Blame view

tools/binman/README.entries 24.8 KB
5a5da7ce1   Simon Glass   binman: Create RE...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
  Binman Entry Documentation
  ===========================
  
  This file describes the entry types supported by binman. These entry types can
  be placed in an image one by one to build up a final firmware image. It is
  fairly easy to create new entry types. Just add a new file to the 'etype'
  directory. You can use the existing entries as examples.
  
  Note that some entries are subclasses of others, using and extending their
  features to produce new behaviours.
  
  
  
  Entry: blob: Entry containing an arbitrary binary blob
  ------------------------------------------------------
  
  Note: This should not be used by itself. It is normally used as a parent
  class by other entry types.
  
  Properties / Entry arguments:
      - filename: Filename of file to read into entry
83d73c2f7   Simon Glass   binman: Support c...
22
23
24
      - compress: Compression algorithm to use:
          none: No compression
          lz4: Use lz4 compression (via 'lz4' command-line utility)
5a5da7ce1   Simon Glass   binman: Create RE...
25
26
27
28
  
  This entry reads data from a file and places it in the entry. The
  default filename is often specified specified by the subclass. See for
  example the 'u_boot' entry which provides the filename 'u-boot.bin'.
83d73c2f7   Simon Glass   binman: Support c...
29
30
31
  If compression is enabled, an extra 'uncomp-size' property is written to
  the node (if enabled with -u) which provides the uncompressed size of the
  data.
5a5da7ce1   Simon Glass   binman: Create RE...
32

6ed45ba0a   Simon Glass   binman: Support u...
33
34
35
36
37
38
  Entry: blob-dtb: A blob that holds a device tree
  ------------------------------------------------
  
  This is a blob containing a device tree. The contents of the blob are
  obtained from the list of available device-tree files, managed by the
  'state' module.
5a5da7ce1   Simon Glass   binman: Create RE...
39

ec127af04   Simon Glass   binman: Add suppo...
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
  Entry: blob-named-by-arg: A blob entry which gets its filename property from its subclass
  -----------------------------------------------------------------------------------------
  
  Properties / Entry arguments:
      - <xxx>-path: Filename containing the contents of this entry (optional,
          defaults to 0)
  
  where <xxx> is the blob_fname argument to the constructor.
  
  This entry cannot be used directly. Instead, it is used as a parent class
  for another entry, which defined blob_fname. This parameter is used to
  set the entry-arg or property containing the filename. The entry-arg or
  property is in turn used to set the actual filename.
  
  See cros_ec_rw for an example of this.
  
  
  
  Entry: cros-ec-rw: A blob entry which contains a Chromium OS read-write EC image
  --------------------------------------------------------------------------------
  
  Properties / Entry arguments:
      - cros-ec-rw-path: Filename containing the EC image
  
  This entry holds a Chromium OS EC (embedded controller) image, for use in
  updating the EC on startup via software sync.
0a98b28b0   Simon Glass   binman: Support a...
66
67
68
69
70
71
72
73
74
75
76
77
  Entry: files: Entry containing a set of files
  ---------------------------------------------
  
  Properties / Entry arguments:
      - pattern: Filename pattern to match the files to include
      - compress: Compression algorithm to use:
          none: No compression
          lz4: Use lz4 compression (via 'lz4' command-line utility)
  
  This entry reads a number of files and places each in a separate sub-entry
  within this entry. To access these you need to enable device-tree updates
  at run-time so you can obtain the file positions.
3af8e49ce   Simon Glass   binman: Add an en...
78
79
80
81
82
83
84
85
86
87
88
89
90
  Entry: fill: An entry which is filled to a particular byte value
  ----------------------------------------------------------------
  
  Properties / Entry arguments:
      - fill-byte: Byte to use to fill the entry
  
  Note that the size property must be set since otherwise this entry does not
  know how large it should be.
  
  You can often achieve the same effect using the pad-byte property of the
  overall image, in that the space between entries will then be padded with
  that byte. But this entry is sometimes useful for explicitly setting the
  byte value of a region.
11e36ccea   Simon Glass   binman: Add suppo...
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
  Entry: fmap: An entry which contains an Fmap section
  ----------------------------------------------------
  
  Properties / Entry arguments:
      None
  
  FMAP is a simple format used by flashrom, an open-source utility for
  reading and writing the SPI flash, typically on x86 CPUs. The format
  provides flashrom with a list of areas, so it knows what it in the flash.
  It can then read or write just a single area, instead of the whole flash.
  
