 0; | 536 | int rc = 0; |
534 | char *ctx = NULL; | 537 | char *ctx = NULL; |
535 | u32 len; | 538 | u32 len; |
536 | 539 | ||
537 | if (!audit_enabled) { | 540 | if (!audit_enabled) { |
538 | *ab = NULL; | 541 | *ab = NULL; |
539 | return rc; | 542 | return rc; |
540 | } | 543 | } |
541 | 544 | ||
542 | *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); | 545 | *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); |
543 | audit_log_format(*ab, "user pid=%d uid=%u auid=%u", | 546 | audit_log_format(*ab, "user pid=%d uid=%u auid=%u", |
544 | pid, uid, auid); | 547 | pid, uid, auid); |
545 | if (sid) { | 548 | if (sid) { |
546 | rc = selinux_sid_to_string(sid, &ctx, &len); | 549 | rc = selinux_sid_to_string(sid, &ctx, &len); |
547 | if (rc) | 550 | if (rc) |
548 | audit_log_format(*ab, " ssid=%u", sid); | 551 | audit_log_format(*ab, " ssid=%u", sid); |
549 | else | 552 | else |
550 | audit_log_format(*ab, " subj=%s", ctx); | 553 | audit_log_format(*ab, " subj=%s", ctx); |
551 | kfree(ctx); | 554 | kfree(ctx); |
552 | } | 555 | } |
553 | 556 | ||
554 | return rc; | 557 | return rc; |
555 | } | 558 | } |
556 | 559 | ||
557 | static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) | 560 | static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) |
558 | { | 561 | { |
559 | u32 uid, pid, seq, sid; | 562 | u32 uid, pid, seq, sid; |
560 | void *data; | 563 | void *data; |
561 | struct audit_status *status_get, status_set; | 564 | struct audit_status *status_get, status_set; |
562 | int err; | 565 | int err; |
563 | struct audit_buffer *ab; | 566 | struct audit_buffer *ab; |
564 | u16 msg_type = nlh->nlmsg_type; | 567 | u16 msg_type = nlh->nlmsg_type; |
565 | uid_t loginuid; /* loginuid of sender */ | 568 | uid_t loginuid; /* loginuid of sender */ |
566 | struct audit_sig_info *sig_data; | 569 | struct audit_sig_info *sig_data; |
567 | char *ctx = NULL; | 570 | char *ctx = NULL; |
568 | u32 len; | 571 | u32 len; |
569 | 572 | ||
570 | err = audit_netlink_ok(skb, msg_type); | 573 | err = audit_netlink_ok(skb, msg_type); |
571 | if (err) | 574 | if (err) |
572 | return err; | 575 | return err; |
573 | 576 | ||
574 | /* As soon as there's any sign of userspace auditd, | 577 | /* As soon as there's any sign of userspace auditd, |
575 | * start kauditd to talk to it */ | 578 | * start kauditd to talk to it */ |
576 | if (!kauditd_task) | 579 | if (!kauditd_task) |
577 | kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); | 580 | kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); |
578 | if (IS_ERR(kauditd_task)) { | 581 | if (IS_ERR(kauditd_task)) { |
579 | err = PTR_ERR(kauditd_task); | 582 | err = PTR_ERR(kauditd_task); |
580 | kauditd_task = NULL; | 583 | kauditd_task = NULL; |
581 | return err; | 584 | return err; |
582 | } | 585 | } |
583 | 586 | ||
584 | pid = NETLINK_CREDS(skb)->pid; | 587 | pid = NETLINK_CREDS(skb)->pid; |
585 | uid = NETLINK_CREDS(skb)->uid; | 588 | uid = NETLINK_CREDS(skb)->uid; |
586 | loginuid = NETLINK_CB(skb).loginuid; | 589 | loginuid = NETLINK_CB(skb).loginuid; |
587 | sid = NETLINK_CB(skb).sid; | 590 | sid = NETLINK_CB(skb).sid; |
588 | seq = nlh->nlmsg_seq; | 591 | seq = nlh->nlmsg_seq; |
589 | data = NLMSG_DATA(nlh); | 592 | data = NLMSG_DATA(nlh); |
590 | 593 | ||
591 | switch (msg_type) { | 594 | switch (msg_type) { |
592 | case AUDIT_GET: | 595 | case AUDIT_GET: |
593 | status_set.enabled = audit_enabled; | 596 | status_set.enabled = audit_enabled; |
594 | status_set.failure = audit_failure; | 597 | status_set.failure = audit_failure; |
595 | status_set.pid = audit_pid; | 598 | status_set.pid = audit_pid; |
596 | status_set.rate_limit = audit_rate_limit; | 599 | status_set.rate_limit = audit_rate_limit; |
597 | status_set.backlog_limit = audit_backlog_limit; | 600 | status_set.backlog_limit = audit_backlog_limit; |
598 | status_set.lost = atomic_read(&audit_lost); | 601 | status_set.lost = atomic_read(&audit_lost); |
599 | status_set.backlog = skb_queue_len(&audit_skb_queue); | 602 | status_set.backlog = skb_queue_len(&audit_skb_queue); |
600 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0, | 603 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0, |
601 | &status_set, sizeof(status_set)); | 604 | &status_set, sizeof(status_set)); |
602 | break; | 605 | break; |
603 | case AUDIT_SET: | 606 | case AUDIT_SET: |
604 | if (nlh->nlmsg_len < sizeof(struct audit_status)) | 607 | if (nlh->nlmsg_len < sizeof(struct audit_status)) |
605 | return -EINVAL; | 608 | return -EINVAL; |
606 | status_get = (struct audit_status *)data; | 609 | status_get = (struct audit_status *)data; |
607 | if (status_get->mask & AUDIT_STATUS_ENABLED) { | 610 | if (status_get->mask & AUDIT_STATUS_ENABLED) { |
608 | err = audit_set_enabled(status_get->enabled, | 611 | err = audit_set_enabled(status_get->enabled, |
609 | loginuid, sid); | 612 | loginuid, sid); |
610 | if (err < 0) return err; | 613 | if (err < 0) return err; |
611 | } | 614 | } |
612 | if (status_get->mask & AUDIT_STATUS_FAILURE) { | 615 | if (status_get->mask & AUDIT_STATUS_FAILURE) { |
613 | err = audit_set_failure(status_get->failure, | 616 | err = audit_set_failure(status_get->failure, |
614 | loginuid, sid); | 617 | loginuid, sid); |
615 | if (err < 0) return err; | 618 | if (err < 0) return err; |
616 | } | 619 | } |
617 | if (status_get->mask & AUDIT_STATUS_PID) { | 620 | if (status_get->mask & AUDIT_STATUS_PID) { |
618 | int new_pid = status_get->pid; | 621 | int new_pid = status_get->pid; |
619 | 622 | ||
620 | if (audit_enabled != AUDIT_OFF) | 623 | if (audit_enabled != AUDIT_OFF) |
621 | audit_log_config_change("audit_pid", new_pid, | 624 | audit_log_config_change("audit_pid", new_pid, |
622 | audit_pid, loginuid, | 625 | audit_pid, loginuid, |
623 | sid, 1); | 626 | sid, 1); |
624 | 627 | ||
625 | audit_pid = new_pid; | 628 | audit_pid = new_pid; |
626 | } | 629 | } |
627 | if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) | 630 | if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) |
628 | err = audit_set_rate_limit(status_get->rate_limit, | 631 | err = audit_set_rate_limit(status_get->rate_limit, |
629 | loginuid, sid); | 632 | loginuid, sid); |
630 | if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT) | 633 | if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT) |
631 | err = audit_set_backlog_limit(status_get->backlog_limit, | 634 | err = audit_set_backlog_limit(status_get->backlog_limit, |
632 | loginuid, sid); | 635 | loginuid, sid); |
633 | break; | 636 | break; |
634 | case AUDIT_USER: | 637 | case AUDIT_USER: |
635 | case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: | 638 | case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: |
636 | case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: | 639 | case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: |
637 | if (!audit_enabled && msg_type != AUDIT_USER_AVC) | 640 | if (!audit_enabled && msg_type != AUDIT_USER_AVC) |
638 | return 0; | 641 | return 0; |
639 | 642 | ||
640 | err = audit_filter_user(&NETLINK_CB(skb), msg_type); | 643 | err = audit_filter_user(&NETLINK_CB(skb), msg_type); |
641 | if (err == 1) { | 644 | if (err == 1) { |
642 | err = 0; | 645 | err = 0; |
