Commit f09ac9db2aafe36fde9ebd63c8c5d776f6e7bd41

Authored by Eric Paris
Committed by Al Viro
1 parent f3d357b092

Audit: stop deadlock from signals under load

A deadlock is possible between kauditd and auditd under load if auditd
receives a signal.  When auditd receives a signal it sends a netlink
message to the kernel asking for information about the sender of the
signal.  In that same context the audit system will attempt to send a
netlink message back to the userspace auditd.  If kauditd has already
filled the socket buffer (see netlink_attachskb()) auditd will now put
itself to sleep waiting for room to send the message.  Since auditd is
responsible for draining that socket we have a deadlock.  The fix, since
the response from the kernel does not need to be synchronous is to send
the signal information back to auditd in a separate thread.  And thus
auditd can continue to drain the audit queue normally.

Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>

Showing 1 changed file with 35 additions and 5 deletions Inline Diff

1 /* audit.c -- Auditing support 1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c 3 * System-call specific features have moved to auditsc.c
4 * 4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved. 6 * All Rights Reserved.
7 * 7 *
8 * This program is free software; you can redistribute it and/or modify 8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by 9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or 10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version. 11 * (at your option) any later version.
12 * 12 *
13 * This program is distributed in the hope that it will be useful, 13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details. 16 * GNU General Public License for more details.
17 * 17 *
18 * You should have received a copy of the GNU General Public License 18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software 19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * 21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 * 23 *
24 * Goals: 1) Integrate fully with Security Modules. 24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead: 25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0). 26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record 27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record 28 * is generated (defer as much work as possible to record
29 * generation time): 29 * generation time):
30 * i) context is allocated, 30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and 31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup. 32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0). 33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called, 34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the 35 * then a syscall record will be generated automatically for the
36 * current syscall). 36 * current syscall).
37 * 5) Netlink interface to user-space. 37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the 38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space. 39 * information that must be passed to user-space.
40 * 40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ 41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */ 42 */
43 43
44 #include <linux/init.h> 44 #include <linux/init.h>
45 #include <asm/types.h> 45 #include <asm/types.h>
46 #include <asm/atomic.h> 46 #include <asm/atomic.h>
47 #include <linux/mm.h> 47 #include <linux/mm.h>
48 #include <linux/module.h> 48 #include <linux/module.h>
49 #include <linux/err.h> 49 #include <linux/err.h>
50 #include <linux/kthread.h> 50 #include <linux/kthread.h>
51 51
52 #include <linux/audit.h> 52 #include <linux/audit.h>
53 53
54 #include <net/sock.h> 54 #include <net/sock.h>
55 #include <net/netlink.h> 55 #include <net/netlink.h>
56 #include <linux/skbuff.h> 56 #include <linux/skbuff.h>
57 #include <linux/netlink.h> 57 #include <linux/netlink.h>
58 #include <linux/inotify.h> 58 #include <linux/inotify.h>
59 #include <linux/freezer.h> 59 #include <linux/freezer.h>
60 #include <linux/tty.h> 60 #include <linux/tty.h>
61 61
62 #include "audit.h" 62 #include "audit.h"
63 63
64 /* No auditing will take place until audit_initialized != 0. 64 /* No auditing will take place until audit_initialized != 0.
65 * (Initialization happens after skb_init is called.) */ 65 * (Initialization happens after skb_init is called.) */
66 static int audit_initialized; 66 static int audit_initialized;
67 67
68 #define AUDIT_OFF 0 68 #define AUDIT_OFF 0
69 #define AUDIT_ON 1 69 #define AUDIT_ON 1
70 #define AUDIT_LOCKED 2 70 #define AUDIT_LOCKED 2
71 int audit_enabled; 71 int audit_enabled;
72 int audit_ever_enabled; 72 int audit_ever_enabled;
73 73
74 /* Default state when kernel boots without any parameters. */ 74 /* Default state when kernel boots without any parameters. */
75 static int audit_default; 75 static int audit_default;
76 76
77 /* If auditing cannot proceed, audit_failure selects what happens. */ 77 /* If auditing cannot proceed, audit_failure selects what happens. */
78 static int audit_failure = AUDIT_FAIL_PRINTK; 78 static int audit_failure = AUDIT_FAIL_PRINTK;
79 79
80 /* 80 /*
81 * If audit records are to be written to the netlink socket, audit_pid 81 * If audit records are to be written to the netlink socket, audit_pid
82 * contains the pid of the auditd process and audit_nlk_pid contains 82 * contains the pid of the auditd process and audit_nlk_pid contains
83 * the pid to use to send netlink messages to that process. 83 * the pid to use to send netlink messages to that process.
84 */ 84 */
85 int audit_pid; 85 int audit_pid;
86 static int audit_nlk_pid; 86 static int audit_nlk_pid;
87 87
88 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 88 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
89 * to that number per second. This prevents DoS attacks, but results in 89 * to that number per second. This prevents DoS attacks, but results in
90 * audit records being dropped. */ 90 * audit records being dropped. */
91 static int audit_rate_limit; 91 static int audit_rate_limit;
92 92
93 /* Number of outstanding audit_buffers allowed. */ 93 /* Number of outstanding audit_buffers allowed. */
94 static int audit_backlog_limit = 64; 94 static int audit_backlog_limit = 64;
95 static int audit_backlog_wait_time = 60 * HZ; 95 static int audit_backlog_wait_time = 60 * HZ;
96 static int audit_backlog_wait_overflow = 0; 96 static int audit_backlog_wait_overflow = 0;
97 97
98 /* The identity of the user shutting down the audit system. */ 98 /* The identity of the user shutting down the audit system. */
99 uid_t audit_sig_uid = -1; 99 uid_t audit_sig_uid = -1;
100 pid_t audit_sig_pid = -1; 100 pid_t audit_sig_pid = -1;
101 u32 audit_sig_sid = 0; 101 u32 audit_sig_sid = 0;
102 102
103 /* Records can be lost in several ways: 103 /* Records can be lost in several ways:
104 0) [suppressed in audit_alloc] 104 0) [suppressed in audit_alloc]
105 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 105 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
106 2) out of memory in audit_log_move [alloc_skb] 106 2) out of memory in audit_log_move [alloc_skb]
107 3) suppressed due to audit_rate_limit 107 3) suppressed due to audit_rate_limit
108 4) suppressed due to audit_backlog_limit 108 4) suppressed due to audit_backlog_limit
109 */ 109 */
110 static atomic_t audit_lost = ATOMIC_INIT(0); 110 static atomic_t audit_lost = ATOMIC_INIT(0);
111 111
112 /* The netlink socket. */ 112 /* The netlink socket. */
113 static struct sock *audit_sock; 113 static struct sock *audit_sock;
114 114
115 /* Inotify handle. */ 115 /* Inotify handle. */
116 struct inotify_handle *audit_ih; 116 struct inotify_handle *audit_ih;
117 117
118 /* Hash for inode-based rules */ 118 /* Hash for inode-based rules */
119 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 119 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
120 120
121 /* The audit_freelist is a list of pre-allocated audit buffers (if more 121 /* The audit_freelist is a list of pre-allocated audit buffers (if more
122 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of 122 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
123 * being placed on the freelist). */ 123 * being placed on the freelist). */
124 static DEFINE_SPINLOCK(audit_freelist_lock); 124 static DEFINE_SPINLOCK(audit_freelist_lock);
125 static int audit_freelist_count; 125 static int audit_freelist_count;
126 static LIST_HEAD(audit_freelist); 126 static LIST_HEAD(audit_freelist);
127 127
128 static struct sk_buff_head audit_skb_queue; 128 static struct sk_buff_head audit_skb_queue;
129 /* queue of skbs to send to auditd when/if it comes back */ 129 /* queue of skbs to send to auditd when/if it comes back */
130 static struct sk_buff_head audit_skb_hold_queue; 130 static struct sk_buff_head audit_skb_hold_queue;
131 static struct task_struct *kauditd_task; 131 static struct task_struct *kauditd_task;
132 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 132 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
133 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 133 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
134 134
135 /* Serialize requests from userspace. */ 135 /* Serialize requests from userspace. */
136 static DEFINE_MUTEX(audit_cmd_mutex); 136 static DEFINE_MUTEX(audit_cmd_mutex);
137 137
138 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 138 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
139 * audit records. Since printk uses a 1024 byte buffer, this buffer 139 * audit records. Since printk uses a 1024 byte buffer, this buffer
140 * should be at least that large. */ 140 * should be at least that large. */
141 #define AUDIT_BUFSIZ 1024 141 #define AUDIT_BUFSIZ 1024
142 142
143 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the 143 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
144 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ 144 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
145 #define AUDIT_MAXFREE (2*NR_CPUS) 145 #define AUDIT_MAXFREE (2*NR_CPUS)
146 146
147 /* The audit_buffer is used when formatting an audit record. The caller 147 /* The audit_buffer is used when formatting an audit record. The caller
148 * locks briefly to get the record off the freelist or to allocate the 148 * locks briefly to get the record off the freelist or to allocate the
149 * buffer, and locks briefly to send the buffer to the netlink layer or 149 * buffer, and locks briefly to send the buffer to the netlink layer or
150 * to place it on a transmit queue. Multiple audit_buffers can be in 150 * to place it on a transmit queue. Multiple audit_buffers can be in
151 * use simultaneously. */ 151 * use simultaneously. */
152 struct audit_buffer { 152 struct audit_buffer {
153 struct list_head list; 153 struct list_head list;
154 struct sk_buff *skb; /* formatted skb ready to send */ 154 struct sk_buff *skb; /* formatted skb ready to send */
155 struct audit_context *ctx; /* NULL or associated context */ 155 struct audit_context *ctx; /* NULL or associated context */
156 gfp_t gfp_mask; 156 gfp_t gfp_mask;
157 }; 157 };
158 158
159 struct audit_reply {
160 int pid;
161 struct sk_buff *skb;
162 };
163
159 static void audit_set_pid(struct audit_buffer *ab, pid_t pid) 164 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
160 { 165 {
161 if (ab) { 166 if (ab) {
162 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 167 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
163 nlh->nlmsg_pid = pid; 168 nlh->nlmsg_pid = pid;
164 } 169 }
165 } 170 }
166 171
167 void audit_panic(const char *message) 172 void audit_panic(const char *message)
168 { 173 {
169 switch (audit_failure) 174 switch (audit_failure)
170 { 175 {
171 case AUDIT_FAIL_SILENT: 176 case AUDIT_FAIL_SILENT:
172 break; 177 break;
173 case AUDIT_FAIL_PRINTK: 178 case AUDIT_FAIL_PRINTK:
174 if (printk_ratelimit()) 179 if (printk_ratelimit())
175 printk(KERN_ERR "audit: %s\n", message); 180 printk(KERN_ERR "audit: %s\n", message);
176 break; 181 break;
177 case AUDIT_FAIL_PANIC: 182 case AUDIT_FAIL_PANIC:
178 /* test audit_pid since printk is always losey, why bother? */ 183 /* test audit_pid since printk is always losey, why bother? */
179 if (audit_pid) 184 if (audit_pid)
180 panic("audit: %s\n", message); 185 panic("audit: %s\n", message);
181 break; 186 break;
182 } 187 }
183 } 188 }
184 189
185 static inline int audit_rate_check(void) 190 static inline int audit_rate_check(void)
186 { 191 {
187 static unsigned long last_check = 0; 192 static unsigned long last_check = 0;
188 static int messages = 0; 193 static int messages = 0;
189 static DEFINE_SPINLOCK(lock); 194 static DEFINE_SPINLOCK(lock);
190 unsigned long flags; 195 unsigned long flags;
191 unsigned long now; 196 unsigned long now;
192 unsigned long elapsed; 197 unsigned long elapsed;
193 int retval = 0; 198 int retval = 0;
194 199
195 if (!audit_rate_limit) return 1; 200 if (!audit_rate_limit) return 1;
196 201
197 spin_lock_irqsave(&lock, flags); 202 spin_lock_irqsave(&lock, flags);
198 if (++messages < audit_rate_limit) { 203 if (++messages < audit_rate_limit) {
199 retval = 1; 204 retval = 1;
200 } else { 205 } else {
201 now = jiffies; 206 now = jiffies;
202 elapsed = now - last_check; 207 elapsed = now - last_check;
203 if (elapsed > HZ) { 208 if (elapsed > HZ) {
204 last_check = now; 209 last_check = now;
205 messages = 0; 210 messages = 0;
206 retval = 1; 211 retval = 1;
207 } 212 }
208 } 213 }
209 spin_unlock_irqrestore(&lock, flags); 214 spin_unlock_irqrestore(&lock, flags);
210 215
211 return retval; 216 return retval;
212 } 217 }
213 218
214 /** 219 /**
215 * audit_log_lost - conditionally log lost audit message event 220 * audit_log_lost - conditionally log lost audit message event
216 * @message: the message stating reason for lost audit message 221 * @message: the message stating reason for lost audit message
217 * 222 *
218 * Emit at least 1 message per second, even if audit_rate_check is 223 * Emit at least 1 message per second, even if audit_rate_check is
219 * throttling. 224 * throttling.