  The format is defined by the flashrom project, in the file lib/fmap.h -
  see www.flashrom.org/Flashrom for more information.
  
  When used, this entry will be populated with an FMAP which reflects the
  entries in the current image. Note that any hierarchy is squashed, since
  FMAP does not support this.
0ef87aa33   Simon Glass   binman: Add suppo...
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
  Entry: gbb: An entry which contains a Chromium OS Google Binary Block
  ---------------------------------------------------------------------
  
  Properties / Entry arguments:
      - hardware-id: Hardware ID to use for this build (a string)
      - keydir: Directory containing the public keys to use
      - bmpblk: Filename containing images used by recovery
  
  Chromium OS uses a GBB to store various pieces of information, in particular
  the root and recovery keys that are used to verify the boot process. Some
  more details are here:
  
      https://www.chromium.org/chromium-os/firmware-porting-guide/2-concepts
  
  but note that the page dates from 2013 so is quite out of date. See
  README.chromium for how to obtain the required keys and tools.
5a5da7ce1   Simon Glass   binman: Create RE...
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
  Entry: intel-cmc: Entry containing an Intel Chipset Micro Code (CMC) file
  -------------------------------------------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of file to read into entry
  
  This file contains microcode for some devices in a special format. An
  example filename is 'Microcode/C0_22211.BIN'.
  
  See README.x86 for information about x86 binary blobs.
  
  
  
  Entry: intel-descriptor: Intel flash descriptor block (4KB)
  -----------------------------------------------------------
  
  Properties / Entry arguments:
      filename: Filename of file containing the descriptor. This is typically
          a 4KB binary file, sometimes called 'descriptor.bin'
  
  This entry is placed at the start of flash and provides information about
  the SPI flash regions. In particular it provides the base address and
  size of the ME (Management Engine) region, allowing us to place the ME
  binary in the right place.
  
  With this entry in your image, the position of the 'intel-me' entry will be
  fixed in the image, which avoids you needed to specify an offset for that
  region. This is useful, because it is not possible to change the position
  of the ME region without updating the descriptor.
  
  See README.x86 for information about x86 binary blobs.
  
  
  
  Entry: intel-fsp: Entry containing an Intel Firmware Support Package (FSP) file
  -------------------------------------------------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of file to read into entry
  
  This file contains binary blobs which are used on some devices to make the
  platform work. U-Boot executes this code since it is not possible to set up
  the hardware using U-Boot open-source code. Documentation is typically not
  available in sufficient detail to allow this.
  
  An example filename is 'FSP/QUEENSBAY_FSP_GOLD_001_20-DECEMBER-2013.fd'
  
  See README.x86 for information about x86 binary blobs.
  
  
  
  Entry: intel-me: Entry containing an Intel Management Engine (ME) file
  ----------------------------------------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of file to read into entry
  
  This file contains code used by the SoC that is required to make it work.
  The Management Engine is like a background task that runs things that are
  not clearly documented, but may include keyboard, deplay and network
  access. For platform that use ME it is not possible to disable it. U-Boot
  does not directly execute code in the ME binary.
  
  A typical filename is 'me.bin'.
  
  See README.x86 for information about x86 binary blobs.
  
  
  
  Entry: intel-mrc: Entry containing an Intel Memory Reference Code (MRC) file
  ----------------------------------------------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of file to read into entry
  
  This file contains code for setting up the SDRAM on some Intel systems. This
  is executed by U-Boot when needed early during startup. A typical filename
  is 'mrc.bin'.
  
  See README.x86 for information about x86 binary blobs.
  
  
  
  Entry: intel-vbt: Entry containing an Intel Video BIOS Table (VBT) file
  -----------------------------------------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of file to read into entry
  
  This file contains code that sets up the integrated graphics subsystem on
  some Intel SoCs. U-Boot executes this when the display is started up.
  
  See README.x86 for information about Intel binary blobs.
  
