Commit 09dc4ab03936df5c5aa711d27c81283c6d09f495

Authored by Roman Gushchin
Committed by Ingo Molnar
1 parent 0f397f2c90

sched/fair: Fix tg_set_cfs_bandwidth() deadlock on rq->lock

tg_set_cfs_bandwidth() sets cfs_b->timer_active to 0 to
force the period timer restart. It's not safe, because
can lead to deadlock, described in commit 927b54fccbf0:
"__start_cfs_bandwidth calls hrtimer_cancel while holding rq->lock,
waiting for the hrtimer to finish. However, if sched_cfs_period_timer
runs for another loop iteration, the hrtimer can attempt to take
rq->lock, resulting in deadlock."

Three CPUs must be involved:

  CPU0               CPU1                         CPU2
  take rq->lock      period timer fired
  ...                take cfs_b lock
  ...                ...                          tg_set_cfs_bandwidth()
  throttle_cfs_rq()  release cfs_b lock           take cfs_b lock
  ...                distribute_cfs_runtime()     timer_active = 0
  take cfs_b->lock   wait for rq->lock            ...
  __start_cfs_bandwidth()
  {wait for timer callback
   break if timer_active == 1}

So, CPU0 and CPU1 are deadlocked.

Instead of resetting cfs_b->timer_active, tg_set_cfs_bandwidth can
wait for period timer callbacks (ignoring cfs_b->timer_active) and
restart the timer explicitly.

Signed-off-by: Roman Gushchin <klamm@yandex-team.ru>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/87wqdi9g8e.wl\%klamm@yandex-team.ru
Cc: pjt@google.com
Cc: chris.j.arges@canonical.com
Cc: gregkh@linuxfoundation.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>

Showing 3 changed files with 6 additions and 7 deletions Inline Diff

1 /* 1 /*
2 * kernel/sched/core.c 2 * kernel/sched/core.c
3 * 3 *
4 * Kernel scheduler and related syscalls 4 * Kernel scheduler and related syscalls
5 * 5 *
6 * Copyright (C) 1991-2002 Linus Torvalds 6 * Copyright (C) 1991-2002 Linus Torvalds
7 * 7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe 9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff 10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli 11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with 13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices 14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions 15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas. 17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin 18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas. 20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements 21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams 22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz 26 * Thomas Gleixner, Mike Kravetz
27 */ 27 */
28 28
29 #include <linux/mm.h> 29 #include <linux/mm.h>
30 #include <linux/module.h> 30 #include <linux/module.h>
31 #include <linux/nmi.h> 31 #include <linux/nmi.h>
32 #include <linux/init.h> 32 #include <linux/init.h>
33 #include <linux/uaccess.h> 33 #include <linux/uaccess.h>
34 #include <linux/highmem.h> 34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h> 35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h> 36 #include <linux/interrupt.h>
37 #include <linux/capability.h> 37 #include <linux/capability.h>
38 #include <linux/completion.h> 38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h> 39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h> 40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h> 41 #include <linux/perf_event.h>
42 #include <linux/security.h> 42 #include <linux/security.h>
43 #include <linux/notifier.h> 43 #include <linux/notifier.h>
44 #include <linux/profile.h> 44 #include <linux/profile.h>
45 #include <linux/freezer.h> 45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h> 46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h> 47 #include <linux/blkdev.h>
48 #include <linux/delay.h> 48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h> 49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h> 50 #include <linux/smp.h>
51 #include <linux/threads.h> 51 #include <linux/threads.h>
52 #include <linux/timer.h> 52 #include <linux/timer.h>
53 #include <linux/rcupdate.h> 53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h> 54 #include <linux/cpu.h>
55 #include <linux/cpuset.h> 55 #include <linux/cpuset.h>
56 #include <linux/percpu.h> 56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h> 57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h> 58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h> 59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h> 60 #include <linux/syscalls.h>
61 #include <linux/times.h> 61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h> 62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h> 63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h> 64 #include <linux/delayacct.h>
65 #include <linux/unistd.h> 65 #include <linux/unistd.h>
66 #include <linux/pagemap.h> 66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h> 67 #include <linux/hrtimer.h>
68 #include <linux/tick.h> 68 #include <linux/tick.h>
69 #include <linux/debugfs.h> 69 #include <linux/debugfs.h>
70 #include <linux/ctype.h> 70 #include <linux/ctype.h>
71 #include <linux/ftrace.h> 71 #include <linux/ftrace.h>
72 #include <linux/slab.h> 72 #include <linux/slab.h>
73 #include <linux/init_task.h> 73 #include <linux/init_task.h>
74 #include <linux/binfmts.h> 74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h> 75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h> 76 #include <linux/compiler.h>
77 77
78 #include <asm/switch_to.h> 78 #include <asm/switch_to.h>
79 #include <asm/tlb.h> 79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h> 80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h> 81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT 82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h> 83 #include <asm/paravirt.h>
84 #endif 84 #endif
85 85
86 #include "sched.h" 86 #include "sched.h"
87 #include "../workqueue_internal.h" 87 #include "../workqueue_internal.h"
88 #include "../smpboot.h" 88 #include "../smpboot.h"
89 89
90 #define CREATE_TRACE_POINTS 90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h> 91 #include <trace/events/sched.h>
92 92
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period) 93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 { 94 {
95 unsigned long delta; 95 unsigned long delta;
96 ktime_t soft, hard, now; 96 ktime_t soft, hard, now;
97 97
98 for (;;) { 98 for (;;) {
99 if (hrtimer_active(period_timer)) 99 if (hrtimer_active(period_timer))
100 break; 100 break;
101 101
102 now = hrtimer_cb_get_time(period_timer); 102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period); 103 hrtimer_forward(period_timer, now, period);
104 104
105 soft = hrtimer_get_softexpires(period_timer); 105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer); 106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft)); 107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta, 108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0); 109 HRTIMER_MODE_ABS_PINNED, 0);
110 } 110 }
111 } 111 }
112 112
113 DEFINE_MUTEX(sched_domains_mutex); 113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115 115
116 static void update_rq_clock_task(struct rq *rq, s64 delta); 116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117 117
118 void update_rq_clock(struct rq *rq) 118 void update_rq_clock(struct rq *rq)
119 { 119 {
120 s64 delta; 120 s64 delta;
121 121
122 if (rq->skip_clock_update > 0) 122 if (rq->skip_clock_update > 0)
123 return; 123 return;
124 124
125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; 125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 rq->clock += delta; 126 rq->clock += delta;
127 update_rq_clock_task(rq, delta); 127 update_rq_clock_task(rq, delta);
128 } 128 }
129 129
130 /* 130 /*
131 * Debugging: various feature bits 131 * Debugging: various feature bits
132 */ 132 */
133 133
134 #define SCHED_FEAT(name, enabled) \ 134 #define SCHED_FEAT(name, enabled) \
135 (1UL << __SCHED_FEAT_##name) * enabled | 135 (1UL << __SCHED_FEAT_##name) * enabled |
136 136
137 const_debug unsigned int sysctl_sched_features = 137 const_debug unsigned int sysctl_sched_features =
138 #include "features.h" 138 #include "features.h"
139 0; 139 0;
140 140
141 #undef SCHED_FEAT 141 #undef SCHED_FEAT
142 142
143 #ifdef CONFIG_SCHED_DEBUG 143 #ifdef CONFIG_SCHED_DEBUG
144 #define SCHED_FEAT(name, enabled) \ 144 #define SCHED_FEAT(name, enabled) \
145 #name , 145 #name ,
146 146
147 static const char * const sched_feat_names[] = { 147 static const char * const sched_feat_names[] = {
148 #include "features.h" 148 #include "features.h"
149 }; 149 };
150 150
151 #undef SCHED_FEAT 151 #undef SCHED_FEAT
152 152
153 static int sched_feat_show(struct seq_file *m, void *v) 153 static int sched_feat_show(struct seq_file *m, void *v)
154 { 154 {
155 int i; 155 int i;
156 156
157 for (i = 0; i < __SCHED_FEAT_NR; i++) { 157 for (i = 0; i < __SCHED_FEAT_NR; i++) {
158 if (!(sysctl_sched_features & (1UL << i))) 158 if (!(sysctl_sched_features & (1UL << i)))
159 seq_puts(m, "NO_"); 159 seq_puts(m, "NO_");
160 seq_printf(m, "%s ", sched_feat_names[i]); 160 seq_printf(m, "%s ", sched_feat_names[i]);
161 } 161 }
162 seq_puts(m, "\n"); 162 seq_puts(m, "\n");
163 163
164 return 0; 164 return 0;
165 } 165 }
166 166
167 #ifdef HAVE_JUMP_LABEL 167 #ifdef HAVE_JUMP_LABEL
168 168
169 #define jump_label_key__true STATIC_KEY_INIT_TRUE 169 #define jump_label_key__true STATIC_KEY_INIT_TRUE
170 #define jump_label_key__false STATIC_KEY_INIT_FALSE 170 #define jump_label_key__false STATIC_KEY_INIT_FALSE
171 171
172 #define SCHED_FEAT(name, enabled) \ 172 #define SCHED_FEAT(name, enabled) \
173 jump_label_key__##enabled , 173 jump_label_key__##enabled ,
174 174
175 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 175 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
176 #include "features.h" 176 #include "features.h"
177 }; 177 };
178 178
179 #undef SCHED_FEAT 179 #undef SCHED_FEAT
180 180
181 static void sched_feat_disable(int i) 181 static void sched_feat_disable(int i)
182 { 182 {
183 if (static_key_enabled(&sched_feat_keys[i])) 183 if (static_key_enabled(&sched_feat_keys[i]))
184 static_key_slow_dec(&sched_feat_keys[i]); 184 static_key_slow_dec(&sched_feat_keys[i]);
185 } 185 }
186 186
187 static void sched_feat_enable(int i) 187 static void sched_feat_enable(int i)
188 { 188 {
189 if (!static_key_enabled(&sched_feat_keys[i])) 189 if (!static_key_enabled(&sched_feat_keys[i]))
190 static_key_slow_inc(&sched_feat_keys[i]); 190 static_key_slow_inc(&sched_feat_keys[i]);
191 } 191 }
192 #else 192 #else
193 static void sched_feat_disable(int i) { }; 193 static void sched_feat_disable(int i) { };
194 static void sched_feat_enable(int i) { }; 194 static void sched_feat_enable(int i) { };
195 #endif /* HAVE_JUMP_LABEL */ 195 #endif /* HAVE_JUMP_LABEL */
196 196
197 static int sched_feat_set(char *cmp) 197 static int sched_feat_set(char *cmp)
198 { 198 {
199 int i; 199 int i;
200 int neg = 0; 200 int neg = 0;
201 201
202 if (strncmp(cmp, "NO_", 3) == 0) { 202 if (strncmp(cmp, "NO_", 3) == 0) {
203 neg = 1; 203 neg = 1;
204 cmp += 3; 204 cmp += 3;
205 } 205 }
206 206
207 for (i = 0; i < __SCHED_FEAT_NR; i++) { 207 for (i = 0; i < __SCHED_FEAT_NR; i++) {
208 if (strcmp(cmp, sched_feat_names[i]) == 0) { 208 if (strcmp(cmp, sched_feat_names[i]) == 0) {
209 if (neg) { 209 if (neg) {
210 sysctl_sched_features &= ~(1UL << i); 210 sysctl_sched_features &= ~(1UL << i);
211 sched_feat_disable(i); 211 sched_feat_disable(i);
212 } else { 212 } else {
213 sysctl_sched_features |= (1UL << i); 213 sysctl_sched_features |= (1UL << i);
214 sched_feat_enable(i); 214 sched_feat_enable(i);
215 } 215 }
216 break; 216 break;
217 } 217 }
218 } 218 }
219 219
220 return i; 220 return i;
221 } 221 }
222 222
223 static ssize_t 223 static ssize_t
224 sched_feat_write(struct file *filp, const char __user *ubuf, 224 sched_feat_write(struct file *filp, const char __user *ubuf,
225 size_t cnt, loff_t *ppos) 225 size_t cnt, loff_t *ppos)
226 { 226 {
227 char buf[64]; 227 char buf[64];
228 char *cmp; 228 char *cmp;
229 int i; 229 int i;
230 230
231 if (cnt > 63) 231 if (cnt > 63)
232 cnt = 63; 232 cnt = 63;
233 233
234 if (copy_from_user(&buf, ubuf, cnt)) 234 if (copy_from_user(&buf, ubuf, cnt))
235 return -EFAULT; 235 return -EFAULT;
236 236
237 buf[cnt] = 0; 237 buf[cnt] = 0;
238 cmp = strstrip(buf); 238 cmp = strstrip(buf);
239 239
240 i = sched_feat_set(cmp); 240 i = sched_feat_set(cmp);
241 if (i == __SCHED_FEAT_NR) 241 if (i == __SCHED_FEAT_NR)
242 return -EINVAL; 242 return -EINVAL;
243 243
244 *ppos += cnt; 244 *ppos += cnt;
245 245
246 return cnt; 246 return cnt;
247 } 247 }
248 248
249 static int sched_feat_open(struct inode *inode, struct file *filp) 249 static int sched_feat_open(struct inode *inode, struct file *filp)
250 { 250 {
251 return single_open(filp, sched_feat_show, NULL); 251 return single_open(filp, sched_feat_show, NULL);
252 } 252 }
253 253
254 static const struct file_operations sched_feat_fops = { 254 static const struct file_operations sched_feat_fops = {
255 .open = sched_feat_open, 255 .open = sched_feat_open,
256 .write = sched_feat_write, 256 .write = sched_feat_write,
257 .read = seq_read, 257 .read = seq_read,
258 .llseek = seq_lseek, 258 .llseek = seq_lseek,
259 .release = single_release, 259 .release = single_release,
260 }; 260 };
261 261
262 static __init int sched_init_debug(void) 262 static __init int sched_init_debug(void)
263 { 263 {
264 debugfs_create_file("sched_features", 0644, NULL, NULL, 264 debugfs_create_file("sched_features", 0644, NULL, NULL,
265 &sched_feat_fops); 265 &sched_feat_fops);
266 266
267 return 0; 267 return 0;
268 } 268 }
269 late_initcall(sched_init_debug); 269 late_initcall(sched_init_debug);
270 #endif /* CONFIG_SCHED_DEBUG */ 270 #endif /* CONFIG_SCHED_DEBUG */
271 271
272 /* 272 /*
273 * Number of tasks to iterate in a single balance run. 273 * Number of tasks to iterate in a single balance run.
274 * Limited because this is done with IRQs disabled. 274 * Limited because this is done with IRQs disabled.
275 */ 275 */
276 const_debug unsigned int sysctl_sched_nr_migrate = 32; 276 const_debug unsigned int sysctl_sched_nr_migrate = 32;
277 277
278 /* 278 /*
279 * period over which we average the RT time consumption, measured 279 * period over which we average the RT time consumption, measured
280 * in ms. 280 * in ms.
281 * 281 *
282 * default: 1s 282 * default: 1s
283 */ 283 */
284 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; 284 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
285 285
286 /* 286 /*
287 * period over which we measure -rt task cpu usage in us. 287 * period over which we measure -rt task cpu usage in us.
288 * default: 1s 288 * default: 1s
289 */ 289 */
290 unsigned int sysctl_sched_rt_period = 1000000; 290 unsigned int sysctl_sched_rt_period = 1000000;
291 291
292 __read_mostly int scheduler_running; 292 __read_mostly int scheduler_running;
293 293
294 /* 294 /*
295 * part of the period that we allow rt tasks to run in us. 295 * part of the period that we allow rt tasks to run in us.
296 * default: 0.95s 296 * default: 0.95s
297 */ 297 */
298 int sysctl_sched_rt_runtime = 950000; 298 int sysctl_sched_rt_runtime = 950000;
299 299
300 /* 300 /*
301 * __task_rq_lock - lock the rq @p resides on. 301 * __task_rq_lock - lock the rq @p resides on.
302 */ 302 */
303 static inline struct rq *__task_rq_lock(struct task_struct *p) 303 static inline struct rq *__task_rq_lock(struct task_struct *p)
304 __acquires(rq->lock) 304 __acquires(rq->lock)
305 { 305 {
306 struct rq *rq; 306 struct rq *rq;
307 307
308 lockdep_assert_held(&p->pi_lock); 308 lockdep_assert_held(&p->pi_lock);
309 309
310 for (;;) { 310 for (;;) {
311 rq = task_rq(p); 311 rq = task_rq(p);
312 raw_spin_lock(&rq->lock); 312 raw_spin_lock(&rq->lock);
313 if (likely(rq == task_rq(p))) 313 if (likely(rq == task_rq(p)))
314 return rq; 314 return rq;
315 raw_spin_unlock(&rq->lock); 315 raw_spin_unlock(&rq->lock);
316 } 316 }
317 } 317 }
318 318
319 /* 319 /*
320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
321 */ 321 */
322 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 322 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
323 __acquires(p->pi_lock) 323 __acquires(p->pi_lock)
324 __acquires(rq->lock) 324 __acquires(rq->lock)
325 { 325 {
326 struct rq *rq; 326 struct rq *rq;
327 327
328 for (;;) { 328 for (;;) {
329 raw_spin_lock_irqsave(&p->pi_lock, *flags); 329 raw_spin_lock_irqsave(&p->pi_lock, *flags);
330 rq = task_rq(p); 330 rq = task_rq(p);
331 raw_spin_lock(&rq->lock); 331 raw_spin_lock(&rq->lock);
332 if (likely(rq == task_rq(p))) 332 if (likely(rq == task_rq(p)))
333 return rq; 333 return rq;
334 raw_spin_unlock(&rq->lock); 334 raw_spin_unlock(&rq->lock);
335 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 335 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
336 } 336 }
337 } 337 }
338 338
339 static void __task_rq_unlock(struct rq *rq) 339 static void __task_rq_unlock(struct rq *rq)
340 __releases(rq->lock) 340 __releases(rq->lock)
341 { 341 {
342 raw_spin_unlock(&rq->lock); 342 raw_spin_unlock(&rq->lock);
343 } 343 }
344 344
345 static inline void 345 static inline void
346 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 346 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
347 __releases(rq->lock) 347 __releases(rq->lock)
348 __releases(p->pi_lock) 348 __releases(p->pi_lock)
349 { 349 {
350 raw_spin_unlock(&rq->lock); 350 raw_spin_unlock(&rq->lock);
351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352 } 352 }
353 353
354 /* 354 /*
355 * this_rq_lock - lock this runqueue and disable interrupts. 355 * this_rq_lock - lock this runqueue and disable interrupts.
356 */ 356 */
357 static struct rq *this_rq_lock(void) 357 static struct rq *this_rq_lock(void)
358 __acquires(rq->lock) 358 __acquires(rq->lock)
359 { 359 {
360 struct rq *rq; 360 struct rq *rq;
361 361
362 local_irq_disable(); 362 local_irq_disable();
363 rq = this_rq(); 363 rq = this_rq();
364 raw_spin_lock(&rq->lock); 364 raw_spin_lock(&rq->lock);
365 365
366 return rq; 366 return rq;
367 } 367 }
368 368
369 #ifdef CONFIG_SCHED_HRTICK 369 #ifdef CONFIG_SCHED_HRTICK
370 /* 370 /*
371 * Use HR-timers to deliver accurate preemption points. 371 * Use HR-timers to deliver accurate preemption points.
372 */ 372 */
373 373
374 static void hrtick_clear(struct rq *rq) 374 static void hrtick_clear(struct rq *rq)
375 { 375 {
376 if (hrtimer_active(&rq->hrtick_timer)) 376 if (hrtimer_active(&rq->hrtick_timer))
377 hrtimer_cancel(&rq->hrtick_timer); 377 hrtimer_cancel(&rq->hrtick_timer);
378 } 378 }
379 379
380 /* 380 /*
381 * High-resolution timer tick. 381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled. 382 * Runs from hardirq context with interrupts disabled.
383 */ 383 */
384 static enum hrtimer_restart hrtick(struct hrtimer *timer) 384 static enum hrtimer_restart hrtick(struct hrtimer *timer)
385 { 385 {
386 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 386 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387 387
388 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 388 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389 389
390 raw_spin_lock(&rq->lock); 390 raw_spin_lock(&rq->lock);
391 update_rq_clock(rq); 391 update_rq_clock(rq);
392 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 392 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393 raw_spin_unlock(&rq->lock); 393 raw_spin_unlock(&rq->lock);
394 394
395 return HRTIMER_NORESTART; 395 return HRTIMER_NORESTART;
396 } 396 }
397 397
398 #ifdef CONFIG_SMP 398 #ifdef CONFIG_SMP
399 399
400 static int __hrtick_restart(struct rq *rq) 400 static int __hrtick_restart(struct rq *rq)
401 { 401 {
402 struct hrtimer *timer = &rq->hrtick_timer; 402 struct hrtimer *timer = &rq->hrtick_timer;
403 ktime_t time = hrtimer_get_softexpires(timer); 403 ktime_t time = hrtimer_get_softexpires(timer);
404 404
405 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0); 405 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
406 } 406 }
407 407
408 /* 408 /*
409 * called from hardirq (IPI) context 409 * called from hardirq (IPI) context
410 */ 410 */
411 static void __hrtick_start(void *arg) 411 static void __hrtick_start(void *arg)
412 { 412 {
413 struct rq *rq = arg; 413 struct rq *rq = arg;
414 414
415 raw_spin_lock(&rq->lock); 415 raw_spin_lock(&rq->lock);
416 __hrtick_restart(rq); 416 __hrtick_restart(rq);
417 rq->hrtick_csd_pending = 0; 417 rq->hrtick_csd_pending = 0;
418 raw_spin_unlock(&rq->lock); 418 raw_spin_unlock(&rq->lock);
419 } 419 }
420 420
421 /* 421 /*
422 * Called to set the hrtick timer state. 422 * Called to set the hrtick timer state.
423 * 423 *
424 * called with rq->lock held and irqs disabled 424 * called with rq->lock held and irqs disabled
425 */ 425 */
426 void hrtick_start(struct rq *rq, u64 delay) 426 void hrtick_start(struct rq *rq, u64 delay)
427 { 427 {
428 struct hrtimer *timer = &rq->hrtick_timer; 428 struct hrtimer *timer = &rq->hrtick_timer;
429 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 429 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430 430
431 hrtimer_set_expires(timer, time); 431 hrtimer_set_expires(timer, time);
432 432
433 if (rq == this_rq()) { 433 if (rq == this_rq()) {
434 __hrtick_restart(rq); 434 __hrtick_restart(rq);
435 } else if (!rq->hrtick_csd_pending) { 435 } else if (!rq->hrtick_csd_pending) {
436 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 436 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
437 rq->hrtick_csd_pending = 1; 437 rq->hrtick_csd_pending = 1;
438 } 438 }
439 } 439 }
440 440
441 static int 441 static int
442 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 442 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443 { 443 {
444 int cpu = (int)(long)hcpu; 444 int cpu = (int)(long)hcpu;
445 445
446 switch (action) { 446 switch (action) {
447 case CPU_UP_CANCELED: 447 case CPU_UP_CANCELED:
448 case CPU_UP_CANCELED_FROZEN: 448 case CPU_UP_CANCELED_FROZEN:
449 case CPU_DOWN_PREPARE: 449 case CPU_DOWN_PREPARE:
450 case CPU_DOWN_PREPARE_FROZEN: 450 case CPU_DOWN_PREPARE_FROZEN:
451 case CPU_DEAD: 451 case CPU_DEAD:
452 case CPU_DEAD_FROZEN: 452 case CPU_DEAD_FROZEN:
453 hrtick_clear(cpu_rq(cpu)); 453 hrtick_clear(cpu_rq(cpu));
454 return NOTIFY_OK; 454 return NOTIFY_OK;
455 } 455 }
456 456
457 return NOTIFY_DONE; 457 return NOTIFY_DONE;
458 } 458 }
459 459
460 static __init void init_hrtick(void) 460 static __init void init_hrtick(void)
461 { 461 {
462 hotcpu_notifier(hotplug_hrtick, 0); 462 hotcpu_notifier(hotplug_hrtick, 0);
463 } 463 }
464 #else 464 #else
465 /* 465 /*
466 * Called to set the hrtick timer state. 466 * Called to set the hrtick timer state.
467 * 467 *
468 * called with rq->lock held and irqs disabled 468 * called with rq->lock held and irqs disabled
469 */ 469 */
470 void hrtick_start(struct rq *rq, u64 delay) 470 void hrtick_start(struct rq *rq, u64 delay)
471 { 471 {
472 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 472 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
473 HRTIMER_MODE_REL_PINNED, 0); 473 HRTIMER_MODE_REL_PINNED, 0);
474 } 474 }
475 475
476 static inline void init_hrtick(void) 476 static inline void init_hrtick(void)
477 { 477 {
478 } 478 }
479 #endif /* CONFIG_SMP */ 479 #endif /* CONFIG_SMP */
480 480
481 static void init_rq_hrtick(struct rq *rq) 481 static void init_rq_hrtick(struct rq *rq)
482 { 482 {
483 #ifdef CONFIG_SMP 483 #ifdef CONFIG_SMP
484 rq->hrtick_csd_pending = 0; 484 rq->hrtick_csd_pending = 0;
485 485
486 rq->hrtick_csd.flags = 0; 486 rq->hrtick_csd.flags = 0;
487 rq->hrtick_csd.func = __hrtick_start; 487 rq->hrtick_csd.func = __hrtick_start;
488 rq->hrtick_csd.info = rq; 488 rq->hrtick_csd.info = rq;
489 #endif 489 #endif
490 490
491 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 491 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
492 rq->hrtick_timer.function = hrtick; 492 rq->hrtick_timer.function = hrtick;
493 } 493 }
494 #else /* CONFIG_SCHED_HRTICK */ 494 #else /* CONFIG_SCHED_HRTICK */
495 static inline void hrtick_clear(struct rq *rq) 495 static inline void hrtick_clear(struct rq *rq)
496 { 496 {
497 } 497 }
498 498
499 static inline void init_rq_hrtick(struct rq *rq) 499 static inline void init_rq_hrtick(struct rq *rq)
500 { 500 {
501 } 501 }
502 502
503 static inline void init_hrtick(void) 503 static inline void init_hrtick(void)
504 { 504 {
505 } 505 }
506 #endif /* CONFIG_SCHED_HRTICK */ 506 #endif /* CONFIG_SCHED_HRTICK */
507 507
508 /* 508 /*
509 * resched_task - mark a task 'to be rescheduled now'. 509 * resched_task - mark a task 'to be rescheduled now'.
510 * 510 *
511 * On UP this means the setting of the need_resched flag, on SMP it 511 * On UP this means the setting of the need_resched flag, on SMP it
512 * might also involve a cross-CPU call to trigger the scheduler on 512 * might also involve a cross-CPU call to trigger the scheduler on
513 * the target CPU. 513 * the target CPU.
514 */ 514 */
515 void resched_task(struct task_struct *p) 515 void resched_task(struct task_struct *p)
516 { 516 {
517 int cpu; 517 int cpu;
518 518
519 lockdep_assert_held(&task_rq(p)->lock); 519 lockdep_assert_held(&task_rq(p)->lock);
520 520
521 if (test_tsk_need_resched(p)) 521 if (test_tsk_need_resched(p))
522 return; 522 return;
523 523
524 set_tsk_need_resched(p); 524 set_tsk_need_resched(p);
525 525
526 cpu = task_cpu(p); 526 cpu = task_cpu(p);
527 if (cpu == smp_processor_id()) { 527 if (cpu == smp_processor_id()) {
528 set_preempt_need_resched(); 528 set_preempt_need_resched();
529 return; 529 return;
530 } 530 }
531 531
532 /* NEED_RESCHED must be visible before we test polling */ 532 /* NEED_RESCHED must be visible before we test polling */
533 smp_mb(); 533 smp_mb();
534 if (!tsk_is_polling(p)) 534 if (!tsk_is_polling(p))
535 smp_send_reschedule(cpu); 535 smp_send_reschedule(cpu);
536 } 536 }
537 537
538 void resched_cpu(int cpu) 538 void resched_cpu(int cpu)
539 { 539 {
540 struct rq *rq = cpu_rq(cpu); 540 struct rq *rq = cpu_rq(cpu);
541 unsigned long flags; 541 unsigned long flags;
542 542
543 if (!raw_spin_trylock_irqsave(&rq->lock, flags)) 543 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
544 return; 544 return;
545 resched_task(cpu_curr(cpu)); 545 resched_task(cpu_curr(cpu));
546 raw_spin_unlock_irqrestore(&rq->lock, flags); 546 raw_spin_unlock_irqrestore(&rq->lock, flags);
547 } 547 }
548 548
549 #ifdef CONFIG_SMP 549 #ifdef CONFIG_SMP
550 #ifdef CONFIG_NO_HZ_COMMON 550 #ifdef CONFIG_NO_HZ_COMMON
551 /* 551 /*
552 * In the semi idle case, use the nearest busy cpu for migrating timers 552 * In the semi idle case, use the nearest busy cpu for migrating timers
553 * from an idle cpu. This is good for power-savings. 553 * from an idle cpu. This is good for power-savings.
554 * 554 *
555 * We don't do similar optimization for completely idle system, as 555 * We don't do similar optimization for completely idle system, as
556 * selecting an idle cpu will add more delays to the timers than intended 556 * selecting an idle cpu will add more delays to the timers than intended
557 * (as that cpu's timer base may not be uptodate wrt jiffies etc). 557 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
558 */ 558 */
559 int get_nohz_timer_target(int pinned) 559 int get_nohz_timer_target(int pinned)
560 { 560 {
561 int cpu = smp_processor_id(); 561 int cpu = smp_processor_id();
562 int i; 562 int i;
563 struct sched_domain *sd; 563 struct sched_domain *sd;
564 564
565 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu)) 565 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
566 return cpu; 566 return cpu;
567 567
568 rcu_read_lock(); 568 rcu_read_lock();
569 for_each_domain(cpu, sd) { 569 for_each_domain(cpu, sd) {
570 for_each_cpu(i, sched_domain_span(sd)) { 570 for_each_cpu(i, sched_domain_span(sd)) {
571 if (!idle_cpu(i)) { 571 if (!idle_cpu(i)) {
572 cpu = i; 572 cpu = i;
573 goto unlock; 573 goto unlock;
574 } 574 }
575 } 575 }
576 } 576 }
577 unlock: 577 unlock:
578 rcu_read_unlock(); 578 rcu_read_unlock();
579 return cpu; 579 return cpu;
580 } 580 }
581 /* 581 /*
582 * When add_timer_on() enqueues a timer into the timer wheel of an 582 * When add_timer_on() enqueues a timer into the timer wheel of an
583 * idle CPU then this timer might expire before the next timer event 583 * idle CPU then this timer might expire before the next timer event
584 * which is scheduled to wake up that CPU. In case of a completely 584 * which is scheduled to wake up that CPU. In case of a completely
585 * idle system the next event might even be infinite time into the 585 * idle system the next event might even be infinite time into the
586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587 * leaves the inner idle loop so the newly added timer is taken into 587 * leaves the inner idle loop so the newly added timer is taken into
588 * account when the CPU goes back to idle and evaluates the timer 588 * account when the CPU goes back to idle and evaluates the timer
589 * wheel for the next timer event. 589 * wheel for the next timer event.
590 */ 590 */
591 static void wake_up_idle_cpu(int cpu) 591 static void wake_up_idle_cpu(int cpu)
592 { 592 {
593 struct rq *rq = cpu_rq(cpu); 593 struct rq *rq = cpu_rq(cpu);
594 594
595 if (cpu == smp_processor_id()) 595 if (cpu == smp_processor_id())
596 return; 596 return;
597 597
598 /* 598 /*
599 * This is safe, as this function is called with the timer 599 * This is safe, as this function is called with the timer
600 * wheel base lock of (cpu) held. When the CPU is on the way 600 * wheel base lock of (cpu) held. When the CPU is on the way
601 * to idle and has not yet set rq->curr to idle then it will 601 * to idle and has not yet set rq->curr to idle then it will
602 * be serialized on the timer wheel base lock and take the new 602 * be serialized on the timer wheel base lock and take the new
603 * timer into account automatically. 603 * timer into account automatically.
604 */ 604 */
605 if (rq->curr != rq->idle) 605 if (rq->curr != rq->idle)
606 return; 606 return;
607 607
608 /* 608 /*
609 * We can set TIF_RESCHED on the idle task of the other CPU 609 * We can set TIF_RESCHED on the idle task of the other CPU
610 * lockless. The worst case is that the other CPU runs the 610 * lockless. The worst case is that the other CPU runs the
611 * idle task through an additional NOOP schedule() 611 * idle task through an additional NOOP schedule()
612 */ 612 */
613 set_tsk_need_resched(rq->idle); 613 set_tsk_need_resched(rq->idle);
614 614
615 /* NEED_RESCHED must be visible before we test polling */ 615 /* NEED_RESCHED must be visible before we test polling */
616 smp_mb(); 616 smp_mb();
617 if (!tsk_is_polling(rq->idle)) 617 if (!tsk_is_polling(rq->idle))
618 smp_send_reschedule(cpu); 618 smp_send_reschedule(cpu);
619 } 619 }
620 620
621 static bool wake_up_full_nohz_cpu(int cpu) 621 static bool wake_up_full_nohz_cpu(int cpu)
622 { 622 {
623 if (tick_nohz_full_cpu(cpu)) { 623 if (tick_nohz_full_cpu(cpu)) {
624 if (cpu != smp_processor_id() || 624 if (cpu != smp_processor_id() ||
625 tick_nohz_tick_stopped()) 625 tick_nohz_tick_stopped())
626 smp_send_reschedule(cpu); 626 smp_send_reschedule(cpu);
627 return true; 627 return true;
628 } 628 }
629 629
630 return false; 630 return false;
631 } 631 }
632 632
633 void wake_up_nohz_cpu(int cpu) 633 void wake_up_nohz_cpu(int cpu)
634 { 634 {
635 if (!wake_up_full_nohz_cpu(cpu)) 635 if (!wake_up_full_nohz_cpu(cpu))
636 wake_up_idle_cpu(cpu); 636 wake_up_idle_cpu(cpu);
637 } 637 }
638 638
639 static inline bool got_nohz_idle_kick(void) 639 static inline bool got_nohz_idle_kick(void)
640 { 640 {
641 int cpu = smp_processor_id(); 641 int cpu = smp_processor_id();
642 642
643 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu))) 643 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
644 return false; 644 return false;
645 645
646 if (idle_cpu(cpu) && !need_resched()) 646 if (idle_cpu(cpu) && !need_resched())
647 return true; 647 return true;
648 648
649 /* 649 /*
650 * We can't run Idle Load Balance on this CPU for this time so we 650 * We can't run Idle Load Balance on this CPU for this time so we
651 * cancel it and clear NOHZ_BALANCE_KICK 651 * cancel it and clear NOHZ_BALANCE_KICK
652 */ 652 */
653 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)); 653 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
654 return false; 654 return false;
655 } 655 }
656 656
657 #else /* CONFIG_NO_HZ_COMMON */ 657 #else /* CONFIG_NO_HZ_COMMON */
658 658
659 static inline bool got_nohz_idle_kick(void) 659 static inline bool got_nohz_idle_kick(void)
660 { 660 {
661 return false; 661 return false;
662 } 662 }
663 663
664 #endif /* CONFIG_NO_HZ_COMMON */ 664 #endif /* CONFIG_NO_HZ_COMMON */
665 665
666 #ifdef CONFIG_NO_HZ_FULL 666 #ifdef CONFIG_NO_HZ_FULL
667 bool sched_can_stop_tick(void) 667 bool sched_can_stop_tick(void)
668 { 668 {
669 struct rq *rq; 669 struct rq *rq;
670 670
671 rq = this_rq(); 671 rq = this_rq();
672 672
673 /* Make sure rq->nr_running update is visible after the IPI */ 673 /* Make sure rq->nr_running update is visible after the IPI */
674 smp_rmb(); 674 smp_rmb();
675 675
676 /* More than one running task need preemption */ 676 /* More than one running task need preemption */
677 if (rq->nr_running > 1) 677 if (rq->nr_running > 1)
678 return false; 678 return false;
679 679
680 return true; 680 return true;
681 } 681 }
682 #endif /* CONFIG_NO_HZ_FULL */ 682 #endif /* CONFIG_NO_HZ_FULL */
683 683
684 void sched_avg_update(struct rq *rq) 684 void sched_avg_update(struct rq *rq)
685 { 685 {
686 s64 period = sched_avg_period(); 686 s64 period = sched_avg_period();
687 687
688 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) { 688 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
689 /* 689 /*
690 * Inline assembly required to prevent the compiler 690 * Inline assembly required to prevent the compiler
691 * optimising this loop into a divmod call. 691 * optimising this loop into a divmod call.
692 * See __iter_div_u64_rem() for another example of this. 692 * See __iter_div_u64_rem() for another example of this.
693 */ 693 */
694 asm("" : "+rm" (rq->age_stamp)); 694 asm("" : "+rm" (rq->age_stamp));
695 rq->age_stamp += period; 695 rq->age_stamp += period;
696 rq->rt_avg /= 2; 696 rq->rt_avg /= 2;
697 } 697 }
698 } 698 }
699 699
700 #endif /* CONFIG_SMP */ 700 #endif /* CONFIG_SMP */
701 701
702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704 /* 704 /*
705 * Iterate task_group tree rooted at *from, calling @down when first entering a 705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time. 706 * node and @up when leaving it for the final time.
707 * 707 *
708 * Caller must hold rcu_lock or sufficient equivalent. 708 * Caller must hold rcu_lock or sufficient equivalent.
709 */ 709 */
710 int walk_tg_tree_from(struct task_group *from, 710 int walk_tg_tree_from(struct task_group *from,
711 tg_visitor down, tg_visitor up, void *data) 711 tg_visitor down, tg_visitor up, void *data)
712 { 712 {
713 struct task_group *parent, *child; 713 struct task_group *parent, *child;
714 int ret; 714 int ret;
715 715
716 parent = from; 716 parent = from;
717 717
718 down: 718 down:
719 ret = (*down)(parent, data); 719 ret = (*down)(parent, data);
720 if (ret) 720 if (ret)
721 goto out; 721 goto out;
722 list_for_each_entry_rcu(child, &parent->children, siblings) { 722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child; 723 parent = child;
724 goto down; 724 goto down;
725 725
726 up: 726 up:
727 continue; 727 continue;
728 } 728 }
729 ret = (*up)(parent, data); 729 ret = (*up)(parent, data);
730 if (ret || parent == from) 730 if (ret || parent == from)
731 goto out; 731 goto out;
732 732
733 child = parent; 733 child = parent;
734 parent = parent->parent; 734 parent = parent->parent;
735 if (parent) 735 if (parent)
736 goto up; 736 goto up;
737 out: 737 out:
738 return ret; 738 return ret;
739 } 739 }
740 740
741 int tg_nop(struct task_group *tg, void *data) 741 int tg_nop(struct task_group *tg, void *data)
742 { 742 {
743 return 0; 743 return 0;
744 } 744 }
745 #endif 745 #endif
746 746
747 static void set_load_weight(struct task_struct *p) 747 static void set_load_weight(struct task_struct *p)
748 { 748 {
749 int prio = p->static_prio - MAX_RT_PRIO; 749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load; 750 struct load_weight *load = &p->se.load;
751 751
752 /* 752 /*
753 * SCHED_IDLE tasks get minimal weight: 753 * SCHED_IDLE tasks get minimal weight:
754 */ 754 */
755 if (p->policy == SCHED_IDLE) { 755 if (p->policy == SCHED_IDLE) {
756 load->weight = scale_load(WEIGHT_IDLEPRIO); 756 load->weight = scale_load(WEIGHT_IDLEPRIO);
757 load->inv_weight = WMULT_IDLEPRIO; 757 load->inv_weight = WMULT_IDLEPRIO;
758 return; 758 return;
759 } 759 }
760 760
761 load->weight = scale_load(prio_to_weight[prio]); 761 load->weight = scale_load(prio_to_weight[prio]);
762 load->inv_weight = prio_to_wmult[prio]; 762 load->inv_weight = prio_to_wmult[prio];
763 } 763 }
764 764
765 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 765 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766 { 766 {
767 update_rq_clock(rq); 767 update_rq_clock(rq);
768 sched_info_queued(rq, p); 768 sched_info_queued(rq, p);
769 p->sched_class->enqueue_task(rq, p, flags); 769 p->sched_class->enqueue_task(rq, p, flags);
770 } 770 }
771 771
772 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) 772 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
773 { 773 {
774 update_rq_clock(rq); 774 update_rq_clock(rq);
775 sched_info_dequeued(rq, p); 775 sched_info_dequeued(rq, p);
776 p->sched_class->dequeue_task(rq, p, flags); 776 p->sched_class->dequeue_task(rq, p, flags);
777 } 777 }
778 778
779 void activate_task(struct rq *rq, struct task_struct *p, int flags) 779 void activate_task(struct rq *rq, struct task_struct *p, int flags)
780 { 780 {
781 if (task_contributes_to_load(p)) 781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible--; 782 rq->nr_uninterruptible--;
783 783
784 enqueue_task(rq, p, flags); 784 enqueue_task(rq, p, flags);
785 } 785 }
786 786
787 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 787 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788 { 788 {
789 if (task_contributes_to_load(p)) 789 if (task_contributes_to_load(p))
790 rq->nr_uninterruptible++; 790 rq->nr_uninterruptible++;
791 791
792 dequeue_task(rq, p, flags); 792 dequeue_task(rq, p, flags);
793 } 793 }
794 794
795 static void update_rq_clock_task(struct rq *rq, s64 delta) 795 static void update_rq_clock_task(struct rq *rq, s64 delta)
796 { 796 {
797 /* 797 /*
798 * In theory, the compile should just see 0 here, and optimize out the call 798 * In theory, the compile should just see 0 here, and optimize out the call
799 * to sched_rt_avg_update. But I don't trust it... 799 * to sched_rt_avg_update. But I don't trust it...
800 */ 800 */
801 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 801 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802 s64 steal = 0, irq_delta = 0; 802 s64 steal = 0, irq_delta = 0;
803 #endif 803 #endif
804 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 804 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
805 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 805 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
806 806
807 /* 807 /*
808 * Since irq_time is only updated on {soft,}irq_exit, we might run into 808 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809 * this case when a previous update_rq_clock() happened inside a 809 * this case when a previous update_rq_clock() happened inside a
810 * {soft,}irq region. 810 * {soft,}irq region.
811 * 811 *
812 * When this happens, we stop ->clock_task and only update the 812 * When this happens, we stop ->clock_task and only update the
813 * prev_irq_time stamp to account for the part that fit, so that a next 813 * prev_irq_time stamp to account for the part that fit, so that a next
814 * update will consume the rest. This ensures ->clock_task is 814 * update will consume the rest. This ensures ->clock_task is
815 * monotonic. 815 * monotonic.
816 * 816 *
817 * It does however cause some slight miss-attribution of {soft,}irq 817 * It does however cause some slight miss-attribution of {soft,}irq
818 * time, a more accurate solution would be to update the irq_time using 818 * time, a more accurate solution would be to update the irq_time using
819 * the current rq->clock timestamp, except that would require using 819 * the current rq->clock timestamp, except that would require using
820 * atomic ops. 820 * atomic ops.
821 */ 821 */
822 if (irq_delta > delta) 822 if (irq_delta > delta)
823 irq_delta = delta; 823 irq_delta = delta;
824 824
825 rq->prev_irq_time += irq_delta; 825 rq->prev_irq_time += irq_delta;
826 delta -= irq_delta; 826 delta -= irq_delta;
827 #endif 827 #endif
828 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 828 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
829 if (static_key_false((&paravirt_steal_rq_enabled))) { 829 if (static_key_false((&paravirt_steal_rq_enabled))) {
830 steal = paravirt_steal_clock(cpu_of(rq)); 830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq; 831 steal -= rq->prev_steal_time_rq;
832 832
833 if (unlikely(steal > delta)) 833 if (unlikely(steal > delta))
834 steal = delta; 834 steal = delta;
835 835
836 rq->prev_steal_time_rq += steal; 836 rq->prev_steal_time_rq += steal;
837 delta -= steal; 837 delta -= steal;
838 } 838 }
839 #endif 839 #endif
840 840
841 rq->clock_task += delta; 841 rq->clock_task += delta;
842 842
843 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 843 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
844 if ((irq_delta + steal) && sched_feat(NONTASK_POWER)) 844 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
845 sched_rt_avg_update(rq, irq_delta + steal); 845 sched_rt_avg_update(rq, irq_delta + steal);
846 #endif 846 #endif
847 } 847 }
848 848
849 void sched_set_stop_task(int cpu, struct task_struct *stop) 849 void sched_set_stop_task(int cpu, struct task_struct *stop)
850 { 850 {
851 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 851 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
852 struct task_struct *old_stop = cpu_rq(cpu)->stop; 852 struct task_struct *old_stop = cpu_rq(cpu)->stop;
853 853
854 if (stop) { 854 if (stop) {
855 /* 855 /*
856 * Make it appear like a SCHED_FIFO task, its something 856 * Make it appear like a SCHED_FIFO task, its something
857 * userspace knows about and won't get confused about. 857 * userspace knows about and won't get confused about.
858 * 858 *
859 * Also, it will make PI more or less work without too 859 * Also, it will make PI more or less work without too
860 * much confusion -- but then, stop work should not 860 * much confusion -- but then, stop work should not
861 * rely on PI working anyway. 861 * rely on PI working anyway.
862 */ 862 */
863 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param); 863 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
864 864
865 stop->sched_class = &stop_sched_class; 865 stop->sched_class = &stop_sched_class;
866 } 866 }
867 867
868 cpu_rq(cpu)->stop = stop; 868 cpu_rq(cpu)->stop = stop;
869 869
870 if (old_stop) { 870 if (old_stop) {
871 /* 871 /*
872 * Reset it back to a normal scheduling class so that 872 * Reset it back to a normal scheduling class so that
873 * it can die in pieces. 873 * it can die in pieces.
874 */ 874 */
875 old_stop->sched_class = &rt_sched_class; 875 old_stop->sched_class = &rt_sched_class;
876 } 876 }
877 } 877 }
878 878
879 /* 879 /*
880 * __normal_prio - return the priority that is based on the static prio 880 * __normal_prio - return the priority that is based on the static prio
881 */ 881 */
882 static inline int __normal_prio(struct task_struct *p) 882 static inline int __normal_prio(struct task_struct *p)
883 { 883 {
884 return p->static_prio; 884 return p->static_prio;
885 } 885 }
886 886
887 /* 887 /*
888 * Calculate the expected normal priority: i.e. priority 888 * Calculate the expected normal priority: i.e. priority
889 * without taking RT-inheritance into account. Might be 889 * without taking RT-inheritance into account. Might be
890 * boosted by interactivity modifiers. Changes upon fork, 890 * boosted by interactivity modifiers. Changes upon fork,
891 * setprio syscalls, and whenever the interactivity 891 * setprio syscalls, and whenever the interactivity
892 * estimator recalculates. 892 * estimator recalculates.
893 */ 893 */
894 static inline int normal_prio(struct task_struct *p) 894 static inline int normal_prio(struct task_struct *p)
895 { 895 {
896 int prio; 896 int prio;
897 897
898 if (task_has_dl_policy(p)) 898 if (task_has_dl_policy(p))
899 prio = MAX_DL_PRIO-1; 899 prio = MAX_DL_PRIO-1;
900 else if (task_has_rt_policy(p)) 900 else if (task_has_rt_policy(p))
901 prio = MAX_RT_PRIO-1 - p->rt_priority; 901 prio = MAX_RT_PRIO-1 - p->rt_priority;
902 else 902 else
903 prio = __normal_prio(p); 903 prio = __normal_prio(p);
904 return prio; 904 return prio;
905 } 905 }
906 906
907 /* 907 /*
908 * Calculate the current priority, i.e. the priority 908 * Calculate the current priority, i.e. the priority
909 * taken into account by the scheduler. This value might 909 * taken into account by the scheduler. This value might
910 * be boosted by RT tasks, or might be boosted by 910 * be boosted by RT tasks, or might be boosted by
911 * interactivity modifiers. Will be RT if the task got 911 * interactivity modifiers. Will be RT if the task got
912 * RT-boosted. If not then it returns p->normal_prio. 912 * RT-boosted. If not then it returns p->normal_prio.
913 */ 913 */
914 static int effective_prio(struct task_struct *p) 914 static int effective_prio(struct task_struct *p)
915 { 915 {
916 p->normal_prio = normal_prio(p); 916 p->normal_prio = normal_prio(p);
917 /* 917 /*
918 * If we are RT tasks or we were boosted to RT priority, 918 * If we are RT tasks or we were boosted to RT priority,
919 * keep the priority unchanged. Otherwise, update priority 919 * keep the priority unchanged. Otherwise, update priority
920 * to the normal priority: 920 * to the normal priority:
921 */ 921 */
922 if (!rt_prio(p->prio)) 922 if (!rt_prio(p->prio))
923 return p->normal_prio; 923 return p->normal_prio;
924 return p->prio; 924 return p->prio;
925 } 925 }
926 926
927 /** 927 /**
928 * task_curr - is this task currently executing on a CPU? 928 * task_curr - is this task currently executing on a CPU?
929 * @p: the task in question. 929 * @p: the task in question.
930 * 930 *
931 * Return: 1 if the task is currently executing. 0 otherwise. 931 * Return: 1 if the task is currently executing. 0 otherwise.
932 */ 932 */
933 inline int task_curr(const struct task_struct *p) 933 inline int task_curr(const struct task_struct *p)
934 { 934 {
935 return cpu_curr(task_cpu(p)) == p; 935 return cpu_curr(task_cpu(p)) == p;
936 } 936 }
937 937
938 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 938 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
939 const struct sched_class *prev_class, 939 const struct sched_class *prev_class,
940 int oldprio) 940 int oldprio)
941 { 941 {
942 if (prev_class != p->sched_class) { 942 if (prev_class != p->sched_class) {
943 if (prev_class->switched_from) 943 if (prev_class->switched_from)
944 prev_class->switched_from(rq, p); 944 prev_class->switched_from(rq, p);
945 p->sched_class->switched_to(rq, p); 945 p->sched_class->switched_to(rq, p);
946 } else if (oldprio != p->prio || dl_task(p)) 946 } else if (oldprio != p->prio || dl_task(p))
947 p->sched_class->prio_changed(rq, p, oldprio); 947 p->sched_class->prio_changed(rq, p, oldprio);
948 } 948 }
949 949
950 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) 950 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951 { 951 {
952 const struct sched_class *class; 952 const struct sched_class *class;
953 953
954 if (p->sched_class == rq->curr->sched_class) { 954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags); 955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else { 956 } else {
957 for_each_class(class) { 957 for_each_class(class) {
958 if (class == rq->curr->sched_class) 958 if (class == rq->curr->sched_class)
959 break; 959 break;
960 if (class == p->sched_class) { 960 if (class == p->sched_class) {
961 resched_task(rq->curr); 961 resched_task(rq->curr);
962 break; 962 break;
963 } 963 }
964 } 964 }
965 } 965 }
966 966
967 /* 967 /*
968 * A queue event has occurred, and we're going to schedule. In 968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update. 969 * this case, we can save a useless back to back clock update.
970 */ 970 */
971 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr)) 971 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
972 rq->skip_clock_update = 1; 972 rq->skip_clock_update = 1;
973 } 973 }
974 974
975 #ifdef CONFIG_SMP 975 #ifdef CONFIG_SMP
976 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 976 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
977 { 977 {
978 #ifdef CONFIG_SCHED_DEBUG 978 #ifdef CONFIG_SCHED_DEBUG
979 /* 979 /*
980 * We should never call set_task_cpu() on a blocked task, 980 * We should never call set_task_cpu() on a blocked task,
981 * ttwu() will sort out the placement. 981 * ttwu() will sort out the placement.