220 * Always increment the lost messages counter. 225 * Always increment the lost messages counter.
221 */ 226 */
222 void audit_log_lost(const char *message) 227 void audit_log_lost(const char *message)
223 { 228 {
224 static unsigned long last_msg = 0; 229 static unsigned long last_msg = 0;
225 static DEFINE_SPINLOCK(lock); 230 static DEFINE_SPINLOCK(lock);
226 unsigned long flags; 231 unsigned long flags;
227 unsigned long now; 232 unsigned long now;
228 int print; 233 int print;
229 234
230 atomic_inc(&audit_lost); 235 atomic_inc(&audit_lost);
231 236
232 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 237 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
233 238
234 if (!print) { 239 if (!print) {
235 spin_lock_irqsave(&lock, flags); 240 spin_lock_irqsave(&lock, flags);
236 now = jiffies; 241 now = jiffies;
237 if (now - last_msg > HZ) { 242 if (now - last_msg > HZ) {
238 print = 1; 243 print = 1;
239 last_msg = now; 244 last_msg = now;
240 } 245 }
241 spin_unlock_irqrestore(&lock, flags); 246 spin_unlock_irqrestore(&lock, flags);
242 } 247 }
243 248
244 if (print) { 249 if (print) {
245 if (printk_ratelimit()) 250 if (printk_ratelimit())
246 printk(KERN_WARNING 251 printk(KERN_WARNING
247 "audit: audit_lost=%d audit_rate_limit=%d " 252 "audit: audit_lost=%d audit_rate_limit=%d "
248 "audit_backlog_limit=%d\n", 253 "audit_backlog_limit=%d\n",
249 atomic_read(&audit_lost), 254 atomic_read(&audit_lost),
250 audit_rate_limit, 255 audit_rate_limit,
251 audit_backlog_limit); 256 audit_backlog_limit);
252 audit_panic(message); 257 audit_panic(message);
253 } 258 }
254 } 259 }
255 260
256 static int audit_log_config_change(char *function_name, int new, int old, 261 static int audit_log_config_change(char *function_name, int new, int old,
257 uid_t loginuid, u32 sessionid, u32 sid, 262 uid_t loginuid, u32 sessionid, u32 sid,
258 int allow_changes) 263 int allow_changes)
259 { 264 {
260 struct audit_buffer *ab; 265 struct audit_buffer *ab;
261 int rc = 0; 266 int rc = 0;
262 267
263 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); 268 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
264 audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new, 269 audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new,
265 old, loginuid, sessionid); 270 old, loginuid, sessionid);
266 if (sid) { 271 if (sid) {
267 char *ctx = NULL; 272 char *ctx = NULL;
268 u32 len; 273 u32 len;
269 274
270 rc = security_secid_to_secctx(sid, &ctx, &len); 275 rc = security_secid_to_secctx(sid, &ctx, &len);
271 if (rc) { 276 if (rc) {
272 audit_log_format(ab, " sid=%u", sid); 277 audit_log_format(ab, " sid=%u", sid);
273 allow_changes = 0; /* Something weird, deny request */ 278 allow_changes = 0; /* Something weird, deny request */
274 } else { 279 } else {
275 audit_log_format(ab, " subj=%s", ctx); 280 audit_log_format(ab, " subj=%s", ctx);
276 security_release_secctx(ctx, len); 281 security_release_secctx(ctx, len);
277 } 282 }
278 } 283 }
279 audit_log_format(ab, " res=%d", allow_changes); 284 audit_log_format(ab, " res=%d", allow_changes);
280 audit_log_end(ab); 285 audit_log_end(ab);
281 return rc; 286 return rc;
282 } 287 }
283 288
284 static int audit_do_config_change(char *function_name, int *to_change, 289 static int audit_do_config_change(char *function_name, int *to_change,
285 int new, uid_t loginuid, u32 sessionid, 290 int new, uid_t loginuid, u32 sessionid,
286 u32 sid) 291 u32 sid)
287 { 292 {
288 int allow_changes, rc = 0, old = *to_change; 293 int allow_changes, rc = 0, old = *to_change;
289 294
290 /* check if we are locked */ 295 /* check if we are locked */
291 if (audit_enabled == AUDIT_LOCKED) 296 if (audit_enabled == AUDIT_LOCKED)
292 allow_changes = 0; 297 allow_changes = 0;
293 else 298 else
294 allow_changes = 1; 299 allow_changes = 1;
295 300
296 if (audit_enabled != AUDIT_OFF) { 301 if (audit_enabled != AUDIT_OFF) {
297 rc = audit_log_config_change(function_name, new, old, loginuid, 302 rc = audit_log_config_change(function_name, new, old, loginuid,
298 sessionid, sid, allow_changes); 303 sessionid, sid, allow_changes);
299 if (rc) 304 if (rc)
300 allow_changes = 0; 305 allow_changes = 0;
301 } 306 }
302 307
303 /* If we are allowed, make the change */ 308 /* If we are allowed, make the change */
304 if (allow_changes == 1) 309 if (allow_changes == 1)
305 *to_change = new; 310 *to_change = new;
306 /* Not allowed, update reason */ 311 /* Not allowed, update reason */
307 else if (rc == 0) 312 else if (rc == 0)
308 rc = -EPERM; 313 rc = -EPERM;
309 return rc; 314 return rc;
310 } 315 }
311 316
312 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid, 317 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid,
313 u32 sid) 318 u32 sid)
314 { 319 {
315 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, 320 return audit_do_config_change("audit_rate_limit", &audit_rate_limit,
316 limit, loginuid, sessionid, sid); 321 limit, loginuid, sessionid, sid);
317 } 322 }
318 323
319 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid, 324 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid,
320 u32 sid) 325 u32 sid)
321 { 326 {
322 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, 327 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit,
323 limit, loginuid, sessionid, sid); 328 limit, loginuid, sessionid, sid);
324 } 329 }
325 330
326 static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid) 331 static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid)
327 { 332 {
328 int rc; 333 int rc;
329 if (state < AUDIT_OFF || state > AUDIT_LOCKED) 334 if (state < AUDIT_OFF || state > AUDIT_LOCKED)
330 return -EINVAL; 335 return -EINVAL;
331 336
332 rc = audit_do_config_change("audit_enabled", &audit_enabled, state, 337 rc = audit_do_config_change("audit_enabled", &audit_enabled, state,
333 loginuid, sessionid, sid); 338 loginuid, sessionid, sid);
334 339
335 if (!rc) 340 if (!rc)
336 audit_ever_enabled |= !!state; 341 audit_ever_enabled |= !!state;
337 342
338 return rc; 343 return rc;
339 } 344 }
340 345
341 static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid) 346 static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid)
342 { 347 {
343 if (state != AUDIT_FAIL_SILENT 348 if (state != AUDIT_FAIL_SILENT
344 && state != AUDIT_FAIL_PRINTK 349 && state != AUDIT_FAIL_PRINTK
345 && state != AUDIT_FAIL_PANIC) 350 && state != AUDIT_FAIL_PANIC)
346 return -EINVAL; 351 return -EINVAL;
347 352
348 return audit_do_config_change("audit_failure", &audit_failure, state, 353 return audit_do_config_change("audit_failure", &audit_failure, state,
349 loginuid, sessionid, sid); 354 loginuid, sessionid, sid);
350 } 355 }
351 356
352 /* 357 /*
353 * Queue skbs to be sent to auditd when/if it comes back. These skbs should 358 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
354 * already have been sent via prink/syslog and so if these messages are dropped 359 * already have been sent via prink/syslog and so if these messages are dropped
355 * it is not a huge concern since we already passed the audit_log_lost() 360 * it is not a huge concern since we already passed the audit_log_lost()
356 * notification and stuff. This is just nice to get audit messages during 361 * notification and stuff. This is just nice to get audit messages during
357 * boot before auditd is running or messages generated while auditd is stopped. 362 * boot before auditd is running or messages generated while auditd is stopped.
358 * This only holds messages is audit_default is set, aka booting with audit=1 363 * This only holds messages is audit_default is set, aka booting with audit=1
359 * or building your kernel that way. 364 * or building your kernel that way.
360 */ 365 */
361 static void audit_hold_skb(struct sk_buff *skb) 366 static void audit_hold_skb(struct sk_buff *skb)
362 { 367 {
363 if (audit_default && 368 if (audit_default &&
364 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit) 369 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
365 skb_queue_tail(&audit_skb_hold_queue, skb); 370 skb_queue_tail(&audit_skb_hold_queue, skb);
366 else 371 else
367 kfree_skb(skb); 372 kfree_skb(skb);
368 } 373 }
369 374
370 static void kauditd_send_skb(struct sk_buff *skb) 375 static void kauditd_send_skb(struct sk_buff *skb)
371 { 376 {
372 int err; 377 int err;
373 /* take a reference in case we can't send it and we want to hold it */ 378 /* take a reference in case we can't send it and we want to hold it */
374 skb_get(skb); 379 skb_get(skb);
375 err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0); 380 err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0);
376 if (err < 0) { 381 if (err < 0) {
377 BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */ 382 BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */
378 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid); 383 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
379 audit_log_lost("auditd dissapeared\n"); 384 audit_log_lost("auditd dissapeared\n");
380 audit_pid = 0; 385 audit_pid = 0;
381 /* we might get lucky and get this in the next auditd */ 386 /* we might get lucky and get this in the next auditd */
382 audit_hold_skb(skb); 387 audit_hold_skb(skb);
383 } else 388 } else
384 /* drop the extra reference if sent ok */ 389 /* drop the extra reference if sent ok */
385 kfree_skb(skb); 390 kfree_skb(skb);
386 } 391 }
387 392
388 static int kauditd_thread(void *dummy) 393 static int kauditd_thread(void *dummy)
389 { 394 {
390 struct sk_buff *skb; 395 struct sk_buff *skb;
391 396
392 set_freezable(); 397 set_freezable();
393 while (!kthread_should_stop()) { 398 while (!kthread_should_stop()) {
394 /* 399 /*
395 * if auditd just started drain the queue of messages already 400 * if auditd just started drain the queue of messages already
396 * sent to syslog/printk. remember loss here is ok. we already 401 * sent to syslog/printk. remember loss here is ok. we already
397 * called audit_log_lost() if it didn't go out normally. so the 402 * called audit_log_lost() if it didn't go out normally. so the
398 * race between the skb_dequeue and the next check for audit_pid 403 * race between the skb_dequeue and the next check for audit_pid
399 * doesn't matter. 404 * doesn't matter.