  
  
  Entry: intel-vga: Entry containing an Intel Video Graphics Adaptor (VGA) file
  -----------------------------------------------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of file to read into entry
  
  This file contains code that sets up the integrated graphics subsystem on
  some Intel SoCs. U-Boot executes this when the display is started up.
  
  This is similar to the VBT file but in a different format.
  
  See README.x86 for information about Intel binary blobs.
9d368f32b   Jagdish Gediya   binman: Add suppo...
232
233
234
235
236
237
238
239
240
  Entry: powerpc-mpc85xx-bootpg-resetvec: PowerPC mpc85xx bootpg + resetvec code for U-Boot
  -----------------------------------------------------------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of u-boot-br.bin (default 'u-boot-br.bin')
  
  This enrty is valid for PowerPC mpc85xx cpus. This entry holds
  'bootpg + resetvec' code for PowerPC mpc85xx CPUs which needs to be
  placed at offset 'RESET_VECTOR_ADDRESS - 0xffc'.
5a5da7ce1   Simon Glass   binman: Create RE...
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
  Entry: section: Entry that contains other entries
  -------------------------------------------------
  
  Properties / Entry arguments: (see binman README for more information)
      - size: Size of section in bytes
      - align-size: Align size to a particular power of two
      - pad-before: Add padding before the entry
      - pad-after: Add padding after the entry
      - pad-byte: Pad byte to use when padding
      - sort-by-offset: Reorder the entries by offset
      - end-at-4gb: Used to build an x86 ROM which ends at 4GB (2^32)
      - name-prefix: Adds a prefix to the name of every entry in the section
          when writing out the map
  
  A section is an entry which can contain other entries, thus allowing
  hierarchical images to be created. See 'Sections and hierarchical images'
  in the binman README for more information.
  
  
  
  Entry: text: An entry which contains text
  -----------------------------------------
  
  The text can be provided either in the node itself or by a command-line
  argument. There is a level of indirection to allow multiple text strings
  and sharing of text.
  
  Properties / Entry arguments:
      text-label: The value of this string indicates the property / entry-arg
          that contains the string to place in the entry
      <xxx> (actual name is the value of text-label): contains the string to
          place in the entry.
  
  Example node:
  
      text {
          size = <50>;
          text-label = "message";
      };
  
  You can then use:
  
      binman -amessage="this is my message"
  
  and binman will insert that string into the entry.
  
  It is also possible to put the string directly in the node:
  
      text {
          size = <8>;
          text-label = "message";
          message = "a message directly in the node"
      };
  
  The text is not itself nul-terminated. This can be achieved, if required,
  by setting the size of the entry to something larger than the text.
  
  
  
  Entry: u-boot: U-Boot flat binary
  ---------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of u-boot.bin (default 'u-boot.bin')
  
  This is the U-Boot binary, containing relocation information to allow it
  to relocate itself at runtime. The binary typically includes a device tree
  blob at the end of it. Use u_boot_nodtb if you want to package the device
  tree separately.
  
  U-Boot can access binman symbols at runtime. See:
  
      'Access to binman entry offsets at run time (fdt)'
  
  in the binman README for more information.
  
  
  
  Entry: u-boot-dtb: U-Boot device tree
  -------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of u-boot.dtb (default 'u-boot.dtb')
  
  This is the U-Boot device tree, containing configuration information for
  U-Boot. U-Boot needs this to know what devices are present and which drivers
  to activate.
6ed45ba0a   Simon Glass   binman: Support u...
328
329
  Note: This is mostly an internal entry type, used by others. This allows
  binman to know which entries contain a device tree.
5a5da7ce1   Simon Glass   binman: Create RE...
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
  
  
  Entry: u-boot-dtb-with-ucode: A U-Boot device tree file, with the microcode removed
  -----------------------------------------------------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of u-boot.dtb (default 'u-boot.dtb')
  
  See Entry_u_boot_ucode for full details of the three entries involved in
  this process. This entry provides the U-Boot device-tree file, which
  contains the microcode. If the microcode is not being collated into one
  place then the offset and size of the microcode is recorded by this entry,
  for use by u_boot_with_ucode_ptr. If it is being collated, then this
  entry deletes the microcode from the device tree (to save space) and makes
  it available to u_boot_ucode.
fe1ae3ecc   Simon Glass   binman: Support E...
345
346
347
348
349
350
351
352
  Entry: u-boot-elf: U-Boot ELF image
  -----------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of u-boot (default 'u-boot')
  
  This is the U-Boot ELF image. It does not include a device tree but can be
  relocated to any address for execution.
5a5da7ce1   Simon Glass   binman: Create RE...
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
  Entry: u-boot-img: U-Boot legacy image
  --------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of u-boot.img (default 'u-boot.img')
  
  This is the U-Boot binary as a packaged image, in legacy format. It has a
  header which allows it to be loaded at the correct address for execution.
  