982 */ 982 */
983 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && 983 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
984 !(task_preempt_count(p) & PREEMPT_ACTIVE)); 984 !(task_preempt_count(p) & PREEMPT_ACTIVE));
985 985
986 #ifdef CONFIG_LOCKDEP 986 #ifdef CONFIG_LOCKDEP
987 /* 987 /*
988 * The caller should hold either p->pi_lock or rq->lock, when changing 988 * The caller should hold either p->pi_lock or rq->lock, when changing
989 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 989 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
990 * 990 *
991 * sched_move_task() holds both and thus holding either pins the cgroup, 991 * sched_move_task() holds both and thus holding either pins the cgroup,
992 * see task_group(). 992 * see task_group().
993 * 993 *
994 * Furthermore, all task_rq users should acquire both locks, see 994 * Furthermore, all task_rq users should acquire both locks, see
995 * task_rq_lock(). 995 * task_rq_lock().
996 */ 996 */
997 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 997 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
998 lockdep_is_held(&task_rq(p)->lock))); 998 lockdep_is_held(&task_rq(p)->lock)));
999 #endif 999 #endif
1000 #endif 1000 #endif
1001 1001
1002 trace_sched_migrate_task(p, new_cpu); 1002 trace_sched_migrate_task(p, new_cpu);
1003 1003
1004 if (task_cpu(p) != new_cpu) { 1004 if (task_cpu(p) != new_cpu) {
1005 if (p->sched_class->migrate_task_rq) 1005 if (p->sched_class->migrate_task_rq)
1006 p->sched_class->migrate_task_rq(p, new_cpu); 1006 p->sched_class->migrate_task_rq(p, new_cpu);
1007 p->se.nr_migrations++; 1007 p->se.nr_migrations++;
1008 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0); 1008 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1009 } 1009 }
1010 1010
1011 __set_task_cpu(p, new_cpu); 1011 __set_task_cpu(p, new_cpu);
1012 } 1012 }
1013 1013
1014 static void __migrate_swap_task(struct task_struct *p, int cpu) 1014 static void __migrate_swap_task(struct task_struct *p, int cpu)
1015 { 1015 {
1016 if (p->on_rq) { 1016 if (p->on_rq) {
1017 struct rq *src_rq, *dst_rq; 1017 struct rq *src_rq, *dst_rq;
1018 1018
1019 src_rq = task_rq(p); 1019 src_rq = task_rq(p);
1020 dst_rq = cpu_rq(cpu); 1020 dst_rq = cpu_rq(cpu);
1021 1021
1022 deactivate_task(src_rq, p, 0); 1022 deactivate_task(src_rq, p, 0);
1023 set_task_cpu(p, cpu); 1023 set_task_cpu(p, cpu);
1024 activate_task(dst_rq, p, 0); 1024 activate_task(dst_rq, p, 0);
1025 check_preempt_curr(dst_rq, p, 0); 1025 check_preempt_curr(dst_rq, p, 0);
1026 } else { 1026 } else {
1027 /* 1027 /*
1028 * Task isn't running anymore; make it appear like we migrated 1028 * Task isn't running anymore; make it appear like we migrated
1029 * it before it went to sleep. This means on wakeup we make the 1029 * it before it went to sleep. This means on wakeup we make the
1030 * previous cpu our targer instead of where it really is. 1030 * previous cpu our targer instead of where it really is.
1031 */ 1031 */
1032 p->wake_cpu = cpu; 1032 p->wake_cpu = cpu;
1033 } 1033 }
1034 } 1034 }
1035 1035
1036 struct migration_swap_arg { 1036 struct migration_swap_arg {
1037 struct task_struct *src_task, *dst_task; 1037 struct task_struct *src_task, *dst_task;
1038 int src_cpu, dst_cpu; 1038 int src_cpu, dst_cpu;
1039 }; 1039 };
1040 1040
1041 static int migrate_swap_stop(void *data) 1041 static int migrate_swap_stop(void *data)
1042 { 1042 {
1043 struct migration_swap_arg *arg = data; 1043 struct migration_swap_arg *arg = data;
1044 struct rq *src_rq, *dst_rq; 1044 struct rq *src_rq, *dst_rq;
1045 int ret = -EAGAIN; 1045 int ret = -EAGAIN;
1046 1046
1047 src_rq = cpu_rq(arg->src_cpu); 1047 src_rq = cpu_rq(arg->src_cpu);
1048 dst_rq = cpu_rq(arg->dst_cpu); 1048 dst_rq = cpu_rq(arg->dst_cpu);
1049 1049
1050 double_raw_lock(&arg->src_task->pi_lock, 1050 double_raw_lock(&arg->src_task->pi_lock,
1051 &arg->dst_task->pi_lock); 1051 &arg->dst_task->pi_lock);
1052 double_rq_lock(src_rq, dst_rq); 1052 double_rq_lock(src_rq, dst_rq);
1053 if (task_cpu(arg->dst_task) != arg->dst_cpu) 1053 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1054 goto unlock; 1054 goto unlock;
1055 1055
1056 if (task_cpu(arg->src_task) != arg->src_cpu) 1056 if (task_cpu(arg->src_task) != arg->src_cpu)
1057 goto unlock; 1057 goto unlock;
1058 1058
1059 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) 1059 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1060 goto unlock; 1060 goto unlock;
1061 1061
1062 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) 1062 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1063 goto unlock; 1063 goto unlock;
1064 1064
1065 __migrate_swap_task(arg->src_task, arg->dst_cpu); 1065 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1066 __migrate_swap_task(arg->dst_task, arg->src_cpu); 1066 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1067 1067
1068 ret = 0; 1068 ret = 0;
1069 1069
1070 unlock: 1070 unlock:
1071 double_rq_unlock(src_rq, dst_rq); 1071 double_rq_unlock(src_rq, dst_rq);
1072 raw_spin_unlock(&arg->dst_task->pi_lock); 1072 raw_spin_unlock(&arg->dst_task->pi_lock);
1073 raw_spin_unlock(&arg->src_task->pi_lock); 1073 raw_spin_unlock(&arg->src_task->pi_lock);
1074 1074
1075 return ret; 1075 return ret;
1076 } 1076 }
1077 1077
1078 /* 1078 /*
1079 * Cross migrate two tasks 1079 * Cross migrate two tasks
1080 */ 1080 */
1081 int migrate_swap(struct task_struct *cur, struct task_struct *p) 1081 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1082 { 1082 {
1083 struct migration_swap_arg arg; 1083 struct migration_swap_arg arg;
1084 int ret = -EINVAL; 1084 int ret = -EINVAL;
1085 1085
1086 arg = (struct migration_swap_arg){ 1086 arg = (struct migration_swap_arg){
1087 .src_task = cur, 1087 .src_task = cur,
1088 .src_cpu = task_cpu(cur), 1088 .src_cpu = task_cpu(cur),
1089 .dst_task = p, 1089 .dst_task = p,
1090 .dst_cpu = task_cpu(p), 1090 .dst_cpu = task_cpu(p),
1091 }; 1091 };
1092 1092
1093 if (arg.src_cpu == arg.dst_cpu) 1093 if (arg.src_cpu == arg.dst_cpu)
1094 goto out; 1094 goto out;
1095 1095
1096 /* 1096 /*
1097 * These three tests are all lockless; this is OK since all of them 1097 * These three tests are all lockless; this is OK since all of them
1098 * will be re-checked with proper locks held further down the line. 1098 * will be re-checked with proper locks held further down the line.
1099 */ 1099 */
1100 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 1100 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1101 goto out; 1101 goto out;
1102 1102
1103 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) 1103 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1104 goto out; 1104 goto out;
1105 1105
1106 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) 1106 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1107 goto out; 1107 goto out;
1108 1108
1109 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 1109 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1110 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 1110 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1111 1111
1112 out: 1112 out:
1113 return ret; 1113 return ret;
1114 } 1114 }
1115 1115
1116 struct migration_arg { 1116 struct migration_arg {
1117 struct task_struct *task; 1117 struct task_struct *task;
1118 int dest_cpu; 1118 int dest_cpu;
1119 }; 1119 };
1120 1120
1121 static int migration_cpu_stop(void *data); 1121 static int migration_cpu_stop(void *data);
1122 1122
1123 /* 1123 /*
1124 * wait_task_inactive - wait for a thread to unschedule. 1124 * wait_task_inactive - wait for a thread to unschedule.
1125 * 1125 *
1126 * If @match_state is nonzero, it's the @p->state value just checked and 1126 * If @match_state is nonzero, it's the @p->state value just checked and
1127 * not expected to change. If it changes, i.e. @p might have woken up, 1127 * not expected to change. If it changes, i.e. @p might have woken up,
1128 * then return zero. When we succeed in waiting for @p to be off its CPU, 1128 * then return zero. When we succeed in waiting for @p to be off its CPU,
1129 * we return a positive number (its total switch count). If a second call 1129 * we return a positive number (its total switch count). If a second call
1130 * a short while later returns the same number, the caller can be sure that 1130 * a short while later returns the same number, the caller can be sure that
1131 * @p has remained unscheduled the whole time. 1131 * @p has remained unscheduled the whole time.
1132 * 1132 *
1133 * The caller must ensure that the task *will* unschedule sometime soon, 1133 * The caller must ensure that the task *will* unschedule sometime soon,
1134 * else this function might spin for a *long* time. This function can't 1134 * else this function might spin for a *long* time. This function can't
1135 * be called with interrupts off, or it may introduce deadlock with 1135 * be called with interrupts off, or it may introduce deadlock with
1136 * smp_call_function() if an IPI is sent by the same process we are 1136 * smp_call_function() if an IPI is sent by the same process we are
1137 * waiting to become inactive. 1137 * waiting to become inactive.
1138 */ 1138 */
1139 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1139 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1140 { 1140 {
1141 unsigned long flags; 1141 unsigned long flags;
1142 int running, on_rq; 1142 int running, on_rq;
1143 unsigned long ncsw; 1143 unsigned long ncsw;
1144 struct rq *rq; 1144 struct rq *rq;
1145 1145
1146 for (;;) { 1146 for (;;) {
1147 /* 1147 /*
1148 * We do the initial early heuristics without holding 1148 * We do the initial early heuristics without holding
1149 * any task-queue locks at all. We'll only try to get 1149 * any task-queue locks at all. We'll only try to get
1150 * the runqueue lock when things look like they will 1150 * the runqueue lock when things look like they will
1151 * work out! 1151 * work out!
1152 */ 1152 */
1153 rq = task_rq(p); 1153 rq = task_rq(p);
1154 1154
1155 /* 1155 /*
1156 * If the task is actively running on another CPU 1156 * If the task is actively running on another CPU
1157 * still, just relax and busy-wait without holding 1157 * still, just relax and busy-wait without holding
1158 * any locks. 1158 * any locks.
1159 * 1159 *
1160 * NOTE! Since we don't hold any locks, it's not 1160 * NOTE! Since we don't hold any locks, it's not
1161 * even sure that "rq" stays as the right runqueue! 1161 * even sure that "rq" stays as the right runqueue!
1162 * But we don't care, since "task_running()" will 1162 * But we don't care, since "task_running()" will
1163 * return false if the runqueue has changed and p 1163 * return false if the runqueue has changed and p
1164 * is actually now running somewhere else! 1164 * is actually now running somewhere else!
1165 */ 1165 */
1166 while (task_running(rq, p)) { 1166 while (task_running(rq, p)) {
1167 if (match_state && unlikely(p->state != match_state)) 1167 if (match_state && unlikely(p->state != match_state))
1168 return 0; 1168 return 0;
1169 cpu_relax(); 1169 cpu_relax();
1170 } 1170 }
1171 1171
1172 /* 1172 /*
1173 * Ok, time to look more closely! We need the rq 1173 * Ok, time to look more closely! We need the rq
1174 * lock now, to be *sure*. If we're wrong, we'll 1174 * lock now, to be *sure*. If we're wrong, we'll
1175 * just go back and repeat. 1175 * just go back and repeat.
1176 */ 1176 */
1177 rq = task_rq_lock(p, &flags); 1177 rq = task_rq_lock(p, &flags);
1178 trace_sched_wait_task(p); 1178 trace_sched_wait_task(p);
1179 running = task_running(rq, p); 1179 running = task_running(rq, p);
1180 on_rq = p->on_rq; 1180 on_rq = p->on_rq;
1181 ncsw = 0; 1181 ncsw = 0;
1182 if (!match_state || p->state == match_state) 1182 if (!match_state || p->state == match_state)
1183 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 1183 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1184 task_rq_unlock(rq, p, &flags); 1184 task_rq_unlock(rq, p, &flags);
1185 1185
1186 /* 1186 /*
1187 * If it changed from the expected state, bail out now. 1187 * If it changed from the expected state, bail out now.
1188 */ 1188 */
1189 if (unlikely(!ncsw)) 1189 if (unlikely(!ncsw))
1190 break; 1190 break;
1191 1191
1192 /* 1192 /*
1193 * Was it really running after all now that we 1193 * Was it really running after all now that we
1194 * checked with the proper locks actually held? 1194 * checked with the proper locks actually held?
1195 * 1195 *
1196 * Oops. Go back and try again.. 1196 * Oops. Go back and try again..
1197 */ 1197 */
1198 if (unlikely(running)) { 1198 if (unlikely(running)) {
1199 cpu_relax(); 1199 cpu_relax();
1200 continue; 1200 continue;
1201 } 1201 }
1202 1202
1203 /* 1203 /*
1204 * It's not enough that it's not actively running, 1204 * It's not enough that it's not actively running,
1205 * it must be off the runqueue _entirely_, and not 1205 * it must be off the runqueue _entirely_, and not
1206 * preempted! 1206 * preempted!
1207 * 1207 *
1208 * So if it was still runnable (but just not actively 1208 * So if it was still runnable (but just not actively
1209 * running right now), it's preempted, and we should 1209 * running right now), it's preempted, and we should
1210 * yield - it could be a while. 1210 * yield - it could be a while.
1211 */ 1211 */
1212 if (unlikely(on_rq)) { 1212 if (unlikely(on_rq)) {
1213 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ); 1213 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1214 1214
1215 set_current_state(TASK_UNINTERRUPTIBLE); 1215 set_current_state(TASK_UNINTERRUPTIBLE);
1216 schedule_hrtimeout(&to, HRTIMER_MODE_REL); 1216 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1217 continue; 1217 continue;
1218 } 1218 }
1219 1219
1220 /* 1220 /*
1221 * Ahh, all good. It wasn't running, and it wasn't 1221 * Ahh, all good. It wasn't running, and it wasn't
1222 * runnable, which means that it will never become 1222 * runnable, which means that it will never become
1223 * running in the future either. We're all done! 1223 * running in the future either. We're all done!
1224 */ 1224 */
1225 break; 1225 break;
1226 } 1226 }
1227 1227
1228 return ncsw; 1228 return ncsw;
1229 } 1229 }
1230 1230
1231 /*** 1231 /***
1232 * kick_process - kick a running thread to enter/exit the kernel 1232 * kick_process - kick a running thread to enter/exit the kernel
1233 * @p: the to-be-kicked thread 1233 * @p: the to-be-kicked thread
1234 * 1234 *
1235 * Cause a process which is running on another CPU to enter 1235 * Cause a process which is running on another CPU to enter
1236 * kernel-mode, without any delay. (to get signals handled.) 1236 * kernel-mode, without any delay. (to get signals handled.)
1237 * 1237 *
1238 * NOTE: this function doesn't have to take the runqueue lock, 1238 * NOTE: this function doesn't have to take the runqueue lock,
1239 * because all it wants to ensure is that the remote task enters 1239 * because all it wants to ensure is that the remote task enters
1240 * the kernel. If the IPI races and the task has been migrated 1240 * the kernel. If the IPI races and the task has been migrated
1241 * to another CPU then no harm is done and the purpose has been 1241 * to another CPU then no harm is done and the purpose has been
1242 * achieved as well. 1242 * achieved as well.
1243 */ 1243 */
1244 void kick_process(struct task_struct *p) 1244 void kick_process(struct task_struct *p)
1245 { 1245 {
1246 int cpu; 1246 int cpu;
1247 1247
1248 preempt_disable(); 1248 preempt_disable();
1249 cpu = task_cpu(p); 1249 cpu = task_cpu(p);
1250 if ((cpu != smp_processor_id()) && task_curr(p)) 1250 if ((cpu != smp_processor_id()) && task_curr(p))
1251 smp_send_reschedule(cpu); 1251 smp_send_reschedule(cpu);
1252 preempt_enable(); 1252 preempt_enable();
1253 } 1253 }
1254 EXPORT_SYMBOL_GPL(kick_process); 1254 EXPORT_SYMBOL_GPL(kick_process);
1255 #endif /* CONFIG_SMP */ 1255 #endif /* CONFIG_SMP */
1256 1256
1257 #ifdef CONFIG_SMP 1257 #ifdef CONFIG_SMP
1258 /* 1258 /*
1259 * ->cpus_allowed is protected by both rq->lock and p->pi_lock 1259 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1260 */ 1260 */
1261 static int select_fallback_rq(int cpu, struct task_struct *p) 1261 static int select_fallback_rq(int cpu, struct task_struct *p)
1262 { 1262 {
1263 int nid = cpu_to_node(cpu); 1263 int nid = cpu_to_node(cpu);
1264 const struct cpumask *nodemask = NULL; 1264 const struct cpumask *nodemask = NULL;
1265 enum { cpuset, possible, fail } state = cpuset; 1265 enum { cpuset, possible, fail } state = cpuset;
1266 int dest_cpu; 1266 int dest_cpu;
1267 1267
1268 /* 1268 /*
1269 * If the node that the cpu is on has been offlined, cpu_to_node() 1269 * If the node that the cpu is on has been offlined, cpu_to_node()
1270 * will return -1. There is no cpu on the node, and we should 1270 * will return -1. There is no cpu on the node, and we should
1271 * select the cpu on the other node. 1271 * select the cpu on the other node.
1272 */ 1272 */
1273 if (nid != -1) { 1273 if (nid != -1) {
1274 nodemask = cpumask_of_node(nid); 1274 nodemask = cpumask_of_node(nid);
1275 1275
1276 /* Look for allowed, online CPU in same node. */ 1276 /* Look for allowed, online CPU in same node. */
1277 for_each_cpu(dest_cpu, nodemask) { 1277 for_each_cpu(dest_cpu, nodemask) {
1278 if (!cpu_online(dest_cpu)) 1278 if (!cpu_online(dest_cpu))
1279 continue; 1279 continue;
1280 if (!cpu_active(dest_cpu)) 1280 if (!cpu_active(dest_cpu))
1281 continue; 1281 continue;
1282 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 1282 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1283 return dest_cpu; 1283 return dest_cpu;
1284 } 1284 }
1285 } 1285 }
1286 1286
1287 for (;;) { 1287 for (;;) {
1288 /* Any allowed, online CPU? */ 1288 /* Any allowed, online CPU? */
1289 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) { 1289 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1290 if (!cpu_online(dest_cpu)) 1290 if (!cpu_online(dest_cpu))
1291 continue; 1291 continue;
1292 if (!cpu_active(dest_cpu)) 1292 if (!cpu_active(dest_cpu))
1293 continue; 1293 continue;
1294 goto out; 1294 goto out;
1295 } 1295 }
1296 1296
1297 switch (state) { 1297 switch (state) {
1298 case cpuset: 1298 case cpuset:
1299 /* No more Mr. Nice Guy. */ 1299 /* No more Mr. Nice Guy. */
1300 cpuset_cpus_allowed_fallback(p); 1300 cpuset_cpus_allowed_fallback(p);
1301 state = possible; 1301 state = possible;
1302 break; 1302 break;
1303 1303
1304 case possible: 1304 case possible:
1305 do_set_cpus_allowed(p, cpu_possible_mask); 1305 do_set_cpus_allowed(p, cpu_possible_mask);
1306 state = fail; 1306 state = fail;
1307 break; 1307 break;
1308 1308
1309 case fail: 1309 case fail:
1310 BUG(); 1310 BUG();
1311 break; 1311 break;
1312 } 1312 }
1313 } 1313 }
1314 1314
1315 out: 1315 out:
1316 if (state != cpuset) { 1316 if (state != cpuset) {
1317 /* 1317 /*
1318 * Don't tell them about moving exiting tasks or 1318 * Don't tell them about moving exiting tasks or
1319 * kernel threads (both mm NULL), since they never 1319 * kernel threads (both mm NULL), since they never
1320 * leave kernel. 1320 * leave kernel.
1321 */ 1321 */
1322 if (p->mm && printk_ratelimit()) { 1322 if (p->mm && printk_ratelimit()) {
1323 printk_sched("process %d (%s) no longer affine to cpu%d\n", 1323 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1324 task_pid_nr(p), p->comm, cpu); 1324 task_pid_nr(p), p->comm, cpu);
1325 } 1325 }
1326 } 1326 }
1327 1327
1328 return dest_cpu; 1328 return dest_cpu;
1329 } 1329 }
1330 1330
1331 /* 1331 /*
1332 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. 1332 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1333 */ 1333 */
1334 static inline 1334 static inline
1335 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) 1335 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1336 { 1336 {
1337 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); 1337 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1338 1338
1339 /* 1339 /*
1340 * In order not to call set_task_cpu() on a blocking task we need 1340 * In order not to call set_task_cpu() on a blocking task we need
1341 * to rely on ttwu() to place the task on a valid ->cpus_allowed 1341 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1342 * cpu. 1342 * cpu.
1343 * 1343 *
1344 * Since this is common to all placement strategies, this lives here. 1344 * Since this is common to all placement strategies, this lives here.
1345 * 1345 *
1346 * [ this allows ->select_task() to simply return task_cpu(p) and 1346 * [ this allows ->select_task() to simply return task_cpu(p) and
1347 * not worry about this generic constraint ] 1347 * not worry about this generic constraint ]
1348 */ 1348 */
1349 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) || 1349 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1350 !cpu_online(cpu))) 1350 !cpu_online(cpu)))
1351 cpu = select_fallback_rq(task_cpu(p), p); 1351 cpu = select_fallback_rq(task_cpu(p), p);
1352 1352
1353 return cpu; 1353 return cpu;
1354 } 1354 }
1355 1355
1356 static void update_avg(u64 *avg, u64 sample) 1356 static void update_avg(u64 *avg, u64 sample)
1357 { 1357 {
1358 s64 diff = sample - *avg; 1358 s64 diff = sample - *avg;
1359 *avg += diff >> 3; 1359 *avg += diff >> 3;
1360 } 1360 }
1361 #endif 1361 #endif
1362 1362
1363 static void 1363 static void
1364 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 1364 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1365 { 1365 {
1366 #ifdef CONFIG_SCHEDSTATS 1366 #ifdef CONFIG_SCHEDSTATS
1367 struct rq *rq = this_rq(); 1367 struct rq *rq = this_rq();
1368 1368
1369 #ifdef CONFIG_SMP 1369 #ifdef CONFIG_SMP
1370 int this_cpu = smp_processor_id(); 1370 int this_cpu = smp_processor_id();
1371 1371
1372 if (cpu == this_cpu) { 1372 if (cpu == this_cpu) {
1373 schedstat_inc(rq, ttwu_local); 1373 schedstat_inc(rq, ttwu_local);
1374 schedstat_inc(p, se.statistics.nr_wakeups_local); 1374 schedstat_inc(p, se.statistics.nr_wakeups_local);
1375 } else { 1375 } else {
1376 struct sched_domain *sd; 1376 struct sched_domain *sd;
1377 1377
1378 schedstat_inc(p, se.statistics.nr_wakeups_remote); 1378 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1379 rcu_read_lock(); 1379 rcu_read_lock();
1380 for_each_domain(this_cpu, sd) { 1380 for_each_domain(this_cpu, sd) {
1381 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 1381 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1382 schedstat_inc(sd, ttwu_wake_remote); 1382 schedstat_inc(sd, ttwu_wake_remote);
1383 break; 1383 break;
1384 } 1384 }
1385 } 1385 }
1386 rcu_read_unlock(); 1386 rcu_read_unlock();
1387 } 1387 }
1388 1388
1389 if (wake_flags & WF_MIGRATED) 1389 if (wake_flags & WF_MIGRATED)
1390 schedstat_inc(p, se.statistics.nr_wakeups_migrate); 1390 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1391 1391
1392 #endif /* CONFIG_SMP */ 1392 #endif /* CONFIG_SMP */
1393 1393
1394 schedstat_inc(rq, ttwu_count); 1394 schedstat_inc(rq, ttwu_count);
1395 schedstat_inc(p, se.statistics.nr_wakeups); 1395 schedstat_inc(p, se.statistics.nr_wakeups);
1396 1396
1397 if (wake_flags & WF_SYNC) 1397 if (wake_flags & WF_SYNC)
1398 schedstat_inc(p, se.statistics.nr_wakeups_sync); 1398 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1399 1399
1400 #endif /* CONFIG_SCHEDSTATS */ 1400 #endif /* CONFIG_SCHEDSTATS */
1401 } 1401 }
1402 1402
1403 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags) 1403 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1404 { 1404 {
1405 activate_task(rq, p, en_flags); 1405 activate_task(rq, p, en_flags);
1406 p->on_rq = 1; 1406 p->on_rq = 1;
1407 1407
1408 /* if a worker is waking up, notify workqueue */ 1408 /* if a worker is waking up, notify workqueue */
1409 if (p->flags & PF_WQ_WORKER) 1409 if (p->flags & PF_WQ_WORKER)
1410 wq_worker_waking_up(p, cpu_of(rq)); 1410 wq_worker_waking_up(p, cpu_of(rq));
1411 } 1411 }
1412 1412
1413 /* 1413 /*
1414 * Mark the task runnable and perform wakeup-preemption. 1414 * Mark the task runnable and perform wakeup-preemption.
1415 */ 1415 */
1416 static void 1416 static void
1417 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 1417 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1418 { 1418 {
1419 check_preempt_curr(rq, p, wake_flags); 1419 check_preempt_curr(rq, p, wake_flags);
1420 trace_sched_wakeup(p, true); 1420 trace_sched_wakeup(p, true);
1421 1421
1422 p->state = TASK_RUNNING; 1422 p->state = TASK_RUNNING;
1423 #ifdef CONFIG_SMP 1423 #ifdef CONFIG_SMP
1424 if (p->sched_class->task_woken) 1424 if (p->sched_class->task_woken)
1425 p->sched_class->task_woken(rq, p); 1425 p->sched_class->task_woken(rq, p);
1426 1426
1427 if (rq->idle_stamp) { 1427 if (rq->idle_stamp) {
1428 u64 delta = rq_clock(rq) - rq->idle_stamp; 1428 u64 delta = rq_clock(rq) - rq->idle_stamp;
1429 u64 max = 2*rq->max_idle_balance_cost; 1429 u64 max = 2*rq->max_idle_balance_cost;
1430 1430
1431 update_avg(&rq->avg_idle, delta); 1431 update_avg(&rq->avg_idle, delta);
1432 1432
1433 if (rq->avg_idle > max) 1433 if (rq->avg_idle > max)
1434 rq->avg_idle = max; 1434 rq->avg_idle = max;
1435 1435
1436 rq->idle_stamp = 0; 1436 rq->idle_stamp = 0;
1437 } 1437 }
1438 #endif 1438 #endif
1439 } 1439 }
1440 1440
1441 static void 1441 static void
1442 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags) 1442 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1443 { 1443 {
1444 #ifdef CONFIG_SMP 1444 #ifdef CONFIG_SMP
1445 if (p->sched_contributes_to_load) 1445 if (p->sched_contributes_to_load)
1446 rq->nr_uninterruptible--; 1446 rq->nr_uninterruptible--;
1447 #endif 1447 #endif
1448 1448
1449 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING); 1449 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1450 ttwu_do_wakeup(rq, p, wake_flags); 1450 ttwu_do_wakeup(rq, p, wake_flags);
1451 } 1451 }
1452 1452
1453 /* 1453 /*
1454 * Called in case the task @p isn't fully descheduled from its runqueue, 1454 * Called in case the task @p isn't fully descheduled from its runqueue,
1455 * in this case we must do a remote wakeup. Its a 'light' wakeup though, 1455 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1456 * since all we need to do is flip p->state to TASK_RUNNING, since 1456 * since all we need to do is flip p->state to TASK_RUNNING, since
1457 * the task is still ->on_rq. 1457 * the task is still ->on_rq.
1458 */ 1458 */
1459 static int ttwu_remote(struct task_struct *p, int wake_flags) 1459 static int ttwu_remote(struct task_struct *p, int wake_flags)
1460 { 1460 {
1461 struct rq *rq; 1461 struct rq *rq;
1462 int ret = 0; 1462 int ret = 0;
1463 1463
1464 rq = __task_rq_lock(p); 1464 rq = __task_rq_lock(p);
1465 if (p->on_rq) { 1465 if (p->on_rq) {
1466 /* check_preempt_curr() may use rq clock */ 1466 /* check_preempt_curr() may use rq clock */
1467 update_rq_clock(rq); 1467 update_rq_clock(rq);
1468 ttwu_do_wakeup(rq, p, wake_flags); 1468 ttwu_do_wakeup(rq, p, wake_flags);
1469 ret = 1; 1469 ret = 1;
1470 } 1470 }
1471 __task_rq_unlock(rq); 1471 __task_rq_unlock(rq);
1472 1472
1473 return ret; 1473 return ret;
1474 } 1474 }
1475 1475
1476 #ifdef CONFIG_SMP 1476 #ifdef CONFIG_SMP
1477 static void sched_ttwu_pending(void) 1477 static void sched_ttwu_pending(void)
1478 { 1478 {
1479 struct rq *rq = this_rq(); 1479 struct rq *rq = this_rq();
1480 struct llist_node *llist = llist_del_all(&rq->wake_list); 1480 struct llist_node *llist = llist_del_all(&rq->wake_list);
1481 struct task_struct *p; 1481 struct task_struct *p;
1482 1482
1483 raw_spin_lock(&rq->lock); 1483 raw_spin_lock(&rq->lock);
1484 1484
1485 while (llist) { 1485 while (llist) {
1486 p = llist_entry(llist, struct task_struct, wake_entry); 1486 p = llist_entry(llist, struct task_struct, wake_entry);
1487 llist = llist_next(llist); 1487 llist = llist_next(llist);
1488 ttwu_do_activate(rq, p, 0); 1488 ttwu_do_activate(rq, p, 0);
1489 } 1489 }
1490 1490
1491 raw_spin_unlock(&rq->lock); 1491 raw_spin_unlock(&rq->lock);
1492 } 1492 }
1493 1493
1494 void scheduler_ipi(void) 1494 void scheduler_ipi(void)
1495 { 1495 {
1496 /* 1496 /*
1497 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1497 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1498 * TIF_NEED_RESCHED remotely (for the first time) will also send 1498 * TIF_NEED_RESCHED remotely (for the first time) will also send
1499 * this IPI. 1499 * this IPI.
1500 */ 1500 */
1501 preempt_fold_need_resched(); 1501 preempt_fold_need_resched();
1502 1502
1503 if (llist_empty(&this_rq()->wake_list) 1503 if (llist_empty(&this_rq()->wake_list)
1504 && !tick_nohz_full_cpu(smp_processor_id()) 1504 && !tick_nohz_full_cpu(smp_processor_id())
1505 && !got_nohz_idle_kick()) 1505 && !got_nohz_idle_kick())
1506 return; 1506 return;
1507 1507
1508 /* 1508 /*
1509 * Not all reschedule IPI handlers call irq_enter/irq_exit, since 1509 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1510 * traditionally all their work was done from the interrupt return 1510 * traditionally all their work was done from the interrupt return
1511 * path. Now that we actually do some work, we need to make sure 1511 * path. Now that we actually do some work, we need to make sure
1512 * we do call them. 1512 * we do call them.
1513 * 1513 *
1514 * Some archs already do call them, luckily irq_enter/exit nest 1514 * Some archs already do call them, luckily irq_enter/exit nest
1515 * properly. 1515 * properly.
1516 * 1516 *
1517 * Arguably we should visit all archs and update all handlers, 1517 * Arguably we should visit all archs and update all handlers,
1518 * however a fair share of IPIs are still resched only so this would 1518 * however a fair share of IPIs are still resched only so this would
1519 * somewhat pessimize the simple resched case. 1519 * somewhat pessimize the simple resched case.
1520 */ 1520 */
1521 irq_enter(); 1521 irq_enter();
1522 tick_nohz_full_check(); 1522 tick_nohz_full_check();
1523 sched_ttwu_pending(); 1523 sched_ttwu_pending();
1524 1524
1525 /* 1525 /*
1526 * Check if someone kicked us for doing the nohz idle load balance. 1526 * Check if someone kicked us for doing the nohz idle load balance.
1527 */ 1527 */
1528 if (unlikely(got_nohz_idle_kick())) { 1528 if (unlikely(got_nohz_idle_kick())) {
1529 this_rq()->idle_balance = 1; 1529 this_rq()->idle_balance = 1;
1530 raise_softirq_irqoff(SCHED_SOFTIRQ); 1530 raise_softirq_irqoff(SCHED_SOFTIRQ);
1531 } 1531 }
1532 irq_exit(); 1532 irq_exit();
1533 } 1533 }
1534 1534
1535 static void ttwu_queue_remote(struct task_struct *p, int cpu) 1535 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1536 { 1536 {
1537 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) 1537 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1538 smp_send_reschedule(cpu); 1538 smp_send_reschedule(cpu);
1539 } 1539 }
1540 1540
1541 bool cpus_share_cache(int this_cpu, int that_cpu) 1541 bool cpus_share_cache(int this_cpu, int that_cpu)
1542 { 1542 {
1543 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 1543 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1544 } 1544 }
1545 #endif /* CONFIG_SMP */ 1545 #endif /* CONFIG_SMP */
1546 1546
1547 static void ttwu_queue(struct task_struct *p, int cpu) 1547 static void ttwu_queue(struct task_struct *p, int cpu)
1548 { 1548 {
1549 struct rq *rq = cpu_rq(cpu); 1549 struct rq *rq = cpu_rq(cpu);
1550 1550
1551 #if defined(CONFIG_SMP) 1551 #if defined(CONFIG_SMP)
1552 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) { 1552 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1553 sched_clock_cpu(cpu); /* sync clocks x-cpu */ 1553 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1554 ttwu_queue_remote(p, cpu); 1554 ttwu_queue_remote(p, cpu);
1555 return; 1555 return;
1556 } 1556 }
1557 #endif 1557 #endif
1558 1558
1559 raw_spin_lock(&rq->lock); 1559 raw_spin_lock(&rq->lock);
1560 ttwu_do_activate(rq, p, 0); 1560 ttwu_do_activate(rq, p, 0);
1561 raw_spin_unlock(&rq->lock); 1561 raw_spin_unlock(&rq->lock);
1562 } 1562 }
1563 1563
1564 /** 1564 /**
1565 * try_to_wake_up - wake up a thread 1565 * try_to_wake_up - wake up a thread
1566 * @p: the thread to be awakened 1566 * @p: the thread to be awakened
1567 * @state: the mask of task states that can be woken 1567 * @state: the mask of task states that can be woken
1568 * @wake_flags: wake modifier flags (WF_*) 1568 * @wake_flags: wake modifier flags (WF_*)
1569 * 1569 *
1570 * Put it on the run-queue if it's not already there. The "current" 1570 * Put it on the run-queue if it's not already there. The "current"
1571 * thread is always on the run-queue (except when the actual 1571 * thread is always on the run-queue (except when the actual
1572 * re-schedule is in progress), and as such you're allowed to do 1572 * re-schedule is in progress), and as such you're allowed to do
1573 * the simpler "current->state = TASK_RUNNING" to mark yourself 1573 * the simpler "current->state = TASK_RUNNING" to mark yourself
1574 * runnable without the overhead of this. 1574 * runnable without the overhead of this.
1575 * 1575 *
1576 * Return: %true if @p was woken up, %false if it was already running. 1576 * Return: %true if @p was woken up, %false if it was already running.
1577 * or @state didn't match @p's state. 1577 * or @state didn't match @p's state.
1578 */ 1578 */
1579 static int 1579 static int
1580 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 1580 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1581 { 1581 {
1582 unsigned long flags; 1582 unsigned long flags;
1583 int cpu, success = 0; 1583 int cpu, success = 0;
1584 1584
1585 /* 1585 /*
1586 * If we are going to wake up a thread waiting for CONDITION we 1586 * If we are going to wake up a thread waiting for CONDITION we
1587 * need to ensure that CONDITION=1 done by the caller can not be 1587 * need to ensure that CONDITION=1 done by the caller can not be
1588 * reordered with p->state check below. This pairs with mb() in 1588 * reordered with p->state check below. This pairs with mb() in
1589 * set_current_state() the waiting thread does. 1589 * set_current_state() the waiting thread does.
1590 */ 1590 */
1591 smp_mb__before_spinlock(); 1591 smp_mb__before_spinlock();
1592 raw_spin_lock_irqsave(&p->pi_lock, flags); 1592 raw_spin_lock_irqsave(&p->pi_lock, flags);
1593 if (!(p->state & state)) 1593 if (!(p->state & state))
1594 goto out; 1594 goto out;
1595 1595
1596 success = 1; /* we're going to change ->state */ 1596 success = 1; /* we're going to change ->state */
1597 cpu = task_cpu(p); 1597 cpu = task_cpu(p);
1598 1598
1599 if (p->on_rq && ttwu_remote(p, wake_flags)) 1599 if (p->on_rq && ttwu_remote(p, wake_flags))
1600 goto stat; 1600 goto stat;
1601 1601
1602 #ifdef CONFIG_SMP 1602 #ifdef CONFIG_SMP
1603 /* 1603 /*
1604 * If the owning (remote) cpu is still in the middle of schedule() with 1604 * If the owning (remote) cpu is still in the middle of schedule() with
1605 * this task as prev, wait until its done referencing the task. 1605 * this task as prev, wait until its done referencing the task.
1606 */ 1606 */
1607 while (p->on_cpu) 1607 while (p->on_cpu)
1608 cpu_relax(); 1608 cpu_relax();
1609 /* 1609 /*
1610 * Pairs with the smp_wmb() in finish_lock_switch(). 1610 * Pairs with the smp_wmb() in finish_lock_switch().
1611 */ 1611 */
1612 smp_rmb(); 1612 smp_rmb();
1613 1613
1614 p->sched_contributes_to_load = !!task_contributes_to_load(p); 1614 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1615 p->state = TASK_WAKING; 1615 p->state = TASK_WAKING;
1616 1616
1617 if (p->sched_class->task_waking) 1617 if (p->sched_class->task_waking)
1618 p->sched_class->task_waking(p); 1618 p->sched_class->task_waking(p);
1619 1619
1620 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); 1620 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1621 if (task_cpu(p) != cpu) { 1621 if (task_cpu(p) != cpu) {
1622 wake_flags |= WF_MIGRATED; 1622 wake_flags |= WF_MIGRATED;
1623 set_task_cpu(p, cpu); 1623 set_task_cpu(p, cpu);
1624 } 1624 }
1625 #endif /* CONFIG_SMP */ 1625 #endif /* CONFIG_SMP */
1626 1626
1627 ttwu_queue(p, cpu); 1627 ttwu_queue(p, cpu);
1628 stat: 1628 stat:
1629 ttwu_stat(p, cpu, wake_flags); 1629 ttwu_stat(p, cpu, wake_flags);
1630 out: 1630 out:
1631 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1631 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1632 1632
1633 return success; 1633 return success;
1634 } 1634 }
1635 1635
1636 /** 1636 /**
1637 * try_to_wake_up_local - try to wake up a local task with rq lock held 1637 * try_to_wake_up_local - try to wake up a local task with rq lock held
1638 * @p: the thread to be awakened 1638 * @p: the thread to be awakened
1639 * 1639 *
1640 * Put @p on the run-queue if it's not already there. The caller must 1640 * Put @p on the run-queue if it's not already there. The caller must
1641 * ensure that this_rq() is locked, @p is bound to this_rq() and not 1641 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1642 * the current task. 1642 * the current task.
1643 */ 1643 */
1644 static void try_to_wake_up_local(struct task_struct *p) 1644 static void try_to_wake_up_local(struct task_struct *p)
1645 { 1645 {
1646 struct rq *rq = task_rq(p); 1646 struct rq *rq = task_rq(p);
1647 1647
1648 if (WARN_ON_ONCE(rq != this_rq()) || 1648 if (WARN_ON_ONCE(rq != this_rq()) ||
1649 WARN_ON_ONCE(p == current)) 1649 WARN_ON_ONCE(p == current))
1650 return; 1650 return;
1651 1651
1652 lockdep_assert_held(&rq->lock); 1652 lockdep_assert_held(&rq->lock);
1653 1653
1654 if (!raw_spin_trylock(&p->pi_lock)) { 1654 if (!raw_spin_trylock(&p->pi_lock)) {
1655 raw_spin_unlock(&rq->lock); 1655 raw_spin_unlock(&rq->lock);
1656 raw_spin_lock(&p->pi_lock); 1656 raw_spin_lock(&p->pi_lock);
1657 raw_spin_lock(&rq->lock); 1657 raw_spin_lock(&rq->lock);
1658 } 1658 }
1659 1659
1660 if (!(p->state & TASK_NORMAL)) 1660 if (!(p->state & TASK_NORMAL))
1661 goto out; 1661 goto out;
1662 1662
1663 if (!p->on_rq) 1663 if (!p->on_rq)
1664 ttwu_activate(rq, p, ENQUEUE_WAKEUP); 1664 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1665 1665
1666 ttwu_do_wakeup(rq, p, 0); 1666 ttwu_do_wakeup(rq, p, 0);
1667 ttwu_stat(p, smp_processor_id(), 0); 1667 ttwu_stat(p, smp_processor_id(), 0);
1668 out: 1668 out:
1669 raw_spin_unlock(&p->pi_lock); 1669 raw_spin_unlock(&p->pi_lock);
1670 } 1670 }
1671 1671
1672 /** 1672 /**
1673 * wake_up_process - Wake up a specific process 1673 * wake_up_process - Wake up a specific process
1674 * @p: The process to be woken up. 1674 * @p: The process to be woken up.
1675 * 1675 *
1676 * Attempt to wake up the nominated process and move it to the set of runnable 1676 * Attempt to wake up the nominated process and move it to the set of runnable
1677 * processes. 1677 * processes.
1678 * 1678 *
1679 * Return: 1 if the process was woken up, 0 if it was already running. 1679 * Return: 1 if the process was woken up, 0 if it was already running.
1680 * 1680 *
1681 * It may be assumed that this function implies a write memory barrier before 1681 * It may be assumed that this function implies a write memory barrier before
1682 * changing the task state if and only if any tasks are woken up. 1682 * changing the task state if and only if any tasks are woken up.
1683 */ 1683 */
1684 int wake_up_process(struct task_struct *p) 1684 int wake_up_process(struct task_struct *p)
1685 { 1685 {
1686 WARN_ON(task_is_stopped_or_traced(p)); 1686 WARN_ON(task_is_stopped_or_traced(p));
1687 return try_to_wake_up(p, TASK_NORMAL, 0); 1687 return try_to_wake_up(p, TASK_NORMAL, 0);
1688 } 1688 }
1689 EXPORT_SYMBOL(wake_up_process); 1689 EXPORT_SYMBOL(wake_up_process);
1690 1690
1691 int wake_up_state(struct task_struct *p, unsigned int state) 1691 int wake_up_state(struct task_struct *p, unsigned int state)
1692 { 1692 {
1693 return try_to_wake_up(p, state, 0); 1693 return try_to_wake_up(p, state, 0);
1694 } 1694 }
1695 1695
1696 /* 1696 /*
1697 * Perform scheduler related setup for a newly forked process p. 1697 * Perform scheduler related setup for a newly forked process p.
1698 * p is forked by current. 1698 * p is forked by current.
1699 * 1699 *
1700 * __sched_fork() is basic setup used by init_idle() too: 1700 * __sched_fork() is basic setup used by init_idle() too:
1701 */ 1701 */
1702 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 1702 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1703 { 1703 {
1704 p->on_rq = 0; 1704 p->on_rq = 0;
1705 1705
1706 p->se.on_rq = 0; 1706 p->se.on_rq = 0;
1707 p->se.exec_start = 0; 1707 p->se.exec_start = 0;
1708 p->se.sum_exec_runtime = 0; 1708 p->se.sum_exec_runtime = 0;
1709 p->se.prev_sum_exec_runtime = 0; 1709 p->se.prev_sum_exec_runtime = 0;
1710 p->se.nr_migrations = 0; 1710 p->se.nr_migrations = 0;
1711 p->se.vruntime = 0; 1711 p->se.vruntime = 0;
1712 INIT_LIST_HEAD(&p->se.group_node); 1712 INIT_LIST_HEAD(&p->se.group_node);
1713 1713
1714 #ifdef CONFIG_SCHEDSTATS 1714 #ifdef CONFIG_SCHEDSTATS
1715 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1715 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1716 #endif 1716 #endif
1717 1717
1718 RB_CLEAR_NODE(&p->dl.rb_node); 1718 RB_CLEAR_NODE(&p->dl.rb_node);
1719 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1719 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1720 p->dl.dl_runtime = p->dl.runtime = 0; 1720 p->dl.dl_runtime = p->dl.runtime = 0;
1721 p->dl.dl_deadline = p->dl.deadline = 0; 1721 p->dl.dl_deadline = p->dl.deadline = 0;
1722 p->dl.dl_period = 0; 1722 p->dl.dl_period = 0;
1723 p->dl.flags = 0; 1723 p->dl.flags = 0;
1724 1724
1725 INIT_LIST_HEAD(&p->rt.run_list); 1725 INIT_LIST_HEAD(&p->rt.run_list);
1726 1726
1727 #ifdef CONFIG_PREEMPT_NOTIFIERS 1727 #ifdef CONFIG_PREEMPT_NOTIFIERS
1728 INIT_HLIST_HEAD(&p->preempt_notifiers); 1728 INIT_HLIST_HEAD(&p->preempt_notifiers);
1729 #endif 1729 #endif
1730 1730
1731 #ifdef CONFIG_NUMA_BALANCING 1731 #ifdef CONFIG_NUMA_BALANCING
1732 if (p->mm && atomic_read(&p->mm->mm_users) == 1) { 1732 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1733 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1733 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1734 p->mm->numa_scan_seq = 0; 1734 p->mm->numa_scan_seq = 0;
1735 } 1735 }
1736 1736
1737 if (clone_flags & CLONE_VM) 1737 if (clone_flags & CLONE_VM)
1738 p->numa_preferred_nid = current->numa_preferred_nid; 1738 p->numa_preferred_nid = current->numa_preferred_nid;
1739 else 1739 else
1740 p->numa_preferred_nid = -1; 1740 p->numa_preferred_nid = -1;
1741 1741
1742 p->node_stamp = 0ULL; 1742 p->node_stamp = 0ULL;
1743 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; 1743 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1744 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1744 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1745 p->numa_work.next = &p->numa_work; 1745 p->numa_work.next = &p->numa_work;
1746 p->numa_faults_memory = NULL; 1746 p->numa_faults_memory = NULL;
1747 p->numa_faults_buffer_memory = NULL; 1747 p->numa_faults_buffer_memory = NULL;
1748 p->last_task_numa_placement = 0; 1748 p->last_task_numa_placement = 0;
1749 p->last_sum_exec_runtime = 0; 1749 p->last_sum_exec_runtime = 0;
1750 1750
1751 INIT_LIST_HEAD(&p->numa_entry); 1751 INIT_LIST_HEAD(&p->numa_entry);
1752 p->numa_group = NULL; 1752 p->numa_group = NULL;
1753 #endif /* CONFIG_NUMA_BALANCING */ 1753 #endif /* CONFIG_NUMA_BALANCING */
1754 } 1754 }
1755 1755
1756 #ifdef CONFIG_NUMA_BALANCING 1756 #ifdef CONFIG_NUMA_BALANCING
1757 #ifdef CONFIG_SCHED_DEBUG 1757 #ifdef CONFIG_SCHED_DEBUG
1758 void set_numabalancing_state(bool enabled) 1758 void set_numabalancing_state(bool enabled)
1759 { 1759 {
1760 if (enabled) 1760 if (enabled)
1761 sched_feat_set("NUMA"); 1761 sched_feat_set("NUMA");
1762 else 1762 else
1763 sched_feat_set("NO_NUMA"); 1763 sched_feat_set("NO_NUMA");
1764 } 1764 }
1765 #else 1765 #else
1766 __read_mostly bool numabalancing_enabled; 1766 __read_mostly bool numabalancing_enabled;
1767 1767
1768 void set_numabalancing_state(bool enabled) 1768 void set_numabalancing_state(bool enabled)
1769 { 1769 {
1770 numabalancing_enabled = enabled; 1770 numabalancing_enabled = enabled;
1771 } 1771 }
1772 #endif /* CONFIG_SCHED_DEBUG */ 1772 #endif /* CONFIG_SCHED_DEBUG */
1773 1773
1774 #ifdef CONFIG_PROC_SYSCTL 1774 #ifdef CONFIG_PROC_SYSCTL
1775 int sysctl_numa_balancing(struct ctl_table *table, int write, 1775 int sysctl_numa_balancing(struct ctl_table *table, int write,
1776 void __user *buffer, size_t *lenp, loff_t *ppos) 1776 void __user *buffer, size_t *lenp, loff_t *ppos)
1777 { 1777 {
1778 struct ctl_table t; 1778 struct ctl_table t;
1779 int err; 1779 int err;
1780 int state = numabalancing_enabled; 1780 int state = numabalancing_enabled;
1781 1781
1782 if (write && !capable(CAP_SYS_ADMIN)) 1782 if (write && !capable(CAP_SYS_ADMIN))
1783 return -EPERM; 1783 return -EPERM;
1784 1784
1785 t = *table; 1785 t = *table;
1786 t.data = &state; 1786 t.data = &state;
1787 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 1787 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1788 if (err < 0) 1788 if (err < 0)
1789 return err; 1789 return err;
1790 if (write) 1790 if (write)
1791 set_numabalancing_state(state); 1791 set_numabalancing_state(state);
1792 return err; 1792 return err;
1793 } 1793 }
1794 #endif 1794 #endif
1795 #endif 1795 #endif
1796 1796
1797 /* 1797 /*
1798 * fork()/clone()-time setup: 1798 * fork()/clone()-time setup:
1799 */ 1799 */
1800 int sched_fork(unsigned long clone_flags, struct task_struct *p) 1800 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1801 { 1801 {
1802 unsigned long flags; 1802 unsigned long flags;
1803 int cpu = get_cpu(); 1803 int cpu = get_cpu();
1804 1804
1805 __sched_fork(clone_flags, p); 1805 __sched_fork(clone_flags, p);
1806 /* 1806 /*
1807 * We mark the process as running here. This guarantees that 1807 * We mark the process as running here. This guarantees that
1808 * nobody will actually run it, and a signal or other external 1808 * nobody will actually run it, and a signal or other external
1809 * event cannot wake it up and insert it on the runqueue either. 1809 * event cannot wake it up and insert it on the runqueue either.
1810 */ 1810 */
1811 p->state = TASK_RUNNING; 1811 p->state = TASK_RUNNING;
1812 1812
1813 /* 1813 /*
1814 * Make sure we do not leak PI boosting priority to the child. 1814 * Make sure we do not leak PI boosting priority to the child.
1815 */ 1815 */
1816 p->prio = current->normal_prio; 1816 p->prio = current->normal_prio;
1817 1817
1818 /* 1818 /*
1819 * Revert to default priority/policy on fork if requested. 1819 * Revert to default priority/policy on fork if requested.