643 | if (msg_type == AUDIT_USER_TTY) { | 646 | if (msg_type == AUDIT_USER_TTY) { |
644 | err = audit_prepare_user_tty(pid, loginuid); | 647 | err = audit_prepare_user_tty(pid, loginuid); |
645 | if (err) | 648 | if (err) |
646 | break; | 649 | break; |
647 | } | 650 | } |
648 | audit_log_common_recv_msg(&ab, msg_type, pid, uid, | 651 | audit_log_common_recv_msg(&ab, msg_type, pid, uid, |
649 | loginuid, sid); | 652 | loginuid, sid); |
650 | 653 | ||
651 | if (msg_type != AUDIT_USER_TTY) | 654 | if (msg_type != AUDIT_USER_TTY) |
652 | audit_log_format(ab, " msg='%.1024s'", | 655 | audit_log_format(ab, " msg='%.1024s'", |
653 | (char *)data); | 656 | (char *)data); |
654 | else { | 657 | else { |
655 | int size; | 658 | int size; |
656 | 659 | ||
657 | audit_log_format(ab, " msg="); | 660 | audit_log_format(ab, " msg="); |
658 | size = nlmsg_len(nlh); | 661 | size = nlmsg_len(nlh); |
659 | audit_log_n_untrustedstring(ab, size, | 662 | audit_log_n_untrustedstring(ab, size, |
660 | data); | 663 | data); |
661 | } | 664 | } |
662 | audit_set_pid(ab, pid); | 665 | audit_set_pid(ab, pid); |
663 | audit_log_end(ab); | 666 | audit_log_end(ab); |
664 | } | 667 | } |
665 | break; | 668 | break; |
666 | case AUDIT_ADD: | 669 | case AUDIT_ADD: |
667 | case AUDIT_DEL: | 670 | case AUDIT_DEL: |
668 | if (nlmsg_len(nlh) < sizeof(struct audit_rule)) | 671 | if (nlmsg_len(nlh) < sizeof(struct audit_rule)) |
669 | return -EINVAL; | 672 | return -EINVAL; |
670 | if (audit_enabled == AUDIT_LOCKED) { | 673 | if (audit_enabled == AUDIT_LOCKED) { |
671 | audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, | 674 | audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, |
672 | uid, loginuid, sid); | 675 | uid, loginuid, sid); |
673 | 676 | ||
674 | audit_log_format(ab, " audit_enabled=%d res=0", | 677 | audit_log_format(ab, " audit_enabled=%d res=0", |
675 | audit_enabled); | 678 | audit_enabled); |
676 | audit_log_end(ab); | 679 | audit_log_end(ab); |
677 | return -EPERM; | 680 | return -EPERM; |
678 | } | 681 | } |
679 | /* fallthrough */ | 682 | /* fallthrough */ |
680 | case AUDIT_LIST: | 683 | case AUDIT_LIST: |
681 | err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, | 684 | err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, |
682 | uid, seq, data, nlmsg_len(nlh), | 685 | uid, seq, data, nlmsg_len(nlh), |
683 | loginuid, sid); | 686 | loginuid, sid); |
684 | break; | 687 | break; |
685 | case AUDIT_ADD_RULE: | 688 | case AUDIT_ADD_RULE: |
686 | case AUDIT_DEL_RULE: | 689 | case AUDIT_DEL_RULE: |
687 | if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) | 690 | if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) |
688 | return -EINVAL; | 691 | return -EINVAL; |
689 | if (audit_enabled == AUDIT_LOCKED) { | 692 | if (audit_enabled == AUDIT_LOCKED) { |
690 | audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, | 693 | audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, |
691 | uid, loginuid, sid); | 694 | uid, loginuid, sid); |
692 | 695 | ||
693 | audit_log_format(ab, " audit_enabled=%d res=0", | 696 | audit_log_format(ab, " audit_enabled=%d res=0", |
694 | audit_enabled); | 697 | audit_enabled); |
695 | audit_log_end(ab); | 698 | audit_log_end(ab); |
696 | return -EPERM; | 699 | return -EPERM; |
697 | } | 700 | } |
698 | /* fallthrough */ | 701 | /* fallthrough */ |
699 | case AUDIT_LIST_RULES: | 702 | case AUDIT_LIST_RULES: |
700 | err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, | 703 | err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, |
701 | uid, seq, data, nlmsg_len(nlh), | 704 | uid, seq, data, nlmsg_len(nlh), |
702 | loginuid, sid); | 705 | loginuid, sid); |
703 | break; | 706 | break; |
704 | case AUDIT_TRIM: | 707 | case AUDIT_TRIM: |
705 | audit_trim_trees(); | 708 | audit_trim_trees(); |
706 | 709 | ||
707 | audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, | 710 | audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, |
708 | uid, loginuid, sid); | 711 | uid, loginuid, sid); |
709 | 712 | ||
710 | audit_log_format(ab, " op=trim res=1"); | 713 | audit_log_format(ab, " op=trim res=1"); |
711 | audit_log_end(ab); | 714 | audit_log_end(ab); |
712 | break; | 715 | break; |
713 | case AUDIT_MAKE_EQUIV: { | 716 | case AUDIT_MAKE_EQUIV: { |
714 | void *bufp = data; | 717 | void *bufp = data; |
715 | u32 sizes[2]; | 718 | u32 sizes[2]; |
716 | size_t len = nlmsg_len(nlh); | 719 | size_t len = nlmsg_len(nlh); |
717 | char *old, *new; | 720 | char *old, *new; |
718 | 721 | ||
719 | err = -EINVAL; | 722 | err = -EINVAL; |
720 | if (len < 2 * sizeof(u32)) | 723 | if (len < 2 * sizeof(u32)) |
721 | break; | 724 | break; |
722 | memcpy(sizes, bufp, 2 * sizeof(u32)); | 725 | memcpy(sizes, bufp, 2 * sizeof(u32)); |
723 | bufp += 2 * sizeof(u32); | 726 | bufp += 2 * sizeof(u32); |
724 | len -= 2 * sizeof(u32); | 727 | len -= 2 * sizeof(u32); |
725 | old = audit_unpack_string(&bufp, &len, sizes[0]); | 728 | old = audit_unpack_string(&bufp, &len, sizes[0]); |
726 | if (IS_ERR(old)) { | 729 | if (IS_ERR(old)) { |
727 | err = PTR_ERR(old); | 730 | err = PTR_ERR(old); |
728 | break; | 731 | break; |
729 | } | 732 | } |
730 | new = audit_unpack_string(&bufp, &len, sizes[1]); | 733 | new = audit_unpack_string(&bufp, &len, sizes[1]); |
731 | if (IS_ERR(new)) { | 734 | if (IS_ERR(new)) { |
732 | err = PTR_ERR(new); | 735 | err = PTR_ERR(new); |
733 | kfree(old); | 736 | kfree(old); |
734 | break; | 737 | break; |
735 | } | 738 | } |
736 | /* OK, here comes... */ | 739 | /* OK, here comes... */ |
737 | err = audit_tag_tree(old, new); | 740 | err = audit_tag_tree(old, new); |
738 | 741 | ||
739 | audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, | 742 | audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, |
740 | uid, loginuid, sid); | 743 | uid, loginuid, sid); |
741 | 744 | ||
742 | audit_log_format(ab, " op=make_equiv old="); | 745 | audit_log_format(ab, " op=make_equiv old="); |
743 | audit_log_untrustedstring(ab, old); | 746 | audit_log_untrustedstring(ab, old); |
744 | audit_log_format(ab, " new="); | 747 | audit_log_format(ab, " new="); |
745 | audit_log_untrustedstring(ab, new); | 748 | audit_log_untrustedstring(ab, new); |
746 | audit_log_format(ab, " res=%d", !err); | 749 | audit_log_format(ab, " res=%d", !err); |
747 | audit_log_end(ab); | 750 | audit_log_end(ab); |
748 | kfree(old); | 751 | kfree(old); |
749 | kfree(new); | 752 | kfree(new); |
750 | break; | 753 | break; |
751 | } | 754 | } |
752 | case AUDIT_SIGNAL_INFO: | 755 | case AUDIT_SIGNAL_INFO: |
753 | err = selinux_sid_to_string(audit_sig_sid, &ctx, &len); | 756 | err = selinux_sid_to_string(audit_sig_sid, &ctx, &len); |
754 | if (err) | 757 | if (err) |
755 | return err; | 758 | return err; |
756 | sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); | 759 | sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); |
757 | if (!sig_data) { | 760 | if (!sig_data) { |
758 | kfree(ctx); | 761 | kfree(ctx); |
759 | return -ENOMEM; | 762 | return -ENOMEM; |
760 | } | 763 | } |
761 | sig_data->uid = audit_sig_uid; | 764 | sig_data->uid = audit_sig_uid; |
762 | sig_data->pid = audit_sig_pid; | 765 | sig_data->pid = audit_sig_pid; |
