/* Copyright 2008-2012 Freescale Semiconductor, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Freescale Semiconductor nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") as published by the Free Software * Foundation, either version 2 of that License or (at your option) any * later version. * * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef FSL_QMAN_H #define FSL_QMAN_H #ifdef __cplusplus extern "C" { #endif /* Last updated for v00.800 of the BG */ /* Hardware constants */ #define QM_CHANNEL_SWPORTAL0 0 #define QMAN_CHANNEL_POOL1 0x21 #define QMAN_CHANNEL_CAAM 0x80 #define QMAN_CHANNEL_PME 0xa0 #define QMAN_CHANNEL_POOL1_REV3 0x401 #define QMAN_CHANNEL_CAAM_REV3 0x840 #define QMAN_CHANNEL_PME_REV3 0x860 #define QMAN_CHANNEL_DCE 0x8a0 #define QMAN_CHANNEL_DCE_QMANREV312 0x880 extern u16 qm_channel_pool1; extern u16 qm_channel_caam; extern u16 qm_channel_pme; extern u16 qm_channel_dce; enum qm_dc_portal { qm_dc_portal_fman0 = 0, qm_dc_portal_fman1 = 1, qm_dc_portal_caam = 2, qm_dc_portal_pme = 3, qm_dc_portal_rman = 4, qm_dc_portal_dce = 5 }; /* Portal processing (interrupt) sources */ #define QM_PIRQ_CCSCI 0x00200000 /* CEETM Congestion State Change */ #define QM_PIRQ_CSCI 0x00100000 /* Congestion State Change */ #define QM_PIRQ_EQCI 0x00080000 /* Enqueue Command Committed */ #define QM_PIRQ_EQRI 0x00040000 /* EQCR Ring (below threshold) */ #define QM_PIRQ_DQRI 0x00020000 /* DQRR Ring (non-empty) */ #define QM_PIRQ_MRI 0x00010000 /* MR Ring (non-empty) */ /* This mask contains all the interrupt sources that need handling except DQRI, * ie. that if present should trigger slow-path processing. */ #define QM_PIRQ_SLOW (QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \ QM_PIRQ_MRI | QM_PIRQ_CCSCI) /* --- Clock speed --- */ /* A qman driver instance may or may not know the current qman clock speed. * However, certain CEETM calculations may not be possible if this is not known. * The 'set' function will only succeed (return zero) if the driver did not * already know the clock speed. Likewise, the 'get' function will only succeed * if the driver does know the clock speed (either because it knew when booting, * or was told via 'set'). In cases where software is running on a driver * instance that does not know the clock speed (eg. on a hypervised data-plane), * and the user can obtain the current qman clock speed by other means (eg. from * a message sent from the control-plane), then the 'set' function can be used * to enable rate-calculations in a driver where it would otherwise not be * possible. */ int qm_get_clock(u64 *clock_hz); int qm_set_clock(u64 clock_hz); /* For qman_static_dequeue_*** APIs */ #define QM_SDQCR_CHANNELS_POOL_MASK 0x00007fff /* for n in [1,15] */ #define QM_SDQCR_CHANNELS_POOL(n) (0x00008000 >> (n)) /* for conversion from n of qm_channel */ static inline u32 QM_SDQCR_CHANNELS_POOL_CONV(u16 channel) { return QM_SDQCR_CHANNELS_POOL(channel + 1 - qm_channel_pool1); } /* For qman_volatile_dequeue(); Choose one PRECEDENCE. EXACT is optional. Use * NUMFRAMES(n) (6-bit) or NUMFRAMES_TILLEMPTY to fill in the frame-count. Use * FQID(n) to fill in the frame queue ID. */ #define QM_VDQCR_PRECEDENCE_VDQCR 0x0 #define QM_VDQCR_PRECEDENCE_SDQCR 0x80000000 #define QM_VDQCR_EXACT 0x40000000 #define QM_VDQCR_NUMFRAMES_MASK 0x3f000000 #define QM_VDQCR_NUMFRAMES_SET(n) (((n) & 0x3f) << 24) #define QM_VDQCR_NUMFRAMES_GET(n) (((n) >> 24) & 0x3f) #define QM_VDQCR_NUMFRAMES_TILLEMPTY QM_VDQCR_NUMFRAMES_SET(0) /* ------------------------------------------------------- */ /* --- Qman data structures (and associated constants) --- */ /* Represents s/w corenet portal mapped data structures */ struct qm_eqcr_entry; /* EQCR (EnQueue Command Ring) entries */ struct qm_dqrr_entry; /* DQRR (DeQueue Response Ring) entries */ struct qm_mr_entry; /* MR (Message Ring) entries */ struct qm_mc_command; /* MC (Management Command) command */ struct qm_mc_result; /* MC result */ /* See David Lapp's "Frame formats" document, "dpateam", Jan 07, 2008 */ #define QM_FD_FORMAT_SG 0x4 #define QM_FD_FORMAT_LONG 0x2 #define QM_FD_FORMAT_COMPOUND 0x1 enum qm_fd_format { /* 'contig' implies a contiguous buffer, whereas 'sg' implies a * scatter-gather table. 'big' implies a 29-bit length with no offset * field, otherwise length is 20-bit and offset is 9-bit. 'compound' * implies a s/g-like table, where each entry itself represents a frame * (contiguous or scatter-gather) and the 29-bit "length" is * interpreted purely for congestion calculations, ie. a "congestion * weight". */ qm_fd_contig = 0, qm_fd_contig_big = QM_FD_FORMAT_LONG, qm_fd_sg = QM_FD_FORMAT_SG, qm_fd_sg_big = QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG, qm_fd_compound = QM_FD_FORMAT_COMPOUND }; /* Capitalised versions are un-typed but can be used in static expressions */ #define QM_FD_CONTIG 0 #define QM_FD_CONTIG_BIG QM_FD_FORMAT_LONG #define QM_FD_SG QM_FD_FORMAT_SG #define QM_FD_SG_BIG (QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG) #define QM_FD_COMPOUND QM_FD_FORMAT_COMPOUND /* See 1.5.1.1: "Frame Descriptor (FD)" */ struct qm_fd { union { struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 dd:2; /* dynamic debug */ u8 liodn_offset:6; u8 bpid:8; /* Buffer Pool ID */ u8 eliodn_offset:4; u8 __reserved:4; u8 addr_hi; /* high 8-bits of 40-bit address */ u32 addr_lo; /* low 32-bits of 40-bit address */ #else u32 addr_lo; /* low 32-bits of 40-bit address */ u8 addr_hi; /* high 8-bits of 40-bit address */ u8 __reserved:4; u8 eliodn_offset:4; u8 bpid:8; /* Buffer Pool ID */ u8 liodn_offset:6; u8 dd:2; /* dynamic debug */ #endif }; struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u64 __notaddress:24; u64 addr:40; #else u64 addr:40; u64 __notaddress:24; #endif }; u64 opaque_addr; }; /* The 'format' field indicates the interpretation of the remaining 29 * bits of the 32-bit word. For packing reasons, it is duplicated in the * other union elements. Note, union'd structs are difficult to use with * static initialisation under gcc, in which case use the "opaque" form * with one of the macros. */ union { /* For easier/faster copying of this part of the fd (eg. from a * DQRR entry to an EQCR entry) copy 'opaque' */ u32 opaque; /* If 'format' is _contig or _sg, 20b length and 9b offset */ struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ enum qm_fd_format format:3; u16 offset:9; u32 length20:20; #else u32 length20:20; u16 offset:9; enum qm_fd_format format:3; #endif }; /* If 'format' is _contig_big or _sg_big, 29b length */ struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ enum qm_fd_format _format1:3; u32 length29:29; #else u32 length29:29; enum qm_fd_format _format1:3; #endif }; /* If 'format' is _compound, 29b "congestion weight" */ struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ enum qm_fd_format _format2:3; u32 cong_weight:29; #else u32 cong_weight:29; enum qm_fd_format _format2:3; #endif }; }; union { u32 cmd; u32 status; }; } __aligned(8); #define QM_FD_DD_NULL 0x00 #define QM_FD_PID_MASK 0x3f static inline u64 qm_fd_addr_get64(const struct qm_fd *fd) { return fd->addr; } static inline dma_addr_t qm_fd_addr(const struct qm_fd *fd) { return (dma_addr_t)fd->addr; } /* Macro, so we compile better if 'v' isn't always 64-bit */ #define qm_fd_addr_set64(fd, v) \ do { \ struct qm_fd *__fd931 = (fd); \ __fd931->addr = v; \ } while (0) /* For static initialisation of FDs (which is complicated by the use of unions * in "struct qm_fd"), use the following macros. Note that; * - 'dd', 'pid' and 'bpid' are ignored because there's no static initialisation * use-case), * - use capitalised QM_FD_*** formats for static initialisation. */ #define QM_FD_FMT_20(cmd, addr_hi, addr_lo, fmt, off, len) \ { 0, 0, 0, 0, 0, addr_hi, addr_lo, \ { (((fmt)&0x7) << 29) | (((off)&0x1ff) << 20) | ((len)&0xfffff) }, \ { cmd } } #define QM_FD_FMT_29(cmd, addr_hi, addr_lo, fmt, len) \ { 0, 0, 0, 0, 0, addr_hi, addr_lo, \ { (((fmt)&0x7) << 29) | ((len)&0x1fffffff) }, \ { cmd } } /* See 2.2.1.3 Multi-Core Datapath Acceleration Architecture */ #define QM_SG_OFFSET_MASK 0x1FFF struct qm_sg_entry { union { struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 __reserved1[3]; u8 addr_hi; /* high 8-bits of 40-bit address */ u32 addr_lo; /* low 32-bits of 40-bit address */ #else u32 addr_lo; /* low 32-bits of 40-bit address */ u8 addr_hi; /* high 8-bits of 40-bit address */ u8 __reserved1[3]; #endif }; struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u64 __notaddress:24; u64 addr:40; #else u64 addr:40; u64 __notaddress:24; #endif }; u64 opaque; }; union { struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u32 extension:1; /* Extension bit */ u32 final:1; /* Final bit */ u32 length:30; #else u32 length:30; u32 final:1; /* Final bit */ u32 extension:1; /* Extension bit */ #endif }; u32 sgt_efl; }; u8 __reserved2; u8 bpid; union { struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u16 __reserved3:3; u16 offset:13; #else u16 offset:13; u16 __reserved3:3; #endif }; u16 opaque_offset; }; } __packed; union qm_sg_efl { struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u32 extension:1; /* Extension bit */ u32 final:1; /* Final bit */ u32 length:30; #else u32 length:30; u32 final:1; /* Final bit */ u32 extension:1; /* Extension bit */ #endif }; u32 efl; }; static inline dma_addr_t qm_sg_addr(const struct qm_sg_entry *sg) { return (dma_addr_t)be64_to_cpu(sg->opaque) & 0xffffffffffULL; } static inline u8 qm_sg_entry_get_ext(const struct qm_sg_entry *sg) { union qm_sg_efl u; u.efl = be32_to_cpu(sg->sgt_efl); return u.extension; } static inline u8 qm_sg_entry_get_final(const struct qm_sg_entry *sg) { union qm_sg_efl u; u.efl = be32_to_cpu(sg->sgt_efl); return u.final; } static inline u32 qm_sg_entry_get_len(const struct qm_sg_entry *sg) { union qm_sg_efl u; u.efl = be32_to_cpu(sg->sgt_efl); return u.length; } static inline u8 qm_sg_entry_get_bpid(const struct qm_sg_entry *sg) { return sg->bpid; } static inline u16 qm_sg_entry_get_offset(const struct qm_sg_entry *sg) { u32 opaque_offset = be16_to_cpu(sg->opaque_offset); return opaque_offset & 0x1fff; } /* Macro, so we compile better if 'v' isn't always 64-bit */ #define qm_sg_entry_set64(sg, v) \ do { \ struct qm_sg_entry *__sg931 = (sg); \ __sg931->opaque = cpu_to_be64(v); \ } while (0) #define qm_sg_entry_set_ext(sg, v) \ do { \ union qm_sg_efl __u932; \ __u932.efl = be32_to_cpu((sg)->sgt_efl); \ __u932.extension = v; \ (sg)->sgt_efl = cpu_to_be32(__u932.efl); \ } while (0) #define qm_sg_entry_set_final(sg, v) \ do { \ union qm_sg_efl __u933; \ __u933.efl = be32_to_cpu((sg)->sgt_efl); \ __u933.final = v; \ (sg)->sgt_efl = cpu_to_be32(__u933.efl); \ } while (0) #define qm_sg_entry_set_len(sg, v) \ do { \ union qm_sg_efl __u934; \ __u934.efl = be32_to_cpu((sg)->sgt_efl); \ __u934.length = v; \ (sg)->sgt_efl = cpu_to_be32(__u934.efl); \ } while (0) #define qm_sg_entry_set_bpid(sg, v) \ do { \ struct qm_sg_entry *__u935 = (sg); \ __u935->bpid = v; \ } while (0) #define qm_sg_entry_set_offset(sg, v) \ do { \ struct qm_sg_entry *__u936 = (sg); \ __u936->opaque_offset = cpu_to_be16(v); \ } while (0) /* See 1.5.8.1: "Enqueue Command" */ struct qm_eqcr_entry { u8 __dont_write_directly__verb; u8 dca; u16 seqnum; u32 orp; /* 24-bit */ u32 fqid; /* 24-bit */ u32 tag; struct qm_fd fd; u8 __reserved3[32]; } __packed; #define QM_EQCR_VERB_VBIT 0x80 #define QM_EQCR_VERB_CMD_MASK 0x61 /* but only one value; */ #define QM_EQCR_VERB_CMD_ENQUEUE 0x01 #define QM_EQCR_VERB_COLOUR_MASK 0x18 /* 4 possible values; */ #define QM_EQCR_VERB_COLOUR_GREEN 0x00 #define QM_EQCR_VERB_COLOUR_YELLOW 0x08 #define QM_EQCR_VERB_COLOUR_RED 0x10 #define QM_EQCR_VERB_COLOUR_OVERRIDE 0x18 #define QM_EQCR_VERB_INTERRUPT 0x04 /* on command consumption */ #define QM_EQCR_VERB_ORP 0x02 /* enable order restoration */ #define QM_EQCR_DCA_ENABLE 0x80 #define QM_EQCR_DCA_PARK 0x40 #define QM_EQCR_DCA_IDXMASK 0x0f /* "DQRR::idx" goes here */ #define QM_EQCR_SEQNUM_NESN 0x8000 /* Advance NESN */ #define QM_EQCR_SEQNUM_NLIS 0x4000 /* More fragments to come */ #define QM_EQCR_SEQNUM_SEQMASK 0x3fff /* sequence number goes here */ #define QM_EQCR_FQID_NULL 0 /* eg. for an ORP seqnum hole */ /* See 1.5.8.2: "Frame Dequeue Response" */ struct qm_dqrr_entry { u8 verb; u8 stat; u16 seqnum; /* 15-bit */ u8 tok; u8 __reserved2[3]; u32 fqid; /* 24-bit */ u32 contextB; struct qm_fd fd; u8 __reserved4[32]; }; #define QM_DQRR_VERB_VBIT 0x80 #define QM_DQRR_VERB_MASK 0x7f /* where the verb contains; */ #define QM_DQRR_VERB_FRAME_DEQUEUE 0x60 /* "this format" */ #define QM_DQRR_STAT_FQ_EMPTY 0x80 /* FQ empty */ #define QM_DQRR_STAT_FQ_HELDACTIVE 0x40 /* FQ held active */ #define QM_DQRR_STAT_FQ_FORCEELIGIBLE 0x20 /* FQ was force-eligible'd */ #define QM_DQRR_STAT_FD_VALID 0x10 /* has a non-NULL FD */ #define QM_DQRR_STAT_UNSCHEDULED 0x02 /* Unscheduled dequeue */ #define QM_DQRR_STAT_DQCR_EXPIRED 0x01 /* VDQCR or PDQCR expired*/ /* See 1.5.8.3: "ERN Message Response" */ /* See 1.5.8.4: "FQ State Change Notification" */ struct qm_mr_entry { u8 verb; union { struct { u8 dca; u16 seqnum; u8 rc; /* Rejection Code */ u32 orp:24; u32 fqid; /* 24-bit */ u32 tag; struct qm_fd fd; } __packed ern; struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 colour:2; /* See QM_MR_DCERN_COLOUR_* */ u8 __reserved1:3; enum qm_dc_portal portal:3; #else enum qm_dc_portal portal:3; u8 __reserved1:3; u8 colour:2; /* See QM_MR_DCERN_COLOUR_* */ #endif u16 __reserved2; u8 rc; /* Rejection Code */ u32 __reserved3:24; u32 fqid; /* 24-bit */ u32 tag; struct qm_fd fd; } __packed dcern; struct { u8 fqs; /* Frame Queue Status */ u8 __reserved1[6]; u32 fqid; /* 24-bit */ u32 contextB; u8 __reserved2[16]; } __packed fq; /* FQRN/FQRNI/FQRL/FQPN */ }; u8 __reserved2[32]; } __packed; #define QM_MR_VERB_VBIT 0x80 /* The "ern" VERB bits match QM_EQCR_VERB_*** so aren't reproduced here. ERNs * originating from direct-connect portals ("dcern") use 0x20 as a verb which * would be invalid as a s/w enqueue verb. A s/w ERN can be distinguished from * the other MR types by noting if the 0x20 bit is unset. */ #define QM_MR_VERB_TYPE_MASK 0x27 #define QM_MR_VERB_DC_ERN 0x20 #define QM_MR_VERB_FQRN 0x21 #define QM_MR_VERB_FQRNI 0x22 #define QM_MR_VERB_FQRL 0x23 #define QM_MR_VERB_FQPN 0x24 #define QM_MR_RC_MASK 0xf0 /* contains one of; */ #define QM_MR_RC_CGR_TAILDROP 0x00 #define QM_MR_RC_WRED 0x10 #define QM_MR_RC_ERROR 0x20 #define QM_MR_RC_ORPWINDOW_EARLY 0x30 #define QM_MR_RC_ORPWINDOW_LATE 0x40 #define QM_MR_RC_FQ_TAILDROP 0x50 #define QM_MR_RC_ORPWINDOW_RETIRED 0x60 #define QM_MR_RC_ORP_ZERO 0x70 #define QM_MR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */ #define QM_MR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */ #define QM_MR_DCERN_COLOUR_GREEN 0x00 #define QM_MR_DCERN_COLOUR_YELLOW 0x01 #define QM_MR_DCERN_COLOUR_RED 0x02 #define QM_MR_DCERN_COLOUR_OVERRIDE 0x03 /* An identical structure of FQD fields is present in the "Init FQ" command and * the "Query FQ" result, it's suctioned out into the "struct qm_fqd" type. * Within that, the 'stashing' and 'taildrop' pieces are also factored out, the * latter has two inlines to assist with converting to/from the mant+exp * representation. */ struct qm_fqd_stashing { /* See QM_STASHING_EXCL_<...> */ #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 exclusive; u8 __reserved1:2; /* Numbers of cachelines */ u8 annotation_cl:2; u8 data_cl:2; u8 context_cl:2; #else u8 context_cl:2; u8 data_cl:2; u8 annotation_cl:2; u8 __reserved1:2; u8 exclusive; #endif } __packed; struct qm_fqd_taildrop { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u16 __reserved1:3; u16 mant:8; u16 exp:5; #else u16 exp:5; u16 mant:8; u16 __reserved1:3; #endif } __packed; struct qm_fqd_oac { /* See QM_OAC_<...> */ #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 oac:2; /* "Overhead Accounting Control" */ u8 __reserved1:6; #else u8 __reserved1:6; u8 oac:2; /* "Overhead Accounting Control" */ #endif /* Two's-complement value (-128 to +127) */ signed char oal; /* "Overhead Accounting Length" */ } __packed; struct qm_fqd { union { u8 orpc; struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 __reserved1:2; u8 orprws:3; u8 oa:1; u8 olws:2; #else u8 olws:2; u8 oa:1; u8 orprws:3; u8 __reserved1:2; #endif } __packed; }; u8 cgid; u16 fq_ctrl; /* See QM_FQCTRL_<...