1820 */ 1820 */
1821 if (unlikely(p->sched_reset_on_fork)) { 1821 if (unlikely(p->sched_reset_on_fork)) {
1822 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 1822 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1823 p->policy = SCHED_NORMAL; 1823 p->policy = SCHED_NORMAL;
1824 p->static_prio = NICE_TO_PRIO(0); 1824 p->static_prio = NICE_TO_PRIO(0);
1825 p->rt_priority = 0; 1825 p->rt_priority = 0;
1826 } else if (PRIO_TO_NICE(p->static_prio) < 0) 1826 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1827 p->static_prio = NICE_TO_PRIO(0); 1827 p->static_prio = NICE_TO_PRIO(0);
1828 1828
1829 p->prio = p->normal_prio = __normal_prio(p); 1829 p->prio = p->normal_prio = __normal_prio(p);
1830 set_load_weight(p); 1830 set_load_weight(p);
1831 1831
1832 /* 1832 /*
1833 * We don't need the reset flag anymore after the fork. It has 1833 * We don't need the reset flag anymore after the fork. It has
1834 * fulfilled its duty: 1834 * fulfilled its duty:
1835 */ 1835 */
1836 p->sched_reset_on_fork = 0; 1836 p->sched_reset_on_fork = 0;
1837 } 1837 }
1838 1838
1839 if (dl_prio(p->prio)) { 1839 if (dl_prio(p->prio)) {
1840 put_cpu(); 1840 put_cpu();
1841 return -EAGAIN; 1841 return -EAGAIN;
1842 } else if (rt_prio(p->prio)) { 1842 } else if (rt_prio(p->prio)) {
1843 p->sched_class = &rt_sched_class; 1843 p->sched_class = &rt_sched_class;
1844 } else { 1844 } else {
1845 p->sched_class = &fair_sched_class; 1845 p->sched_class = &fair_sched_class;
1846 } 1846 }
1847 1847
1848 if (p->sched_class->task_fork) 1848 if (p->sched_class->task_fork)
1849 p->sched_class->task_fork(p); 1849 p->sched_class->task_fork(p);
1850 1850
1851 /* 1851 /*
1852 * The child is not yet in the pid-hash so no cgroup attach races, 1852 * The child is not yet in the pid-hash so no cgroup attach races,
1853 * and the cgroup is pinned to this child due to cgroup_fork() 1853 * and the cgroup is pinned to this child due to cgroup_fork()
1854 * is ran before sched_fork(). 1854 * is ran before sched_fork().
1855 * 1855 *
1856 * Silence PROVE_RCU. 1856 * Silence PROVE_RCU.
1857 */ 1857 */
1858 raw_spin_lock_irqsave(&p->pi_lock, flags); 1858 raw_spin_lock_irqsave(&p->pi_lock, flags);
1859 set_task_cpu(p, cpu); 1859 set_task_cpu(p, cpu);
1860 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 1860 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1861 1861
1862 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1862 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1863 if (likely(sched_info_on())) 1863 if (likely(sched_info_on()))
1864 memset(&p->sched_info, 0, sizeof(p->sched_info)); 1864 memset(&p->sched_info, 0, sizeof(p->sched_info));
1865 #endif 1865 #endif
1866 #if defined(CONFIG_SMP) 1866 #if defined(CONFIG_SMP)
1867 p->on_cpu = 0; 1867 p->on_cpu = 0;
1868 #endif 1868 #endif
1869 init_task_preempt_count(p); 1869 init_task_preempt_count(p);
1870 #ifdef CONFIG_SMP 1870 #ifdef CONFIG_SMP
1871 plist_node_init(&p->pushable_tasks, MAX_PRIO); 1871 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1872 RB_CLEAR_NODE(&p->pushable_dl_tasks); 1872 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1873 #endif 1873 #endif
1874 1874
1875 put_cpu(); 1875 put_cpu();
1876 return 0; 1876 return 0;
1877 } 1877 }
1878 1878
1879 unsigned long to_ratio(u64 period, u64 runtime) 1879 unsigned long to_ratio(u64 period, u64 runtime)
1880 { 1880 {
1881 if (runtime == RUNTIME_INF) 1881 if (runtime == RUNTIME_INF)
1882 return 1ULL << 20; 1882 return 1ULL << 20;
1883 1883
1884 /* 1884 /*
1885 * Doing this here saves a lot of checks in all 1885 * Doing this here saves a lot of checks in all
1886 * the calling paths, and returning zero seems 1886 * the calling paths, and returning zero seems
1887 * safe for them anyway. 1887 * safe for them anyway.
1888 */ 1888 */
1889 if (period == 0) 1889 if (period == 0)
1890 return 0; 1890 return 0;
1891 1891
1892 return div64_u64(runtime << 20, period); 1892 return div64_u64(runtime << 20, period);
1893 } 1893 }
1894 1894
1895 #ifdef CONFIG_SMP 1895 #ifdef CONFIG_SMP
1896 inline struct dl_bw *dl_bw_of(int i) 1896 inline struct dl_bw *dl_bw_of(int i)
1897 { 1897 {
1898 return &cpu_rq(i)->rd->dl_bw; 1898 return &cpu_rq(i)->rd->dl_bw;
1899 } 1899 }
1900 1900
1901 static inline int dl_bw_cpus(int i) 1901 static inline int dl_bw_cpus(int i)
1902 { 1902 {
1903 struct root_domain *rd = cpu_rq(i)->rd; 1903 struct root_domain *rd = cpu_rq(i)->rd;
1904 int cpus = 0; 1904 int cpus = 0;
1905 1905
1906 for_each_cpu_and(i, rd->span, cpu_active_mask) 1906 for_each_cpu_and(i, rd->span, cpu_active_mask)
1907 cpus++; 1907 cpus++;
1908 1908
1909 return cpus; 1909 return cpus;
1910 } 1910 }
1911 #else 1911 #else
1912 inline struct dl_bw *dl_bw_of(int i) 1912 inline struct dl_bw *dl_bw_of(int i)
1913 { 1913 {
1914 return &cpu_rq(i)->dl.dl_bw; 1914 return &cpu_rq(i)->dl.dl_bw;
1915 } 1915 }
1916 1916
1917 static inline int dl_bw_cpus(int i) 1917 static inline int dl_bw_cpus(int i)
1918 { 1918 {
1919 return 1; 1919 return 1;
1920 } 1920 }
1921 #endif 1921 #endif
1922 1922
1923 static inline 1923 static inline
1924 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw) 1924 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1925 { 1925 {
1926 dl_b->total_bw -= tsk_bw; 1926 dl_b->total_bw -= tsk_bw;
1927 } 1927 }
1928 1928
1929 static inline 1929 static inline
1930 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw) 1930 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1931 { 1931 {
1932 dl_b->total_bw += tsk_bw; 1932 dl_b->total_bw += tsk_bw;
1933 } 1933 }
1934 1934
1935 static inline 1935 static inline
1936 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) 1936 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1937 { 1937 {
1938 return dl_b->bw != -1 && 1938 return dl_b->bw != -1 &&
1939 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; 1939 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1940 } 1940 }
1941 1941
1942 /* 1942 /*
1943 * We must be sure that accepting a new task (or allowing changing the 1943 * We must be sure that accepting a new task (or allowing changing the
1944 * parameters of an existing one) is consistent with the bandwidth 1944 * parameters of an existing one) is consistent with the bandwidth
1945 * constraints. If yes, this function also accordingly updates the currently 1945 * constraints. If yes, this function also accordingly updates the currently
1946 * allocated bandwidth to reflect the new situation. 1946 * allocated bandwidth to reflect the new situation.
1947 * 1947 *
1948 * This function is called while holding p's rq->lock. 1948 * This function is called while holding p's rq->lock.
1949 */ 1949 */
1950 static int dl_overflow(struct task_struct *p, int policy, 1950 static int dl_overflow(struct task_struct *p, int policy,
1951 const struct sched_attr *attr) 1951 const struct sched_attr *attr)
1952 { 1952 {
1953 1953
1954 struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); 1954 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1955 u64 period = attr->sched_period ?: attr->sched_deadline; 1955 u64 period = attr->sched_period ?: attr->sched_deadline;
1956 u64 runtime = attr->sched_runtime; 1956 u64 runtime = attr->sched_runtime;
1957 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; 1957 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1958 int cpus, err = -1; 1958 int cpus, err = -1;
1959 1959
1960 if (new_bw == p->dl.dl_bw) 1960 if (new_bw == p->dl.dl_bw)
1961 return 0; 1961 return 0;
1962 1962
1963 /* 1963 /*
1964 * Either if a task, enters, leave, or stays -deadline but changes 1964 * Either if a task, enters, leave, or stays -deadline but changes
1965 * its parameters, we may need to update accordingly the total 1965 * its parameters, we may need to update accordingly the total
1966 * allocated bandwidth of the container. 1966 * allocated bandwidth of the container.
1967 */ 1967 */
1968 raw_spin_lock(&dl_b->lock); 1968 raw_spin_lock(&dl_b->lock);
1969 cpus = dl_bw_cpus(task_cpu(p)); 1969 cpus = dl_bw_cpus(task_cpu(p));
1970 if (dl_policy(policy) && !task_has_dl_policy(p) && 1970 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1971 !__dl_overflow(dl_b, cpus, 0, new_bw)) { 1971 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1972 __dl_add(dl_b, new_bw); 1972 __dl_add(dl_b, new_bw);
1973 err = 0; 1973 err = 0;
1974 } else if (dl_policy(policy) && task_has_dl_policy(p) && 1974 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1975 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { 1975 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1976 __dl_clear(dl_b, p->dl.dl_bw); 1976 __dl_clear(dl_b, p->dl.dl_bw);
1977 __dl_add(dl_b, new_bw); 1977 __dl_add(dl_b, new_bw);
1978 err = 0; 1978 err = 0;
1979 } else if (!dl_policy(policy) && task_has_dl_policy(p)) { 1979 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1980 __dl_clear(dl_b, p->dl.dl_bw); 1980 __dl_clear(dl_b, p->dl.dl_bw);
1981 err = 0; 1981 err = 0;
1982 } 1982 }
1983 raw_spin_unlock(&dl_b->lock); 1983 raw_spin_unlock(&dl_b->lock);
1984 1984
1985 return err; 1985 return err;
1986 } 1986 }
1987 1987
1988 extern void init_dl_bw(struct dl_bw *dl_b); 1988 extern void init_dl_bw(struct dl_bw *dl_b);
1989 1989
1990 /* 1990 /*
1991 * wake_up_new_task - wake up a newly created task for the first time. 1991 * wake_up_new_task - wake up a newly created task for the first time.
1992 * 1992 *
1993 * This function will do some initial scheduler statistics housekeeping 1993 * This function will do some initial scheduler statistics housekeeping
1994 * that must be done for every newly created context, then puts the task 1994 * that must be done for every newly created context, then puts the task
1995 * on the runqueue and wakes it. 1995 * on the runqueue and wakes it.
1996 */ 1996 */
1997 void wake_up_new_task(struct task_struct *p) 1997 void wake_up_new_task(struct task_struct *p)
1998 { 1998 {
1999 unsigned long flags; 1999 unsigned long flags;
2000 struct rq *rq; 2000 struct rq *rq;
2001 2001
2002 raw_spin_lock_irqsave(&p->pi_lock, flags); 2002 raw_spin_lock_irqsave(&p->pi_lock, flags);
2003 #ifdef CONFIG_SMP 2003 #ifdef CONFIG_SMP
2004 /* 2004 /*
2005 * Fork balancing, do it here and not earlier because: 2005 * Fork balancing, do it here and not earlier because:
2006 * - cpus_allowed can change in the fork path 2006 * - cpus_allowed can change in the fork path
2007 * - any previously selected cpu might disappear through hotplug 2007 * - any previously selected cpu might disappear through hotplug
2008 */ 2008 */
2009 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); 2009 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2010 #endif 2010 #endif
2011 2011
2012 /* Initialize new task's runnable average */ 2012 /* Initialize new task's runnable average */
2013 init_task_runnable_average(p); 2013 init_task_runnable_average(p);
2014 rq = __task_rq_lock(p); 2014 rq = __task_rq_lock(p);
2015 activate_task(rq, p, 0); 2015 activate_task(rq, p, 0);
2016 p->on_rq = 1; 2016 p->on_rq = 1;
2017 trace_sched_wakeup_new(p, true); 2017 trace_sched_wakeup_new(p, true);
2018 check_preempt_curr(rq, p, WF_FORK); 2018 check_preempt_curr(rq, p, WF_FORK);
2019 #ifdef CONFIG_SMP 2019 #ifdef CONFIG_SMP
2020 if (p->sched_class->task_woken) 2020 if (p->sched_class->task_woken)
2021 p->sched_class->task_woken(rq, p); 2021 p->sched_class->task_woken(rq, p);
2022 #endif 2022 #endif
2023 task_rq_unlock(rq, p, &flags); 2023 task_rq_unlock(rq, p, &flags);
2024 } 2024 }
2025 2025
2026 #ifdef CONFIG_PREEMPT_NOTIFIERS 2026 #ifdef CONFIG_PREEMPT_NOTIFIERS
2027 2027
2028 /** 2028 /**
2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2030 * @notifier: notifier struct to register 2030 * @notifier: notifier struct to register
2031 */ 2031 */
2032 void preempt_notifier_register(struct preempt_notifier *notifier) 2032 void preempt_notifier_register(struct preempt_notifier *notifier)
2033 { 2033 {
2034 hlist_add_head(&notifier->link, &current->preempt_notifiers); 2034 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2035 } 2035 }
2036 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2036 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2037 2037
2038 /** 2038 /**
2039 * preempt_notifier_unregister - no longer interested in preemption notifications 2039 * preempt_notifier_unregister - no longer interested in preemption notifications
2040 * @notifier: notifier struct to unregister 2040 * @notifier: notifier struct to unregister
2041 * 2041 *
2042 * This is safe to call from within a preemption notifier. 2042 * This is safe to call from within a preemption notifier.
2043 */ 2043 */
2044 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2044 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2045 { 2045 {
2046 hlist_del(&notifier->link); 2046 hlist_del(&notifier->link);
2047 } 2047 }
2048 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2048 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2049 2049
2050 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2050 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051 { 2051 {
2052 struct preempt_notifier *notifier; 2052 struct preempt_notifier *notifier;
2053 2053
2054 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2054 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2055 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2055 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2056 } 2056 }
2057 2057
2058 static void 2058 static void
2059 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2059 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2060 struct task_struct *next) 2060 struct task_struct *next)
2061 { 2061 {
2062 struct preempt_notifier *notifier; 2062 struct preempt_notifier *notifier;
2063 2063
2064 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 2064 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2065 notifier->ops->sched_out(notifier, next); 2065 notifier->ops->sched_out(notifier, next);
2066 } 2066 }
2067 2067
2068 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2068 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2069 2069
2070 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2070 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2071 { 2071 {
2072 } 2072 }
2073 2073
2074 static void 2074 static void
2075 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2075 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076 struct task_struct *next) 2076 struct task_struct *next)
2077 { 2077 {
2078 } 2078 }
2079 2079
2080 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2080 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2081 2081
2082 /** 2082 /**
2083 * prepare_task_switch - prepare to switch tasks 2083 * prepare_task_switch - prepare to switch tasks
2084 * @rq: the runqueue preparing to switch 2084 * @rq: the runqueue preparing to switch
2085 * @prev: the current task that is being switched out 2085 * @prev: the current task that is being switched out
2086 * @next: the task we are going to switch to. 2086 * @next: the task we are going to switch to.
2087 * 2087 *
2088 * This is called with the rq lock held and interrupts off. It must 2088 * This is called with the rq lock held and interrupts off. It must
2089 * be paired with a subsequent finish_task_switch after the context 2089 * be paired with a subsequent finish_task_switch after the context
2090 * switch. 2090 * switch.
2091 * 2091 *
2092 * prepare_task_switch sets up locking and calls architecture specific 2092 * prepare_task_switch sets up locking and calls architecture specific
2093 * hooks. 2093 * hooks.
2094 */ 2094 */
2095 static inline void 2095 static inline void
2096 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2096 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2097 struct task_struct *next) 2097 struct task_struct *next)
2098 { 2098 {
2099 trace_sched_switch(prev, next); 2099 trace_sched_switch(prev, next);
2100 sched_info_switch(rq, prev, next); 2100 sched_info_switch(rq, prev, next);
2101 perf_event_task_sched_out(prev, next); 2101 perf_event_task_sched_out(prev, next);
2102 fire_sched_out_preempt_notifiers(prev, next); 2102 fire_sched_out_preempt_notifiers(prev, next);
2103 prepare_lock_switch(rq, next); 2103 prepare_lock_switch(rq, next);
2104 prepare_arch_switch(next); 2104 prepare_arch_switch(next);
2105 } 2105 }
2106 2106
2107 /** 2107 /**
2108 * finish_task_switch - clean up after a task-switch 2108 * finish_task_switch - clean up after a task-switch
2109 * @rq: runqueue associated with task-switch 2109 * @rq: runqueue associated with task-switch
2110 * @prev: the thread we just switched away from. 2110 * @prev: the thread we just switched away from.
2111 * 2111 *
2112 * finish_task_switch must be called after the context switch, paired 2112 * finish_task_switch must be called after the context switch, paired
2113 * with a prepare_task_switch call before the context switch. 2113 * with a prepare_task_switch call before the context switch.
2114 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2114 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2115 * and do any other architecture-specific cleanup actions. 2115 * and do any other architecture-specific cleanup actions.
2116 * 2116 *
2117 * Note that we may have delayed dropping an mm in context_switch(). If 2117 * Note that we may have delayed dropping an mm in context_switch(). If
2118 * so, we finish that here outside of the runqueue lock. (Doing it 2118 * so, we finish that here outside of the runqueue lock. (Doing it
2119 * with the lock held can cause deadlocks; see schedule() for 2119 * with the lock held can cause deadlocks; see schedule() for
2120 * details.) 2120 * details.)
2121 */ 2121 */
2122 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 2122 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2123 __releases(rq->lock) 2123 __releases(rq->lock)
2124 { 2124 {
2125 struct mm_struct *mm = rq->prev_mm; 2125 struct mm_struct *mm = rq->prev_mm;
2126 long prev_state; 2126 long prev_state;
2127 2127
2128 rq->prev_mm = NULL; 2128 rq->prev_mm = NULL;
2129 2129
2130 /* 2130 /*
2131 * A task struct has one reference for the use as "current". 2131 * A task struct has one reference for the use as "current".
2132 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2132 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2133 * schedule one last time. The schedule call will never return, and 2133 * schedule one last time. The schedule call will never return, and
2134 * the scheduled task must drop that reference. 2134 * the scheduled task must drop that reference.
2135 * The test for TASK_DEAD must occur while the runqueue locks are 2135 * The test for TASK_DEAD must occur while the runqueue locks are
2136 * still held, otherwise prev could be scheduled on another cpu, die 2136 * still held, otherwise prev could be scheduled on another cpu, die
2137 * there before we look at prev->state, and then the reference would 2137 * there before we look at prev->state, and then the reference would
2138 * be dropped twice. 2138 * be dropped twice.
2139 * Manfred Spraul <manfred@colorfullife.com> 2139 * Manfred Spraul <manfred@colorfullife.com>
2140 */ 2140 */
2141 prev_state = prev->state; 2141 prev_state = prev->state;
2142 vtime_task_switch(prev); 2142 vtime_task_switch(prev);
2143 finish_arch_switch(prev); 2143 finish_arch_switch(prev);
2144 perf_event_task_sched_in(prev, current); 2144 perf_event_task_sched_in(prev, current);
2145 finish_lock_switch(rq, prev); 2145 finish_lock_switch(rq, prev);
2146 finish_arch_post_lock_switch(); 2146 finish_arch_post_lock_switch();
2147 2147
2148 fire_sched_in_preempt_notifiers(current); 2148 fire_sched_in_preempt_notifiers(current);
2149 if (mm) 2149 if (mm)
2150 mmdrop(mm); 2150 mmdrop(mm);
2151 if (unlikely(prev_state == TASK_DEAD)) { 2151 if (unlikely(prev_state == TASK_DEAD)) {
2152 if (prev->sched_class->task_dead) 2152 if (prev->sched_class->task_dead)
2153 prev->sched_class->task_dead(prev); 2153 prev->sched_class->task_dead(prev);
2154 2154
2155 /* 2155 /*
2156 * Remove function-return probe instances associated with this 2156 * Remove function-return probe instances associated with this
2157 * task and put them back on the free list. 2157 * task and put them back on the free list.
2158 */ 2158 */
2159 kprobe_flush_task(prev); 2159 kprobe_flush_task(prev);
2160 put_task_struct(prev); 2160 put_task_struct(prev);
2161 } 2161 }
2162 2162
2163 tick_nohz_task_switch(current); 2163 tick_nohz_task_switch(current);
2164 } 2164 }
2165 2165
2166 #ifdef CONFIG_SMP 2166 #ifdef CONFIG_SMP
2167 2167
2168 /* rq->lock is NOT held, but preemption is disabled */ 2168 /* rq->lock is NOT held, but preemption is disabled */
2169 static inline void post_schedule(struct rq *rq) 2169 static inline void post_schedule(struct rq *rq)
2170 { 2170 {
2171 if (rq->post_schedule) { 2171 if (rq->post_schedule) {
2172 unsigned long flags; 2172 unsigned long flags;
2173 2173
2174 raw_spin_lock_irqsave(&rq->lock, flags); 2174 raw_spin_lock_irqsave(&rq->lock, flags);
2175 if (rq->curr->sched_class->post_schedule) 2175 if (rq->curr->sched_class->post_schedule)
2176 rq->curr->sched_class->post_schedule(rq); 2176 rq->curr->sched_class->post_schedule(rq);
2177 raw_spin_unlock_irqrestore(&rq->lock, flags); 2177 raw_spin_unlock_irqrestore(&rq->lock, flags);
2178 2178
2179 rq->post_schedule = 0; 2179 rq->post_schedule = 0;
2180 } 2180 }
2181 } 2181 }
2182 2182
2183 #else 2183 #else
2184 2184
2185 static inline void post_schedule(struct rq *rq) 2185 static inline void post_schedule(struct rq *rq)
2186 { 2186 {
2187 } 2187 }
2188 2188
2189 #endif 2189 #endif
2190 2190
2191 /** 2191 /**
2192 * schedule_tail - first thing a freshly forked thread must call. 2192 * schedule_tail - first thing a freshly forked thread must call.
2193 * @prev: the thread we just switched away from. 2193 * @prev: the thread we just switched away from.
2194 */ 2194 */
2195 asmlinkage void schedule_tail(struct task_struct *prev) 2195 asmlinkage void schedule_tail(struct task_struct *prev)
2196 __releases(rq->lock) 2196 __releases(rq->lock)
2197 { 2197 {
2198 struct rq *rq = this_rq(); 2198 struct rq *rq = this_rq();
2199 2199
2200 finish_task_switch(rq, prev); 2200 finish_task_switch(rq, prev);
2201 2201
2202 /* 2202 /*
2203 * FIXME: do we need to worry about rq being invalidated by the 2203 * FIXME: do we need to worry about rq being invalidated by the
2204 * task_switch? 2204 * task_switch?
2205 */ 2205 */
2206 post_schedule(rq); 2206 post_schedule(rq);
2207 2207
2208 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 2208 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2209 /* In this case, finish_task_switch does not reenable preemption */ 2209 /* In this case, finish_task_switch does not reenable preemption */
2210 preempt_enable(); 2210 preempt_enable();
2211 #endif 2211 #endif
2212 if (current->set_child_tid) 2212 if (current->set_child_tid)
2213 put_user(task_pid_vnr(current), current->set_child_tid); 2213 put_user(task_pid_vnr(current), current->set_child_tid);
2214 } 2214 }
2215 2215
2216 /* 2216 /*
2217 * context_switch - switch to the new MM and the new 2217 * context_switch - switch to the new MM and the new
2218 * thread's register state. 2218 * thread's register state.
2219 */ 2219 */
2220 static inline void 2220 static inline void
2221 context_switch(struct rq *rq, struct task_struct *prev, 2221 context_switch(struct rq *rq, struct task_struct *prev,
2222 struct task_struct *next) 2222 struct task_struct *next)
2223 { 2223 {
2224 struct mm_struct *mm, *oldmm; 2224 struct mm_struct *mm, *oldmm;
2225 2225
2226 prepare_task_switch(rq, prev, next); 2226 prepare_task_switch(rq, prev, next);
2227 2227
2228 mm = next->mm; 2228 mm = next->mm;
2229 oldmm = prev->active_mm; 2229 oldmm = prev->active_mm;
2230 /* 2230 /*
2231 * For paravirt, this is coupled with an exit in switch_to to 2231 * For paravirt, this is coupled with an exit in switch_to to
2232 * combine the page table reload and the switch backend into 2232 * combine the page table reload and the switch backend into
2233 * one hypercall. 2233 * one hypercall.
2234 */ 2234 */
2235 arch_start_context_switch(prev); 2235 arch_start_context_switch(prev);
2236 2236
2237 if (!mm) { 2237 if (!mm) {
2238 next->active_mm = oldmm; 2238 next->active_mm = oldmm;
2239 atomic_inc(&oldmm->mm_count); 2239 atomic_inc(&oldmm->mm_count);
2240 enter_lazy_tlb(oldmm, next); 2240 enter_lazy_tlb(oldmm, next);
2241 } else 2241 } else
2242 switch_mm(oldmm, mm, next); 2242 switch_mm(oldmm, mm, next);
2243 2243
2244 if (!prev->mm) { 2244 if (!prev->mm) {
2245 prev->active_mm = NULL; 2245 prev->active_mm = NULL;
2246 rq->prev_mm = oldmm; 2246 rq->prev_mm = oldmm;
2247 } 2247 }
2248 /* 2248 /*
2249 * Since the runqueue lock will be released by the next 2249 * Since the runqueue lock will be released by the next
2250 * task (which is an invalid locking op but in the case 2250 * task (which is an invalid locking op but in the case
2251 * of the scheduler it's an obvious special-case), so we 2251 * of the scheduler it's an obvious special-case), so we
2252 * do an early lockdep release here: 2252 * do an early lockdep release here:
2253 */ 2253 */
2254 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2254 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2255 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2255 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2256 #endif 2256 #endif
2257 2257
2258 context_tracking_task_switch(prev, next); 2258 context_tracking_task_switch(prev, next);
2259 /* Here we just switch the register state and the stack. */ 2259 /* Here we just switch the register state and the stack. */
2260 switch_to(prev, next, prev); 2260 switch_to(prev, next, prev);
2261 2261
2262 barrier(); 2262 barrier();
2263 /* 2263 /*
2264 * this_rq must be evaluated again because prev may have moved 2264 * this_rq must be evaluated again because prev may have moved
2265 * CPUs since it called schedule(), thus the 'rq' on its stack 2265 * CPUs since it called schedule(), thus the 'rq' on its stack
2266 * frame will be invalid. 2266 * frame will be invalid.
2267 */ 2267 */
2268 finish_task_switch(this_rq(), prev); 2268 finish_task_switch(this_rq(), prev);
2269 } 2269 }
2270 2270
2271 /* 2271 /*
2272 * nr_running and nr_context_switches: 2272 * nr_running and nr_context_switches:
2273 * 2273 *
2274 * externally visible scheduler statistics: current number of runnable 2274 * externally visible scheduler statistics: current number of runnable
2275 * threads, total number of context switches performed since bootup. 2275 * threads, total number of context switches performed since bootup.
2276 */ 2276 */
2277 unsigned long nr_running(void) 2277 unsigned long nr_running(void)
2278 { 2278 {
2279 unsigned long i, sum = 0; 2279 unsigned long i, sum = 0;
2280 2280
2281 for_each_online_cpu(i) 2281 for_each_online_cpu(i)
2282 sum += cpu_rq(i)->nr_running; 2282 sum += cpu_rq(i)->nr_running;
2283 2283
2284 return sum; 2284 return sum;
2285 } 2285 }
2286 2286
2287 unsigned long long nr_context_switches(void) 2287 unsigned long long nr_context_switches(void)
2288 { 2288 {
2289 int i; 2289 int i;
2290 unsigned long long sum = 0; 2290 unsigned long long sum = 0;
2291 2291
2292 for_each_possible_cpu(i) 2292 for_each_possible_cpu(i)
2293 sum += cpu_rq(i)->nr_switches; 2293 sum += cpu_rq(i)->nr_switches;
2294 2294
2295 return sum; 2295 return sum;
2296 } 2296 }
2297 2297
2298 unsigned long nr_iowait(void) 2298 unsigned long nr_iowait(void)
2299 { 2299 {
2300 unsigned long i, sum = 0; 2300 unsigned long i, sum = 0;
2301 2301
2302 for_each_possible_cpu(i) 2302 for_each_possible_cpu(i)
2303 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2303 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2304 2304
2305 return sum; 2305 return sum;
2306 } 2306 }
2307 2307
2308 unsigned long nr_iowait_cpu(int cpu) 2308 unsigned long nr_iowait_cpu(int cpu)
2309 { 2309 {
2310 struct rq *this = cpu_rq(cpu); 2310 struct rq *this = cpu_rq(cpu);
2311 return atomic_read(&this->nr_iowait); 2311 return atomic_read(&this->nr_iowait);
2312 } 2312 }
2313 2313
2314 #ifdef CONFIG_SMP 2314 #ifdef CONFIG_SMP
2315 2315
2316 /* 2316 /*
2317 * sched_exec - execve() is a valuable balancing opportunity, because at 2317 * sched_exec - execve() is a valuable balancing opportunity, because at
2318 * this point the task has the smallest effective memory and cache footprint. 2318 * this point the task has the smallest effective memory and cache footprint.
2319 */ 2319 */
2320 void sched_exec(void) 2320 void sched_exec(void)
2321 { 2321 {
2322 struct task_struct *p = current; 2322 struct task_struct *p = current;
2323 unsigned long flags; 2323 unsigned long flags;
2324 int dest_cpu; 2324 int dest_cpu;
2325 2325
2326 raw_spin_lock_irqsave(&p->pi_lock, flags); 2326 raw_spin_lock_irqsave(&p->pi_lock, flags);
2327 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); 2327 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2328 if (dest_cpu == smp_processor_id()) 2328 if (dest_cpu == smp_processor_id())
2329 goto unlock; 2329 goto unlock;
2330 2330
2331 if (likely(cpu_active(dest_cpu))) { 2331 if (likely(cpu_active(dest_cpu))) {
2332 struct migration_arg arg = { p, dest_cpu }; 2332 struct migration_arg arg = { p, dest_cpu };
2333 2333
2334 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2334 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2335 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 2335 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2336 return; 2336 return;
2337 } 2337 }
2338 unlock: 2338 unlock:
2339 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 2339 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2340 } 2340 }
2341 2341
2342 #endif 2342 #endif
2343 2343
2344 DEFINE_PER_CPU(struct kernel_stat, kstat); 2344 DEFINE_PER_CPU(struct kernel_stat, kstat);
2345 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 2345 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2346 2346
2347 EXPORT_PER_CPU_SYMBOL(kstat); 2347 EXPORT_PER_CPU_SYMBOL(kstat);
2348 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 2348 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2349 2349
2350 /* 2350 /*
2351 * Return any ns on the sched_clock that have not yet been accounted in 2351 * Return any ns on the sched_clock that have not yet been accounted in
2352 * @p in case that task is currently running. 2352 * @p in case that task is currently running.
2353 * 2353 *
2354 * Called with task_rq_lock() held on @rq. 2354 * Called with task_rq_lock() held on @rq.
2355 */ 2355 */
2356 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 2356 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2357 { 2357 {
2358 u64 ns = 0; 2358 u64 ns = 0;
2359 2359
2360 if (task_current(rq, p)) { 2360 if (task_current(rq, p)) {
2361 update_rq_clock(rq); 2361 update_rq_clock(rq);
2362 ns = rq_clock_task(rq) - p->se.exec_start; 2362 ns = rq_clock_task(rq) - p->se.exec_start;
2363 if ((s64)ns < 0) 2363 if ((s64)ns < 0)
2364 ns = 0; 2364 ns = 0;
2365 } 2365 }
2366 2366
2367 return ns; 2367 return ns;
2368 } 2368 }
2369 2369
2370 unsigned long long task_delta_exec(struct task_struct *p) 2370 unsigned long long task_delta_exec(struct task_struct *p)
2371 { 2371 {
2372 unsigned long flags; 2372 unsigned long flags;
2373 struct rq *rq; 2373 struct rq *rq;
2374 u64 ns = 0; 2374 u64 ns = 0;
2375 2375
2376 rq = task_rq_lock(p, &flags); 2376 rq = task_rq_lock(p, &flags);
2377 ns = do_task_delta_exec(p, rq); 2377 ns = do_task_delta_exec(p, rq);
2378 task_rq_unlock(rq, p, &flags); 2378 task_rq_unlock(rq, p, &flags);
2379 2379
2380 return ns; 2380 return ns;
2381 } 2381 }
2382 2382
2383 /* 2383 /*
2384 * Return accounted runtime for the task. 2384 * Return accounted runtime for the task.
2385 * In case the task is currently running, return the runtime plus current's 2385 * In case the task is currently running, return the runtime plus current's
2386 * pending runtime that have not been accounted yet. 2386 * pending runtime that have not been accounted yet.
2387 */ 2387 */
2388 unsigned long long task_sched_runtime(struct task_struct *p) 2388 unsigned long long task_sched_runtime(struct task_struct *p)
2389 { 2389 {
2390 unsigned long flags; 2390 unsigned long flags;
2391 struct rq *rq; 2391 struct rq *rq;
2392 u64 ns = 0; 2392 u64 ns = 0;
2393 2393
2394 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 2394 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2395 /* 2395 /*
2396 * 64-bit doesn't need locks to atomically read a 64bit value. 2396 * 64-bit doesn't need locks to atomically read a 64bit value.
2397 * So we have a optimization chance when the task's delta_exec is 0. 2397 * So we have a optimization chance when the task's delta_exec is 0.
2398 * Reading ->on_cpu is racy, but this is ok. 2398 * Reading ->on_cpu is racy, but this is ok.
2399 * 2399 *
2400 * If we race with it leaving cpu, we'll take a lock. So we're correct. 2400 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2401 * If we race with it entering cpu, unaccounted time is 0. This is 2401 * If we race with it entering cpu, unaccounted time is 0. This is
2402 * indistinguishable from the read occurring a few cycles earlier. 2402 * indistinguishable from the read occurring a few cycles earlier.
2403 */ 2403 */
2404 if (!p->on_cpu) 2404 if (!p->on_cpu)
2405 return p->se.sum_exec_runtime; 2405 return p->se.sum_exec_runtime;
2406 #endif 2406 #endif
2407 2407
2408 rq = task_rq_lock(p, &flags); 2408 rq = task_rq_lock(p, &flags);
2409 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 2409 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2410 task_rq_unlock(rq, p, &flags); 2410 task_rq_unlock(rq, p, &flags);
2411 2411
2412 return ns; 2412 return ns;
2413 } 2413 }
2414 2414
2415 /* 2415 /*
2416 * This function gets called by the timer code, with HZ frequency. 2416 * This function gets called by the timer code, with HZ frequency.
2417 * We call it with interrupts disabled. 2417 * We call it with interrupts disabled.
2418 */ 2418 */
2419 void scheduler_tick(void) 2419 void scheduler_tick(void)
2420 { 2420 {
2421 int cpu = smp_processor_id(); 2421 int cpu = smp_processor_id();
2422 struct rq *rq = cpu_rq(cpu); 2422 struct rq *rq = cpu_rq(cpu);
2423 struct task_struct *curr = rq->curr; 2423 struct task_struct *curr = rq->curr;
2424 2424
2425 sched_clock_tick(); 2425 sched_clock_tick();
2426 2426
2427 raw_spin_lock(&rq->lock); 2427 raw_spin_lock(&rq->lock);
2428 update_rq_clock(rq); 2428 update_rq_clock(rq);
2429 curr->sched_class->task_tick(rq, curr, 0); 2429 curr->sched_class->task_tick(rq, curr, 0);
2430 update_cpu_load_active(rq); 2430 update_cpu_load_active(rq);
2431 raw_spin_unlock(&rq->lock); 2431 raw_spin_unlock(&rq->lock);
2432 2432
2433 perf_event_task_tick(); 2433 perf_event_task_tick();
2434 2434
2435 #ifdef CONFIG_SMP 2435 #ifdef CONFIG_SMP
2436 rq->idle_balance = idle_cpu(cpu); 2436 rq->idle_balance = idle_cpu(cpu);
2437 trigger_load_balance(rq); 2437 trigger_load_balance(rq);
2438 #endif 2438 #endif
2439 rq_last_tick_reset(rq); 2439 rq_last_tick_reset(rq);
2440 } 2440 }
2441 2441
2442 #ifdef CONFIG_NO_HZ_FULL 2442 #ifdef CONFIG_NO_HZ_FULL
2443 /** 2443 /**
2444 * scheduler_tick_max_deferment 2444 * scheduler_tick_max_deferment
2445 * 2445 *
2446 * Keep at least one tick per second when a single 2446 * Keep at least one tick per second when a single
2447 * active task is running because the scheduler doesn't 2447 * active task is running because the scheduler doesn't
2448 * yet completely support full dynticks environment. 2448 * yet completely support full dynticks environment.
2449 * 2449 *
2450 * This makes sure that uptime, CFS vruntime, load 2450 * This makes sure that uptime, CFS vruntime, load
2451 * balancing, etc... continue to move forward, even 2451 * balancing, etc... continue to move forward, even
2452 * with a very low granularity. 2452 * with a very low granularity.
2453 * 2453 *
2454 * Return: Maximum deferment in nanoseconds. 2454 * Return: Maximum deferment in nanoseconds.
2455 */ 2455 */
2456 u64 scheduler_tick_max_deferment(void) 2456 u64 scheduler_tick_max_deferment(void)
2457 { 2457 {
2458 struct rq *rq = this_rq(); 2458 struct rq *rq = this_rq();
2459 unsigned long next, now = ACCESS_ONCE(jiffies); 2459 unsigned long next, now = ACCESS_ONCE(jiffies);
2460 2460
2461 next = rq->last_sched_tick + HZ; 2461 next = rq->last_sched_tick + HZ;
2462 2462
2463 if (time_before_eq(next, now)) 2463 if (time_before_eq(next, now))
2464 return 0; 2464 return 0;
2465 2465
2466 return jiffies_to_nsecs(next - now); 2466 return jiffies_to_nsecs(next - now);
2467 } 2467 }
2468 #endif 2468 #endif
2469 2469
2470 notrace unsigned long get_parent_ip(unsigned long addr) 2470 notrace unsigned long get_parent_ip(unsigned long addr)
2471 { 2471 {
2472 if (in_lock_functions(addr)) { 2472 if (in_lock_functions(addr)) {
2473 addr = CALLER_ADDR2; 2473 addr = CALLER_ADDR2;
2474 if (in_lock_functions(addr)) 2474 if (in_lock_functions(addr))
2475 addr = CALLER_ADDR3; 2475 addr = CALLER_ADDR3;
2476 } 2476 }
2477 return addr; 2477 return addr;
2478 } 2478 }
2479 2479
2480 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 2480 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2481 defined(CONFIG_PREEMPT_TRACER)) 2481 defined(CONFIG_PREEMPT_TRACER))
2482 2482
2483 void __kprobes preempt_count_add(int val) 2483 void __kprobes preempt_count_add(int val)
2484 { 2484 {
2485 #ifdef CONFIG_DEBUG_PREEMPT 2485 #ifdef CONFIG_DEBUG_PREEMPT
2486 /* 2486 /*
2487 * Underflow? 2487 * Underflow?
2488 */ 2488 */
2489 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 2489 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2490 return; 2490 return;
2491 #endif 2491 #endif
2492 __preempt_count_add(val); 2492 __preempt_count_add(val);
2493 #ifdef CONFIG_DEBUG_PREEMPT 2493 #ifdef CONFIG_DEBUG_PREEMPT
2494 /* 2494 /*
2495 * Spinlock count overflowing soon? 2495 * Spinlock count overflowing soon?
2496 */ 2496 */
2497 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 2497 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2498 PREEMPT_MASK - 10); 2498 PREEMPT_MASK - 10);
2499 #endif 2499 #endif
2500 if (preempt_count() == val) { 2500 if (preempt_count() == val) {
2501 unsigned long ip = get_parent_ip(CALLER_ADDR1); 2501 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2502 #ifdef CONFIG_DEBUG_PREEMPT 2502 #ifdef CONFIG_DEBUG_PREEMPT
2503 current->preempt_disable_ip = ip; 2503 current->preempt_disable_ip = ip;
2504 #endif 2504 #endif
2505 trace_preempt_off(CALLER_ADDR0, ip); 2505 trace_preempt_off(CALLER_ADDR0, ip);
2506 } 2506 }
2507 } 2507 }
2508 EXPORT_SYMBOL(preempt_count_add); 2508 EXPORT_SYMBOL(preempt_count_add);
2509 2509
2510 void __kprobes preempt_count_sub(int val) 2510 void __kprobes preempt_count_sub(int val)
2511 { 2511 {
2512 #ifdef CONFIG_DEBUG_PREEMPT 2512 #ifdef CONFIG_DEBUG_PREEMPT
2513 /* 2513 /*
2514 * Underflow? 2514 * Underflow?
2515 */ 2515 */
2516 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 2516 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2517 return; 2517 return;
2518 /* 2518 /*
2519 * Is the spinlock portion underflowing? 2519 * Is the spinlock portion underflowing?
2520 */ 2520 */
2521 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 2521 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2522 !(preempt_count() & PREEMPT_MASK))) 2522 !(preempt_count() & PREEMPT_MASK)))
2523 return; 2523 return;
2524 #endif 2524 #endif
2525 2525
2526 if (preempt_count() == val) 2526 if (preempt_count() == val)
2527 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 2527 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2528 __preempt_count_sub(val); 2528 __preempt_count_sub(val);
2529 } 2529 }
2530 EXPORT_SYMBOL(preempt_count_sub); 2530 EXPORT_SYMBOL(preempt_count_sub);
2531 2531
2532 #endif 2532 #endif
2533 2533
2534 /* 2534 /*
2535 * Print scheduling while atomic bug: 2535 * Print scheduling while atomic bug:
2536 */ 2536 */
2537 static noinline void __schedule_bug(struct task_struct *prev) 2537 static noinline void __schedule_bug(struct task_struct *prev)
2538 { 2538 {
2539 if (oops_in_progress) 2539 if (oops_in_progress)
2540 return; 2540 return;
2541 2541
2542 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 2542 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2543 prev->comm, prev->pid, preempt_count()); 2543 prev->comm, prev->pid, preempt_count());
2544 2544
2545 debug_show_held_locks(prev); 2545 debug_show_held_locks(prev);
2546 print_modules(); 2546 print_modules();
2547 if (irqs_disabled()) 2547 if (irqs_disabled())
2548 print_irqtrace_events(prev); 2548 print_irqtrace_events(prev);
2549 #ifdef CONFIG_DEBUG_PREEMPT 2549 #ifdef CONFIG_DEBUG_PREEMPT
2550 if (in_atomic_preempt_off()) { 2550 if (in_atomic_preempt_off()) {
2551 pr_err("Preemption disabled at:"); 2551 pr_err("Preemption disabled at:");
2552 print_ip_sym(current->preempt_disable_ip); 2552 print_ip_sym(current->preempt_disable_ip);
2553 pr_cont("\n"); 2553 pr_cont("\n");
2554 } 2554 }
2555 #endif 2555 #endif
2556 dump_stack(); 2556 dump_stack();
2557 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 2557 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2558 } 2558 }
2559 2559
2560 /* 2560 /*
2561 * Various schedule()-time debugging checks and statistics: 2561 * Various schedule()-time debugging checks and statistics:
2562 */ 2562 */
2563 static inline void schedule_debug(struct task_struct *prev) 2563 static inline void schedule_debug(struct task_struct *prev)
2564 { 2564 {
2565 /* 2565 /*
2566 * Test if we are atomic. Since do_exit() needs to call into 2566 * Test if we are atomic. Since do_exit() needs to call into
2567 * schedule() atomically, we ignore that path. Otherwise whine 2567 * schedule() atomically, we ignore that path. Otherwise whine
2568 * if we are scheduling when we should not. 2568 * if we are scheduling when we should not.
2569 */ 2569 */
2570 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) 2570 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2571 __schedule_bug(prev); 2571 __schedule_bug(prev);
2572 rcu_sleep_check(); 2572 rcu_sleep_check();
2573 2573
2574 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 2574 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2575 2575
2576 schedstat_inc(this_rq(), sched_count); 2576 schedstat_inc(this_rq(), sched_count);
2577 } 2577 }
2578 2578
2579 /* 2579 /*
2580 * Pick up the highest-prio task: 2580 * Pick up the highest-prio task:
2581 */ 2581 */
2582 static inline struct task_struct * 2582 static inline struct task_struct *
2583 pick_next_task(struct rq *rq, struct task_struct *prev) 2583 pick_next_task(struct rq *rq, struct task_struct *prev)
2584 { 2584 {
2585 const struct sched_class *class = &fair_sched_class; 2585 const struct sched_class *class = &fair_sched_class;
2586 struct task_struct *p; 2586 struct task_struct *p;
2587 2587
2588 /* 2588 /*
2589 * Optimization: we know that if all tasks are in 2589 * Optimization: we know that if all tasks are in
2590 * the fair class we can call that function directly: 2590 * the fair class we can call that function directly:
2591 */ 2591 */
2592 if (likely(prev->sched_class == class && 2592 if (likely(prev->sched_class == class &&
2593 rq->nr_running == rq->cfs.h_nr_running)) { 2593 rq->nr_running == rq->cfs.h_nr_running)) {
2594 p = fair_sched_class.pick_next_task(rq, prev); 2594 p = fair_sched_class.pick_next_task(rq, prev);
2595 if (unlikely(p == RETRY_TASK)) 2595 if (unlikely(p == RETRY_TASK))
2596 goto again; 2596 goto again;
2597 2597
2598 /* assumes fair_sched_class->next == idle_sched_class */ 2598 /* assumes fair_sched_class->next == idle_sched_class */
2599 if (unlikely(!p)) 2599 if (unlikely(!p))
2600 p = idle_sched_class.pick_next_task(rq, prev); 2600 p = idle_sched_class.pick_next_task(rq, prev);
2601 2601
2602 return p; 2602 return p;
2603 } 2603 }
2604 2604
2605 again: 2605 again:
2606 for_each_class(class) { 2606 for_each_class(class) {
2607 p = class->pick_next_task(rq, prev); 2607 p = class->pick_next_task(rq, prev);
2608 if (p) { 2608 if (p) {
2609 if (unlikely(p == RETRY_TASK)) 2609 if (unlikely(p == RETRY_TASK))
2610 goto again; 2610 goto again;
2611 return p; 2611 return p;
2612 } 2612 }
2613 } 2613 }
2614 2614
2615 BUG(); /* the idle class will always have a runnable task */ 2615 BUG(); /* the idle class will always have a runnable task */
2616 } 2616 }
2617 2617
2618 /* 2618 /*
2619 * __schedule() is the main scheduler function. 2619 * __schedule() is the main scheduler function.
2620 * 2620 *
2621 * The main means of driving the scheduler and thus entering this function are: 2621 * The main means of driving the scheduler and thus entering this function are:
2622 * 2622 *
2623 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 2623 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2624 * 2624 *
2625 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 2625 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2626 * paths. For example, see arch/x86/entry_64.S. 2626 * paths. For example, see arch/x86/entry_64.S.
2627 * 2627 *
2628 * To drive preemption between tasks, the scheduler sets the flag in timer 2628 * To drive preemption between tasks, the scheduler sets the flag in timer
2629 * interrupt handler scheduler_tick(). 2629 * interrupt handler scheduler_tick().
2630 * 2630 *
2631 * 3. Wakeups don't really cause entry into schedule(). They add a 2631 * 3. Wakeups don't really cause entry into schedule(). They add a
2632 * task to the run-queue and that's it. 2632 * task to the run-queue and that's it.
2633 * 2633 *
2634 * Now, if the new task added to the run-queue preempts the current 2634 * Now, if the new task added to the run-queue preempts the current
2635 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 2635 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2636 * called on the nearest possible occasion: 2636 * called on the nearest possible occasion:
2637 * 2637 *
2638 * - If the kernel is preemptible (CONFIG_PREEMPT=y): 2638 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2639 * 2639 *
2640 * - in syscall or exception context, at the next outmost 2640 * - in syscall or exception context, at the next outmost
2641 * preempt_enable(). (this might be as soon as the wake_up()'s 2641 * preempt_enable(). (this might be as soon as the wake_up()'s
2642 * spin_unlock()!) 2642 * spin_unlock()!)
2643 * 2643 *
2644 * - in IRQ context, return from interrupt-handler to 2644 * - in IRQ context, return from interrupt-handler to
2645 * preemptible context 2645 * preemptible context
2646 * 2646 *
2647 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set) 2647 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2648 * then at the next: 2648 * then at the next:
2649 * 2649 *
2650 * - cond_resched() call 2650 * - cond_resched() call
2651 * - explicit schedule() call 2651 * - explicit schedule() call
2652 * - return from syscall or exception to user-space 2652 * - return from syscall or exception to user-space
2653 * - return from interrupt-handler to user-space 2653 * - return from interrupt-handler to user-space
2654 */ 2654 */
2655 static void __sched __schedule(void) 2655 static void __sched __schedule(void)
2656 { 2656 {
2657 struct task_struct *prev, *next; 2657 struct task_struct *prev, *next;
2658 unsigned long *switch_count; 2658 unsigned long *switch_count;
2659 struct rq *rq; 2659 struct rq *rq;
2660 int cpu; 2660 int cpu;
2661 2661
2662 need_resched: 2662 need_resched:
2663 preempt_disable(); 2663 preempt_disable();
2664 cpu = smp_processor_id(); 2664 cpu = smp_processor_id();
2665 rq = cpu_rq(cpu); 2665 rq = cpu_rq(cpu);
2666 rcu_note_context_switch(cpu); 2666 rcu_note_context_switch(cpu);
2667 prev = rq->curr; 2667 prev = rq->curr;
2668 2668
2669 schedule_debug(prev); 2669 schedule_debug(prev);
2670 2670
2671 if (sched_feat(HRTICK)) 2671 if (sched_feat(HRTICK))
2672 hrtick_clear(rq); 2672 hrtick_clear(rq);
2673 2673
2674 /* 2674 /*
2675 * Make sure that signal_pending_state()->signal_pending() below 2675 * Make sure that signal_pending_state()->signal_pending() below
2676 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 2676 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2677 * done by the caller to avoid the race with signal_wake_up(). 2677 * done by the caller to avoid the race with signal_wake_up().
2678 */ 2678 */
2679 smp_mb__before_spinlock(); 2679 smp_mb__before_spinlock();
2680 raw_spin_lock_irq(&rq->lock); 2680 raw_spin_lock_irq(&rq->lock);
2681 2681
2682 switch_count = &prev->nivcsw; 2682 switch_count = &prev->nivcsw;
2683 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 2683 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2684 if (unlikely(signal_pending_state(prev->state, prev))) { 2684 if (unlikely(signal_pending_state(prev->state, prev))) {
2685 prev->state = TASK_RUNNING; 2685 prev->state = TASK_RUNNING;
2686 } else { 2686 } else {
2687 deactivate_task(rq, prev, DEQUEUE_SLEEP); 2687 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2688 prev->on_rq = 0; 2688 prev->on_rq = 0;
2689 2689
2690 /* 2690 /*
2691 * If a worker went to sleep, notify and ask workqueue 2691 * If a worker went to sleep, notify and ask workqueue
2692 * whether it wants to wake up a task to maintain 2692 * whether it wants to wake up a task to maintain
2693 * concurrency. 2693 * concurrency.