763 | memcpy(sig_data->ctx, ctx, len); | 766 | memcpy(sig_data->ctx, ctx, len); |
764 | kfree(ctx); | 767 | kfree(ctx); |
765 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, | 768 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, |
766 | 0, 0, sig_data, sizeof(*sig_data) + len); | 769 | 0, 0, sig_data, sizeof(*sig_data) + len); |
767 | kfree(sig_data); | 770 | kfree(sig_data); |
768 | break; | 771 | break; |
769 | case AUDIT_TTY_GET: { | 772 | case AUDIT_TTY_GET: { |
770 | struct audit_tty_status s; | 773 | struct audit_tty_status s; |
771 | struct task_struct *tsk; | 774 | struct task_struct *tsk; |
772 | 775 | ||
773 | read_lock(&tasklist_lock); | 776 | read_lock(&tasklist_lock); |
774 | tsk = find_task_by_pid(pid); | 777 | tsk = find_task_by_pid(pid); |
775 | if (!tsk) | 778 | if (!tsk) |
776 | err = -ESRCH; | 779 | err = -ESRCH; |
777 | else { | 780 | else { |
778 | spin_lock_irq(&tsk->sighand->siglock); | 781 | spin_lock_irq(&tsk->sighand->siglock); |
779 | s.enabled = tsk->signal->audit_tty != 0; | 782 | s.enabled = tsk->signal->audit_tty != 0; |
780 | spin_unlock_irq(&tsk->sighand->siglock); | 783 | spin_unlock_irq(&tsk->sighand->siglock); |
781 | } | 784 | } |
782 | read_unlock(&tasklist_lock); | 785 | read_unlock(&tasklist_lock); |
783 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0, | 786 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0, |
784 | &s, sizeof(s)); | 787 | &s, sizeof(s)); |
785 | break; | 788 | break; |
786 | } | 789 | } |
787 | case AUDIT_TTY_SET: { | 790 | case AUDIT_TTY_SET: { |
788 | struct audit_tty_status *s; | 791 | struct audit_tty_status *s; |
789 | struct task_struct *tsk; | 792 | struct task_struct *tsk; |
790 | 793 | ||
791 | if (nlh->nlmsg_len < sizeof(struct audit_tty_status)) | 794 | if (nlh->nlmsg_len < sizeof(struct audit_tty_status)) |
792 | return -EINVAL; | 795 | return -EINVAL; |
793 | s = data; | 796 | s = data; |
794 | if (s->enabled != 0 && s->enabled != 1) | 797 | if (s->enabled != 0 && s->enabled != 1) |
795 | return -EINVAL; | 798 | return -EINVAL; |
796 | read_lock(&tasklist_lock); | 799 | read_lock(&tasklist_lock); |
797 | tsk = find_task_by_pid(pid); | 800 | tsk = find_task_by_pid(pid); |
798 | if (!tsk) | 801 | if (!tsk) |
799 | err = -ESRCH; | 802 | err = -ESRCH; |
800 | else { | 803 | else { |
801 | spin_lock_irq(&tsk->sighand->siglock); | 804 | spin_lock_irq(&tsk->sighand->siglock); |
802 | tsk->signal->audit_tty = s->enabled != 0; | 805 | tsk->signal->audit_tty = s->enabled != 0; |
803 | spin_unlock_irq(&tsk->sighand->siglock); | 806 | spin_unlock_irq(&tsk->sighand->siglock); |
804 | } | 807 | } |
805 | read_unlock(&tasklist_lock); | 808 | read_unlock(&tasklist_lock); |
806 | break; | 809 | break; |
807 | } | 810 | } |
808 | default: | 811 | default: |
809 | err = -EINVAL; | 812 | err = -EINVAL; |
810 | break; | 813 | break; |
811 | } | 814 | } |
812 | 815 | ||
813 | return err < 0 ? err : 0; | 816 | return err < 0 ? err : 0; |
814 | } | 817 | } |
815 | 818 | ||
816 | /* | 819 | /* |
817 | * Get message from skb (based on rtnetlink_rcv_skb). Each message is | 820 | * Get message from skb (based on rtnetlink_rcv_skb). Each message is |
818 | * processed by audit_receive_msg. Malformed skbs with wrong length are | 821 | * processed by audit_receive_msg. Malformed skbs with wrong length are |
819 | * discarded silently. | 822 | * discarded silently. |
820 | */ | 823 | */ |
821 | static void audit_receive_skb(struct sk_buff *skb) | 824 | static void audit_receive_skb(struct sk_buff *skb) |
822 | { | 825 | { |
823 | int err; | 826 | int err; |
824 | struct nlmsghdr *nlh; | 827 | struct nlmsghdr *nlh; |
825 | u32 rlen; | 828 | u32 rlen; |
826 | 829 | ||
827 | while (skb->len >= NLMSG_SPACE(0)) { | 830 | while (skb->len >= NLMSG_SPACE(0)) { |
828 | nlh = nlmsg_hdr(skb); | 831 | nlh = nlmsg_hdr(skb); |
829 | if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len) | 832 | if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len) |
830 | return; | 833 | return; |
831 | rlen = NLMSG_ALIGN(nlh->nlmsg_len); | 834 | rlen = NLMSG_ALIGN(nlh->nlmsg_len); |
832 | if (rlen > skb->len) | 835 | if (rlen > skb->len) |
833 | rlen = skb->len; | 836 | rlen = skb->len; |
834 | if ((err = audit_receive_msg(skb, nlh))) { | 837 | if ((err = audit_receive_msg(skb, nlh))) { |
835 | netlink_ack(skb, nlh, err); | 838 | netlink_ack(skb, nlh, err); |
836 | } else if (nlh->nlmsg_flags & NLM_F_ACK) | 839 | } else if (nlh->nlmsg_flags & NLM_F_ACK) |
837 | netlink_ack(skb, nlh, 0); | 840 | netlink_ack(skb, nlh, 0); |
838 | skb_pull(skb, rlen); | 841 | skb_pull(skb, rlen); |
839 | } | 842 | } |
840 | } | 843 | } |
841 | 844 | ||
842 | /* Receive messages from netlink socket. */ | 845 | /* Receive messages from netlink socket. */ |
843 | static void audit_receive(struct sk_buff *skb) | 846 | static void audit_receive(struct sk_buff *skb) |
844 | { | 847 | { |
845 | mutex_lock(&audit_cmd_mutex); | 848 | mutex_lock(&audit_cmd_mutex); |
846 | audit_receive_skb(skb); | 849 | audit_receive_skb(skb); |
847 | mutex_unlock(&audit_cmd_mutex); | 850 | mutex_unlock(&audit_cmd_mutex); |
848 | } | 851 | } |
849 | 852 | ||
850 | #ifdef CONFIG_AUDITSYSCALL | 853 | #ifdef CONFIG_AUDITSYSCALL |
851 | static const struct inotify_operations audit_inotify_ops = { | 854 | static const struct inotify_operations audit_inotify_ops = { |
852 | .handle_event = audit_handle_ievent, | 855 | .handle_event = audit_handle_ievent, |
853 | .destroy_watch = audit_free_parent, | 856 | .destroy_watch = audit_free_parent, |
854 | }; | 857 | }; |
855 | #endif | 858 | #endif |
856 | 859 | ||
857 | /* Initialize audit support at boot time. */ | 860 | /* Initialize audit support at boot time. */ |
858 | static int __init audit_init(void) | 861 | static int __init audit_init(void) |
859 | { | 862 | { |
860 | int i; | 863 | int i; |
861 | 864 | ||
862 | printk(KERN_INFO "audit: initializing netlink socket (%s)\n", | 865 | printk(KERN_INFO "audit: initializing netlink socket (%s)\n", |
863 | audit_default ? "enabled" : "disabled"); | 866 | audit_default ? "enabled" : "disabled"); |
864 | audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0, | 867 | audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0, |
865 | audit_receive, NULL, THIS_MODULE); | 868 | audit_receive, NULL, THIS_MODULE); |
866 | if (!audit_sock) | 869 | if (!audit_sock) |
867 | audit_panic("cannot initialize netlink socket"); | 870 | audit_panic("cannot initialize netlink socket"); |
868 | else | 871 | else |
869 | audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; | 872 | audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; |
870 | 873 | ||
871 | skb_queue_head_init(&audit_skb_queue); | 874 | skb_queue_head_init(&audit_skb_queue); |
872 | audit_initialized = 1; | 875 | audit_initialized = 1; |
873 | audit_enabled = audit_default; | 876 | audit_enabled = audit_default; |
874 | audit_ever_enabled |= !!audit_default; | 877 | audit_ever_enabled |= !!audit_default; |
875 | 878 | ||
876 | /* Register the callback with selinux. This callback will be invoked | 879 | /* Register the callback with selinux. This callback will be invoked |