> */ union { u16 dest_wq; struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u16 channel:13; /* qm_channel */ u16 wq:3; #else u16 wq:3; u16 channel:13; /* qm_channel */ #endif } __packed dest; }; #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u16 __reserved2:1; u16 ics_cred:15; #else u16 __reserved2:1; u16 ics_cred:15; #endif /* For "Initialize Frame Queue" commands, the write-enable mask * determines whether 'td' or 'oac_init' is observed. For query * commands, this field is always 'td', and 'oac_query' (below) reflects * the Overhead ACcounting values. */ union { struct qm_fqd_taildrop td; struct qm_fqd_oac oac_init; }; u32 context_b; union { /* Treat it as 64-bit opaque */ u64 opaque; struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u32 hi; u32 lo; #else u32 lo; u32 hi; #endif }; /* Treat it as s/w portal stashing config */ /* See 1.5.6.7.1: "FQD Context_A field used for [...] */ struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ struct qm_fqd_stashing stashing; /* 48-bit address of FQ context to * stash, must be cacheline-aligned */ u16 context_hi; u32 context_lo; #else u32 context_lo; u16 context_hi; struct qm_fqd_stashing stashing; #endif } __packed; } context_a; struct qm_fqd_oac oac_query; } __packed; /* 64-bit converters for context_hi/lo */ static inline u64 qm_fqd_stashing_get64(const struct qm_fqd *fqd) { return ((u64)fqd->context_a.context_hi << 32) | (u64)fqd->context_a.context_lo; } static inline dma_addr_t qm_fqd_stashing_addr(const struct qm_fqd *fqd) { return (dma_addr_t)qm_fqd_stashing_get64(fqd); } static inline u64 qm_fqd_context_a_get64(const struct qm_fqd *fqd) { return ((u64)fqd->context_a.hi << 32) | (u64)fqd->context_a.lo; } /* Macro, so we compile better when 'v' isn't necessarily 64-bit */ #define qm_fqd_stashing_set64(fqd, v) \ do { \ struct qm_fqd *__fqd931 = (fqd); \ __fqd931->context_a.context_hi = upper_32_bits(v); \ __fqd931->context_a.context_lo = lower_32_bits(v); \ } while (0) #define qm_fqd_context_a_set64(fqd, v) \ do { \ struct qm_fqd *__fqd931 = (fqd); \ __fqd931->context_a.hi = upper_32_bits(v); \ __fqd931->context_a.lo = lower_32_bits(v); \ } while (0) /* convert a threshold value into mant+exp representation */ static inline int qm_fqd_taildrop_set(struct qm_fqd_taildrop *td, u32 val, int roundup) { u32 e = 0; int oddbit = 0; if (val > 0xe0000000) return -ERANGE; while (val > 0xff) { oddbit = val & 1; val >>= 1; e++; if (roundup && oddbit) val++; } td->exp = e; td->mant = val; return 0; } /* and the other direction */ static inline u32 qm_fqd_taildrop_get(const struct qm_fqd_taildrop *td) { return (u32)td->mant << td->exp; } /* See 1.5.2.2: "Frame Queue Descriptor (FQD)" */ /* Frame Queue Descriptor (FQD) field 'fq_ctrl' uses these constants */ #define QM_FQCTRL_MASK 0x07ff /* 'fq_ctrl' flags; */ #define QM_FQCTRL_CGE 0x0400 /* Congestion Group Enable */ #define QM_FQCTRL_TDE 0x0200 /* Tail-Drop Enable */ #define QM_FQCTRL_ORP 0x0100 /* ORP Enable */ #define QM_FQCTRL_CTXASTASHING 0x0080 /* Context-A stashing */ #define QM_FQCTRL_CPCSTASH 0x0040 /* CPC Stash Enable */ #define QM_FQCTRL_FORCESFDR 0x0008 /* High-priority SFDRs */ #define QM_FQCTRL_AVOIDBLOCK 0x0004 /* Don't block active */ #define QM_FQCTRL_HOLDACTIVE 0x0002 /* Hold active in portal */ #define QM_FQCTRL_PREFERINCACHE 0x0001 /* Aggressively cache FQD */ #define QM_FQCTRL_LOCKINCACHE QM_FQCTRL_PREFERINCACHE /* older naming */ /* See 1.5.6.7.1: "FQD Context_A field used for [...] */ /* Frame Queue Descriptor (FQD) field 'CONTEXT_A' uses these constants */ #define QM_STASHING_EXCL_ANNOTATION 0x04 #define QM_STASHING_EXCL_DATA 0x02 #define QM_STASHING_EXCL_CTX 0x01 /* See 1.5.5.3: "Intra Class Scheduling" */ /* FQD field 'OAC' (Overhead ACcounting) uses these constants */ #define QM_OAC_ICS 0x2 /* Accounting for Intra-Class Scheduling */ #define QM_OAC_CG 0x1 /* Accounting for Congestion Groups */ /* See 1.5.8.4: "FQ State Change Notification" */ /* This struct represents the 32-bit "WR_PARM_[GYR]" parameters in CGR fields * and associated commands/responses. The WRED parameters are calculated from * these fields as follows; * MaxTH = MA * (2 ^ Mn) * Slope = SA / (2 ^ Sn) * MaxP = 4 * (Pn + 1) */ struct qm_cgr_wr_parm { union { u32 word; struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u32 MA:8; u32 Mn:5; u32 SA:7; /* must be between 64-127 */ u32 Sn:6; u32 Pn:6; #else u32 Pn:6; u32 Sn:6; u32 SA:7; /* must be between 64-127 */ u32 Mn:5; u32 MA:8; #endif } __packed; }; } __packed; /* This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding * management commands, this is padded to a 16-bit structure field, so that's * how we represent it here. The congestion state threshold is calculated from * these fields as follows; * CS threshold = TA * (2 ^ Tn) */ struct qm_cgr_cs_thres { union { u16 hword; struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u16 __reserved:3; u16 TA:8; u16 Tn:5; #else u16 Tn:5; u16 TA:8; u16 __reserved:3; #endif } __packed; }; } __packed; /* This identical structure of CGR fields is present in the "Init/Modify CGR" * commands and the "Query CGR" result. It's suctioned out here into its own * struct. */ struct __qm_mc_cgr { struct qm_cgr_wr_parm wr_parm_g; struct qm_cgr_wr_parm wr_parm_y; struct qm_cgr_wr_parm wr_parm_r; u8 wr_en_g; /* boolean, use QM_CGR_EN */ u8 wr_en_y; /* boolean, use QM_CGR_EN */ u8 wr_en_r; /* boolean, use QM_CGR_EN */ u8 cscn_en; /* boolean, use QM_CGR_EN */ union { struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u16 cscn_targ_upd_ctrl; /* use QM_CSCN_TARG_UDP_ */ u16 cscn_targ_dcp_low; /* CSCN_TARG_DCP low-16bits */ #else u16 cscn_targ_dcp_low; /* CSCN_TARG_DCP low-16bits */ u16 cscn_targ_upd_ctrl; /* use QM_CSCN_TARG_UDP_ */ #endif }; u32 cscn_targ; /* use QM_CGR_TARG_* */ }; u8 cstd_en; /* boolean, use QM_CGR_EN */ u8 cs; /* boolean, only used in query response */ union { /* use qm_cgr_cs_thres_set64() */ struct qm_cgr_cs_thres cs_thres; u16 __cs_thres; }; u8 mode; /* QMAN_CGR_MODE_FRAME not supported in rev1.0 */ } __packed; #define QM_CGR_EN 0x01 /* For wr_en_*, cscn_en, cstd_en */ #define QM_CGR_TARG_UDP_CTRL_WRITE_BIT 0x8000 /* value written to portal bit*/ #define QM_CGR_TARG_UDP_CTRL_DCP 0x4000 /* 0: SWP, 1: DCP */ #define QM_CGR_TARG_PORTAL(n) (0x80000000 >> (n)) /* s/w portal, 0-9 */ #define QM_CGR_TARG_FMAN0 0x00200000 /* direct-connect portal: fman0 */ #define QM_CGR_TARG_FMAN1 0x00100000 /* : fman1 */ /* Convert CGR thresholds to/from "cs_thres" format */ static inline u64 qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres *th) { return (u64)th->TA << th->Tn; } static inline int qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres *th, u64 val, int roundup) { u32 e = 0; int oddbit = 0; while (val > 0xff) { oddbit = val & 1; val >>= 1; e++; if (roundup && oddbit) val++; } th->Tn = e; th->TA = val; return 0; } /* See 1.5.8.5.1: "Initialize FQ" */ /* See 1.5.8.5.2: "Query FQ" */ /* See 1.5.8.5.3: "Query FQ Non-Programmable Fields" */ /* See 1.5.8.5.4: "Alter FQ State Commands " */ /* See 1.5.8.6.1: "Initialize/Modify CGR" */ /* See 1.5.8.6.2: "CGR Test Write" */ /* See 1.5.8.6.3: "Query CGR" */ /* See 1.5.8.6.4: "Query Congestion Group State" */ struct qm_mcc_initfq { u8 __reserved1; u16 we_mask; /* Write Enable Mask */ u32 fqid; /* 24-bit */ u16 count; /* Initialises 'count+1' FQDs */ struct qm_fqd fqd; /* the FQD fields go here */ u8 __reserved3[30]; } __packed; struct qm_mcc_queryfq { u8 __reserved1[3]; u32 fqid; /* 24-bit */ u8 __reserved2[56]; } __packed; struct qm_mcc_queryfq_np { u8 __reserved1[3]; u32 fqid; /* 24-bit */ u8 __reserved2[56]; } __packed; struct qm_mcc_alterfq { u8 __reserved1[3]; u32 fqid; /* 24-bit */ u8 __reserved2; u8 count; /* number of consecutive FQID */ u8 __reserved3[10]; u32 context_b; /* frame queue context b */ u8 __reserved4[40]; } __packed; struct qm_mcc_initcgr { u8 __reserved1; u16 we_mask; /* Write Enable Mask */ struct __qm_mc_cgr cgr; /* CGR fields */ u8 __reserved2[2]; u8 cgid; u8 __reserved4[32]; } __packed; struct qm_mcc_cgrtestwrite { u8 __reserved1[2]; u8 i_bcnt_hi:8;/* high 8-bits of 40-bit "Instant" */ u32 i_bcnt_lo; /* low 32-bits of 40-bit */ u8 __reserved2[23]; u8 cgid; u8 __reserved3[32]; } __packed; struct qm_mcc_querycgr { u8 __reserved1[30]; u8 cgid; u8 __reserved2[32]; } __packed; struct qm_mcc_querycongestion { u8 __reserved[63]; } __packed; struct qm_mcc_querywq { u8 __reserved; /* select channel if verb != QUERYWQ_DEDICATED */ union { u16 channel_wq; /* ignores wq (3 lsbits) */ struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u16 id:13; /* qm_channel */ u16 __reserved1:3; #else u16 __reserved1:3; u16 id:13; /* qm_channel */ #endif } __packed channel; }; u8 __reserved2[60]; } __packed; struct qm_mcc_ceetm_lfqmt_config { u8 __reserved1[4]; u32 lfqid:24; u8 __reserved2[2]; u16 cqid; u8 __reserved3[2]; u16 dctidx; u8 __reserved4[48]; } __packed; struct qm_mcc_ceetm_lfqmt_query { u8 __reserved1[4]; u32 lfqid:24; u8 __reserved2[56]; } __packed; struct qm_mcc_ceetm_cq_config { u8 __reserved1; u16 cqid; u8 dcpid; u8 __reserved2; u16 ccgid; u8 __reserved3[56]; } __packed; struct qm_mcc_ceetm_cq_query { u8 __reserved1; u16 cqid; u8 dcpid; u8 __reserved2[59]; } __packed; struct qm_mcc_ceetm_dct_config { u8 __reserved1; u16 dctidx; u8 dcpid; u8 __reserved2[15]; u32 context_b; u64 context_a; u8 __reserved3[32]; } __packed; struct qm_mcc_ceetm_dct_query { u8 __reserved1; u16 dctidx; u8 dcpid; u8 __reserved2[59]; } __packed; struct qm_mcc_ceetm_class_scheduler_config { u8 __reserved1; u16 cqcid; u8 dcpid; u8 __reserved2[6]; #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 gpc_reserved:1; u8 gpc_combine_flag:1; u8 gpc_prio_b:3; u8 gpc_prio_a:3; #else u8 gpc_prio_a:3; u8 gpc_prio_b:3; u8 gpc_combine_flag:1; u8 gpc_reserved:1; #endif u16 crem; u16 erem; u8 w[8]; u8 __reserved3[40]; } __packed; struct qm_mcc_ceetm_class_scheduler_query { u8 __reserved1; u16 cqcid; u8 dcpid; u8 __reserved2[59]; } __packed; #define CEETM_COMMAND_CHANNEL_MAPPING (0 << 12) #define CEETM_COMMAND_SP_MAPPING (1 << 12) #define CEETM_COMMAND_CHANNEL_SHAPER (2 << 12) #define CEETM_COMMAND_LNI_SHAPER (3 << 12) #define CEETM_COMMAND_TCFC (4 << 12) #define CEETM_CCGRID_MASK 0x01FF #define CEETM_CCGR_CM_CONFIGURE (0 << 14) #define CEETM_CCGR_DN_CONFIGURE (1 << 14) #define CEETM_CCGR_TEST_WRITE (2 << 14) #define CEETM_CCGR_CM_QUERY (0 << 14) #define CEETM_CCGR_DN_QUERY (1 << 14) #define CEETM_CCGR_DN_QUERY_FLUSH (2 << 14) #define CEETM_QUERY_CONGESTION_STATE (3 << 14) struct qm_mcc_ceetm_mapping_shaper_tcfc_config { u8 __reserved1; u16 cid; u8 dcpid; union { struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 map_shaped:1; u8 map_reserved:4; u8 map_lni_id:3; #else u8 map_lni_id:3; u8 map_reserved:4; u8 map_shaped:1; #endif u8 __reserved2[58]; } __packed channel_mapping; struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 map_reserved:5; u8 map_lni_id:3; #else u8 map_lni_id:3; u8 map_reserved:5; #endif u8 __reserved2[58]; } __packed sp_mapping; struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 cpl:1; u8 cpl_reserved:2; u8 oal:5; #else u8 oal:5; u8 cpl_reserved:2; u8 cpl:1; #endif u32 crtcr:24; u32 ertcr:24; u16 crtbl; u16 ertbl; u8 mps; /* This will be hardcoded by driver with 60 */ u8 __reserved2[47]; } __packed shaper_config; struct { u8 __reserved2[11]; u64 lnitcfcc; u8 __reserved3[40]; } __packed tcfc_config; }; } __packed; struct qm_mcc_ceetm_mapping_shaper_tcfc_query { u8 __reserved1; u16 cid; u8 dcpid; u8 __reserved2[59]; } __packed; struct qm_mcc_ceetm_ccgr_config { u8 __reserved1; u16 ccgrid; u8 dcpid; u8 __reserved2; u16 we_mask; union { struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 ctl_reserved:1; u8 ctl_wr_en_g:1; u8 ctl_wr_en_y:1; u8 ctl_wr_en_r:1; u8 ctl_td_en:1; u8 ctl_td_mode:1; u8 ctl_cscn_en:1; u8 ctl_mode:1; #else u8 ctl_mode:1; u8 ctl_cscn_en:1; u8 ctl_td_mode:1; u8 ctl_td_en:1; u8 ctl_wr_en_r:1; u8 ctl_wr_en_y:1; u8 ctl_wr_en_g:1; u8 ctl_reserved:1; #endif u8 cdv; u16 cscn_tupd; u8 oal; u8 __reserved3; struct qm_cgr_cs_thres cs_thres; struct qm_cgr_cs_thres cs_thres_x; struct qm_cgr_cs_thres td_thres; struct qm_cgr_wr_parm wr_parm_g; struct qm_cgr_wr_parm wr_parm_y; struct qm_cgr_wr_parm wr_parm_r; } __packed cm_config; struct { u8 dnc; u8 dn0; u8 dn1; u64 dnba:40; u8 __reserved3[2]; u16 dnth_0; u8 __reserved4[2]; u16 dnth_1; u8 __reserved5[8]; } __packed dn_config; struct { u8 __reserved3[3]; u64 i_cnt:40; u8 __reserved4[16]; } __packed test_write; }; u8 __reserved5[32]; } __packed; struct qm_mcc_ceetm_ccgr_query { u8 __reserved1; u16 ccgrid; u8 dcpid; u8 __reserved2[59]; } __packed; struct qm_mcc_ceetm_cq_peek_pop_xsfdrread { u8 __reserved1; u16 cqid; u8 dcpid; u8 ct; u16 xsfdr; u8 __reserved2[56]; } __packed; #define CEETM_QUERY_DEQUEUE_STATISTICS 0x00 #define CEETM_QUERY_DEQUEUE_CLEAR_STATISTICS 0x01 #define CEETM_WRITE_DEQUEUE_STATISTICS 0x02 #define CEETM_QUERY_REJECT_STATISTICS 0x03 #define CEETM_QUERY_REJECT_CLEAR_STATISTICS 0x04 #define CEETM_WRITE_REJECT_STATISTICS 0x05 struct qm_mcc_ceetm_statistics_query_write { u8 __reserved1; u16 cid; u8 dcpid; u8 ct; u8 __reserved2[13]; u64 frm_cnt:40; u8 __reserved3[2]; u64 byte_cnt:48; u8 __reserved[32]; } __packed; struct qm_mc_command { u8 __dont_write_directly__verb; union { struct qm_mcc_initfq initfq; struct qm_mcc_queryfq queryfq; struct qm_mcc_queryfq_np queryfq_np; struct qm_mcc_alterfq alterfq; struct qm_mcc_initcgr initcgr; struct qm_mcc_cgrtestwrite cgrtestwrite; struct qm_mcc_querycgr querycgr; struct qm_mcc_querycongestion querycongestion; struct qm_mcc_querywq querywq; struct qm_mcc_ceetm_lfqmt_config lfqmt_config; struct qm_mcc_ceetm_lfqmt_query lfqmt_query; struct qm_mcc_ceetm_cq_config cq_config; struct qm_mcc_ceetm_cq_query cq_query; struct qm_mcc_ceetm_dct_config dct_config; struct qm_mcc_ceetm_dct_query dct_query; struct qm_mcc_ceetm_class_scheduler_config csch_config; struct qm_mcc_ceetm_class_scheduler_query csch_query; struct qm_mcc_ceetm_mapping_shaper_tcfc_config mst_config; struct qm_mcc_ceetm_mapping_shaper_tcfc_query mst_query; struct qm_mcc_ceetm_ccgr_config ccgr_config; struct qm_mcc_ceetm_ccgr_query ccgr_query; struct qm_mcc_ceetm_cq_peek_pop_xsfdrread cq_ppxr; struct qm_mcc_ceetm_statistics_query_write stats_query_write; }; } __packed; #define QM_MCC_VERB_VBIT 0x80 #define QM_MCC_VERB_MASK 0x7f /* where the verb contains; */ #define QM_MCC_VERB_INITFQ_PARKED 0x40 #define QM_MCC_VERB_INITFQ_SCHED 0x41 #define QM_MCC_VERB_QUERYFQ 0x44 #define QM_MCC_VERB_QUERYFQ_NP 0x45 /* "non-programmable" fields */ #define QM_MCC_VERB_QUERYWQ 0x46 #define QM_MCC_VERB_QUERYWQ_DEDICATED 0x47 #define QM_MCC_VERB_ALTER_SCHED 0x48 /* Schedule FQ */ #define QM_MCC_VERB_ALTER_FE 0x49 /* Force Eligible FQ */ #define QM_MCC_VERB_ALTER_RETIRE 0x4a /* Retire FQ */ #define QM_MCC_VERB_ALTER_OOS 0x4b /* Take FQ out of service */ #define QM_MCC_VERB_ALTER_FQXON 0x4d /* FQ XON */ #define QM_MCC_VERB_ALTER_FQXOFF 0x4e /* FQ XOFF */ #define QM_MCC_VERB_INITCGR 0x50 #define QM_MCC_VERB_MODIFYCGR 0x51 #define QM_MCC_VERB_CGRTESTWRITE 0x52 #define QM_MCC_VERB_QUERYCGR 0x58 #define QM_MCC_VERB_QUERYCONGESTION 0x59 /* INITFQ-specific flags */ #define QM_INITFQ_WE_MASK 0x01ff /* 'Write Enable' flags; */ #define QM_INITFQ_WE_OAC 0x0100 #define QM_INITFQ_WE_ORPC 0x0080 #define QM_INITFQ_WE_CGID 0x0040 #define QM_INITFQ_WE_FQCTRL 0x0020 #define QM_INITFQ_WE_DESTWQ 0x0010 #define QM_INITFQ_WE_ICSCRED 0x0008 #define QM_INITFQ_WE_TDTHRESH 0x0004 #define QM_INITFQ_WE_CONTEXTB 0x0002 #define QM_INITFQ_WE_CONTEXTA 0x0001 /* INITCGR/MODIFYCGR-specific flags */ #define QM_CGR_WE_MASK 0x07ff /* 'Write Enable Mask'; */ #define QM_CGR_WE_WR_PARM_G 0x0400 #define QM_CGR_WE_WR_PARM_Y 0x0200 #define QM_CGR_WE_WR_PARM_R 0x0100 #define QM_CGR_WE_WR_EN_G 0x0080 #define QM_CGR_WE_WR_EN_Y 0x0040 #define QM_CGR_WE_WR_EN_R 0x0020 #define QM_CGR_WE_CSCN_EN 0x0010 #define QM_CGR_WE_CSCN_TARG 0x0008 #define QM_CGR_WE_CSTD_EN 0x0004 #define QM_CGR_WE_CS_THRES 0x0002 #define QM_CGR_WE_MODE 0x0001 /* See 1.5.9.7 CEETM Management Commands */ #define QM_CEETM_VERB_LFQMT_CONFIG 0x70 #define QM_CEETM_VERB_LFQMT_QUERY 0x71 #define QM_CEETM_VERB_CQ_CONFIG 0x72 #define QM_CEETM_VERB_CQ_QUERY 0x73 #define QM_CEETM_VERB_DCT_CONFIG 0x74 #define QM_CEETM_VERB_DCT_QUERY 0x75 #define QM_CEETM_VERB_CLASS_SCHEDULER_CONFIG 0x76 #define QM_CEETM_VERB_CLASS_SCHEDULER_QUERY 0x77 #define QM_CEETM_VERB_MAPPING_SHAPER_TCFC_CONFIG 0x78 #define