  You should use FIT (Flat Image Tree) instead of the legacy image for new
  applications.
  
  
  
  Entry: u-boot-nodtb: U-Boot flat binary without device tree appended
  --------------------------------------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of u-boot.bin (default 'u-boot-nodtb.bin')
  
  This is the U-Boot binary, containing relocation information to allow it
  to relocate itself at runtime. It does not include a device tree blob at
  the end of it so normally cannot work without it. You can add a u_boot_dtb
  entry after this one, or use a u_boot entry instead (which contains both
  U-Boot and the device tree).
  
  
  
  Entry: u-boot-spl: U-Boot SPL binary
  ------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of u-boot-spl.bin (default 'spl/u-boot-spl.bin')
  
  This is the U-Boot SPL (Secondary Program Loader) binary. This is a small
  binary which loads before U-Boot proper, typically into on-chip SRAM. It is
  responsible for locating, loading and jumping to U-Boot. Note that SPL is
  not relocatable so must be loaded to the correct address in SRAM, or written
b8ef5b6bc   Simon Glass   binman: Add suppo...
391
  to run from the correct address if direct flash execution is possible (e.g.
5a5da7ce1   Simon Glass   binman: Create RE...
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
  on x86 devices).
  
  SPL can access binman symbols at runtime. See:
  
      'Access to binman entry offsets at run time (symbols)'
  
  in the binman README for more information.
  
  The ELF file 'spl/u-boot-spl' must also be available for this to work, since
  binman uses that to look up symbols to write into the SPL binary.
  
  
  
  Entry: u-boot-spl-bss-pad: U-Boot SPL binary padded with a BSS region
  ---------------------------------------------------------------------
  
  Properties / Entry arguments:
      None
  
  This is similar to u_boot_spl except that padding is added after the SPL
  binary to cover the BSS (Block Started by Symbol) region. This region holds
  the various used by SPL. It is set to 0 by SPL when it starts up. If you
  want to append data to the SPL image (such as a device tree file), you must
  pad out the BSS region to avoid the data overlapping with U-Boot variables.
  This entry is useful in that case. It automatically pads out the entry size
  to cover both the code, data and BSS.
  
  The ELF file 'spl/u-boot-spl' must also be available for this to work, since
  binman uses that to look up the BSS address.
  
  
  
  Entry: u-boot-spl-dtb: U-Boot SPL device tree
  ---------------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of u-boot.dtb (default 'spl/u-boot-spl.dtb')
  
  This is the SPL device tree, containing configuration information for
  SPL. SPL needs this to know what devices are present and which drivers
  to activate.
fe1ae3ecc   Simon Glass   binman: Support E...
433
434
435
436
437
438
439
440
  Entry: u-boot-spl-elf: U-Boot SPL ELF image
  -------------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of SPL u-boot (default 'spl/u-boot')
  
  This is the U-Boot SPL ELF image. It does not include a device tree but can
  be relocated to any address for execution.
5a5da7ce1   Simon Glass   binman: Create RE...
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
  Entry: u-boot-spl-nodtb: SPL binary without device tree appended
  ----------------------------------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of spl/u-boot-spl-nodtb.bin (default
          'spl/u-boot-spl-nodtb.bin')
  
  This is the U-Boot SPL binary, It does not include a device tree blob at
  the end of it so may not be able to work without it, assuming SPL needs
  a device tree to operation on your platform. You can add a u_boot_spl_dtb
  entry after this one, or use a u_boot_spl entry instead (which contains
  both SPL and the device tree).
  