877 | * when a new policy is loaded. */ | 880 | * when a new policy is loaded. */ |
878 | selinux_audit_set_callback(&selinux_audit_rule_update); | 881 | selinux_audit_set_callback(&selinux_audit_rule_update); |
879 | 882 | ||
880 | audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); | 883 | audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); |
881 | 884 | ||
882 | #ifdef CONFIG_AUDITSYSCALL | 885 | #ifdef CONFIG_AUDITSYSCALL |
883 | audit_ih = inotify_init(&audit_inotify_ops); | 886 | audit_ih = inotify_init(&audit_inotify_ops); |
884 | if (IS_ERR(audit_ih)) | 887 | if (IS_ERR(audit_ih)) |
885 | audit_panic("cannot initialize inotify handle"); | 888 | audit_panic("cannot initialize inotify handle"); |
886 | #endif | 889 | #endif |
887 | 890 | ||
888 | for (i = 0; i < AUDIT_INODE_BUCKETS; i++) | 891 | for (i = 0; i < AUDIT_INODE_BUCKETS; i++) |
889 | INIT_LIST_HEAD(&audit_inode_hash[i]); | 892 | INIT_LIST_HEAD(&audit_inode_hash[i]); |
890 | 893 | ||
891 | return 0; | 894 | return 0; |
892 | } | 895 | } |
893 | __initcall(audit_init); | 896 | __initcall(audit_init); |
894 | 897 | ||
895 | /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ | 898 | /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ |
896 | static int __init audit_enable(char *str) | 899 | static int __init audit_enable(char *str) |
897 | { | 900 | { |
898 | audit_default = !!simple_strtol(str, NULL, 0); | 901 | audit_default = !!simple_strtol(str, NULL, 0); |
899 | printk(KERN_INFO "audit: %s%s\n", | 902 | printk(KERN_INFO "audit: %s%s\n", |
900 | audit_default ? "enabled" : "disabled", | 903 | audit_default ? "enabled" : "disabled", |
901 | audit_initialized ? "" : " (after initialization)"); | 904 | audit_initialized ? "" : " (after initialization)"); |
902 | if (audit_initialized) { | 905 | if (audit_initialized) { |
903 | audit_enabled = audit_default; | 906 | audit_enabled = audit_default; |
904 | audit_ever_enabled |= !!audit_default; | 907 | audit_ever_enabled |= !!audit_default; |
905 | } | 908 | } |
906 | return 1; | 909 | return 1; |
907 | } | 910 | } |
908 | 911 | ||
909 | __setup("audit=", audit_enable); | 912 | __setup("audit=", audit_enable); |
910 | 913 | ||
911 | static void audit_buffer_free(struct audit_buffer *ab) | 914 | static void audit_buffer_free(struct audit_buffer *ab) |
912 | { | 915 | { |
913 | unsigned long flags; | 916 | unsigned long flags; |
914 | 917 | ||
915 | if (!ab) | 918 | if (!ab) |
916 | return; | 919 | return; |
917 | 920 | ||
918 | if (ab->skb) | 921 | if (ab->skb) |
919 | kfree_skb(ab->skb); | 922 | kfree_skb(ab->skb); |
920 | 923 | ||
921 | spin_lock_irqsave(&audit_freelist_lock, flags); | 924 | spin_lock_irqsave(&audit_freelist_lock, flags); |
922 | if (audit_freelist_count > AUDIT_MAXFREE) | 925 | if (audit_freelist_count > AUDIT_MAXFREE) |
923 | kfree(ab); | 926 | kfree(ab); |
924 | else { | 927 | else { |
925 | audit_freelist_count++; | 928 | audit_freelist_count++; |
926 | list_add(&ab->list, &audit_freelist); | 929 | list_add(&ab->list, &audit_freelist); |
927 | } | 930 | } |
928 | spin_unlock_irqrestore(&audit_freelist_lock, flags); | 931 | spin_unlock_irqrestore(&audit_freelist_lock, flags); |
929 | } | 932 | } |
930 | 933 | ||
931 | static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, | 934 | static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, |
932 | gfp_t gfp_mask, int type) | 935 | gfp_t gfp_mask, int type) |
933 | { | 936 | { |
934 | unsigned long flags; | 937 | unsigned long flags; |
935 | struct audit_buffer *ab = NULL; | 938 | struct audit_buffer *ab = NULL; |
936 | struct nlmsghdr *nlh; | 939 | struct nlmsghdr *nlh; |
937 | 940 | ||
938 | spin_lock_irqsave(&audit_freelist_lock, flags); | 941 | spin_lock_irqsave(&audit_freelist_lock, flags); |
939 | if (!list_empty(&audit_freelist)) { | 942 | if (!list_empty(&audit_freelist)) { |
940 | ab = list_entry(audit_freelist.next, | 943 | ab = list_entry(audit_freelist.next, |
941 | struct audit_buffer, list); | 944 | struct audit_buffer, list); |
942 | list_del(&ab->list); | 945 | list_del(&ab->list); |
943 | --audit_freelist_count; | 946 | --audit_freelist_count; |
944 | } | 947 | } |
945 | spin_unlock_irqrestore(&audit_freelist_lock, flags); | 948 | spin_unlock_irqrestore(&audit_freelist_lock, flags); |
946 | 949 | ||
947 | if (!ab) { | 950 | if (!ab) { |
948 | ab = kmalloc(sizeof(*ab), gfp_mask); | 951 | ab = kmalloc(sizeof(*ab), gfp_mask); |
949 | if (!ab) | 952 | if (!ab) |
950 | goto err; | 953 | goto err; |
951 | } | 954 | } |
952 | 955 | ||
953 | ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask); | 956 | ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask); |
954 | if (!ab->skb) | 957 | if (!ab->skb) |
955 | goto err; | 958 | goto err; |
956 | 959 | ||
957 | ab->ctx = ctx; | 960 | ab->ctx = ctx; |
958 | ab->gfp_mask = gfp_mask; | 961 | ab->gfp_mask = gfp_mask; |
959 | nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0)); | 962 | nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0)); |
960 | nlh->nlmsg_type = type; | 963 | nlh->nlmsg_type = type; |
961 | nlh->nlmsg_flags = 0; | 964 | nlh->nlmsg_flags = 0; |
962 | nlh->nlmsg_pid = 0; | 965 | nlh->nlmsg_pid = 0; |
963 | nlh->nlmsg_seq = 0; | 966 | nlh->nlmsg_seq = 0; |
964 | return ab; | 967 | return ab; |
965 | err: | 968 | err: |
966 | audit_buffer_free(ab); | 969 | audit_buffer_free(ab); |
967 | return NULL; | 970 | return NULL; |
968 | } | 971 | } |
969 | 972 | ||
970 | /** | 973 | /** |
971 | * audit_serial - compute a serial number for the audit record | 974 | * audit_serial - compute a serial number for the audit record |
972 | * | 975 | * |
973 | * Compute a serial number for the audit record. Audit records are | 976 | * Compute a serial number for the audit record. Audit records are |
974 | * written to user-space as soon as they are generated, so a complete | 977 | * written to user-space as soon as they are generated, so a complete |
975 | * audit record may be written in several pieces. The timestamp of the | 978 | * audit record may be written in several pieces. The timestamp of the |
976 | * record and this serial number are used by the user-space tools to | 979 | * record and this serial number are used by the user-space tools to |
977 | * determine which pieces belong to the same audit record. The | 980 | * determine which pieces belong to the same audit record. The |
978 | * (timestamp,serial) tuple is unique for each syscall and is live from | 981 | * (timestamp,serial) tuple is unique for each syscall and is live from |
979 | * syscall entry to syscall exit. | 982 | * syscall entry to syscall exit. |
980 | * | 983 | * |
981 | * NOTE: Another possibility is to store the formatted records off the | 984 | * NOTE: Another possibility is to store the formatted records off the |
982 | * audit context (for those records that have a context), and emit them | 985 | * audit context (for those records that have a context), and emit them |
983 | * all at syscall exit. However, this could delay the reporting of | 986 | * all at syscall exit. However, this could delay the reporting of |
984 | * significant errors until syscall exit (or never, if the system | 987 | * significant errors until syscall exit (or never, if the system |