QM_CEETM_VERB_MAPPING_SHAPER_TCFC_QUERY 0x79 #define QM_CEETM_VERB_CCGR_CONFIG 0x7A #define QM_CEETM_VERB_CCGR_QUERY 0x7B #define QM_CEETM_VERB_CQ_PEEK_POP_XFDRREAD 0x7C #define QM_CEETM_VERB_STATISTICS_QUERY_WRITE 0x7D /* See 1.5.8.5.1: "Initialize FQ" */ /* See 1.5.8.5.2: "Query FQ" */ /* See 1.5.8.5.3: "Query FQ Non-Programmable Fields" */ /* See 1.5.8.5.4: "Alter FQ State Commands " */ /* See 1.5.8.6.1: "Initialize/Modify CGR" */ /* See 1.5.8.6.2: "CGR Test Write" */ /* See 1.5.8.6.3: "Query CGR" */ /* See 1.5.8.6.4: "Query Congestion Group State" */ struct qm_mcr_initfq { u8 __reserved1[62]; } __packed; struct qm_mcr_queryfq { u8 __reserved1[8]; struct qm_fqd fqd; /* the FQD fields are here */ u8 __reserved2[30]; } __packed; struct qm_mcr_queryfq_np { u8 __reserved1; u8 state; /* QM_MCR_NP_STATE_*** */ #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 __reserved2; u32 fqd_link:24; u16 __reserved3:2; u16 odp_seq:14; u16 __reserved4:2; u16 orp_nesn:14; u16 __reserved5:1; u16 orp_ea_hseq:15; u16 __reserved6:1; u16 orp_ea_tseq:15; u8 __reserved7; u32 orp_ea_hptr:24; u8 __reserved8; u32 orp_ea_tptr:24; u8 __reserved9; u32 pfdr_hptr:24; u8 __reserved10; u32 pfdr_tptr:24; u8 __reserved11[5]; u8 __reserved12:7; u8 is:1; u16 ics_surp; u32 byte_cnt; u8 __reserved13; u32 frm_cnt:24; u32 __reserved14; u16 ra1_sfdr; /* QM_MCR_NP_RA1_*** */ u16 ra2_sfdr; /* QM_MCR_NP_RA2_*** */ u16 __reserved15; u16 od1_sfdr; /* QM_MCR_NP_OD1_*** */ u16 od2_sfdr; /* QM_MCR_NP_OD2_*** */ u16 od3_sfdr; /* QM_MCR_NP_OD3_*** */ #else u8 __reserved2; u32 fqd_link:24; u16 odp_seq:14; u16 __reserved3:2; u16 orp_nesn:14; u16 __reserved4:2; u16 orp_ea_hseq:15; u16 __reserved5:1; u16 orp_ea_tseq:15; u16 __reserved6:1; u8 __reserved7; u32 orp_ea_hptr:24; u8 __reserved8; u32 orp_ea_tptr:24; u8 __reserved9; u32 pfdr_hptr:24; u8 __reserved10; u32 pfdr_tptr:24; u8 __reserved11[5]; u8 is:1; u8 __reserved12:7; u16 ics_surp; u32 byte_cnt; u8 __reserved13; u32 frm_cnt:24; u32 __reserved14; u16 ra1_sfdr; /* QM_MCR_NP_RA1_*** */ u16 ra2_sfdr; /* QM_MCR_NP_RA2_*** */ u16 __reserved15; u16 od1_sfdr; /* QM_MCR_NP_OD1_*** */ u16 od2_sfdr; /* QM_MCR_NP_OD2_*** */ u16 od3_sfdr; /* QM_MCR_NP_OD3_*** */ #endif } __packed; struct qm_mcr_alterfq { u8 fqs; /* Frame Queue Status */ u8 __reserved1[61]; } __packed; struct qm_mcr_initcgr { u8 __reserved1[62]; } __packed; struct qm_mcr_cgrtestwrite { u16 __reserved1; struct __qm_mc_cgr cgr; /* CGR fields */ u8 __reserved2[3]; u32 __reserved3:24; u32 i_bcnt_hi:8;/* high 8-bits of 40-bit "Instant" */ u32 i_bcnt_lo; /* low 32-bits of 40-bit */ u32 __reserved4:24; u32 a_bcnt_hi:8;/* high 8-bits of 40-bit "Average" */ u32 a_bcnt_lo; /* low 32-bits of 40-bit */ u16 lgt; /* Last Group Tick */ u16 wr_prob_g; u16 wr_prob_y; u16 wr_prob_r; u8 __reserved5[8]; } __packed; struct qm_mcr_querycgr { u16 __reserved1; struct __qm_mc_cgr cgr; /* CGR fields */ u8 __reserved2[3]; union { struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u32 __reserved3:24; u32 i_bcnt_hi:8;/* high 8-bits of 40-bit "Instant" */ u32 i_bcnt_lo; /* low 32-bits of 40-bit */ #else u32 i_bcnt_lo; /* low 32-bits of 40-bit */ u32 i_bcnt_hi:8;/* high 8-bits of 40-bit "Instant" */ u32 __reserved3:24; #endif }; u64 i_bcnt; }; union { struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u32 __reserved4:24; u32 a_bcnt_hi:8;/* high 8-bits of 40-bit "Average" */ u32 a_bcnt_lo; /* low 32-bits of 40-bit */ #else u32 a_bcnt_lo; /* low 32-bits of 40-bit */ u32 a_bcnt_hi:8;/* high 8-bits of 40-bit "Average" */ u32 __reserved4:24; #endif }; u64 a_bcnt; }; union { u32 cscn_targ_swp[4]; u8 __reserved5[16]; }; } __packed; static inline u64 qm_mcr_querycgr_i_get64(const struct qm_mcr_querycgr *q) { return be64_to_cpu(q->i_bcnt); } static inline u64 qm_mcr_querycgr_a_get64(const struct qm_mcr_querycgr *q) { return be64_to_cpu(q->a_bcnt); } static inline u64 qm_mcr_cgrtestwrite_i_get64( const struct qm_mcr_cgrtestwrite *q) { return be64_to_cpu(((u64)q->i_bcnt_hi << 32) | (u64)q->i_bcnt_lo); } static inline u64 qm_mcr_cgrtestwrite_a_get64( const struct qm_mcr_cgrtestwrite *q) { return be64_to_cpu(((u64)q->a_bcnt_hi << 32) | (u64)q->a_bcnt_lo); } /* Macro, so we compile better if 'v' isn't always 64-bit */ #define qm_mcr_querycgr_i_set64(q, v) \ do { \ struct qm_mcr_querycgr *__q931 = (fd); \ __q931->i_bcnt_hi = upper_32_bits(v); \ __q931->i_bcnt_lo = lower_32_bits(v); \ } while (0) #define qm_mcr_querycgr_a_set64(q, v) \ do { \ struct qm_mcr_querycgr *__q931 = (fd); \ __q931->a_bcnt_hi = upper_32_bits(v); \ __q931->a_bcnt_lo = lower_32_bits(v); \ } while (0) struct __qm_mcr_querycongestion { u32 __state[8]; }; struct qm_mcr_querycongestion { u8 __reserved[30]; /* Access this struct using QM_MCR_QUERYCONGESTION() */ struct __qm_mcr_querycongestion state; } __packed; struct qm_mcr_querywq { union { u16 channel_wq; /* ignores wq (3 lsbits) */ struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u16 id:13; /* qm_channel */ u16 __reserved:3; #else u16 __reserved:3; u16 id:13; /* qm_channel */ #endif } __packed channel; }; u8 __reserved[28]; u32 wq_len[8]; } __packed; /* QMAN CEETM Management Command Response */ struct qm_mcr_ceetm_lfqmt_config { u8 __reserved1[62]; } __packed; struct qm_mcr_ceetm_lfqmt_query { u8 __reserved1[8]; u16 cqid; u8 __reserved2[2]; u16 dctidx; u8 __reserved3[2]; u16 ccgid; u8 __reserved4[44]; } __packed; struct qm_mcr_ceetm_cq_config { u8 __reserved1[62]; } __packed; struct qm_mcr_ceetm_cq_query { u8 __reserved1[4]; u16 ccgid; u16 state; u32 pfdr_hptr:24; u32 pfdr_tptr:24; u16 od1_xsfdr; u16 od2_xsfdr; u16 od3_xsfdr; u16 od4_xsfdr; u16 od5_xsfdr; u16 od6_xsfdr; u16 ra1_xsfdr; u16 ra2_xsfdr; u8 __reserved2; u32 frm_cnt:24; u8 __reserved333[28]; } __packed; struct qm_mcr_ceetm_dct_config { u8 __reserved1[62]; } __packed; struct qm_mcr_ceetm_dct_query { u8 __reserved1[18]; u32 context_b; u64 context_a; u8 __reserved2[32]; } __packed; struct qm_mcr_ceetm_class_scheduler_config { u8 __reserved1[62]; } __packed; struct qm_mcr_ceetm_class_scheduler_query { u8 __reserved1[9]; #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 gpc_reserved:1; u8 gpc_combine_flag:1; u8 gpc_prio_b:3; u8 gpc_prio_a:3; #else u8 gpc_prio_a:3; u8 gpc_prio_b:3; u8 gpc_combine_flag:1; u8 gpc_reserved:1; #endif u16 crem; u16 erem; u8 w[8]; u8 __reserved2[5]; u32 wbfslist:24; u32 d8; u32 d9; u32 d10; u32 d11; u32 d12; u32 d13; u32 d14; u32 d15; } __packed; struct qm_mcr_ceetm_mapping_shaper_tcfc_config { u16 cid; u8 __reserved2[60]; } __packed; struct qm_mcr_ceetm_mapping_shaper_tcfc_query { u16 cid; u8 __reserved1; union { struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 map_shaped:1; u8 map_reserved:4; u8 map_lni_id:3; #else u8 map_lni_id:3; u8 map_reserved:4; u8 map_shaped:1; #endif u8 __reserved2[58]; } __packed channel_mapping_query; struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 map_reserved:5; u8 map_lni_id:3; #else u8 map_lni_id:3; u8 map_reserved:5; #endif u8 __reserved2[58]; } __packed sp_mapping_query; struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 cpl:1; u8 cpl_reserved:2; u8 oal:5; #else u8 oal:5; u8 cpl_reserved:2; u8 cpl:1; #endif u32 crtcr:24; u32 ertcr:24; u16 crtbl; u16 ertbl; u8 mps; u8 __reserved2[15]; u32 crat; u32 erat; u8 __reserved3[24]; } __packed shaper_query; struct { u8 __reserved1[11]; u64 lnitcfcc; u8 __reserved3[40]; } __packed tcfc_query; }; } __packed; struct qm_mcr_ceetm_ccgr_config { u8 __reserved1[46]; union { u8 __reserved2[8]; struct { u16 timestamp; u16 wr_porb_g; u16 wr_prob_y; u16 wr_prob_r; } __packed test_write; }; u8 __reserved3[8]; } __packed; struct qm_mcr_ceetm_ccgr_query { u8 __reserved1[6]; union { struct { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ u8 ctl_reserved:1; u8 ctl_wr_en_g:1; u8 ctl_wr_en_y:1; u8 ctl_wr_en_r:1; u8 ctl_td_en:1; u8 ctl_td_mode:1; u8 ctl_cscn_en:1; u8 ctl_mode:1; #else u8 ctl_mode:1; u8 ctl_cscn_en:1; u8 ctl_td_mode:1; u8 ctl_td_en:1; u8 ctl_wr_en_r:1; u8 ctl_wr_en_y:1; u8 ctl_wr_en_g:1; u8 ctl_reserved:1; #endif u8 cdv; u8 __reserved2[2]; u8 oal; u8 __reserved3; struct qm_cgr_cs_thres cs_thres; struct qm_cgr_cs_thres cs_thres_x; struct qm_cgr_cs_thres td_thres; struct qm_cgr_wr_parm wr_parm_g; struct qm_cgr_wr_parm wr_parm_y; struct qm_cgr_wr_parm wr_parm_r; u16 cscn_targ_dcp; u8 dcp_lsn; u64 i_cnt:40; u8 __reserved4[3]; u64 a_cnt:40; u32 cscn_targ_swp[4]; } __packed cm_query; struct { u8 dnc; u8 dn0; u8 dn1; u64 dnba:40; u8 __reserved2[2]; u16 dnth_0; u8 __reserved3[2]; u16 dnth_1; u8 __reserved4[10]; u16 dnacc_0; u8 __reserved5[2]; u16 dnacc_1; u8 __reserved6[24]; } __packed dn_query; struct { u8 __reserved2[24]; struct __qm_mcr_querycongestion state; } __packed congestion_state; }; } __packed; struct qm_mcr_ceetm_cq_peek_pop_xsfdrread { u8 stat; u8 __reserved1[11]; u16 dctidx; struct qm_fd fd; u8 __reserved2[32]; } __packed; struct qm_mcr_ceetm_statistics_query { u8 __reserved1[17]; u64 frm_cnt:40; u8 __reserved2[2]; u64 byte_cnt:48; u8 __reserved3[32]; } __packed; struct qm_mc_result { u8 verb; u8 result; union { struct qm_mcr_initfq initfq; struct qm_mcr_queryfq queryfq; struct qm_mcr_queryfq_np queryfq_np; struct qm_mcr_alterfq alterfq; struct qm_mcr_initcgr initcgr; struct qm_mcr_cgrtestwrite cgrtestwrite; struct qm_mcr_querycgr querycgr; struct qm_mcr_querycongestion querycongestion; struct qm_mcr_querywq querywq; struct qm_mcr_ceetm_lfqmt_config lfqmt_config; struct qm_mcr_ceetm_lfqmt_query lfqmt_query; struct qm_mcr_ceetm_cq_config cq_config; struct qm_mcr_ceetm_cq_query cq_query; struct qm_mcr_ceetm_dct_config dct_config; struct qm_mcr_ceetm_dct_query dct_query; struct qm_mcr_ceetm_class_scheduler_config csch_config; struct qm_mcr_ceetm_class_scheduler_query csch_query; struct qm_mcr_ceetm_mapping_shaper_tcfc_config mst_config; struct qm_mcr_ceetm_mapping_shaper_tcfc_query mst_query; struct qm_mcr_ceetm_ccgr_config ccgr_config; struct qm_mcr_ceetm_ccgr_query ccgr_query; struct qm_mcr_ceetm_cq_peek_pop_xsfdrread cq_ppxr; struct qm_mcr_ceetm_statistics_query stats_query; }; } __packed; #define QM_MCR_VERB_RRID 0x80 #define QM_MCR_VERB_MASK QM_MCC_VERB_MASK #define QM_MCR_VERB_INITFQ_PARKED QM_MCC_VERB_INITFQ_PARKED #define QM_MCR_VERB_INITFQ_SCHED QM_MCC_VERB_INITFQ_SCHED #define QM_MCR_VERB_QUERYFQ QM_MCC_VERB_QUERYFQ #define QM_MCR_VERB_QUERYFQ_NP QM_MCC_VERB_QUERYFQ_NP #define QM_MCR_VERB_QUERYWQ QM_MCC_VERB_QUERYWQ #define QM_MCR_VERB_QUERYWQ_DEDICATED QM_MCC_VERB_QUERYWQ_DEDICATED #define QM_MCR_VERB_ALTER_SCHED QM_MCC_VERB_ALTER_SCHED #define QM_MCR_VERB_ALTER_FE QM_MCC_VERB_ALTER_FE #define QM_MCR_VERB_ALTER_RETIRE QM_MCC_VERB_ALTER_RETIRE #define QM_MCR_VERB_ALTER_OOS QM_MCC_VERB_ALTER_OOS #define QM_MCR_RESULT_NULL 0x00 #define QM_MCR_RESULT_OK 0xf0 #define QM_MCR_RESULT_ERR_FQID 0xf1 #define QM_MCR_RESULT_ERR_FQSTATE 0xf2 #define QM_MCR_RESULT_ERR_NOTEMPTY 0xf3 /* OOS fails if FQ is !empty */ #define QM_MCR_RESULT_ERR_BADCHANNEL 0xf4 #define QM_MCR_RESULT_PENDING 0xf8 #define QM_MCR_RESULT_ERR_BADCOMMAND 0xff #define QM_MCR_NP_STATE_FE 0x10 #define QM_MCR_NP_STATE_R 0x08 #define QM_MCR_NP_STATE_MASK 0x07 /* Reads FQD::STATE; */ #define QM_MCR_NP_STATE_OOS 0x00 #define QM_MCR_NP_STATE_RETIRED 0x01 #define QM_MCR_NP_STATE_TEN_SCHED 0x02 #define QM_MCR_NP_STATE_TRU_SCHED 0x03 #define QM_MCR_NP_STATE_PARKED 0x04 #define QM_MCR_NP_STATE_ACTIVE 0x05 #define QM_MCR_NP_PTR_MASK 0x07ff /* for RA[12] & OD[123] */ #define QM_MCR_NP_RA1_NRA(v) (((v) >> 14) & 0x3) /* FQD::NRA */ #define QM_MCR_NP_RA2_IT(v) (((v) >> 14) & 0x1) /* FQD::IT */ #define QM_MCR_NP_OD1_NOD(v) (((v) >> 14) & 0x3) /* FQD::NOD */ #define QM_MCR_NP_OD3_NPC(v) (((v) >> 14) & 0x3) /* FQD::NPC */ #define QM_MCR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */ #define QM_MCR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */ /* This extracts the state for congestion group 'n' from a query response. * Eg. * u8 cgr = [...]; * struct qm_mc_result *res = [...]; * printf("congestion group %d congestion state: %d\n", cgr, * QM_MCR_QUERYCONGESTION(&res->querycongestion.state, cgr)); */ #define __CGR_WORD(num) (num >> 5) #define __CGR_SHIFT(num) (num & 0x1f) #define __CGR_NUM (sizeof(struct __qm_mcr_querycongestion) << 3) static inline int QM_MCR_QUERYCONGESTION(struct __qm_mcr_querycongestion *p, u8 cgr) { return p->__state[__CGR_WORD(cgr)] & (0x80000000 >> __CGR_SHIFT(cgr)); } /*********************/ /* Utility interface */ /*********************/ /* Represents an allocator over a range of FQIDs. NB, accesses are not locked, * spinlock them yourself if needed. */ struct qman_fqid_pool; /* Create/destroy a FQID pool, num must be a multiple of 32. NB, _destroy() * always succeeds, but returns non-zero if there were "leaked" FQID * allocations. */ struct qman_fqid_pool *qman_fqid_pool_create(u32 fqid_start, u32 num); int qman_fqid_pool_destroy(struct qman_fqid_pool *pool); /* Alloc/free a FQID from the range. _alloc() returns zero for success. */ int qman_fqid_pool_alloc(struct qman_fqid_pool *pool, u32 *fqid); void qman_fqid_pool_free(struct qman_fqid_pool *pool, u32 fqid); u32 qman_fqid_pool_used(struct qman_fqid_pool *pool); /*******************************************************************/ /* Managed (aka "shared" or "mux/demux") portal, high-level i/face */ /*******************************************************************/ /* Portal and Frame Queues */ /* ----------------------- */ /* Represents a managed portal */ struct qman_portal; /* This object type represents Qman frame queue descriptors (FQD), it is * cacheline-aligned, and initialised by qman_create_fq(). The structure is * defined further down. */ struct qman_fq; /* This object type represents a Qman congestion group, it is defined further * down. */ struct qman_cgr; struct qman_portal_config { /* If the caller enables DQRR stashing (and thus wishes to operate the * portal from only one cpu), this is the logical CPU that the portal * will stash to. Whether stashing is enabled or not, this setting is * also used for any "core-affine" portals, ie. default portals * associated to the corresponding cpu. -1 implies that there is no core * affinity configured. */ int cpu; /* portal interrupt line */ int irq; /* the unique index of this portal */ u32 index; /* Is this portal shared? (If so, it has coarser locking and demuxes * processing on behalf of other CPUs.) */ int is_shared; /* The portal's dedicated channel id, use this value for initialising * frame queues to target this portal when scheduled. */ u16 channel; /* A mask of which pool channels this portal has dequeue access to * (using QM_SDQCR_CHANNELS_POOL(n) for the bitmask) */ u32 pools; }; /* This enum, and the callback type that returns it, are used when handling * dequeued frames via DQRR. Note that for "null" callbacks registered with the * portal object (for handling dequeues that do not demux because contextB is * NULL), the return value *MUST* be qman_cb_dqrr_consume. */ enum qman_cb_dqrr_result { /* DQRR entry can be consumed */ qman_cb_dqrr_consume, /* Like _consume, but requests parking - FQ must be held-active */ qman_cb_dqrr_park, /* Does not consume, for DCA mode only. This allows out-of-order * consumes by explicit calls to qman_dca() and/or the use of implicit * DCA via EQCR entries. */ qman_cb_dqrr_defer, /* Stop processing without consuming this ring entry. Exits the current * qman_poll_dqrr() or interrupt-handling, as appropriate. If within an * interrupt handler, the callback would typically call * qman_irqsource_remove(QM_PIRQ_DQRI) before returning this value, * otherwise the interrupt will reassert immediately. */ qman_cb_dqrr_stop, /* Like qman_cb_dqrr_stop, but consumes the current entry. */ qman_cb_dqrr_consume_stop }; typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm, struct qman_fq *fq, const struct qm_dqrr_entry *dqrr); /* This callback type is used when handling ERNs, FQRNs and FQRLs via MR. They * are always consumed after the callback returns. */ typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq, const struct qm_mr_entry *msg); /* This callback type is used when handling DCP ERNs */ typedef void (*qman_cb_dc_ern)(struct qman_portal *qm, const struct qm_mr_entry *msg); /* s/w-visible states. Ie. tentatively scheduled + truly scheduled + active + * held-active + held-suspended are just "sched". Things like "retired" will not * be assumed until it is complete (ie. QMAN_FQ_STATE_CHANGING is set until * then, to