2694 */ 2694 */
2695 if (prev->flags & PF_WQ_WORKER) { 2695 if (prev->flags & PF_WQ_WORKER) {
2696 struct task_struct *to_wakeup; 2696 struct task_struct *to_wakeup;
2697 2697
2698 to_wakeup = wq_worker_sleeping(prev, cpu); 2698 to_wakeup = wq_worker_sleeping(prev, cpu);
2699 if (to_wakeup) 2699 if (to_wakeup)
2700 try_to_wake_up_local(to_wakeup); 2700 try_to_wake_up_local(to_wakeup);
2701 } 2701 }
2702 } 2702 }
2703 switch_count = &prev->nvcsw; 2703 switch_count = &prev->nvcsw;
2704 } 2704 }
2705 2705
2706 if (prev->on_rq || rq->skip_clock_update < 0) 2706 if (prev->on_rq || rq->skip_clock_update < 0)
2707 update_rq_clock(rq); 2707 update_rq_clock(rq);
2708 2708
2709 next = pick_next_task(rq, prev); 2709 next = pick_next_task(rq, prev);
2710 clear_tsk_need_resched(prev); 2710 clear_tsk_need_resched(prev);
2711 clear_preempt_need_resched(); 2711 clear_preempt_need_resched();
2712 rq->skip_clock_update = 0; 2712 rq->skip_clock_update = 0;
2713 2713
2714 if (likely(prev != next)) { 2714 if (likely(prev != next)) {
2715 rq->nr_switches++; 2715 rq->nr_switches++;
2716 rq->curr = next; 2716 rq->curr = next;
2717 ++*switch_count; 2717 ++*switch_count;
2718 2718
2719 context_switch(rq, prev, next); /* unlocks the rq */ 2719 context_switch(rq, prev, next); /* unlocks the rq */
2720 /* 2720 /*
2721 * The context switch have flipped the stack from under us 2721 * The context switch have flipped the stack from under us
2722 * and restored the local variables which were saved when 2722 * and restored the local variables which were saved when
2723 * this task called schedule() in the past. prev == current 2723 * this task called schedule() in the past. prev == current
2724 * is still correct, but it can be moved to another cpu/rq. 2724 * is still correct, but it can be moved to another cpu/rq.
2725 */ 2725 */
2726 cpu = smp_processor_id(); 2726 cpu = smp_processor_id();
2727 rq = cpu_rq(cpu); 2727 rq = cpu_rq(cpu);
2728 } else 2728 } else
2729 raw_spin_unlock_irq(&rq->lock); 2729 raw_spin_unlock_irq(&rq->lock);
2730 2730
2731 post_schedule(rq); 2731 post_schedule(rq);
2732 2732
2733 sched_preempt_enable_no_resched(); 2733 sched_preempt_enable_no_resched();
2734 if (need_resched()) 2734 if (need_resched())
2735 goto need_resched; 2735 goto need_resched;
2736 } 2736 }
2737 2737
2738 static inline void sched_submit_work(struct task_struct *tsk) 2738 static inline void sched_submit_work(struct task_struct *tsk)
2739 { 2739 {
2740 if (!tsk->state || tsk_is_pi_blocked(tsk)) 2740 if (!tsk->state || tsk_is_pi_blocked(tsk))
2741 return; 2741 return;
2742 /* 2742 /*
2743 * If we are going to sleep and we have plugged IO queued, 2743 * If we are going to sleep and we have plugged IO queued,
2744 * make sure to submit it to avoid deadlocks. 2744 * make sure to submit it to avoid deadlocks.
2745 */ 2745 */
2746 if (blk_needs_flush_plug(tsk)) 2746 if (blk_needs_flush_plug(tsk))
2747 blk_schedule_flush_plug(tsk); 2747 blk_schedule_flush_plug(tsk);
2748 } 2748 }
2749 2749
2750 asmlinkage void __sched schedule(void) 2750 asmlinkage void __sched schedule(void)
2751 { 2751 {
2752 struct task_struct *tsk = current; 2752 struct task_struct *tsk = current;
2753 2753
2754 sched_submit_work(tsk); 2754 sched_submit_work(tsk);
2755 __schedule(); 2755 __schedule();
2756 } 2756 }
2757 EXPORT_SYMBOL(schedule); 2757 EXPORT_SYMBOL(schedule);
2758 2758
2759 #ifdef CONFIG_CONTEXT_TRACKING 2759 #ifdef CONFIG_CONTEXT_TRACKING
2760 asmlinkage void __sched schedule_user(void) 2760 asmlinkage void __sched schedule_user(void)
2761 { 2761 {
2762 /* 2762 /*
2763 * If we come here after a random call to set_need_resched(), 2763 * If we come here after a random call to set_need_resched(),
2764 * or we have been woken up remotely but the IPI has not yet arrived, 2764 * or we have been woken up remotely but the IPI has not yet arrived,
2765 * we haven't yet exited the RCU idle mode. Do it here manually until 2765 * we haven't yet exited the RCU idle mode. Do it here manually until
2766 * we find a better solution. 2766 * we find a better solution.
2767 */ 2767 */
2768 user_exit(); 2768 user_exit();
2769 schedule(); 2769 schedule();
2770 user_enter(); 2770 user_enter();
2771 } 2771 }
2772 #endif 2772 #endif
2773 2773
2774 /** 2774 /**
2775 * schedule_preempt_disabled - called with preemption disabled 2775 * schedule_preempt_disabled - called with preemption disabled
2776 * 2776 *
2777 * Returns with preemption disabled. Note: preempt_count must be 1 2777 * Returns with preemption disabled. Note: preempt_count must be 1
2778 */ 2778 */
2779 void __sched schedule_preempt_disabled(void) 2779 void __sched schedule_preempt_disabled(void)
2780 { 2780 {
2781 sched_preempt_enable_no_resched(); 2781 sched_preempt_enable_no_resched();
2782 schedule(); 2782 schedule();
2783 preempt_disable(); 2783 preempt_disable();
2784 } 2784 }
2785 2785
2786 #ifdef CONFIG_PREEMPT 2786 #ifdef CONFIG_PREEMPT
2787 /* 2787 /*
2788 * this is the entry point to schedule() from in-kernel preemption 2788 * this is the entry point to schedule() from in-kernel preemption
2789 * off of preempt_enable. Kernel preemptions off return from interrupt 2789 * off of preempt_enable. Kernel preemptions off return from interrupt
2790 * occur there and call schedule directly. 2790 * occur there and call schedule directly.
2791 */ 2791 */
2792 asmlinkage void __sched notrace preempt_schedule(void) 2792 asmlinkage void __sched notrace preempt_schedule(void)
2793 { 2793 {
2794 /* 2794 /*
2795 * If there is a non-zero preempt_count or interrupts are disabled, 2795 * If there is a non-zero preempt_count or interrupts are disabled,
2796 * we do not want to preempt the current task. Just return.. 2796 * we do not want to preempt the current task. Just return..
2797 */ 2797 */
2798 if (likely(!preemptible())) 2798 if (likely(!preemptible()))
2799 return; 2799 return;
2800 2800
2801 do { 2801 do {
2802 __preempt_count_add(PREEMPT_ACTIVE); 2802 __preempt_count_add(PREEMPT_ACTIVE);
2803 __schedule(); 2803 __schedule();
2804 __preempt_count_sub(PREEMPT_ACTIVE); 2804 __preempt_count_sub(PREEMPT_ACTIVE);
2805 2805
2806 /* 2806 /*
2807 * Check again in case we missed a preemption opportunity 2807 * Check again in case we missed a preemption opportunity
2808 * between schedule and now. 2808 * between schedule and now.
2809 */ 2809 */
2810 barrier(); 2810 barrier();
2811 } while (need_resched()); 2811 } while (need_resched());
2812 } 2812 }
2813 EXPORT_SYMBOL(preempt_schedule); 2813 EXPORT_SYMBOL(preempt_schedule);
2814 #endif /* CONFIG_PREEMPT */ 2814 #endif /* CONFIG_PREEMPT */
2815 2815
2816 /* 2816 /*
2817 * this is the entry point to schedule() from kernel preemption 2817 * this is the entry point to schedule() from kernel preemption
2818 * off of irq context. 2818 * off of irq context.
2819 * Note, that this is called and return with irqs disabled. This will 2819 * Note, that this is called and return with irqs disabled. This will
2820 * protect us against recursive calling from irq. 2820 * protect us against recursive calling from irq.
2821 */ 2821 */
2822 asmlinkage void __sched preempt_schedule_irq(void) 2822 asmlinkage void __sched preempt_schedule_irq(void)
2823 { 2823 {
2824 enum ctx_state prev_state; 2824 enum ctx_state prev_state;
2825 2825
2826 /* Catch callers which need to be fixed */ 2826 /* Catch callers which need to be fixed */
2827 BUG_ON(preempt_count() || !irqs_disabled()); 2827 BUG_ON(preempt_count() || !irqs_disabled());
2828 2828
2829 prev_state = exception_enter(); 2829 prev_state = exception_enter();
2830 2830
2831 do { 2831 do {
2832 __preempt_count_add(PREEMPT_ACTIVE); 2832 __preempt_count_add(PREEMPT_ACTIVE);
2833 local_irq_enable(); 2833 local_irq_enable();
2834 __schedule(); 2834 __schedule();
2835 local_irq_disable(); 2835 local_irq_disable();
2836 __preempt_count_sub(PREEMPT_ACTIVE); 2836 __preempt_count_sub(PREEMPT_ACTIVE);
2837 2837
2838 /* 2838 /*
2839 * Check again in case we missed a preemption opportunity 2839 * Check again in case we missed a preemption opportunity
2840 * between schedule and now. 2840 * between schedule and now.
2841 */ 2841 */
2842 barrier(); 2842 barrier();
2843 } while (need_resched()); 2843 } while (need_resched());
2844 2844
2845 exception_exit(prev_state); 2845 exception_exit(prev_state);
2846 } 2846 }
2847 2847
2848 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, 2848 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2849 void *key) 2849 void *key)
2850 { 2850 {
2851 return try_to_wake_up(curr->private, mode, wake_flags); 2851 return try_to_wake_up(curr->private, mode, wake_flags);
2852 } 2852 }
2853 EXPORT_SYMBOL(default_wake_function); 2853 EXPORT_SYMBOL(default_wake_function);
2854 2854
2855 #ifdef CONFIG_RT_MUTEXES 2855 #ifdef CONFIG_RT_MUTEXES
2856 2856
2857 /* 2857 /*
2858 * rt_mutex_setprio - set the current priority of a task 2858 * rt_mutex_setprio - set the current priority of a task
2859 * @p: task 2859 * @p: task
2860 * @prio: prio value (kernel-internal form) 2860 * @prio: prio value (kernel-internal form)
2861 * 2861 *
2862 * This function changes the 'effective' priority of a task. It does 2862 * This function changes the 'effective' priority of a task. It does
2863 * not touch ->normal_prio like __setscheduler(). 2863 * not touch ->normal_prio like __setscheduler().
2864 * 2864 *
2865 * Used by the rt_mutex code to implement priority inheritance 2865 * Used by the rt_mutex code to implement priority inheritance
2866 * logic. Call site only calls if the priority of the task changed. 2866 * logic. Call site only calls if the priority of the task changed.
2867 */ 2867 */
2868 void rt_mutex_setprio(struct task_struct *p, int prio) 2868 void rt_mutex_setprio(struct task_struct *p, int prio)
2869 { 2869 {
2870 int oldprio, on_rq, running, enqueue_flag = 0; 2870 int oldprio, on_rq, running, enqueue_flag = 0;
2871 struct rq *rq; 2871 struct rq *rq;
2872 const struct sched_class *prev_class; 2872 const struct sched_class *prev_class;
2873 2873
2874 BUG_ON(prio > MAX_PRIO); 2874 BUG_ON(prio > MAX_PRIO);
2875 2875
2876 rq = __task_rq_lock(p); 2876 rq = __task_rq_lock(p);
2877 2877
2878 /* 2878 /*
2879 * Idle task boosting is a nono in general. There is one 2879 * Idle task boosting is a nono in general. There is one
2880 * exception, when PREEMPT_RT and NOHZ is active: 2880 * exception, when PREEMPT_RT and NOHZ is active:
2881 * 2881 *
2882 * The idle task calls get_next_timer_interrupt() and holds 2882 * The idle task calls get_next_timer_interrupt() and holds
2883 * the timer wheel base->lock on the CPU and another CPU wants 2883 * the timer wheel base->lock on the CPU and another CPU wants
2884 * to access the timer (probably to cancel it). We can safely 2884 * to access the timer (probably to cancel it). We can safely
2885 * ignore the boosting request, as the idle CPU runs this code 2885 * ignore the boosting request, as the idle CPU runs this code
2886 * with interrupts disabled and will complete the lock 2886 * with interrupts disabled and will complete the lock
2887 * protected section without being interrupted. So there is no 2887 * protected section without being interrupted. So there is no
2888 * real need to boost. 2888 * real need to boost.
2889 */ 2889 */
2890 if (unlikely(p == rq->idle)) { 2890 if (unlikely(p == rq->idle)) {
2891 WARN_ON(p != rq->curr); 2891 WARN_ON(p != rq->curr);
2892 WARN_ON(p->pi_blocked_on); 2892 WARN_ON(p->pi_blocked_on);
2893 goto out_unlock; 2893 goto out_unlock;
2894 } 2894 }
2895 2895
2896 trace_sched_pi_setprio(p, prio); 2896 trace_sched_pi_setprio(p, prio);
2897 p->pi_top_task = rt_mutex_get_top_task(p); 2897 p->pi_top_task = rt_mutex_get_top_task(p);
2898 oldprio = p->prio; 2898 oldprio = p->prio;
2899 prev_class = p->sched_class; 2899 prev_class = p->sched_class;
2900 on_rq = p->on_rq; 2900 on_rq = p->on_rq;
2901 running = task_current(rq, p); 2901 running = task_current(rq, p);
2902 if (on_rq) 2902 if (on_rq)
2903 dequeue_task(rq, p, 0); 2903 dequeue_task(rq, p, 0);
2904 if (running) 2904 if (running)
2905 p->sched_class->put_prev_task(rq, p); 2905 p->sched_class->put_prev_task(rq, p);
2906 2906
2907 /* 2907 /*
2908 * Boosting condition are: 2908 * Boosting condition are:
2909 * 1. -rt task is running and holds mutex A 2909 * 1. -rt task is running and holds mutex A
2910 * --> -dl task blocks on mutex A 2910 * --> -dl task blocks on mutex A
2911 * 2911 *
2912 * 2. -dl task is running and holds mutex A 2912 * 2. -dl task is running and holds mutex A
2913 * --> -dl task blocks on mutex A and could preempt the 2913 * --> -dl task blocks on mutex A and could preempt the
2914 * running task 2914 * running task
2915 */ 2915 */
2916 if (dl_prio(prio)) { 2916 if (dl_prio(prio)) {
2917 if (!dl_prio(p->normal_prio) || (p->pi_top_task && 2917 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2918 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) { 2918 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2919 p->dl.dl_boosted = 1; 2919 p->dl.dl_boosted = 1;
2920 p->dl.dl_throttled = 0; 2920 p->dl.dl_throttled = 0;
2921 enqueue_flag = ENQUEUE_REPLENISH; 2921 enqueue_flag = ENQUEUE_REPLENISH;
2922 } else 2922 } else
2923 p->dl.dl_boosted = 0; 2923 p->dl.dl_boosted = 0;
2924 p->sched_class = &dl_sched_class; 2924 p->sched_class = &dl_sched_class;
2925 } else if (rt_prio(prio)) { 2925 } else if (rt_prio(prio)) {
2926 if (dl_prio(oldprio)) 2926 if (dl_prio(oldprio))
2927 p->dl.dl_boosted = 0; 2927 p->dl.dl_boosted = 0;
2928 if (oldprio < prio) 2928 if (oldprio < prio)
2929 enqueue_flag = ENQUEUE_HEAD; 2929 enqueue_flag = ENQUEUE_HEAD;
2930 p->sched_class = &rt_sched_class; 2930 p->sched_class = &rt_sched_class;
2931 } else { 2931 } else {
2932 if (dl_prio(oldprio)) 2932 if (dl_prio(oldprio))
2933 p->dl.dl_boosted = 0; 2933 p->dl.dl_boosted = 0;
2934 p->sched_class = &fair_sched_class; 2934 p->sched_class = &fair_sched_class;
2935 } 2935 }
2936 2936
2937 p->prio = prio; 2937 p->prio = prio;
2938 2938
2939 if (running) 2939 if (running)
2940 p->sched_class->set_curr_task(rq); 2940 p->sched_class->set_curr_task(rq);
2941 if (on_rq) 2941 if (on_rq)
2942 enqueue_task(rq, p, enqueue_flag); 2942 enqueue_task(rq, p, enqueue_flag);
2943 2943
2944 check_class_changed(rq, p, prev_class, oldprio); 2944 check_class_changed(rq, p, prev_class, oldprio);
2945 out_unlock: 2945 out_unlock:
2946 __task_rq_unlock(rq); 2946 __task_rq_unlock(rq);
2947 } 2947 }
2948 #endif 2948 #endif
2949 2949
2950 void set_user_nice(struct task_struct *p, long nice) 2950 void set_user_nice(struct task_struct *p, long nice)
2951 { 2951 {
2952 int old_prio, delta, on_rq; 2952 int old_prio, delta, on_rq;
2953 unsigned long flags; 2953 unsigned long flags;
2954 struct rq *rq; 2954 struct rq *rq;
2955 2955
2956 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 2956 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
2957 return; 2957 return;
2958 /* 2958 /*
2959 * We have to be careful, if called from sys_setpriority(), 2959 * We have to be careful, if called from sys_setpriority(),
2960 * the task might be in the middle of scheduling on another CPU. 2960 * the task might be in the middle of scheduling on another CPU.
2961 */ 2961 */
2962 rq = task_rq_lock(p, &flags); 2962 rq = task_rq_lock(p, &flags);
2963 /* 2963 /*
2964 * The RT priorities are set via sched_setscheduler(), but we still 2964 * The RT priorities are set via sched_setscheduler(), but we still
2965 * allow the 'normal' nice value to be set - but as expected 2965 * allow the 'normal' nice value to be set - but as expected
2966 * it wont have any effect on scheduling until the task is 2966 * it wont have any effect on scheduling until the task is
2967 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 2967 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
2968 */ 2968 */
2969 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 2969 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2970 p->static_prio = NICE_TO_PRIO(nice); 2970 p->static_prio = NICE_TO_PRIO(nice);
2971 goto out_unlock; 2971 goto out_unlock;
2972 } 2972 }
2973 on_rq = p->on_rq; 2973 on_rq = p->on_rq;
2974 if (on_rq) 2974 if (on_rq)
2975 dequeue_task(rq, p, 0); 2975 dequeue_task(rq, p, 0);
2976 2976
2977 p->static_prio = NICE_TO_PRIO(nice); 2977 p->static_prio = NICE_TO_PRIO(nice);
2978 set_load_weight(p); 2978 set_load_weight(p);
2979 old_prio = p->prio; 2979 old_prio = p->prio;
2980 p->prio = effective_prio(p); 2980 p->prio = effective_prio(p);
2981 delta = p->prio - old_prio; 2981 delta = p->prio - old_prio;
2982 2982
2983 if (on_rq) { 2983 if (on_rq) {
2984 enqueue_task(rq, p, 0); 2984 enqueue_task(rq, p, 0);
2985 /* 2985 /*
2986 * If the task increased its priority or is running and 2986 * If the task increased its priority or is running and
2987 * lowered its priority, then reschedule its CPU: 2987 * lowered its priority, then reschedule its CPU:
2988 */ 2988 */
2989 if (delta < 0 || (delta > 0 && task_running(rq, p))) 2989 if (delta < 0 || (delta > 0 && task_running(rq, p)))
2990 resched_task(rq->curr); 2990 resched_task(rq->curr);
2991 } 2991 }
2992 out_unlock: 2992 out_unlock:
2993 task_rq_unlock(rq, p, &flags); 2993 task_rq_unlock(rq, p, &flags);
2994 } 2994 }
2995 EXPORT_SYMBOL(set_user_nice); 2995 EXPORT_SYMBOL(set_user_nice);
2996 2996
2997 /* 2997 /*
2998 * can_nice - check if a task can reduce its nice value 2998 * can_nice - check if a task can reduce its nice value
2999 * @p: task 2999 * @p: task
3000 * @nice: nice value 3000 * @nice: nice value
3001 */ 3001 */
3002 int can_nice(const struct task_struct *p, const int nice) 3002 int can_nice(const struct task_struct *p, const int nice)
3003 { 3003 {
3004 /* convert nice value [19,-20] to rlimit style value [1,40] */ 3004 /* convert nice value [19,-20] to rlimit style value [1,40] */
3005 int nice_rlim = 20 - nice; 3005 int nice_rlim = 20 - nice;
3006 3006
3007 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || 3007 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3008 capable(CAP_SYS_NICE)); 3008 capable(CAP_SYS_NICE));
3009 } 3009 }
3010 3010
3011 #ifdef __ARCH_WANT_SYS_NICE 3011 #ifdef __ARCH_WANT_SYS_NICE
3012 3012
3013 /* 3013 /*
3014 * sys_nice - change the priority of the current process. 3014 * sys_nice - change the priority of the current process.
3015 * @increment: priority increment 3015 * @increment: priority increment
3016 * 3016 *
3017 * sys_setpriority is a more generic, but much slower function that 3017 * sys_setpriority is a more generic, but much slower function that
3018 * does similar things. 3018 * does similar things.
3019 */ 3019 */
3020 SYSCALL_DEFINE1(nice, int, increment) 3020 SYSCALL_DEFINE1(nice, int, increment)
3021 { 3021 {
3022 long nice, retval; 3022 long nice, retval;
3023 3023
3024 /* 3024 /*
3025 * Setpriority might change our priority at the same moment. 3025 * Setpriority might change our priority at the same moment.
3026 * We don't have to worry. Conceptually one call occurs first 3026 * We don't have to worry. Conceptually one call occurs first
3027 * and we have a single winner. 3027 * and we have a single winner.
3028 */ 3028 */
3029 if (increment < -40) 3029 if (increment < -40)
3030 increment = -40; 3030 increment = -40;
3031 if (increment > 40) 3031 if (increment > 40)
3032 increment = 40; 3032 increment = 40;
3033 3033
3034 nice = task_nice(current) + increment; 3034 nice = task_nice(current) + increment;
3035 if (nice < MIN_NICE) 3035 if (nice < MIN_NICE)
3036 nice = MIN_NICE; 3036 nice = MIN_NICE;
3037 if (nice > MAX_NICE) 3037 if (nice > MAX_NICE)
3038 nice = MAX_NICE; 3038 nice = MAX_NICE;
3039 3039
3040 if (increment < 0 && !can_nice(current, nice)) 3040 if (increment < 0 && !can_nice(current, nice))
3041 return -EPERM; 3041 return -EPERM;
3042 3042
3043 retval = security_task_setnice(current, nice); 3043 retval = security_task_setnice(current, nice);
3044 if (retval) 3044 if (retval)
3045 return retval; 3045 return retval;
3046 3046
3047 set_user_nice(current, nice); 3047 set_user_nice(current, nice);
3048 return 0; 3048 return 0;
3049 } 3049 }
3050 3050
3051 #endif 3051 #endif
3052 3052
3053 /** 3053 /**
3054 * task_prio - return the priority value of a given task. 3054 * task_prio - return the priority value of a given task.
3055 * @p: the task in question. 3055 * @p: the task in question.
3056 * 3056 *
3057 * Return: The priority value as seen by users in /proc. 3057 * Return: The priority value as seen by users in /proc.
3058 * RT tasks are offset by -200. Normal tasks are centered 3058 * RT tasks are offset by -200. Normal tasks are centered
3059 * around 0, value goes from -16 to +15. 3059 * around 0, value goes from -16 to +15.
3060 */ 3060 */
3061 int task_prio(const struct task_struct *p) 3061 int task_prio(const struct task_struct *p)
3062 { 3062 {
3063 return p->prio - MAX_RT_PRIO; 3063 return p->prio - MAX_RT_PRIO;
3064 } 3064 }
3065 3065
3066 /** 3066 /**
3067 * idle_cpu - is a given cpu idle currently? 3067 * idle_cpu - is a given cpu idle currently?
3068 * @cpu: the processor in question. 3068 * @cpu: the processor in question.
3069 * 3069 *
3070 * Return: 1 if the CPU is currently idle. 0 otherwise. 3070 * Return: 1 if the CPU is currently idle. 0 otherwise.
3071 */ 3071 */
3072 int idle_cpu(int cpu) 3072 int idle_cpu(int cpu)
3073 { 3073 {
3074 struct rq *rq = cpu_rq(cpu); 3074 struct rq *rq = cpu_rq(cpu);
3075 3075
3076 if (rq->curr != rq->idle) 3076 if (rq->curr != rq->idle)
3077 return 0; 3077 return 0;
3078 3078
3079 if (rq->nr_running) 3079 if (rq->nr_running)
3080 return 0; 3080 return 0;
3081 3081
3082 #ifdef CONFIG_SMP 3082 #ifdef CONFIG_SMP
3083 if (!llist_empty(&rq->wake_list)) 3083 if (!llist_empty(&rq->wake_list))
3084 return 0; 3084 return 0;
3085 #endif 3085 #endif
3086 3086
3087 return 1; 3087 return 1;
3088 } 3088 }
3089 3089
3090 /** 3090 /**
3091 * idle_task - return the idle task for a given cpu. 3091 * idle_task - return the idle task for a given cpu.
3092 * @cpu: the processor in question. 3092 * @cpu: the processor in question.
3093 * 3093 *
3094 * Return: The idle task for the cpu @cpu. 3094 * Return: The idle task for the cpu @cpu.
3095 */ 3095 */
3096 struct task_struct *idle_task(int cpu) 3096 struct task_struct *idle_task(int cpu)
3097 { 3097 {
3098 return cpu_rq(cpu)->idle; 3098 return cpu_rq(cpu)->idle;
3099 } 3099 }
3100 3100
3101 /** 3101 /**
3102 * find_process_by_pid - find a process with a matching PID value. 3102 * find_process_by_pid - find a process with a matching PID value.
3103 * @pid: the pid in question. 3103 * @pid: the pid in question.
3104 * 3104 *
3105 * The task of @pid, if found. %NULL otherwise. 3105 * The task of @pid, if found. %NULL otherwise.
3106 */ 3106 */
3107 static struct task_struct *find_process_by_pid(pid_t pid) 3107 static struct task_struct *find_process_by_pid(pid_t pid)
3108 { 3108 {
3109 return pid ? find_task_by_vpid(pid) : current; 3109 return pid ? find_task_by_vpid(pid) : current;
3110 } 3110 }
3111 3111
3112 /* 3112 /*
3113 * This function initializes the sched_dl_entity of a newly becoming 3113 * This function initializes the sched_dl_entity of a newly becoming
3114 * SCHED_DEADLINE task. 3114 * SCHED_DEADLINE task.
3115 * 3115 *
3116 * Only the static values are considered here, the actual runtime and the 3116 * Only the static values are considered here, the actual runtime and the
3117 * absolute deadline will be properly calculated when the task is enqueued 3117 * absolute deadline will be properly calculated when the task is enqueued
3118 * for the first time with its new policy. 3118 * for the first time with its new policy.
3119 */ 3119 */
3120 static void 3120 static void
3121 __setparam_dl(struct task_struct *p, const struct sched_attr *attr) 3121 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3122 { 3122 {
3123 struct sched_dl_entity *dl_se = &p->dl; 3123 struct sched_dl_entity *dl_se = &p->dl;
3124 3124
3125 init_dl_task_timer(dl_se); 3125 init_dl_task_timer(dl_se);
3126 dl_se->dl_runtime = attr->sched_runtime; 3126 dl_se->dl_runtime = attr->sched_runtime;
3127 dl_se->dl_deadline = attr->sched_deadline; 3127 dl_se->dl_deadline = attr->sched_deadline;
3128 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; 3128 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3129 dl_se->flags = attr->sched_flags; 3129 dl_se->flags = attr->sched_flags;
3130 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); 3130 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3131 dl_se->dl_throttled = 0; 3131 dl_se->dl_throttled = 0;
3132 dl_se->dl_new = 1; 3132 dl_se->dl_new = 1;
3133 dl_se->dl_yielded = 0; 3133 dl_se->dl_yielded = 0;
3134 } 3134 }
3135 3135
3136 static void __setscheduler_params(struct task_struct *p, 3136 static void __setscheduler_params(struct task_struct *p,
3137 const struct sched_attr *attr) 3137 const struct sched_attr *attr)
3138 { 3138 {
3139 int policy = attr->sched_policy; 3139 int policy = attr->sched_policy;
3140 3140
3141 if (policy == -1) /* setparam */ 3141 if (policy == -1) /* setparam */
3142 policy = p->policy; 3142 policy = p->policy;
3143 3143
3144 p->policy = policy; 3144 p->policy = policy;
3145 3145
3146 if (dl_policy(policy)) 3146 if (dl_policy(policy))
3147 __setparam_dl(p, attr); 3147 __setparam_dl(p, attr);
3148 else if (fair_policy(policy)) 3148 else if (fair_policy(policy))
3149 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 3149 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3150 3150
3151 /* 3151 /*
3152 * __sched_setscheduler() ensures attr->sched_priority == 0 when 3152 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3153 * !rt_policy. Always setting this ensures that things like 3153 * !rt_policy. Always setting this ensures that things like
3154 * getparam()/getattr() don't report silly values for !rt tasks. 3154 * getparam()/getattr() don't report silly values for !rt tasks.
3155 */ 3155 */
3156 p->rt_priority = attr->sched_priority; 3156 p->rt_priority = attr->sched_priority;
3157 p->normal_prio = normal_prio(p); 3157 p->normal_prio = normal_prio(p);
3158 set_load_weight(p); 3158 set_load_weight(p);
3159 } 3159 }
3160 3160
3161 /* Actually do priority change: must hold pi & rq lock. */ 3161 /* Actually do priority change: must hold pi & rq lock. */
3162 static void __setscheduler(struct rq *rq, struct task_struct *p, 3162 static void __setscheduler(struct rq *rq, struct task_struct *p,
3163 const struct sched_attr *attr) 3163 const struct sched_attr *attr)
3164 { 3164 {
3165 __setscheduler_params(p, attr); 3165 __setscheduler_params(p, attr);
3166 3166
3167 /* 3167 /*
3168 * If we get here, there was no pi waiters boosting the 3168 * If we get here, there was no pi waiters boosting the
3169 * task. It is safe to use the normal prio. 3169 * task. It is safe to use the normal prio.
3170 */ 3170 */
3171 p->prio = normal_prio(p); 3171 p->prio = normal_prio(p);
3172 3172
3173 if (dl_prio(p->prio)) 3173 if (dl_prio(p->prio))
3174 p->sched_class = &dl_sched_class; 3174 p->sched_class = &dl_sched_class;
3175 else if (rt_prio(p->prio)) 3175 else if (rt_prio(p->prio))
3176 p->sched_class = &rt_sched_class; 3176 p->sched_class = &rt_sched_class;
3177 else 3177 else
3178 p->sched_class = &fair_sched_class; 3178 p->sched_class = &fair_sched_class;
3179 } 3179 }
3180 3180
3181 static void 3181 static void
3182 __getparam_dl(struct task_struct *p, struct sched_attr *attr) 3182 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3183 { 3183 {
3184 struct sched_dl_entity *dl_se = &p->dl; 3184 struct sched_dl_entity *dl_se = &p->dl;
3185 3185
3186 attr->sched_priority = p->rt_priority; 3186 attr->sched_priority = p->rt_priority;
3187 attr->sched_runtime = dl_se->dl_runtime; 3187 attr->sched_runtime = dl_se->dl_runtime;
3188 attr->sched_deadline = dl_se->dl_deadline; 3188 attr->sched_deadline = dl_se->dl_deadline;
3189 attr->sched_period = dl_se->dl_period; 3189 attr->sched_period = dl_se->dl_period;
3190 attr->sched_flags = dl_se->flags; 3190 attr->sched_flags = dl_se->flags;
3191 } 3191 }
3192 3192
3193 /* 3193 /*
3194 * This function validates the new parameters of a -deadline task. 3194 * This function validates the new parameters of a -deadline task.
3195 * We ask for the deadline not being zero, and greater or equal 3195 * We ask for the deadline not being zero, and greater or equal
3196 * than the runtime, as well as the period of being zero or 3196 * than the runtime, as well as the period of being zero or
3197 * greater than deadline. Furthermore, we have to be sure that 3197 * greater than deadline. Furthermore, we have to be sure that
3198 * user parameters are above the internal resolution of 1us (we 3198 * user parameters are above the internal resolution of 1us (we
3199 * check sched_runtime only since it is always the smaller one) and 3199 * check sched_runtime only since it is always the smaller one) and
3200 * below 2^63 ns (we have to check both sched_deadline and 3200 * below 2^63 ns (we have to check both sched_deadline and
3201 * sched_period, as the latter can be zero). 3201 * sched_period, as the latter can be zero).
3202 */ 3202 */
3203 static bool 3203 static bool
3204 __checkparam_dl(const struct sched_attr *attr) 3204 __checkparam_dl(const struct sched_attr *attr)
3205 { 3205 {
3206 /* deadline != 0 */ 3206 /* deadline != 0 */
3207 if (attr->sched_deadline == 0) 3207 if (attr->sched_deadline == 0)
3208 return false; 3208 return false;
3209 3209
3210 /* 3210 /*
3211 * Since we truncate DL_SCALE bits, make sure we're at least 3211 * Since we truncate DL_SCALE bits, make sure we're at least
3212 * that big. 3212 * that big.
3213 */ 3213 */
3214 if (attr->sched_runtime < (1ULL << DL_SCALE)) 3214 if (attr->sched_runtime < (1ULL << DL_SCALE))
3215 return false; 3215 return false;
3216 3216
3217 /* 3217 /*
3218 * Since we use the MSB for wrap-around and sign issues, make 3218 * Since we use the MSB for wrap-around and sign issues, make
3219 * sure it's not set (mind that period can be equal to zero). 3219 * sure it's not set (mind that period can be equal to zero).
3220 */ 3220 */
3221 if (attr->sched_deadline & (1ULL << 63) || 3221 if (attr->sched_deadline & (1ULL << 63) ||
3222 attr->sched_period & (1ULL << 63)) 3222 attr->sched_period & (1ULL << 63))
3223 return false; 3223 return false;
3224 3224
3225 /* runtime <= deadline <= period (if period != 0) */ 3225 /* runtime <= deadline <= period (if period != 0) */
3226 if ((attr->sched_period != 0 && 3226 if ((attr->sched_period != 0 &&
3227 attr->sched_period < attr->sched_deadline) || 3227 attr->sched_period < attr->sched_deadline) ||
3228 attr->sched_deadline < attr->sched_runtime) 3228 attr->sched_deadline < attr->sched_runtime)
3229 return false; 3229 return false;
3230 3230
3231 return true; 3231 return true;
3232 } 3232 }
3233 3233
3234 /* 3234 /*
3235 * check the target process has a UID that matches the current process's 3235 * check the target process has a UID that matches the current process's
3236 */ 3236 */
3237 static bool check_same_owner(struct task_struct *p) 3237 static bool check_same_owner(struct task_struct *p)
3238 { 3238 {
3239 const struct cred *cred = current_cred(), *pcred; 3239 const struct cred *cred = current_cred(), *pcred;
3240 bool match; 3240 bool match;
3241 3241
3242 rcu_read_lock(); 3242 rcu_read_lock();
3243 pcred = __task_cred(p); 3243 pcred = __task_cred(p);
3244 match = (uid_eq(cred->euid, pcred->euid) || 3244 match = (uid_eq(cred->euid, pcred->euid) ||
3245 uid_eq(cred->euid, pcred->uid)); 3245 uid_eq(cred->euid, pcred->uid));
3246 rcu_read_unlock(); 3246 rcu_read_unlock();
3247 return match; 3247 return match;
3248 } 3248 }
3249 3249
3250 static int __sched_setscheduler(struct task_struct *p, 3250 static int __sched_setscheduler(struct task_struct *p,
3251 const struct sched_attr *attr, 3251 const struct sched_attr *attr,
3252 bool user) 3252 bool user)
3253 { 3253 {
3254 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 : 3254 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3255 MAX_RT_PRIO - 1 - attr->sched_priority; 3255 MAX_RT_PRIO - 1 - attr->sched_priority;
3256 int retval, oldprio, oldpolicy = -1, on_rq, running; 3256 int retval, oldprio, oldpolicy = -1, on_rq, running;
3257 int policy = attr->sched_policy; 3257 int policy = attr->sched_policy;
3258 unsigned long flags; 3258 unsigned long flags;
3259 const struct sched_class *prev_class; 3259 const struct sched_class *prev_class;
3260 struct rq *rq; 3260 struct rq *rq;
3261 int reset_on_fork; 3261 int reset_on_fork;
3262 3262
3263 /* may grab non-irq protected spin_locks */ 3263 /* may grab non-irq protected spin_locks */
3264 BUG_ON(in_interrupt()); 3264 BUG_ON(in_interrupt());
3265 recheck: 3265 recheck:
3266 /* double check policy once rq lock held */ 3266 /* double check policy once rq lock held */
3267 if (policy < 0) { 3267 if (policy < 0) {
3268 reset_on_fork = p->sched_reset_on_fork; 3268 reset_on_fork = p->sched_reset_on_fork;
3269 policy = oldpolicy = p->policy; 3269 policy = oldpolicy = p->policy;
3270 } else { 3270 } else {
3271 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 3271 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3272 3272
3273 if (policy != SCHED_DEADLINE && 3273 if (policy != SCHED_DEADLINE &&
3274 policy != SCHED_FIFO && policy != SCHED_RR && 3274 policy != SCHED_FIFO && policy != SCHED_RR &&
3275 policy != SCHED_NORMAL && policy != SCHED_BATCH && 3275 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3276 policy != SCHED_IDLE) 3276 policy != SCHED_IDLE)
3277 return -EINVAL; 3277 return -EINVAL;
3278 } 3278 }
3279 3279
3280 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) 3280 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3281 return -EINVAL; 3281 return -EINVAL;
3282 3282
3283 /* 3283 /*
3284 * Valid priorities for SCHED_FIFO and SCHED_RR are 3284 * Valid priorities for SCHED_FIFO and SCHED_RR are
3285 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 3285 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3286 * SCHED_BATCH and SCHED_IDLE is 0. 3286 * SCHED_BATCH and SCHED_IDLE is 0.
3287 */ 3287 */
3288 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || 3288 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3289 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) 3289 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3290 return -EINVAL; 3290 return -EINVAL;
3291 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 3291 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3292 (rt_policy(policy) != (attr->sched_priority != 0))) 3292 (rt_policy(policy) != (attr->sched_priority != 0)))
3293 return -EINVAL; 3293 return -EINVAL;
3294 3294
3295 /* 3295 /*
3296 * Allow unprivileged RT tasks to decrease priority: 3296 * Allow unprivileged RT tasks to decrease priority:
3297 */ 3297 */
3298 if (user && !capable(CAP_SYS_NICE)) { 3298 if (user && !capable(CAP_SYS_NICE)) {
3299 if (fair_policy(policy)) { 3299 if (fair_policy(policy)) {
3300 if (attr->sched_nice < task_nice(p) && 3300 if (attr->sched_nice < task_nice(p) &&
3301 !can_nice(p, attr->sched_nice)) 3301 !can_nice(p, attr->sched_nice))
3302 return -EPERM; 3302 return -EPERM;
3303 } 3303 }
3304 3304
3305 if (rt_policy(policy)) { 3305 if (rt_policy(policy)) {
3306 unsigned long rlim_rtprio = 3306 unsigned long rlim_rtprio =
3307 task_rlimit(p, RLIMIT_RTPRIO); 3307 task_rlimit(p, RLIMIT_RTPRIO);
3308 3308
3309 /* can't set/change the rt policy */ 3309 /* can't set/change the rt policy */
3310 if (policy != p->policy && !rlim_rtprio) 3310 if (policy != p->policy && !rlim_rtprio)
3311 return -EPERM; 3311 return -EPERM;
3312 3312
3313 /* can't increase priority */ 3313 /* can't increase priority */
3314 if (attr->sched_priority > p->rt_priority && 3314 if (attr->sched_priority > p->rt_priority &&
3315 attr->sched_priority > rlim_rtprio) 3315 attr->sched_priority > rlim_rtprio)
3316 return -EPERM; 3316 return -EPERM;
3317 } 3317 }
3318 3318
3319 /* 3319 /*
3320 * Can't set/change SCHED_DEADLINE policy at all for now 3320 * Can't set/change SCHED_DEADLINE policy at all for now
3321 * (safest behavior); in the future we would like to allow 3321 * (safest behavior); in the future we would like to allow
3322 * unprivileged DL tasks to increase their relative deadline 3322 * unprivileged DL tasks to increase their relative deadline
3323 * or reduce their runtime (both ways reducing utilization) 3323 * or reduce their runtime (both ways reducing utilization)
3324 */ 3324 */
3325 if (dl_policy(policy)) 3325 if (dl_policy(policy))
3326 return -EPERM; 3326 return -EPERM;
3327 3327
3328 /* 3328 /*
3329 * Treat SCHED_IDLE as nice 20. Only allow a switch to 3329 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3330 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 3330 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3331 */ 3331 */
3332 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) { 3332 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3333 if (!can_nice(p, task_nice(p))) 3333 if (!can_nice(p, task_nice(p)))
3334 return -EPERM; 3334 return -EPERM;
3335 } 3335 }
3336 3336
3337 /* can't change other user's priorities */ 3337 /* can't change other user's priorities */
3338 if (!check_same_owner(p)) 3338 if (!check_same_owner(p))
3339 return -EPERM; 3339 return -EPERM;
3340 3340
3341 /* Normal users shall not reset the sched_reset_on_fork flag */ 3341 /* Normal users shall not reset the sched_reset_on_fork flag */
3342 if (p->sched_reset_on_fork && !reset_on_fork) 3342 if (p->sched_reset_on_fork && !reset_on_fork)
3343 return -EPERM; 3343 return -EPERM;
3344 } 3344 }
3345 3345
3346 if (user) { 3346 if (user) {
3347 retval = security_task_setscheduler(p); 3347 retval = security_task_setscheduler(p);
3348 if (retval) 3348 if (retval)
3349 return retval; 3349 return retval;
3350 } 3350 }
3351 3351
3352 /* 3352 /*
3353 * make sure no PI-waiters arrive (or leave) while we are 3353 * make sure no PI-waiters arrive (or leave) while we are
3354 * changing the priority of the task: 3354 * changing the priority of the task:
3355 * 3355 *
3356 * To be able to change p->policy safely, the appropriate 3356 * To be able to change p->policy safely, the appropriate
3357 * runqueue lock must be held. 3357 * runqueue lock must be held.
3358 */ 3358 */
3359 rq = task_rq_lock(p, &flags); 3359 rq = task_rq_lock(p, &flags);
3360 3360
3361 /* 3361 /*
3362 * Changing the policy of the stop threads its a very bad idea 3362 * Changing the policy of the stop threads its a very bad idea
3363 */ 3363 */
3364 if (p == rq->stop) { 3364 if (p == rq->stop) {
3365 task_rq_unlock(rq, p, &flags); 3365 task_rq_unlock(rq, p, &flags);
3366 return -EINVAL; 3366 return -EINVAL;
3367 } 3367 }
3368 3368
3369 /* 3369 /*
3370 * If not changing anything there's no need to proceed further, 3370 * If not changing anything there's no need to proceed further,
3371 * but store a possible modification of reset_on_fork. 3371 * but store a possible modification of reset_on_fork.
3372 */ 3372 */
3373 if (unlikely(policy == p->policy)) { 3373 if (unlikely(policy == p->policy)) {
3374 if (fair_policy(policy) && attr->sched_nice != task_nice(p)) 3374 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3375 goto change; 3375 goto change;
3376 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 3376 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3377 goto change; 3377 goto change;
3378 if (dl_policy(policy)) 3378 if (dl_policy(policy))
3379 goto change; 3379 goto change;
3380 3380
3381 p->sched_reset_on_fork = reset_on_fork; 3381 p->sched_reset_on_fork = reset_on_fork;
3382 task_rq_unlock(rq, p, &flags); 3382 task_rq_unlock(rq, p, &flags);
3383 return 0; 3383 return 0;
3384 } 3384 }
3385 change: 3385 change:
3386 3386
3387 if (user) { 3387 if (user) {
3388 #ifdef CONFIG_RT_GROUP_SCHED 3388 #ifdef CONFIG_RT_GROUP_SCHED
3389 /* 3389 /*
3390 * Do not allow realtime tasks into groups that have no runtime 3390 * Do not allow realtime tasks into groups that have no runtime
3391 * assigned. 3391 * assigned.
3392 */ 3392 */
3393 if (rt_bandwidth_enabled() && rt_policy(policy) && 3393 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3394 task_group(p)->rt_bandwidth.rt_runtime == 0 && 3394 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3395 !task_group_is_autogroup(task_group(p))) { 3395 !task_group_is_autogroup(task_group(p))) {
3396 task_rq_unlock(rq, p, &flags); 3396 task_rq_unlock(rq, p, &flags);
3397 return -EPERM; 3397 return -EPERM;
3398 } 3398 }
3399 #endif 3399 #endif
3400 #ifdef CONFIG_SMP 3400 #ifdef CONFIG_SMP
3401 if (dl_bandwidth_enabled() && dl_policy(policy)) { 3401 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3402 cpumask_t *span = rq->rd->span; 3402 cpumask_t *span = rq->rd->span;
3403 3403
3404 /* 3404 /*
3405 * Don't allow tasks with an affinity mask smaller than 3405 * Don't allow tasks with an affinity mask smaller than
3406 * the entire root_domain to become SCHED_DEADLINE. We 3406 * the entire root_domain to become SCHED_DEADLINE. We
3407 * will also fail if there's no bandwidth available. 3407 * will also fail if there's no bandwidth available.
3408 */ 3408 */
3409 if (!cpumask_subset(span, &p->cpus_allowed) || 3409 if (!cpumask_subset(span, &p->cpus_allowed) ||
3410 rq->rd->dl_bw.bw == 0) { 3410 rq->rd->dl_bw.bw == 0) {
3411 task_rq_unlock(rq, p, &flags); 3411 task_rq_unlock(rq, p, &flags);
3412 return -EPERM; 3412 return -EPERM;
3413 } 3413 }
3414 } 3414 }
3415 #endif 3415 #endif
3416 } 3416 }
3417 3417
3418 /* recheck policy now with rq lock held */ 3418 /* recheck policy now with rq lock held */
3419 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 3419 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3420 policy = oldpolicy = -1; 3420 policy = oldpolicy = -1;
3421 task_rq_unlock(rq, p, &flags); 3421 task_rq_unlock(rq, p, &flags);
3422 goto recheck; 3422 goto recheck;
3423 } 3423 }
3424 3424
3425 /* 3425 /*
3426 * If setscheduling to SCHED_DEADLINE (or changing the parameters 3426 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3427 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 3427 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3428 * is available. 3428 * is available.
3429 */ 3429 */
3430 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { 3430 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3431 task_rq_unlock(rq, p, &flags); 3431 task_rq_unlock(rq, p, &flags);
3432 return -EBUSY; 3432 return -EBUSY;
3433 } 3433 }
3434 3434
3435 p->sched_reset_on_fork = reset_on_fork; 3435 p->sched_reset_on_fork = reset_on_fork;
3436 oldprio = p->prio; 3436 oldprio = p->prio;
3437 3437
3438 /* 3438 /*
3439 * Special case for priority boosted tasks. 3439 * Special case for priority boosted tasks.
3440 * 3440 *
3441 * If the new priority is lower or equal (user space view) 3441 * If the new priority is lower or equal (user space view)
3442 * than the current (boosted) priority, we just store the new 3442 * than the current (boosted) priority, we just store the new
3443 * normal parameters and do not touch the scheduler class and 3443 * normal parameters and do not touch the scheduler class and
3444 * the runqueue. This will be done when the task deboost 3444 * the runqueue. This will be done when the task deboost
3445 * itself. 3445 * itself.
3446 */ 3446 */
3447 if (rt_mutex_check_prio(p, newprio)) { 3447 if (rt_mutex_check_prio(p, newprio)) {
3448 __setscheduler_params(p, attr); 3448 __setscheduler_params(p, attr);
3449 task_rq_unlock(rq, p, &flags); 3449 task_rq_unlock(rq, p, &flags);
3450 return 0; 3450 return 0;
3451 } 3451 }
3452 3452
3453 on_rq = p->on_rq; 3453 on_rq = p->on_rq;
3454 running = task_current(rq, p); 3454 running = task_current(rq, p);
3455 if (on_rq) 3455 if (on_rq)
3456 dequeue_task(rq, p, 0); 3456 dequeue_task(rq, p, 0);
3457 if (running) 3457 if (running)
3458 p->sched_class->put_prev_task(rq, p); 3458 p->sched_class->put_prev_task(rq, p);
3459 3459
3460 prev_class = p->sched_class; 3460 prev_class = p->sched_class;
3461 __setscheduler(rq, p, attr); 3461 __setscheduler(rq, p, attr);
3462 3462
3463 if (running) 3463 if (running)
3464 p->sched_class->set_curr_task(rq); 3464 p->sched_class->set_curr_task(rq);
3465 if (on_rq) { 3465 if (on_rq) {
3466 /* 3466 /*
3467 * We enqueue to tail when the priority of a task is 3467 * We enqueue to tail when the priority of a task is
3468 * increased (user space view). 3468 * increased (user space view).
3469 */ 3469 */
3470 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0); 3470 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3471 } 3471 }
3472 3472
3473 check_class_changed(rq, p, prev_class, oldprio); 3473 check_class_changed(rq, p, prev_class, oldprio);
3474 task_rq_unlock(rq, p, &flags); 3474 task_rq_unlock(rq, p, &flags);
3475 3475
3476 rt_mutex_adjust_pi(p); 3476 rt_mutex_adjust_pi(p);
3477 3477
3478 return 0; 3478 return 0;
3479 } 3479 }
3480 3480
3481 static int _sched_setscheduler(struct task_struct *p, int policy, 3481 static int _sched_setscheduler(struct task_struct *p, int policy,
3482 const struct sched_param *param, bool check) 3482 const struct sched_param *param, bool check)
3483 { 3483 {
3484 struct sched_attr attr = { 3484 struct sched_attr attr = {
3485 .sched_policy = policy, 3485 .sched_policy = policy,
3486 .sched_priority = param->sched_priority, 3486 .sched_priority = param->sched_priority,
3487 .sched_nice = PRIO_TO_NICE(p->static_prio), 3487 .sched_nice = PRIO_TO_NICE(p->static_prio),
3488 }; 3488 };
3489 3489
3490 /* 3490 /*
3491 * Fixup the legacy SCHED_RESET_ON_FORK hack 3491 * Fixup the legacy SCHED_RESET_ON_FORK hack
3492 */ 3492 */
3493 if (policy & SCHED_RESET_ON_FORK) { 3493 if (policy & SCHED_RESET_ON_FORK) {
3494 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3494 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3495 policy &= ~SCHED_RESET_ON_FORK; 3495 policy &= ~SCHED_RESET_ON_FORK;
3496 attr.sched_policy = policy; 3496 attr.sched_policy = policy;
3497 } 3497 }
3498 3498
3499 return __sched_setscheduler(p, &attr, check); 3499 return __sched_setscheduler(p, &attr, check);
3500 } 3500 }
3501 /** 3501 /**
3502 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 3502 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3503 * @p: the task in question. 3503 * @p: the task in question.
3504 * @policy: new policy. 3504 * @policy: new policy.
3505 * @param: structure containing the new RT priority. 3505 * @param: structure containing the new RT priority.
3506 * 3506 *
3507 * Return: 0 on success. An error code otherwise. 3507 * Return: 0 on success. An error code otherwise.
3508 * 3508 *
3509 * NOTE that the task may be already dead. 3509 * NOTE that the task may be already dead.
3510 */ 3510 */
3511 int sched_setscheduler(struct task_struct *p, int policy, 3511 int sched_setscheduler(struct task_struct *p, int policy,
3512 const struct sched_param *param) 3512 const struct sched_param *param)
3513 { 3513 {
3514 return _sched_setscheduler(p, policy, param, true); 3514 return _sched_setscheduler(p, policy, param, true);
3515 } 3515 }
3516 EXPORT_SYMBOL_GPL(sched_setscheduler); 3516 EXPORT_SYMBOL_GPL(sched_setscheduler);
3517 3517
3518 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 3518 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3519 { 3519 {
3520 return __sched_setscheduler(p, attr, true); 3520 return __sched_setscheduler(p, attr, true);
3521 } 3521 }
3522 EXPORT_SYMBOL_GPL(sched_setattr); 3522 EXPORT_SYMBOL_GPL(sched_setattr);
3523 3523
3524 /** 3524 /**
3525 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 3525 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3526 * @p: the task in question. 3526 * @p: the task in question.