985 | * halts). | 988 | * halts). |
986 | */ | 989 | */ |
987 | unsigned int audit_serial(void) | 990 | unsigned int audit_serial(void) |
988 | { | 991 | { |
989 | static DEFINE_SPINLOCK(serial_lock); | 992 | static DEFINE_SPINLOCK(serial_lock); |
990 | static unsigned int serial = 0; | 993 | static unsigned int serial = 0; |
991 | 994 | ||
992 | unsigned long flags; | 995 | unsigned long flags; |
993 | unsigned int ret; | 996 | unsigned int ret; |
994 | 997 | ||
995 | spin_lock_irqsave(&serial_lock, flags); | 998 | spin_lock_irqsave(&serial_lock, flags); |
996 | do { | 999 | do { |
997 | ret = ++serial; | 1000 | ret = ++serial; |
998 | } while (unlikely(!ret)); | 1001 | } while (unlikely(!ret)); |
999 | spin_unlock_irqrestore(&serial_lock, flags); | 1002 | spin_unlock_irqrestore(&serial_lock, flags); |
1000 | 1003 | ||
1001 | return ret; | 1004 | return ret; |
1002 | } | 1005 | } |
1003 | 1006 | ||
1004 | static inline void audit_get_stamp(struct audit_context *ctx, | 1007 | static inline void audit_get_stamp(struct audit_context *ctx, |
1005 | struct timespec *t, unsigned int *serial) | 1008 | struct timespec *t, unsigned int *serial) |
1006 | { | 1009 | { |
1007 | if (ctx) | 1010 | if (ctx) |
1008 | auditsc_get_stamp(ctx, t, serial); | 1011 | auditsc_get_stamp(ctx, t, serial); |
1009 | else { | 1012 | else { |
1010 | *t = CURRENT_TIME; | 1013 | *t = CURRENT_TIME; |
1011 | *serial = audit_serial(); | 1014 | *serial = audit_serial(); |
1012 | } | 1015 | } |
1013 | } | 1016 | } |
1014 | 1017 | ||
1015 | /* Obtain an audit buffer. This routine does locking to obtain the | 1018 | /* Obtain an audit buffer. This routine does locking to obtain the |
1016 | * audit buffer, but then no locking is required for calls to | 1019 | * audit buffer, but then no locking is required for calls to |
1017 | * audit_log_*format. If the tsk is a task that is currently in a | 1020 | * audit_log_*format. If the tsk is a task that is currently in a |
1018 | * syscall, then the syscall is marked as auditable and an audit record | 1021 | * syscall, then the syscall is marked as auditable and an audit record |
1019 | * will be written at syscall exit. If there is no associated task, tsk | 1022 | * will be written at syscall exit. If there is no associated task, tsk |
1020 | * should be NULL. */ | 1023 | * should be NULL. */ |
1021 | 1024 | ||
1022 | /** | 1025 | /** |
1023 | * audit_log_start - obtain an audit buffer | 1026 | * audit_log_start - obtain an audit buffer |
1024 | * @ctx: audit_context (may be NULL) | 1027 | * @ctx: audit_context (may be NULL) |
1025 | * @gfp_mask: type of allocation | 1028 | * @gfp_mask: type of allocation |
1026 | * @type: audit message type | 1029 | * @type: audit message type |
1027 | * | 1030 | * |
1028 | * Returns audit_buffer pointer on success or NULL on error. | 1031 | * Returns audit_buffer pointer on success or NULL on error. |
1029 | * | 1032 | * |
1030 | * Obtain an audit buffer. This routine does locking to obtain the | 1033 | * Obtain an audit buffer. This routine does locking to obtain the |
1031 | * audit buffer, but then no locking is required for calls to | 1034 | * audit buffer, but then no locking is required for calls to |
1032 | * audit_log_*format. If the task (ctx) is a task that is currently in a | 1035 | * audit_log_*format. If the task (ctx) is a task that is currently in a |
1033 | * syscall, then the syscall is marked as auditable and an audit record | 1036 | * syscall, then the syscall is marked as auditable and an audit record |
1034 | * will be written at syscall exit. If there is no associated task, then | 1037 | * will be written at syscall exit. If there is no associated task, then |
1035 | * task context (ctx) should be NULL. | 1038 | * task context (ctx) should be NULL. |
1036 | */ | 1039 | */ |
1037 | struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, | 1040 | struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, |
1038 | int type) | 1041 | int type) |
1039 | { | 1042 | { |
1040 | struct audit_buffer *ab = NULL; | 1043 | struct audit_buffer *ab = NULL; |
1041 | struct timespec t; | 1044 | struct timespec t; |
1042 | unsigned int uninitialized_var(serial); | 1045 | unsigned int uninitialized_var(serial); |
1043 | int reserve; | 1046 | int reserve; |
1044 | unsigned long timeout_start = jiffies; | 1047 | unsigned long timeout_start = jiffies; |
1045 | 1048 | ||
1046 | if (!audit_initialized) | 1049 | if (!audit_initialized) |
1047 | return NULL; | 1050 | return NULL; |
1048 | 1051 | ||
1049 | if (unlikely(audit_filter_type(type))) | 1052 | if (unlikely(audit_filter_type(type))) |
1050 | return NULL; | 1053 | return NULL; |
1051 | 1054 | ||
1052 | if (gfp_mask & __GFP_WAIT) | 1055 | if (gfp_mask & __GFP_WAIT) |
1053 | reserve = 0; | 1056 | reserve = 0; |
1054 | else | 1057 | else |
1055 | reserve = 5; /* Allow atomic callers to go up to five | 1058 | reserve = 5; /* Allow atomic callers to go up to five |
1056 | entries over the normal backlog limit */ | 1059 | entries over the normal backlog limit */ |
1057 | 1060 | ||
1058 | while (audit_backlog_limit | 1061 | while (audit_backlog_limit |
1059 | && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { | 1062 | && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { |
1060 | if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time | 1063 | if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time |
1061 | && time_before(jiffies, timeout_start + audit_backlog_wait_time)) { | 1064 | && time_before(jiffies, timeout_start + audit_backlog_wait_time)) { |
1062 | 1065 | ||
1063 | /* Wait for auditd to drain the queue a little */ | 1066 | /* Wait for auditd to drain the queue a little */ |
1064 | DECLARE_WAITQUEUE(wait, current); | 1067 | DECLARE_WAITQUEUE(wait, current); |
1065 | set_current_state(TASK_INTERRUPTIBLE); | 1068 | set_current_state(TASK_INTERRUPTIBLE); |
1066 | add_wait_queue(&audit_backlog_wait, &wait); | 1069 | add_wait_queue(&audit_backlog_wait, &wait); |
1067 | 1070 | ||
1068 | if (audit_backlog_limit && | 1071 | if (audit_backlog_limit && |
1069 | skb_queue_len(&audit_skb_queue) > audit_backlog_limit) | 1072 | skb_queue_len(&audit_skb_queue) > audit_backlog_limit) |
1070 | schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies); | 1073 | schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies); |
1071 | 1074 | ||
1072 | __set_current_state(TASK_RUNNING); | 1075 | __set_current_state(TASK_RUNNING); |
1073 | remove_wait_queue(&audit_backlog_wait, &wait); | 1076 | remove_wait_queue(&audit_backlog_wait, &wait); |
1074 | continue; | 1077 | continue; |
1075 | } | 1078 | } |
1076 | if (audit_rate_check() && printk_ratelimit()) | 1079 | if (audit_rate_check() && printk_ratelimit()) |
1077 | printk(KERN_WARNING | 1080 | printk(KERN_WARNING |
1078 | "audit: audit_backlog=%d > " | 1081 | "audit: audit_backlog=%d > " |
1079 | "audit_backlog_limit=%d\n", | 1082 | "audit_backlog_limit=%d\n", |
1080 | skb_queue_len(&audit_skb_queue), | 1083 | skb_queue_len(&audit_skb_queue), |
1081 | audit_backlog_limit); | 1084 | audit_backlog_limit); |
1082 | audit_log_lost("backlog limit exceeded"); | 1085 | audit_log_lost("backlog limit exceeded"); |