400 * 405 *
401 * if you ever find kauditd to be too slow we can get a perf win 406 * if you ever find kauditd to be too slow we can get a perf win
402 * by doing our own locking and keeping better track if there 407 * by doing our own locking and keeping better track if there
403 * are messages in this queue. I don't see the need now, but 408 * are messages in this queue. I don't see the need now, but
404 * in 5 years when I want to play with this again I'll see this 409 * in 5 years when I want to play with this again I'll see this
405 * note and still have no friggin idea what i'm thinking today. 410 * note and still have no friggin idea what i'm thinking today.
406 */ 411 */
407 if (audit_default && audit_pid) { 412 if (audit_default && audit_pid) {
408 skb = skb_dequeue(&audit_skb_hold_queue); 413 skb = skb_dequeue(&audit_skb_hold_queue);
409 if (unlikely(skb)) { 414 if (unlikely(skb)) {
410 while (skb && audit_pid) { 415 while (skb && audit_pid) {
411 kauditd_send_skb(skb); 416 kauditd_send_skb(skb);
412 skb = skb_dequeue(&audit_skb_hold_queue); 417 skb = skb_dequeue(&audit_skb_hold_queue);
413 } 418 }
414 } 419 }
415 } 420 }
416 421
417 skb = skb_dequeue(&audit_skb_queue); 422 skb = skb_dequeue(&audit_skb_queue);
418 wake_up(&audit_backlog_wait); 423 wake_up(&audit_backlog_wait);
419 if (skb) { 424 if (skb) {
420 if (audit_pid) 425 if (audit_pid)
421 kauditd_send_skb(skb); 426 kauditd_send_skb(skb);
422 else { 427 else {
423 if (printk_ratelimit()) 428 if (printk_ratelimit())
424 printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0)); 429 printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0));
425 else 430 else
426 audit_log_lost("printk limit exceeded\n"); 431 audit_log_lost("printk limit exceeded\n");
427 432
428 audit_hold_skb(skb); 433 audit_hold_skb(skb);
429 } 434 }
430 } else { 435 } else {
431 DECLARE_WAITQUEUE(wait, current); 436 DECLARE_WAITQUEUE(wait, current);
432 set_current_state(TASK_INTERRUPTIBLE); 437 set_current_state(TASK_INTERRUPTIBLE);
433 add_wait_queue(&kauditd_wait, &wait); 438 add_wait_queue(&kauditd_wait, &wait);
434 439
435 if (!skb_queue_len(&audit_skb_queue)) { 440 if (!skb_queue_len(&audit_skb_queue)) {
436 try_to_freeze(); 441 try_to_freeze();
437 schedule(); 442 schedule();
438 } 443 }
439 444
440 __set_current_state(TASK_RUNNING); 445 __set_current_state(TASK_RUNNING);
441 remove_wait_queue(&kauditd_wait, &wait); 446 remove_wait_queue(&kauditd_wait, &wait);
442 } 447 }
443 } 448 }
444 return 0; 449 return 0;
445 } 450 }
446 451
447 static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid) 452 static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid)
448 { 453 {
449 struct task_struct *tsk; 454 struct task_struct *tsk;
450 int err; 455 int err;
451 456
452 read_lock(&tasklist_lock); 457 read_lock(&tasklist_lock);
453 tsk = find_task_by_pid(pid); 458 tsk = find_task_by_pid(pid);
454 err = -ESRCH; 459 err = -ESRCH;
455 if (!tsk) 460 if (!tsk)
456 goto out; 461 goto out;
457 err = 0; 462 err = 0;
458 463
459 spin_lock_irq(&tsk->sighand->siglock); 464 spin_lock_irq(&tsk->sighand->siglock);
460 if (!tsk->signal->audit_tty) 465 if (!tsk->signal->audit_tty)
461 err = -EPERM; 466 err = -EPERM;
462 spin_unlock_irq(&tsk->sighand->siglock); 467 spin_unlock_irq(&tsk->sighand->siglock);
463 if (err) 468 if (err)
464 goto out; 469 goto out;
465 470
466 tty_audit_push_task(tsk, loginuid, sessionid); 471 tty_audit_push_task(tsk, loginuid, sessionid);
467 out: 472 out:
468 read_unlock(&tasklist_lock); 473 read_unlock(&tasklist_lock);
469 return err; 474 return err;
470 } 475 }
471 476
472 int audit_send_list(void *_dest) 477 int audit_send_list(void *_dest)
473 { 478 {
474 struct audit_netlink_list *dest = _dest; 479 struct audit_netlink_list *dest = _dest;
475 int pid = dest->pid; 480 int pid = dest->pid;
476 struct sk_buff *skb; 481 struct sk_buff *skb;
477 482
478 /* wait for parent to finish and send an ACK */ 483 /* wait for parent to finish and send an ACK */
479 mutex_lock(&audit_cmd_mutex); 484 mutex_lock(&audit_cmd_mutex);
480 mutex_unlock(&audit_cmd_mutex); 485 mutex_unlock(&audit_cmd_mutex);
481 486
482 while ((skb = __skb_dequeue(&dest->q)) != NULL) 487 while ((skb = __skb_dequeue(&dest->q)) != NULL)
483 netlink_unicast(audit_sock, skb, pid, 0); 488 netlink_unicast(audit_sock, skb, pid, 0);
484 489
485 kfree(dest); 490 kfree(dest);
486 491
487 return 0; 492 return 0;
488 } 493 }
489 494
490 #ifdef CONFIG_AUDIT_TREE 495 #ifdef CONFIG_AUDIT_TREE
491 static int prune_tree_thread(void *unused) 496 static int prune_tree_thread(void *unused)
492 { 497 {
493 mutex_lock(&audit_cmd_mutex); 498 mutex_lock(&audit_cmd_mutex);
494 audit_prune_trees(); 499 audit_prune_trees();
495 mutex_unlock(&audit_cmd_mutex); 500 mutex_unlock(&audit_cmd_mutex);
496 return 0; 501 return 0;
497 } 502 }
498 503
499 void audit_schedule_prune(void) 504 void audit_schedule_prune(void)
500 { 505 {
501 kthread_run(prune_tree_thread, NULL, "audit_prune_tree"); 506 kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
502 } 507 }
503 #endif 508 #endif
504 509
505 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done, 510 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
506 int multi, void *payload, int size) 511 int multi, void *payload, int size)
507 { 512 {
508 struct sk_buff *skb; 513 struct sk_buff *skb;
509 struct nlmsghdr *nlh; 514 struct nlmsghdr *nlh;
510 int len = NLMSG_SPACE(size); 515 int len = NLMSG_SPACE(size);
511 void *data; 516 void *data;
512 int flags = multi ? NLM_F_MULTI : 0; 517 int flags = multi ? NLM_F_MULTI : 0;
513 int t = done ? NLMSG_DONE : type; 518 int t = done ? NLMSG_DONE : type;
514 519
515 skb = alloc_skb(len, GFP_KERNEL); 520 skb = alloc_skb(len, GFP_KERNEL);
516 if (!skb) 521 if (!skb)
517 return NULL; 522 return NULL;
518 523
519 nlh = NLMSG_PUT(skb, pid, seq, t, size); 524 nlh = NLMSG_PUT(skb, pid, seq, t, size);
520 nlh->nlmsg_flags = flags; 525 nlh->nlmsg_flags = flags;
521 data = NLMSG_DATA(nlh); 526 data = NLMSG_DATA(nlh);
522 memcpy(data, payload, size); 527 memcpy(data, payload, size);
523 return skb; 528 return skb;
524 529
525 nlmsg_failure: /* Used by NLMSG_PUT */ 530 nlmsg_failure: /* Used by NLMSG_PUT */
526 if (skb) 531 if (skb)
527 kfree_skb(skb); 532 kfree_skb(skb);
528 return NULL; 533 return NULL;
529 } 534 }
530 535
536 static int audit_send_reply_thread(void *arg)
537 {
538 struct audit_reply *reply = (struct audit_reply *)arg;
539
540 mutex_lock(&audit_cmd_mutex);
541 mutex_unlock(&audit_cmd_mutex);
542
543 /* Ignore failure. It'll only happen if the sender goes away,
544 because our timeout is set to infinite. */
545 netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
546 kfree(reply);
547 return 0;
548 }
531 /** 549 /**
532 * audit_send_reply - send an audit reply message via netlink 550 * audit_send_reply - send an audit reply message via netlink
533 * @pid: process id to send reply to 551 * @pid: process id to send reply to
534 * @seq: sequence number 552 * @seq: sequence number
535 * @type: audit message type 553 * @type: audit message type
536 * @done: done (last) flag 554 * @done: done (last) flag
537 * @multi: multi-part message flag 555 * @multi: multi-part message flag
538 * @payload: payload data 556 * @payload: payload data
539 * @size: payload size 557 * @size: payload size
540 * 558 *
541 * Allocates an skb, builds the netlink message, and sends it to the pid. 559 * Allocates an skb, builds the netlink message, and sends it to the pid.
542 * No failure notifications. 560 * No failure notifications.
543 */ 561 */
544 void audit_send_reply(int pid, int seq, int type, int done, int multi, 562 void audit_send_reply(int pid, int seq, int type, int done, int multi,
545 void *payload, int size) 563 void *payload, int size)
546 { 564 {
547 struct sk_buff *skb; 565 struct sk_buff *skb;
566 struct task_struct *tsk;
567 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
568 GFP_KERNEL);
569
570 if (!reply)
571 return;
572
548 skb = audit_make_reply(pid, seq, type, done, multi, payload, size); 573 skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
549 if (!skb) 574 if (!skb)
550 return; 575 return;
551 /* Ignore failure. It'll only happen if the sender goes away, 576
552 because our timeout is set to infinite. */ 577 reply->pid = pid;
553 netlink_unicast(audit_sock, skb, pid, 0); 578 reply->skb = skb;
554 return; 579
580 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
581 if (IS_ERR(tsk)) {
582 kfree(reply);
583 kfree_skb(skb);
584 }
555 } 585 }
556 586
557 /* 587 /*
558 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 588 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
559 * control messages. 589 * control messages.