indicate it's completing and to gate attempts to retry the retire * command). Note, park commands do not set QMAN_FQ_STATE_CHANGING because it's * technically impossible in the case of enqueue DCAs (which refer to DQRR ring * index rather than the FQ that ring entry corresponds to), so repeated park * commands are allowed (if you're silly enough to try) but won't change FQ * state, and the resulting park notifications move FQs from "sched" to * "parked". */ enum qman_fq_state { qman_fq_state_oos, qman_fq_state_parked, qman_fq_state_sched, qman_fq_state_retired }; /* Frame queue objects (struct qman_fq) are stored within memory passed to * qman_create_fq(), as this allows stashing of caller-provided demux callback * pointers at no extra cost to stashing of (driver-internal) FQ state. If the * caller wishes to add per-FQ state and have it benefit from dequeue-stashing, * they should; * * (a) extend the qman_fq structure with their state; eg. * * // myfq is allocated and driver_fq callbacks filled in; * struct my_fq { * struct qman_fq base; * int an_extra_field; * [ ... add other fields to be associated with each FQ ...] * } *myfq = some_my_fq_allocator(); * struct qman_fq *fq = qman_create_fq(fqid, flags, &myfq->base); * * // in a dequeue callback, access extra fields from 'fq' via a cast; * struct my_fq *myfq = (struct my_fq *)fq; * do_something_with(myfq->an_extra_field); * [...] * * (b) when and if configuring the FQ for context stashing, specify how ever * many cachelines are required to stash 'struct my_fq', to accelerate not * only the Qman driver but the callback as well. */ struct qman_fq_cb { qman_cb_dqrr dqrr; /* for dequeued frames */ qman_cb_mr ern; /* for s/w ERNs */ qman_cb_mr fqs; /* frame-queue state changes*/ }; struct qman_fq { /* Caller of qman_create_fq() provides these demux callbacks */ struct qman_fq_cb cb; /* These are internal to the driver, don't touch. In particular, they * may change, be removed, or extended (so you shouldn't rely on * sizeof(qman_fq) being a constant). */ spinlock_t fqlock; u32 fqid; volatile unsigned long flags; enum qman_fq_state state; int cgr_groupid; struct rb_node node; #ifdef CONFIG_FSL_QMAN_FQ_LOOKUP u32 key; #endif }; /* This callback type is used when handling congestion group entry/exit. * 'congested' is non-zero on congestion-entry, and zero on congestion-exit. */ typedef void (*qman_cb_cgr)(struct qman_portal *qm, struct qman_cgr *cgr, int congested); struct qman_cgr { /* Set these prior to qman_create_cgr() */ u32 cgrid; /* 0..255, but u32 to allow specials like -1, 256, etc.*/ qman_cb_cgr cb; /* These are private to the driver */ u16 chan; /* portal channel this object is created on */ struct list_head node; }; /* Flags to qman_create_fq() */ #define QMAN_FQ_FLAG_NO_ENQUEUE 0x00000001 /* can't enqueue */ #define QMAN_FQ_FLAG_NO_MODIFY 0x00000002 /* can only enqueue */ #define QMAN_FQ_FLAG_TO_DCPORTAL 0x00000004 /* consumed by CAAM/PME/Fman */ #define QMAN_FQ_FLAG_LOCKED 0x00000008 /* multi-core locking */ #define QMAN_FQ_FLAG_AS_IS 0x00000010 /* query h/w state */ #define QMAN_FQ_FLAG_DYNAMIC_FQID 0x00000020 /* (de)allocate fqid */ /* Flags to qman_destroy_fq() */ #define QMAN_FQ_DESTROY_PARKED 0x00000001 /* FQ can be parked or OOS */ /* Flags from qman_fq_state() */ #define QMAN_FQ_STATE_CHANGING 0x80000000 /* 'state' is changing */ #define QMAN_FQ_STATE_NE 0x40000000 /* retired FQ isn't empty */ #define QMAN_FQ_STATE_ORL 0x20000000 /* retired FQ has ORL */ #define QMAN_FQ_STATE_BLOCKOOS 0xe0000000 /* if any are set, no OOS */ #define QMAN_FQ_STATE_CGR_EN 0x10000000 /* CGR enabled */ #define QMAN_FQ_STATE_VDQCR 0x08000000 /* being volatile dequeued */ /* Flags to qman_init_fq() */ #define QMAN_INITFQ_FLAG_SCHED 0x00000001 /* schedule rather than park */ #define QMAN_INITFQ_FLAG_LOCAL 0x00000004 /* set dest portal */ /* Flags to qman_volatile_dequeue() */ #ifdef CONFIG_FSL_DPA_CAN_WAIT #define QMAN_VOLATILE_FLAG_WAIT 0x00000001 /* wait if VDQCR is in use */ #define QMAN_VOLATILE_FLAG_WAIT_INT 0x00000002 /* if wait, interruptible? */ #define QMAN_VOLATILE_FLAG_FINISH 0x00000004 /* wait till VDQCR completes */ #endif /* Flags to qman_enqueue(). NB, the strange numbering is to align with hardware, * bit-wise. (NB: the PME API is sensitive to these precise numberings too, so * any change here should be audited in PME.) */ #ifdef CONFIG_FSL_DPA_CAN_WAIT #define QMAN_ENQUEUE_FLAG_WAIT 0x00010000 /* wait if EQCR is full */ #define QMAN_ENQUEUE_FLAG_WAIT_INT 0x00020000 /* if wait, interruptible? */ #ifdef CONFIG_FSL_DPA_CAN_WAIT_SYNC #define QMAN_ENQUEUE_FLAG_WAIT_SYNC 0x00000004 /* if wait, until consumed? */ #endif #endif #define QMAN_ENQUEUE_FLAG_WATCH_CGR 0x00080000 /* watch congestion state */ #define QMAN_ENQUEUE_FLAG_DCA 0x00008000 /* perform enqueue-DCA */ #define QMAN_ENQUEUE_FLAG_DCA_PARK 0x00004000 /* If DCA, requests park */ #define QMAN_ENQUEUE_FLAG_DCA_PTR(p) /* If DCA, p is DQRR entry */ \ (((u32)(p) << 2) & 0x00000f00) #define QMAN_ENQUEUE_FLAG_C_GREEN 0x00000000 /* choose one C_*** flag */ #define QMAN_ENQUEUE_FLAG_C_YELLOW 0x00000008 #define QMAN_ENQUEUE_FLAG_C_RED 0x00000010 #define QMAN_ENQUEUE_FLAG_C_OVERRIDE 0x00000018 /* For the ORP-specific qman_enqueue_orp() variant; * - this flag indicates "Not Last In Sequence", ie. all but the final fragment * of a frame. */ #define QMAN_ENQUEUE_FLAG_NLIS 0x01000000 /* - this flag performs no enqueue but fills in an ORP sequence number that * would otherwise block it (eg. if a frame has been dropped). */ #define QMAN_ENQUEUE_FLAG_HOLE 0x02000000 /* - this flag performs no enqueue but advances NESN to the given sequence * number. */ #define QMAN_ENQUEUE_FLAG_NESN 0x04000000 /* Flags to qman_modify_cgr() */ #define QMAN_CGR_FLAG_USE_INIT 0x00000001 #define QMAN_CGR_MODE_FRAME 0x00000001 /* Portal Management */ /* ----------------- */ /** * qman_get_portal_config - get portal configuration settings * * This returns a read-only view of the current cpu's affine portal settings. */ const struct qman_portal_config *qman_get_portal_config(void); /** * qman_irqsource_get - return the portal work that is interrupt-driven * * Returns a bitmask of QM_PIRQ_**I processing sources that are currently * enabled for interrupt handling on the current cpu's affine portal. These * sources will trigger the portal interrupt and the interrupt handler (or a * tasklet/bottom-half it defers to) will perform the corresponding processing * work. The qman_poll_***() functions will only process sources that are not in * this bitmask. If the current CPU is sharing a portal hosted on another CPU, * this always returns zero. */ u32 qman_irqsource_get(void); /** * qman_irqsource_add - add processing sources to be interrupt-driven * @bits: bitmask of QM_PIRQ_**I processing sources * * Adds processing sources that should be interrupt-driven (rather than * processed via qman_poll_***() functions). Returns zero for success, or * -EINVAL if the current CPU is sharing a portal hosted on another CPU. */ int qman_irqsource_add(u32 bits); /** * qman_irqsource_remove - remove processing sources from being interrupt-driven * @bits: bitmask of QM_PIRQ_**I processing sources * * Removes processing sources from being interrupt-driven, so that they will * instead be processed via qman_poll_***() functions. Returns zero for success, * or -EINVAL if the current CPU is sharing a portal hosted on another CPU. */ int qman_irqsource_remove(u32 bits); /** * qman_affine_cpus - return a mask of cpus that have affine portals */ const cpumask_t *qman_affine_cpus(void); /** * qman_affine_channel - return the channel ID of an portal * @cpu: the cpu whose affine portal is the subject of the query * * If @cpu is -1, the affine portal for the current CPU will be used. It is a * bug to call this function for any value of @cpu (other than -1) that is not a * member of the mask returned from qman_affine_cpus(). */ u16 qman_affine_channel(int cpu); /** * qman_get_affine_portal - return the portal pointer affine to cpu * @cpu: the cpu whose affine portal is the subject of the query * */ void *qman_get_affine_portal(int cpu); /** * qman_poll_dqrr - process DQRR (fast-path) entries * @limit: the maximum number of DQRR entries to process * * Use of this function requires that DQRR processing not be interrupt-driven. * Ie. the value returned by qman_irqsource_get() should not include * QM_PIRQ_DQRI. If the current CPU is sharing a portal hosted on another CPU, * this function will return -EINVAL, otherwise the return value is >=0 and * represents the number of DQRR entries processed. */ int qman_poll_dqrr(unsigned int limit); /** * qman_poll_slow - process anything (except DQRR) that isn't interrupt-driven. * * This function does any portal processing that isn't interrupt-driven. If the * current CPU is sharing a portal hosted on another CPU, this function will * return (u32)-1, otherwise the return value is a bitmask of QM_PIRQ_* sources * indicating what interrupt sources were actually processed by the call. */ u32 qman_poll_slow(void); /** * qman_poll - legacy wrapper for qman_poll_dqrr() and qman_poll_slow() * * Dispatcher logic on a cpu can use this to trigger any maintenance of the * affine portal. There are two classes of portal processing in question; * fast-path (which involves demuxing dequeue ring (DQRR) entries and tracking * enqueue ring (EQCR) consumption), and slow-path (which involves EQCR * thresholds, congestion state changes, etc). This function does whatever * processing is not triggered by interrupts. * * Note, if DQRR and some slow-path processing are poll-driven (rather than * interrupt-driven) then this function uses a heuristic to determine how often * to run slow-path processing - as slow-path processing introduces at least a * minimum latency each time it is run, whereas fast-path (DQRR) processing is * close to zero-cost if there is no work to be done. Applications can tune this * behaviour themselves by using qman_poll_dqrr() and qman_poll_slow() directly * rather than going via this wrapper. */ void qman_poll(void); /** * qman_stop_dequeues - Stop h/w dequeuing to the s/w portal * * Disables DQRR processing of the portal. This is reference-counted, so * qman_start_dequeues() must be called as many times as qman_stop_dequeues() to * truly re-enable dequeuing. */ void qman_stop_dequeues(void); /** * qman_start_dequeues - (Re)start h/w dequeuing to the s/w portal * * Enables DQRR processing of the portal. This is reference-counted, so * qman_start_dequeues() must be called as many times as qman_stop_dequeues() to * truly re-enable dequeuing. */ void qman_start_dequeues(void); /** * qman_static_dequeue_add - Add pool channels to the portal SDQCR * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n) * * Adds a set of pool channels to the portal's static dequeue command register * (SDQCR). The requested pools are limited to those the portal has dequeue * access to. */ void qman_static_dequeue_add(u32 pools); /** * qman_static_dequeue_del - Remove pool channels from the portal SDQCR * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n) * * Removes a set of pool channels from the portal's static dequeue command * register (SDQCR). The requested pools are limited to those the portal has * dequeue access to. */ void qman_static_dequeue_del(u32 pools); /** * qman_static_dequeue_get - return the portal's current SDQCR * * Returns the portal's current static dequeue command register (SDQCR). The * entire register is returned, so if only the currently-enabled pool channels * are desired, mask the return value with QM_SDQCR_CHANNELS_POOL_MASK. */ u32 qman_static_dequeue_get(void); /** * qman_dca - Perform a Discrete Consumption Acknowledgement * @dq: the DQRR entry to be consumed * @park_request: indicates whether the held-active @fq should be parked * * Only allowed in DCA-mode portals, for DQRR entries whose handler callback had * previously returned 'qman_cb_dqrr_defer'. NB, as with the other APIs, this * does not take a 'portal' argument but implies the core affine portal from the * cpu that is currently executing the function. For reasons of locking, this * function must be called from the same CPU as that which processed the DQRR * entry in the first place. */ void qman_dca(struct qm_dqrr_entry *dq, int park_request); /** * qman_eqcr_is_empty - Determine if portal's EQCR is empty * * For use in situations where a cpu-affine caller needs to determine when all * enqueues for the local portal have been processed by Qman but can't use the * QMAN_ENQUEUE_FLAG_WAIT_SYNC flag to do this from the final qman_enqueue(). * The function forces tracking of EQCR consumption (which normally doesn't * happen until enqueue processing needs to find space to put new enqueue * commands), and returns zero if the ring still has unprocessed entries, * non-zero if it is empty. */ int qman_eqcr_is_empty(void); /** * qman_set_dc_ern - Set the handler for DCP enqueue rejection notifications * @handler: callback for processing DCP ERNs * @affine: whether this handler is specific to the locally affine portal * * If a hardware block's interface to Qman (ie. its direct-connect portal, or * DCP) is configured not to receive enqueue rejections, then any enqueues * through that DCP that are rejected will be sent to a given software portal. * If @affine is non-zero, then this handler will only be used for DCP ERNs * received on the portal affine to the current CPU. If multiple CPUs share a * portal and they all call this function, they will be setting the handler for * the same portal! If @affine is zero, then this handler will be global to all * portals handled by this instance of the driver. Only those portals that do * not have their own affine handler will use the global handler. */ void qman_set_dc_ern(qman_cb_dc_ern handler, int affine); /* FQ management */ /* ------------- */ /** * qman_create_fq - Allocates a FQ * @fqid: the index of the FQD to encapsulate, must be "Out of Service" * @flags: bit-mask of QMAN_FQ_FLAG_*** options * @fq: memory for storing the 'fq', with callbacks filled in * * Creates a frame queue object for the given @fqid, unless the * QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is * dynamically allocated (or the function fails if none are available). Once * created, the caller should not touch the memory at 'fq' except as extended to * adjacent memory for user-defined fields (see the definition of "struct * qman_fq" for more info). NO_MODIFY is only intended for enqueuing to * pre-existing frame-queues that aren't to be otherwise interfered with, it * prevents all other modifications to the frame queue. The TO_DCPORTAL flag * causes the driver to honour any contextB modifications requested in the * qm_init_fq() API, as this indicates the frame queue will be consumed by a * direct-connect portal (PME, CAAM, or Fman). When frame queues are consumed by * software portals, the contextB field is controlled by the driver and can't be * modified by the caller. If the AS_IS flag is specified, management commands * will be used on portal @p to query state for frame queue @fqid and construct * a frame queue object based on that, rather than assuming/requiring that it be * Out of Service. */ int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq); /** * qman_destroy_fq - Deallocates a FQ * @fq: the frame queue object to release * @flags: bit-mask of QMAN_FQ_FREE_*** options * * The memory for this frame queue object ('fq' provided in qman_create_fq()) is * not deallocated but the caller regains ownership, to do with as desired. The * FQ must be in the 'out-of-service' state unless the QMAN_FQ_FREE_PARKED flag * is specified, in which case it may also be in the 'parked' state. */ void qman_destroy_fq(struct qman_fq *fq, u32 flags); /** * qman_fq_fqid - Queries the frame queue ID of a FQ object * @fq: the frame queue object to query */ u32 qman_fq_fqid(struct qman_fq *fq); /** * qman_fq_state - Queries the state of a FQ object * @fq: the frame queue object to query * @state: pointer to state enum to return the FQ scheduling state * @flags: pointer to state flags to receive QMAN_FQ_STATE_*** bitmask * * Queries the state of the FQ object, without performing any h/w commands. * This captures the state, as seen by the driver, at the time the function * executes. */ void qman_fq_state(struct qman_fq *fq, enum qman_fq_state *state, u32 *flags); /** * qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled" * @fq: the frame queue object to modify, must be 'parked' or new. * @flags: bit-mask of QMAN_INITFQ_FLAG_*** options * @opts: the FQ-modification settings, as defined in the low-level API * * The @opts parameter comes from the low-level portal API. Select * QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be scheduled * rather than parked. NB, @opts can be NULL. * * Note that some fields and options within @opts may be ignored or overwritten * by the driver; * 1. the 'count' and 'fqid' fields are always ignored (this operation only * affects one frame queue: @fq). * 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated * 'fqd' structure's 'context_b' field are sometimes overwritten; * - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is * initialised to a value used by the driver for demux. * - if context_b is initialised for demux, so is context_a in case stashing * is requested (see item 4). * (So caller control of context_b is only possible for TO_DCPORTAL frame queue * objects.) * 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's * 'dest::channel' field will be overwritten to match the portal used to issue * the command. If the WE_DESTWQ write-enable bit had already been set by the * caller, the channel workqueue will be left as-is, otherwise the write-enable * bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag * isn't set, the destination channel/workqueue fields and the write-enable bit * are left as-is. * 4. if the driver overwrites context_a/b for demux, then if * QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite * context_a.address fields and will leave the stashing fields provided by the * user alone, otherwise it will zero out the context_a.stashing fields. */ int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts); /** * qman_schedule_fq - Schedules a FQ * @fq: the frame queue object to schedule, must be 'parked' * * Schedules the frame queue, which must be Parked, which takes it to * Tentatively-Scheduled or Truly-Scheduled depending on its fill-level. */ int qman_schedule_fq(struct qman_fq *fq); /** * qman_retire_fq - Retires a FQ * @fq: the frame queue object to retire * @flags: FQ flags (as per qman_fq_state) if retirement completes immediately * * Retires the frame queue. This returns zero if it succeeds immediately, +1 if * the retirement was started asynchronously, otherwise it returns negative for * failure. When this function returns zero, @flags is set to indicate whether * the retired FQ is empty and/or whether it has any ORL fragments (to show up * as ERNs). Otherwise the corresponding flags will be known when a subsequent * FQRN message shows up on the portal's message ring. * * NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or * Active state), the completion will be via the message ring as a FQRN - but * the corresponding callback may occur before this function returns!! Ie. the * caller should be prepared to accept the callback as the function is called, * not only once it has returned. */ int qman_retire_fq(struct qman_fq *fq, u32 *flags); /** * qman_oos_fq - Puts a FQ "out of service" * @fq: the frame queue object to be put out-of-service, must be 'retired' * * The frame queue must be retired and empty, and if any order restoration list * was released as ERNs at the time of retirement, they must all be consumed. */ int qman_oos_fq(struct qman_fq *fq); /** * qman_fq_flow_control - Set the XON/XOFF state of a FQ * @fq: the frame queue object to be set to XON/XOFF state, must not be 'oos', * or 'retired' or 'parked' state * @xon: boolean to set fq in XON or XOFF state * * The frame should be in Tentatively Scheduled state or Truly Schedule sate, * otherwise the IFSI interrupt will be asserted. */ int qman_fq_flow_control(struct qman_fq *fq, int xon); /** * qman_query_fq - Queries FQD fields (via h/w query command) * @fq: the frame queue object to be queried * @fqd: storage for the queried FQD fields */ int qman_query_fq(struct qman_fq *fq, struct qm_fqd *fqd); /** * qman_query_fq_np - Queries non-programmable FQD fields * @fq: the frame queue object to be queried * @np: storage for the queried FQD fields */ int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np); /** * qman_query_wq - Queries work queue lengths * @query_dedicated: If non-zero, query length of WQs in the channel dedicated * to this software portal. Otherwise, query length of WQs in a * channel specified in wq. * @wq: storage for the queried WQs lengths. Also specified the channel to * to query if query_dedicated is zero. */ int qman_query_wq(u8 query_dedicated, struct qm_mcr_querywq *wq); /** * qman_volatile_dequeue - Issue a volatile dequeue command * @fq: the frame queue object to dequeue from * @flags: a bit-mask of QMAN_VOLATILE_FLAG_*** options * @vdqcr: bit mask of QM_VDQCR_*** options, as per qm_dqrr_vdqcr_set() * * Attempts to lock access to the portal's VDQCR volatile dequeue functionality. * The function will block and sleep if QMAN_VOLATILE_FLAG_WAIT is specified and * the VDQCR is already in use, otherwise returns non-zero for failure. If * QMAN_VOLATILE_FLAG_FINISH is specified, the function will only return once * the VDQCR command has finished executing (ie. once the callback for the last * DQRR entry resulting from the VDQCR command has been called). If not using * the FINISH flag, completion can be determined either by detecting the * presence of the QM_DQRR_STAT_UNSCHEDULED and QM_DQRR_STAT_DQCR_EXPIRED bits * in the "stat" field of the "struct qm_dqrr_entry" passed to the FQ's dequeue * callback, or by waiting for the QMAN_FQ_STATE_VDQCR bit to disappear from the * "flags" retrieved from qman_fq_state(). */ int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr); /** * qman_enqueue - Enqueue a frame to a frame queue * @fq: the frame queue object to enqueue to * @fd: a descriptor of the frame to be enqueued * @flags: bit-mask of QMAN_ENQUEUE_FLAG_*** options * * Fills an entry in the EQCR of portal @qm to enqueue the frame described by * @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid' * field is ignored. The return value is non-zero on error, such as ring full * (and FLAG_WAIT not specified), congestion avoidance (FLAG_WATCH_CGR * specified), etc. If the ring is full and FLAG_WAIT is specified, this * function will block. If FLAG_INTERRUPT is set, the EQCI bit of the portal * interrupt will assert when Qman consumes the EQCR entry (subject to "status * disable", "enable", and "inhibit" registers). If FLAG_DCA is set, Qman will * perform an implied "discrete consumption acknowledgement" on the dequeue * ring's (DQRR) entry, at the ring index specified by the FLAG_DCA_IDX(x) * macro. (As an alternative to issuing explicit DCA actions on DQRR entries, * this implicit DCA can delay the release of a "held active" frame queue * corresponding to a DQRR entry until Qman consumes the EQCR entry - providing * order-preservation semantics in packet-forwarding scenarios.) If FLAG_DCA is * set, then FLAG_DCA_PARK can also be set to imply that the DQRR consumption * acknowledgement should "park request" the "held active" frame queue. Ie. * when the portal eventually releases that frame queue, it will be left in the * Parked state rather than Tentatively Scheduled or Truly Scheduled. If the * portal is watching congestion groups, the QMAN_ENQUEUE_FLAG_WATCH_CGR flag * is requested, and the FQ is a member of a congestion group, then this * function returns -EAGAIN if the congestion group is currently congested. * Note, this does not eliminate ERNs, as the async interface means we can be * sending enqueue commands to an un-congested FQ that becomes congested before * the enqueue commands are processed, but it does minimise needless thrashing * of an already busy hardware resource by throttling many of the to-be-dropped * enqueues "at the source". */ int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd, u32 flags); typedef int (*qman_cb_precommit) (void *arg); /** * qman_enqueue_precommit - Enqueue a frame to a frame queue and call cb * @fq: the frame queue object to enqueue to * @fd: a descriptor of the frame to be enqueued * @flags: bit-mask of QMAN_ENQUEUE_FLAG_*** options * @cb: user supplied callback function to invoke before writing commit verb. * @cb_arg: callback function argument * * This is similar to qman_enqueue except that it will invoke a user supplied * callback function just before writng the commit verb. This is useful * when the user want to do something *just before* enqueuing the request and * the enqueue can't fail. */ int qman_enqueue_precommit(struct qman_fq *fq, const struct qm_fd *fd, u32 flags, qman_cb_precommit cb, void *cb_arg); /** * qman_enqueue_orp - Enqueue a frame to a frame queue using an ORP * @fq: the frame queue object to enqueue to * @fd: a descriptor of the frame to be enqueued * @flags: bit-mask of QMAN_ENQUEUE_FLAG_*** options * @orp: the frame queue object used as an order restoration point. * @orp_seqnum: the sequence number of this frame in the order restoration path * * Similar to qman_enqueue(), but with the addition of an Order Restoration * Point (@orp) and corresponding sequence number (@orp_seqnum) for this * enqueue operation to employ order restoration. Each frame queue object acts * as an Order Definition Point (ODP) by providing each frame dequeued from it * with an incrementing sequence number, this value is generally ignored unless * that sequence of dequeued frames will need order restoration later. Each * frame queue object also encapsulates an Order Restoration Point (ORP), which * is a re-assembly context for re-ordering frames relative to their sequence * numbers as they are enqueued. The ORP does not have to be within the frame * queue that receives the enqueued frame, in fact it is usually the frame * queue from which the frames were originally dequeued. For the purposes of * order restoration, multiple frames (or "fragments") can be enqueued for a * single sequence number by setting the QMAN_ENQUEUE_FLAG_NLIS flag for all * enqueues except the final fragment of a given sequence number. Ordering * between sequence numbers is guaranteed, even if fragments of different * sequence numbers are interlaced with one another. Fragments of the same * sequence number will retain the order in which they are enqueued. If no * enqueue is to performed, QMAN_ENQUEUE_FLAG_HOLE indicates that the given * sequence number is to be "skipped" by the ORP logic (eg. if a frame has been * dropped from a sequence), or QMAN_ENQUEUE_FLAG_NESN indicates that the given * sequence number should become the ORP's "Next Expected Sequence Number". * * Side note: a frame queue object can be used purely as an ORP, without * carrying any frames at all. Care should be taken not to deallocate a frame * queue object that is being actively used as an ORP, as a future allocation * of the frame queue object may start using the internal ORP before the * previous use has finished. */ int qman_enqueue_orp(struct qman_fq *fq, const struct qm_fd *fd, u32 flags, struct qman_fq *orp, u16 orp_seqnum); /** * qman_alloc_fqid_range - Allocate a contiguous range of FQIDs * @result: is set by the API to the base FQID of the allocated range * @count: the number of FQIDs required * @align: required alignment of the allocated range * @partial: non-zero if the API can return fewer than @count FQIDs * * Returns the number of frame queues allocated, or a negative error code. If * @partial is non zero, the allocation request may return a smaller range of * FQs than requested (though alignment will be as requested). If @partial is * zero, the return value will either be 'count' or negative. */ int qman_alloc_fqid_range(u32 *result, u32 count, u32 align, int partial); static inline int qman_alloc_fqid(u32 *result) { int ret = qman_alloc_fqid_range(result, 1, 0, 0); return (ret > 0) ? 0 : ret; } /** * qman_release_fqid_range - Release the specified range of frame queue IDs * @fqid: the base FQID of the range to deallocate * @count: the number of FQIDs in the range * * This function can also be used to seed the allocator with ranges of FQIDs * that it can subsequently allocate from. */ void qman_release_fqid_range(u32 fqid, unsigned int count); static inline void qman_release_fqid(u32 fqid) { qman_release_fqid_range(fqid, 1); } void qman_seed_fqid_range(u32 fqid, unsigned int count); int qman_shutdown_fq(u32 fqid); /** * qman_reserve_fqid_range - Reserve the specified range of frame queue IDs * @fqid: the base FQID of the range to deallocate * @count: the number of FQIDs in the range */ int qman_reserve_fqid_range(u32 fqid, unsigned int count); static inline int qman_reserve_fqid(u32 fqid) { return qman_reserve_fqid_range(fqid, 1); } /* Pool-channel management */ /* ----------------------- */ /** * qman_alloc_pool_range - Allocate a contiguous range of pool-channel IDs * @result: is set by the API to the base pool-channel ID of the allocated range * @count: the number of pool-channel IDs required * @align: required alignment of the allocated range * @partial: non-zero if the API can return fewer than @count * * Returns the number of pool-channel IDs allocated, or a negative error code. * If @partial is non zero, the allocation request may return a smaller range of * than requested (though alignment will be as requested). If @partial is zero, * the return value will either be 'count' or negative. */ int qman_alloc_pool_range(u32 *result, u32 count, u32 align, int partial); static inline int qman_alloc_pool(u32 *result) { int ret = qman_alloc_pool_range(result, 1, 0, 0); return (ret > 0) ? 0 : ret; } /** * qman_release_pool_range - Release the specified range of pool-channel IDs * @id: the base pool-channel ID of the range to deallocate * @count: the number of pool-channel IDs in the range */ void qman_release_pool_range(u32 id, unsigned int count); static inline void qman_release_pool(u32 id) { qman_release_pool_range(id, 1); } /** * qman_reserve_pool_range - Reserve the specified range of pool-channel IDs * @id: the base pool-channel ID of the range to reserve * @count: the number of pool-channel IDs in the range */ int qman_reserve_pool_range(u32 id, unsigned int count); static inline int qman_reserve_pool(u32 id) { return qman_reserve_pool_range(id, 1); } void qman_seed_pool_range(u32 id, unsigned int count); /* CGR management */ /* -------------- */ /** * qman_create_cgr - Register a congestion group object * @cgr: the 'cgr' object, with fields filled in * @flags: QMAN_CGR_FLAG_* values * @opts: optional state of CGR settings * * Registers this object to receiving congestion entry/exit callbacks on the * portal affine to the cpu portal on which this API is executed. If opts is * NULL then only the callback (cgr->cb) function is registered. If @flags * contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset * any unspecified parameters) will be used rather than a modify hw hardware * (which only modifies the specified parameters). */ int qman_create_cgr(struct qman_cgr *cgr, u32 flags, struct qm_mcc_initcgr *opts); /** * qman_create_cgr_to_dcp - Register a congestion group object to DCP portal * @cgr: the 'cgr' object, with fields filled in * @flags: QMAN_CGR_FLAG_* values * @dcp_portal: the DCP portal to which the cgr object is registered. * @opts: optional state of CGR settings * */ int qman_create_cgr_to_dcp(struct qman_cgr *cgr, u32 flags, u16 dcp_portal, struct qm_mcc_initcgr *opts); /** * qman_delete_cgr - Deregisters a congestion group object * @cgr: the 'cgr' object to deregister * * "Unplugs" this CGR object from the portal affine to the cpu on which this API * is executed. This must be excuted on the same affine portal on which it was * created. */ int qman_delete_cgr(struct qman_cgr *cgr); /** * qman_delete_cgr_safe - Deregisters a congestion group object from any CPU * @cgr: the 'cgr' object to deregister * * This will select the proper CPU and run there qman_delete_cgr(). */ void qman_delete_cgr_safe(struct qman_cgr *cgr); /** * qman_modify_cgr - Modify CGR fields * @cgr: the 'cgr' object to modify * @flags: QMAN_CGR_FLAG_* values * @opts: the CGR-modification settings * * The @opts parameter comes from the low-level portal API, and can be NULL. * Note that some fields and options within @opts may be ignored or overwritten * by the driver, in particular the 'cgrid' field is ignored (this operation * only affects the given CGR object). If @flags contains * QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset any * unspecified parameters) will be used rather than a modify hw hardware (which * only modifies the specified parameters). */ int qman_modify_cgr(struct qman_cgr *cgr, u32 flags, struct qm_mcc_initcgr *opts); /** * qman_query_cgr - Queries CGR fields * @cgr: the 'cgr' object to query * @result: storage for the queried congestion group record */ int qman_query_cgr(struct qman_cgr *cgr, struct qm_mcr_querycgr *result); /** * qman_query_congestion - Queries the state of all congestion groups * @congestion: storage for the queried state of all congestion groups */ int qman_query_congestion(struct qm_mcr_querycongestion *congestion); /** * qman_alloc_cgrid_range - Allocate a contiguous range of CGR IDs * @result: is set by the API to the base CGR ID of the allocated range * @count: the number of CGR IDs required * @align: required alignment of the allocated range * @partial: non-zero if the API can return fewer than @count * * Returns the number of CGR IDs allocated, or a negative error code. * If @partial is non zero, the allocation request may return a smaller range of * than requested (though alignment will be as requested). If @partial is zero, * the return value will either be 'count' or negative. */ int qman_alloc_cgrid_range(u32 *result, u32 count, u32 align, int partial); static inline int qman_alloc_cgrid(u32 *result) { int ret = qman_alloc_cgrid_range(result, 1, 0, 0); return (ret > 0) ? 