/* * Copyright 2017-2019 NXP * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #define SITES_MAX 16 #define FLAGS_VER2 0x1 #define TMR_DISABLE 0x0 #define TMR_ME 0x80000000 #define TMR_ALPF 0x0c000000 #define TMTMIR_DEFAULT 0x00000002 #define TIER_DISABLE 0x0 #define TER_EN 0x80000000 #define TER_ALPF 0x3 /* * NXP TMU Registers */ struct nxp_tmu_site_regs { u32 tritsr; /* Immediate Temperature Site Register */ u32 tratsr; /* Average Temperature Site Register */ u8 res0[0x8]; }; struct nxp_tmu_regs { u32 tmr; /* Mode Register */ u32 tsr; /* Status Register */ u32 tmtmir; /* Temperature measurement interval Register */ u8 res0[0x14]; u32 tier; /* Interrupt Enable Register */ u32 tidr; /* Interrupt Detect Register */ u32 tiscr; /* Interrupt Site Capture Register */ u32 ticscr; /* Interrupt Critical Site Capture Register */ u8 res1[0x10]; u32 tmhtcrh; /* High Temperature Capture Register */ u32 tmhtcrl; /* Low Temperature Capture Register */ u8 res2[0x8]; u32 tmhtitr; /* High Temperature Immediate Threshold */ u32 tmhtatr; /* High Temperature Average Threshold */ u32 tmhtactr; /* High Temperature Average Crit Threshold */ u8 res3[0x24]; u32 ttcfgr; /* Temperature Configuration Register */ u32 tscfgr; /* Sensor Configuration Register */ u8 res4[0x78]; struct nxp_tmu_site_regs site[SITES_MAX]; u8 res5[0x9f8]; u32 ipbrr0; /* IP Block Revision Register 0 */ u32 ipbrr1; /* IP Block Revision Register 1 */ u8 res6[0x310]; u32 ttr0cr; /* Temperature Range 0 Control Register */ u32 ttr1cr; /* Temperature Range 1 Control Register */ u32 ttr2cr; /* Temperature Range 2 Control Register */ u32 ttr3cr; /* Temperature Range 3 Control Register */ }; struct nxp_tmu_regs_v2 { u32 ter; /* TMU enable Register */ u32 tsr; /* Status Register */ u32 tier; /* Interrupt enable register */ u32 tidr; /* Interrupt detect register */ u32 tmhtitr; /* Monitor high temperature immediate threshold register */ u32 tmhtatr; /* Monitor high temperature average threshold register */ u32 tmhtactr; /* TMU monitor high temperature average critical threshold register */ u32 tscr; /* Sensor value capture register */ u32 tritsr; /* Report immediate temperature site register 0 */ u32 tratsr; /* Report average temperature site register 0 */ u32 tasr; /* Amplifier setting register */ u32 ttmc; /* Test MUX control */ u32 tcaliv; }; union tmu_regs { struct nxp_tmu_regs regs_v1; struct nxp_tmu_regs_v2 regs_v2; }; struct nxp_tmu_plat { int critical; int alert; int polling_delay; int id; bool zone_node; union tmu_regs *regs; }; static int read_temperature(struct udevice *dev, int *temp) { struct nxp_tmu_plat *pdata = dev_get_platdata(dev); ulong drv_data = dev_get_driver_data(dev); u32 val; u32 retry = 10; u32 valid = 0; do { mdelay(100); retry--; if (drv_data & FLAGS_VER2) { val = readl(&pdata->regs->regs_v2.tritsr); /* Check if TEMP is in valid range, the V bit in TRITSR * only reflects the RAW uncalibrated data */ valid = ((val & 0xff) < 10 || (val & 0xff) > 125) ? 