560 */ 590 */
561 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 591 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
562 { 592 {
563 int err = 0; 593 int err = 0;
564 594
565 switch (msg_type) { 595 switch (msg_type) {
566 case AUDIT_GET: 596 case AUDIT_GET:
567 case AUDIT_LIST: 597 case AUDIT_LIST:
568 case AUDIT_LIST_RULES: 598 case AUDIT_LIST_RULES:
569 case AUDIT_SET: 599 case AUDIT_SET:
570 case AUDIT_ADD: 600 case AUDIT_ADD:
571 case AUDIT_ADD_RULE: 601 case AUDIT_ADD_RULE:
572 case AUDIT_DEL: 602 case AUDIT_DEL:
573 case AUDIT_DEL_RULE: 603 case AUDIT_DEL_RULE:
574 case AUDIT_SIGNAL_INFO: 604 case AUDIT_SIGNAL_INFO:
575 case AUDIT_TTY_GET: 605 case AUDIT_TTY_GET:
576 case AUDIT_TTY_SET: 606 case AUDIT_TTY_SET:
577 case AUDIT_TRIM: 607 case AUDIT_TRIM:
578 case AUDIT_MAKE_EQUIV: 608 case AUDIT_MAKE_EQUIV:
579 if (security_netlink_recv(skb, CAP_AUDIT_CONTROL)) 609 if (security_netlink_recv(skb, CAP_AUDIT_CONTROL))
580 err = -EPERM; 610 err = -EPERM;
581 break; 611 break;
582 case AUDIT_USER: 612 case AUDIT_USER:
583 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 613 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
584 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 614 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
585 if (security_netlink_recv(skb, CAP_AUDIT_WRITE)) 615 if (security_netlink_recv(skb, CAP_AUDIT_WRITE))
586 err = -EPERM; 616 err = -EPERM;
587 break; 617 break;
588 default: /* bad msg */ 618 default: /* bad msg */
589 err = -EINVAL; 619 err = -EINVAL;
590 } 620 }
591 621
592 return err; 622 return err;
593 } 623 }
594 624
595 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type, 625 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type,
596 u32 pid, u32 uid, uid_t auid, u32 ses, 626 u32 pid, u32 uid, uid_t auid, u32 ses,
597 u32 sid) 627 u32 sid)
598 { 628 {
599 int rc = 0; 629 int rc = 0;
600 char *ctx = NULL; 630 char *ctx = NULL;
601 u32 len; 631 u32 len;
602 632
603 if (!audit_enabled) { 633 if (!audit_enabled) {
604 *ab = NULL; 634 *ab = NULL;
605 return rc; 635 return rc;
606 } 636 }
607 637
608 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); 638 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
609 audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u", 639 audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u",
610 pid, uid, auid, ses); 640 pid, uid, auid, ses);
611 if (sid) { 641 if (sid) {
612 rc = security_secid_to_secctx(sid, &ctx, &len); 642 rc = security_secid_to_secctx(sid, &ctx, &len);
613 if (rc) 643 if (rc)
614 audit_log_format(*ab, " ssid=%u", sid); 644 audit_log_format(*ab, " ssid=%u", sid);
615 else { 645 else {
616 audit_log_format(*ab, " subj=%s", ctx); 646 audit_log_format(*ab, " subj=%s", ctx);
617 security_release_secctx(ctx, len); 647 security_release_secctx(ctx, len);
618 } 648 }
619 } 649 }
620 650
621 return rc; 651 return rc;
622 } 652 }
623 653
624 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 654 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
625 { 655 {
626 u32 uid, pid, seq, sid; 656 u32 uid, pid, seq, sid;
627 void *data; 657 void *data;
628 struct audit_status *status_get, status_set; 658 struct audit_status *status_get, status_set;
629 int err; 659 int err;
630 struct audit_buffer *ab; 660 struct audit_buffer *ab;
631 u16 msg_type = nlh->nlmsg_type; 661 u16 msg_type = nlh->nlmsg_type;
632 uid_t loginuid; /* loginuid of sender */ 662 uid_t loginuid; /* loginuid of sender */
633 u32 sessionid; 663 u32 sessionid;
634 struct audit_sig_info *sig_data; 664 struct audit_sig_info *sig_data;
635 char *ctx = NULL; 665 char *ctx = NULL;
636 u32 len; 666 u32 len;
637 667
638 err = audit_netlink_ok(skb, msg_type); 668 err = audit_netlink_ok(skb, msg_type);
639 if (err) 669 if (err)
640 return err; 670 return err;
641 671
642 /* As soon as there's any sign of userspace auditd, 672 /* As soon as there's any sign of userspace auditd,
643 * start kauditd to talk to it */ 673 * start kauditd to talk to it */
644 if (!kauditd_task) 674 if (!kauditd_task)
645 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 675 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
646 if (IS_ERR(kauditd_task)) { 676 if (IS_ERR(kauditd_task)) {
647 err = PTR_ERR(kauditd_task); 677 err = PTR_ERR(kauditd_task);
648 kauditd_task = NULL; 678 kauditd_task = NULL;
649 return err; 679 return err;
650 } 680 }
651 681
652 pid = NETLINK_CREDS(skb)->pid; 682 pid = NETLINK_CREDS(skb)->pid;
653 uid = NETLINK_CREDS(skb)->uid; 683 uid = NETLINK_CREDS(skb)->uid;
654 loginuid = NETLINK_CB(skb).loginuid; 684 loginuid = NETLINK_CB(skb).loginuid;
655 sessionid = NETLINK_CB(skb).sessionid; 685 sessionid = NETLINK_CB(skb).sessionid;
656 sid = NETLINK_CB(skb).sid; 686 sid = NETLINK_CB(skb).sid;
657 seq = nlh->nlmsg_seq; 687 seq = nlh->nlmsg_seq;
658 data = NLMSG_DATA(nlh); 688 data = NLMSG_DATA(nlh);
659 689
660 switch (msg_type) { 690 switch (msg_type) {
661 case AUDIT_GET: 691 case AUDIT_GET:
662 status_set.enabled = audit_enabled; 692 status_set.enabled = audit_enabled;
663 status_set.failure = audit_failure; 693 status_set.failure = audit_failure;
664 status_set.pid = audit_pid; 694 status_set.pid = audit_pid;
665 status_set.rate_limit = audit_rate_limit; 695 status_set.rate_limit = audit_rate_limit;
666 status_set.backlog_limit = audit_backlog_limit; 696 status_set.backlog_limit = audit_backlog_limit;
667 status_set.lost = atomic_read(&audit_lost); 697 status_set.lost = atomic_read(&audit_lost);
668 status_set.backlog = skb_queue_len(&audit_skb_queue); 698 status_set.backlog = skb_queue_len(&audit_skb_queue);
669 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0, 699 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
670 &status_set, sizeof(status_set)); 700 &status_set, sizeof(status_set));
671 break; 701 break;
672 case AUDIT_SET: 702 case AUDIT_SET:
673 if (nlh->nlmsg_len < sizeof(struct audit_status)) 703 if (nlh->nlmsg_len < sizeof(struct audit_status))
674 return -EINVAL; 704 return -EINVAL;
675 status_get = (struct audit_status *)data; 705 status_get = (struct audit_status *)data;
676 if (status_get->mask & AUDIT_STATUS_ENABLED) { 706 if (status_get->mask & AUDIT_STATUS_ENABLED) {
677 err = audit_set_enabled(status_get->enabled, 707 err = audit_set_enabled(status_get->enabled,
678 loginuid, sessionid, sid); 708 loginuid, sessionid, sid);
679 if (err < 0) return err; 709 if (err < 0) return err;
680 } 710 }
681 if (status_get->mask & AUDIT_STATUS_FAILURE) { 711 if (status_get->mask & AUDIT_STATUS_FAILURE) {
682 err = audit_set_failure(status_get->failure, 712 err = audit_set_failure(status_get->failure,
683 loginuid, sessionid, sid); 713 loginuid, sessionid, sid);
684 if (err < 0) return err; 714 if (err < 0) return err;
685 } 715 }
686 if (status_get->mask & AUDIT_STATUS_PID) { 716 if (status_get->mask & AUDIT_STATUS_PID) {
687 int new_pid = status_get->pid; 717 int new_pid = status_get->pid;
688 718
689 if (audit_enabled != AUDIT_OFF) 719 if (audit_enabled != AUDIT_OFF)
690 audit_log_config_change("audit_pid", new_pid, 720 audit_log_config_change("audit_pid", new_pid,
691 audit_pid, loginuid, 721 audit_pid, loginuid,
692 sessionid, sid, 1); 722 sessionid, sid, 1);
693 723
694 audit_pid = new_pid; 724 audit_pid = new_pid;
695 audit_nlk_pid = NETLINK_CB(skb).pid; 725 audit_nlk_pid = NETLINK_CB(skb).pid;
696 } 726 }
697 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) 727 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT)
698 err = audit_set_rate_limit(status_get->rate_limit, 728 err = audit_set_rate_limit(status_get->rate_limit,
699 loginuid, sessionid, sid); 729 loginuid, sessionid, sid);
700 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT) 730 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
701 err = audit_set_backlog_limit(status_get->backlog_limit, 731 err = audit_set_backlog_limit(status_get->backlog_limit,
702 loginuid, sessionid, sid); 732 loginuid, sessionid, sid);
703 break; 733 break;
704 case AUDIT_USER: 734 case AUDIT_USER:
705 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 735 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
706 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 736 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
707 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 737 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
708 return 0; 738 return 0;
709 739
710 err = audit_filter_user(&NETLINK_CB(skb), msg_type); 740 err = audit_filter_user(&NETLINK_CB(skb), msg_type);
711 if (err == 1) { 741 if (err == 1) {
712 err = 0; 742 err = 0;
713 if (msg_type == AUDIT_USER_TTY) { 743 if (msg_type == AUDIT_USER_TTY) {
714 err = audit_prepare_user_tty(pid, loginuid, 744 err = audit_prepare_user_tty(pid, loginuid,
715 sessionid); 745 sessionid);
716 if (err) 746 if (err)
717 break; 747 break;
718 } 748 }
719 audit_log_common_recv_msg(&ab, msg_type, pid, uid, 749 audit_log_common_recv_msg(&ab, msg_type, pid, uid,
720 loginuid, sessionid, sid); 750 loginuid, sessionid, sid);