0 : ret; } /** * qman_release_cgrid_range - Release the specified range of CGR IDs * @id: the base CGR ID of the range to deallocate * @count: the number of CGR IDs in the range */ void qman_release_cgrid_range(u32 id, unsigned int count); static inline void qman_release_cgrid(u32 id) { qman_release_cgrid_range(id, 1); } /** * qman_reserve_cgrid_range - Reserve the specified range of CGR ID * @id: the base CGR ID of the range to reserve * @count: the number of CGR IDs in the range */ int qman_reserve_cgrid_range(u32 id, unsigned int count); static inline int qman_reserve_cgrid(u32 id) { return qman_reserve_cgrid_range(id, 1); } void qman_seed_cgrid_range(u32 id, unsigned int count); /* Helpers */ /* ------- */ /** * qman_poll_fq_for_init - Check if an FQ has been initialised from OOS * @fqid: the FQID that will be initialised by other s/w * * In many situations, a FQID is provided for communication between s/w * entities, and whilst the consumer is responsible for initialising and * scheduling the FQ, the producer(s) generally create a wrapper FQ object using * and only call qman_enqueue() (no FQ initialisation, scheduling, etc). Ie; * qman_create_fq(..., QMAN_FQ_FLAG_NO_MODIFY, ...); * However, data can not be enqueued to the FQ until it is initialised out of * the OOS state - this function polls for that condition. It is particularly * useful for users of IPC functions - each endpoint's Rx FQ is the other * endpoint's Tx FQ, so each side can initialise and schedule their Rx FQ object * and then use this API on the (NO_MODIFY) Tx FQ object in order to * synchronise. The function returns zero for success, +1 if the FQ is still in * the OOS state, or negative if there was an error. */ static inline int qman_poll_fq_for_init(struct qman_fq *fq) { struct qm_mcr_queryfq_np np; int err; err = qman_query_fq_np(fq, &np); if (err) return err; if ((np.state & QM_MCR_NP_STATE_MASK) == QM_MCR_NP_STATE_OOS) return 1; return 0; } /* -------------- */ /* CEETM :: types */ /* -------------- */ /** * Token Rate Structure * Shaping rates are based on a "credit" system and a pre-configured h/w * internal timer. The following type represents a shaper "rate" parameter as a * fractional number of "tokens". Here's how it works. This (fractional) number * of tokens is added to the shaper's "credit" every time the h/w timer elapses * (up to a limit which is set by another shaper parameter). Every time a frame * is enqueued through a shaper, the shaper deducts as many tokens as there are * bytes of data in the enqueued frame. A shaper will not allow itself to * enqueue any frames if its token count is negative. As such; * * The rate at which data is enqueued is limited by the * rate at which tokens are added. * * Therefore if the user knows the period between these h/w timer updates in * seconds, they can calculate the maximum traffic rate of the shaper (in * bytes-per-second) from the token rate. And vice versa, they can calculate * the token rate to use in order to achieve a given traffic rate. */ struct qm_ceetm_rate { /* The token rate is; whole + (fraction/8192) */ u32 whole:11; /* 0..2047 */ u32 fraction:13; /* 0..8191 */ }; struct qm_ceetm_weight_code { /* The weight code is; 5 msbits + 3 lsbits */ u8 y:5; u8 x:3; }; struct qm_ceetm { unsigned int idx; struct list_head sub_portals; struct list_head lnis; unsigned int sp_range[2]; unsigned int lni_range[2]; }; struct qm_ceetm_sp { struct list_head node; unsigned int idx; unsigned int dcp_idx; int is_claimed; struct qm_ceetm_lni *lni; }; /* Logical Network Interface */ struct qm_ceetm_lni { struct list_head node; unsigned int idx; unsigned int dcp_idx; int is_claimed; struct qm_ceetm_sp *sp; struct list_head channels; int shaper_enable; int shaper_couple; int oal; struct qm_ceetm_rate cr_token_rate; struct qm_ceetm_rate er_token_rate; u16 cr_token_bucket_limit; u16 er_token_bucket_limit; }; /* Class Queue Channel */ struct qm_ceetm_channel { struct list_head node; unsigned int idx; unsigned int lni_idx; unsigned int dcp_idx; struct list_head class_queues; struct list_head ccgs; u8 shaper_enable; u8 shaper_couple; struct qm_ceetm_rate cr_token_rate; struct qm_ceetm_rate er_token_rate; u16 cr_token_bucket_limit; u16 er_token_bucket_limit; }; struct qm_ceetm_ccg; /* This callback type is used when handling congestion entry/exit. The * 'cb_ctx' value is the opaque value associated with ccg object. * 'congested' is non-zero on congestion-entry, and zero on congestion-exit. */ typedef void (*qman_cb_ccgr)(struct qm_ceetm_ccg *ccg, void *cb_ctx, int congested); /* Class Congestion Group */ struct qm_ceetm_ccg { struct qm_ceetm_channel *parent; struct list_head node; struct list_head cb_node; qman_cb_ccgr cb; void *cb_ctx; unsigned int idx; }; /* Class Queue */ struct qm_ceetm_cq { struct qm_ceetm_channel *parent; struct qm_ceetm_ccg *ccg; struct list_head node; unsigned int idx; int is_claimed; struct list_head bound_lfqids; struct list_head binding_node; }; /* Logical Frame Queue */ struct qm_ceetm_lfq { struct qm_ceetm_channel *parent; struct list_head node; unsigned int idx; unsigned int dctidx; u64 context_a; u32 context_b; qman_cb_mr ern; }; /** * qman_ceetm_bps2tokenrate - Given a desired rate 'bps' measured in bps * (ie. bits-per-second), compute the 'token_rate' fraction that best * approximates that rate. * @bps: the desired shaper rate in bps. * @token_rate: the output token rate computed with the given kbps. * @rounding: dictates how to round if an exact conversion is not possible; if * it is negative then 'token_rate' will round down to the highest value that * does not exceed the desired rate, if it is positive then 'token_rate' will * round up to the lowest value that is greater than or equal to the desired * rate, and if it is zero then it will round to the nearest approximation, * whether that be up or down. * * Return 0 for success, or -EINVAL if prescaler or qman clock is not available. */ int qman_ceetm_bps2tokenrate(u64 bps, struct qm_ceetm_rate *token_rate, int rounding); /** * qman_ceetm_tokenrate2bps - Given a 'token_rate', compute the * corresponding number of 'bps'. * @token_rate: the input desired token_rate fraction. * @bps: the output shaper rate in bps computed with the give token rate. * @rounding: has the same semantics as the previous function. * * Return 0 for success, or -EINVAL if prescaler or qman clock is not available. */ int qman_ceetm_tokenrate2bps(const struct qm_ceetm_rate *token_rate, u64 *bps, int rounding); int qman_alloc_ceetm0_channel_range(u32 *result, u32 count, u32 align, int partial); static inline int qman_alloc_ceetm0_channel(u32 *result) { int ret = qman_alloc_ceetm0_channel_range(result, 1, 0, 0); return (ret > 0) ? 0 : ret; } void qman_release_ceetm0_channel_range(u32 channelid, u32 count); static inline void qman_release_ceetm0_channelid(u32 channelid) { qman_release_ceetm0_channel_range(channelid, 1); } int qman_reserve_ceetm0_channel_range(u32 channelid, u32 count); static inline int qman_reserve_ceetm0_channelid(u32 channelid) { return qman_reserve_ceetm0_channel_range(channelid, 1); } void qman_seed_ceetm0_channel_range(u32 channelid, u32 count); int qman_alloc_ceetm1_channel_range(u32 *result, u32 count, u32 align, int partial); static inline int qman_alloc_ceetm1_channel(u32 *result) { int ret = qman_alloc_ceetm1_channel_range(result, 1, 0, 0); return (ret > 0) ? 0 : ret; } void qman_release_ceetm1_channel_range(u32 channelid, u32 count); static inline void qman_release_ceetm1_channelid(u32 channelid) { qman_release_ceetm1_channel_range(channelid, 1); } int qman_reserve_ceetm1_channel_range(u32 channelid, u32 count); static inline int qman_reserve_ceetm1_channelid(u32 channelid) { return qman_reserve_ceetm1_channel_range(channelid, 1); } void qman_seed_ceetm1_channel_range(u32 channelid, u32 count); int qman_alloc_ceetm0_lfqid_range(u32 *result, u32 count, u32 align, int partial); static inline int qman_alloc_ceetm0_lfqid(u32 *result) { int ret = qman_alloc_ceetm0_lfqid_range(result, 1, 0, 0); return (ret > 0) ? 0 : ret; } void qman_release_ceetm0_lfqid_range(u32 lfqid, u32 count); static inline void qman_release_ceetm0_lfqid(u32 lfqid) { qman_release_ceetm0_lfqid_range(lfqid, 1); } int qman_reserve_ceetm0_lfqid_range(u32 lfqid, u32 count); static inline int qman_reserve_ceetm0_lfqid(u32 lfqid) { return qman_reserve_ceetm0_lfqid_range(lfqid, 1); } void qman_seed_ceetm0_lfqid_range(u32 lfqid, u32 count); int qman_alloc_ceetm1_lfqid_range(u32 *result, u32 count, u32 align, int partial); static inline int qman_alloc_ceetm1_lfqid(u32 *result) { int ret = qman_alloc_ceetm1_lfqid_range(result, 1, 0, 0); return (ret > 0) ? 0 : ret; } void qman_release_ceetm1_lfqid_range(u32 lfqid, u32 count); static inline void qman_release_ceetm1_lfqid(u32 lfqid) { qman_release_ceetm1_lfqid_range(lfqid, 1); } int qman_reserve_ceetm1_lfqid_range(u32 lfqid, u32 count); static inline int qman_reserve_ceetm1_lfqid(u32 lfqid) { return qman_reserve_ceetm1_lfqid_range(lfqid, 1); } void qman_seed_ceetm1_lfqid_range(u32 lfqid, u32 count); /* ----------------------------- */ /* CEETM :: sub-portals */ /* ----------------------------- */ /** * qman_ceetm_sp_claim - Claims the given sub-portal, provided it is available * to us and configured for traffic-management. * @sp: the returned sub-portal object, if successful. * @dcp_id: specifies the desired Fman block (and thus the relevant CEETM * instance), * @sp_idx" is the desired sub-portal index from 0 to 15. * * Returns zero for success, or -ENODEV if the sub-portal is in use, or -EINVAL * if the sp_idx is out of range. * * Note that if there are multiple driver domains (eg. a linux kernel versus * user-space drivers in USDPAA, or multiple guests running under a hypervisor) * then a sub-portal may be accessible by more than one instance of a qman * driver and so it may be claimed multiple times. If this is the case, it is * up to the system architect to prevent conflicting configuration actions * coming from the different driver domains. The qman drivers do not have any * behind-the-scenes coordination to prevent this from happening. */ int qman_ceetm_sp_claim(struct qm_ceetm_sp **sp, enum qm_dc_portal dcp_idx, unsigned int sp_idx); /** * qman_ceetm_sp_release - Releases a previously claimed sub-portal. * @sp: the sub-portal to be released. * * Returns 0 for success, or -EBUSY for failure if the dependencies are not * released. */ int qman_ceetm_sp_release(struct qm_ceetm_sp *sp); /* ----------------------------------- */ /* CEETM :: logical network interfaces */ /* ----------------------------------- */ /** * qman_ceetm_lni_claim - Claims an unclaimed LNI. * @lni: the returned LNI object, if successful. * @dcp_id: specifies the desired Fman block (and thus the relevant CEETM * instance) * @lni_idx: is the desired LNI index. * * Returns zero for success, or -EINVAL on failure, which will happen if the LNI * is not available or has already been claimed (and not yet successfully * released), or lni_dix is out of range. * * Note that there may be multiple driver domains (or instances) that need to * transmit out the same LNI, so this claim is only guaranteeing exclusivity * within the domain of the driver being called. See qman_ceetm_sp_claim() and * qman_ceetm_sp_get_lni() for more information. */ int qman_ceetm_lni_claim(struct qm_ceetm_lni **lni, enum qm_dc_portal dcp_id, unsigned int lni_idx); /** * qman_ceetm_lni_releaes - Releases a previously claimed LNI. * @lni: the lni needs to be released. * * This will only succeed if all dependent objects have been released. * Returns zero for success, or -EBUSY if the dependencies are not released. */ int qman_ceetm_lni_release(struct qm_ceetm_lni *lni); /** * qman_ceetm_sp_set_lni * qman_ceetm_sp_get_lni - Set/get the LNI that the sub-portal is currently * mapped to. * @sp: the given sub-portal. * @lni(in "set"function): the LNI object which the sp will be mappaed to. * @lni_idx(in "get" function): the LNI index which the sp is mapped to. * * Returns zero for success, or -EINVAL for the "set" function when this sp-lni * mapping has been set, or configure mapping command returns error, and * -EINVAL for "get" function when this sp-lni mapping is not set or the query * mapping command returns error. * * This may be useful in situations where multiple driver domains have access * to the same sub-portals in order to all be able to transmit out the same * physical interface (perhaps they're on different IP addresses or VPNs, so * Fman is splitting Rx traffic and here we need to converge Tx traffic). In * that case, a control-plane is likely to use qman_ceetm_lni_claim() followed * by qman_ceetm_sp_set_lni() to configure the sub-portal, and other domains * are likely to use qman_ceetm_sp_get_lni() followed by qman_ceetm_lni_claim() * in order to determine the LNI that the control-plane had assigned. This is * why the "get" returns an index, whereas the "set" takes an (already claimed) * LNI object. */ int qman_ceetm_sp_set_lni(struct qm_ceetm_sp *sp, struct qm_ceetm_lni *lni); int qman_ceetm_sp_get_lni(struct qm_ceetm_sp *sp, unsigned int *lni_idx); /** * qman_ceetm_lni_enable_shaper * qman_ceetm_lni_disable_shaper - Enables/disables shaping on the LNI. * @lni: the given LNI. * @coupled: indicates whether CR and ER are coupled. * @oal: the overhead accounting length which is added to the actual length of * each frame when performing shaper calculations. * * When the number of (unused) committed-rate tokens reach the committed-rate * token limit, 'coupled' indicates whether surplus tokens should be added to * the excess-rate token count (up to the excess-rate token limit). * When LNI is claimed, the shaper is disabled by default. The enable function * will turn on this shaper for this lni. * Whenever a claimed LNI is first enabled for shaping, its committed and * excess token rates and limits are zero, so will need to be changed to do * anything useful. The shaper can subsequently be enabled/disabled without * resetting the shaping parameters, but the shaping parameters will be reset * when the LNI is released. * * Returns zero for success, or errno for "enable" function in the cases as: * a) -EINVAL if the shaper is already enabled, * b) -EIO if the configure shaper command returns error. * For "disable" function, returns: * a) -EINVAL if the shaper is has already disabled. * b) -EIO if calling configure shaper command returns error. */ int qman_ceetm_lni_enable_shaper(struct qm_ceetm_lni *lni, int coupled, int oal); int qman_ceetm_lni_disable_shaper(struct qm_ceetm_lni *lni); /** * qman_ceetm_lni_is_shaper_enabled - Check LNI shaper status * @lni: the give LNI */ int qman_ceetm_lni_is_shaper_enabled(struct qm_ceetm_lni *lni); /** * qman_ceetm_lni_set_commit_rate * qman_ceetm_lni_get_commit_rate * qman_ceetm_lni_set_excess_rate * qman_ceetm_lni_get_excess_rate - Set/get the shaper CR/ER token rate and * token limit for the given LNI. * @lni: the given LNI. * @token_rate: the desired token rate for "set" fuction, or the token rate of * the LNI queried by "get" function. * @token_limit: the desired token bucket limit for "set" function, or the token * limit of the given LNI queried by "get" function. * * Returns zero for success. The "set" function returns -EINVAL if the given * LNI is unshapped or -EIO if the configure shaper command returns error. * The "get" function returns -EINVAL if the token rate or the token limit is * not set or the query command returns error. */ int qman_ceetm_lni_set_commit_rate(struct qm_ceetm_lni *lni, const struct qm_ceetm_rate *token_rate, u16 token_limit); int qman_ceetm_lni_get_commit_rate(struct qm_ceetm_lni *lni, struct qm_ceetm_rate *token_rate, u16 *token_limit); int qman_ceetm_lni_set_excess_rate(struct qm_ceetm_lni *lni, const struct qm_ceetm_rate *token_rate, u16 token_limit); int qman_ceetm_lni_get_excess_rate(struct qm_ceetm_lni *lni, struct qm_ceetm_rate *token_rate, u16 *token_limit); /** * qman_ceetm_lni_set_commit_rate_bps * qman_ceetm_lni_get_commit_rate_bps * qman_ceetm_lni_set_excess_rate_bps * qman_ceetm_lni_get_excess_rate_bps - Set/get the shaper CR/ER rate * and token limit for the given LNI. * @lni: the given LNI. * @bps: the desired shaping rate in bps for "set" fuction, or the shaping rate * of the LNI queried by "get" function. * @token_limit: the desired token bucket limit for "set" function, or the token * limit of the given LNI queried by "get" function. * * Returns zero for success. The "set" function returns -EINVAL if the given * LNI is unshapped or -EIO if the configure shaper command returns error. * The "get" function returns -EINVAL if the token rate or the token limit is * not set or the query command returns error. */ int qman_ceetm_lni_set_commit_rate_bps(struct qm_ceetm_lni *lni, u64 bps, u16 token_limit); int qman_ceetm_lni_get_commit_rate_bps(struct qm_ceetm_lni *lni, u64 *bps, u16 *token_limit); int qman_ceetm_lni_set_excess_rate_bps(struct qm_ceetm_lni *lni, u64 bps, u16 token_limit); int qman_ceetm_lni_get_excess_rate_bps(struct qm_ceetm_lni *lni, u64 *bps, u16 *token_limit); /** * qman_ceetm_lni_set_tcfcc * qman_ceetm_lni_get_tcfcc - Configure/query "Traffic Class Flow Control". * @lni: the given LNI. * @cq_level: is between 0 and 15, representing individual class queue levels * (CQ0 to CQ7 for every channel) and grouped class queue levels (CQ8 to CQ15 * for every channel). * @traffic_class: is between 0 and 7 when associating a given class queue level * to a traffic class, or -1 when disabling traffic class flow control for this * class queue level. * * Return zero for success, or -EINVAL if the cq_level or traffic_class is out * of range as indicated above, or -EIO if the configure/query tcfcc command * returns error. * * Refer to the section of QMan CEETM traffic class flow control in the * Reference Manual. */ int qman_ceetm_lni_set_tcfcc(struct qm_ceetm_lni *lni, unsigned int cq_level, int traffic_class); int qman_ceetm_lni_get_tcfcc(struct qm_ceetm_lni *lni, unsigned int cq_level, int *traffic_class); /* ----------------------------- */ /* CEETM :: class queue channels */ /* ----------------------------- */ /** * qman_ceetm_channel_claim - Claims an unclaimed CQ channel that is mapped to * the given LNI. * @channel: the returned class queue channel object, if successful. * @lni: the LNI that the channel belongs to. * * Channels are always initially "unshaped". * * Return zero for success, or -ENODEV if there is no channel available(all 32 * channels are claimed) or -EINVAL if the channel mapping command returns * error. */ int qman_ceetm_channel_claim(struct qm_ceetm_channel **channel, struct qm_ceetm_lni *lni); /** * qman_ceetm_channel_release - Releases a previously claimed CQ channel. * @channel: the channel needs to be released. * * Returns zero for success, or -EBUSY if the dependencies are still in use. * * Note any shaping of the channel will be cleared to leave it in an unshaped * state. */ int qman_ceetm_channel_release(struct qm_ceetm_channel *channel); /** * qman_ceetm_channel_enable_shaper * qman_ceetm_channel_disable_shaper - Enables/disables shaping on the channel. * @channel: the given channel. * @coupled: indicates whether surplus CR tokens should be added to the * excess-rate token count (up to the excess-rate token limit) when the number * of (unused) committed-rate tokens reach the committed_rate token limit. * * Whenever a claimed channel is first enabled for shaping, its committed and * excess token rates and limits are zero, so will need to be changed to do * anything useful. The shaper can subsequently be enabled/disabled without * resetting the shaping parameters, but the shaping parameters will be reset * when the channel is released. * * Return 0 for success, or -EINVAL for failure, in the case that the channel * shaper has been enabled/disabled or the management command returns error. */ int qman_ceetm_channel_enable_shaper(struct qm_ceetm_channel *channel, int coupled); int qman_ceetm_channel_disable_shaper(struct qm_ceetm_channel *channel); /** * qman_ceetm_channel_is_shaper_enabled - Check channel shaper status. * @channel: the give channel. */ int qman_ceetm_channel_is_shaper_enabled(struct qm_ceetm_channel *channel); /** * qman_ceetm_channel_set_commit_rate * qman_ceetm_channel_get_commit_rate * qman_ceetm_channel_set_excess_rate * qman_ceetm_channel_get_excess_rate - Set/get channel CR/ER shaper parameters. * @channel: the given channel. * @token_rate: the desired token rate for "set" function, or the queried token * rate for "get" function. * @token_limit: the desired token limit for "set" function, or the queried * token limit for "get" function. * * Return zero for success. The "set" function returns -EINVAL if the channel * is unshaped, or -EIO if the configure shapper command returns error. The * "get" function returns -EINVAL if token rate of token limit is not set, or * the query shaper command returns error. */ int qman_ceetm_channel_set_commit_rate(struct qm_ceetm_channel *channel, const struct qm_ceetm_rate *token_rate, u16 token_limit); int qman_ceetm_channel_get_commit_rate(struct qm_ceetm_channel *channel, struct qm_ceetm_rate *token_rate, u16 *token_limit); int qman_ceetm_channel_set_excess_rate(struct qm_ceetm_channel *channel, const struct qm_ceetm_rate *token_rate, u16 token_limit); int qman_ceetm_channel_get_excess_rate(struct qm_ceetm_channel *channel, struct qm_ceetm_rate *token_rate, u16 *token_limit); /** * qman_ceetm_channel_set_commit_rate_bps * qman_ceetm_channel_get_commit_rate_bps * qman_ceetm_channel_set_excess_rate_bps * qman_ceetm_channel_get_excess_rate_bps - Set/get channel CR/ER shaper * parameters. * @channel: the given channel. * @token_rate: the desired shaper rate in bps for "set" function, or the * shaper rate in bps for "get" function. * @token_limit: the desired token limit for "set" function, or the queried * token limit for "get" function. * * Return zero for success. The "set" function returns -EINVAL if the channel * is unshaped, or -EIO if the configure shapper command returns error. The * "get" function returns -EINVAL if token rate of token limit is not set, or * the query shaper command returns error. */ int qman_ceetm_channel_set_commit_rate_bps(struct qm_ceetm_channel *channel, u64 bps, u16 token_limit); int qman_ceetm_channel_get_commit_rate_bps(struct qm_ceetm_channel *channel, u64 *bps, u16 *token_limit); int qman_ceetm_channel_set_excess_rate_bps(struct qm_ceetm_channel *channel, u64 bps, u16 token_limit); int qman_ceetm_channel_get_excess_rate_bps(struct qm_ceetm_channel *channel, u64 *bps, u16 *token_limit); /** * qman_ceetm_channel_set_weight * qman_ceetm_channel_get_weight - Set/get the weight for unshaped channel * @channel: the given channel. * @token_limit: the desired token limit as the weight of the unshaped channel * for "set" function, or the queried token limit for "get" function. * * The algorithm of unshaped fair queuing (uFQ) is used for unshaped channel. * It allows the unshaped channels to be included in the CR time eligible list, * and thus use the configured CR token limit value as their fair queuing * weight. * * Return zero for success, or -EINVAL if the channel is a shaped channel or * the management command returns error. */ int qman_ceetm_channel_set_weight(struct qm_ceetm_channel *channel, u16 token_limit); int qman_ceetm_channel_get_weight(struct qm_ceetm_channel *channel, u16 *token_limit); /** * qman_ceetm_channel_set_group * qman_ceetm_channel_get_group - Set/get the grouping of the class scheduler. * @channel: the given channel. * @group_b: indicates whether there is group B in this channel. * @prio_a: the priority of group A. * @prio_b: the priority of group B. * * There are 8 individual class queues (CQ0-CQ7), and 8 grouped class queues * (CQ8-CQ15). If 'group_b' is zero, then all the grouped class queues are in * group A, otherwise they are split into group A (CQ8-11) and group B * (CQ12-C15). The individual class queues and the group(s) are in strict * priority order relative to each other. Within the group(s), the scheduling * is not strict priority order, but the result of scheduling within a group * is in strict priority order relative to the other class queues in the * channel. 'prio_a' and 'prio_b' control the priority order of the groups * relative to the individual class queues, and take values from 0-7. Eg. if * 'group_b' is non-zero, 'prio_a' is 2 and 'prio_b' is 6, then the strict * priority order would be; * CQ0, CQ1, CQ2, GROUPA, CQ3, CQ4, CQ5, CQ6, GROUPB, CQ7 * * Return 0 for success. For "set" function, returns -EINVAL if prio_a or * prio_b are out of the range 0 - 7 (priority of group A or group B can not * be 0, CQ0 is always the highest class queue in this channel.), or -EIO if * the configure scheduler command returns error. For "get" function, return * -EINVAL if the query scheduler command returns error. */ int qman_ceetm_channel_set_group(struct qm_ceetm_channel *channel, int group_b, unsigned int prio_a, unsigned int prio_b); int qman_ceetm_channel_get_group(struct qm_ceetm_channel *channel, int *group_b, unsigned int *prio_a, unsigned int *prio_b); /** * qman_ceetm_channel_set_group_cr_eligibility * qman_ceetm_channel_set_group_er_eligibility - Set channel group eligibility * @channel: the given channel object * @group_b: indicates whether there is group B in this channel. * @cre: the commit rate eligibility, 1 for enable, 0 for disable. * * Return zero for success, or -EINVAL if eligibility setting fails. */ int qman_ceetm_channel_set_group_cr_eligibility(struct qm_ceetm_channel *channel, int group_b, int cre); int qman_ceetm_channel_set_group_er_eligibility(struct qm_ceetm_channel *channel, int group_b, int ere); /** * qman_ceetm_channel_set_cq_cr_eligibility * qman_ceetm_channel_set_cq_er_eligibility - Set channel cq eligibility * @channel: the given channel object * @idx: is from 0 to 7 (representing CQ0 to CQ7). * @cre: the commit rate eligibility, 1 for enable, 0 for disable. * * Return zero for success, or -EINVAL if eligibility setting fails. */ int qman_ceetm_channel_set_cq_cr_eligibility(struct qm_ceetm_channel *channel, unsigned int idx, int cre); int qman_ceetm_channel_set_cq_er_eligibility(struct qm_ceetm_channel *channel, unsigned int idx, int ere); /* --------------------- */ /* CEETM :: class queues */ /* --------------------- */ /** * qman_ceetm_cq_claim - Claims an individual class queue. * @cq: the returned class queue object, if successful. * @channel: the class queue channel. * @idx: is from 0 to 7 (representing CQ0 to CQ7). * @ccg: represents the class congestion group that this class queue should be * subscribed to, or NULL if no congestion group membership is desired. * * Returns zero for success, or -EINVAL if @idx is out of range 0 - 7 or * if this class queue has been claimed, or configure class queue command * returns error, or returns -ENOMEM if allocating CQ memory fails. */ int qman_ceetm_cq_claim(struct qm_ceetm_cq **cq, struct qm_ceetm_channel *channel, unsigned int idx, struct qm_ceetm_ccg *ccg); /** * qman_ceetm_cq_claim_A - Claims a class queue group A. * @cq: the returned class queue object, if successful. * @channel: the class queue channel. * @idx: is from 8 to 15 if only group A exits, otherwise, it is from 8 to 11. * @ccg: represents the class congestion group that this class queue should be * subscribed to, or NULL if no congestion group membership is desired. * * Return zero for success, or -EINVAL if @idx is out the range or if * this class queue has been claimed or configure class queue command returns * error, or returns -ENOMEM if allocating CQ memory fails. */ int qman_ceetm_cq_claim_A(struct qm_ceetm_cq **cq, struct qm_ceetm_channel *channel, unsigned int idx, struct qm_ceetm_ccg *ccg); /** * qman_ceetm_cq_claim_B - Claims a class queue group B. * @cq: the returned class queue object, if successful. * @channel: the class queue channel. * @idx: is from 0 to 3 (CQ12 to CQ15). * @ccg: represents the class congestion group that this class queue should be * subscribed to, or NULL if no congestion group membership is desired. * * Return zero for success, or -EINVAL if @idx is out the range or if * this class queue has been claimed or configure class queue command returns * error, or returns -ENOMEM if allocating CQ memory fails. */ int qman_ceetm_cq_claim_B(struct qm_ceetm_cq **cq, struct qm_ceetm_channel *channel, unsigned int idx, struct qm_ceetm_ccg *ccg); /** * qman_ceetm_cq_release - Releases a previously claimed class queue. * @cq: The class queue to be released. * * Return zero for success, or -EBUSY if the dependent objects (eg. logical * FQIDs) have not been released. */ int qman_ceetm_cq_release(struct qm_ceetm_cq *cq); /** * qman_ceetm_set_queue_weight * qman_ceetm_get_queue_weight - Configure/query the weight of a grouped class * queue. * @cq: the given class queue. * @weight_code: the desired weight code to set for the given class queue for * "set" function or the queired weight code for "get" function. * * Grouped class queues have a default weight code of zero, which corresponds to * a scheduler weighting of 1. This function can be used to modify a grouped * class queue to another weight, (Use the helpers qman_ceetm_wbfs2ratio() * and qman_ceetm_ratio2wbfs() to convert between these 'weight_code' values * and the corresponding sharing weight.) * * Returns zero for success, or -EIO if the configure weight command returns * error for "set" function, or -EINVAL if the query command returns * error for "get" function. * See section "CEETM Weighted Scheduling among Grouped Classes" in Reference * Manual for weight and weight code. */ int qman_ceetm_set_queue_weight(struct qm_ceetm_cq *cq, struct qm_ceetm_weight_code *weight_code); int qman_ceetm_get_queue_weight(struct qm_ceetm_cq *cq, struct qm_ceetm_weight_code *weight_code); /** * qman_ceetm_set_queue_weight_in_ratio * qman_ceetm_get_queue_weight_in_ratio - Configure/query the weight of a * grouped class queue. * @cq: the given class queue. * @ratio: the weight in ratio. It should be the real ratio number multiplied * by 100 to get rid of fraction. * * Returns zero for success, or -EIO if the configure weight command returns * error for "set" function, or -EINVAL if the query command returns * error for "get" function. */ int qman_ceetm_set_queue_weight_in_ratio(struct qm_ceetm_cq *cq, u32 ratio); int qman_ceetm_get_queue_weight_in_ratio(struct qm_ceetm_cq *cq, u32 *ratio); /* Weights are encoded using a pseudo-exponential scheme. The weight codes 0, * 32, 64, [...] correspond to weights of 1, 2, 4, [...]