3527 * @policy: new policy. 3527 * @policy: new policy.
3528 * @param: structure containing the new RT priority. 3528 * @param: structure containing the new RT priority.
3529 * 3529 *
3530 * Just like sched_setscheduler, only don't bother checking if the 3530 * Just like sched_setscheduler, only don't bother checking if the
3531 * current context has permission. For example, this is needed in 3531 * current context has permission. For example, this is needed in
3532 * stop_machine(): we create temporary high priority worker threads, 3532 * stop_machine(): we create temporary high priority worker threads,
3533 * but our caller might not have that capability. 3533 * but our caller might not have that capability.
3534 * 3534 *
3535 * Return: 0 on success. An error code otherwise. 3535 * Return: 0 on success. An error code otherwise.
3536 */ 3536 */
3537 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 3537 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3538 const struct sched_param *param) 3538 const struct sched_param *param)
3539 { 3539 {
3540 return _sched_setscheduler(p, policy, param, false); 3540 return _sched_setscheduler(p, policy, param, false);
3541 } 3541 }
3542 3542
3543 static int 3543 static int
3544 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 3544 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3545 { 3545 {
3546 struct sched_param lparam; 3546 struct sched_param lparam;
3547 struct task_struct *p; 3547 struct task_struct *p;
3548 int retval; 3548 int retval;
3549 3549
3550 if (!param || pid < 0) 3550 if (!param || pid < 0)
3551 return -EINVAL; 3551 return -EINVAL;
3552 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 3552 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3553 return -EFAULT; 3553 return -EFAULT;
3554 3554
3555 rcu_read_lock(); 3555 rcu_read_lock();
3556 retval = -ESRCH; 3556 retval = -ESRCH;
3557 p = find_process_by_pid(pid); 3557 p = find_process_by_pid(pid);
3558 if (p != NULL) 3558 if (p != NULL)
3559 retval = sched_setscheduler(p, policy, &lparam); 3559 retval = sched_setscheduler(p, policy, &lparam);
3560 rcu_read_unlock(); 3560 rcu_read_unlock();
3561 3561
3562 return retval; 3562 return retval;
3563 } 3563 }
3564 3564
3565 /* 3565 /*
3566 * Mimics kernel/events/core.c perf_copy_attr(). 3566 * Mimics kernel/events/core.c perf_copy_attr().
3567 */ 3567 */
3568 static int sched_copy_attr(struct sched_attr __user *uattr, 3568 static int sched_copy_attr(struct sched_attr __user *uattr,
3569 struct sched_attr *attr) 3569 struct sched_attr *attr)
3570 { 3570 {
3571 u32 size; 3571 u32 size;
3572 int ret; 3572 int ret;
3573 3573
3574 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) 3574 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3575 return -EFAULT; 3575 return -EFAULT;
3576 3576
3577 /* 3577 /*
3578 * zero the full structure, so that a short copy will be nice. 3578 * zero the full structure, so that a short copy will be nice.
3579 */ 3579 */
3580 memset(attr, 0, sizeof(*attr)); 3580 memset(attr, 0, sizeof(*attr));
3581 3581
3582 ret = get_user(size, &uattr->size); 3582 ret = get_user(size, &uattr->size);
3583 if (ret) 3583 if (ret)
3584 return ret; 3584 return ret;
3585 3585
3586 if (size > PAGE_SIZE) /* silly large */ 3586 if (size > PAGE_SIZE) /* silly large */
3587 goto err_size; 3587 goto err_size;
3588 3588
3589 if (!size) /* abi compat */ 3589 if (!size) /* abi compat */
3590 size = SCHED_ATTR_SIZE_VER0; 3590 size = SCHED_ATTR_SIZE_VER0;
3591 3591
3592 if (size < SCHED_ATTR_SIZE_VER0) 3592 if (size < SCHED_ATTR_SIZE_VER0)
3593 goto err_size; 3593 goto err_size;
3594 3594
3595 /* 3595 /*
3596 * If we're handed a bigger struct than we know of, 3596 * If we're handed a bigger struct than we know of,
3597 * ensure all the unknown bits are 0 - i.e. new 3597 * ensure all the unknown bits are 0 - i.e. new
3598 * user-space does not rely on any kernel feature 3598 * user-space does not rely on any kernel feature
3599 * extensions we dont know about yet. 3599 * extensions we dont know about yet.
3600 */ 3600 */
3601 if (size > sizeof(*attr)) { 3601 if (size > sizeof(*attr)) {
3602 unsigned char __user *addr; 3602 unsigned char __user *addr;
3603 unsigned char __user *end; 3603 unsigned char __user *end;
3604 unsigned char val; 3604 unsigned char val;
3605 3605
3606 addr = (void __user *)uattr + sizeof(*attr); 3606 addr = (void __user *)uattr + sizeof(*attr);
3607 end = (void __user *)uattr + size; 3607 end = (void __user *)uattr + size;
3608 3608
3609 for (; addr < end; addr++) { 3609 for (; addr < end; addr++) {
3610 ret = get_user(val, addr); 3610 ret = get_user(val, addr);
3611 if (ret) 3611 if (ret)
3612 return ret; 3612 return ret;
3613 if (val) 3613 if (val)
3614 goto err_size; 3614 goto err_size;
3615 } 3615 }
3616 size = sizeof(*attr); 3616 size = sizeof(*attr);
3617 } 3617 }
3618 3618
3619 ret = copy_from_user(attr, uattr, size); 3619 ret = copy_from_user(attr, uattr, size);
3620 if (ret) 3620 if (ret)
3621 return -EFAULT; 3621 return -EFAULT;
3622 3622
3623 /* 3623 /*
3624 * XXX: do we want to be lenient like existing syscalls; or do we want 3624 * XXX: do we want to be lenient like existing syscalls; or do we want
3625 * to be strict and return an error on out-of-bounds values? 3625 * to be strict and return an error on out-of-bounds values?
3626 */ 3626 */
3627 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 3627 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3628 3628
3629 out: 3629 out:
3630 return ret; 3630 return ret;
3631 3631
3632 err_size: 3632 err_size:
3633 put_user(sizeof(*attr), &uattr->size); 3633 put_user(sizeof(*attr), &uattr->size);
3634 ret = -E2BIG; 3634 ret = -E2BIG;
3635 goto out; 3635 goto out;
3636 } 3636 }
3637 3637
3638 /** 3638 /**
3639 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 3639 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3640 * @pid: the pid in question. 3640 * @pid: the pid in question.
3641 * @policy: new policy. 3641 * @policy: new policy.
3642 * @param: structure containing the new RT priority. 3642 * @param: structure containing the new RT priority.
3643 * 3643 *
3644 * Return: 0 on success. An error code otherwise. 3644 * Return: 0 on success. An error code otherwise.
3645 */ 3645 */
3646 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 3646 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3647 struct sched_param __user *, param) 3647 struct sched_param __user *, param)
3648 { 3648 {
3649 /* negative values for policy are not valid */ 3649 /* negative values for policy are not valid */
3650 if (policy < 0) 3650 if (policy < 0)
3651 return -EINVAL; 3651 return -EINVAL;
3652 3652
3653 return do_sched_setscheduler(pid, policy, param); 3653 return do_sched_setscheduler(pid, policy, param);
3654 } 3654 }
3655 3655
3656 /** 3656 /**
3657 * sys_sched_setparam - set/change the RT priority of a thread 3657 * sys_sched_setparam - set/change the RT priority of a thread
3658 * @pid: the pid in question. 3658 * @pid: the pid in question.
3659 * @param: structure containing the new RT priority. 3659 * @param: structure containing the new RT priority.
3660 * 3660 *
3661 * Return: 0 on success. An error code otherwise. 3661 * Return: 0 on success. An error code otherwise.
3662 */ 3662 */
3663 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 3663 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3664 { 3664 {
3665 return do_sched_setscheduler(pid, -1, param); 3665 return do_sched_setscheduler(pid, -1, param);
3666 } 3666 }
3667 3667
3668 /** 3668 /**
3669 * sys_sched_setattr - same as above, but with extended sched_attr 3669 * sys_sched_setattr - same as above, but with extended sched_attr
3670 * @pid: the pid in question. 3670 * @pid: the pid in question.
3671 * @uattr: structure containing the extended parameters. 3671 * @uattr: structure containing the extended parameters.
3672 * @flags: for future extension. 3672 * @flags: for future extension.
3673 */ 3673 */
3674 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 3674 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3675 unsigned int, flags) 3675 unsigned int, flags)
3676 { 3676 {
3677 struct sched_attr attr; 3677 struct sched_attr attr;
3678 struct task_struct *p; 3678 struct task_struct *p;
3679 int retval; 3679 int retval;
3680 3680
3681 if (!uattr || pid < 0 || flags) 3681 if (!uattr || pid < 0 || flags)
3682 return -EINVAL; 3682 return -EINVAL;
3683 3683
3684 retval = sched_copy_attr(uattr, &attr); 3684 retval = sched_copy_attr(uattr, &attr);
3685 if (retval) 3685 if (retval)
3686 return retval; 3686 return retval;
3687 3687
3688 if ((int)attr.sched_policy < 0) 3688 if ((int)attr.sched_policy < 0)
3689 return -EINVAL; 3689 return -EINVAL;
3690 3690
3691 rcu_read_lock(); 3691 rcu_read_lock();
3692 retval = -ESRCH; 3692 retval = -ESRCH;
3693 p = find_process_by_pid(pid); 3693 p = find_process_by_pid(pid);
3694 if (p != NULL) 3694 if (p != NULL)
3695 retval = sched_setattr(p, &attr); 3695 retval = sched_setattr(p, &attr);
3696 rcu_read_unlock(); 3696 rcu_read_unlock();
3697 3697
3698 return retval; 3698 return retval;
3699 } 3699 }
3700 3700
3701 /** 3701 /**
3702 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 3702 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3703 * @pid: the pid in question. 3703 * @pid: the pid in question.
3704 * 3704 *
3705 * Return: On success, the policy of the thread. Otherwise, a negative error 3705 * Return: On success, the policy of the thread. Otherwise, a negative error
3706 * code. 3706 * code.
3707 */ 3707 */
3708 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 3708 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3709 { 3709 {
3710 struct task_struct *p; 3710 struct task_struct *p;
3711 int retval; 3711 int retval;
3712 3712
3713 if (pid < 0) 3713 if (pid < 0)
3714 return -EINVAL; 3714 return -EINVAL;
3715 3715
3716 retval = -ESRCH; 3716 retval = -ESRCH;
3717 rcu_read_lock(); 3717 rcu_read_lock();
3718 p = find_process_by_pid(pid); 3718 p = find_process_by_pid(pid);
3719 if (p) { 3719 if (p) {
3720 retval = security_task_getscheduler(p); 3720 retval = security_task_getscheduler(p);
3721 if (!retval) 3721 if (!retval)
3722 retval = p->policy 3722 retval = p->policy
3723 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); 3723 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3724 } 3724 }
3725 rcu_read_unlock(); 3725 rcu_read_unlock();
3726 return retval; 3726 return retval;
3727 } 3727 }
3728 3728
3729 /** 3729 /**
3730 * sys_sched_getparam - get the RT priority of a thread 3730 * sys_sched_getparam - get the RT priority of a thread
3731 * @pid: the pid in question. 3731 * @pid: the pid in question.
3732 * @param: structure containing the RT priority. 3732 * @param: structure containing the RT priority.
3733 * 3733 *
3734 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 3734 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3735 * code. 3735 * code.
3736 */ 3736 */
3737 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 3737 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3738 { 3738 {
3739 struct sched_param lp = { .sched_priority = 0 }; 3739 struct sched_param lp = { .sched_priority = 0 };
3740 struct task_struct *p; 3740 struct task_struct *p;
3741 int retval; 3741 int retval;
3742 3742
3743 if (!param || pid < 0) 3743 if (!param || pid < 0)
3744 return -EINVAL; 3744 return -EINVAL;
3745 3745
3746 rcu_read_lock(); 3746 rcu_read_lock();
3747 p = find_process_by_pid(pid); 3747 p = find_process_by_pid(pid);
3748 retval = -ESRCH; 3748 retval = -ESRCH;
3749 if (!p) 3749 if (!p)
3750 goto out_unlock; 3750 goto out_unlock;
3751 3751
3752 retval = security_task_getscheduler(p); 3752 retval = security_task_getscheduler(p);
3753 if (retval) 3753 if (retval)
3754 goto out_unlock; 3754 goto out_unlock;
3755 3755
3756 if (task_has_rt_policy(p)) 3756 if (task_has_rt_policy(p))
3757 lp.sched_priority = p->rt_priority; 3757 lp.sched_priority = p->rt_priority;
3758 rcu_read_unlock(); 3758 rcu_read_unlock();
3759 3759
3760 /* 3760 /*
3761 * This one might sleep, we cannot do it with a spinlock held ... 3761 * This one might sleep, we cannot do it with a spinlock held ...
3762 */ 3762 */
3763 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 3763 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3764 3764
3765 return retval; 3765 return retval;
3766 3766
3767 out_unlock: 3767 out_unlock:
3768 rcu_read_unlock(); 3768 rcu_read_unlock();
3769 return retval; 3769 return retval;
3770 } 3770 }
3771 3771
3772 static int sched_read_attr(struct sched_attr __user *uattr, 3772 static int sched_read_attr(struct sched_attr __user *uattr,
3773 struct sched_attr *attr, 3773 struct sched_attr *attr,
3774 unsigned int usize) 3774 unsigned int usize)
3775 { 3775 {
3776 int ret; 3776 int ret;
3777 3777
3778 if (!access_ok(VERIFY_WRITE, uattr, usize)) 3778 if (!access_ok(VERIFY_WRITE, uattr, usize))
3779 return -EFAULT; 3779 return -EFAULT;
3780 3780
3781 /* 3781 /*
3782 * If we're handed a smaller struct than we know of, 3782 * If we're handed a smaller struct than we know of,
3783 * ensure all the unknown bits are 0 - i.e. old 3783 * ensure all the unknown bits are 0 - i.e. old
3784 * user-space does not get uncomplete information. 3784 * user-space does not get uncomplete information.
3785 */ 3785 */
3786 if (usize < sizeof(*attr)) { 3786 if (usize < sizeof(*attr)) {
3787 unsigned char *addr; 3787 unsigned char *addr;
3788 unsigned char *end; 3788 unsigned char *end;
3789 3789
3790 addr = (void *)attr + usize; 3790 addr = (void *)attr + usize;
3791 end = (void *)attr + sizeof(*attr); 3791 end = (void *)attr + sizeof(*attr);
3792 3792
3793 for (; addr < end; addr++) { 3793 for (; addr < end; addr++) {
3794 if (*addr) 3794 if (*addr)
3795 goto err_size; 3795 goto err_size;
3796 } 3796 }
3797 3797
3798 attr->size = usize; 3798 attr->size = usize;
3799 } 3799 }
3800 3800
3801 ret = copy_to_user(uattr, attr, attr->size); 3801 ret = copy_to_user(uattr, attr, attr->size);
3802 if (ret) 3802 if (ret)
3803 return -EFAULT; 3803 return -EFAULT;
3804 3804
3805 out: 3805 out:
3806 return ret; 3806 return ret;
3807 3807
3808 err_size: 3808 err_size:
3809 ret = -E2BIG; 3809 ret = -E2BIG;
3810 goto out; 3810 goto out;
3811 } 3811 }
3812 3812
3813 /** 3813 /**
3814 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 3814 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3815 * @pid: the pid in question. 3815 * @pid: the pid in question.
3816 * @uattr: structure containing the extended parameters. 3816 * @uattr: structure containing the extended parameters.
3817 * @size: sizeof(attr) for fwd/bwd comp. 3817 * @size: sizeof(attr) for fwd/bwd comp.
3818 * @flags: for future extension. 3818 * @flags: for future extension.
3819 */ 3819 */
3820 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 3820 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3821 unsigned int, size, unsigned int, flags) 3821 unsigned int, size, unsigned int, flags)
3822 { 3822 {
3823 struct sched_attr attr = { 3823 struct sched_attr attr = {
3824 .size = sizeof(struct sched_attr), 3824 .size = sizeof(struct sched_attr),
3825 }; 3825 };
3826 struct task_struct *p; 3826 struct task_struct *p;
3827 int retval; 3827 int retval;
3828 3828
3829 if (!uattr || pid < 0 || size > PAGE_SIZE || 3829 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3830 size < SCHED_ATTR_SIZE_VER0 || flags) 3830 size < SCHED_ATTR_SIZE_VER0 || flags)
3831 return -EINVAL; 3831 return -EINVAL;
3832 3832
3833 rcu_read_lock(); 3833 rcu_read_lock();
3834 p = find_process_by_pid(pid); 3834 p = find_process_by_pid(pid);
3835 retval = -ESRCH; 3835 retval = -ESRCH;
3836 if (!p) 3836 if (!p)
3837 goto out_unlock; 3837 goto out_unlock;
3838 3838
3839 retval = security_task_getscheduler(p); 3839 retval = security_task_getscheduler(p);
3840 if (retval) 3840 if (retval)
3841 goto out_unlock; 3841 goto out_unlock;
3842 3842
3843 attr.sched_policy = p->policy; 3843 attr.sched_policy = p->policy;
3844 if (p->sched_reset_on_fork) 3844 if (p->sched_reset_on_fork)
3845 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 3845 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3846 if (task_has_dl_policy(p)) 3846 if (task_has_dl_policy(p))
3847 __getparam_dl(p, &attr); 3847 __getparam_dl(p, &attr);
3848 else if (task_has_rt_policy(p)) 3848 else if (task_has_rt_policy(p))
3849 attr.sched_priority = p->rt_priority; 3849 attr.sched_priority = p->rt_priority;
3850 else 3850 else
3851 attr.sched_nice = task_nice(p); 3851 attr.sched_nice = task_nice(p);
3852 3852
3853 rcu_read_unlock(); 3853 rcu_read_unlock();
3854 3854
3855 retval = sched_read_attr(uattr, &attr, size); 3855 retval = sched_read_attr(uattr, &attr, size);
3856 return retval; 3856 return retval;
3857 3857
3858 out_unlock: 3858 out_unlock:
3859 rcu_read_unlock(); 3859 rcu_read_unlock();
3860 return retval; 3860 return retval;
3861 } 3861 }
3862 3862
3863 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 3863 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3864 { 3864 {
3865 cpumask_var_t cpus_allowed, new_mask; 3865 cpumask_var_t cpus_allowed, new_mask;
3866 struct task_struct *p; 3866 struct task_struct *p;
3867 int retval; 3867 int retval;
3868 3868
3869 rcu_read_lock(); 3869 rcu_read_lock();
3870 3870
3871 p = find_process_by_pid(pid); 3871 p = find_process_by_pid(pid);
3872 if (!p) { 3872 if (!p) {
3873 rcu_read_unlock(); 3873 rcu_read_unlock();
3874 return -ESRCH; 3874 return -ESRCH;
3875 } 3875 }
3876 3876
3877 /* Prevent p going away */ 3877 /* Prevent p going away */
3878 get_task_struct(p); 3878 get_task_struct(p);
3879 rcu_read_unlock(); 3879 rcu_read_unlock();
3880 3880
3881 if (p->flags & PF_NO_SETAFFINITY) { 3881 if (p->flags & PF_NO_SETAFFINITY) {
3882 retval = -EINVAL; 3882 retval = -EINVAL;
3883 goto out_put_task; 3883 goto out_put_task;
3884 } 3884 }
3885 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 3885 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3886 retval = -ENOMEM; 3886 retval = -ENOMEM;
3887 goto out_put_task; 3887 goto out_put_task;
3888 } 3888 }
3889 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 3889 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3890 retval = -ENOMEM; 3890 retval = -ENOMEM;
3891 goto out_free_cpus_allowed; 3891 goto out_free_cpus_allowed;
3892 } 3892 }
3893 retval = -EPERM; 3893 retval = -EPERM;
3894 if (!check_same_owner(p)) { 3894 if (!check_same_owner(p)) {
3895 rcu_read_lock(); 3895 rcu_read_lock();
3896 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 3896 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3897 rcu_read_unlock(); 3897 rcu_read_unlock();
3898 goto out_unlock; 3898 goto out_unlock;
3899 } 3899 }
3900 rcu_read_unlock(); 3900 rcu_read_unlock();
3901 } 3901 }
3902 3902
3903 retval = security_task_setscheduler(p); 3903 retval = security_task_setscheduler(p);
3904 if (retval) 3904 if (retval)
3905 goto out_unlock; 3905 goto out_unlock;
3906 3906
3907 3907
3908 cpuset_cpus_allowed(p, cpus_allowed); 3908 cpuset_cpus_allowed(p, cpus_allowed);
3909 cpumask_and(new_mask, in_mask, cpus_allowed); 3909 cpumask_and(new_mask, in_mask, cpus_allowed);
3910 3910
3911 /* 3911 /*
3912 * Since bandwidth control happens on root_domain basis, 3912 * Since bandwidth control happens on root_domain basis,
3913 * if admission test is enabled, we only admit -deadline 3913 * if admission test is enabled, we only admit -deadline
3914 * tasks allowed to run on all the CPUs in the task's 3914 * tasks allowed to run on all the CPUs in the task's
3915 * root_domain. 3915 * root_domain.
3916 */ 3916 */
3917 #ifdef CONFIG_SMP 3917 #ifdef CONFIG_SMP
3918 if (task_has_dl_policy(p)) { 3918 if (task_has_dl_policy(p)) {
3919 const struct cpumask *span = task_rq(p)->rd->span; 3919 const struct cpumask *span = task_rq(p)->rd->span;
3920 3920
3921 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) { 3921 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3922 retval = -EBUSY; 3922 retval = -EBUSY;
3923 goto out_unlock; 3923 goto out_unlock;
3924 } 3924 }
3925 } 3925 }
3926 #endif 3926 #endif
3927 again: 3927 again:
3928 retval = set_cpus_allowed_ptr(p, new_mask); 3928 retval = set_cpus_allowed_ptr(p, new_mask);
3929 3929
3930 if (!retval) { 3930 if (!retval) {
3931 cpuset_cpus_allowed(p, cpus_allowed); 3931 cpuset_cpus_allowed(p, cpus_allowed);
3932 if (!cpumask_subset(new_mask, cpus_allowed)) { 3932 if (!cpumask_subset(new_mask, cpus_allowed)) {
3933 /* 3933 /*
3934 * We must have raced with a concurrent cpuset 3934 * We must have raced with a concurrent cpuset
3935 * update. Just reset the cpus_allowed to the 3935 * update. Just reset the cpus_allowed to the
3936 * cpuset's cpus_allowed 3936 * cpuset's cpus_allowed
3937 */ 3937 */
3938 cpumask_copy(new_mask, cpus_allowed); 3938 cpumask_copy(new_mask, cpus_allowed);
3939 goto again; 3939 goto again;
3940 } 3940 }
3941 } 3941 }
3942 out_unlock: 3942 out_unlock:
3943 free_cpumask_var(new_mask); 3943 free_cpumask_var(new_mask);
3944 out_free_cpus_allowed: 3944 out_free_cpus_allowed:
3945 free_cpumask_var(cpus_allowed); 3945 free_cpumask_var(cpus_allowed);
3946 out_put_task: 3946 out_put_task:
3947 put_task_struct(p); 3947 put_task_struct(p);
3948 return retval; 3948 return retval;
3949 } 3949 }
3950 3950
3951 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 3951 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3952 struct cpumask *new_mask) 3952 struct cpumask *new_mask)
3953 { 3953 {
3954 if (len < cpumask_size()) 3954 if (len < cpumask_size())
3955 cpumask_clear(new_mask); 3955 cpumask_clear(new_mask);
3956 else if (len > cpumask_size()) 3956 else if (len > cpumask_size())
3957 len = cpumask_size(); 3957 len = cpumask_size();
3958 3958
3959 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 3959 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3960 } 3960 }
3961 3961
3962 /** 3962 /**
3963 * sys_sched_setaffinity - set the cpu affinity of a process 3963 * sys_sched_setaffinity - set the cpu affinity of a process
3964 * @pid: pid of the process 3964 * @pid: pid of the process
3965 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 3965 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3966 * @user_mask_ptr: user-space pointer to the new cpu mask 3966 * @user_mask_ptr: user-space pointer to the new cpu mask
3967 * 3967 *
3968 * Return: 0 on success. An error code otherwise. 3968 * Return: 0 on success. An error code otherwise.
3969 */ 3969 */
3970 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 3970 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3971 unsigned long __user *, user_mask_ptr) 3971 unsigned long __user *, user_mask_ptr)
3972 { 3972 {
3973 cpumask_var_t new_mask; 3973 cpumask_var_t new_mask;
3974 int retval; 3974 int retval;
3975 3975
3976 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 3976 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3977 return -ENOMEM; 3977 return -ENOMEM;
3978 3978
3979 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 3979 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3980 if (retval == 0) 3980 if (retval == 0)
3981 retval = sched_setaffinity(pid, new_mask); 3981 retval = sched_setaffinity(pid, new_mask);
3982 free_cpumask_var(new_mask); 3982 free_cpumask_var(new_mask);
3983 return retval; 3983 return retval;
3984 } 3984 }
3985 3985
3986 long sched_getaffinity(pid_t pid, struct cpumask *mask) 3986 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3987 { 3987 {
3988 struct task_struct *p; 3988 struct task_struct *p;
3989 unsigned long flags; 3989 unsigned long flags;
3990 int retval; 3990 int retval;
3991 3991
3992 rcu_read_lock(); 3992 rcu_read_lock();
3993 3993
3994 retval = -ESRCH; 3994 retval = -ESRCH;
3995 p = find_process_by_pid(pid); 3995 p = find_process_by_pid(pid);
3996 if (!p) 3996 if (!p)
3997 goto out_unlock; 3997 goto out_unlock;
3998 3998
3999 retval = security_task_getscheduler(p); 3999 retval = security_task_getscheduler(p);
4000 if (retval) 4000 if (retval)
4001 goto out_unlock; 4001 goto out_unlock;
4002 4002
4003 raw_spin_lock_irqsave(&p->pi_lock, flags); 4003 raw_spin_lock_irqsave(&p->pi_lock, flags);
4004 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); 4004 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4005 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4005 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4006 4006
4007 out_unlock: 4007 out_unlock:
4008 rcu_read_unlock(); 4008 rcu_read_unlock();
4009 4009
4010 return retval; 4010 return retval;
4011 } 4011 }
4012 4012
4013 /** 4013 /**
4014 * sys_sched_getaffinity - get the cpu affinity of a process 4014 * sys_sched_getaffinity - get the cpu affinity of a process
4015 * @pid: pid of the process 4015 * @pid: pid of the process
4016 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 4016 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4017 * @user_mask_ptr: user-space pointer to hold the current cpu mask 4017 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4018 * 4018 *
4019 * Return: 0 on success. An error code otherwise. 4019 * Return: 0 on success. An error code otherwise.
4020 */ 4020 */
4021 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 4021 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4022 unsigned long __user *, user_mask_ptr) 4022 unsigned long __user *, user_mask_ptr)
4023 { 4023 {
4024 int ret; 4024 int ret;
4025 cpumask_var_t mask; 4025 cpumask_var_t mask;
4026 4026
4027 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 4027 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4028 return -EINVAL; 4028 return -EINVAL;
4029 if (len & (sizeof(unsigned long)-1)) 4029 if (len & (sizeof(unsigned long)-1))
4030 return -EINVAL; 4030 return -EINVAL;
4031 4031
4032 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 4032 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4033 return -ENOMEM; 4033 return -ENOMEM;
4034 4034
4035 ret = sched_getaffinity(pid, mask); 4035 ret = sched_getaffinity(pid, mask);
4036 if (ret == 0) { 4036 if (ret == 0) {
4037 size_t retlen = min_t(size_t, len, cpumask_size()); 4037 size_t retlen = min_t(size_t, len, cpumask_size());
4038 4038
4039 if (copy_to_user(user_mask_ptr, mask, retlen)) 4039 if (copy_to_user(user_mask_ptr, mask, retlen))
4040 ret = -EFAULT; 4040 ret = -EFAULT;
4041 else 4041 else
4042 ret = retlen; 4042 ret = retlen;
4043 } 4043 }
4044 free_cpumask_var(mask); 4044 free_cpumask_var(mask);
4045 4045
4046 return ret; 4046 return ret;
4047 } 4047 }
4048 4048
4049 /** 4049 /**
4050 * sys_sched_yield - yield the current processor to other threads. 4050 * sys_sched_yield - yield the current processor to other threads.
4051 * 4051 *
4052 * This function yields the current CPU to other tasks. If there are no 4052 * This function yields the current CPU to other tasks. If there are no
4053 * other threads running on this CPU then this function will return. 4053 * other threads running on this CPU then this function will return.
4054 * 4054 *
4055 * Return: 0. 4055 * Return: 0.
4056 */ 4056 */
4057 SYSCALL_DEFINE0(sched_yield) 4057 SYSCALL_DEFINE0(sched_yield)
4058 { 4058 {
4059 struct rq *rq = this_rq_lock(); 4059 struct rq *rq = this_rq_lock();
4060 4060
4061 schedstat_inc(rq, yld_count); 4061 schedstat_inc(rq, yld_count);
4062 current->sched_class->yield_task(rq); 4062 current->sched_class->yield_task(rq);
4063 4063
4064 /* 4064 /*
4065 * Since we are going to call schedule() anyway, there's 4065 * Since we are going to call schedule() anyway, there's
4066 * no need to preempt or enable interrupts: 4066 * no need to preempt or enable interrupts:
4067 */ 4067 */
4068 __release(rq->lock); 4068 __release(rq->lock);
4069 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 4069 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4070 do_raw_spin_unlock(&rq->lock); 4070 do_raw_spin_unlock(&rq->lock);
4071 sched_preempt_enable_no_resched(); 4071 sched_preempt_enable_no_resched();
4072 4072
4073 schedule(); 4073 schedule();
4074 4074
4075 return 0; 4075 return 0;
4076 } 4076 }
4077 4077
4078 static void __cond_resched(void) 4078 static void __cond_resched(void)
4079 { 4079 {
4080 __preempt_count_add(PREEMPT_ACTIVE); 4080 __preempt_count_add(PREEMPT_ACTIVE);
4081 __schedule(); 4081 __schedule();
4082 __preempt_count_sub(PREEMPT_ACTIVE); 4082 __preempt_count_sub(PREEMPT_ACTIVE);
4083 } 4083 }
4084 4084
4085 int __sched _cond_resched(void) 4085 int __sched _cond_resched(void)
4086 { 4086 {
4087 if (should_resched()) { 4087 if (should_resched()) {
4088 __cond_resched(); 4088 __cond_resched();
4089 return 1; 4089 return 1;
4090 } 4090 }
4091 return 0; 4091 return 0;
4092 } 4092 }
4093 EXPORT_SYMBOL(_cond_resched); 4093 EXPORT_SYMBOL(_cond_resched);
4094 4094
4095 /* 4095 /*
4096 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 4096 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4097 * call schedule, and on return reacquire the lock. 4097 * call schedule, and on return reacquire the lock.
4098 * 4098 *
4099 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 4099 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4100 * operations here to prevent schedule() from being called twice (once via 4100 * operations here to prevent schedule() from being called twice (once via
4101 * spin_unlock(), once by hand). 4101 * spin_unlock(), once by hand).
4102 */ 4102 */
4103 int __cond_resched_lock(spinlock_t *lock) 4103 int __cond_resched_lock(spinlock_t *lock)
4104 { 4104 {
4105 int resched = should_resched(); 4105 int resched = should_resched();
4106 int ret = 0; 4106 int ret = 0;
4107 4107
4108 lockdep_assert_held(lock); 4108 lockdep_assert_held(lock);
4109 4109
4110 if (spin_needbreak(lock) || resched) { 4110 if (spin_needbreak(lock) || resched) {
4111 spin_unlock(lock); 4111 spin_unlock(lock);
4112 if (resched) 4112 if (resched)
4113 __cond_resched(); 4113 __cond_resched();
4114 else 4114 else
4115 cpu_relax(); 4115 cpu_relax();
4116 ret = 1; 4116 ret = 1;
4117 spin_lock(lock); 4117 spin_lock(lock);
4118 } 4118 }
4119 return ret; 4119 return ret;
4120 } 4120 }
4121 EXPORT_SYMBOL(__cond_resched_lock); 4121 EXPORT_SYMBOL(__cond_resched_lock);
4122 4122
4123 int __sched __cond_resched_softirq(void) 4123 int __sched __cond_resched_softirq(void)
4124 { 4124 {
4125 BUG_ON(!in_softirq()); 4125 BUG_ON(!in_softirq());
4126 4126
4127 if (should_resched()) { 4127 if (should_resched()) {
4128 local_bh_enable(); 4128 local_bh_enable();
4129 __cond_resched(); 4129 __cond_resched();
4130 local_bh_disable(); 4130 local_bh_disable();
4131 return 1; 4131 return 1;
4132 } 4132 }
4133 return 0; 4133 return 0;
4134 } 4134 }
4135 EXPORT_SYMBOL(__cond_resched_softirq); 4135 EXPORT_SYMBOL(__cond_resched_softirq);
4136 4136
4137 /** 4137 /**
4138 * yield - yield the current processor to other threads. 4138 * yield - yield the current processor to other threads.
4139 * 4139 *
4140 * Do not ever use this function, there's a 99% chance you're doing it wrong. 4140 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4141 * 4141 *
4142 * The scheduler is at all times free to pick the calling task as the most 4142 * The scheduler is at all times free to pick the calling task as the most
4143 * eligible task to run, if removing the yield() call from your code breaks 4143 * eligible task to run, if removing the yield() call from your code breaks
4144 * it, its already broken. 4144 * it, its already broken.
4145 * 4145 *
4146 * Typical broken usage is: 4146 * Typical broken usage is:
4147 * 4147 *
4148 * while (!event) 4148 * while (!event)
4149 * yield(); 4149 * yield();
4150 * 4150 *
4151 * where one assumes that yield() will let 'the other' process run that will 4151 * where one assumes that yield() will let 'the other' process run that will
4152 * make event true. If the current task is a SCHED_FIFO task that will never 4152 * make event true. If the current task is a SCHED_FIFO task that will never
4153 * happen. Never use yield() as a progress guarantee!! 4153 * happen. Never use yield() as a progress guarantee!!
4154 * 4154 *
4155 * If you want to use yield() to wait for something, use wait_event(). 4155 * If you want to use yield() to wait for something, use wait_event().
4156 * If you want to use yield() to be 'nice' for others, use cond_resched(). 4156 * If you want to use yield() to be 'nice' for others, use cond_resched().
4157 * If you still want to use yield(), do not! 4157 * If you still want to use yield(), do not!
4158 */ 4158 */
4159 void __sched yield(void) 4159 void __sched yield(void)
4160 { 4160 {
4161 set_current_state(TASK_RUNNING); 4161 set_current_state(TASK_RUNNING);
4162 sys_sched_yield(); 4162 sys_sched_yield();
4163 } 4163 }
4164 EXPORT_SYMBOL(yield); 4164 EXPORT_SYMBOL(yield);
4165 4165
4166 /** 4166 /**
4167 * yield_to - yield the current processor to another thread in 4167 * yield_to - yield the current processor to another thread in
4168 * your thread group, or accelerate that thread toward the 4168 * your thread group, or accelerate that thread toward the
4169 * processor it's on. 4169 * processor it's on.
4170 * @p: target task 4170 * @p: target task
4171 * @preempt: whether task preemption is allowed or not 4171 * @preempt: whether task preemption is allowed or not
4172 * 4172 *
4173 * It's the caller's job to ensure that the target task struct 4173 * It's the caller's job to ensure that the target task struct
4174 * can't go away on us before we can do any checks. 4174 * can't go away on us before we can do any checks.
4175 * 4175 *
4176 * Return: 4176 * Return:
4177 * true (>0) if we indeed boosted the target task. 4177 * true (>0) if we indeed boosted the target task.
4178 * false (0) if we failed to boost the target. 4178 * false (0) if we failed to boost the target.
4179 * -ESRCH if there's no task to yield to. 4179 * -ESRCH if there's no task to yield to.
4180 */ 4180 */
4181 bool __sched yield_to(struct task_struct *p, bool preempt) 4181 bool __sched yield_to(struct task_struct *p, bool preempt)
4182 { 4182 {
4183 struct task_struct *curr = current; 4183 struct task_struct *curr = current;
4184 struct rq *rq, *p_rq; 4184 struct rq *rq, *p_rq;
4185 unsigned long flags; 4185 unsigned long flags;
4186 int yielded = 0; 4186 int yielded = 0;
4187 4187
4188 local_irq_save(flags); 4188 local_irq_save(flags);
4189 rq = this_rq(); 4189 rq = this_rq();
4190 4190
4191 again: 4191 again:
4192 p_rq = task_rq(p); 4192 p_rq = task_rq(p);
4193 /* 4193 /*
4194 * If we're the only runnable task on the rq and target rq also 4194 * If we're the only runnable task on the rq and target rq also
4195 * has only one task, there's absolutely no point in yielding. 4195 * has only one task, there's absolutely no point in yielding.
4196 */ 4196 */
4197 if (rq->nr_running == 1 && p_rq->nr_running == 1) { 4197 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4198 yielded = -ESRCH; 4198 yielded = -ESRCH;
4199 goto out_irq; 4199 goto out_irq;
4200 } 4200 }
4201 4201
4202 double_rq_lock(rq, p_rq); 4202 double_rq_lock(rq, p_rq);
4203 if (task_rq(p) != p_rq) { 4203 if (task_rq(p) != p_rq) {
4204 double_rq_unlock(rq, p_rq); 4204 double_rq_unlock(rq, p_rq);
4205 goto again; 4205 goto again;
4206 } 4206 }
4207 4207
4208 if (!curr->sched_class->yield_to_task) 4208 if (!curr->sched_class->yield_to_task)
4209 goto out_unlock; 4209 goto out_unlock;
4210 4210
4211 if (curr->sched_class != p->sched_class) 4211 if (curr->sched_class != p->sched_class)
4212 goto out_unlock; 4212 goto out_unlock;
4213 4213
4214 if (task_running(p_rq, p) || p->state) 4214 if (task_running(p_rq, p) || p->state)
4215 goto out_unlock; 4215 goto out_unlock;
4216 4216
4217 yielded = curr->sched_class->yield_to_task(rq, p, preempt); 4217 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4218 if (yielded) { 4218 if (yielded) {
4219 schedstat_inc(rq, yld_count); 4219 schedstat_inc(rq, yld_count);
4220 /* 4220 /*
4221 * Make p's CPU reschedule; pick_next_entity takes care of 4221 * Make p's CPU reschedule; pick_next_entity takes care of
4222 * fairness. 4222 * fairness.
4223 */ 4223 */
4224 if (preempt && rq != p_rq) 4224 if (preempt && rq != p_rq)
4225 resched_task(p_rq->curr); 4225 resched_task(p_rq->curr);
4226 } 4226 }
4227 4227
4228 out_unlock: 4228 out_unlock:
4229 double_rq_unlock(rq, p_rq); 4229 double_rq_unlock(rq, p_rq);
4230 out_irq: 4230 out_irq:
4231 local_irq_restore(flags); 4231 local_irq_restore(flags);
4232 4232
4233 if (yielded > 0) 4233 if (yielded > 0)
4234 schedule(); 4234 schedule();
4235 4235
4236 return yielded; 4236 return yielded;
4237 } 4237 }
4238 EXPORT_SYMBOL_GPL(yield_to); 4238 EXPORT_SYMBOL_GPL(yield_to);
4239 4239
4240 /* 4240 /*
4241 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 4241 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4242 * that process accounting knows that this is a task in IO wait state. 4242 * that process accounting knows that this is a task in IO wait state.
4243 */ 4243 */
4244 void __sched io_schedule(void) 4244 void __sched io_schedule(void)
4245 { 4245 {
4246 struct rq *rq = raw_rq(); 4246 struct rq *rq = raw_rq();
4247 4247
4248 delayacct_blkio_start(); 4248 delayacct_blkio_start();
4249 atomic_inc(&rq->nr_iowait); 4249 atomic_inc(&rq->nr_iowait);
4250 blk_flush_plug(current); 4250 blk_flush_plug(current);
4251 current->in_iowait = 1; 4251 current->in_iowait = 1;
4252 schedule(); 4252 schedule();
4253 current->in_iowait = 0; 4253 current->in_iowait = 0;
4254 atomic_dec(&rq->nr_iowait); 4254 atomic_dec(&rq->nr_iowait);
4255 delayacct_blkio_end(); 4255 delayacct_blkio_end();
4256 } 4256 }
4257 EXPORT_SYMBOL(io_schedule); 4257 EXPORT_SYMBOL(io_schedule);
4258 4258
4259 long __sched io_schedule_timeout(long timeout) 4259 long __sched io_schedule_timeout(long timeout)
4260 { 4260 {
4261 struct rq *rq = raw_rq(); 4261 struct rq *rq = raw_rq();
4262 long ret; 4262 long ret;
4263 4263
4264 delayacct_blkio_start(); 4264 delayacct_blkio_start();
4265 atomic_inc(&rq->nr_iowait); 4265 atomic_inc(&rq->nr_iowait);
4266 blk_flush_plug(current); 4266 blk_flush_plug(current);
4267 current->in_iowait = 1; 4267 current->in_iowait = 1;
4268 ret = schedule_timeout(timeout); 4268 ret = schedule_timeout(timeout);
4269 current->in_iowait = 0; 4269 current->in_iowait = 0;
4270 atomic_dec(&rq->nr_iowait); 4270 atomic_dec(&rq->nr_iowait);
4271 delayacct_blkio_end(); 4271 delayacct_blkio_end();
4272 return ret; 4272 return ret;
4273 } 4273 }
4274 4274
4275 /** 4275 /**
4276 * sys_sched_get_priority_max - return maximum RT priority. 4276 * sys_sched_get_priority_max - return maximum RT priority.
4277 * @policy: scheduling class. 4277 * @policy: scheduling class.
4278 * 4278 *
4279 * Return: On success, this syscall returns the maximum 4279 * Return: On success, this syscall returns the maximum
4280 * rt_priority that can be used by a given scheduling class. 4280 * rt_priority that can be used by a given scheduling class.
4281 * On failure, a negative error code is returned. 4281 * On failure, a negative error code is returned.
4282 */ 4282 */
4283 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 4283 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4284 { 4284 {
4285 int ret = -EINVAL; 4285 int ret = -EINVAL;
4286 4286
4287 switch (policy) { 4287 switch (policy) {
4288 case SCHED_FIFO: 4288 case SCHED_FIFO:
4289 case SCHED_RR: 4289 case SCHED_RR:
4290 ret = MAX_USER_RT_PRIO-1; 4290 ret = MAX_USER_RT_PRIO-1;
4291 break; 4291 break;
4292 case SCHED_DEADLINE: 4292 case SCHED_DEADLINE:
4293 case SCHED_NORMAL: 4293 case SCHED_NORMAL:
4294 case SCHED_BATCH: 4294 case SCHED_BATCH:
4295 case SCHED_IDLE: 4295 case SCHED_IDLE:
4296 ret = 0; 4296 ret = 0;
4297 break; 4297 break;
4298 } 4298 }
4299 return ret; 4299 return ret;
4300 } 4300 }
4301 4301
4302 /** 4302 /**
4303 * sys_sched_get_priority_min - return minimum RT priority. 4303 * sys_sched_get_priority_min - return minimum RT priority.
4304 * @policy: scheduling class. 4304 * @policy: scheduling class.
4305 * 4305 *
4306 * Return: On success, this syscall returns the minimum 4306 * Return: On success, this syscall returns the minimum
4307 * rt_priority that can be used by a given scheduling class. 4307 * rt_priority that can be used by a given scheduling class.
4308 * On failure, a negative error code is returned. 4308 * On failure, a negative error code is returned.
4309 */ 4309 */
4310 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 4310 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4311 { 4311 {
4312 int ret = -EINVAL; 4312 int ret = -EINVAL;
4313 4313
4314 switch (policy) { 4314 switch (policy) {
4315 case SCHED_FIFO: 4315 case SCHED_FIFO:
4316 case SCHED_RR: 4316 case SCHED_RR:
4317 ret = 1; 4317 ret = 1;
4318 break; 4318 break;
4319 case SCHED_DEADLINE: 4319 case SCHED_DEADLINE:
4320 case SCHED_NORMAL: 4320 case SCHED_NORMAL:
4321 case SCHED_BATCH: 4321 case SCHED_BATCH:
4322 case SCHED_IDLE: 4322 case SCHED_IDLE:
4323 ret = 0; 4323 ret = 0;
4324 } 4324 }
4325 return ret; 4325 return ret;
4326 } 4326 }
4327 4327
4328 /** 4328 /**
4329 * sys_sched_rr_get_interval - return the default timeslice of a process. 4329 * sys_sched_rr_get_interval - return the default timeslice of a process.
4330 * @pid: pid of the process. 4330 * @pid: pid of the process.
4331 * @interval: userspace pointer to the timeslice value. 4331 * @interval: userspace pointer to the timeslice value.
4332 * 4332 *
4333 * this syscall writes the default timeslice value of a given process 4333 * this syscall writes the default timeslice value of a given process
4334 * into the user-space timespec buffer. A value of '0' means infinity. 4334 * into the user-space timespec buffer. A value of '0' means infinity.
4335 * 4335 *
4336 * Return: On success, 0 and the timeslice is in @interval. Otherwise, 4336 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4337 * an error code. 4337 * an error code.
4338 */ 4338 */
4339 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 4339 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4340 struct timespec __user *, interval) 4340 struct timespec __user *, interval)
4341 { 4341 {
4342 struct task_struct *p; 4342 struct task_struct *p;
4343 unsigned int time_slice; 4343 unsigned int time_slice;
4344 unsigned long flags; 4344 unsigned long flags;
4345 struct rq *rq; 4345 struct rq *rq;
4346 int retval; 4346 int retval;
4347 struct timespec t; 4347 struct timespec t;
4348 4348
4349 if (pid < 0) 4349 if (pid < 0)
4350 return -EINVAL; 4350 return -EINVAL;
4351 4351
4352 retval = -ESRCH; 4352 retval = -ESRCH;
4353 rcu_read_lock(); 4353 rcu_read_lock();
4354 p = find_process_by_pid(pid); 4354 p = find_process_by_pid(pid);
4355 if (!p) 4355 if (!p)
4356 goto out_unlock; 4356 goto out_unlock;
4357 4357
4358 retval = security_task_getscheduler(p); 4358 retval = security_task_getscheduler(p);
4359 if (retval) 4359 if (retval)
4360 goto out_unlock; 4360 goto out_unlock;
4361 4361
4362 rq = task_rq_lock(p, &flags); 4362 rq = task_rq_lock(p, &flags);
4363 time_slice = 0; 4363 time_slice = 0;
4364 if (p->sched_class->get_rr_interval) 4364 if (p->sched_class->get_rr_interval)
4365 time_slice = p->sched_class->get_rr_interval(rq, p); 4365 time_slice = p->sched_class->get_rr_interval(rq, p);
4366 task_rq_unlock(rq, p, &flags); 4366 task_rq_unlock(rq, p, &flags);
4367 4367
4368 rcu_read_unlock(); 4368 rcu_read_unlock();
4369 jiffies_to_timespec(time_slice, &t); 4369 jiffies_to_timespec(time_slice, &t);
4370 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 4370 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4371 return retval; 4371 return retval;
4372 4372
4373 out_unlock: 4373 out_unlock:
4374 rcu_read_unlock(); 4374 rcu_read_unlock();
4375 return retval; 4375 return retval;
4376 } 4376 }
4377 4377
4378 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 4378 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4379 4379
4380 void sched_show_task(struct task_struct *p) 4380 void sched_show_task(struct task_struct *p)
4381 { 4381 {
4382 unsigned long free = 0; 4382 unsigned long free = 0;
4383 int ppid; 4383 int ppid;
4384 unsigned state; 4384 unsigned state;
4385 4385
4386 state = p->state ? __ffs(p->state) + 1 : 0; 4386 state = p->state ? __ffs(p->state) + 1 : 0;
4387 printk(KERN_INFO "%-15.15s %c", p->comm, 4387 printk(KERN_INFO "%-15.15s %c", p->comm,
4388 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 4388 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4389 #if BITS_PER_LONG == 32 4389 #if BITS_PER_LONG == 32
4390 if (state == TASK_RUNNING) 4390 if (state == TASK_RUNNING)
4391 printk(KERN_CONT " running "); 4391 printk(KERN_CONT " running ");
4392 else 4392 else
4393 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 4393 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4394 #else 4394 #else
4395 if (state == TASK_RUNNING) 4395 if (state == TASK_RUNNING)
4396 printk(KERN_CONT " running task "); 4396 printk(KERN_CONT " running task ");
4397 else 4397 else
4398 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 4398 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4399 #endif 4399 #endif
4400 #ifdef CONFIG_DEBUG_STACK_USAGE 4400 #ifdef CONFIG_DEBUG_STACK_USAGE
4401 free = stack_not_used(p); 4401 free = stack_not_used(p);
4402 #endif 4402 #endif
4403 rcu_read_lock(); 4403 rcu_read_lock();
4404 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 4404 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4405 rcu_read_unlock(); 4405 rcu_read_unlock();
4406 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 4406 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4407 task_pid_nr(p), ppid, 4407 task_pid_nr(p), ppid,
4408 (unsigned long)task_thread_info(p)->flags); 4408 (unsigned long)task_thread_info(p)->flags);
4409 4409
4410 print_worker_info(KERN_INFO, p); 4410 print_worker_info(KERN_INFO, p);
4411 show_stack(p, NULL); 4411 show_stack(p, NULL);
4412 } 4412 }
4413 4413
4414 void show_state_filter(unsigned long state_filter) 4414 void show_state_filter(unsigned long state_filter)
4415 { 4415 {
4416 struct task_struct *g, *p; 4416 struct task_struct *g, *p;
4417 4417
4418 #if BITS_PER_LONG == 32 4418 #if BITS_PER_LONG == 32
4419 printk(KERN_INFO 4419 printk(KERN_INFO
4420 " task PC stack pid father\n"); 4420 " task PC stack pid father\n");
4421 #else 4421 #else
4422 printk(KERN_INFO 4422 printk(KERN_INFO
4423 " task PC stack pid father\n"); 4423 " task PC stack pid father\n");
4424 #endif 4424 #endif
4425 rcu_read_lock(); 4425 rcu_read_lock();
4426 do_each_thread(g, p) { 4426 do_each_thread(g, p) {
4427 /* 4427 /*
4428 * reset the NMI-timeout, listing all files on a slow 4428 * reset the NMI-timeout, listing all files on a slow
4429 * console might take a lot of time: 4429 * console might take a lot of time:
4430 */ 4430 */
4431 touch_nmi_watchdog(); 4431 touch_nmi_watchdog();
4432 if (!state_filter || (p->state & state_filter)) 4432 if (!state_filter || (p->state & state_filter))
4433 sched_show_task(p); 4433 sched_show_task(p);
4434 } while_each_thread(g, p); 4434 } while_each_thread(g, p);
4435 4435
4436 touch_all_softlockup_watchdogs(); 4436 touch_all_softlockup_watchdogs();
4437 4437
4438 #ifdef CONFIG_SCHED_DEBUG 4438 #ifdef CONFIG_SCHED_DEBUG
4439 sysrq_sched_debug_show(); 4439 sysrq_sched_debug_show();
4440 #endif 4440 #endif
4441 rcu_read_unlock(); 4441 rcu_read_unlock();
4442 /* 4442 /*
4443 * Only show locks if all tasks are dumped: 4443 * Only show locks if all tasks are dumped:
4444 */ 4444 */
4445 if (!state_filter) 4445 if (!state_filter)
4446 debug_show_all_locks(); 4446 debug_show_all_locks();
4447 } 4447 }
4448 4448
4449 void init_idle_bootup_task(struct task_struct *idle) 4449 void init_idle_bootup_task(struct task_struct *idle)
4450 { 4450 {
4451 idle->sched_class = &idle_sched_class; 4451 idle->sched_class = &idle_sched_class;
4452 } 4452 }
4453 4453
4454 /** 4454 /**
4455 * init_idle - set up an idle thread for a given CPU 4455 * init_idle - set up an idle thread for a given CPU
4456 * @idle: task in question 4456 * @idle: task in question
4457 * @cpu: cpu the idle task belongs to 4457 * @cpu: cpu the idle task belongs to
4458 * 4458 *
4459 * NOTE: this function does not set the idle thread's NEED_RESCHED 4459 * NOTE: this function does not set the idle thread's NEED_RESCHED
4460 * flag, to make booting more robust. 4460 * flag, to make booting more robust.