721 751
722 if (msg_type != AUDIT_USER_TTY) 752 if (msg_type != AUDIT_USER_TTY)
723 audit_log_format(ab, " msg='%.1024s'", 753 audit_log_format(ab, " msg='%.1024s'",
724 (char *)data); 754 (char *)data);
725 else { 755 else {
726 int size; 756 int size;
727 757
728 audit_log_format(ab, " msg="); 758 audit_log_format(ab, " msg=");
729 size = nlmsg_len(nlh); 759 size = nlmsg_len(nlh);
730 audit_log_n_untrustedstring(ab, size, 760 audit_log_n_untrustedstring(ab, size,
731 data); 761 data);
732 } 762 }
733 audit_set_pid(ab, pid); 763 audit_set_pid(ab, pid);
734 audit_log_end(ab); 764 audit_log_end(ab);
735 } 765 }
736 break; 766 break;
737 case AUDIT_ADD: 767 case AUDIT_ADD:
738 case AUDIT_DEL: 768 case AUDIT_DEL:
739 if (nlmsg_len(nlh) < sizeof(struct audit_rule)) 769 if (nlmsg_len(nlh) < sizeof(struct audit_rule))
740 return -EINVAL; 770 return -EINVAL;
741 if (audit_enabled == AUDIT_LOCKED) { 771 if (audit_enabled == AUDIT_LOCKED) {
742 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 772 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
743 uid, loginuid, sessionid, sid); 773 uid, loginuid, sessionid, sid);
744 774
745 audit_log_format(ab, " audit_enabled=%d res=0", 775 audit_log_format(ab, " audit_enabled=%d res=0",
746 audit_enabled); 776 audit_enabled);
747 audit_log_end(ab); 777 audit_log_end(ab);
748 return -EPERM; 778 return -EPERM;
749 } 779 }
750 /* fallthrough */ 780 /* fallthrough */
751 case AUDIT_LIST: 781 case AUDIT_LIST:
752 err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, 782 err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
753 uid, seq, data, nlmsg_len(nlh), 783 uid, seq, data, nlmsg_len(nlh),
754 loginuid, sessionid, sid); 784 loginuid, sessionid, sid);
755 break; 785 break;
756 case AUDIT_ADD_RULE: 786 case AUDIT_ADD_RULE:
757 case AUDIT_DEL_RULE: 787 case AUDIT_DEL_RULE:
758 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) 788 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
759 return -EINVAL; 789 return -EINVAL;
760 if (audit_enabled == AUDIT_LOCKED) { 790 if (audit_enabled == AUDIT_LOCKED) {
761 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 791 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
762 uid, loginuid, sessionid, sid); 792 uid, loginuid, sessionid, sid);
763 793
764 audit_log_format(ab, " audit_enabled=%d res=0", 794 audit_log_format(ab, " audit_enabled=%d res=0",
765 audit_enabled); 795 audit_enabled);
766 audit_log_end(ab); 796 audit_log_end(ab);
767 return -EPERM; 797 return -EPERM;
768 } 798 }
769 /* fallthrough */ 799 /* fallthrough */
770 case AUDIT_LIST_RULES: 800 case AUDIT_LIST_RULES:
771 err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid, 801 err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
772 uid, seq, data, nlmsg_len(nlh), 802 uid, seq, data, nlmsg_len(nlh),
773 loginuid, sessionid, sid); 803 loginuid, sessionid, sid);
774 break; 804 break;
775 case AUDIT_TRIM: 805 case AUDIT_TRIM:
776 audit_trim_trees(); 806 audit_trim_trees();
777 807
778 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 808 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
779 uid, loginuid, sessionid, sid); 809 uid, loginuid, sessionid, sid);
780 810
781 audit_log_format(ab, " op=trim res=1"); 811 audit_log_format(ab, " op=trim res=1");
782 audit_log_end(ab); 812 audit_log_end(ab);
783 break; 813 break;
784 case AUDIT_MAKE_EQUIV: { 814 case AUDIT_MAKE_EQUIV: {
785 void *bufp = data; 815 void *bufp = data;
786 u32 sizes[2]; 816 u32 sizes[2];
787 size_t len = nlmsg_len(nlh); 817 size_t len = nlmsg_len(nlh);
788 char *old, *new; 818 char *old, *new;
789 819
790 err = -EINVAL; 820 err = -EINVAL;
791 if (len < 2 * sizeof(u32)) 821 if (len < 2 * sizeof(u32))
792 break; 822 break;
793 memcpy(sizes, bufp, 2 * sizeof(u32)); 823 memcpy(sizes, bufp, 2 * sizeof(u32));
794 bufp += 2 * sizeof(u32); 824 bufp += 2 * sizeof(u32);
795 len -= 2 * sizeof(u32); 825 len -= 2 * sizeof(u32);
796 old = audit_unpack_string(&bufp, &len, sizes[0]); 826 old = audit_unpack_string(&bufp, &len, sizes[0]);
797 if (IS_ERR(old)) { 827 if (IS_ERR(old)) {
798 err = PTR_ERR(old); 828 err = PTR_ERR(old);
799 break; 829 break;
800 } 830 }
801 new = audit_unpack_string(&bufp, &len, sizes[1]); 831 new = audit_unpack_string(&bufp, &len, sizes[1]);
802 if (IS_ERR(new)) { 832 if (IS_ERR(new)) {
803 err = PTR_ERR(new); 833 err = PTR_ERR(new);
804 kfree(old); 834 kfree(old);
805 break; 835 break;
806 } 836 }
807 /* OK, here comes... */ 837 /* OK, here comes... */
808 err = audit_tag_tree(old, new); 838 err = audit_tag_tree(old, new);
809 839
810 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, 840 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
811 uid, loginuid, sessionid, sid); 841 uid, loginuid, sessionid, sid);
812 842
813 audit_log_format(ab, " op=make_equiv old="); 843 audit_log_format(ab, " op=make_equiv old=");
814 audit_log_untrustedstring(ab, old); 844 audit_log_untrustedstring(ab, old);
815 audit_log_format(ab, " new="); 845 audit_log_format(ab, " new=");
816 audit_log_untrustedstring(ab, new); 846 audit_log_untrustedstring(ab, new);
817 audit_log_format(ab, " res=%d", !err); 847 audit_log_format(ab, " res=%d", !err);
818 audit_log_end(ab); 848 audit_log_end(ab);
819 kfree(old); 849 kfree(old);
820 kfree(new); 850 kfree(new);
821 break; 851 break;
822 } 852 }
823 case AUDIT_SIGNAL_INFO: 853 case AUDIT_SIGNAL_INFO:
824 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 854 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
825 if (err) 855 if (err)
826 return err; 856 return err;
827 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 857 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
828 if (!sig_data) { 858 if (!sig_data) {
829 security_release_secctx(ctx, len); 859 security_release_secctx(ctx, len);
830 return -ENOMEM; 860 return -ENOMEM;
831 } 861 }
832 sig_data->uid = audit_sig_uid; 862 sig_data->uid = audit_sig_uid;
833 sig_data->pid = audit_sig_pid; 863 sig_data->pid = audit_sig_pid;
834 memcpy(sig_data->ctx, ctx, len); 864 memcpy(sig_data->ctx, ctx, len);
835 security_release_secctx(ctx, len); 865 security_release_secctx(ctx, len);
836 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, 866 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
837 0, 0, sig_data, sizeof(*sig_data) + len); 867 0, 0, sig_data, sizeof(*sig_data) + len);
838 kfree(sig_data); 868 kfree(sig_data);
839 break; 869 break;
840 case AUDIT_TTY_GET: { 870 case AUDIT_TTY_GET: {
841 struct audit_tty_status s; 871 struct audit_tty_status s;
842 struct task_struct *tsk; 872 struct task_struct *tsk;
843 873
844 read_lock(&tasklist_lock); 874 read_lock(&tasklist_lock);
845 tsk = find_task_by_pid(pid); 875 tsk = find_task_by_pid(pid);
846 if (!tsk) 876 if (!tsk)
847 err = -ESRCH; 877 err = -ESRCH;
848 else { 878 else {
849 spin_lock_irq(&tsk->sighand->siglock); 879 spin_lock_irq(&tsk->sighand->siglock);
850 s.enabled = tsk->signal->audit_tty != 0; 880 s.enabled = tsk->signal->audit_tty != 0;
851 spin_unlock_irq(&tsk->sighand->siglock); 881 spin_unlock_irq(&tsk->sighand->siglock);
852 } 882 }
853 read_unlock(&tasklist_lock); 883 read_unlock(&tasklist_lock);
854 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0, 884 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0,
855 &s, sizeof(s)); 885 &s, sizeof(s));
856 break; 886 break;
857 } 887 }
858 case AUDIT_TTY_SET: { 888 case AUDIT_TTY_SET: {
859 struct audit_tty_status *s; 889 struct audit_tty_status *s;
860 struct task_struct *tsk; 890 struct task_struct *tsk;
861 891
862 if (nlh->nlmsg_len < sizeof(struct audit_tty_status)) 892 if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
863 return -EINVAL; 893 return -EINVAL;
864 s = data; 894 s = data;
865 if (s->enabled != 0 && s->enabled != 1) 895 if (s->enabled != 0 && s->enabled != 1)
866 return -EINVAL; 896 return -EINVAL;
867 read_lock(&tasklist_lock); 897 read_lock(&tasklist_lock);
868 tsk = find_task_by_pid(pid); 898 tsk = find_task_by_pid(pid);
869 if (!tsk) 899 if (!tsk)
870 err = -ESRCH; 900 err = -ESRCH;
871 else { 901 else {
872 spin_lock_irq(&tsk->sighand->siglock); 902 spin_lock_irq(&tsk->sighand->siglock);
873 tsk->signal->audit_tty = s->enabled != 0; 903 tsk->signal->audit_tty = s->enabled != 0;
874 spin_unlock_irq(&tsk->sighand->siglock); 904 spin_unlock_irq(&tsk->sighand->siglock);
875 } 905 }
876 read_unlock(&tasklist_lock); 906 read_unlock(&tasklist_lock);
877 break; 907 break;
878 } 908 }
879 default: 909 default:
880 err = -EINVAL; 910 err = -EINVAL;
881 break; 911 break;
882 } 912 }
883 913
884 return err < 0 ? err : 0; 914 return err < 0 ? err : 0;
885 } 915 }
886 916
887 /* 917 /*
888 * Get message from skb (based on rtnetlink_rcv_skb). Each message is 918 * Get message from skb (based on rtnetlink_rcv_skb). Each message is
889 * processed by audit_receive_msg. Malformed skbs with wrong length are 919 * processed by audit_receive_msg. Malformed skbs with wrong length are
890 * discarded silently. 920 * discarded silently.