  
  
  Entry: u-boot-spl-with-ucode-ptr: U-Boot SPL with embedded microcode pointer
  ----------------------------------------------------------------------------
f02536354   Simon Glass   binman: Support x...
458
  This is used when SPL must set up the microcode for U-Boot.
5a5da7ce1   Simon Glass   binman: Create RE...
459
460
  See Entry_u_boot_ucode for full details of the entries involved in this
  process.
b8ef5b6bc   Simon Glass   binman: Add suppo...
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
  Entry: u-boot-tpl: U-Boot TPL binary
  ------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of u-boot-tpl.bin (default 'tpl/u-boot-tpl.bin')
  
  This is the U-Boot TPL (Tertiary Program Loader) binary. This is a small
  binary which loads before SPL, typically into on-chip SRAM. It is
  responsible for locating, loading and jumping to SPL, the next-stage
  loader. Note that SPL is not relocatable so must be loaded to the correct
  address in SRAM, or written to run from the correct address if direct
  flash execution is possible (e.g. on x86 devices).
  
  SPL can access binman symbols at runtime. See:
  
      'Access to binman entry offsets at run time (symbols)'
  
  in the binman README for more information.
  
  The ELF file 'tpl/u-boot-tpl' must also be available for this to work, since
  binman uses that to look up symbols to write into the TPL binary.
  
  
  
  Entry: u-boot-tpl-dtb: U-Boot TPL device tree
  ---------------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of u-boot.dtb (default 'tpl/u-boot-tpl.dtb')
  
  This is the TPL device tree, containing configuration information for
  TPL. TPL needs this to know what devices are present and which drivers
  to activate.
f02536354   Simon Glass   binman: Support x...
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
  Entry: u-boot-tpl-dtb-with-ucode: U-Boot TPL with embedded microcode pointer
  ----------------------------------------------------------------------------
  
  This is used when TPL must set up the microcode for U-Boot.
  
  See Entry_u_boot_ucode for full details of the entries involved in this
  process.
  
  
  
  Entry: u-boot-tpl-with-ucode-ptr: U-Boot TPL with embedded microcode pointer
  ----------------------------------------------------------------------------
  
  See Entry_u_boot_ucode for full details of the entries involved in this
  process.
5a5da7ce1   Simon Glass   binman: Create RE...
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
  Entry: u-boot-ucode: U-Boot microcode block
  -------------------------------------------
  
  Properties / Entry arguments:
      None
  
  The contents of this entry are filled in automatically by other entries
  which must also be in the image.
  
  U-Boot on x86 needs a single block of microcode. This is collected from
  the various microcode update nodes in the device tree. It is also unable
  to read the microcode from the device tree on platforms that use FSP
  (Firmware Support Package) binaries, because the API requires that the
  microcode is supplied before there is any SRAM available to use (i.e.
  the FSP sets up the SRAM / cache-as-RAM but does so in the call that
  requires the microcode!). To keep things simple, all x86 platforms handle
  microcode the same way in U-Boot (even non-FSP platforms). This is that
  a table is placed at _dt_ucode_base_size containing the base address and
  size of the microcode. This is either passed to the FSP (for FSP
  platforms), or used to set up the microcode (for non-FSP platforms).
  This all happens in the build system since it is the only way to get
  the microcode into a single blob and accessible without SRAM.
  
  There are two cases to handle. If there is only one microcode blob in
  the device tree, then the ucode pointer it set to point to that. This
  entry (u-boot-ucode) is empty. If there is more than one update, then
  this entry holds the concatenation of all updates, and the device tree
  entry (u-boot-dtb-with-ucode) is updated to remove the microcode. This
  last step ensures that that the microcode appears in one contiguous
  block in the image and is not unnecessarily duplicated in the device
  tree. It is referred to as 'collation' here.
  
  Entry types that have a part to play in handling microcode:
  
      Entry_u_boot_with_ucode_ptr:
          Contains u-boot-nodtb.bin (i.e. U-Boot without the device tree).
          It updates it with the address and size of the microcode so that
          U-Boot can find it early on start-up.
      Entry_u_boot_dtb_with_ucode:
          Contains u-boot.dtb. It stores the microcode in a
          'self.ucode_data' property, which is then read by this class to
          obtain the microcode if needed. If collation is performed, it
          removes the microcode from the device tree.
      Entry_u_boot_ucode:
          This class. If collation is enabled it reads the microcode from
          the Entry_u_boot_dtb_with_ucode entry, and uses it as the
          contents of this entry.
  