4461 */ 4461 */
4462 void init_idle(struct task_struct *idle, int cpu) 4462 void init_idle(struct task_struct *idle, int cpu)
4463 { 4463 {
4464 struct rq *rq = cpu_rq(cpu); 4464 struct rq *rq = cpu_rq(cpu);
4465 unsigned long flags; 4465 unsigned long flags;
4466 4466
4467 raw_spin_lock_irqsave(&rq->lock, flags); 4467 raw_spin_lock_irqsave(&rq->lock, flags);
4468 4468
4469 __sched_fork(0, idle); 4469 __sched_fork(0, idle);
4470 idle->state = TASK_RUNNING; 4470 idle->state = TASK_RUNNING;
4471 idle->se.exec_start = sched_clock(); 4471 idle->se.exec_start = sched_clock();
4472 4472
4473 do_set_cpus_allowed(idle, cpumask_of(cpu)); 4473 do_set_cpus_allowed(idle, cpumask_of(cpu));
4474 /* 4474 /*
4475 * We're having a chicken and egg problem, even though we are 4475 * We're having a chicken and egg problem, even though we are
4476 * holding rq->lock, the cpu isn't yet set to this cpu so the 4476 * holding rq->lock, the cpu isn't yet set to this cpu so the
4477 * lockdep check in task_group() will fail. 4477 * lockdep check in task_group() will fail.
4478 * 4478 *
4479 * Similar case to sched_fork(). / Alternatively we could 4479 * Similar case to sched_fork(). / Alternatively we could
4480 * use task_rq_lock() here and obtain the other rq->lock. 4480 * use task_rq_lock() here and obtain the other rq->lock.
4481 * 4481 *
4482 * Silence PROVE_RCU 4482 * Silence PROVE_RCU
4483 */ 4483 */
4484 rcu_read_lock(); 4484 rcu_read_lock();
4485 __set_task_cpu(idle, cpu); 4485 __set_task_cpu(idle, cpu);
4486 rcu_read_unlock(); 4486 rcu_read_unlock();
4487 4487
4488 rq->curr = rq->idle = idle; 4488 rq->curr = rq->idle = idle;
4489 idle->on_rq = 1; 4489 idle->on_rq = 1;
4490 #if defined(CONFIG_SMP) 4490 #if defined(CONFIG_SMP)
4491 idle->on_cpu = 1; 4491 idle->on_cpu = 1;
4492 #endif 4492 #endif
4493 raw_spin_unlock_irqrestore(&rq->lock, flags); 4493 raw_spin_unlock_irqrestore(&rq->lock, flags);
4494 4494
4495 /* Set the preempt count _outside_ the spinlocks! */ 4495 /* Set the preempt count _outside_ the spinlocks! */
4496 init_idle_preempt_count(idle, cpu); 4496 init_idle_preempt_count(idle, cpu);
4497 4497
4498 /* 4498 /*
4499 * The idle tasks have their own, simple scheduling class: 4499 * The idle tasks have their own, simple scheduling class:
4500 */ 4500 */
4501 idle->sched_class = &idle_sched_class; 4501 idle->sched_class = &idle_sched_class;
4502 ftrace_graph_init_idle_task(idle, cpu); 4502 ftrace_graph_init_idle_task(idle, cpu);
4503 vtime_init_idle(idle, cpu); 4503 vtime_init_idle(idle, cpu);
4504 #if defined(CONFIG_SMP) 4504 #if defined(CONFIG_SMP)
4505 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 4505 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4506 #endif 4506 #endif
4507 } 4507 }
4508 4508
4509 #ifdef CONFIG_SMP 4509 #ifdef CONFIG_SMP
4510 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 4510 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4511 { 4511 {
4512 if (p->sched_class && p->sched_class->set_cpus_allowed) 4512 if (p->sched_class && p->sched_class->set_cpus_allowed)
4513 p->sched_class->set_cpus_allowed(p, new_mask); 4513 p->sched_class->set_cpus_allowed(p, new_mask);
4514 4514
4515 cpumask_copy(&p->cpus_allowed, new_mask); 4515 cpumask_copy(&p->cpus_allowed, new_mask);
4516 p->nr_cpus_allowed = cpumask_weight(new_mask); 4516 p->nr_cpus_allowed = cpumask_weight(new_mask);
4517 } 4517 }
4518 4518
4519 /* 4519 /*
4520 * This is how migration works: 4520 * This is how migration works:
4521 * 4521 *
4522 * 1) we invoke migration_cpu_stop() on the target CPU using 4522 * 1) we invoke migration_cpu_stop() on the target CPU using
4523 * stop_one_cpu(). 4523 * stop_one_cpu().
4524 * 2) stopper starts to run (implicitly forcing the migrated thread 4524 * 2) stopper starts to run (implicitly forcing the migrated thread
4525 * off the CPU) 4525 * off the CPU)
4526 * 3) it checks whether the migrated task is still in the wrong runqueue. 4526 * 3) it checks whether the migrated task is still in the wrong runqueue.
4527 * 4) if it's in the wrong runqueue then the migration thread removes 4527 * 4) if it's in the wrong runqueue then the migration thread removes
4528 * it and puts it into the right queue. 4528 * it and puts it into the right queue.
4529 * 5) stopper completes and stop_one_cpu() returns and the migration 4529 * 5) stopper completes and stop_one_cpu() returns and the migration
4530 * is done. 4530 * is done.
4531 */ 4531 */
4532 4532
4533 /* 4533 /*
4534 * Change a given task's CPU affinity. Migrate the thread to a 4534 * Change a given task's CPU affinity. Migrate the thread to a
4535 * proper CPU and schedule it away if the CPU it's executing on 4535 * proper CPU and schedule it away if the CPU it's executing on
4536 * is removed from the allowed bitmask. 4536 * is removed from the allowed bitmask.
4537 * 4537 *
4538 * NOTE: the caller must have a valid reference to the task, the 4538 * NOTE: the caller must have a valid reference to the task, the
4539 * task must not exit() & deallocate itself prematurely. The 4539 * task must not exit() & deallocate itself prematurely. The
4540 * call is not atomic; no spinlocks may be held. 4540 * call is not atomic; no spinlocks may be held.
4541 */ 4541 */
4542 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 4542 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4543 { 4543 {
4544 unsigned long flags; 4544 unsigned long flags;
4545 struct rq *rq; 4545 struct rq *rq;
4546 unsigned int dest_cpu; 4546 unsigned int dest_cpu;
4547 int ret = 0; 4547 int ret = 0;
4548 4548
4549 rq = task_rq_lock(p, &flags); 4549 rq = task_rq_lock(p, &flags);
4550 4550
4551 if (cpumask_equal(&p->cpus_allowed, new_mask)) 4551 if (cpumask_equal(&p->cpus_allowed, new_mask))
4552 goto out; 4552 goto out;
4553 4553
4554 if (!cpumask_intersects(new_mask, cpu_active_mask)) { 4554 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4555 ret = -EINVAL; 4555 ret = -EINVAL;
4556 goto out; 4556 goto out;
4557 } 4557 }
4558 4558
4559 do_set_cpus_allowed(p, new_mask); 4559 do_set_cpus_allowed(p, new_mask);
4560 4560
4561 /* Can the task run on the task's current CPU? If so, we're done */ 4561 /* Can the task run on the task's current CPU? If so, we're done */
4562 if (cpumask_test_cpu(task_cpu(p), new_mask)) 4562 if (cpumask_test_cpu(task_cpu(p), new_mask))
4563 goto out; 4563 goto out;
4564 4564
4565 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); 4565 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4566 if (p->on_rq) { 4566 if (p->on_rq) {
4567 struct migration_arg arg = { p, dest_cpu }; 4567 struct migration_arg arg = { p, dest_cpu };
4568 /* Need help from migration thread: drop lock and wait. */ 4568 /* Need help from migration thread: drop lock and wait. */
4569 task_rq_unlock(rq, p, &flags); 4569 task_rq_unlock(rq, p, &flags);
4570 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); 4570 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4571 tlb_migrate_finish(p->mm); 4571 tlb_migrate_finish(p->mm);
4572 return 0; 4572 return 0;
4573 } 4573 }
4574 out: 4574 out:
4575 task_rq_unlock(rq, p, &flags); 4575 task_rq_unlock(rq, p, &flags);
4576 4576
4577 return ret; 4577 return ret;
4578 } 4578 }
4579 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 4579 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4580 4580
4581 /* 4581 /*
4582 * Move (not current) task off this cpu, onto dest cpu. We're doing 4582 * Move (not current) task off this cpu, onto dest cpu. We're doing
4583 * this because either it can't run here any more (set_cpus_allowed() 4583 * this because either it can't run here any more (set_cpus_allowed()
4584 * away from this CPU, or CPU going down), or because we're 4584 * away from this CPU, or CPU going down), or because we're
4585 * attempting to rebalance this task on exec (sched_exec). 4585 * attempting to rebalance this task on exec (sched_exec).
4586 * 4586 *
4587 * So we race with normal scheduler movements, but that's OK, as long 4587 * So we race with normal scheduler movements, but that's OK, as long
4588 * as the task is no longer on this CPU. 4588 * as the task is no longer on this CPU.
4589 * 4589 *
4590 * Returns non-zero if task was successfully migrated. 4590 * Returns non-zero if task was successfully migrated.
4591 */ 4591 */
4592 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 4592 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4593 { 4593 {
4594 struct rq *rq_dest, *rq_src; 4594 struct rq *rq_dest, *rq_src;
4595 int ret = 0; 4595 int ret = 0;
4596 4596
4597 if (unlikely(!cpu_active(dest_cpu))) 4597 if (unlikely(!cpu_active(dest_cpu)))
4598 return ret; 4598 return ret;
4599 4599
4600 rq_src = cpu_rq(src_cpu); 4600 rq_src = cpu_rq(src_cpu);
4601 rq_dest = cpu_rq(dest_cpu); 4601 rq_dest = cpu_rq(dest_cpu);
4602 4602
4603 raw_spin_lock(&p->pi_lock); 4603 raw_spin_lock(&p->pi_lock);
4604 double_rq_lock(rq_src, rq_dest); 4604 double_rq_lock(rq_src, rq_dest);
4605 /* Already moved. */ 4605 /* Already moved. */
4606 if (task_cpu(p) != src_cpu) 4606 if (task_cpu(p) != src_cpu)
4607 goto done; 4607 goto done;
4608 /* Affinity changed (again). */ 4608 /* Affinity changed (again). */
4609 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p))) 4609 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4610 goto fail; 4610 goto fail;
4611 4611
4612 /* 4612 /*
4613 * If we're not on a rq, the next wake-up will ensure we're 4613 * If we're not on a rq, the next wake-up will ensure we're
4614 * placed properly. 4614 * placed properly.
4615 */ 4615 */
4616 if (p->on_rq) { 4616 if (p->on_rq) {
4617 dequeue_task(rq_src, p, 0); 4617 dequeue_task(rq_src, p, 0);
4618 set_task_cpu(p, dest_cpu); 4618 set_task_cpu(p, dest_cpu);
4619 enqueue_task(rq_dest, p, 0); 4619 enqueue_task(rq_dest, p, 0);
4620 check_preempt_curr(rq_dest, p, 0); 4620 check_preempt_curr(rq_dest, p, 0);
4621 } 4621 }
4622 done: 4622 done:
4623 ret = 1; 4623 ret = 1;
4624 fail: 4624 fail:
4625 double_rq_unlock(rq_src, rq_dest); 4625 double_rq_unlock(rq_src, rq_dest);
4626 raw_spin_unlock(&p->pi_lock); 4626 raw_spin_unlock(&p->pi_lock);
4627 return ret; 4627 return ret;
4628 } 4628 }
4629 4629
4630 #ifdef CONFIG_NUMA_BALANCING 4630 #ifdef CONFIG_NUMA_BALANCING
4631 /* Migrate current task p to target_cpu */ 4631 /* Migrate current task p to target_cpu */
4632 int migrate_task_to(struct task_struct *p, int target_cpu) 4632 int migrate_task_to(struct task_struct *p, int target_cpu)
4633 { 4633 {
4634 struct migration_arg arg = { p, target_cpu }; 4634 struct migration_arg arg = { p, target_cpu };
4635 int curr_cpu = task_cpu(p); 4635 int curr_cpu = task_cpu(p);
4636 4636
4637 if (curr_cpu == target_cpu) 4637 if (curr_cpu == target_cpu)
4638 return 0; 4638 return 0;
4639 4639
4640 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) 4640 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4641 return -EINVAL; 4641 return -EINVAL;
4642 4642
4643 /* TODO: This is not properly updating schedstats */ 4643 /* TODO: This is not properly updating schedstats */
4644 4644
4645 trace_sched_move_numa(p, curr_cpu, target_cpu); 4645 trace_sched_move_numa(p, curr_cpu, target_cpu);
4646 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 4646 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4647 } 4647 }
4648 4648
4649 /* 4649 /*
4650 * Requeue a task on a given node and accurately track the number of NUMA 4650 * Requeue a task on a given node and accurately track the number of NUMA
4651 * tasks on the runqueues 4651 * tasks on the runqueues
4652 */ 4652 */
4653 void sched_setnuma(struct task_struct *p, int nid) 4653 void sched_setnuma(struct task_struct *p, int nid)
4654 { 4654 {
4655 struct rq *rq; 4655 struct rq *rq;
4656 unsigned long flags; 4656 unsigned long flags;
4657 bool on_rq, running; 4657 bool on_rq, running;
4658 4658
4659 rq = task_rq_lock(p, &flags); 4659 rq = task_rq_lock(p, &flags);
4660 on_rq = p->on_rq; 4660 on_rq = p->on_rq;
4661 running = task_current(rq, p); 4661 running = task_current(rq, p);
4662 4662
4663 if (on_rq) 4663 if (on_rq)
4664 dequeue_task(rq, p, 0); 4664 dequeue_task(rq, p, 0);
4665 if (running) 4665 if (running)
4666 p->sched_class->put_prev_task(rq, p); 4666 p->sched_class->put_prev_task(rq, p);
4667 4667
4668 p->numa_preferred_nid = nid; 4668 p->numa_preferred_nid = nid;
4669 4669
4670 if (running) 4670 if (running)
4671 p->sched_class->set_curr_task(rq); 4671 p->sched_class->set_curr_task(rq);
4672 if (on_rq) 4672 if (on_rq)
4673 enqueue_task(rq, p, 0); 4673 enqueue_task(rq, p, 0);
4674 task_rq_unlock(rq, p, &flags); 4674 task_rq_unlock(rq, p, &flags);
4675 } 4675 }
4676 #endif 4676 #endif
4677 4677
4678 /* 4678 /*
4679 * migration_cpu_stop - this will be executed by a highprio stopper thread 4679 * migration_cpu_stop - this will be executed by a highprio stopper thread
4680 * and performs thread migration by bumping thread off CPU then 4680 * and performs thread migration by bumping thread off CPU then
4681 * 'pushing' onto another runqueue. 4681 * 'pushing' onto another runqueue.
4682 */ 4682 */
4683 static int migration_cpu_stop(void *data) 4683 static int migration_cpu_stop(void *data)
4684 { 4684 {
4685 struct migration_arg *arg = data; 4685 struct migration_arg *arg = data;
4686 4686
4687 /* 4687 /*
4688 * The original target cpu might have gone down and we might 4688 * The original target cpu might have gone down and we might
4689 * be on another cpu but it doesn't matter. 4689 * be on another cpu but it doesn't matter.
4690 */ 4690 */
4691 local_irq_disable(); 4691 local_irq_disable();
4692 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); 4692 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4693 local_irq_enable(); 4693 local_irq_enable();
4694 return 0; 4694 return 0;
4695 } 4695 }
4696 4696
4697 #ifdef CONFIG_HOTPLUG_CPU 4697 #ifdef CONFIG_HOTPLUG_CPU
4698 4698
4699 /* 4699 /*
4700 * Ensures that the idle task is using init_mm right before its cpu goes 4700 * Ensures that the idle task is using init_mm right before its cpu goes
4701 * offline. 4701 * offline.
4702 */ 4702 */
4703 void idle_task_exit(void) 4703 void idle_task_exit(void)
4704 { 4704 {
4705 struct mm_struct *mm = current->active_mm; 4705 struct mm_struct *mm = current->active_mm;
4706 4706
4707 BUG_ON(cpu_online(smp_processor_id())); 4707 BUG_ON(cpu_online(smp_processor_id()));
4708 4708
4709 if (mm != &init_mm) { 4709 if (mm != &init_mm) {
4710 switch_mm(mm, &init_mm, current); 4710 switch_mm(mm, &init_mm, current);
4711 finish_arch_post_lock_switch(); 4711 finish_arch_post_lock_switch();
4712 } 4712 }
4713 mmdrop(mm); 4713 mmdrop(mm);
4714 } 4714 }
4715 4715
4716 /* 4716 /*
4717 * Since this CPU is going 'away' for a while, fold any nr_active delta 4717 * Since this CPU is going 'away' for a while, fold any nr_active delta
4718 * we might have. Assumes we're called after migrate_tasks() so that the 4718 * we might have. Assumes we're called after migrate_tasks() so that the
4719 * nr_active count is stable. 4719 * nr_active count is stable.
4720 * 4720 *
4721 * Also see the comment "Global load-average calculations". 4721 * Also see the comment "Global load-average calculations".
4722 */ 4722 */
4723 static void calc_load_migrate(struct rq *rq) 4723 static void calc_load_migrate(struct rq *rq)
4724 { 4724 {
4725 long delta = calc_load_fold_active(rq); 4725 long delta = calc_load_fold_active(rq);
4726 if (delta) 4726 if (delta)
4727 atomic_long_add(delta, &calc_load_tasks); 4727 atomic_long_add(delta, &calc_load_tasks);
4728 } 4728 }
4729 4729
4730 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev) 4730 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4731 { 4731 {
4732 } 4732 }
4733 4733
4734 static const struct sched_class fake_sched_class = { 4734 static const struct sched_class fake_sched_class = {
4735 .put_prev_task = put_prev_task_fake, 4735 .put_prev_task = put_prev_task_fake,
4736 }; 4736 };
4737 4737
4738 static struct task_struct fake_task = { 4738 static struct task_struct fake_task = {
4739 /* 4739 /*
4740 * Avoid pull_{rt,dl}_task() 4740 * Avoid pull_{rt,dl}_task()
4741 */ 4741 */
4742 .prio = MAX_PRIO + 1, 4742 .prio = MAX_PRIO + 1,
4743 .sched_class = &fake_sched_class, 4743 .sched_class = &fake_sched_class,
4744 }; 4744 };
4745 4745
4746 /* 4746 /*
4747 * Migrate all tasks from the rq, sleeping tasks will be migrated by 4747 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4748 * try_to_wake_up()->select_task_rq(). 4748 * try_to_wake_up()->select_task_rq().
4749 * 4749 *
4750 * Called with rq->lock held even though we'er in stop_machine() and 4750 * Called with rq->lock held even though we'er in stop_machine() and
4751 * there's no concurrency possible, we hold the required locks anyway 4751 * there's no concurrency possible, we hold the required locks anyway
4752 * because of lock validation efforts. 4752 * because of lock validation efforts.
4753 */ 4753 */
4754 static void migrate_tasks(unsigned int dead_cpu) 4754 static void migrate_tasks(unsigned int dead_cpu)
4755 { 4755 {
4756 struct rq *rq = cpu_rq(dead_cpu); 4756 struct rq *rq = cpu_rq(dead_cpu);
4757 struct task_struct *next, *stop = rq->stop; 4757 struct task_struct *next, *stop = rq->stop;
4758 int dest_cpu; 4758 int dest_cpu;
4759 4759
4760 /* 4760 /*
4761 * Fudge the rq selection such that the below task selection loop 4761 * Fudge the rq selection such that the below task selection loop
4762 * doesn't get stuck on the currently eligible stop task. 4762 * doesn't get stuck on the currently eligible stop task.
4763 * 4763 *
4764 * We're currently inside stop_machine() and the rq is either stuck 4764 * We're currently inside stop_machine() and the rq is either stuck
4765 * in the stop_machine_cpu_stop() loop, or we're executing this code, 4765 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4766 * either way we should never end up calling schedule() until we're 4766 * either way we should never end up calling schedule() until we're
4767 * done here. 4767 * done here.
4768 */ 4768 */
4769 rq->stop = NULL; 4769 rq->stop = NULL;
4770 4770
4771 /* 4771 /*
4772 * put_prev_task() and pick_next_task() sched 4772 * put_prev_task() and pick_next_task() sched
4773 * class method both need to have an up-to-date 4773 * class method both need to have an up-to-date
4774 * value of rq->clock[_task] 4774 * value of rq->clock[_task]
4775 */ 4775 */
4776 update_rq_clock(rq); 4776 update_rq_clock(rq);
4777 4777
4778 for ( ; ; ) { 4778 for ( ; ; ) {
4779 /* 4779 /*
4780 * There's this thread running, bail when that's the only 4780 * There's this thread running, bail when that's the only
4781 * remaining thread. 4781 * remaining thread.
4782 */ 4782 */
4783 if (rq->nr_running == 1) 4783 if (rq->nr_running == 1)
4784 break; 4784 break;
4785 4785
4786 next = pick_next_task(rq, &fake_task); 4786 next = pick_next_task(rq, &fake_task);
4787 BUG_ON(!next); 4787 BUG_ON(!next);
4788 next->sched_class->put_prev_task(rq, next); 4788 next->sched_class->put_prev_task(rq, next);
4789 4789
4790 /* Find suitable destination for @next, with force if needed. */ 4790 /* Find suitable destination for @next, with force if needed. */
4791 dest_cpu = select_fallback_rq(dead_cpu, next); 4791 dest_cpu = select_fallback_rq(dead_cpu, next);
4792 raw_spin_unlock(&rq->lock); 4792 raw_spin_unlock(&rq->lock);
4793 4793
4794 __migrate_task(next, dead_cpu, dest_cpu); 4794 __migrate_task(next, dead_cpu, dest_cpu);
4795 4795
4796 raw_spin_lock(&rq->lock); 4796 raw_spin_lock(&rq->lock);
4797 } 4797 }
4798 4798
4799 rq->stop = stop; 4799 rq->stop = stop;
4800 } 4800 }
4801 4801
4802 #endif /* CONFIG_HOTPLUG_CPU */ 4802 #endif /* CONFIG_HOTPLUG_CPU */
4803 4803
4804 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 4804 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4805 4805
4806 static struct ctl_table sd_ctl_dir[] = { 4806 static struct ctl_table sd_ctl_dir[] = {
4807 { 4807 {
4808 .procname = "sched_domain", 4808 .procname = "sched_domain",
4809 .mode = 0555, 4809 .mode = 0555,
4810 }, 4810 },
4811 {} 4811 {}
4812 }; 4812 };
4813 4813
4814 static struct ctl_table sd_ctl_root[] = { 4814 static struct ctl_table sd_ctl_root[] = {
4815 { 4815 {
4816 .procname = "kernel", 4816 .procname = "kernel",
4817 .mode = 0555, 4817 .mode = 0555,
4818 .child = sd_ctl_dir, 4818 .child = sd_ctl_dir,
4819 }, 4819 },
4820 {} 4820 {}
4821 }; 4821 };
4822 4822
4823 static struct ctl_table *sd_alloc_ctl_entry(int n) 4823 static struct ctl_table *sd_alloc_ctl_entry(int n)
4824 { 4824 {
4825 struct ctl_table *entry = 4825 struct ctl_table *entry =
4826 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 4826 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4827 4827
4828 return entry; 4828 return entry;
4829 } 4829 }
4830 4830
4831 static void sd_free_ctl_entry(struct ctl_table **tablep) 4831 static void sd_free_ctl_entry(struct ctl_table **tablep)
4832 { 4832 {
4833 struct ctl_table *entry; 4833 struct ctl_table *entry;
4834 4834
4835 /* 4835 /*
4836 * In the intermediate directories, both the child directory and 4836 * In the intermediate directories, both the child directory and
4837 * procname are dynamically allocated and could fail but the mode 4837 * procname are dynamically allocated and could fail but the mode
4838 * will always be set. In the lowest directory the names are 4838 * will always be set. In the lowest directory the names are
4839 * static strings and all have proc handlers. 4839 * static strings and all have proc handlers.
4840 */ 4840 */
4841 for (entry = *tablep; entry->mode; entry++) { 4841 for (entry = *tablep; entry->mode; entry++) {
4842 if (entry->child) 4842 if (entry->child)
4843 sd_free_ctl_entry(&entry->child); 4843 sd_free_ctl_entry(&entry->child);
4844 if (entry->proc_handler == NULL) 4844 if (entry->proc_handler == NULL)
4845 kfree(entry->procname); 4845 kfree(entry->procname);
4846 } 4846 }
4847 4847
4848 kfree(*tablep); 4848 kfree(*tablep);
4849 *tablep = NULL; 4849 *tablep = NULL;
4850 } 4850 }
4851 4851
4852 static int min_load_idx = 0; 4852 static int min_load_idx = 0;
4853 static int max_load_idx = CPU_LOAD_IDX_MAX-1; 4853 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4854 4854
4855 static void 4855 static void
4856 set_table_entry(struct ctl_table *entry, 4856 set_table_entry(struct ctl_table *entry,
4857 const char *procname, void *data, int maxlen, 4857 const char *procname, void *data, int maxlen,
4858 umode_t mode, proc_handler *proc_handler, 4858 umode_t mode, proc_handler *proc_handler,
4859 bool load_idx) 4859 bool load_idx)
4860 { 4860 {
4861 entry->procname = procname; 4861 entry->procname = procname;
4862 entry->data = data; 4862 entry->data = data;
4863 entry->maxlen = maxlen; 4863 entry->maxlen = maxlen;
4864 entry->mode = mode; 4864 entry->mode = mode;
4865 entry->proc_handler = proc_handler; 4865 entry->proc_handler = proc_handler;
4866 4866
4867 if (load_idx) { 4867 if (load_idx) {
4868 entry->extra1 = &min_load_idx; 4868 entry->extra1 = &min_load_idx;
4869 entry->extra2 = &max_load_idx; 4869 entry->extra2 = &max_load_idx;
4870 } 4870 }
4871 } 4871 }
4872 4872
4873 static struct ctl_table * 4873 static struct ctl_table *
4874 sd_alloc_ctl_domain_table(struct sched_domain *sd) 4874 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4875 { 4875 {
4876 struct ctl_table *table = sd_alloc_ctl_entry(14); 4876 struct ctl_table *table = sd_alloc_ctl_entry(14);
4877 4877
4878 if (table == NULL) 4878 if (table == NULL)
4879 return NULL; 4879 return NULL;
4880 4880
4881 set_table_entry(&table[0], "min_interval", &sd->min_interval, 4881 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4882 sizeof(long), 0644, proc_doulongvec_minmax, false); 4882 sizeof(long), 0644, proc_doulongvec_minmax, false);
4883 set_table_entry(&table[1], "max_interval", &sd->max_interval, 4883 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4884 sizeof(long), 0644, proc_doulongvec_minmax, false); 4884 sizeof(long), 0644, proc_doulongvec_minmax, false);
4885 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 4885 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4886 sizeof(int), 0644, proc_dointvec_minmax, true); 4886 sizeof(int), 0644, proc_dointvec_minmax, true);
4887 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 4887 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4888 sizeof(int), 0644, proc_dointvec_minmax, true); 4888 sizeof(int), 0644, proc_dointvec_minmax, true);
4889 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 4889 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4890 sizeof(int), 0644, proc_dointvec_minmax, true); 4890 sizeof(int), 0644, proc_dointvec_minmax, true);
4891 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 4891 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4892 sizeof(int), 0644, proc_dointvec_minmax, true); 4892 sizeof(int), 0644, proc_dointvec_minmax, true);
4893 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 4893 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4894 sizeof(int), 0644, proc_dointvec_minmax, true); 4894 sizeof(int), 0644, proc_dointvec_minmax, true);
4895 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 4895 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4896 sizeof(int), 0644, proc_dointvec_minmax, false); 4896 sizeof(int), 0644, proc_dointvec_minmax, false);
4897 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 4897 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4898 sizeof(int), 0644, proc_dointvec_minmax, false); 4898 sizeof(int), 0644, proc_dointvec_minmax, false);
4899 set_table_entry(&table[9], "cache_nice_tries", 4899 set_table_entry(&table[9], "cache_nice_tries",
4900 &sd->cache_nice_tries, 4900 &sd->cache_nice_tries,
4901 sizeof(int), 0644, proc_dointvec_minmax, false); 4901 sizeof(int), 0644, proc_dointvec_minmax, false);
4902 set_table_entry(&table[10], "flags", &sd->flags, 4902 set_table_entry(&table[10], "flags", &sd->flags,
4903 sizeof(int), 0644, proc_dointvec_minmax, false); 4903 sizeof(int), 0644, proc_dointvec_minmax, false);
4904 set_table_entry(&table[11], "max_newidle_lb_cost", 4904 set_table_entry(&table[11], "max_newidle_lb_cost",
4905 &sd->max_newidle_lb_cost, 4905 &sd->max_newidle_lb_cost,
4906 sizeof(long), 0644, proc_doulongvec_minmax, false); 4906 sizeof(long), 0644, proc_doulongvec_minmax, false);
4907 set_table_entry(&table[12], "name", sd->name, 4907 set_table_entry(&table[12], "name", sd->name,
4908 CORENAME_MAX_SIZE, 0444, proc_dostring, false); 4908 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4909 /* &table[13] is terminator */ 4909 /* &table[13] is terminator */
4910 4910
4911 return table; 4911 return table;
4912 } 4912 }
4913 4913
4914 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu) 4914 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4915 { 4915 {
4916 struct ctl_table *entry, *table; 4916 struct ctl_table *entry, *table;
4917 struct sched_domain *sd; 4917 struct sched_domain *sd;
4918 int domain_num = 0, i; 4918 int domain_num = 0, i;
4919 char buf[32]; 4919 char buf[32];
4920 4920
4921 for_each_domain(cpu, sd) 4921 for_each_domain(cpu, sd)
4922 domain_num++; 4922 domain_num++;
4923 entry = table = sd_alloc_ctl_entry(domain_num + 1); 4923 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4924 if (table == NULL) 4924 if (table == NULL)
4925 return NULL; 4925 return NULL;
4926 4926
4927 i = 0; 4927 i = 0;
4928 for_each_domain(cpu, sd) { 4928 for_each_domain(cpu, sd) {
4929 snprintf(buf, 32, "domain%d", i); 4929 snprintf(buf, 32, "domain%d", i);
4930 entry->procname = kstrdup(buf, GFP_KERNEL); 4930 entry->procname = kstrdup(buf, GFP_KERNEL);
4931 entry->mode = 0555; 4931 entry->mode = 0555;
4932 entry->child = sd_alloc_ctl_domain_table(sd); 4932 entry->child = sd_alloc_ctl_domain_table(sd);
4933 entry++; 4933 entry++;
4934 i++; 4934 i++;
4935 } 4935 }
4936 return table; 4936 return table;
4937 } 4937 }
4938 4938
4939 static struct ctl_table_header *sd_sysctl_header; 4939 static struct ctl_table_header *sd_sysctl_header;
4940 static void register_sched_domain_sysctl(void) 4940 static void register_sched_domain_sysctl(void)
4941 { 4941 {
4942 int i, cpu_num = num_possible_cpus(); 4942 int i, cpu_num = num_possible_cpus();
4943 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 4943 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4944 char buf[32]; 4944 char buf[32];
4945 4945
4946 WARN_ON(sd_ctl_dir[0].child); 4946 WARN_ON(sd_ctl_dir[0].child);
4947 sd_ctl_dir[0].child = entry; 4947 sd_ctl_dir[0].child = entry;
4948 4948
4949 if (entry == NULL) 4949 if (entry == NULL)
4950 return; 4950 return;
4951 4951
4952 for_each_possible_cpu(i) { 4952 for_each_possible_cpu(i) {
4953 snprintf(buf, 32, "cpu%d", i); 4953 snprintf(buf, 32, "cpu%d", i);
4954 entry->procname = kstrdup(buf, GFP_KERNEL); 4954 entry->procname = kstrdup(buf, GFP_KERNEL);
4955 entry->mode = 0555; 4955 entry->mode = 0555;
4956 entry->child = sd_alloc_ctl_cpu_table(i); 4956 entry->child = sd_alloc_ctl_cpu_table(i);
4957 entry++; 4957 entry++;
4958 } 4958 }
4959 4959
4960 WARN_ON(sd_sysctl_header); 4960 WARN_ON(sd_sysctl_header);
4961 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 4961 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4962 } 4962 }
4963 4963
4964 /* may be called multiple times per register */ 4964 /* may be called multiple times per register */
4965 static void unregister_sched_domain_sysctl(void) 4965 static void unregister_sched_domain_sysctl(void)
4966 { 4966 {
4967 if (sd_sysctl_header) 4967 if (sd_sysctl_header)
4968 unregister_sysctl_table(sd_sysctl_header); 4968 unregister_sysctl_table(sd_sysctl_header);
4969 sd_sysctl_header = NULL; 4969 sd_sysctl_header = NULL;
4970 if (sd_ctl_dir[0].child) 4970 if (sd_ctl_dir[0].child)
4971 sd_free_ctl_entry(&sd_ctl_dir[0].child); 4971 sd_free_ctl_entry(&sd_ctl_dir[0].child);
4972 } 4972 }
4973 #else 4973 #else
4974 static void register_sched_domain_sysctl(void) 4974 static void register_sched_domain_sysctl(void)
4975 { 4975 {
4976 } 4976 }
4977 static void unregister_sched_domain_sysctl(void) 4977 static void unregister_sched_domain_sysctl(void)
4978 { 4978 {
4979 } 4979 }
4980 #endif 4980 #endif
4981 4981
4982 static void set_rq_online(struct rq *rq) 4982 static void set_rq_online(struct rq *rq)
4983 { 4983 {
4984 if (!rq->online) { 4984 if (!rq->online) {
4985 const struct sched_class *class; 4985 const struct sched_class *class;
4986 4986
4987 cpumask_set_cpu(rq->cpu, rq->rd->online); 4987 cpumask_set_cpu(rq->cpu, rq->rd->online);
4988 rq->online = 1; 4988 rq->online = 1;
4989 4989
4990 for_each_class(class) { 4990 for_each_class(class) {
4991 if (class->rq_online) 4991 if (class->rq_online)
4992 class->rq_online(rq); 4992 class->rq_online(rq);
4993 } 4993 }
4994 } 4994 }
4995 } 4995 }
4996 4996
4997 static void set_rq_offline(struct rq *rq) 4997 static void set_rq_offline(struct rq *rq)
4998 { 4998 {
4999 if (rq->online) { 4999 if (rq->online) {
5000 const struct sched_class *class; 5000 const struct sched_class *class;
5001 5001
5002 for_each_class(class) { 5002 for_each_class(class) {
5003 if (class->rq_offline) 5003 if (class->rq_offline)
5004 class->rq_offline(rq); 5004 class->rq_offline(rq);
5005 } 5005 }
5006 5006
5007 cpumask_clear_cpu(rq->cpu, rq->rd->online); 5007 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5008 rq->online = 0; 5008 rq->online = 0;
5009 } 5009 }
5010 } 5010 }
5011 5011
5012 /* 5012 /*
5013 * migration_call - callback that gets triggered when a CPU is added. 5013 * migration_call - callback that gets triggered when a CPU is added.
5014 * Here we can start up the necessary migration thread for the new CPU. 5014 * Here we can start up the necessary migration thread for the new CPU.
5015 */ 5015 */
5016 static int 5016 static int
5017 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 5017 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5018 { 5018 {
5019 int cpu = (long)hcpu; 5019 int cpu = (long)hcpu;
5020 unsigned long flags; 5020 unsigned long flags;
5021 struct rq *rq = cpu_rq(cpu); 5021 struct rq *rq = cpu_rq(cpu);
5022 5022
5023 switch (action & ~CPU_TASKS_FROZEN) { 5023 switch (action & ~CPU_TASKS_FROZEN) {
5024 5024
5025 case CPU_UP_PREPARE: 5025 case CPU_UP_PREPARE:
5026 rq->calc_load_update = calc_load_update; 5026 rq->calc_load_update = calc_load_update;
5027 break; 5027 break;
5028 5028
5029 case CPU_ONLINE: 5029 case CPU_ONLINE:
5030 /* Update our root-domain */ 5030 /* Update our root-domain */
5031 raw_spin_lock_irqsave(&rq->lock, flags); 5031 raw_spin_lock_irqsave(&rq->lock, flags);
5032 if (rq->rd) { 5032 if (rq->rd) {
5033 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5033 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5034 5034
5035 set_rq_online(rq); 5035 set_rq_online(rq);
5036 } 5036 }
5037 raw_spin_unlock_irqrestore(&rq->lock, flags); 5037 raw_spin_unlock_irqrestore(&rq->lock, flags);
5038 break; 5038 break;
5039 5039
5040 #ifdef CONFIG_HOTPLUG_CPU 5040 #ifdef CONFIG_HOTPLUG_CPU
5041 case CPU_DYING: 5041 case CPU_DYING:
5042 sched_ttwu_pending(); 5042 sched_ttwu_pending();
5043 /* Update our root-domain */ 5043 /* Update our root-domain */
5044 raw_spin_lock_irqsave(&rq->lock, flags); 5044 raw_spin_lock_irqsave(&rq->lock, flags);
5045 if (rq->rd) { 5045 if (rq->rd) {
5046 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 5046 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5047 set_rq_offline(rq); 5047 set_rq_offline(rq);
5048 } 5048 }
5049 migrate_tasks(cpu); 5049 migrate_tasks(cpu);
5050 BUG_ON(rq->nr_running != 1); /* the migration thread */ 5050 BUG_ON(rq->nr_running != 1); /* the migration thread */
5051 raw_spin_unlock_irqrestore(&rq->lock, flags); 5051 raw_spin_unlock_irqrestore(&rq->lock, flags);
5052 break; 5052 break;
5053 5053
5054 case CPU_DEAD: 5054 case CPU_DEAD:
5055 calc_load_migrate(rq); 5055 calc_load_migrate(rq);
5056 break; 5056 break;
5057 #endif 5057 #endif
5058 } 5058 }
5059 5059
5060 update_max_interval(); 5060 update_max_interval();
5061 5061
5062 return NOTIFY_OK; 5062 return NOTIFY_OK;
5063 } 5063 }
5064 5064
5065 /* 5065 /*
5066 * Register at high priority so that task migration (migrate_all_tasks) 5066 * Register at high priority so that task migration (migrate_all_tasks)
5067 * happens before everything else. This has to be lower priority than 5067 * happens before everything else. This has to be lower priority than
5068 * the notifier in the perf_event subsystem, though. 5068 * the notifier in the perf_event subsystem, though.
5069 */ 5069 */
5070 static struct notifier_block migration_notifier = { 5070 static struct notifier_block migration_notifier = {
5071 .notifier_call = migration_call, 5071 .notifier_call = migration_call,
5072 .priority = CPU_PRI_MIGRATION, 5072 .priority = CPU_PRI_MIGRATION,
5073 }; 5073 };
5074 5074
5075 static int sched_cpu_active(struct notifier_block *nfb, 5075 static int sched_cpu_active(struct notifier_block *nfb,
5076 unsigned long action, void *hcpu) 5076 unsigned long action, void *hcpu)
5077 { 5077 {
5078 switch (action & ~CPU_TASKS_FROZEN) { 5078 switch (action & ~CPU_TASKS_FROZEN) {
5079 case CPU_DOWN_FAILED: 5079 case CPU_DOWN_FAILED:
5080 set_cpu_active((long)hcpu, true); 5080 set_cpu_active((long)hcpu, true);
5081 return NOTIFY_OK; 5081 return NOTIFY_OK;
5082 default: 5082 default:
5083 return NOTIFY_DONE; 5083 return NOTIFY_DONE;
5084 } 5084 }
5085 } 5085 }
5086 5086
5087 static int sched_cpu_inactive(struct notifier_block *nfb, 5087 static int sched_cpu_inactive(struct notifier_block *nfb,
5088 unsigned long action, void *hcpu) 5088 unsigned long action, void *hcpu)
5089 { 5089 {
5090 unsigned long flags; 5090 unsigned long flags;
5091 long cpu = (long)hcpu; 5091 long cpu = (long)hcpu;
5092 5092
5093 switch (action & ~CPU_TASKS_FROZEN) { 5093 switch (action & ~CPU_TASKS_FROZEN) {
5094 case CPU_DOWN_PREPARE: 5094 case CPU_DOWN_PREPARE:
5095 set_cpu_active(cpu, false); 5095 set_cpu_active(cpu, false);
5096 5096
5097 /* explicitly allow suspend */ 5097 /* explicitly allow suspend */
5098 if (!(action & CPU_TASKS_FROZEN)) { 5098 if (!(action & CPU_TASKS_FROZEN)) {
5099 struct dl_bw *dl_b = dl_bw_of(cpu); 5099 struct dl_bw *dl_b = dl_bw_of(cpu);
5100 bool overflow; 5100 bool overflow;
5101 int cpus; 5101 int cpus;
5102 5102
5103 raw_spin_lock_irqsave(&dl_b->lock, flags); 5103 raw_spin_lock_irqsave(&dl_b->lock, flags);
5104 cpus = dl_bw_cpus(cpu); 5104 cpus = dl_bw_cpus(cpu);
5105 overflow = __dl_overflow(dl_b, cpus, 0, 0); 5105 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5106 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 5106 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5107 5107
5108 if (overflow) 5108 if (overflow)
5109 return notifier_from_errno(-EBUSY); 5109 return notifier_from_errno(-EBUSY);
5110 } 5110 }
5111 return NOTIFY_OK; 5111 return NOTIFY_OK;
5112 } 5112 }
5113 5113
5114 return NOTIFY_DONE; 5114 return NOTIFY_DONE;
5115 } 5115 }
5116 5116
5117 static int __init migration_init(void) 5117 static int __init migration_init(void)
5118 { 5118 {
5119 void *cpu = (void *)(long)smp_processor_id(); 5119 void *cpu = (void *)(long)smp_processor_id();
5120 int err; 5120 int err;
5121 5121
5122 /* Initialize migration for the boot CPU */ 5122 /* Initialize migration for the boot CPU */
5123 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 5123 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5124 BUG_ON(err == NOTIFY_BAD); 5124 BUG_ON(err == NOTIFY_BAD);
5125 migration_call(&migration_notifier, CPU_ONLINE, cpu); 5125 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5126 register_cpu_notifier(&migration_notifier); 5126 register_cpu_notifier(&migration_notifier);
5127 5127
5128 /* Register cpu active notifiers */ 5128 /* Register cpu active notifiers */
5129 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); 5129 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5130 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); 5130 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5131 5131
5132 return 0; 5132 return 0;
5133 } 5133 }
5134 early_initcall(migration_init); 5134 early_initcall(migration_init);
5135 #endif 5135 #endif
5136 5136
5137 #ifdef CONFIG_SMP 5137 #ifdef CONFIG_SMP
5138 5138
5139 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */ 5139 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5140 5140
5141 #ifdef CONFIG_SCHED_DEBUG 5141 #ifdef CONFIG_SCHED_DEBUG
5142 5142
5143 static __read_mostly int sched_debug_enabled; 5143 static __read_mostly int sched_debug_enabled;
5144 5144
5145 static int __init sched_debug_setup(char *str) 5145 static int __init sched_debug_setup(char *str)
5146 { 5146 {
5147 sched_debug_enabled = 1; 5147 sched_debug_enabled = 1;
5148 5148
5149 return 0; 5149 return 0;
5150 } 5150 }
5151 early_param("sched_debug", sched_debug_setup); 5151 early_param("sched_debug", sched_debug_setup);
5152 5152
5153 static inline bool sched_debug(void) 5153 static inline bool sched_debug(void)
5154 { 5154 {
5155 return sched_debug_enabled; 5155 return sched_debug_enabled;
5156 } 5156 }
5157 5157
5158 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 5158 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5159 struct cpumask *groupmask) 5159 struct cpumask *groupmask)
5160 { 5160 {
5161 struct sched_group *group = sd->groups; 5161 struct sched_group *group = sd->groups;
5162 char str[256]; 5162 char str[256];
5163 5163
5164 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 5164 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5165 cpumask_clear(groupmask); 5165 cpumask_clear(groupmask);
5166 5166
5167 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 5167 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5168 5168
5169 if (!(sd->flags & SD_LOAD_BALANCE)) { 5169 if (!(sd->flags & SD_LOAD_BALANCE)) {
5170 printk("does not load-balance\n"); 5170 printk("does not load-balance\n");
5171 if (sd->parent) 5171 if (sd->parent)
5172 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 5172 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5173 " has parent"); 5173 " has parent");
5174 return -1; 5174 return -1;
5175 } 5175 }
5176 5176
5177 printk(KERN_CONT "span %s level %s\n", str, sd->name); 5177 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5178 5178
5179 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 5179 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5180 printk(KERN_ERR "ERROR: domain->span does not contain " 5180 printk(KERN_ERR "ERROR: domain->span does not contain "
5181 "CPU%d\n", cpu); 5181 "CPU%d\n", cpu);
5182 } 5182 }
5183 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 5183 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5184 printk(KERN_ERR "ERROR: domain->groups does not contain" 5184 printk(KERN_ERR "ERROR: domain->groups does not contain"
5185 " CPU%d\n", cpu); 5185 " CPU%d\n", cpu);
5186 } 5186 }
5187 5187
5188 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 5188 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5189 do { 5189 do {
5190 if (!group) { 5190 if (!group) {
5191 printk("\n"); 5191 printk("\n");
5192 printk(KERN_ERR "ERROR: group is NULL\n"); 5192 printk(KERN_ERR "ERROR: group is NULL\n");
5193 break; 5193 break;
5194 } 5194 }
5195 5195
5196 /* 5196 /*
5197 * Even though we initialize ->power to something semi-sane, 5197 * Even though we initialize ->power to something semi-sane,
5198 * we leave power_orig unset. This allows us to detect if 5198 * we leave power_orig unset. This allows us to detect if
5199 * domain iteration is still funny without causing /0 traps. 5199 * domain iteration is still funny without causing /0 traps.