891 */ 921 */
892 static void audit_receive_skb(struct sk_buff *skb) 922 static void audit_receive_skb(struct sk_buff *skb)
893 { 923 {
894 int err; 924 int err;
895 struct nlmsghdr *nlh; 925 struct nlmsghdr *nlh;
896 u32 rlen; 926 u32 rlen;
897 927
898 while (skb->len >= NLMSG_SPACE(0)) { 928 while (skb->len >= NLMSG_SPACE(0)) {
899 nlh = nlmsg_hdr(skb); 929 nlh = nlmsg_hdr(skb);
900 if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len) 930 if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len)
901 return; 931 return;
902 rlen = NLMSG_ALIGN(nlh->nlmsg_len); 932 rlen = NLMSG_ALIGN(nlh->nlmsg_len);
903 if (rlen > skb->len) 933 if (rlen > skb->len)
904 rlen = skb->len; 934 rlen = skb->len;
905 if ((err = audit_receive_msg(skb, nlh))) { 935 if ((err = audit_receive_msg(skb, nlh))) {
906 netlink_ack(skb, nlh, err); 936 netlink_ack(skb, nlh, err);
907 } else if (nlh->nlmsg_flags & NLM_F_ACK) 937 } else if (nlh->nlmsg_flags & NLM_F_ACK)
908 netlink_ack(skb, nlh, 0); 938 netlink_ack(skb, nlh, 0);
909 skb_pull(skb, rlen); 939 skb_pull(skb, rlen);
910 } 940 }
911 } 941 }
912 942
913 /* Receive messages from netlink socket. */ 943 /* Receive messages from netlink socket. */
914 static void audit_receive(struct sk_buff *skb) 944 static void audit_receive(struct sk_buff *skb)
915 { 945 {
916 mutex_lock(&audit_cmd_mutex); 946 mutex_lock(&audit_cmd_mutex);
917 audit_receive_skb(skb); 947 audit_receive_skb(skb);
918 mutex_unlock(&audit_cmd_mutex); 948 mutex_unlock(&audit_cmd_mutex);
919 } 949 }
920 950
921 #ifdef CONFIG_AUDITSYSCALL 951 #ifdef CONFIG_AUDITSYSCALL
922 static const struct inotify_operations audit_inotify_ops = { 952 static const struct inotify_operations audit_inotify_ops = {
923 .handle_event = audit_handle_ievent, 953 .handle_event = audit_handle_ievent,
924 .destroy_watch = audit_free_parent, 954 .destroy_watch = audit_free_parent,
925 }; 955 };
926 #endif 956 #endif
927 957
928 /* Initialize audit support at boot time. */ 958 /* Initialize audit support at boot time. */
929 static int __init audit_init(void) 959 static int __init audit_init(void)
930 { 960 {
931 int i; 961 int i;
932 962
933 printk(KERN_INFO "audit: initializing netlink socket (%s)\n", 963 printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
934 audit_default ? "enabled" : "disabled"); 964 audit_default ? "enabled" : "disabled");
935 audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0, 965 audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0,
936 audit_receive, NULL, THIS_MODULE); 966 audit_receive, NULL, THIS_MODULE);
937 if (!audit_sock) 967 if (!audit_sock)
938 audit_panic("cannot initialize netlink socket"); 968 audit_panic("cannot initialize netlink socket");
939 else 969 else
940 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; 970 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
941 971
942 skb_queue_head_init(&audit_skb_queue); 972 skb_queue_head_init(&audit_skb_queue);
943 skb_queue_head_init(&audit_skb_hold_queue); 973 skb_queue_head_init(&audit_skb_hold_queue);
944 audit_initialized = 1; 974 audit_initialized = 1;
945 audit_enabled = audit_default; 975 audit_enabled = audit_default;
946 audit_ever_enabled |= !!audit_default; 976 audit_ever_enabled |= !!audit_default;
947 977
948 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); 978 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
949 979
950 #ifdef CONFIG_AUDITSYSCALL 980 #ifdef CONFIG_AUDITSYSCALL
951 audit_ih = inotify_init(&audit_inotify_ops); 981 audit_ih = inotify_init(&audit_inotify_ops);
952 if (IS_ERR(audit_ih)) 982 if (IS_ERR(audit_ih))
953 audit_panic("cannot initialize inotify handle"); 983 audit_panic("cannot initialize inotify handle");
954 #endif 984 #endif
955 985
956 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 986 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
957 INIT_LIST_HEAD(&audit_inode_hash[i]); 987 INIT_LIST_HEAD(&audit_inode_hash[i]);
958 988
959 return 0; 989 return 0;
960 } 990 }
961 __initcall(audit_init); 991 __initcall(audit_init);
962 992
963 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ 993 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
964 static int __init audit_enable(char *str) 994 static int __init audit_enable(char *str)
965 { 995 {
966 audit_default = !!simple_strtol(str, NULL, 0); 996 audit_default = !!simple_strtol(str, NULL, 0);
967 printk(KERN_INFO "audit: %s%s\n", 997 printk(KERN_INFO "audit: %s%s\n",
968 audit_default ? "enabled" : "disabled", 998 audit_default ? "enabled" : "disabled",
969 audit_initialized ? "" : " (after initialization)"); 999 audit_initialized ? "" : " (after initialization)");
970 if (audit_initialized) { 1000 if (audit_initialized) {
971 audit_enabled = audit_default; 1001 audit_enabled = audit_default;
972 audit_ever_enabled |= !!audit_default; 1002 audit_ever_enabled |= !!audit_default;
973 } 1003 }
974 return 1; 1004 return 1;
975 } 1005 }
976 1006
977 __setup("audit=", audit_enable); 1007 __setup("audit=", audit_enable);
978 1008
979 static void audit_buffer_free(struct audit_buffer *ab) 1009 static void audit_buffer_free(struct audit_buffer *ab)
980 { 1010 {
981 unsigned long flags; 1011 unsigned long flags;
982 1012
983 if (!ab) 1013 if (!ab)
984 return; 1014 return;
985 1015
986 if (ab->skb) 1016 if (ab->skb)
987 kfree_skb(ab->skb); 1017 kfree_skb(ab->skb);
988 1018
989 spin_lock_irqsave(&audit_freelist_lock, flags); 1019 spin_lock_irqsave(&audit_freelist_lock, flags);
990 if (audit_freelist_count > AUDIT_MAXFREE) 1020 if (audit_freelist_count > AUDIT_MAXFREE)
991 kfree(ab); 1021 kfree(ab);
992 else { 1022 else {
993 audit_freelist_count++; 1023 audit_freelist_count++;
994 list_add(&ab->list, &audit_freelist); 1024 list_add(&ab->list, &audit_freelist);
995 } 1025 }
996 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1026 spin_unlock_irqrestore(&audit_freelist_lock, flags);
997 } 1027 }
998 1028
999 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, 1029 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1000 gfp_t gfp_mask, int type) 1030 gfp_t gfp_mask, int type)
1001 { 1031 {
1002 unsigned long flags; 1032 unsigned long flags;
1003 struct audit_buffer *ab = NULL; 1033 struct audit_buffer *ab = NULL;
1004 struct nlmsghdr *nlh; 1034 struct nlmsghdr *nlh;
1005 1035
1006 spin_lock_irqsave(&audit_freelist_lock, flags); 1036 spin_lock_irqsave(&audit_freelist_lock, flags);
1007 if (!list_empty(&audit_freelist)) { 1037 if (!list_empty(&audit_freelist)) {
1008 ab = list_entry(audit_freelist.next, 1038 ab = list_entry(audit_freelist.next,
1009 struct audit_buffer, list); 1039 struct audit_buffer, list);
1010 list_del(&ab->list); 1040 list_del(&ab->list);
1011 --audit_freelist_count; 1041 --audit_freelist_count;
1012 } 1042 }
1013 spin_unlock_irqrestore(&audit_freelist_lock, flags); 1043 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1014 1044
1015 if (!ab) { 1045 if (!ab) {
1016 ab = kmalloc(sizeof(*ab), gfp_mask); 1046 ab = kmalloc(sizeof(*ab), gfp_mask);
1017 if (!ab) 1047 if (!ab)
1018 goto err; 1048 goto err;
1019 } 1049 }
1020 1050
1021 ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask); 1051 ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask);
1022 if (!ab->skb) 1052 if (!ab->skb)
1023 goto err; 1053 goto err;
1024 1054
1025 ab->ctx = ctx; 1055 ab->ctx = ctx;
1026 ab->gfp_mask = gfp_mask; 1056 ab->gfp_mask = gfp_mask;
1027 nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0)); 1057 nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0));
1028 nlh->nlmsg_type = type; 1058 nlh->nlmsg_type = type;
1029 nlh->nlmsg_flags = 0; 1059 nlh->nlmsg_flags = 0;
1030 nlh->nlmsg_pid = 0; 1060 nlh->nlmsg_pid = 0;
1031 nlh->nlmsg_seq = 0; 1061 nlh->nlmsg_seq = 0;
1032 return ab; 1062 return ab;
1033 err: 1063 err:
1034 audit_buffer_free(ab); 1064 audit_buffer_free(ab);
1035 return NULL; 1065 return NULL;
1036 } 1066 }
1037 1067
1038 /** 1068 /**
1039 * audit_serial - compute a serial number for the audit record 1069 * audit_serial - compute a serial number for the audit record
1040 * 1070 *
1041 * Compute a serial number for the audit record. Audit records are 1071 * Compute a serial number for the audit record. Audit records are
1042 * written to user-space as soon as they are generated, so a complete 1072 * written to user-space as soon as they are generated, so a complete
1043 * audit record may be written in several pieces. The timestamp of the 1073 * audit record may be written in several pieces. The timestamp of the
1044 * record and this serial number are used by the user-space tools to 1074 * record and this serial number are used by the user-space tools to
1045 * determine which pieces belong to the same audit record. The 1075 * determine which pieces belong to the same audit record. The
1046 * (timestamp,serial) tuple is unique for each syscall and is live from 1076 * (timestamp,serial) tuple is unique for each syscall and is live from
1047 * syscall entry to syscall exit. 1077 * syscall entry to syscall exit.
1048 * 1078 *
1049 * NOTE: Another possibility is to store the formatted records off the 1079 * NOTE: Another possibility is to store the formatted records off the
1050 * audit context (for those records that have a context), and emit them 1080 * audit context (for those records that have a context), and emit them
1051 * all at syscall exit. However, this could delay the reporting of 1081 * all at syscall exit. However, this could delay the reporting of
1052 * significant errors until syscall exit (or never, if the system 1082 * significant errors until syscall exit (or never, if the system
1053 * halts). 1083 * halts).
1054 */ 1084 */
1055 unsigned int audit_serial(void) 1085 unsigned int audit_serial(void)
1056 { 1086 {
1057 static DEFINE_SPINLOCK(serial_lock); 1087 static DEFINE_SPINLOCK(serial_lock);
1058 static unsigned int serial = 0; 1088 static unsigned int serial = 0;
1059 1089
1060 unsigned long flags; 1090 unsigned long flags;
1061 unsigned int ret; 1091 unsigned int ret;
1062 1092
1063 spin_lock_irqsave(&serial_lock, flags); 1093 spin_lock_irqsave(&serial_lock, flags);
1064 do { 1094 do {
1065 ret = ++serial; 1095 ret = ++serial;
1066 } while (unlikely(!ret)); 1096 } while (unlikely(!ret));
1067 spin_unlock_irqrestore(&serial_lock, flags); 1097 spin_unlock_irqrestore(&serial_lock, flags);
1068 1098
1069 return ret; 1099 return ret;
1070 } 1100 }
1071 1101
1072 static inline void audit_get_stamp(struct audit_context *ctx, 1102 static inline void audit_get_stamp(struct audit_context *ctx,
1073 struct timespec *t, unsigned int *serial) 1103 struct timespec *t, unsigned int *serial)
1074 { 1104 {
1075 if (ctx) 1105 if (ctx)
1076 auditsc_get_stamp(ctx, t, serial); 1106 auditsc_get_stamp(ctx, t, serial);
1077 else { 1107 else {
1078 *t = CURRENT_TIME; 1108 *t = CURRENT_TIME;
1079 *serial = audit_serial(); 1109 *serial = audit_serial();
1080 } 1110 }
1081 } 1111 }
1082 1112
1083 /* Obtain an audit buffer. This routine does locking to obtain the 1113 /* Obtain an audit buffer. This routine does locking to obtain the
1084 * audit buffer, but then no locking is required for calls to 1114 * audit buffer, but then no locking is required for calls to
1085 * audit_log_*format. If the tsk is a task that is currently in a 1115 * audit_log_*format. If the tsk is a task that is currently in a
1086 * syscall, then the syscall is marked as auditable and an audit record 1116 * syscall, then the syscall is marked as auditable and an audit record
1087 * will be written at syscall exit. If there is no associated task, tsk 1117 * will be written at syscall exit. If there is no associated task, tsk
1088 * should be NULL. */ 1118 * should be NULL. */
1089 1119
1090 /** 1120 /**
1091 * audit_log_start - obtain an audit buffer 1121 * audit_log_start - obtain an audit buffer
1092 * @ctx: audit_context (may be NULL) 1122 * @ctx: audit_context (may be NULL)
1093 * @gfp_mask: type of allocation 1123 * @gfp_mask: type of allocation
1094 * @type: audit message type 1124 * @type: audit message type
1095 * 1125 *
1096 * Returns audit_buffer pointer on success or NULL on error. 1126 * Returns audit_buffer pointer on success or NULL on error.
1097 * 1127 *
1098 * Obtain an audit buffer. This routine does locking to obtain the 1128 * Obtain an audit buffer. This routine does locking to obtain the
1099 * audit buffer, but then no locking is required for calls to 1129 * audit buffer, but then no locking is required for calls to
1100 * audit_log_*format. If the task (ctx) is a task that is currently in a 1130 * audit_log_*format. If the task (ctx) is a task that is currently in a
1101 * syscall, then the syscall is marked as auditable and an audit record 1131 * syscall, then the syscall is marked as auditable and an audit record
1102 * will be written at syscall exit. If there is no associated task, then 1132 * will be written at syscall exit. If there is no associated task, then
1103 * task context (ctx) should be NULL. 1133 * task context (ctx) should be NULL.