1083 | audit_backlog_wait_time = audit_backlog_wait_overflow; | 1086 | audit_backlog_wait_time = audit_backlog_wait_overflow; |
1084 | wake_up(&audit_backlog_wait); | 1087 | wake_up(&audit_backlog_wait); |
1085 | return NULL; | 1088 | return NULL; |
1086 | } | 1089 | } |
1087 | 1090 | ||
1088 | ab = audit_buffer_alloc(ctx, gfp_mask, type); | 1091 | ab = audit_buffer_alloc(ctx, gfp_mask, type); |
1089 | if (!ab) { | 1092 | if (!ab) { |
1090 | audit_log_lost("out of memory in audit_log_start"); | 1093 | audit_log_lost("out of memory in audit_log_start"); |
1091 | return NULL; | 1094 | return NULL; |
1092 | } | 1095 | } |
1093 | 1096 | ||
1094 | audit_get_stamp(ab->ctx, &t, &serial); | 1097 | audit_get_stamp(ab->ctx, &t, &serial); |
1095 | 1098 | ||
1096 | audit_log_format(ab, "audit(%lu.%03lu:%u): ", | 1099 | audit_log_format(ab, "audit(%lu.%03lu:%u): ", |
1097 | t.tv_sec, t.tv_nsec/1000000, serial); | 1100 | t.tv_sec, t.tv_nsec/1000000, serial); |
1098 | return ab; | 1101 | return ab; |
1099 | } | 1102 | } |
1100 | 1103 | ||
1101 | /** | 1104 | /** |
1102 | * audit_expand - expand skb in the audit buffer | 1105 | * audit_expand - expand skb in the audit buffer |
1103 | * @ab: audit_buffer | 1106 | * @ab: audit_buffer |
1104 | * @extra: space to add at tail of the skb | 1107 | * @extra: space to add at tail of the skb |
1105 | * | 1108 | * |
1106 | * Returns 0 (no space) on failed expansion, or available space if | 1109 | * Returns 0 (no space) on failed expansion, or available space if |
1107 | * successful. | 1110 | * successful. |
1108 | */ | 1111 | */ |
1109 | static inline int audit_expand(struct audit_buffer *ab, int extra) | 1112 | static inline int audit_expand(struct audit_buffer *ab, int extra) |
1110 | { | 1113 | { |
1111 | struct sk_buff *skb = ab->skb; | 1114 | struct sk_buff *skb = ab->skb; |
1112 | int oldtail = skb_tailroom(skb); | 1115 | int oldtail = skb_tailroom(skb); |
1113 | int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); | 1116 | int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); |
1114 | int newtail = skb_tailroom(skb); | 1117 | int newtail = skb_tailroom(skb); |
1115 | 1118 | ||
1116 | if (ret < 0) { | 1119 | if (ret < 0) { |
1117 | audit_log_lost("out of memory in audit_expand"); | 1120 | audit_log_lost("out of memory in audit_expand"); |
1118 | return 0; | 1121 | return 0; |
1119 | } | 1122 | } |
1120 | 1123 | ||
1121 | skb->truesize += newtail - oldtail; | 1124 | skb->truesize += newtail - oldtail; |
1122 | return newtail; | 1125 | return newtail; |
1123 | } | 1126 | } |
1124 | 1127 | ||
1125 | /* | 1128 | /* |
1126 | * Format an audit message into the audit buffer. If there isn't enough | 1129 | * Format an audit message into the audit buffer. If there isn't enough |
1127 | * room in the audit buffer, more room will be allocated and vsnprint | 1130 | * room in the audit buffer, more room will be allocated and vsnprint |
1128 | * will be called a second time. Currently, we assume that a printk | 1131 | * will be called a second time. Currently, we assume that a printk |
1129 | * can't format message larger than 1024 bytes, so we don't either. | 1132 | * can't format message larger than 1024 bytes, so we don't either. |
1130 | */ | 1133 | */ |
1131 | static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, | 1134 | static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, |
1132 | va_list args) | 1135 | va_list args) |
1133 | { | 1136 | { |
1134 | int len, avail; | 1137 | int len, avail; |
1135 | struct sk_buff *skb; | 1138 | struct sk_buff *skb; |
1136 | va_list args2; | 1139 | va_list args2; |
1137 | 1140 | ||
1138 | if (!ab) | 1141 | if (!ab) |
1139 | return; | 1142 | return; |
1140 | 1143 | ||
1141 | BUG_ON(!ab->skb); | 1144 | BUG_ON(!ab->skb); |
1142 | skb = ab->skb; | 1145 | skb = ab->skb; |
1143 | avail = skb_tailroom(skb); | 1146 | avail = skb_tailroom(skb); |
1144 | if (avail == 0) { | 1147 | if (avail == 0) { |
1145 | avail = audit_expand(ab, AUDIT_BUFSIZ); | 1148 | avail = audit_expand(ab, AUDIT_BUFSIZ); |
1146 | if (!avail) | 1149 | if (!avail) |
1147 | goto out; | 1150 | goto out; |
1148 | } | 1151 | } |
1149 | va_copy(args2, args); | 1152 | va_copy(args2, args); |
1150 | len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); | 1153 | len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); |
1151 | if (len >= avail) { | 1154 | if (len >= avail) { |
1152 | /* The printk buffer is 1024 bytes long, so if we get | 1155 | /* The printk buffer is 1024 bytes long, so if we get |
1153 | * here and AUDIT_BUFSIZ is at least 1024, then we can | 1156 | * here and AUDIT_BUFSIZ is at least 1024, then we can |
1154 | * log everything that printk could have logged. */ | 1157 | * log everything that printk could have logged. */ |
1155 | avail = audit_expand(ab, | 1158 | avail = audit_expand(ab, |
1156 | max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); | 1159 | max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); |
1157 | if (!avail) | 1160 | if (!avail) |
1158 | goto out; | 1161 | goto out; |
1159 | len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); | 1162 | len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); |
1160 | } | 1163 | } |
1161 | va_end(args2); | 1164 | va_end(args2); |
1162 | if (len > 0) | 1165 | if (len > 0) |
1163 | skb_put(skb, len); | 1166 | skb_put(skb, len); |
1164 | out: | 1167 | out: |
1165 | return; | 1168 | return; |
1166 | } | 1169 | } |
1167 | 1170 | ||
1168 | /** | 1171 | /** |
1169 | * audit_log_format - format a message into the audit buffer. | 1172 | * audit_log_format - format a message into the audit buffer. |
1170 | * @ab: audit_buffer | 1173 | * @ab: audit_buffer |
1171 | * @fmt: format string | 1174 | * @fmt: format string |
1172 | * @...: optional parameters matching @fmt string | 1175 | * @...: optional parameters matching @fmt string |
1173 | * | 1176 | * |
1174 | * All the work is done in audit_log_vformat. | 1177 | * All the work is done in audit_log_vformat. |
1175 | */ | 1178 | */ |
1176 | void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) | 1179 | void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) |
1177 | { | 1180 | { |
1178 | va_list args; | 1181 | va_list args; |
1179 | 1182 | ||
1180 | if (!ab) | 1183 | if (!ab) |
1181 | return; | 1184 | return; |
1182 | va_start(args, fmt); | 1185 | va_start(args, fmt); |
1183 | audit_log_vformat(ab, fmt, args); | 1186 | audit_log_vformat(ab, fmt, args); |
1184 | va_end(args); | 1187 | va_end(args); |
1185 | } | 1188 | } |
1186 | 1189 | ||
1187 | /** | 1190 | /** |
1188 | * audit_log_hex - convert a buffer to hex and append it to the audit skb | 1191 | * audit_log_hex - convert a buffer to hex and append it to the audit skb |
1189 | * @ab: the audit_buffer | 1192 | * @ab: the audit_buffer |
1190 | * @buf: buffer to convert to hex | 1193 | * @buf: buffer to convert to hex |
1191 | * @len: length of @buf to be converted | 1194 | * @len: length of @buf to be converted |
1192 | * | 1195 | * |
1193 | * No return value; failure to expand is silently ignored. | 1196 | * No return value; failure to expand is silently ignored. |
1194 | * | 1197 | * |