. The weights * corresponding to intermediate weight codes are calculated using linear * interpolation on the inverted values. Or put another way, the inverse weights * for each 32nd weight code are 1, 1/2, 1/4, [...], and so the intervals * between these are divided linearly into 32 intermediate values, the inverses * of which form the remaining weight codes. * * The Weighted Bandwidth Fair Scheduling (WBFS) algorithm provides a form of * scheduling within a group of class queues (group A or B). Weights are used to * normalise the class queues to an underlying BFS algorithm where all class * queues are assumed to require "equal bandwidth". So the weights referred to * by the weight codes act as divisors on the size of frames being enqueued. Ie. * one class queue in a group is assigned a weight of 2 whilst the other class * queues in the group keep the default weight of 1, then the WBFS scheduler * will effectively treat all frames enqueued on the weight-2 class queue as * having half the number of bytes they really have. Ie. if all other things are * equal, that class queue would get twice as much bytes-per-second bandwidth as * the others. So weights should be chosen to provide bandwidth ratios between * members of the same class queue group. These weights have no bearing on * behaviour outside that group's WBFS mechanism though. */ /** * qman_ceetm_wbfs2ratio - Given a weight code ('wbfs'), an accurate fractional * representation of the corresponding weight is given (in order to not lose * any precision). * @weight_code: The given weight code in WBFS. * @numerator: the numerator part of the weight computed by the weight code. * @denominator: the denominator part of the weight computed by the weight code * * Returns zero for success or -EINVAL if the given weight code is illegal. */ int qman_ceetm_wbfs2ratio(struct qm_ceetm_weight_code *weight_code, u32 *numerator, u32 *denominator); /** * qman_ceetm_ratio2wbfs - Given a weight, find the nearest possible weight code * If the user needs to know how close this is, convert the resulting weight * code back to a weight and compare. * @numerator: numerator part of the given weight. * @denominator: denominator part of the given weight. * @weight_code: the weight code computed from the given weight. * * Returns zero for success, or -ERANGE if "numerator/denominator" is outside * the range of weights. */ int qman_ceetm_ratio2wbfs(u32 numerator, u32 denominator, struct qm_ceetm_weight_code *weight_code, int rounding); #define QMAN_CEETM_FLAG_CLEAR_STATISTICS_COUNTER 0x1 /** * qman_ceetm_cq_get_dequeue_statistics - Get the statistics provided by CEETM * CQ counters. * @cq: the given CQ object. * @flags: indicates whether the statistics counter will be cleared after query. * @frame_count: The number of the frames that have been counted since the * counter was cleared last time. * @byte_count: the number of bytes in all frames that have been counted. * * Return zero for success or -EINVAL if query statistics command returns error. * */ int qman_ceetm_cq_get_dequeue_statistics(struct qm_ceetm_cq *cq, u32 flags, u64 *frame_count, u64 *byte_count); /** * qman_ceetm_drain_cq - drain the CQ till it is empty. * @cq: the give CQ object. * Return 0 for success or -EINVAL for unsuccessful command to empty CQ. */ int qman_ceetm_drain_cq(struct qm_ceetm_cq *cq); /* ---------------------- */ /* CEETM :: logical FQIDs */ /* ---------------------- */ /** * qman_ceetm_lfq_claim - Claims an unused logical FQID, associates it with * the given class queue. * @lfq: the returned lfq object, if successful. * @cq: the class queue which needs to claim a LFQID. * * Return zero for success, or -ENODEV if no LFQID is available or -ENOMEM if * allocating memory for lfq fails, or -EINVAL if configuring LFQMT fails. */ int qman_ceetm_lfq_claim(struct qm_ceetm_lfq **lfq, struct qm_ceetm_cq *cq); /** * qman_ceetm_lfq_release - Releases a previously claimed logical FQID. * @lfq: the lfq to be released. * * Return zero for success. */ int qman_ceetm_lfq_release(struct qm_ceetm_lfq *lfq); /** * qman_ceetm_lfq_set_context * qman_ceetm_lfq_get_context - Set/get the context_a/context_b pair to the * "dequeue context table" associated with the logical FQID. * @lfq: the given logical FQ object. * @context_a: contextA of the dequeue context. * @context_b: contextB of the dequeue context. * * Returns zero for success, or -EINVAL if there is error to set/get the * context pair. */ int qman_ceetm_lfq_set_context(struct qm_ceetm_lfq *lfq, u64 context_a, u32 context_b); int qman_ceetm_lfq_get_context(struct qm_ceetm_lfq *lfq, u64 *context_a, u32 *context_b); /** * qman_ceetm_create_fq - Initialise a FQ object for the LFQ. * @lfq: the given logic fq. * @fq: the fq object created for the given logic fq. * * The FQ object can be used in qman_enqueue() and qman_enqueue_orp() APIs to * target a logical FQID (and the class queue it is associated with). * Note that this FQ object can only be used for enqueues, and * in the case of qman_enqueue_orp() it can not be used as the 'orp' parameter, * only as 'fq'. This FQ object can not (and shouldn't) be destroyed, it is only * valid as long as the underlying 'lfq' remains claimed. It is the user's * responsibility to ensure that the underlying 'lfq' is not released until any * enqueues to this FQ object have completed. The only field the user needs to * fill in is fq->cb.ern, as that enqueue rejection handler is the callback that * could conceivably be called on this FQ object. This API can be called * multiple times to create multiple FQ objects referring to the same logical * FQID, and any enqueue rejections will respect the callback of the object that * issued the enqueue (and will identify the object via the parameter passed to * the callback too). There is no 'flags' parameter to this API as there is for * qman_create_fq() - the created FQ object behaves as though qman_create_fq() * had been called with the single flag QMAN_FQ_FLAG_NO_MODIFY. * * Returns 0 for success. */ int qman_ceetm_create_fq(struct qm_ceetm_lfq *lfq, struct qman_fq *fq); /* -------------------------------- */ /* CEETM :: class congestion groups */ /* -------------------------------- */ /** * qman_ceetm_ccg_claim - Claims an unused CCG. * @ccg: the returned CCG object, if successful. * @channel: the given class queue channel * @cscn: the callback function of this CCG. * @cb_ctx: the corresponding context to be used used if state change * notifications are later enabled for this CCG. * * The congestion group is local to the given class queue channel, so only * class queues within the channel can be associated with that congestion group. * The association of class queues to congestion groups occurs when the class * queues are claimed, see qman_ceetm_cq_claim() and related functions. * Congestion groups are in a "zero" state when initially claimed, and they are * returned to that state when released. * * Return zero for success, or -EINVAL if no CCG in the channel is available. */ int qman_ceetm_ccg_claim(struct qm_ceetm_ccg **ccg, struct qm_ceetm_channel *channel, unsigned int idx, void (*cscn)(struct qm_ceetm_ccg *, void *cb_ctx, int congested), void *cb_ctx); /** * qman_ceetm_ccg_release - Releases a previously claimed CCG. * @ccg: the given ccg. * * Returns zero for success, or -EBUSY if the given ccg's dependent objects * (class queues that are associated with the CCG) have not been released. */ int qman_ceetm_ccg_release(struct qm_ceetm_ccg *ccg); /* This struct is used to specify attributes for a CCG. The 'we_mask' field * controls which CCG attributes are to be updated, and the remainder specify * the values for those attributes. A CCG counts either frames or the bytes * within those frames, but not both ('mode'). A CCG can optionally cause * enqueues to be rejected, due to tail-drop or WRED, or both (they are * independent options, 'td_en' and 'wr_en_g,wr_en_y,wr_en_r'). Tail-drop can be * level-triggered due to a single threshold ('td_thres') or edge-triggered due * to a "congestion state", but not both ('td_mode'). Congestion state has * distinct entry and exit thresholds ('cs_thres_in' and 'cs_thres_out'), and * notifications can be sent to software the CCG goes in to and out of this * congested state ('cscn_en'). */ struct qm_ceetm_ccg_params { /* Boolean fields together in a single bitfield struct */ struct { /* Whether to count bytes or frames. 1==frames */ u8 mode:1; /* En/disable tail-drop. 1==enable */ u8 td_en:1; /* Tail-drop on congestion-state or threshold. 1=threshold */ u8 td_mode:1; /* Generate congestion state change notifications. 1==enable */ u8 cscn_en:1; /* Enable WRED rejections (per colour). 1==enable */ u8 wr_en_g:1; u8 wr_en_y:1; u8 wr_en_r:1; } __packed; /* Tail-drop threshold. See qm_cgr_thres_[gs]et64(). */ struct qm_cgr_cs_thres td_thres; /* Congestion state thresholds, for entry and exit. */ struct qm_cgr_cs_thres cs_thres_in; struct qm_cgr_cs_thres cs_thres_out; /* Overhead accounting length. Per-packet "tax", from -128 to +127 */ signed char oal; /* Congestion state change notification for DCP portal, virtual CCGID*/ /* WRED parameters. */ struct qm_cgr_wr_parm wr_parm_g; struct qm_cgr_wr_parm wr_parm_y; struct qm_cgr_wr_parm wr_parm_r; }; /* Bits used in 'we_mask' to qman_ceetm_ccg_set(), controls which attributes of * the CCGR are to be updated. */ #define QM_CCGR_WE_MODE 0x0001 /* mode (bytes/frames) */ #define QM_CCGR_WE_CS_THRES_IN 0x0002 /* congestion state entry threshold */ #define QM_CCGR_WE_TD_EN 0x0004 /* congestion state tail-drop enable */ #define QM_CCGR_WE_CSCN_TUPD 0x0008 /* CSCN target update */ #define QM_CCGR_WE_CSCN_EN 0x0010 /* congestion notification enable */ #define QM_CCGR_WE_WR_EN_R 0x0020 /* WRED enable - red */ #define QM_CCGR_WE_WR_EN_Y 0x0040 /* WRED enable - yellow */ #define QM_CCGR_WE_WR_EN_G 0x0080 /* WRED enable - green */ #define QM_CCGR_WE_WR_PARM_R 0x0100 /* WRED parameters - red */ #define QM_CCGR_WE_WR_PARM_Y 0x0200 /* WRED parameters - yellow */ #define QM_CCGR_WE_WR_PARM_G 0x0400 /* WRED parameters - green */ #define QM_CCGR_WE_OAL 0x0800 /* overhead accounting length */ #define QM_CCGR_WE_CS_THRES_OUT 0x1000 /* congestion state exit threshold */ #define QM_CCGR_WE_TD_THRES 0x2000 /* tail-drop threshold */ #define QM_CCGR_WE_TD_MODE 0x4000 /* tail-drop mode (state/threshold) */ #define QM_CCGR_WE_CDV 0x8000 /* cdv */ /** * qman_ceetm_ccg_set * qman_ceetm_ccg_get - Configure/query a subset of CCG attributes. * @ccg: the given CCG object. * @we_mask: the write enable mask. * @params: the parameters setting for this ccg * * Return 0 for success, or -EIO if configure ccg command returns error for * "set" function, or -EINVAL if query ccg command returns error for "get" * function. */ int qman_ceetm_ccg_set(struct qm_ceetm_ccg *ccg, u16 we_mask, const struct qm_ceetm_ccg_params *params); int qman_ceetm_ccg_get(struct qm_ceetm_ccg *ccg, struct qm_ceetm_ccg_params *params); /** qman_ceetm_cscn_swp_set - Add or remove a software portal from the target * mask. * qman_ceetm_cscn_swp_get - Query whether a given software portal index is * in the cscn target mask. * @ccg: the give CCG object. * @swp_idx: the index of the software portal. * @cscn_enabled: 1: Set the swp to be cscn target. 0: remove the swp from * the target mask. * @we_mask: the write enable mask. * @params: the parameters setting for this ccg * * Return 0 for success, or -EINVAL if command in set/get function fails. */ int qman_ceetm_cscn_swp_set(struct qm_ceetm_ccg *ccg, u16 swp_idx, unsigned int cscn_enabled, u16 we_mask, const struct qm_ceetm_ccg_params *params); int qman_ceetm_cscn_swp_get(struct qm_ceetm_ccg *ccg, u16 swp_idx, unsigned int *cscn_enabled); /** qman_ceetm_cscn_dcp_set - Add or remove a direct connect portal from the\ * target mask. * qman_ceetm_cscn_dcp_get - Query whether a given direct connect portal index * is in the cscn target mask. * @ccg: the give CCG object. * @dcp_idx: the index of the direct connect portal. * @vcgid: congestion state change notification for dcp portal, virtual CGID. * @cscn_enabled: 1: Set the dcp to be cscn target. 0: remove the dcp from * the target mask. * @we_mask: the write enable mask. * @params: the parameters setting for this ccg * * Return 0 for success, or -EINVAL if command in set/get function fails. */ int qman_ceetm_cscn_dcp_set(struct qm_ceetm_ccg *ccg, u16 dcp_idx, u8 vcgid, unsigned int cscn_enabled, u16 we_mask, const struct qm_ceetm_ccg_params *params); int qman_ceetm_cscn_dcp_get(struct qm_ceetm_ccg *ccg, u16 dcp_idx, u8 *vcgid, unsigned int *cscn_enabled); /** * qman_ceetm_ccg_get_reject_statistics - Get the statistics provided by * CEETM CCG counters. * @ccg: the given CCG object. * @flags: indicates whether the statistics counter will be cleared after query. * @frame_count: The number of the frames that have been counted since the * counter was cleared last time. * @byte_count: the number of bytes in all frames that have been counted. * * Return zero for success or -EINVAL if query statistics command returns error. * */ int qman_ceetm_ccg_get_reject_statistics(struct qm_ceetm_ccg *ccg, u32 flags, u64 *frame_count, u64 *byte_count); /** * qman_ceetm_query_lfqmt - Query the logical frame queue mapping table * @lfqid: Logical Frame Queue ID * @lfqmt_query: Results of the query command * * Returns zero for success or -EIO if the query command returns error. * */ int qman_ceetm_query_lfqmt(int lfqid, struct qm_mcr_ceetm_lfqmt_query *lfqmt_query); /** * qman_ceetm_query_cq - Queries a CEETM CQ * @cqid: the channel ID (first byte) followed by the CQ idx * @dcpid: CEETM portal ID * @cq_query: storage for the queried CQ fields * * Returns zero for success or -EIO if the query command returns error. * */ int qman_ceetm_query_cq(unsigned int cqid, unsigned int dcpid, struct qm_mcr_ceetm_cq_query *cq_query); /** * qman_ceetm_query_write_statistics - Query (and optionally write) statistics * @cid: Target ID (CQID or CCGRID) * @dcp_idx: CEETM portal ID * @command_type: One of the following: * 0 = Query dequeue statistics. CID carries the CQID to be queried. * 1 = Query and clear dequeue statistics. CID carries the CQID to be queried * 2 = Write dequeue statistics. CID carries the CQID to be written. * 3 = Query reject statistics. CID carries the CCGRID to be queried. * 4 = Query and clear reject statistics. CID carries the CCGRID to be queried * 5 = Write reject statistics. CID carries the CCGRID to be written * @frame_count: Frame count value to be written if this is a write command * @byte_count: Bytes count value to be written if this is a write command * * Returns zero for success or -EIO if the query command returns error. */ int qman_ceetm_query_write_statistics(u16 cid, enum qm_dc_portal dcp_idx, u16 command_type, u64 frame_count, u64 byte_count); /** * qman_set_wpm - Set waterfall power management * * @wpm_enable: boolean, 1 = enable wpm, 0 = disable wpm. * * Return 0 for success, return -ENODEV if QMan misc_cfg register is not * accessible. */ int qman_set_wpm(int wpm_enable); /** * qman_get_wpm - Query the waterfall power management setting * * @wpm_enable: boolean, 1 = enable wpm, 0 = disable wpm. * * Return 0 for success, return -ENODEV if QMan misc_cfg register is not * accessible. */ int qman_get_wpm(int *wpm_enable); /* The below qman_p_***() variants might be called in a migration situation * (e.g. cpu hotplug). They are used to continue accessing the portal that * execution was affine to prior to migration. * @qman_portal specifies which portal the APIs will use. */ const struct qman_portal_config *qman_p_get_portal_config(struct qman_portal *p); int qman_p_irqsource_add(struct qman_portal *p, u32 bits); int qman_p_irqsource_remove(struct qman_portal *p, u32 bits); int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit); u32 qman_p_poll_slow(struct qman_portal *p); void qman_p_poll(struct qman_portal *p); void qman_p_stop_dequeues(struct qman_portal *p); void qman_p_start_dequeues(struct qman_portal *p); void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools); void qman_p_static_dequeue_del(struct qman_portal *p, u32 pools); u32 qman_p_static_dequeue_get(struct qman_portal *p); void qman_p_dca(struct qman_portal *p, struct qm_dqrr_entry *dq, int park_request); int qman_p_volatile_dequeue(struct qman_portal *p, struct qman_fq *fq, u32 flags __maybe_unused, u32 vdqcr); int qman_p_enqueue(struct qman_portal *p, struct qman_fq *fq, const struct qm_fd *fd, u32 flags); int qman_p_enqueue_orp(struct qman_portal *p, struct qman_fq *fq, const struct qm_fd *fd, u32 flags, struct qman_fq *orp, u16 orp_seqnum); int qman_p_enqueue_precommit(struct qman_portal *p, struct qman_fq *fq, const struct qm_fd *fd, u32 flags, qman_cb_precommit cb, void *cb_arg); static inline int qman_is_probed(void) { return 1; } static inline int qman_portals_probed(void) { return 1; } #ifdef __cplusplus } #endif #endif /* FSL_QMAN_H */