5200 */ 5200 */
5201 if (!group->sgp->power_orig) { 5201 if (!group->sgp->power_orig) {
5202 printk(KERN_CONT "\n"); 5202 printk(KERN_CONT "\n");
5203 printk(KERN_ERR "ERROR: domain->cpu_power not " 5203 printk(KERN_ERR "ERROR: domain->cpu_power not "
5204 "set\n"); 5204 "set\n");
5205 break; 5205 break;
5206 } 5206 }
5207 5207
5208 if (!cpumask_weight(sched_group_cpus(group))) { 5208 if (!cpumask_weight(sched_group_cpus(group))) {
5209 printk(KERN_CONT "\n"); 5209 printk(KERN_CONT "\n");
5210 printk(KERN_ERR "ERROR: empty group\n"); 5210 printk(KERN_ERR "ERROR: empty group\n");
5211 break; 5211 break;
5212 } 5212 }
5213 5213
5214 if (!(sd->flags & SD_OVERLAP) && 5214 if (!(sd->flags & SD_OVERLAP) &&
5215 cpumask_intersects(groupmask, sched_group_cpus(group))) { 5215 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5216 printk(KERN_CONT "\n"); 5216 printk(KERN_CONT "\n");
5217 printk(KERN_ERR "ERROR: repeated CPUs\n"); 5217 printk(KERN_ERR "ERROR: repeated CPUs\n");
5218 break; 5218 break;
5219 } 5219 }
5220 5220
5221 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 5221 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5222 5222
5223 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 5223 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5224 5224
5225 printk(KERN_CONT " %s", str); 5225 printk(KERN_CONT " %s", str);
5226 if (group->sgp->power != SCHED_POWER_SCALE) { 5226 if (group->sgp->power != SCHED_POWER_SCALE) {
5227 printk(KERN_CONT " (cpu_power = %d)", 5227 printk(KERN_CONT " (cpu_power = %d)",
5228 group->sgp->power); 5228 group->sgp->power);
5229 } 5229 }
5230 5230
5231 group = group->next; 5231 group = group->next;
5232 } while (group != sd->groups); 5232 } while (group != sd->groups);
5233 printk(KERN_CONT "\n"); 5233 printk(KERN_CONT "\n");
5234 5234
5235 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 5235 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5236 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 5236 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5237 5237
5238 if (sd->parent && 5238 if (sd->parent &&
5239 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 5239 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5240 printk(KERN_ERR "ERROR: parent span is not a superset " 5240 printk(KERN_ERR "ERROR: parent span is not a superset "
5241 "of domain->span\n"); 5241 "of domain->span\n");
5242 return 0; 5242 return 0;
5243 } 5243 }
5244 5244
5245 static void sched_domain_debug(struct sched_domain *sd, int cpu) 5245 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5246 { 5246 {
5247 int level = 0; 5247 int level = 0;
5248 5248
5249 if (!sched_debug_enabled) 5249 if (!sched_debug_enabled)
5250 return; 5250 return;
5251 5251
5252 if (!sd) { 5252 if (!sd) {
5253 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 5253 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5254 return; 5254 return;
5255 } 5255 }
5256 5256
5257 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 5257 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5258 5258
5259 for (;;) { 5259 for (;;) {
5260 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 5260 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5261 break; 5261 break;
5262 level++; 5262 level++;
5263 sd = sd->parent; 5263 sd = sd->parent;
5264 if (!sd) 5264 if (!sd)
5265 break; 5265 break;
5266 } 5266 }
5267 } 5267 }
5268 #else /* !CONFIG_SCHED_DEBUG */ 5268 #else /* !CONFIG_SCHED_DEBUG */
5269 # define sched_domain_debug(sd, cpu) do { } while (0) 5269 # define sched_domain_debug(sd, cpu) do { } while (0)
5270 static inline bool sched_debug(void) 5270 static inline bool sched_debug(void)
5271 { 5271 {
5272 return false; 5272 return false;
5273 } 5273 }
5274 #endif /* CONFIG_SCHED_DEBUG */ 5274 #endif /* CONFIG_SCHED_DEBUG */
5275 5275
5276 static int sd_degenerate(struct sched_domain *sd) 5276 static int sd_degenerate(struct sched_domain *sd)
5277 { 5277 {
5278 if (cpumask_weight(sched_domain_span(sd)) == 1) 5278 if (cpumask_weight(sched_domain_span(sd)) == 1)
5279 return 1; 5279 return 1;
5280 5280
5281 /* Following flags need at least 2 groups */ 5281 /* Following flags need at least 2 groups */
5282 if (sd->flags & (SD_LOAD_BALANCE | 5282 if (sd->flags & (SD_LOAD_BALANCE |
5283 SD_BALANCE_NEWIDLE | 5283 SD_BALANCE_NEWIDLE |
5284 SD_BALANCE_FORK | 5284 SD_BALANCE_FORK |
5285 SD_BALANCE_EXEC | 5285 SD_BALANCE_EXEC |
5286 SD_SHARE_CPUPOWER | 5286 SD_SHARE_CPUPOWER |
5287 SD_SHARE_PKG_RESOURCES)) { 5287 SD_SHARE_PKG_RESOURCES)) {
5288 if (sd->groups != sd->groups->next) 5288 if (sd->groups != sd->groups->next)
5289 return 0; 5289 return 0;
5290 } 5290 }
5291 5291
5292 /* Following flags don't use groups */ 5292 /* Following flags don't use groups */
5293 if (sd->flags & (SD_WAKE_AFFINE)) 5293 if (sd->flags & (SD_WAKE_AFFINE))
5294 return 0; 5294 return 0;
5295 5295
5296 return 1; 5296 return 1;
5297 } 5297 }
5298 5298
5299 static int 5299 static int
5300 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 5300 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5301 { 5301 {
5302 unsigned long cflags = sd->flags, pflags = parent->flags; 5302 unsigned long cflags = sd->flags, pflags = parent->flags;
5303 5303
5304 if (sd_degenerate(parent)) 5304 if (sd_degenerate(parent))
5305 return 1; 5305 return 1;
5306 5306
5307 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 5307 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5308 return 0; 5308 return 0;
5309 5309
5310 /* Flags needing groups don't count if only 1 group in parent */ 5310 /* Flags needing groups don't count if only 1 group in parent */
5311 if (parent->groups == parent->groups->next) { 5311 if (parent->groups == parent->groups->next) {
5312 pflags &= ~(SD_LOAD_BALANCE | 5312 pflags &= ~(SD_LOAD_BALANCE |
5313 SD_BALANCE_NEWIDLE | 5313 SD_BALANCE_NEWIDLE |
5314 SD_BALANCE_FORK | 5314 SD_BALANCE_FORK |
5315 SD_BALANCE_EXEC | 5315 SD_BALANCE_EXEC |
5316 SD_SHARE_CPUPOWER | 5316 SD_SHARE_CPUPOWER |
5317 SD_SHARE_PKG_RESOURCES | 5317 SD_SHARE_PKG_RESOURCES |
5318 SD_PREFER_SIBLING); 5318 SD_PREFER_SIBLING);
5319 if (nr_node_ids == 1) 5319 if (nr_node_ids == 1)
5320 pflags &= ~SD_SERIALIZE; 5320 pflags &= ~SD_SERIALIZE;
5321 } 5321 }
5322 if (~cflags & pflags) 5322 if (~cflags & pflags)
5323 return 0; 5323 return 0;
5324 5324
5325 return 1; 5325 return 1;
5326 } 5326 }
5327 5327
5328 static void free_rootdomain(struct rcu_head *rcu) 5328 static void free_rootdomain(struct rcu_head *rcu)
5329 { 5329 {
5330 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 5330 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5331 5331
5332 cpupri_cleanup(&rd->cpupri); 5332 cpupri_cleanup(&rd->cpupri);
5333 cpudl_cleanup(&rd->cpudl); 5333 cpudl_cleanup(&rd->cpudl);
5334 free_cpumask_var(rd->dlo_mask); 5334 free_cpumask_var(rd->dlo_mask);
5335 free_cpumask_var(rd->rto_mask); 5335 free_cpumask_var(rd->rto_mask);
5336 free_cpumask_var(rd->online); 5336 free_cpumask_var(rd->online);
5337 free_cpumask_var(rd->span); 5337 free_cpumask_var(rd->span);
5338 kfree(rd); 5338 kfree(rd);
5339 } 5339 }
5340 5340
5341 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 5341 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5342 { 5342 {
5343 struct root_domain *old_rd = NULL; 5343 struct root_domain *old_rd = NULL;
5344 unsigned long flags; 5344 unsigned long flags;
5345 5345
5346 raw_spin_lock_irqsave(&rq->lock, flags); 5346 raw_spin_lock_irqsave(&rq->lock, flags);
5347 5347
5348 if (rq->rd) { 5348 if (rq->rd) {
5349 old_rd = rq->rd; 5349 old_rd = rq->rd;
5350 5350
5351 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 5351 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5352 set_rq_offline(rq); 5352 set_rq_offline(rq);
5353 5353
5354 cpumask_clear_cpu(rq->cpu, old_rd->span); 5354 cpumask_clear_cpu(rq->cpu, old_rd->span);
5355 5355
5356 /* 5356 /*
5357 * If we dont want to free the old_rd yet then 5357 * If we dont want to free the old_rd yet then
5358 * set old_rd to NULL to skip the freeing later 5358 * set old_rd to NULL to skip the freeing later
5359 * in this function: 5359 * in this function:
5360 */ 5360 */
5361 if (!atomic_dec_and_test(&old_rd->refcount)) 5361 if (!atomic_dec_and_test(&old_rd->refcount))
5362 old_rd = NULL; 5362 old_rd = NULL;
5363 } 5363 }
5364 5364
5365 atomic_inc(&rd->refcount); 5365 atomic_inc(&rd->refcount);
5366 rq->rd = rd; 5366 rq->rd = rd;
5367 5367
5368 cpumask_set_cpu(rq->cpu, rd->span); 5368 cpumask_set_cpu(rq->cpu, rd->span);
5369 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 5369 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5370 set_rq_online(rq); 5370 set_rq_online(rq);
5371 5371
5372 raw_spin_unlock_irqrestore(&rq->lock, flags); 5372 raw_spin_unlock_irqrestore(&rq->lock, flags);
5373 5373
5374 if (old_rd) 5374 if (old_rd)
5375 call_rcu_sched(&old_rd->rcu, free_rootdomain); 5375 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5376 } 5376 }
5377 5377
5378 static int init_rootdomain(struct root_domain *rd) 5378 static int init_rootdomain(struct root_domain *rd)
5379 { 5379 {
5380 memset(rd, 0, sizeof(*rd)); 5380 memset(rd, 0, sizeof(*rd));
5381 5381
5382 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL)) 5382 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5383 goto out; 5383 goto out;
5384 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) 5384 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5385 goto free_span; 5385 goto free_span;
5386 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 5386 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5387 goto free_online; 5387 goto free_online;
5388 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 5388 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5389 goto free_dlo_mask; 5389 goto free_dlo_mask;
5390 5390
5391 init_dl_bw(&rd->dl_bw); 5391 init_dl_bw(&rd->dl_bw);
5392 if (cpudl_init(&rd->cpudl) != 0) 5392 if (cpudl_init(&rd->cpudl) != 0)
5393 goto free_dlo_mask; 5393 goto free_dlo_mask;
5394 5394
5395 if (cpupri_init(&rd->cpupri) != 0) 5395 if (cpupri_init(&rd->cpupri) != 0)
5396 goto free_rto_mask; 5396 goto free_rto_mask;
5397 return 0; 5397 return 0;
5398 5398
5399 free_rto_mask: 5399 free_rto_mask:
5400 free_cpumask_var(rd->rto_mask); 5400 free_cpumask_var(rd->rto_mask);
5401 free_dlo_mask: 5401 free_dlo_mask:
5402 free_cpumask_var(rd->dlo_mask); 5402 free_cpumask_var(rd->dlo_mask);
5403 free_online: 5403 free_online:
5404 free_cpumask_var(rd->online); 5404 free_cpumask_var(rd->online);
5405 free_span: 5405 free_span:
5406 free_cpumask_var(rd->span); 5406 free_cpumask_var(rd->span);
5407 out: 5407 out:
5408 return -ENOMEM; 5408 return -ENOMEM;
5409 } 5409 }
5410 5410
5411 /* 5411 /*
5412 * By default the system creates a single root-domain with all cpus as 5412 * By default the system creates a single root-domain with all cpus as
5413 * members (mimicking the global state we have today). 5413 * members (mimicking the global state we have today).
5414 */ 5414 */
5415 struct root_domain def_root_domain; 5415 struct root_domain def_root_domain;
5416 5416
5417 static void init_defrootdomain(void) 5417 static void init_defrootdomain(void)
5418 { 5418 {
5419 init_rootdomain(&def_root_domain); 5419 init_rootdomain(&def_root_domain);
5420 5420
5421 atomic_set(&def_root_domain.refcount, 1); 5421 atomic_set(&def_root_domain.refcount, 1);
5422 } 5422 }
5423 5423
5424 static struct root_domain *alloc_rootdomain(void) 5424 static struct root_domain *alloc_rootdomain(void)
5425 { 5425 {
5426 struct root_domain *rd; 5426 struct root_domain *rd;
5427 5427
5428 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 5428 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5429 if (!rd) 5429 if (!rd)
5430 return NULL; 5430 return NULL;
5431 5431
5432 if (init_rootdomain(rd) != 0) { 5432 if (init_rootdomain(rd) != 0) {
5433 kfree(rd); 5433 kfree(rd);
5434 return NULL; 5434 return NULL;
5435 } 5435 }
5436 5436
5437 return rd; 5437 return rd;
5438 } 5438 }
5439 5439
5440 static void free_sched_groups(struct sched_group *sg, int free_sgp) 5440 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5441 { 5441 {
5442 struct sched_group *tmp, *first; 5442 struct sched_group *tmp, *first;
5443 5443
5444 if (!sg) 5444 if (!sg)
5445 return; 5445 return;
5446 5446
5447 first = sg; 5447 first = sg;
5448 do { 5448 do {
5449 tmp = sg->next; 5449 tmp = sg->next;
5450 5450
5451 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref)) 5451 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5452 kfree(sg->sgp); 5452 kfree(sg->sgp);
5453 5453
5454 kfree(sg); 5454 kfree(sg);
5455 sg = tmp; 5455 sg = tmp;
5456 } while (sg != first); 5456 } while (sg != first);
5457 } 5457 }
5458 5458
5459 static void free_sched_domain(struct rcu_head *rcu) 5459 static void free_sched_domain(struct rcu_head *rcu)
5460 { 5460 {
5461 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 5461 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5462 5462
5463 /* 5463 /*
5464 * If its an overlapping domain it has private groups, iterate and 5464 * If its an overlapping domain it has private groups, iterate and
5465 * nuke them all. 5465 * nuke them all.
5466 */ 5466 */
5467 if (sd->flags & SD_OVERLAP) { 5467 if (sd->flags & SD_OVERLAP) {
5468 free_sched_groups(sd->groups, 1); 5468 free_sched_groups(sd->groups, 1);
5469 } else if (atomic_dec_and_test(&sd->groups->ref)) { 5469 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5470 kfree(sd->groups->sgp); 5470 kfree(sd->groups->sgp);
5471 kfree(sd->groups); 5471 kfree(sd->groups);
5472 } 5472 }
5473 kfree(sd); 5473 kfree(sd);
5474 } 5474 }
5475 5475
5476 static void destroy_sched_domain(struct sched_domain *sd, int cpu) 5476 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5477 { 5477 {
5478 call_rcu(&sd->rcu, free_sched_domain); 5478 call_rcu(&sd->rcu, free_sched_domain);
5479 } 5479 }
5480 5480
5481 static void destroy_sched_domains(struct sched_domain *sd, int cpu) 5481 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5482 { 5482 {
5483 for (; sd; sd = sd->parent) 5483 for (; sd; sd = sd->parent)
5484 destroy_sched_domain(sd, cpu); 5484 destroy_sched_domain(sd, cpu);
5485 } 5485 }
5486 5486
5487 /* 5487 /*
5488 * Keep a special pointer to the highest sched_domain that has 5488 * Keep a special pointer to the highest sched_domain that has
5489 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this 5489 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5490 * allows us to avoid some pointer chasing select_idle_sibling(). 5490 * allows us to avoid some pointer chasing select_idle_sibling().
5491 * 5491 *
5492 * Also keep a unique ID per domain (we use the first cpu number in 5492 * Also keep a unique ID per domain (we use the first cpu number in
5493 * the cpumask of the domain), this allows us to quickly tell if 5493 * the cpumask of the domain), this allows us to quickly tell if
5494 * two cpus are in the same cache domain, see cpus_share_cache(). 5494 * two cpus are in the same cache domain, see cpus_share_cache().
5495 */ 5495 */
5496 DEFINE_PER_CPU(struct sched_domain *, sd_llc); 5496 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5497 DEFINE_PER_CPU(int, sd_llc_size); 5497 DEFINE_PER_CPU(int, sd_llc_size);
5498 DEFINE_PER_CPU(int, sd_llc_id); 5498 DEFINE_PER_CPU(int, sd_llc_id);
5499 DEFINE_PER_CPU(struct sched_domain *, sd_numa); 5499 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5500 DEFINE_PER_CPU(struct sched_domain *, sd_busy); 5500 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5501 DEFINE_PER_CPU(struct sched_domain *, sd_asym); 5501 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5502 5502
5503 static void update_top_cache_domain(int cpu) 5503 static void update_top_cache_domain(int cpu)
5504 { 5504 {
5505 struct sched_domain *sd; 5505 struct sched_domain *sd;
5506 struct sched_domain *busy_sd = NULL; 5506 struct sched_domain *busy_sd = NULL;
5507 int id = cpu; 5507 int id = cpu;
5508 int size = 1; 5508 int size = 1;
5509 5509
5510 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); 5510 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5511 if (sd) { 5511 if (sd) {
5512 id = cpumask_first(sched_domain_span(sd)); 5512 id = cpumask_first(sched_domain_span(sd));
5513 size = cpumask_weight(sched_domain_span(sd)); 5513 size = cpumask_weight(sched_domain_span(sd));
5514 busy_sd = sd->parent; /* sd_busy */ 5514 busy_sd = sd->parent; /* sd_busy */
5515 } 5515 }
5516 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd); 5516 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5517 5517
5518 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 5518 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5519 per_cpu(sd_llc_size, cpu) = size; 5519 per_cpu(sd_llc_size, cpu) = size;
5520 per_cpu(sd_llc_id, cpu) = id; 5520 per_cpu(sd_llc_id, cpu) = id;
5521 5521
5522 sd = lowest_flag_domain(cpu, SD_NUMA); 5522 sd = lowest_flag_domain(cpu, SD_NUMA);
5523 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 5523 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5524 5524
5525 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 5525 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5526 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); 5526 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5527 } 5527 }
5528 5528
5529 /* 5529 /*
5530 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 5530 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5531 * hold the hotplug lock. 5531 * hold the hotplug lock.
5532 */ 5532 */
5533 static void 5533 static void
5534 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 5534 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5535 { 5535 {
5536 struct rq *rq = cpu_rq(cpu); 5536 struct rq *rq = cpu_rq(cpu);
5537 struct sched_domain *tmp; 5537 struct sched_domain *tmp;
5538 5538
5539 /* Remove the sched domains which do not contribute to scheduling. */ 5539 /* Remove the sched domains which do not contribute to scheduling. */
5540 for (tmp = sd; tmp; ) { 5540 for (tmp = sd; tmp; ) {
5541 struct sched_domain *parent = tmp->parent; 5541 struct sched_domain *parent = tmp->parent;
5542 if (!parent) 5542 if (!parent)
5543 break; 5543 break;
5544 5544
5545 if (sd_parent_degenerate(tmp, parent)) { 5545 if (sd_parent_degenerate(tmp, parent)) {
5546 tmp->parent = parent->parent; 5546 tmp->parent = parent->parent;
5547 if (parent->parent) 5547 if (parent->parent)
5548 parent->parent->child = tmp; 5548 parent->parent->child = tmp;
5549 /* 5549 /*
5550 * Transfer SD_PREFER_SIBLING down in case of a 5550 * Transfer SD_PREFER_SIBLING down in case of a
5551 * degenerate parent; the spans match for this 5551 * degenerate parent; the spans match for this
5552 * so the property transfers. 5552 * so the property transfers.
5553 */ 5553 */
5554 if (parent->flags & SD_PREFER_SIBLING) 5554 if (parent->flags & SD_PREFER_SIBLING)
5555 tmp->flags |= SD_PREFER_SIBLING; 5555 tmp->flags |= SD_PREFER_SIBLING;
5556 destroy_sched_domain(parent, cpu); 5556 destroy_sched_domain(parent, cpu);
5557 } else 5557 } else
5558 tmp = tmp->parent; 5558 tmp = tmp->parent;
5559 } 5559 }
5560 5560
5561 if (sd && sd_degenerate(sd)) { 5561 if (sd && sd_degenerate(sd)) {
5562 tmp = sd; 5562 tmp = sd;
5563 sd = sd->parent; 5563 sd = sd->parent;
5564 destroy_sched_domain(tmp, cpu); 5564 destroy_sched_domain(tmp, cpu);
5565 if (sd) 5565 if (sd)
5566 sd->child = NULL; 5566 sd->child = NULL;
5567 } 5567 }
5568 5568
5569 sched_domain_debug(sd, cpu); 5569 sched_domain_debug(sd, cpu);
5570 5570
5571 rq_attach_root(rq, rd); 5571 rq_attach_root(rq, rd);
5572 tmp = rq->sd; 5572 tmp = rq->sd;
5573 rcu_assign_pointer(rq->sd, sd); 5573 rcu_assign_pointer(rq->sd, sd);
5574 destroy_sched_domains(tmp, cpu); 5574 destroy_sched_domains(tmp, cpu);
5575 5575
5576 update_top_cache_domain(cpu); 5576 update_top_cache_domain(cpu);
5577 } 5577 }
5578 5578
5579 /* cpus with isolated domains */ 5579 /* cpus with isolated domains */
5580 static cpumask_var_t cpu_isolated_map; 5580 static cpumask_var_t cpu_isolated_map;
5581 5581
5582 /* Setup the mask of cpus configured for isolated domains */ 5582 /* Setup the mask of cpus configured for isolated domains */
5583 static int __init isolated_cpu_setup(char *str) 5583 static int __init isolated_cpu_setup(char *str)
5584 { 5584 {
5585 alloc_bootmem_cpumask_var(&cpu_isolated_map); 5585 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5586 cpulist_parse(str, cpu_isolated_map); 5586 cpulist_parse(str, cpu_isolated_map);
5587 return 1; 5587 return 1;
5588 } 5588 }
5589 5589
5590 __setup("isolcpus=", isolated_cpu_setup); 5590 __setup("isolcpus=", isolated_cpu_setup);
5591 5591
5592 static const struct cpumask *cpu_cpu_mask(int cpu) 5592 static const struct cpumask *cpu_cpu_mask(int cpu)
5593 { 5593 {
5594 return cpumask_of_node(cpu_to_node(cpu)); 5594 return cpumask_of_node(cpu_to_node(cpu));
5595 } 5595 }
5596 5596
5597 struct sd_data { 5597 struct sd_data {
5598 struct sched_domain **__percpu sd; 5598 struct sched_domain **__percpu sd;
5599 struct sched_group **__percpu sg; 5599 struct sched_group **__percpu sg;
5600 struct sched_group_power **__percpu sgp; 5600 struct sched_group_power **__percpu sgp;
5601 }; 5601 };
5602 5602
5603 struct s_data { 5603 struct s_data {
5604 struct sched_domain ** __percpu sd; 5604 struct sched_domain ** __percpu sd;
5605 struct root_domain *rd; 5605 struct root_domain *rd;
5606 }; 5606 };
5607 5607
5608 enum s_alloc { 5608 enum s_alloc {
5609 sa_rootdomain, 5609 sa_rootdomain,
5610 sa_sd, 5610 sa_sd,
5611 sa_sd_storage, 5611 sa_sd_storage,
5612 sa_none, 5612 sa_none,
5613 }; 5613 };
5614 5614
5615 struct sched_domain_topology_level; 5615 struct sched_domain_topology_level;
5616 5616
5617 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu); 5617 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5618 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 5618 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5619 5619
5620 #define SDTL_OVERLAP 0x01 5620 #define SDTL_OVERLAP 0x01
5621 5621
5622 struct sched_domain_topology_level { 5622 struct sched_domain_topology_level {
5623 sched_domain_init_f init; 5623 sched_domain_init_f init;
5624 sched_domain_mask_f mask; 5624 sched_domain_mask_f mask;
5625 int flags; 5625 int flags;
5626 int numa_level; 5626 int numa_level;
5627 struct sd_data data; 5627 struct sd_data data;
5628 }; 5628 };
5629 5629
5630 /* 5630 /*
5631 * Build an iteration mask that can exclude certain CPUs from the upwards 5631 * Build an iteration mask that can exclude certain CPUs from the upwards
5632 * domain traversal. 5632 * domain traversal.
5633 * 5633 *
5634 * Asymmetric node setups can result in situations where the domain tree is of 5634 * Asymmetric node setups can result in situations where the domain tree is of
5635 * unequal depth, make sure to skip domains that already cover the entire 5635 * unequal depth, make sure to skip domains that already cover the entire
5636 * range. 5636 * range.
5637 * 5637 *
5638 * In that case build_sched_domains() will have terminated the iteration early 5638 * In that case build_sched_domains() will have terminated the iteration early
5639 * and our sibling sd spans will be empty. Domains should always include the 5639 * and our sibling sd spans will be empty. Domains should always include the
5640 * cpu they're built on, so check that. 5640 * cpu they're built on, so check that.
5641 * 5641 *
5642 */ 5642 */
5643 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) 5643 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5644 { 5644 {
5645 const struct cpumask *span = sched_domain_span(sd); 5645 const struct cpumask *span = sched_domain_span(sd);
5646 struct sd_data *sdd = sd->private; 5646 struct sd_data *sdd = sd->private;
5647 struct sched_domain *sibling; 5647 struct sched_domain *sibling;
5648 int i; 5648 int i;
5649 5649
5650 for_each_cpu(i, span) { 5650 for_each_cpu(i, span) {
5651 sibling = *per_cpu_ptr(sdd->sd, i); 5651 sibling = *per_cpu_ptr(sdd->sd, i);
5652 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 5652 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5653 continue; 5653 continue;
5654 5654
5655 cpumask_set_cpu(i, sched_group_mask(sg)); 5655 cpumask_set_cpu(i, sched_group_mask(sg));
5656 } 5656 }
5657 } 5657 }
5658 5658
5659 /* 5659 /*
5660 * Return the canonical balance cpu for this group, this is the first cpu 5660 * Return the canonical balance cpu for this group, this is the first cpu
5661 * of this group that's also in the iteration mask. 5661 * of this group that's also in the iteration mask.
5662 */ 5662 */
5663 int group_balance_cpu(struct sched_group *sg) 5663 int group_balance_cpu(struct sched_group *sg)
5664 { 5664 {
5665 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); 5665 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5666 } 5666 }
5667 5667
5668 static int 5668 static int
5669 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 5669 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5670 { 5670 {
5671 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; 5671 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5672 const struct cpumask *span = sched_domain_span(sd); 5672 const struct cpumask *span = sched_domain_span(sd);
5673 struct cpumask *covered = sched_domains_tmpmask; 5673 struct cpumask *covered = sched_domains_tmpmask;
5674 struct sd_data *sdd = sd->private; 5674 struct sd_data *sdd = sd->private;
5675 struct sched_domain *child; 5675 struct sched_domain *child;
5676 int i; 5676 int i;
5677 5677
5678 cpumask_clear(covered); 5678 cpumask_clear(covered);
5679 5679
5680 for_each_cpu(i, span) { 5680 for_each_cpu(i, span) {
5681 struct cpumask *sg_span; 5681 struct cpumask *sg_span;
5682 5682
5683 if (cpumask_test_cpu(i, covered)) 5683 if (cpumask_test_cpu(i, covered))
5684 continue; 5684 continue;
5685 5685
5686 child = *per_cpu_ptr(sdd->sd, i); 5686 child = *per_cpu_ptr(sdd->sd, i);
5687 5687
5688 /* See the comment near build_group_mask(). */ 5688 /* See the comment near build_group_mask(). */
5689 if (!cpumask_test_cpu(i, sched_domain_span(child))) 5689 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5690 continue; 5690 continue;
5691 5691
5692 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 5692 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5693 GFP_KERNEL, cpu_to_node(cpu)); 5693 GFP_KERNEL, cpu_to_node(cpu));
5694 5694
5695 if (!sg) 5695 if (!sg)
5696 goto fail; 5696 goto fail;
5697 5697
5698 sg_span = sched_group_cpus(sg); 5698 sg_span = sched_group_cpus(sg);
5699 if (child->child) { 5699 if (child->child) {
5700 child = child->child; 5700 child = child->child;
5701 cpumask_copy(sg_span, sched_domain_span(child)); 5701 cpumask_copy(sg_span, sched_domain_span(child));
5702 } else 5702 } else
5703 cpumask_set_cpu(i, sg_span); 5703 cpumask_set_cpu(i, sg_span);
5704 5704
5705 cpumask_or(covered, covered, sg_span); 5705 cpumask_or(covered, covered, sg_span);
5706 5706
5707 sg->sgp = *per_cpu_ptr(sdd->sgp, i); 5707 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5708 if (atomic_inc_return(&sg->sgp->ref) == 1) 5708 if (atomic_inc_return(&sg->sgp->ref) == 1)
5709 build_group_mask(sd, sg); 5709 build_group_mask(sd, sg);
5710 5710
5711 /* 5711 /*
5712 * Initialize sgp->power such that even if we mess up the 5712 * Initialize sgp->power such that even if we mess up the
5713 * domains and no possible iteration will get us here, we won't 5713 * domains and no possible iteration will get us here, we won't
5714 * die on a /0 trap. 5714 * die on a /0 trap.
5715 */ 5715 */
5716 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span); 5716 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5717 sg->sgp->power_orig = sg->sgp->power; 5717 sg->sgp->power_orig = sg->sgp->power;
5718 5718
5719 /* 5719 /*
5720 * Make sure the first group of this domain contains the 5720 * Make sure the first group of this domain contains the
5721 * canonical balance cpu. Otherwise the sched_domain iteration 5721 * canonical balance cpu. Otherwise the sched_domain iteration
5722 * breaks. See update_sg_lb_stats(). 5722 * breaks. See update_sg_lb_stats().
5723 */ 5723 */
5724 if ((!groups && cpumask_test_cpu(cpu, sg_span)) || 5724 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5725 group_balance_cpu(sg) == cpu) 5725 group_balance_cpu(sg) == cpu)
5726 groups = sg; 5726 groups = sg;
5727 5727
5728 if (!first) 5728 if (!first)
5729 first = sg; 5729 first = sg;
5730 if (last) 5730 if (last)
5731 last->next = sg; 5731 last->next = sg;
5732 last = sg; 5732 last = sg;
5733 last->next = first; 5733 last->next = first;
5734 } 5734 }
5735 sd->groups = groups; 5735 sd->groups = groups;
5736 5736
5737 return 0; 5737 return 0;
5738 5738
5739 fail: 5739 fail:
5740 free_sched_groups(first, 0); 5740 free_sched_groups(first, 0);
5741 5741
5742 return -ENOMEM; 5742 return -ENOMEM;
5743 } 5743 }
5744 5744
5745 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) 5745 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5746 { 5746 {
5747 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 5747 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5748 struct sched_domain *child = sd->child; 5748 struct sched_domain *child = sd->child;
5749 5749
5750 if (child) 5750 if (child)
5751 cpu = cpumask_first(sched_domain_span(child)); 5751 cpu = cpumask_first(sched_domain_span(child));
5752 5752
5753 if (sg) { 5753 if (sg) {
5754 *sg = *per_cpu_ptr(sdd->sg, cpu); 5754 *sg = *per_cpu_ptr(sdd->sg, cpu);
5755 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu); 5755 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5756 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */ 5756 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5757 } 5757 }
5758 5758
5759 return cpu; 5759 return cpu;
5760 } 5760 }
5761 5761
5762 /* 5762 /*
5763 * build_sched_groups will build a circular linked list of the groups 5763 * build_sched_groups will build a circular linked list of the groups
5764 * covered by the given span, and will set each group's ->cpumask correctly, 5764 * covered by the given span, and will set each group's ->cpumask correctly,
5765 * and ->cpu_power to 0. 5765 * and ->cpu_power to 0.
5766 * 5766 *
5767 * Assumes the sched_domain tree is fully constructed 5767 * Assumes the sched_domain tree is fully constructed
5768 */ 5768 */
5769 static int 5769 static int
5770 build_sched_groups(struct sched_domain *sd, int cpu) 5770 build_sched_groups(struct sched_domain *sd, int cpu)
5771 { 5771 {
5772 struct sched_group *first = NULL, *last = NULL; 5772 struct sched_group *first = NULL, *last = NULL;
5773 struct sd_data *sdd = sd->private; 5773 struct sd_data *sdd = sd->private;
5774 const struct cpumask *span = sched_domain_span(sd); 5774 const struct cpumask *span = sched_domain_span(sd);
5775 struct cpumask *covered; 5775 struct cpumask *covered;
5776 int i; 5776 int i;
5777 5777
5778 get_group(cpu, sdd, &sd->groups); 5778 get_group(cpu, sdd, &sd->groups);
5779 atomic_inc(&sd->groups->ref); 5779 atomic_inc(&sd->groups->ref);
5780 5780
5781 if (cpu != cpumask_first(span)) 5781 if (cpu != cpumask_first(span))
5782 return 0; 5782 return 0;
5783 5783
5784 lockdep_assert_held(&sched_domains_mutex); 5784 lockdep_assert_held(&sched_domains_mutex);
5785 covered = sched_domains_tmpmask; 5785 covered = sched_domains_tmpmask;
5786 5786
5787 cpumask_clear(covered); 5787 cpumask_clear(covered);
5788 5788
5789 for_each_cpu(i, span) { 5789 for_each_cpu(i, span) {
5790 struct sched_group *sg; 5790 struct sched_group *sg;
5791 int group, j; 5791 int group, j;
5792 5792
5793 if (cpumask_test_cpu(i, covered)) 5793 if (cpumask_test_cpu(i, covered))
5794 continue; 5794 continue;
5795 5795
5796 group = get_group(i, sdd, &sg); 5796 group = get_group(i, sdd, &sg);
5797 cpumask_clear(sched_group_cpus(sg)); 5797 cpumask_clear(sched_group_cpus(sg));
5798 sg->sgp->power = 0; 5798 sg->sgp->power = 0;
5799 cpumask_setall(sched_group_mask(sg)); 5799 cpumask_setall(sched_group_mask(sg));
5800 5800
5801 for_each_cpu(j, span) { 5801 for_each_cpu(j, span) {
5802 if (get_group(j, sdd, NULL) != group) 5802 if (get_group(j, sdd, NULL) != group)
5803 continue; 5803 continue;
5804 5804
5805 cpumask_set_cpu(j, covered); 5805 cpumask_set_cpu(j, covered);
5806 cpumask_set_cpu(j, sched_group_cpus(sg)); 5806 cpumask_set_cpu(j, sched_group_cpus(sg));
5807 } 5807 }
5808 5808
5809 if (!first) 5809 if (!first)
5810 first = sg; 5810 first = sg;
5811 if (last) 5811 if (last)
5812 last->next = sg; 5812 last->next = sg;
5813 last = sg; 5813 last = sg;
5814 } 5814 }
5815 last->next = first; 5815 last->next = first;
5816 5816
5817 return 0; 5817 return 0;
5818 } 5818 }
5819 5819
5820 /* 5820 /*
5821 * Initialize sched groups cpu_power. 5821 * Initialize sched groups cpu_power.
5822 * 5822 *
5823 * cpu_power indicates the capacity of sched group, which is used while 5823 * cpu_power indicates the capacity of sched group, which is used while
5824 * distributing the load between different sched groups in a sched domain. 5824 * distributing the load between different sched groups in a sched domain.
5825 * Typically cpu_power for all the groups in a sched domain will be same unless 5825 * Typically cpu_power for all the groups in a sched domain will be same unless
5826 * there are asymmetries in the topology. If there are asymmetries, group 5826 * there are asymmetries in the topology. If there are asymmetries, group
5827 * having more cpu_power will pickup more load compared to the group having 5827 * having more cpu_power will pickup more load compared to the group having
5828 * less cpu_power. 5828 * less cpu_power.
5829 */ 5829 */
5830 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 5830 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5831 { 5831 {
5832 struct sched_group *sg = sd->groups; 5832 struct sched_group *sg = sd->groups;
5833 5833
5834 WARN_ON(!sg); 5834 WARN_ON(!sg);
5835 5835
5836 do { 5836 do {
5837 sg->group_weight = cpumask_weight(sched_group_cpus(sg)); 5837 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5838 sg = sg->next; 5838 sg = sg->next;
5839 } while (sg != sd->groups); 5839 } while (sg != sd->groups);
5840 5840
5841 if (cpu != group_balance_cpu(sg)) 5841 if (cpu != group_balance_cpu(sg))
5842 return; 5842 return;
5843 5843
5844 update_group_power(sd, cpu); 5844 update_group_power(sd, cpu);
5845 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight); 5845 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5846 } 5846 }
5847 5847
5848 int __weak arch_sd_sibling_asym_packing(void) 5848 int __weak arch_sd_sibling_asym_packing(void)
5849 { 5849 {
5850 return 0*SD_ASYM_PACKING; 5850 return 0*SD_ASYM_PACKING;
5851 } 5851 }
5852 5852
5853 /* 5853 /*
5854 * Initializers for schedule domains 5854 * Initializers for schedule domains
5855 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 5855 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5856 */ 5856 */
5857 5857
5858 #ifdef CONFIG_SCHED_DEBUG 5858 #ifdef CONFIG_SCHED_DEBUG
5859 # define SD_INIT_NAME(sd, type) sd->name = #type 5859 # define SD_INIT_NAME(sd, type) sd->name = #type
5860 #else 5860 #else
5861 # define SD_INIT_NAME(sd, type) do { } while (0) 5861 # define SD_INIT_NAME(sd, type) do { } while (0)
5862 #endif 5862 #endif
5863 5863
5864 #define SD_INIT_FUNC(type) \ 5864 #define SD_INIT_FUNC(type) \
5865 static noinline struct sched_domain * \ 5865 static noinline struct sched_domain * \
5866 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \ 5866 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5867 { \ 5867 { \
5868 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \ 5868 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5869 *sd = SD_##type##_INIT; \ 5869 *sd = SD_##type##_INIT; \
5870 SD_INIT_NAME(sd, type); \ 5870 SD_INIT_NAME(sd, type); \
5871 sd->private = &tl->data; \ 5871 sd->private = &tl->data; \
5872 return sd; \ 5872 return sd; \
5873 } 5873 }
5874 5874
5875 SD_INIT_FUNC(CPU) 5875 SD_INIT_FUNC(CPU)
5876 #ifdef CONFIG_SCHED_SMT 5876 #ifdef CONFIG_SCHED_SMT
5877 SD_INIT_FUNC(SIBLING) 5877 SD_INIT_FUNC(SIBLING)
5878 #endif 5878 #endif
5879 #ifdef CONFIG_SCHED_MC 5879 #ifdef CONFIG_SCHED_MC
5880 SD_INIT_FUNC(MC) 5880 SD_INIT_FUNC(MC)
5881 #endif 5881 #endif
5882 #ifdef CONFIG_SCHED_BOOK 5882 #ifdef CONFIG_SCHED_BOOK
5883 SD_INIT_FUNC(BOOK) 5883 SD_INIT_FUNC(BOOK)
5884 #endif 5884 #endif
5885 5885
5886 static int default_relax_domain_level = -1; 5886 static int default_relax_domain_level = -1;
5887 int sched_domain_level_max; 5887 int sched_domain_level_max;
5888 5888
5889 static int __init setup_relax_domain_level(char *str) 5889 static int __init setup_relax_domain_level(char *str)
5890 { 5890 {
5891 if (kstrtoint(str, 0, &default_relax_domain_level)) 5891 if (kstrtoint(str, 0, &default_relax_domain_level))
5892 pr_warn("Unable to set relax_domain_level\n"); 5892 pr_warn("Unable to set relax_domain_level\n");
5893 5893
5894 return 1; 5894 return 1;
5895 } 5895 }
5896 __setup("relax_domain_level=", setup_relax_domain_level); 5896 __setup("relax_domain_level=", setup_relax_domain_level);
5897 5897
5898 static void set_domain_attribute(struct sched_domain *sd, 5898 static void set_domain_attribute(struct sched_domain *sd,
5899 struct sched_domain_attr *attr) 5899 struct sched_domain_attr *attr)
5900 { 5900 {
5901 int request; 5901 int request;
5902 5902
5903 if (!attr || attr->relax_domain_level < 0) { 5903 if (!attr || attr->relax_domain_level < 0) {
5904 if (default_relax_domain_level < 0) 5904 if (default_relax_domain_level < 0)
5905 return; 5905 return;
5906 else 5906 else
5907 request = default_relax_domain_level; 5907 request = default_relax_domain_level;
5908 } else 5908 } else
5909 request = attr->relax_domain_level; 5909 request = attr->relax_domain_level;
5910 if (request < sd->level) { 5910 if (request < sd->level) {
5911 /* turn off idle balance on this domain */ 5911 /* turn off idle balance on this domain */
5912 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5912 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5913 } else { 5913 } else {
5914 /* turn on idle balance on this domain */ 5914 /* turn on idle balance on this domain */
5915 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 5915 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5916 } 5916 }
5917 } 5917 }
5918 5918
5919 static void __sdt_free(const struct cpumask *cpu_map); 5919 static void __sdt_free(const struct cpumask *cpu_map);
5920 static int __sdt_alloc(const struct cpumask *cpu_map); 5920 static int __sdt_alloc(const struct cpumask *cpu_map);
5921 5921
5922 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 5922 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5923 const struct cpumask *cpu_map) 5923 const struct cpumask *cpu_map)
5924 { 5924 {
5925 switch (what) { 5925 switch (what) {
5926 case sa_rootdomain: 5926 case sa_rootdomain:
5927 if (!atomic_read(&d->rd->refcount)) 5927 if (!atomic_read(&d->rd->refcount))
5928 free_rootdomain(&d->rd->rcu); /* fall through */ 5928 free_rootdomain(&d->rd->rcu); /* fall through */
5929 case sa_sd: 5929 case sa_sd:
5930 free_percpu(d->sd); /* fall through */ 5930 free_percpu(d->sd); /* fall through */
5931 case sa_sd_storage: 5931 case sa_sd_storage:
5932 __sdt_free(cpu_map); /* fall through */ 5932 __sdt_free(cpu_map); /* fall through */
5933 case sa_none: 5933 case sa_none:
5934 break; 5934 break;
5935 } 5935 }
5936 } 5936 }
5937 5937
5938 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, 5938 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5939 const struct cpumask *cpu_map) 5939 const struct cpumask *cpu_map)
5940 { 5940 {
5941 memset(d, 0, sizeof(*d)); 5941 memset(d, 0, sizeof(*d));
5942 5942
5943 if (__sdt_alloc(cpu_map)) 5943 if (__sdt_alloc(cpu_map))
5944 return sa_sd_storage; 5944 return sa_sd_storage;
5945 d->sd = alloc_percpu(struct sched_domain *); 5945 d->sd = alloc_percpu(struct sched_domain *);
5946 if (!d->sd) 5946 if (!d->sd)
5947 return sa_sd_storage; 5947 return sa_sd_storage;
5948 d->rd = alloc_rootdomain(); 5948 d->rd = alloc_rootdomain();
5949 if (!d->rd) 5949 if (!d->rd)
5950 return sa_sd; 5950 return sa_sd;
5951 return sa_rootdomain; 5951 return sa_rootdomain;
5952 } 5952 }
5953 5953
5954 /* 5954 /*
5955 * NULL the sd_data elements we've used to build the sched_domain and 5955 * NULL the sd_data elements we've used to build the sched_domain and
5956 * sched_group structure so that the subsequent __free_domain_allocs() 5956 * sched_group structure so that the subsequent __free_domain_allocs()
5957 * will not free the data we're using. 5957 * will not free the data we're using.
5958 */ 5958 */
5959 static void claim_allocations(int cpu, struct sched_domain *sd) 5959 static void claim_allocations(int cpu, struct sched_domain *sd)
5960 { 5960 {
5961 struct sd_data *sdd = sd->private; 5961 struct sd_data *sdd = sd->private;
5962 5962
5963 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 5963 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5964 *per_cpu_ptr(sdd->sd, cpu) = NULL; 5964 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5965 5965
5966 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 5966 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5967 *per_cpu_ptr(sdd->sg, cpu) = NULL; 5967 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5968 5968
5969 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref)) 5969 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5970 *per_cpu_ptr(sdd->sgp, cpu) = NULL; 5970 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5971 } 5971 }
5972 5972
5973 #ifdef CONFIG_SCHED_SMT 5973 #ifdef CONFIG_SCHED_SMT
5974 static const struct cpumask *cpu_smt_mask(int cpu) 5974 static const struct cpumask *cpu_smt_mask(int cpu)
5975 { 5975 {
5976 return topology_thread_cpumask(cpu); 5976 return topology_thread_cpumask(cpu);
5977 } 5977 }
5978 #endif 5978 #endif
5979 5979
5980 /* 5980 /*
5981 * Topology list, bottom-up. 5981 * Topology list, bottom-up.
5982 */ 5982 */
5983 static struct sched_domain_topology_level default_topology[] = { 5983 static struct sched_domain_topology_level default_topology[] = {
5984 #ifdef CONFIG_SCHED_SMT 5984 #ifdef CONFIG_SCHED_SMT
5985 { sd_init_SIBLING, cpu_smt_mask, }, 5985 { sd_init_SIBLING, cpu_smt_mask, },
5986 #endif 5986 #endif
5987 #ifdef CONFIG_SCHED_MC 5987 #ifdef CONFIG_SCHED_MC
5988 { sd_init_MC, cpu_coregroup_mask, }, 5988 { sd_init_MC, cpu_coregroup_mask, },
5989 #endif 5989 #endif
5990 #ifdef CONFIG_SCHED_BOOK 5990 #ifdef CONFIG_SCHED_BOOK
5991 { sd_init_BOOK, cpu_book_mask, }, 5991 { sd_init_BOOK, cpu_book_mask, },
5992 #endif 5992 #endif
5993 { sd_init_CPU, cpu_cpu_mask, }, 5993 { sd_init_CPU, cpu_cpu_mask, },
5994 { NULL, }, 5994 { NULL, },
5995 }; 5995 };
5996 5996
5997 static struct sched_domain_topology_level *sched_domain_topology = default_topology; 5997 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5998 5998
5999 #define for_each_sd_topology(tl) \ 5999 #define for_each_sd_topology(tl) \
6000 for (tl = sched_domain_topology; tl->init; tl++) 6000 for (tl = sched_domain_topology; tl->init; tl++)
6001 6001
6002 #ifdef CONFIG_NUMA 6002 #ifdef CONFIG_NUMA
6003 6003
6004 static int sched_domains_numa_levels; 6004 static int sched_domains_numa_levels;
6005 static int *sched_domains_numa_distance; 6005 static int *sched_domains_numa_distance;
6006 static struct cpumask ***sched_domains_numa_masks; 6006 static struct cpumask ***sched_domains_numa_masks;
6007 static int sched_domains_curr_level; 6007 static int sched_domains_curr_level;
6008 6008
6009 static inline int sd_local_flags(int level) 6009 static inline int sd_local_flags(int level)
6010 { 6010 {
6011 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE) 6011 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6012 return 0; 6012 return 0;
6013 6013
6014 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE; 6014 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6015 } 6015 }
6016 6016
6017 static struct sched_domain * 6017 static struct sched_domain *
6018 sd_numa_init(struct sched_domain_topology_level *tl, int cpu) 6018 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6019 { 6019 {
6020 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); 6020 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6021 int level = tl->numa_level; 6021 int level = tl->numa_level;
6022 int sd_weight = cpumask_weight( 6022 int sd_weight = cpumask_weight(
6023 sched_domains_numa_masks[level][cpu_to_node(cpu)]); 6023 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6024 6024
6025 *sd = (struct sched_domain){ 6025 *sd = (struct sched_domain){
6026 .min_interval = sd_weight, 6026 .min_interval = sd_weight,
6027 .max_interval = 2*sd_weight, 6027 .max_interval = 2*sd_weight,
6028 .busy_factor = 32, 6028 .busy_factor = 32,
6029 .imbalance_pct = 125, 6029 .imbalance_pct = 125,
6030 .cache_nice_tries = 2, 6030 .cache_nice_tries = 2,
6031 .busy_idx = 3, 6031 .busy_idx = 3,
6032 .idle_idx = 2, 6032 .idle_idx = 2,
6033 .newidle_idx = 0, 6033 .newidle_idx = 0,
6034 .wake_idx = 0, 6034 .wake_idx = 0,
6035 .forkexec_idx = 0, 6035 .forkexec_idx = 0,
6036 6036
6037 .flags = 1*SD_LOAD_BALANCE 6037 .flags = 1*SD_LOAD_BALANCE
6038 | 1*SD_BALANCE_NEWIDLE 6038 | 1*SD_BALANCE_NEWIDLE
6039 | 0*SD_BALANCE_EXEC 6039 | 0*SD_BALANCE_EXEC
6040 | 0*SD_BALANCE_FORK 6040 | 0*SD_BALANCE_FORK
6041 | 0*SD_BALANCE_WAKE 6041 | 0*SD_BALANCE_WAKE
6042 | 0*SD_WAKE_AFFINE 6042 | 0*SD_WAKE_AFFINE
6043 | 0*SD_SHARE_CPUPOWER 6043 | 0*SD_SHARE_CPUPOWER
6044 | 0*SD_SHARE_PKG_RESOURCES 6044 | 0*SD_SHARE_PKG_RESOURCES
6045 | 1*SD_SERIALIZE 6045 | 1*SD_SERIALIZE
6046 | 0*SD_PREFER_SIBLING 6046 | 0*SD_PREFER_SIBLING
6047 | 1*SD_NUMA 6047 | 1*SD_NUMA
6048 | sd_local_flags(level) 6048 | sd_local_flags(level)
6049 , 6049 ,
6050 .last_balance = jiffies, 6050 .last_balance = jiffies,
6051 .balance_interval = sd_weight, 6051 .balance_interval = sd_weight,
6052 .max_newidle_lb_cost = 0, 6052 .max_newidle_lb_cost = 0,
6053 .next_decay_max_lb_cost = jiffies, 6053 .next_decay_max_lb_cost = jiffies,
6054 }; 6054 };
6055 SD_INIT_NAME(sd, NUMA); 6055 SD_INIT_NAME(sd, NUMA);
6056 sd->private = &tl->data; 6056 sd->private = &tl->data;
6057 6057
6058 /* 6058 /*
6059 * Ugly hack to pass state to sd_numa_mask()... 6059 * Ugly hack to pass state to sd_numa_mask()...
6060 */ 6060 */
6061 sched_domains_curr_level = tl->numa_level; 6061 sched_domains_curr_level = tl->numa_level;
6062 6062
6063 return sd; 6063 return sd;
6064 } 6064 }
6065 6065
6066 static const struct cpumask *sd_numa_mask(int cpu) 6066 static const struct cpumask *sd_numa_mask(int cpu)
6067 { 6067 {
6068 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 6068 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6069 } 6069 }
6070 6070
6071 static void sched_numa_warn(const char *str) 6071 static void sched_numa_warn(const char *str)
6072 { 6072 {
6073 static int done = false; 6073 static int done = false;
6074 int i,j; 6074 int i,j;
6075 6075
6076 if (done) 6076 if (done)
6077 return; 6077 return;
6078 6078
6079 done = true; 6079 done = true;
6080 6080
6081 printk(KERN_WARNING "ERROR: %s\n\n", str); 6081 printk(KERN_WARNING "ERROR: %s\n\n", str);
6082 6082
6083 for (i = 0; i < nr_node_ids; i++) { 6083 for (i = 0; i < nr_node_ids; i++) {
6084 printk(KERN_WARNING " "); 6084 printk(KERN_WARNING " ");
6085 for (j = 0; j < nr_node_ids; j++) 6085 for (j = 0; j < nr_node_ids; j++)
6086 printk(KERN_CONT "%02d ", node_distance(i,j)); 6086 printk(KERN_CONT "%02d ", node_distance(i,j));
6087 printk(KERN_CONT "\n"); 6087 printk(KERN_CONT "\n");
6088 } 6088 }
6089 printk(KERN_WARNING "\n"); 6089 printk(KERN_WARNING "\n");
6090 } 6090 }
6091 6091
6092 static bool find_numa_distance(int distance) 6092 static bool find_numa_distance(int distance)
6093 { 6093 {
6094 int i; 6094 int i;
6095 6095
6096 if (distance == node_distance(0, 0)) 6096 if (distance == node_distance(0, 0))
6097 return true; 6097 return true;
6098 6098
6099 for (i = 0; i < sched_domains_numa_levels; i++) { 6099 for (i = 0; i < sched_domains_numa_levels; i++) {
6100 if (sched_domains_numa_distance[i] == distance) 6100 if (sched_domains_numa_distance[i] == distance)
6101 return true; 6101 return true;
6102 } 6102 }
6103 6103
6104 return false; 6104 return false;
6105 } 6105 }
6106 6106
6107 static void sched_init_numa(void) 6107 static void sched_init_numa(void)
6108 { 6108 {
6109 int next_distance, curr_distance = node_distance(0, 0); 6109 int next_distance, curr_distance = node_distance(0, 0);
6110 struct sched_domain_topology_level *tl; 6110 struct sched_domain_topology_level *tl;
6111 int level = 0; 6111 int level = 0;
6112 int i, j, k; 6112 int i, j, k;
6113 6113
6114 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); 6114 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6115 if (!sched_domains_numa_distance) 6115 if (!sched_domains_numa_distance)
6116 return; 6116 return;
6117 6117
6118 /* 6118 /*
6119 * O(nr_nodes^2) deduplicating selection sort -- in order to find the 6119 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6120 * unique distances in the node_distance() table. 6120 * unique distances in the node_distance() table.
6121 * 6121 *
6122 * Assumes node_distance(0,j) includes all distances in 6122 * Assumes node_distance(0,j) includes all distances in
6123 * node_distance(i,j) in order to avoid cubic time. 6123 * node_distance(i,j) in order to avoid cubic time.
6124 */ 6124 */
6125 next_distance = curr_distance; 6125 next_distance = curr_distance;
6126 for (i = 0; i < nr_node_ids; i++) { 6126 for (i = 0; i < nr_node_ids; i++) {
6127 for (j = 0; j < nr_node_ids; j++) { 6127 for (j = 0; j < nr_node_ids; j++) {
6128 for (k = 0; k < nr_node_ids; k++) { 6128 for (k = 0; k < nr_node_ids; k++) {
6129 int distance = node_distance(i, k); 6129 int distance = node_distance(i, k);
6130 6130
6131 if (distance > curr_distance && 6131 if (distance > curr_distance &&
6132 (distance < next_distance || 6132 (distance < next_distance ||
6133 next_distance == curr_distance)) 6133 next_distance == curr_distance))
6134 next_distance = distance; 6134 next_distance = distance;
6135 6135
6136 /* 6136 /*
6137 * While not a strong assumption it would be nice to know 6137 * While not a strong assumption it would be nice to know
6138 * about cases where if node A is connected to B, B is not 6138 * about cases where if node A is connected to B, B is not
6139 * equally connected to A. 6139 * equally connected to A.
6140 */ 6140 */
6141 if (sched_debug() && node_distance(k, i) != distance) 6141 if (sched_debug() && node_distance(k, i) != distance)
6142 sched_numa_warn("Node-distance not symmetric"); 6142 sched_numa_warn("Node-distance not symmetric");
6143 6143
6144 if (sched_debug() && i && !find_numa_distance(distance)) 6144 if (sched_debug() && i && !find_numa_distance(distance))
6145 sched_numa_warn("Node-0 not representative"); 6145 sched_numa_warn("Node-0 not representative");
6146 } 6146 }
6147 if (next_distance != curr_distance) { 6147 if (next_distance != curr_distance) {
6148 sched_domains_numa_distance[level++] = next_distance; 6148 sched_domains_numa_distance[level++] = next_distance;
6149 sched_domains_numa_levels = level; 6149 sched_domains_numa_levels = level;
6150 curr_distance = next_distance; 6150 curr_distance = next_distance;
6151 } else break; 6151 } else break;
6152 } 6152 }
6153 6153
6154 /* 6154 /*
6155 * In case of sched_debug() we verify the above assumption. 6155 * In case of sched_debug() we verify the above assumption.
6156 */ 6156 */
6157 if (!sched_debug()) 6157 if (!sched_debug())
6158 break; 6158 break;
6159 } 6159 }
6160 /* 6160 /*
6161 * 'level' contains the number of unique distances, excluding the 6161 * 'level' contains the number of unique distances, excluding the
6162 * identity distance node_distance(i,i). 6162 * identity distance node_distance(i,i).