  
  
  Entry: u-boot-with-ucode-ptr: U-Boot with embedded microcode pointer
  --------------------------------------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of u-boot-nodtb.dtb (default 'u-boot-nodtb.dtb')
f06930385   Simon Glass   binman: Move 'spe...
564
565
566
      - optional-ucode: boolean property to make microcode optional. If the
          u-boot.bin image does not include microcode, no error will
          be generated.
5a5da7ce1   Simon Glass   binman: Create RE...
567
568
569
570
571
  
  See Entry_u_boot_ucode for full details of the three entries involved in
  this process. This entry updates U-Boot with the offset and size of the
  microcode, to allow early x86 boot code to find it without doing anything
  complicated. Otherwise it is the same as the u_boot entry.
24d0d3c30   Simon Glass   binman: Add an en...
572
573
574
575
576
577
578
579
580
581
  Entry: vblock: An entry which contains a Chromium OS verified boot block
  ------------------------------------------------------------------------
  
  Properties / Entry arguments:
      - keydir: Directory containing the public keys to use
      - keyblock: Name of the key file to use (inside keydir)
      - signprivate: Name of provide key file to use (inside keydir)
      - version: Version number of the vblock (typically 1)
      - kernelkey: Name of the kernel key to use (inside keydir)
      - preamble-flags: Value of the vboot preamble flags (typically 0)
a326b495c   Simon Glass   binman: Tidy up t...
582
583
584
585
  Output files:
      - input.<unique_name> - input file passed to futility
      - vblock.<unique_name> - output file generated by futility (which is
          used as the entry contents)
9d368f32b   Jagdish Gediya   binman: Add suppo...
586
  Chromium OS signs the read-write firmware and kernel, writing the signature
24d0d3c30   Simon Glass   binman: Add an en...
587
588
  in this block. This allows U-Boot to verify that the next firmware stage
  and kernel are genuine.
5a5da7ce1   Simon Glass   binman: Create RE...
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
  Entry: x86-start16: x86 16-bit start-up code for U-Boot
  -------------------------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of u-boot-x86-16bit.bin (default
          'u-boot-x86-16bit.bin')
  
  x86 CPUs start up in 16-bit mode, even if they are 32-bit CPUs. This code
  must be placed at a particular address. This entry holds that code. It is
  typically placed at offset CONFIG_SYS_X86_START16. The code is responsible
  for changing to 32-bit mode and jumping to U-Boot's entry point, which
  requires 32-bit mode (for 32-bit U-Boot).
  
  For 64-bit U-Boot, the 'x86_start16_spl' entry type is used instead.
  
  
  
  Entry: x86-start16-spl: x86 16-bit start-up code for SPL
  --------------------------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of spl/u-boot-x86-16bit-spl.bin (default
          'spl/u-boot-x86-16bit-spl.bin')
  
  x86 CPUs start up in 16-bit mode, even if they are 64-bit CPUs. This code
  must be placed at a particular address. This entry holds that code. It is
  typically placed at offset CONFIG_SYS_X86_START16. The code is responsible
  for changing to 32-bit mode and starting SPL, which in turn changes to
  64-bit mode and jumps to U-Boot (for 64-bit U-Boot).
  
  For 32-bit U-Boot, the 'x86_start16' entry type is used instead.
35b384cbe   Simon Glass   binman: Add x86 s...
620
621
622
623
624
625
626
627
628
629
630
631
632
633
  Entry: x86-start16-tpl: x86 16-bit start-up code for TPL
  --------------------------------------------------------
  
  Properties / Entry arguments:
      - filename: Filename of tpl/u-boot-x86-16bit-tpl.bin (default
          'tpl/u-boot-x86-16bit-tpl.bin')
  
  x86 CPUs start up in 16-bit mode, even if they are 64-bit CPUs. This code
  must be placed at a particular address. This entry holds that code. It is
  typically placed at offset CONFIG_SYS_X86_START16. The code is responsible
  for changing to 32-bit mode and starting TPL, which in turn jumps to SPL.
  
  If TPL is not being used, the 'x86_start16_spl or 'x86_start16' entry types
  may be used instead.