1104 */ 1134 */
1105 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1135 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1106 int type) 1136 int type)
1107 { 1137 {
1108 struct audit_buffer *ab = NULL; 1138 struct audit_buffer *ab = NULL;
1109 struct timespec t; 1139 struct timespec t;
1110 unsigned int uninitialized_var(serial); 1140 unsigned int uninitialized_var(serial);
1111 int reserve; 1141 int reserve;
1112 unsigned long timeout_start = jiffies; 1142 unsigned long timeout_start = jiffies;
1113 1143
1114 if (!audit_initialized) 1144 if (!audit_initialized)
1115 return NULL; 1145 return NULL;
1116 1146
1117 if (unlikely(audit_filter_type(type))) 1147 if (unlikely(audit_filter_type(type)))
1118 return NULL; 1148 return NULL;
1119 1149
1120 if (gfp_mask & __GFP_WAIT) 1150 if (gfp_mask & __GFP_WAIT)
1121 reserve = 0; 1151 reserve = 0;
1122 else 1152 else
1123 reserve = 5; /* Allow atomic callers to go up to five 1153 reserve = 5; /* Allow atomic callers to go up to five
1124 entries over the normal backlog limit */ 1154 entries over the normal backlog limit */
1125 1155
1126 while (audit_backlog_limit 1156 while (audit_backlog_limit
1127 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { 1157 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1128 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time 1158 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
1129 && time_before(jiffies, timeout_start + audit_backlog_wait_time)) { 1159 && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
1130 1160
1131 /* Wait for auditd to drain the queue a little */ 1161 /* Wait for auditd to drain the queue a little */
1132 DECLARE_WAITQUEUE(wait, current); 1162 DECLARE_WAITQUEUE(wait, current);
1133 set_current_state(TASK_INTERRUPTIBLE); 1163 set_current_state(TASK_INTERRUPTIBLE);
1134 add_wait_queue(&audit_backlog_wait, &wait); 1164 add_wait_queue(&audit_backlog_wait, &wait);
1135 1165
1136 if (audit_backlog_limit && 1166 if (audit_backlog_limit &&
1137 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) 1167 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1138 schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies); 1168 schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
1139 1169
1140 __set_current_state(TASK_RUNNING); 1170 __set_current_state(TASK_RUNNING);
1141 remove_wait_queue(&audit_backlog_wait, &wait); 1171 remove_wait_queue(&audit_backlog_wait, &wait);
1142 continue; 1172 continue;
1143 } 1173 }
1144 if (audit_rate_check() && printk_ratelimit()) 1174 if (audit_rate_check() && printk_ratelimit())
1145 printk(KERN_WARNING 1175 printk(KERN_WARNING
1146 "audit: audit_backlog=%d > " 1176 "audit: audit_backlog=%d > "
1147 "audit_backlog_limit=%d\n", 1177 "audit_backlog_limit=%d\n",
1148 skb_queue_len(&audit_skb_queue), 1178 skb_queue_len(&audit_skb_queue),
1149 audit_backlog_limit); 1179 audit_backlog_limit);
1150 audit_log_lost("backlog limit exceeded"); 1180 audit_log_lost("backlog limit exceeded");
1151 audit_backlog_wait_time = audit_backlog_wait_overflow; 1181 audit_backlog_wait_time = audit_backlog_wait_overflow;
1152 wake_up(&audit_backlog_wait); 1182 wake_up(&audit_backlog_wait);
1153 return NULL; 1183 return NULL;
1154 } 1184 }
1155 1185
1156 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1186 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1157 if (!ab) { 1187 if (!ab) {
1158 audit_log_lost("out of memory in audit_log_start"); 1188 audit_log_lost("out of memory in audit_log_start");
1159 return NULL; 1189 return NULL;
1160 } 1190 }
1161 1191
1162 audit_get_stamp(ab->ctx, &t, &serial); 1192 audit_get_stamp(ab->ctx, &t, &serial);
1163 1193
1164 audit_log_format(ab, "audit(%lu.%03lu:%u): ", 1194 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1165 t.tv_sec, t.tv_nsec/1000000, serial); 1195 t.tv_sec, t.tv_nsec/1000000, serial);
1166 return ab; 1196 return ab;
1167 } 1197 }
1168 1198
1169 /** 1199 /**
1170 * audit_expand - expand skb in the audit buffer 1200 * audit_expand - expand skb in the audit buffer
1171 * @ab: audit_buffer 1201 * @ab: audit_buffer
1172 * @extra: space to add at tail of the skb 1202 * @extra: space to add at tail of the skb
1173 * 1203 *
1174 * Returns 0 (no space) on failed expansion, or available space if 1204 * Returns 0 (no space) on failed expansion, or available space if
1175 * successful. 1205 * successful.
1176 */ 1206 */
1177 static inline int audit_expand(struct audit_buffer *ab, int extra) 1207 static inline int audit_expand(struct audit_buffer *ab, int extra)
1178 { 1208 {
1179 struct sk_buff *skb = ab->skb; 1209 struct sk_buff *skb = ab->skb;
1180 int oldtail = skb_tailroom(skb); 1210 int oldtail = skb_tailroom(skb);
1181 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1211 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1182 int newtail = skb_tailroom(skb); 1212 int newtail = skb_tailroom(skb);
1183 1213
1184 if (ret < 0) { 1214 if (ret < 0) {
1185 audit_log_lost("out of memory in audit_expand"); 1215 audit_log_lost("out of memory in audit_expand");
1186 return 0; 1216 return 0;
1187 } 1217 }
1188 1218
1189 skb->truesize += newtail - oldtail; 1219 skb->truesize += newtail - oldtail;
1190 return newtail; 1220 return newtail;
1191 } 1221 }
1192 1222
1193 /* 1223 /*
1194 * Format an audit message into the audit buffer. If there isn't enough 1224 * Format an audit message into the audit buffer. If there isn't enough
1195 * room in the audit buffer, more room will be allocated and vsnprint 1225 * room in the audit buffer, more room will be allocated and vsnprint
1196 * will be called a second time. Currently, we assume that a printk 1226 * will be called a second time. Currently, we assume that a printk
1197 * can't format message larger than 1024 bytes, so we don't either. 1227 * can't format message larger than 1024 bytes, so we don't either.
1198 */ 1228 */
1199 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1229 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1200 va_list args) 1230 va_list args)
1201 { 1231 {
1202 int len, avail; 1232 int len, avail;
1203 struct sk_buff *skb; 1233 struct sk_buff *skb;
1204 va_list args2; 1234 va_list args2;
1205 1235
1206 if (!ab) 1236 if (!ab)
1207 return; 1237 return;
1208 1238
1209 BUG_ON(!ab->skb); 1239 BUG_ON(!ab->skb);
1210 skb = ab->skb; 1240 skb = ab->skb;
1211 avail = skb_tailroom(skb); 1241 avail = skb_tailroom(skb);
1212 if (avail == 0) { 1242 if (avail == 0) {
1213 avail = audit_expand(ab, AUDIT_BUFSIZ); 1243 avail = audit_expand(ab, AUDIT_BUFSIZ);
1214 if (!avail) 1244 if (!avail)
1215 goto out; 1245 goto out;
1216 } 1246 }
1217 va_copy(args2, args); 1247 va_copy(args2, args);
1218 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1248 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1219 if (len >= avail) { 1249 if (len >= avail) {
1220 /* The printk buffer is 1024 bytes long, so if we get 1250 /* The printk buffer is 1024 bytes long, so if we get
1221 * here and AUDIT_BUFSIZ is at least 1024, then we can 1251 * here and AUDIT_BUFSIZ is at least 1024, then we can
1222 * log everything that printk could have logged. */ 1252 * log everything that printk could have logged. */
1223 avail = audit_expand(ab, 1253 avail = audit_expand(ab,
1224 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1254 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1225 if (!avail) 1255 if (!avail)
1226 goto out; 1256 goto out;
1227 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1257 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1228 } 1258 }
1229 va_end(args2); 1259 va_end(args2);
1230 if (len > 0) 1260 if (len > 0)
1231 skb_put(skb, len); 1261 skb_put(skb, len);
1232 out: 1262 out:
1233 return; 1263 return;
1234 } 1264 }
1235 1265
1236 /** 1266 /**
1237 * audit_log_format - format a message into the audit buffer. 1267 * audit_log_format - format a message into the audit buffer.
1238 * @ab: audit_buffer 1268 * @ab: audit_buffer
1239 * @fmt: format string 1269 * @fmt: format string
1240 * @...: optional parameters matching @fmt string 1270 * @...: optional parameters matching @fmt string
1241 * 1271 *
1242 * All the work is done in audit_log_vformat. 1272 * All the work is done in audit_log_vformat.
1243 */ 1273 */
1244 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 1274 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1245 { 1275 {
1246 va_list args; 1276 va_list args;
1247 1277
1248 if (!ab) 1278 if (!ab)
1249 return; 1279 return;
1250 va_start(args, fmt); 1280 va_start(args, fmt);
1251 audit_log_vformat(ab, fmt, args); 1281 audit_log_vformat(ab, fmt, args);
1252 va_end(args); 1282 va_end(args);
1253 } 1283 }
1254 1284
1255 /** 1285 /**
1256 * audit_log_hex - convert a buffer to hex and append it to the audit skb 1286 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1257 * @ab: the audit_buffer 1287 * @ab: the audit_buffer
1258 * @buf: buffer to convert to hex 1288 * @buf: buffer to convert to hex
1259 * @len: length of @buf to be converted 1289 * @len: length of @buf to be converted
1260 * 1290 *
1261 * No return value; failure to expand is silently ignored. 1291 * No return value; failure to expand is silently ignored.
1262 * 1292 *
1263 * This function will take the passed buf and convert it into a string of 1293 * This function will take the passed buf and convert it into a string of
1264 * ascii hex digits. The new string is placed onto the skb. 1294 * ascii hex digits. The new string is placed onto the skb.
1265 */ 1295 */
1266 void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf, 1296 void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf,
1267 size_t len) 1297 size_t len)
1268 { 1298 {
1269 int i, avail, new_len; 1299 int i, avail, new_len;
1270 unsigned char *ptr; 1300 unsigned char *ptr;
1271 struct sk_buff *skb; 1301 struct sk_buff *skb;
1272 static const unsigned char *hex = "0123456789ABCDEF"; 1302 static const unsigned char *hex = "0123456789ABCDEF";
1273 1303
1274 if (!ab) 1304 if (!ab)
1275 return; 1305 return;
1276 1306
1277 BUG_ON(!ab->skb); 1307 BUG_ON(!ab->skb);
1278 skb = ab->skb; 1308 skb = ab->skb;
1279 avail = skb_tailroom(skb); 1309 avail = skb_tailroom(skb);
1280 new_len = len<<1; 1310 new_len = len<<1;
1281 if (new_len >= avail) { 1311 if (new_len >= avail) {
1282 /* Round the buffer request up to the next multiple */ 1312 /* Round the buffer request up to the next multiple */
1283 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 1313 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1284 avail = audit_expand(ab, new_len); 1314 avail = audit_expand(ab, new_len);
1285 if (!avail) 1315 if (!avail)
1286 return; 1316 return;
1287 } 1317 }
1288 1318
1289 ptr = skb_tail_pointer(skb); 1319 ptr = skb_tail_pointer(skb);
1290 for (i=0; i<len; i++) { 1320 for (i=0; i<len; i++) {
1291 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */ 1321 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1292 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */ 1322 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
1293 } 1323 }
1294 *ptr = 0; 1324 *ptr = 0;
1295 skb_put(skb, len << 1); /* new string is twice the old string */ 1325 skb_put(skb, len << 1); /* new string is twice the old string */
1296 } 1326 }
1297 1327
1298 /* 1328 /*
1299 * Format a string of no more than slen characters into the audit buffer, 1329 * Format a string of no more than slen characters into the audit buffer,
1300 * enclosed in quote marks. 1330 * enclosed in quote marks.