1195 | * This function will take the passed buf and convert it into a string of | 1198 | * This function will take the passed buf and convert it into a string of |
1196 | * ascii hex digits. The new string is placed onto the skb. | 1199 | * ascii hex digits. The new string is placed onto the skb. |
1197 | */ | 1200 | */ |
1198 | void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf, | 1201 | void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf, |
1199 | size_t len) | 1202 | size_t len) |
1200 | { | 1203 | { |
1201 | int i, avail, new_len; | 1204 | int i, avail, new_len; |
1202 | unsigned char *ptr; | 1205 | unsigned char *ptr; |
1203 | struct sk_buff *skb; | 1206 | struct sk_buff *skb; |
1204 | static const unsigned char *hex = "0123456789ABCDEF"; | 1207 | static const unsigned char *hex = "0123456789ABCDEF"; |
1205 | 1208 | ||
1206 | if (!ab) | 1209 | if (!ab) |
1207 | return; | 1210 | return; |
1208 | 1211 | ||
1209 | BUG_ON(!ab->skb); | 1212 | BUG_ON(!ab->skb); |
1210 | skb = ab->skb; | 1213 | skb = ab->skb; |
1211 | avail = skb_tailroom(skb); | 1214 | avail = skb_tailroom(skb); |
1212 | new_len = len<<1; | 1215 | new_len = len<<1; |
1213 | if (new_len >= avail) { | 1216 | if (new_len >= avail) { |
1214 | /* Round the buffer request up to the next multiple */ | 1217 | /* Round the buffer request up to the next multiple */ |
1215 | new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); | 1218 | new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); |
1216 | avail = audit_expand(ab, new_len); | 1219 | avail = audit_expand(ab, new_len); |
1217 | if (!avail) | 1220 | if (!avail) |
1218 | return; | 1221 | return; |
1219 | } | 1222 | } |
1220 | 1223 | ||
1221 | ptr = skb_tail_pointer(skb); | 1224 | ptr = skb_tail_pointer(skb); |
1222 | for (i=0; i<len; i++) { | 1225 | for (i=0; i<len; i++) { |
1223 | *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */ | 1226 | *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */ |
1224 | *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */ | 1227 | *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */ |
1225 | } | 1228 | } |
1226 | *ptr = 0; | 1229 | *ptr = 0; |
1227 | skb_put(skb, len << 1); /* new string is twice the old string */ | 1230 | skb_put(skb, len << 1); /* new string is twice the old string */ |
1228 | } | 1231 | } |
1229 | 1232 | ||
1230 | /* | 1233 | /* |
1231 | * Format a string of no more than slen characters into the audit buffer, | 1234 | * Format a string of no more than slen characters into the audit buffer, |
1232 | * enclosed in quote marks. | 1235 | * enclosed in quote marks. |
1233 | */ | 1236 | */ |
1234 | static void audit_log_n_string(struct audit_buffer *ab, size_t slen, | 1237 | static void audit_log_n_string(struct audit_buffer *ab, size_t slen, |
1235 | const char *string) | 1238 | const char *string) |
1236 | { | 1239 | { |
1237 | int avail, new_len; | 1240 | int avail, new_len; |
1238 | unsigned char *ptr; | 1241 | unsigned char *ptr; |
1239 | struct sk_buff *skb; | 1242 | struct sk_buff *skb; |
1240 | 1243 | ||
1241 | if (!ab) | 1244 | if (!ab) |
1242 | return; | 1245 | return; |
1243 | 1246 | ||
1244 | BUG_ON(!ab->skb); | 1247 | BUG_ON(!ab->skb); |
1245 | skb = ab->skb; | 1248 | skb = ab->skb; |
1246 | avail = skb_tailroom(skb); | 1249 | avail = skb_tailroom(skb); |
1247 | new_len = slen + 3; /* enclosing quotes + null terminator */ | 1250 | new_len = slen + 3; /* enclosing quotes + null terminator */ |
1248 | if (new_len > avail) { | 1251 | if (new_len > avail) { |
1249 | avail = audit_expand(ab, new_len); | 1252 | avail = audit_expand(ab, new_len); |
1250 | if (!avail) | 1253 | if (!avail) |
1251 | return; | 1254 | return; |
1252 | } | 1255 | } |
1253 | ptr = skb_tail_pointer(skb); | 1256 | ptr = skb_tail_pointer(skb); |
1254 | *ptr++ = '"'; | 1257 | *ptr++ = '"'; |
1255 | memcpy(ptr, string, slen); | 1258 | memcpy(ptr, string, slen); |
1256 | ptr += slen; | 1259 | ptr += slen; |
1257 | *ptr++ = '"'; | 1260 | *ptr++ = '"'; |
1258 | *ptr = 0; | 1261 | *ptr = 0; |
1259 | skb_put(skb, slen + 2); /* don't include null terminator */ | 1262 | skb_put(skb, slen + 2); /* don't include null terminator */ |
1260 | } | 1263 | } |
1261 | 1264 | ||
1262 | /** | 1265 | /** |
1263 | * audit_string_contains_control - does a string need to be logged in hex | 1266 | * audit_string_contains_control - does a string need to be logged in hex |
1264 | * @string - string to be checked | 1267 | * @string - string to be checked |
1265 | * @len - max length of the string to check | 1268 | * @len - max length of the string to check |
1266 | */ | 1269 | */ |
1267 | int audit_string_contains_control(const char *string, size_t len) | 1270 | int audit_string_contains_control(const char *string, size_t len) |
1268 | { | 1271 | { |
1269 | const unsigned char *p; | 1272 | const unsigned char *p; |
1270 | for (p = string; p < (const unsigned char *)string + len && *p; p++) { | 1273 | for (p = string; p < (const unsigned char *)string + len && *p; p++) { |
1271 | if (*p == '"' || *p < 0x21 || *p > 0x7f) | 1274 | if (*p == '"' || *p < 0x21 || *p > 0x7f) |
1272 | return 1; | 1275 | return 1; |
1273 | } | 1276 | } |
1274 | return 0; | 1277 | return 0; |
1275 | } | 1278 | } |
1276 | 1279 | ||
1277 | /** | 1280 | /** |
1278 | * audit_log_n_untrustedstring - log a string that may contain random characters | 1281 | * audit_log_n_untrustedstring - log a string that may contain random characters |
1279 | * @ab: audit_buffer | 1282 | * @ab: audit_buffer |
1280 | * @len: lenth of string (not including trailing null) | 1283 | * @len: lenth of string (not including trailing null) |
1281 | * @string: string to be logged | 1284 | * @string: string to be logged |
1282 | * | 1285 | * |
1283 | * This code will escape a string that is passed to it if the string | 1286 | * This code will escape a string that is passed to it if the string |
1284 | * contains a control character, unprintable character, double quote mark, | 1287 | * contains a control character, unprintable character, double quote mark, |
1285 | * or a space. Unescaped strings will start and end with a double quote mark. | 1288 | * or a space. Unescaped strings will start and end with a double quote mark. |
1286 | * Strings that are escaped are printed in hex (2 digits per char). | 1289 | * Strings that are escaped are printed in hex (2 digits per char). |
1287 | * | 1290 | * |
1288 | * The caller specifies the number of characters in the string to log, which may | 1291 | * The caller specifies the number of characters in the string to log, which may |
1289 | * or may not be the entire string. | 1292 | * or may not be the entire string. |
1290 | */ | 1293 | */ |
1291 | void audit_log_n_untrustedstring(struct audit_buffer *ab, size_t len, | 1294 | void audit_log_n_untrustedstring(struct audit_buffer *ab, size_t len, |
1292 | const char *string) | 1295 | const char *string) |
1293 | { | 1296 | { |
1294 | if (audit_string_contains_control(string, len)) | 1297 | if (audit_string_contains_control(string, len)) |
1295 | audit_log_hex(ab, string, len); | 1298 | audit_log_hex(ab, string, len); |
1296 | else | 1299 | else |
1297 | audit_log_n_string(ab, len, string); | 1300 | audit_log_n_string(ab, len, string); |