0 : 1; } else { val = readl(&pdata->regs->regs_v1.site[pdata->id].tritsr); valid = val & 0x80000000; } } while (!valid && retry > 0); if (retry > 0) { *temp = (val & 0xff) * 1000; return 0; } else { return -EINVAL; } } int nxp_tmu_get_temp(struct udevice *dev, int *temp) { struct nxp_tmu_plat *pdata = dev_get_platdata(dev); int cpu_tmp = 0; int ret; ret = read_temperature(dev, &cpu_tmp); if (ret) { printf("invalid data\n"); return ret; } while (cpu_tmp >= pdata->alert) { printf("CPU Temperature (%dC) has beyond alert (%dC), close to critical (%dC)", cpu_tmp, pdata->alert, pdata->critical); puts(" waiting...\n"); mdelay(pdata->polling_delay); ret = read_temperature(dev, &cpu_tmp); if (ret) { printf("invalid data\n"); return ret; } } *temp = cpu_tmp / 1000; return 0; } static const struct dm_thermal_ops nxp_tmu_ops = { .get_temp = nxp_tmu_get_temp, }; static int nxp_tmu_calibration(struct udevice *dev) { int i, val, len, ret; u32 range[4]; const fdt32_t *calibration; struct nxp_tmu_plat *pdata = dev_get_platdata(dev); ulong drv_data = dev_get_driver_data(dev); debug("%s\n", __func__); if (drv_data & FLAGS_VER2) return 0; ret = fdtdec_get_int_array(gd->fdt_blob, dev_of_offset(dev), "fsl,tmu-range", range, 4); if (ret) { printf("TMU: missing calibration range, ret = %d.\n", ret); return ret; } /* Init temperature range registers */ writel(range[0], &pdata->regs->regs_v1.ttr0cr); writel(range[1], &pdata->regs->regs_v1.ttr1cr); writel(range[2], &pdata->regs->regs_v1.ttr2cr); writel(range[3], &pdata->regs->regs_v1.ttr3cr); calibration = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "fsl,tmu-calibration", &len); if (calibration == NULL || len % 8) { printf("TMU: invalid calibration data.\n"); return -ENODEV; } for (i = 0; i < len; i += 8, calibration += 2) { val = fdt32_to_cpu(*calibration); writel(val, &pdata->regs->regs_v1.ttcfgr); val = fdt32_to_cpu(*(calibration + 1)); writel(val, &pdata->regs->regs_v1.tscfgr); } return 0; } void __weak nxp_tmu_arch_init(void *reg_base) { return; } static void nxp_tmu_init(struct udevice *dev) { struct nxp_tmu_plat *pdata = dev_get_platdata(dev); ulong drv_data = dev_get_driver_data(dev); debug("%s\n", __func__); if (drv_data & FLAGS_VER2) { /* Disable monitoring */ writel(0x0, &pdata->regs->regs_v2.ter); /* Disable interrupt, using polling instead */ writel(0x0, &pdata->regs->regs_v2.tier); } else { /* Disable monitoring */ writel(TMR_DISABLE, &pdata->regs->regs_v1.tmr); /* Disable interrupt, using polling instead */ writel(TIER_DISABLE, &pdata->regs->regs_v1.tier); /* Set update_interval */ writel(TMTMIR_DEFAULT, &pdata->regs->regs_v1.tmtmir); } nxp_tmu_arch_init((void *)pdata->regs); } static int nxp_tmu_enable_msite(struct udevice *dev) { struct nxp_tmu_plat *pdata = dev_get_platdata(dev); ulong drv_data = dev_get_driver_data(dev); u32 reg; debug("%s\n", __func__); if (!pdata->regs) return -EIO; if (drv_data & FLAGS_VER2) { reg = readl(&pdata->regs->regs_v2.ter); reg &= ~TER_EN; writel(reg, &pdata->regs->regs_v2.ter); reg &= ~TER_ALPF; reg |= 0x1; writel(reg, &pdata->regs->regs_v2.ter); /* Enable monitor */ reg |= TER_EN; writel(reg, &pdata->regs->regs_v2.ter); } else { /* Clear the ME before setting MSITE and ALPF*/ reg = readl(&pdata->regs->regs_v1.tmr); reg &= ~TMR_ME; writel(reg, &pdata->regs->regs_v1.tmr); reg |= 1 << (15 - pdata->id); reg |= TMR_ALPF; writel(reg, &pdata->regs->regs_v1.tmr); /* Enable ME */ reg |= TMR_ME; writel(reg, &pdata->regs->regs_v1.tmr); } return 0; } static int nxp_tmu_probe(struct udevice *dev) { struct nxp_tmu_plat *pdata = dev_get_platdata(dev); debug("%s dev name %s\n", __func__, dev->name); if (pdata->zone_node) { nxp_tmu_init(dev); nxp_tmu_calibration(dev); } else { nxp_tmu_enable_msite(dev); } return 0; } static int nxp_tmu_bind(struct udevice *dev) { int ret; int offset; const char *name; const void *prop; struct nxp_tmu_plat *pdata = dev_get_platdata(dev); debug("%s dev name %s\n", __func__, dev->name); prop = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "compatible", NULL); if (!prop) return 0; else pdata->zone_node = 1; offset = fdt_subnode_offset(gd->fdt_blob, 0, "thermal-zones"); fdt_for_each_subnode(offset, gd->fdt_blob, offset) { /* Bind the subnode to this driver */ name = fdt_get_name(gd->fdt_blob, offset, NULL); ret = device_bind_with_driver_data(dev, dev->driver, name, dev->driver_data, offset_to_ofnode(offset), NULL); if (ret) printf("Error binding driver '%s': %d\n", dev->driver->name, ret); } return 0; } static int nxp_tmu_ofdata_to_platdata(struct udevice *dev) { int ret; int trips_np; struct nxp_tmu_plat *pdata = dev_get_platdata(dev); struct fdtdec_phandle_args args; debug("%s dev name %s\n", __func__, dev->name); if (pdata->zone_node) { pdata->regs = (union tmu_regs *)fdtdec_get_addr(gd->fdt_blob, dev_of_offset(dev), "reg"); if ((fdt_addr_t)pdata->regs == FDT_ADDR_T_NONE) return -EINVAL; return 0; } else { struct nxp_tmu_plat *p_parent_data = dev_get_platdata(dev->parent); if (p_parent_data->zone_node) pdata->regs = p_parent_data->regs; } ret = fdtdec_parse_phandle_with_args(gd->fdt_blob, dev_of_offset(dev), "thermal-sensors", "#thermal-sensor-cells", 0, 0, &args); if (ret) return ret; if (args.node != dev_of_offset(dev->parent)) return -EFAULT; if (args.args_count >= 1) pdata->id = args.args[0]; else pdata->id = 0; debug("args.args_count %d, id %d\n", args.args_count, pdata->id); pdata->polling_delay = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev), "polling-delay", 1000); trips_np = fdt_subnode_offset(gd->fdt_blob, dev_of_offset(dev), "trips"); fdt_for_each_subnode(trips_np, gd->fdt_blob, trips_np) { const char *type; type = fdt_getprop(gd->fdt_blob, trips_np, "type", NULL); if (type) { if (strcmp(type, "critical") == 0) pdata->critical = fdtdec_get_int(gd->fdt_blob, trips_np, "temperature", 85); else if (strcmp(type, "passive") == 0) pdata->alert = fdtdec_get_int(gd->fdt_blob, trips_np, "temperature", 80); } } debug("id %d polling_delay %d, critical %d, alert %d\n", pdata->id, pdata->polling_delay, pdata->critical, pdata->alert); return 0; } static const struct udevice_id nxp_tmu_ids[] = { { .compatible = "fsl,imx8mq-tmu", }, { .compatible = "fsl,imx8mm-tmu", .data=FLAGS_VER2, }, { } }; U_BOOT_DRIVER(nxp_tmu) = { .name = "nxp_tmu", .id = UCLASS_THERMAL, .ops = &nxp_tmu_ops, .of_match = nxp_tmu_ids, .bind = nxp_tmu_bind, .probe = nxp_tmu_probe, .ofdata_to_platdata = nxp_tmu_ofdata_to_platdata, .platdata_auto_alloc_size = sizeof(struct nxp_tmu_plat), .flags = DM_FLAG_PRE_RELOC, };