1301 */ 1331 */
1302 static void audit_log_n_string(struct audit_buffer *ab, size_t slen, 1332 static void audit_log_n_string(struct audit_buffer *ab, size_t slen,
1303 const char *string) 1333 const char *string)
1304 { 1334 {
1305 int avail, new_len; 1335 int avail, new_len;
1306 unsigned char *ptr; 1336 unsigned char *ptr;
1307 struct sk_buff *skb; 1337 struct sk_buff *skb;
1308 1338
1309 if (!ab) 1339 if (!ab)
1310 return; 1340 return;
1311 1341
1312 BUG_ON(!ab->skb); 1342 BUG_ON(!ab->skb);
1313 skb = ab->skb; 1343 skb = ab->skb;
1314 avail = skb_tailroom(skb); 1344 avail = skb_tailroom(skb);
1315 new_len = slen + 3; /* enclosing quotes + null terminator */ 1345 new_len = slen + 3; /* enclosing quotes + null terminator */
1316 if (new_len > avail) { 1346 if (new_len > avail) {
1317 avail = audit_expand(ab, new_len); 1347 avail = audit_expand(ab, new_len);
1318 if (!avail) 1348 if (!avail)
1319 return; 1349 return;
1320 } 1350 }
1321 ptr = skb_tail_pointer(skb); 1351 ptr = skb_tail_pointer(skb);
1322 *ptr++ = '"'; 1352 *ptr++ = '"';
1323 memcpy(ptr, string, slen); 1353 memcpy(ptr, string, slen);
1324 ptr += slen; 1354 ptr += slen;
1325 *ptr++ = '"'; 1355 *ptr++ = '"';
1326 *ptr = 0; 1356 *ptr = 0;
1327 skb_put(skb, slen + 2); /* don't include null terminator */ 1357 skb_put(skb, slen + 2); /* don't include null terminator */
1328 } 1358 }
1329 1359
1330 /** 1360 /**
1331 * audit_string_contains_control - does a string need to be logged in hex 1361 * audit_string_contains_control - does a string need to be logged in hex
1332 * @string: string to be checked 1362 * @string: string to be checked
1333 * @len: max length of the string to check 1363 * @len: max length of the string to check
1334 */ 1364 */
1335 int audit_string_contains_control(const char *string, size_t len) 1365 int audit_string_contains_control(const char *string, size_t len)
1336 { 1366 {
1337 const unsigned char *p; 1367 const unsigned char *p;
1338 for (p = string; p < (const unsigned char *)string + len && *p; p++) { 1368 for (p = string; p < (const unsigned char *)string + len && *p; p++) {
1339 if (*p == '"' || *p < 0x21 || *p > 0x7f) 1369 if (*p == '"' || *p < 0x21 || *p > 0x7f)
1340 return 1; 1370 return 1;
1341 } 1371 }
1342 return 0; 1372 return 0;
1343 } 1373 }
1344 1374
1345 /** 1375 /**
1346 * audit_log_n_untrustedstring - log a string that may contain random characters 1376 * audit_log_n_untrustedstring - log a string that may contain random characters
1347 * @ab: audit_buffer 1377 * @ab: audit_buffer
1348 * @len: length of string (not including trailing null) 1378 * @len: length of string (not including trailing null)
1349 * @string: string to be logged 1379 * @string: string to be logged
1350 * 1380 *
1351 * This code will escape a string that is passed to it if the string 1381 * This code will escape a string that is passed to it if the string
1352 * contains a control character, unprintable character, double quote mark, 1382 * contains a control character, unprintable character, double quote mark,
1353 * or a space. Unescaped strings will start and end with a double quote mark. 1383 * or a space. Unescaped strings will start and end with a double quote mark.
1354 * Strings that are escaped are printed in hex (2 digits per char). 1384 * Strings that are escaped are printed in hex (2 digits per char).
1355 * 1385 *
1356 * The caller specifies the number of characters in the string to log, which may 1386 * The caller specifies the number of characters in the string to log, which may
1357 * or may not be the entire string. 1387 * or may not be the entire string.
1358 */ 1388 */
1359 void audit_log_n_untrustedstring(struct audit_buffer *ab, size_t len, 1389 void audit_log_n_untrustedstring(struct audit_buffer *ab, size_t len,
1360 const char *string) 1390 const char *string)
1361 { 1391 {
1362 if (audit_string_contains_control(string, len)) 1392 if (audit_string_contains_control(string, len))
1363 audit_log_hex(ab, string, len); 1393 audit_log_hex(ab, string, len);
1364 else 1394 else
1365 audit_log_n_string(ab, len, string); 1395 audit_log_n_string(ab, len, string);
1366 } 1396 }
1367 1397
1368 /** 1398 /**
1369 * audit_log_untrustedstring - log a string that may contain random characters 1399 * audit_log_untrustedstring - log a string that may contain random characters
1370 * @ab: audit_buffer 1400 * @ab: audit_buffer
1371 * @string: string to be logged 1401 * @string: string to be logged
1372 * 1402 *
1373 * Same as audit_log_n_untrustedstring(), except that strlen is used to 1403 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1374 * determine string length. 1404 * determine string length.
1375 */ 1405 */
1376 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 1406 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1377 { 1407 {
1378 audit_log_n_untrustedstring(ab, strlen(string), string); 1408 audit_log_n_untrustedstring(ab, strlen(string), string);
1379 } 1409 }
1380 1410
1381 /* This is a helper-function to print the escaped d_path */ 1411 /* This is a helper-function to print the escaped d_path */
1382 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 1412 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1383 struct path *path) 1413 struct path *path)
1384 { 1414 {
1385 char *p, *pathname; 1415 char *p, *pathname;
1386 1416
1387 if (prefix) 1417 if (prefix)
1388 audit_log_format(ab, " %s", prefix); 1418 audit_log_format(ab, " %s", prefix);
1389 1419
1390 /* We will allow 11 spaces for ' (deleted)' to be appended */ 1420 /* We will allow 11 spaces for ' (deleted)' to be appended */
1391 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 1421 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1392 if (!pathname) { 1422 if (!pathname) {
1393 audit_log_format(ab, "<no memory>"); 1423 audit_log_format(ab, "<no memory>");
1394 return; 1424 return;
1395 } 1425 }
1396 p = d_path(path, pathname, PATH_MAX+11); 1426 p = d_path(path, pathname, PATH_MAX+11);
1397 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 1427 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1398 /* FIXME: can we save some information here? */ 1428 /* FIXME: can we save some information here? */
1399 audit_log_format(ab, "<too long>"); 1429 audit_log_format(ab, "<too long>");
1400 } else 1430 } else
1401 audit_log_untrustedstring(ab, p); 1431 audit_log_untrustedstring(ab, p);
1402 kfree(pathname); 1432 kfree(pathname);
1403 } 1433 }
1404 1434
1405 /** 1435 /**
1406 * audit_log_end - end one audit record 1436 * audit_log_end - end one audit record
1407 * @ab: the audit_buffer 1437 * @ab: the audit_buffer
1408 * 1438 *
1409 * The netlink_* functions cannot be called inside an irq context, so 1439 * The netlink_* functions cannot be called inside an irq context, so
1410 * the audit buffer is placed on a queue and a tasklet is scheduled to 1440 * the audit buffer is placed on a queue and a tasklet is scheduled to
1411 * remove them from the queue outside the irq context. May be called in 1441 * remove them from the queue outside the irq context. May be called in
1412 * any context. 1442 * any context.
1413 */ 1443 */
1414 void audit_log_end(struct audit_buffer *ab) 1444 void audit_log_end(struct audit_buffer *ab)
1415 { 1445 {
1416 if (!ab) 1446 if (!ab)
1417 return; 1447 return;
1418 if (!audit_rate_check()) { 1448 if (!audit_rate_check()) {
1419 audit_log_lost("rate limit exceeded"); 1449 audit_log_lost("rate limit exceeded");
1420 } else { 1450 } else {
1421 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); 1451 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1422 nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0); 1452 nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
1423 1453
1424 if (audit_pid) { 1454 if (audit_pid) {
1425 skb_queue_tail(&audit_skb_queue, ab->skb); 1455 skb_queue_tail(&audit_skb_queue, ab->skb);
1426 wake_up_interruptible(&kauditd_wait); 1456 wake_up_interruptible(&kauditd_wait);
1427 } else { 1457 } else {
1428 if (nlh->nlmsg_type != AUDIT_EOE) { 1458 if (nlh->nlmsg_type != AUDIT_EOE) {
1429 if (printk_ratelimit()) { 1459 if (printk_ratelimit()) {
1430 printk(KERN_NOTICE "type=%d %s\n", 1460 printk(KERN_NOTICE "type=%d %s\n",
1431 nlh->nlmsg_type, 1461 nlh->nlmsg_type,
1432 ab->skb->data + NLMSG_SPACE(0)); 1462 ab->skb->data + NLMSG_SPACE(0));
1433 } else 1463 } else
1434 audit_log_lost("printk limit exceeded\n"); 1464 audit_log_lost("printk limit exceeded\n");
1435 } 1465 }
1436 audit_hold_skb(ab->skb); 1466 audit_hold_skb(ab->skb);
1437 } 1467 }
1438 ab->skb = NULL; 1468 ab->skb = NULL;
1439 } 1469 }
1440 audit_buffer_free(ab); 1470 audit_buffer_free(ab);
1441 } 1471 }
1442 1472
1443 /** 1473 /**
1444 * audit_log - Log an audit record 1474 * audit_log - Log an audit record
1445 * @ctx: audit context 1475 * @ctx: audit context
1446 * @gfp_mask: type of allocation 1476 * @gfp_mask: type of allocation
1447 * @type: audit message type 1477 * @type: audit message type
1448 * @fmt: format string to use 1478 * @fmt: format string to use
1449 * @...: variable parameters matching the format string 1479 * @...: variable parameters matching the format string
1450 * 1480 *
1451 * This is a convenience function that calls audit_log_start, 1481 * This is a convenience function that calls audit_log_start,
1452 * audit_log_vformat, and audit_log_end. It may be called 1482 * audit_log_vformat, and audit_log_end. It may be called
1453 * in any context. 1483 * in any context.
1454 */ 1484 */
1455 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 1485 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1456 const char *fmt, ...) 1486 const char *fmt, ...)
1457 { 1487 {
1458 struct audit_buffer *ab; 1488 struct audit_buffer *ab;
1459 va_list args; 1489 va_list args;
1460 1490
1461 ab = audit_log_start(ctx, gfp_mask, type); 1491 ab = audit_log_start(ctx, gfp_mask, type);
1462 if (ab) { 1492 if (ab) {
1463 va_start(args, fmt); 1493 va_start(args, fmt);
1464 audit_log_vformat(ab, fmt, args); 1494 audit_log_vformat(ab, fmt, args);
1465 va_end(args); 1495 va_end(args);
1466 audit_log_end(ab); 1496 audit_log_end(ab);
1467 } 1497 }
1468 } 1498 }
1469 1499
1470 EXPORT_SYMBOL(audit_log_start); 1500 EXPORT_SYMBOL(audit_log_start);
1471 EXPORT_SYMBOL(audit_log_end); 1501 EXPORT_SYMBOL(audit_log_end);
1472 EXPORT_SYMBOL(audit_log_format); 1502 EXPORT_SYMBOL(audit_log_format);
1473 EXPORT_SYMBOL(audit_log); 1503 EXPORT_SYMBOL(audit_log);
1474 1504