1298 | } | 1301 | } |
1299 | 1302 | ||
1300 | /** | 1303 | /** |
1301 | * audit_log_untrustedstring - log a string that may contain random characters | 1304 | * audit_log_untrustedstring - log a string that may contain random characters |
1302 | * @ab: audit_buffer | 1305 | * @ab: audit_buffer |
1303 | * @string: string to be logged | 1306 | * @string: string to be logged |
1304 | * | 1307 | * |
1305 | * Same as audit_log_n_untrustedstring(), except that strlen is used to | 1308 | * Same as audit_log_n_untrustedstring(), except that strlen is used to |
1306 | * determine string length. | 1309 | * determine string length. |
1307 | */ | 1310 | */ |
1308 | void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) | 1311 | void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) |
1309 | { | 1312 | { |
1310 | audit_log_n_untrustedstring(ab, strlen(string), string); | 1313 | audit_log_n_untrustedstring(ab, strlen(string), string); |
1311 | } | 1314 | } |
1312 | 1315 | ||
1313 | /* This is a helper-function to print the escaped d_path */ | 1316 | /* This is a helper-function to print the escaped d_path */ |
1314 | void audit_log_d_path(struct audit_buffer *ab, const char *prefix, | 1317 | void audit_log_d_path(struct audit_buffer *ab, const char *prefix, |
1315 | struct path *path) | 1318 | struct path *path) |
1316 | { | 1319 | { |
1317 | char *p, *pathname; | 1320 | char *p, *pathname; |
1318 | 1321 | ||
1319 | if (prefix) | 1322 | if (prefix) |
1320 | audit_log_format(ab, " %s", prefix); | 1323 | audit_log_format(ab, " %s", prefix); |
1321 | 1324 | ||
1322 | /* We will allow 11 spaces for ' (deleted)' to be appended */ | 1325 | /* We will allow 11 spaces for ' (deleted)' to be appended */ |
1323 | pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); | 1326 | pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); |
1324 | if (!pathname) { | 1327 | if (!pathname) { |
1325 | audit_log_format(ab, "<no memory>"); | 1328 | audit_log_format(ab, "<no memory>"); |
1326 | return; | 1329 | return; |
1327 | } | 1330 | } |
1328 | p = d_path(path, pathname, PATH_MAX+11); | 1331 | p = d_path(path, pathname, PATH_MAX+11); |
1329 | if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ | 1332 | if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ |
1330 | /* FIXME: can we save some information here? */ | 1333 | /* FIXME: can we save some information here? */ |
1331 | audit_log_format(ab, "<too long>"); | 1334 | audit_log_format(ab, "<too long>"); |
1332 | } else | 1335 | } else |
1333 | audit_log_untrustedstring(ab, p); | 1336 | audit_log_untrustedstring(ab, p); |
1334 | kfree(pathname); | 1337 | kfree(pathname); |
1335 | } | 1338 | } |
1336 | 1339 | ||
1337 | /** | 1340 | /** |
1338 | * audit_log_end - end one audit record | 1341 | * audit_log_end - end one audit record |
1339 | * @ab: the audit_buffer | 1342 | * @ab: the audit_buffer |
1340 | * | 1343 | * |
1341 | * The netlink_* functions cannot be called inside an irq context, so | 1344 | * The netlink_* functions cannot be called inside an irq context, so |
1342 | * the audit buffer is placed on a queue and a tasklet is scheduled to | 1345 | * the audit buffer is placed on a queue and a tasklet is scheduled to |
1343 | * remove them from the queue outside the irq context. May be called in | 1346 | * remove them from the queue outside the irq context. May be called in |
1344 | * any context. | 1347 | * any context. |
1345 | */ | 1348 | */ |
1346 | void audit_log_end(struct audit_buffer *ab) | 1349 | void audit_log_end(struct audit_buffer *ab) |
1347 | { | 1350 | { |
1348 | if (!ab) | 1351 | if (!ab) |
1349 | return; | 1352 | return; |
1350 | if (!audit_rate_check()) { | 1353 | if (!audit_rate_check()) { |
1351 | audit_log_lost("rate limit exceeded"); | 1354 | audit_log_lost("rate limit exceeded"); |
1352 | } else { | 1355 | } else { |
1353 | if (audit_pid) { | 1356 | if (audit_pid) { |
1354 | struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); | 1357 | struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); |
1355 | nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0); | 1358 | nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0); |
1356 | skb_queue_tail(&audit_skb_queue, ab->skb); | 1359 | skb_queue_tail(&audit_skb_queue, ab->skb); |
1357 | ab->skb = NULL; | 1360 | ab->skb = NULL; |
1358 | wake_up_interruptible(&kauditd_wait); | 1361 | wake_up_interruptible(&kauditd_wait); |
1359 | } else if (printk_ratelimit()) { | 1362 | } else if (printk_ratelimit()) { |
1360 | struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); | 1363 | struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); |
1361 | printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, ab->skb->data + NLMSG_SPACE(0)); | 1364 | printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, ab->skb->data + NLMSG_SPACE(0)); |
1362 | } else { | 1365 | } else { |
1363 | audit_log_lost("printk limit exceeded\n"); | 1366 | audit_log_lost("printk limit exceeded\n"); |
1364 | } | 1367 | } |
1365 | } | 1368 | } |
1366 | audit_buffer_free(ab); | 1369 | audit_buffer_free(ab); |
1367 | } | 1370 | } |
1368 | 1371 | ||
1369 | /** | 1372 | /** |
1370 | * audit_log - Log an audit record | 1373 | * audit_log - Log an audit record |
1371 | * @ctx: audit context | 1374 | * @ctx: audit context |
1372 | * @gfp_mask: type of allocation | 1375 | * @gfp_mask: type of allocation |
1373 | * @type: audit message type | 1376 | * @type: audit message type |
1374 | * @fmt: format string to use | 1377 | * @fmt: format string to use |
1375 | * @...: variable parameters matching the format string | 1378 | * @...: variable parameters matching the format string |
1376 | * | 1379 | * |
1377 | * This is a convenience function that calls audit_log_start, | 1380 | * This is a convenience function that calls audit_log_start, |
1378 | * audit_log_vformat, and audit_log_end. It may be called | 1381 | * audit_log_vformat, and audit_log_end. It may be called |
1379 | * in any context. | 1382 | * in any context. |
1380 | */ | 1383 | */ |
1381 | void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, | 1384 | void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, |
1382 | const char *fmt, ...) | 1385 | const char *fmt, ...) |
1383 | { | 1386 | { |
1384 | struct audit_buffer *ab; | 1387 | struct audit_buffer *ab; |
1385 | va_list args; | 1388 | va_list args; |
1386 | 1389 | ||
1387 | ab = audit_log_start(ctx, gfp_mask, type); | 1390 | ab = audit_log_start(ctx, gfp_mask, type); |
1388 | if (ab) { | 1391 | if (ab) { |
1389 | va_start(args, fmt); | 1392 | va_start(args, fmt); |
1390 | audit_log_vformat(ab, fmt, args); | 1393 | audit_log_vformat(ab, fmt, args); |
1391 | va_end(args); | 1394 | va_end(args); |
1392 | audit_log_end(ab); | 1395 | audit_log_end(ab); |
1393 | } | 1396 | } |
1394 | } | 1397 | } |
1395 | 1398 | ||
1396 | EXPORT_SYMBOL(audit_log_start); | 1399 | EXPORT_SYMBOL(audit_log_start); |
1397 | EXPORT_SYMBOL(audit_log_end); | 1400 | EXPORT_SYMBOL(audit_log_end); |
1398 | EXPORT_SYMBOL(audit_log_format); | 1401 | EXPORT_SYMBOL(audit_log_format); |
1399 | EXPORT_SYMBOL(audit_log); | 1402 | EXPORT_SYMBOL(audit_log); |
1400 | 1403 |