6163 * 6163 *
6164 * The sched_domains_numa_distance[] array includes the actual distance 6164 * The sched_domains_numa_distance[] array includes the actual distance
6165 * numbers. 6165 * numbers.
6166 */ 6166 */
6167 6167
6168 /* 6168 /*
6169 * Here, we should temporarily reset sched_domains_numa_levels to 0. 6169 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6170 * If it fails to allocate memory for array sched_domains_numa_masks[][], 6170 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6171 * the array will contain less then 'level' members. This could be 6171 * the array will contain less then 'level' members. This could be
6172 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 6172 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6173 * in other functions. 6173 * in other functions.
6174 * 6174 *
6175 * We reset it to 'level' at the end of this function. 6175 * We reset it to 'level' at the end of this function.
6176 */ 6176 */
6177 sched_domains_numa_levels = 0; 6177 sched_domains_numa_levels = 0;
6178 6178
6179 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); 6179 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6180 if (!sched_domains_numa_masks) 6180 if (!sched_domains_numa_masks)
6181 return; 6181 return;
6182 6182
6183 /* 6183 /*
6184 * Now for each level, construct a mask per node which contains all 6184 * Now for each level, construct a mask per node which contains all
6185 * cpus of nodes that are that many hops away from us. 6185 * cpus of nodes that are that many hops away from us.
6186 */ 6186 */
6187 for (i = 0; i < level; i++) { 6187 for (i = 0; i < level; i++) {
6188 sched_domains_numa_masks[i] = 6188 sched_domains_numa_masks[i] =
6189 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 6189 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6190 if (!sched_domains_numa_masks[i]) 6190 if (!sched_domains_numa_masks[i])
6191 return; 6191 return;
6192 6192
6193 for (j = 0; j < nr_node_ids; j++) { 6193 for (j = 0; j < nr_node_ids; j++) {
6194 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 6194 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6195 if (!mask) 6195 if (!mask)
6196 return; 6196 return;
6197 6197
6198 sched_domains_numa_masks[i][j] = mask; 6198 sched_domains_numa_masks[i][j] = mask;
6199 6199
6200 for (k = 0; k < nr_node_ids; k++) { 6200 for (k = 0; k < nr_node_ids; k++) {
6201 if (node_distance(j, k) > sched_domains_numa_distance[i]) 6201 if (node_distance(j, k) > sched_domains_numa_distance[i])
6202 continue; 6202 continue;
6203 6203
6204 cpumask_or(mask, mask, cpumask_of_node(k)); 6204 cpumask_or(mask, mask, cpumask_of_node(k));
6205 } 6205 }
6206 } 6206 }
6207 } 6207 }
6208 6208
6209 tl = kzalloc((ARRAY_SIZE(default_topology) + level) * 6209 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6210 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 6210 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6211 if (!tl) 6211 if (!tl)
6212 return; 6212 return;
6213 6213
6214 /* 6214 /*
6215 * Copy the default topology bits.. 6215 * Copy the default topology bits..
6216 */ 6216 */
6217 for (i = 0; default_topology[i].init; i++) 6217 for (i = 0; default_topology[i].init; i++)
6218 tl[i] = default_topology[i]; 6218 tl[i] = default_topology[i];
6219 6219
6220 /* 6220 /*
6221 * .. and append 'j' levels of NUMA goodness. 6221 * .. and append 'j' levels of NUMA goodness.
6222 */ 6222 */
6223 for (j = 0; j < level; i++, j++) { 6223 for (j = 0; j < level; i++, j++) {
6224 tl[i] = (struct sched_domain_topology_level){ 6224 tl[i] = (struct sched_domain_topology_level){
6225 .init = sd_numa_init, 6225 .init = sd_numa_init,
6226 .mask = sd_numa_mask, 6226 .mask = sd_numa_mask,
6227 .flags = SDTL_OVERLAP, 6227 .flags = SDTL_OVERLAP,
6228 .numa_level = j, 6228 .numa_level = j,
6229 }; 6229 };
6230 } 6230 }
6231 6231
6232 sched_domain_topology = tl; 6232 sched_domain_topology = tl;
6233 6233
6234 sched_domains_numa_levels = level; 6234 sched_domains_numa_levels = level;
6235 } 6235 }
6236 6236
6237 static void sched_domains_numa_masks_set(int cpu) 6237 static void sched_domains_numa_masks_set(int cpu)
6238 { 6238 {
6239 int i, j; 6239 int i, j;
6240 int node = cpu_to_node(cpu); 6240 int node = cpu_to_node(cpu);
6241 6241
6242 for (i = 0; i < sched_domains_numa_levels; i++) { 6242 for (i = 0; i < sched_domains_numa_levels; i++) {
6243 for (j = 0; j < nr_node_ids; j++) { 6243 for (j = 0; j < nr_node_ids; j++) {
6244 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 6244 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6245 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 6245 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6246 } 6246 }
6247 } 6247 }
6248 } 6248 }
6249 6249
6250 static void sched_domains_numa_masks_clear(int cpu) 6250 static void sched_domains_numa_masks_clear(int cpu)
6251 { 6251 {
6252 int i, j; 6252 int i, j;
6253 for (i = 0; i < sched_domains_numa_levels; i++) { 6253 for (i = 0; i < sched_domains_numa_levels; i++) {
6254 for (j = 0; j < nr_node_ids; j++) 6254 for (j = 0; j < nr_node_ids; j++)
6255 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 6255 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6256 } 6256 }
6257 } 6257 }
6258 6258
6259 /* 6259 /*
6260 * Update sched_domains_numa_masks[level][node] array when new cpus 6260 * Update sched_domains_numa_masks[level][node] array when new cpus
6261 * are onlined. 6261 * are onlined.
6262 */ 6262 */
6263 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6263 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6264 unsigned long action, 6264 unsigned long action,
6265 void *hcpu) 6265 void *hcpu)
6266 { 6266 {
6267 int cpu = (long)hcpu; 6267 int cpu = (long)hcpu;
6268 6268
6269 switch (action & ~CPU_TASKS_FROZEN) { 6269 switch (action & ~CPU_TASKS_FROZEN) {
6270 case CPU_ONLINE: 6270 case CPU_ONLINE:
6271 sched_domains_numa_masks_set(cpu); 6271 sched_domains_numa_masks_set(cpu);
6272 break; 6272 break;
6273 6273
6274 case CPU_DEAD: 6274 case CPU_DEAD:
6275 sched_domains_numa_masks_clear(cpu); 6275 sched_domains_numa_masks_clear(cpu);
6276 break; 6276 break;
6277 6277
6278 default: 6278 default:
6279 return NOTIFY_DONE; 6279 return NOTIFY_DONE;
6280 } 6280 }
6281 6281
6282 return NOTIFY_OK; 6282 return NOTIFY_OK;
6283 } 6283 }
6284 #else 6284 #else
6285 static inline void sched_init_numa(void) 6285 static inline void sched_init_numa(void)
6286 { 6286 {
6287 } 6287 }
6288 6288
6289 static int sched_domains_numa_masks_update(struct notifier_block *nfb, 6289 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6290 unsigned long action, 6290 unsigned long action,
6291 void *hcpu) 6291 void *hcpu)
6292 { 6292 {
6293 return 0; 6293 return 0;
6294 } 6294 }
6295 #endif /* CONFIG_NUMA */ 6295 #endif /* CONFIG_NUMA */
6296 6296
6297 static int __sdt_alloc(const struct cpumask *cpu_map) 6297 static int __sdt_alloc(const struct cpumask *cpu_map)
6298 { 6298 {
6299 struct sched_domain_topology_level *tl; 6299 struct sched_domain_topology_level *tl;
6300 int j; 6300 int j;
6301 6301
6302 for_each_sd_topology(tl) { 6302 for_each_sd_topology(tl) {
6303 struct sd_data *sdd = &tl->data; 6303 struct sd_data *sdd = &tl->data;
6304 6304
6305 sdd->sd = alloc_percpu(struct sched_domain *); 6305 sdd->sd = alloc_percpu(struct sched_domain *);
6306 if (!sdd->sd) 6306 if (!sdd->sd)
6307 return -ENOMEM; 6307 return -ENOMEM;
6308 6308
6309 sdd->sg = alloc_percpu(struct sched_group *); 6309 sdd->sg = alloc_percpu(struct sched_group *);
6310 if (!sdd->sg) 6310 if (!sdd->sg)
6311 return -ENOMEM; 6311 return -ENOMEM;
6312 6312
6313 sdd->sgp = alloc_percpu(struct sched_group_power *); 6313 sdd->sgp = alloc_percpu(struct sched_group_power *);
6314 if (!sdd->sgp) 6314 if (!sdd->sgp)
6315 return -ENOMEM; 6315 return -ENOMEM;
6316 6316
6317 for_each_cpu(j, cpu_map) { 6317 for_each_cpu(j, cpu_map) {
6318 struct sched_domain *sd; 6318 struct sched_domain *sd;
6319 struct sched_group *sg; 6319 struct sched_group *sg;
6320 struct sched_group_power *sgp; 6320 struct sched_group_power *sgp;
6321 6321
6322 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 6322 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6323 GFP_KERNEL, cpu_to_node(j)); 6323 GFP_KERNEL, cpu_to_node(j));
6324 if (!sd) 6324 if (!sd)
6325 return -ENOMEM; 6325 return -ENOMEM;
6326 6326
6327 *per_cpu_ptr(sdd->sd, j) = sd; 6327 *per_cpu_ptr(sdd->sd, j) = sd;
6328 6328
6329 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 6329 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6330 GFP_KERNEL, cpu_to_node(j)); 6330 GFP_KERNEL, cpu_to_node(j));
6331 if (!sg) 6331 if (!sg)
6332 return -ENOMEM; 6332 return -ENOMEM;
6333 6333
6334 sg->next = sg; 6334 sg->next = sg;
6335 6335
6336 *per_cpu_ptr(sdd->sg, j) = sg; 6336 *per_cpu_ptr(sdd->sg, j) = sg;
6337 6337
6338 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(), 6338 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6339 GFP_KERNEL, cpu_to_node(j)); 6339 GFP_KERNEL, cpu_to_node(j));
6340 if (!sgp) 6340 if (!sgp)
6341 return -ENOMEM; 6341 return -ENOMEM;
6342 6342
6343 *per_cpu_ptr(sdd->sgp, j) = sgp; 6343 *per_cpu_ptr(sdd->sgp, j) = sgp;
6344 } 6344 }
6345 } 6345 }
6346 6346
6347 return 0; 6347 return 0;
6348 } 6348 }
6349 6349
6350 static void __sdt_free(const struct cpumask *cpu_map) 6350 static void __sdt_free(const struct cpumask *cpu_map)
6351 { 6351 {
6352 struct sched_domain_topology_level *tl; 6352 struct sched_domain_topology_level *tl;
6353 int j; 6353 int j;
6354 6354
6355 for_each_sd_topology(tl) { 6355 for_each_sd_topology(tl) {
6356 struct sd_data *sdd = &tl->data; 6356 struct sd_data *sdd = &tl->data;
6357 6357
6358 for_each_cpu(j, cpu_map) { 6358 for_each_cpu(j, cpu_map) {
6359 struct sched_domain *sd; 6359 struct sched_domain *sd;
6360 6360
6361 if (sdd->sd) { 6361 if (sdd->sd) {
6362 sd = *per_cpu_ptr(sdd->sd, j); 6362 sd = *per_cpu_ptr(sdd->sd, j);
6363 if (sd && (sd->flags & SD_OVERLAP)) 6363 if (sd && (sd->flags & SD_OVERLAP))
6364 free_sched_groups(sd->groups, 0); 6364 free_sched_groups(sd->groups, 0);
6365 kfree(*per_cpu_ptr(sdd->sd, j)); 6365 kfree(*per_cpu_ptr(sdd->sd, j));
6366 } 6366 }
6367 6367
6368 if (sdd->sg) 6368 if (sdd->sg)
6369 kfree(*per_cpu_ptr(sdd->sg, j)); 6369 kfree(*per_cpu_ptr(sdd->sg, j));
6370 if (sdd->sgp) 6370 if (sdd->sgp)
6371 kfree(*per_cpu_ptr(sdd->sgp, j)); 6371 kfree(*per_cpu_ptr(sdd->sgp, j));
6372 } 6372 }
6373 free_percpu(sdd->sd); 6373 free_percpu(sdd->sd);
6374 sdd->sd = NULL; 6374 sdd->sd = NULL;
6375 free_percpu(sdd->sg); 6375 free_percpu(sdd->sg);
6376 sdd->sg = NULL; 6376 sdd->sg = NULL;
6377 free_percpu(sdd->sgp); 6377 free_percpu(sdd->sgp);
6378 sdd->sgp = NULL; 6378 sdd->sgp = NULL;
6379 } 6379 }
6380 } 6380 }
6381 6381
6382 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 6382 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6383 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 6383 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6384 struct sched_domain *child, int cpu) 6384 struct sched_domain *child, int cpu)
6385 { 6385 {
6386 struct sched_domain *sd = tl->init(tl, cpu); 6386 struct sched_domain *sd = tl->init(tl, cpu);
6387 if (!sd) 6387 if (!sd)
6388 return child; 6388 return child;
6389 6389
6390 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); 6390 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6391 if (child) { 6391 if (child) {
6392 sd->level = child->level + 1; 6392 sd->level = child->level + 1;
6393 sched_domain_level_max = max(sched_domain_level_max, sd->level); 6393 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6394 child->parent = sd; 6394 child->parent = sd;
6395 sd->child = child; 6395 sd->child = child;
6396 } 6396 }
6397 set_domain_attribute(sd, attr); 6397 set_domain_attribute(sd, attr);
6398 6398
6399 return sd; 6399 return sd;
6400 } 6400 }
6401 6401
6402 /* 6402 /*
6403 * Build sched domains for a given set of cpus and attach the sched domains 6403 * Build sched domains for a given set of cpus and attach the sched domains
6404 * to the individual cpus 6404 * to the individual cpus
6405 */ 6405 */
6406 static int build_sched_domains(const struct cpumask *cpu_map, 6406 static int build_sched_domains(const struct cpumask *cpu_map,
6407 struct sched_domain_attr *attr) 6407 struct sched_domain_attr *attr)
6408 { 6408 {
6409 enum s_alloc alloc_state; 6409 enum s_alloc alloc_state;
6410 struct sched_domain *sd; 6410 struct sched_domain *sd;
6411 struct s_data d; 6411 struct s_data d;
6412 int i, ret = -ENOMEM; 6412 int i, ret = -ENOMEM;
6413 6413
6414 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 6414 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6415 if (alloc_state != sa_rootdomain) 6415 if (alloc_state != sa_rootdomain)
6416 goto error; 6416 goto error;
6417 6417
6418 /* Set up domains for cpus specified by the cpu_map. */ 6418 /* Set up domains for cpus specified by the cpu_map. */
6419 for_each_cpu(i, cpu_map) { 6419 for_each_cpu(i, cpu_map) {
6420 struct sched_domain_topology_level *tl; 6420 struct sched_domain_topology_level *tl;
6421 6421
6422 sd = NULL; 6422 sd = NULL;
6423 for_each_sd_topology(tl) { 6423 for_each_sd_topology(tl) {
6424 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 6424 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6425 if (tl == sched_domain_topology) 6425 if (tl == sched_domain_topology)
6426 *per_cpu_ptr(d.sd, i) = sd; 6426 *per_cpu_ptr(d.sd, i) = sd;
6427 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) 6427 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6428 sd->flags |= SD_OVERLAP; 6428 sd->flags |= SD_OVERLAP;
6429 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 6429 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6430 break; 6430 break;
6431 } 6431 }
6432 } 6432 }
6433 6433
6434 /* Build the groups for the domains */ 6434 /* Build the groups for the domains */
6435 for_each_cpu(i, cpu_map) { 6435 for_each_cpu(i, cpu_map) {
6436 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6436 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6437 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 6437 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6438 if (sd->flags & SD_OVERLAP) { 6438 if (sd->flags & SD_OVERLAP) {
6439 if (build_overlap_sched_groups(sd, i)) 6439 if (build_overlap_sched_groups(sd, i))
6440 goto error; 6440 goto error;
6441 } else { 6441 } else {
6442 if (build_sched_groups(sd, i)) 6442 if (build_sched_groups(sd, i))
6443 goto error; 6443 goto error;
6444 } 6444 }
6445 } 6445 }
6446 } 6446 }
6447 6447
6448 /* Calculate CPU power for physical packages and nodes */ 6448 /* Calculate CPU power for physical packages and nodes */
6449 for (i = nr_cpumask_bits-1; i >= 0; i--) { 6449 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6450 if (!cpumask_test_cpu(i, cpu_map)) 6450 if (!cpumask_test_cpu(i, cpu_map))
6451 continue; 6451 continue;
6452 6452
6453 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 6453 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6454 claim_allocations(i, sd); 6454 claim_allocations(i, sd);
6455 init_sched_groups_power(i, sd); 6455 init_sched_groups_power(i, sd);
6456 } 6456 }
6457 } 6457 }
6458 6458
6459 /* Attach the domains */ 6459 /* Attach the domains */
6460 rcu_read_lock(); 6460 rcu_read_lock();
6461 for_each_cpu(i, cpu_map) { 6461 for_each_cpu(i, cpu_map) {
6462 sd = *per_cpu_ptr(d.sd, i); 6462 sd = *per_cpu_ptr(d.sd, i);
6463 cpu_attach_domain(sd, d.rd, i); 6463 cpu_attach_domain(sd, d.rd, i);
6464 } 6464 }
6465 rcu_read_unlock(); 6465 rcu_read_unlock();
6466 6466
6467 ret = 0; 6467 ret = 0;
6468 error: 6468 error:
6469 __free_domain_allocs(&d, alloc_state, cpu_map); 6469 __free_domain_allocs(&d, alloc_state, cpu_map);
6470 return ret; 6470 return ret;
6471 } 6471 }
6472 6472
6473 static cpumask_var_t *doms_cur; /* current sched domains */ 6473 static cpumask_var_t *doms_cur; /* current sched domains */
6474 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 6474 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6475 static struct sched_domain_attr *dattr_cur; 6475 static struct sched_domain_attr *dattr_cur;
6476 /* attribues of custom domains in 'doms_cur' */ 6476 /* attribues of custom domains in 'doms_cur' */
6477 6477
6478 /* 6478 /*
6479 * Special case: If a kmalloc of a doms_cur partition (array of 6479 * Special case: If a kmalloc of a doms_cur partition (array of
6480 * cpumask) fails, then fallback to a single sched domain, 6480 * cpumask) fails, then fallback to a single sched domain,
6481 * as determined by the single cpumask fallback_doms. 6481 * as determined by the single cpumask fallback_doms.
6482 */ 6482 */
6483 static cpumask_var_t fallback_doms; 6483 static cpumask_var_t fallback_doms;
6484 6484
6485 /* 6485 /*
6486 * arch_update_cpu_topology lets virtualized architectures update the 6486 * arch_update_cpu_topology lets virtualized architectures update the
6487 * cpu core maps. It is supposed to return 1 if the topology changed 6487 * cpu core maps. It is supposed to return 1 if the topology changed
6488 * or 0 if it stayed the same. 6488 * or 0 if it stayed the same.
6489 */ 6489 */
6490 int __weak arch_update_cpu_topology(void) 6490 int __weak arch_update_cpu_topology(void)
6491 { 6491 {
6492 return 0; 6492 return 0;
6493 } 6493 }
6494 6494
6495 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 6495 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6496 { 6496 {
6497 int i; 6497 int i;
6498 cpumask_var_t *doms; 6498 cpumask_var_t *doms;
6499 6499
6500 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); 6500 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6501 if (!doms) 6501 if (!doms)
6502 return NULL; 6502 return NULL;
6503 for (i = 0; i < ndoms; i++) { 6503 for (i = 0; i < ndoms; i++) {
6504 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 6504 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6505 free_sched_domains(doms, i); 6505 free_sched_domains(doms, i);
6506 return NULL; 6506 return NULL;
6507 } 6507 }
6508 } 6508 }
6509 return doms; 6509 return doms;
6510 } 6510 }
6511 6511
6512 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 6512 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6513 { 6513 {
6514 unsigned int i; 6514 unsigned int i;
6515 for (i = 0; i < ndoms; i++) 6515 for (i = 0; i < ndoms; i++)
6516 free_cpumask_var(doms[i]); 6516 free_cpumask_var(doms[i]);
6517 kfree(doms); 6517 kfree(doms);
6518 } 6518 }
6519 6519
6520 /* 6520 /*
6521 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 6521 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6522 * For now this just excludes isolated cpus, but could be used to 6522 * For now this just excludes isolated cpus, but could be used to
6523 * exclude other special cases in the future. 6523 * exclude other special cases in the future.
6524 */ 6524 */
6525 static int init_sched_domains(const struct cpumask *cpu_map) 6525 static int init_sched_domains(const struct cpumask *cpu_map)
6526 { 6526 {
6527 int err; 6527 int err;
6528 6528
6529 arch_update_cpu_topology(); 6529 arch_update_cpu_topology();
6530 ndoms_cur = 1; 6530 ndoms_cur = 1;
6531 doms_cur = alloc_sched_domains(ndoms_cur); 6531 doms_cur = alloc_sched_domains(ndoms_cur);
6532 if (!doms_cur) 6532 if (!doms_cur)
6533 doms_cur = &fallback_doms; 6533 doms_cur = &fallback_doms;
6534 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); 6534 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6535 err = build_sched_domains(doms_cur[0], NULL); 6535 err = build_sched_domains(doms_cur[0], NULL);
6536 register_sched_domain_sysctl(); 6536 register_sched_domain_sysctl();
6537 6537
6538 return err; 6538 return err;
6539 } 6539 }
6540 6540
6541 /* 6541 /*
6542 * Detach sched domains from a group of cpus specified in cpu_map 6542 * Detach sched domains from a group of cpus specified in cpu_map
6543 * These cpus will now be attached to the NULL domain 6543 * These cpus will now be attached to the NULL domain
6544 */ 6544 */
6545 static void detach_destroy_domains(const struct cpumask *cpu_map) 6545 static void detach_destroy_domains(const struct cpumask *cpu_map)
6546 { 6546 {
6547 int i; 6547 int i;
6548 6548
6549 rcu_read_lock(); 6549 rcu_read_lock();
6550 for_each_cpu(i, cpu_map) 6550 for_each_cpu(i, cpu_map)
6551 cpu_attach_domain(NULL, &def_root_domain, i); 6551 cpu_attach_domain(NULL, &def_root_domain, i);
6552 rcu_read_unlock(); 6552 rcu_read_unlock();
6553 } 6553 }
6554 6554
6555 /* handle null as "default" */ 6555 /* handle null as "default" */
6556 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 6556 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6557 struct sched_domain_attr *new, int idx_new) 6557 struct sched_domain_attr *new, int idx_new)
6558 { 6558 {
6559 struct sched_domain_attr tmp; 6559 struct sched_domain_attr tmp;
6560 6560
6561 /* fast path */ 6561 /* fast path */
6562 if (!new && !cur) 6562 if (!new && !cur)
6563 return 1; 6563 return 1;
6564 6564
6565 tmp = SD_ATTR_INIT; 6565 tmp = SD_ATTR_INIT;
6566 return !memcmp(cur ? (cur + idx_cur) : &tmp, 6566 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6567 new ? (new + idx_new) : &tmp, 6567 new ? (new + idx_new) : &tmp,
6568 sizeof(struct sched_domain_attr)); 6568 sizeof(struct sched_domain_attr));
6569 } 6569 }
6570 6570
6571 /* 6571 /*
6572 * Partition sched domains as specified by the 'ndoms_new' 6572 * Partition sched domains as specified by the 'ndoms_new'
6573 * cpumasks in the array doms_new[] of cpumasks. This compares 6573 * cpumasks in the array doms_new[] of cpumasks. This compares
6574 * doms_new[] to the current sched domain partitioning, doms_cur[]. 6574 * doms_new[] to the current sched domain partitioning, doms_cur[].
6575 * It destroys each deleted domain and builds each new domain. 6575 * It destroys each deleted domain and builds each new domain.
6576 * 6576 *
6577 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 6577 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6578 * The masks don't intersect (don't overlap.) We should setup one 6578 * The masks don't intersect (don't overlap.) We should setup one
6579 * sched domain for each mask. CPUs not in any of the cpumasks will 6579 * sched domain for each mask. CPUs not in any of the cpumasks will
6580 * not be load balanced. If the same cpumask appears both in the 6580 * not be load balanced. If the same cpumask appears both in the
6581 * current 'doms_cur' domains and in the new 'doms_new', we can leave 6581 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6582 * it as it is. 6582 * it as it is.
6583 * 6583 *
6584 * The passed in 'doms_new' should be allocated using 6584 * The passed in 'doms_new' should be allocated using
6585 * alloc_sched_domains. This routine takes ownership of it and will 6585 * alloc_sched_domains. This routine takes ownership of it and will
6586 * free_sched_domains it when done with it. If the caller failed the 6586 * free_sched_domains it when done with it. If the caller failed the
6587 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 6587 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6588 * and partition_sched_domains() will fallback to the single partition 6588 * and partition_sched_domains() will fallback to the single partition
6589 * 'fallback_doms', it also forces the domains to be rebuilt. 6589 * 'fallback_doms', it also forces the domains to be rebuilt.
6590 * 6590 *
6591 * If doms_new == NULL it will be replaced with cpu_online_mask. 6591 * If doms_new == NULL it will be replaced with cpu_online_mask.
6592 * ndoms_new == 0 is a special case for destroying existing domains, 6592 * ndoms_new == 0 is a special case for destroying existing domains,
6593 * and it will not create the default domain. 6593 * and it will not create the default domain.
6594 * 6594 *
6595 * Call with hotplug lock held 6595 * Call with hotplug lock held
6596 */ 6596 */
6597 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 6597 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6598 struct sched_domain_attr *dattr_new) 6598 struct sched_domain_attr *dattr_new)
6599 { 6599 {
6600 int i, j, n; 6600 int i, j, n;
6601 int new_topology; 6601 int new_topology;
6602 6602
6603 mutex_lock(&sched_domains_mutex); 6603 mutex_lock(&sched_domains_mutex);
6604 6604
6605 /* always unregister in case we don't destroy any domains */ 6605 /* always unregister in case we don't destroy any domains */
6606 unregister_sched_domain_sysctl(); 6606 unregister_sched_domain_sysctl();
6607 6607
6608 /* Let architecture update cpu core mappings. */ 6608 /* Let architecture update cpu core mappings. */
6609 new_topology = arch_update_cpu_topology(); 6609 new_topology = arch_update_cpu_topology();
6610 6610
6611 n = doms_new ? ndoms_new : 0; 6611 n = doms_new ? ndoms_new : 0;
6612 6612
6613 /* Destroy deleted domains */ 6613 /* Destroy deleted domains */
6614 for (i = 0; i < ndoms_cur; i++) { 6614 for (i = 0; i < ndoms_cur; i++) {
6615 for (j = 0; j < n && !new_topology; j++) { 6615 for (j = 0; j < n && !new_topology; j++) {
6616 if (cpumask_equal(doms_cur[i], doms_new[j]) 6616 if (cpumask_equal(doms_cur[i], doms_new[j])
6617 && dattrs_equal(dattr_cur, i, dattr_new, j)) 6617 && dattrs_equal(dattr_cur, i, dattr_new, j))
6618 goto match1; 6618 goto match1;
6619 } 6619 }
6620 /* no match - a current sched domain not in new doms_new[] */ 6620 /* no match - a current sched domain not in new doms_new[] */
6621 detach_destroy_domains(doms_cur[i]); 6621 detach_destroy_domains(doms_cur[i]);
6622 match1: 6622 match1:
6623 ; 6623 ;
6624 } 6624 }
6625 6625
6626 n = ndoms_cur; 6626 n = ndoms_cur;
6627 if (doms_new == NULL) { 6627 if (doms_new == NULL) {
6628 n = 0; 6628 n = 0;
6629 doms_new = &fallback_doms; 6629 doms_new = &fallback_doms;
6630 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); 6630 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6631 WARN_ON_ONCE(dattr_new); 6631 WARN_ON_ONCE(dattr_new);
6632 } 6632 }
6633 6633
6634 /* Build new domains */ 6634 /* Build new domains */
6635 for (i = 0; i < ndoms_new; i++) { 6635 for (i = 0; i < ndoms_new; i++) {
6636 for (j = 0; j < n && !new_topology; j++) { 6636 for (j = 0; j < n && !new_topology; j++) {
6637 if (cpumask_equal(doms_new[i], doms_cur[j]) 6637 if (cpumask_equal(doms_new[i], doms_cur[j])
6638 && dattrs_equal(dattr_new, i, dattr_cur, j)) 6638 && dattrs_equal(dattr_new, i, dattr_cur, j))
6639 goto match2; 6639 goto match2;
6640 } 6640 }
6641 /* no match - add a new doms_new */ 6641 /* no match - add a new doms_new */
6642 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 6642 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6643 match2: 6643 match2:
6644 ; 6644 ;
6645 } 6645 }
6646 6646
6647 /* Remember the new sched domains */ 6647 /* Remember the new sched domains */
6648 if (doms_cur != &fallback_doms) 6648 if (doms_cur != &fallback_doms)
6649 free_sched_domains(doms_cur, ndoms_cur); 6649 free_sched_domains(doms_cur, ndoms_cur);
6650 kfree(dattr_cur); /* kfree(NULL) is safe */ 6650 kfree(dattr_cur); /* kfree(NULL) is safe */
6651 doms_cur = doms_new; 6651 doms_cur = doms_new;
6652 dattr_cur = dattr_new; 6652 dattr_cur = dattr_new;
6653 ndoms_cur = ndoms_new; 6653 ndoms_cur = ndoms_new;
6654 6654
6655 register_sched_domain_sysctl(); 6655 register_sched_domain_sysctl();
6656 6656
6657 mutex_unlock(&sched_domains_mutex); 6657 mutex_unlock(&sched_domains_mutex);
6658 } 6658 }
6659 6659
6660 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */ 6660 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6661 6661
6662 /* 6662 /*
6663 * Update cpusets according to cpu_active mask. If cpusets are 6663 * Update cpusets according to cpu_active mask. If cpusets are
6664 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 6664 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6665 * around partition_sched_domains(). 6665 * around partition_sched_domains().
6666 * 6666 *
6667 * If we come here as part of a suspend/resume, don't touch cpusets because we 6667 * If we come here as part of a suspend/resume, don't touch cpusets because we
6668 * want to restore it back to its original state upon resume anyway. 6668 * want to restore it back to its original state upon resume anyway.
6669 */ 6669 */
6670 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, 6670 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6671 void *hcpu) 6671 void *hcpu)
6672 { 6672 {
6673 switch (action) { 6673 switch (action) {
6674 case CPU_ONLINE_FROZEN: 6674 case CPU_ONLINE_FROZEN:
6675 case CPU_DOWN_FAILED_FROZEN: 6675 case CPU_DOWN_FAILED_FROZEN:
6676 6676
6677 /* 6677 /*
6678 * num_cpus_frozen tracks how many CPUs are involved in suspend 6678 * num_cpus_frozen tracks how many CPUs are involved in suspend
6679 * resume sequence. As long as this is not the last online 6679 * resume sequence. As long as this is not the last online
6680 * operation in the resume sequence, just build a single sched 6680 * operation in the resume sequence, just build a single sched
6681 * domain, ignoring cpusets. 6681 * domain, ignoring cpusets.
6682 */ 6682 */
6683 num_cpus_frozen--; 6683 num_cpus_frozen--;
6684 if (likely(num_cpus_frozen)) { 6684 if (likely(num_cpus_frozen)) {
6685 partition_sched_domains(1, NULL, NULL); 6685 partition_sched_domains(1, NULL, NULL);
6686 break; 6686 break;
6687 } 6687 }
6688 6688
6689 /* 6689 /*
6690 * This is the last CPU online operation. So fall through and 6690 * This is the last CPU online operation. So fall through and
6691 * restore the original sched domains by considering the 6691 * restore the original sched domains by considering the
6692 * cpuset configurations. 6692 * cpuset configurations.
6693 */ 6693 */
6694 6694
6695 case CPU_ONLINE: 6695 case CPU_ONLINE:
6696 case CPU_DOWN_FAILED: 6696 case CPU_DOWN_FAILED:
6697 cpuset_update_active_cpus(true); 6697 cpuset_update_active_cpus(true);
6698 break; 6698 break;
6699 default: 6699 default:
6700 return NOTIFY_DONE; 6700 return NOTIFY_DONE;
6701 } 6701 }
6702 return NOTIFY_OK; 6702 return NOTIFY_OK;
6703 } 6703 }
6704 6704
6705 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, 6705 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6706 void *hcpu) 6706 void *hcpu)
6707 { 6707 {
6708 switch (action) { 6708 switch (action) {
6709 case CPU_DOWN_PREPARE: 6709 case CPU_DOWN_PREPARE:
6710 cpuset_update_active_cpus(false); 6710 cpuset_update_active_cpus(false);
6711 break; 6711 break;
6712 case CPU_DOWN_PREPARE_FROZEN: 6712 case CPU_DOWN_PREPARE_FROZEN:
6713 num_cpus_frozen++; 6713 num_cpus_frozen++;
6714 partition_sched_domains(1, NULL, NULL); 6714 partition_sched_domains(1, NULL, NULL);
6715 break; 6715 break;
6716 default: 6716 default:
6717 return NOTIFY_DONE; 6717 return NOTIFY_DONE;
6718 } 6718 }
6719 return NOTIFY_OK; 6719 return NOTIFY_OK;
6720 } 6720 }
6721 6721
6722 void __init sched_init_smp(void) 6722 void __init sched_init_smp(void)
6723 { 6723 {
6724 cpumask_var_t non_isolated_cpus; 6724 cpumask_var_t non_isolated_cpus;
6725 6725
6726 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 6726 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6727 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 6727 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6728 6728
6729 sched_init_numa(); 6729 sched_init_numa();
6730 6730
6731 /* 6731 /*
6732 * There's no userspace yet to cause hotplug operations; hence all the 6732 * There's no userspace yet to cause hotplug operations; hence all the
6733 * cpu masks are stable and all blatant races in the below code cannot 6733 * cpu masks are stable and all blatant races in the below code cannot
6734 * happen. 6734 * happen.
6735 */ 6735 */
6736 mutex_lock(&sched_domains_mutex); 6736 mutex_lock(&sched_domains_mutex);
6737 init_sched_domains(cpu_active_mask); 6737 init_sched_domains(cpu_active_mask);
6738 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 6738 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6739 if (cpumask_empty(non_isolated_cpus)) 6739 if (cpumask_empty(non_isolated_cpus))
6740 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 6740 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6741 mutex_unlock(&sched_domains_mutex); 6741 mutex_unlock(&sched_domains_mutex);
6742 6742
6743 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); 6743 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6744 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); 6744 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6745 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE); 6745 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6746 6746
6747 init_hrtick(); 6747 init_hrtick();
6748 6748
6749 /* Move init over to a non-isolated CPU */ 6749 /* Move init over to a non-isolated CPU */
6750 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 6750 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6751 BUG(); 6751 BUG();
6752 sched_init_granularity(); 6752 sched_init_granularity();
6753 free_cpumask_var(non_isolated_cpus); 6753 free_cpumask_var(non_isolated_cpus);
6754 6754
6755 init_sched_rt_class(); 6755 init_sched_rt_class();
6756 init_sched_dl_class(); 6756 init_sched_dl_class();
6757 } 6757 }
6758 #else 6758 #else
6759 void __init sched_init_smp(void) 6759 void __init sched_init_smp(void)
6760 { 6760 {
6761 sched_init_granularity(); 6761 sched_init_granularity();
6762 } 6762 }
6763 #endif /* CONFIG_SMP */ 6763 #endif /* CONFIG_SMP */
6764 6764
6765 const_debug unsigned int sysctl_timer_migration = 1; 6765 const_debug unsigned int sysctl_timer_migration = 1;
6766 6766
6767 int in_sched_functions(unsigned long addr) 6767 int in_sched_functions(unsigned long addr)
6768 { 6768 {
6769 return in_lock_functions(addr) || 6769 return in_lock_functions(addr) ||
6770 (addr >= (unsigned long)__sched_text_start 6770 (addr >= (unsigned long)__sched_text_start
6771 && addr < (unsigned long)__sched_text_end); 6771 && addr < (unsigned long)__sched_text_end);
6772 } 6772 }
6773 6773
6774 #ifdef CONFIG_CGROUP_SCHED 6774 #ifdef CONFIG_CGROUP_SCHED
6775 /* 6775 /*
6776 * Default task group. 6776 * Default task group.
6777 * Every task in system belongs to this group at bootup. 6777 * Every task in system belongs to this group at bootup.
6778 */ 6778 */
6779 struct task_group root_task_group; 6779 struct task_group root_task_group;
6780 LIST_HEAD(task_groups); 6780 LIST_HEAD(task_groups);
6781 #endif 6781 #endif
6782 6782
6783 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask); 6783 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6784 6784
6785 void __init sched_init(void) 6785 void __init sched_init(void)
6786 { 6786 {
6787 int i, j; 6787 int i, j;
6788 unsigned long alloc_size = 0, ptr; 6788 unsigned long alloc_size = 0, ptr;
6789 6789
6790 #ifdef CONFIG_FAIR_GROUP_SCHED 6790 #ifdef CONFIG_FAIR_GROUP_SCHED
6791 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6791 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6792 #endif 6792 #endif
6793 #ifdef CONFIG_RT_GROUP_SCHED 6793 #ifdef CONFIG_RT_GROUP_SCHED
6794 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 6794 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6795 #endif 6795 #endif
6796 #ifdef CONFIG_CPUMASK_OFFSTACK 6796 #ifdef CONFIG_CPUMASK_OFFSTACK
6797 alloc_size += num_possible_cpus() * cpumask_size(); 6797 alloc_size += num_possible_cpus() * cpumask_size();
6798 #endif 6798 #endif
6799 if (alloc_size) { 6799 if (alloc_size) {
6800 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 6800 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6801 6801
6802 #ifdef CONFIG_FAIR_GROUP_SCHED 6802 #ifdef CONFIG_FAIR_GROUP_SCHED
6803 root_task_group.se = (struct sched_entity **)ptr; 6803 root_task_group.se = (struct sched_entity **)ptr;
6804 ptr += nr_cpu_ids * sizeof(void **); 6804 ptr += nr_cpu_ids * sizeof(void **);
6805 6805
6806 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 6806 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6807 ptr += nr_cpu_ids * sizeof(void **); 6807 ptr += nr_cpu_ids * sizeof(void **);
6808 6808
6809 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6809 #endif /* CONFIG_FAIR_GROUP_SCHED */
6810 #ifdef CONFIG_RT_GROUP_SCHED 6810 #ifdef CONFIG_RT_GROUP_SCHED
6811 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 6811 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6812 ptr += nr_cpu_ids * sizeof(void **); 6812 ptr += nr_cpu_ids * sizeof(void **);
6813 6813
6814 root_task_group.rt_rq = (struct rt_rq **)ptr; 6814 root_task_group.rt_rq = (struct rt_rq **)ptr;
6815 ptr += nr_cpu_ids * sizeof(void **); 6815 ptr += nr_cpu_ids * sizeof(void **);
6816 6816
6817 #endif /* CONFIG_RT_GROUP_SCHED */ 6817 #endif /* CONFIG_RT_GROUP_SCHED */
6818 #ifdef CONFIG_CPUMASK_OFFSTACK 6818 #ifdef CONFIG_CPUMASK_OFFSTACK
6819 for_each_possible_cpu(i) { 6819 for_each_possible_cpu(i) {
6820 per_cpu(load_balance_mask, i) = (void *)ptr; 6820 per_cpu(load_balance_mask, i) = (void *)ptr;
6821 ptr += cpumask_size(); 6821 ptr += cpumask_size();
6822 } 6822 }
6823 #endif /* CONFIG_CPUMASK_OFFSTACK */ 6823 #endif /* CONFIG_CPUMASK_OFFSTACK */
6824 } 6824 }
6825 6825
6826 init_rt_bandwidth(&def_rt_bandwidth, 6826 init_rt_bandwidth(&def_rt_bandwidth,
6827 global_rt_period(), global_rt_runtime()); 6827 global_rt_period(), global_rt_runtime());
6828 init_dl_bandwidth(&def_dl_bandwidth, 6828 init_dl_bandwidth(&def_dl_bandwidth,
6829 global_rt_period(), global_rt_runtime()); 6829 global_rt_period(), global_rt_runtime());
6830 6830
6831 #ifdef CONFIG_SMP 6831 #ifdef CONFIG_SMP
6832 init_defrootdomain(); 6832 init_defrootdomain();
6833 #endif 6833 #endif
6834 6834
6835 #ifdef CONFIG_RT_GROUP_SCHED 6835 #ifdef CONFIG_RT_GROUP_SCHED
6836 init_rt_bandwidth(&root_task_group.rt_bandwidth, 6836 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6837 global_rt_period(), global_rt_runtime()); 6837 global_rt_period(), global_rt_runtime());
6838 #endif /* CONFIG_RT_GROUP_SCHED */ 6838 #endif /* CONFIG_RT_GROUP_SCHED */
6839 6839
6840 #ifdef CONFIG_CGROUP_SCHED 6840 #ifdef CONFIG_CGROUP_SCHED
6841 list_add(&root_task_group.list, &task_groups); 6841 list_add(&root_task_group.list, &task_groups);
6842 INIT_LIST_HEAD(&root_task_group.children); 6842 INIT_LIST_HEAD(&root_task_group.children);
6843 INIT_LIST_HEAD(&root_task_group.siblings); 6843 INIT_LIST_HEAD(&root_task_group.siblings);
6844 autogroup_init(&init_task); 6844 autogroup_init(&init_task);
6845 6845
6846 #endif /* CONFIG_CGROUP_SCHED */ 6846 #endif /* CONFIG_CGROUP_SCHED */
6847 6847
6848 for_each_possible_cpu(i) { 6848 for_each_possible_cpu(i) {
6849 struct rq *rq; 6849 struct rq *rq;
6850 6850
6851 rq = cpu_rq(i); 6851 rq = cpu_rq(i);
6852 raw_spin_lock_init(&rq->lock); 6852 raw_spin_lock_init(&rq->lock);
6853 rq->nr_running = 0; 6853 rq->nr_running = 0;
6854 rq->calc_load_active = 0; 6854 rq->calc_load_active = 0;
6855 rq->calc_load_update = jiffies + LOAD_FREQ; 6855 rq->calc_load_update = jiffies + LOAD_FREQ;
6856 init_cfs_rq(&rq->cfs); 6856 init_cfs_rq(&rq->cfs);
6857 init_rt_rq(&rq->rt, rq); 6857 init_rt_rq(&rq->rt, rq);
6858 init_dl_rq(&rq->dl, rq); 6858 init_dl_rq(&rq->dl, rq);
6859 #ifdef CONFIG_FAIR_GROUP_SCHED 6859 #ifdef CONFIG_FAIR_GROUP_SCHED
6860 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 6860 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6861 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 6861 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6862 /* 6862 /*
6863 * How much cpu bandwidth does root_task_group get? 6863 * How much cpu bandwidth does root_task_group get?
6864 * 6864 *
6865 * In case of task-groups formed thr' the cgroup filesystem, it 6865 * In case of task-groups formed thr' the cgroup filesystem, it
6866 * gets 100% of the cpu resources in the system. This overall 6866 * gets 100% of the cpu resources in the system. This overall
6867 * system cpu resource is divided among the tasks of 6867 * system cpu resource is divided among the tasks of
6868 * root_task_group and its child task-groups in a fair manner, 6868 * root_task_group and its child task-groups in a fair manner,
6869 * based on each entity's (task or task-group's) weight 6869 * based on each entity's (task or task-group's) weight
6870 * (se->load.weight). 6870 * (se->load.weight).
6871 * 6871 *
6872 * In other words, if root_task_group has 10 tasks of weight 6872 * In other words, if root_task_group has 10 tasks of weight
6873 * 1024) and two child groups A0 and A1 (of weight 1024 each), 6873 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6874 * then A0's share of the cpu resource is: 6874 * then A0's share of the cpu resource is:
6875 * 6875 *
6876 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 6876 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6877 * 6877 *
6878 * We achieve this by letting root_task_group's tasks sit 6878 * We achieve this by letting root_task_group's tasks sit
6879 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 6879 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6880 */ 6880 */
6881 init_cfs_bandwidth(&root_task_group.cfs_bandwidth); 6881 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6882 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 6882 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6883 #endif /* CONFIG_FAIR_GROUP_SCHED */ 6883 #endif /* CONFIG_FAIR_GROUP_SCHED */
6884 6884
6885 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 6885 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6886 #ifdef CONFIG_RT_GROUP_SCHED 6886 #ifdef CONFIG_RT_GROUP_SCHED
6887 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 6887 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6888 #endif 6888 #endif
6889 6889
6890 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 6890 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6891 rq->cpu_load[j] = 0; 6891 rq->cpu_load[j] = 0;
6892 6892
6893 rq->last_load_update_tick = jiffies; 6893 rq->last_load_update_tick = jiffies;
6894 6894
6895 #ifdef CONFIG_SMP 6895 #ifdef CONFIG_SMP
6896 rq->sd = NULL; 6896 rq->sd = NULL;
6897 rq->rd = NULL; 6897 rq->rd = NULL;
6898 rq->cpu_power = SCHED_POWER_SCALE; 6898 rq->cpu_power = SCHED_POWER_SCALE;
6899 rq->post_schedule = 0; 6899 rq->post_schedule = 0;
6900 rq->active_balance = 0; 6900 rq->active_balance = 0;
6901 rq->next_balance = jiffies; 6901 rq->next_balance = jiffies;
6902 rq->push_cpu = 0; 6902 rq->push_cpu = 0;
6903 rq->cpu = i; 6903 rq->cpu = i;
6904 rq->online = 0; 6904 rq->online = 0;
6905 rq->idle_stamp = 0; 6905 rq->idle_stamp = 0;
6906 rq->avg_idle = 2*sysctl_sched_migration_cost; 6906 rq->avg_idle = 2*sysctl_sched_migration_cost;
6907 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 6907 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6908 6908
6909 INIT_LIST_HEAD(&rq->cfs_tasks); 6909 INIT_LIST_HEAD(&rq->cfs_tasks);
6910 6910
6911 rq_attach_root(rq, &def_root_domain); 6911 rq_attach_root(rq, &def_root_domain);
6912 #ifdef CONFIG_NO_HZ_COMMON 6912 #ifdef CONFIG_NO_HZ_COMMON
6913 rq->nohz_flags = 0; 6913 rq->nohz_flags = 0;
6914 #endif 6914 #endif
6915 #ifdef CONFIG_NO_HZ_FULL 6915 #ifdef CONFIG_NO_HZ_FULL
6916 rq->last_sched_tick = 0; 6916 rq->last_sched_tick = 0;
6917 #endif 6917 #endif
6918 #endif 6918 #endif
6919 init_rq_hrtick(rq); 6919 init_rq_hrtick(rq);
6920 atomic_set(&rq->nr_iowait, 0); 6920 atomic_set(&rq->nr_iowait, 0);
6921 } 6921 }
6922 6922
6923 set_load_weight(&init_task); 6923 set_load_weight(&init_task);
6924 6924
6925 #ifdef CONFIG_PREEMPT_NOTIFIERS 6925 #ifdef CONFIG_PREEMPT_NOTIFIERS
6926 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 6926 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6927 #endif 6927 #endif
6928 6928
6929 /* 6929 /*
6930 * The boot idle thread does lazy MMU switching as well: 6930 * The boot idle thread does lazy MMU switching as well:
6931 */ 6931 */
6932 atomic_inc(&init_mm.mm_count); 6932 atomic_inc(&init_mm.mm_count);
6933 enter_lazy_tlb(&init_mm, current); 6933 enter_lazy_tlb(&init_mm, current);
6934 6934
6935 /* 6935 /*
6936 * Make us the idle thread. Technically, schedule() should not be 6936 * Make us the idle thread. Technically, schedule() should not be
6937 * called from this thread, however somewhere below it might be, 6937 * called from this thread, however somewhere below it might be,
6938 * but because we are the idle thread, we just pick up running again 6938 * but because we are the idle thread, we just pick up running again
6939 * when this runqueue becomes "idle". 6939 * when this runqueue becomes "idle".
6940 */ 6940 */
6941 init_idle(current, smp_processor_id()); 6941 init_idle(current, smp_processor_id());
6942 6942
6943 calc_load_update = jiffies + LOAD_FREQ; 6943 calc_load_update = jiffies + LOAD_FREQ;
6944 6944
6945 /* 6945 /*
6946 * During early bootup we pretend to be a normal task: 6946 * During early bootup we pretend to be a normal task:
6947 */ 6947 */
6948 current->sched_class = &fair_sched_class; 6948 current->sched_class = &fair_sched_class;
6949 6949
6950 #ifdef CONFIG_SMP 6950 #ifdef CONFIG_SMP
6951 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); 6951 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6952 /* May be allocated at isolcpus cmdline parse time */ 6952 /* May be allocated at isolcpus cmdline parse time */
6953 if (cpu_isolated_map == NULL) 6953 if (cpu_isolated_map == NULL)
6954 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 6954 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6955 idle_thread_set_boot_cpu(); 6955 idle_thread_set_boot_cpu();
6956 #endif 6956 #endif
6957 init_sched_fair_class(); 6957 init_sched_fair_class();
6958 6958
6959 scheduler_running = 1; 6959 scheduler_running = 1;
6960 } 6960 }
6961 6961
6962 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 6962 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6963 static inline int preempt_count_equals(int preempt_offset) 6963 static inline int preempt_count_equals(int preempt_offset)
6964 { 6964 {
6965 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth(); 6965 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6966 6966
6967 return (nested == preempt_offset); 6967 return (nested == preempt_offset);
6968 } 6968 }
6969 6969
6970 void __might_sleep(const char *file, int line, int preempt_offset) 6970 void __might_sleep(const char *file, int line, int preempt_offset)
6971 { 6971 {
6972 static unsigned long prev_jiffy; /* ratelimiting */ 6972 static unsigned long prev_jiffy; /* ratelimiting */
6973 6973
6974 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */ 6974 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6975 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() && 6975 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6976 !is_idle_task(current)) || 6976 !is_idle_task(current)) ||
6977 system_state != SYSTEM_RUNNING || oops_in_progress) 6977 system_state != SYSTEM_RUNNING || oops_in_progress)
6978 return; 6978 return;
6979 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 6979 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6980 return; 6980 return;
6981 prev_jiffy = jiffies; 6981 prev_jiffy = jiffies;
6982 6982
6983 printk(KERN_ERR 6983 printk(KERN_ERR
6984 "BUG: sleeping function called from invalid context at %s:%d\n", 6984 "BUG: sleeping function called from invalid context at %s:%d\n",
6985 file, line); 6985 file, line);
6986 printk(KERN_ERR 6986 printk(KERN_ERR
6987 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 6987 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6988 in_atomic(), irqs_disabled(), 6988 in_atomic(), irqs_disabled(),
6989 current->pid, current->comm); 6989 current->pid, current->comm);
6990 6990
6991 debug_show_held_locks(current); 6991 debug_show_held_locks(current);
6992 if (irqs_disabled()) 6992 if (irqs_disabled())
6993 print_irqtrace_events(current); 6993 print_irqtrace_events(current);
6994 #ifdef CONFIG_DEBUG_PREEMPT 6994 #ifdef CONFIG_DEBUG_PREEMPT
6995 if (!preempt_count_equals(preempt_offset)) { 6995 if (!preempt_count_equals(preempt_offset)) {
6996 pr_err("Preemption disabled at:"); 6996 pr_err("Preemption disabled at:");
6997 print_ip_sym(current->preempt_disable_ip); 6997 print_ip_sym(current->preempt_disable_ip);
6998 pr_cont("\n"); 6998 pr_cont("\n");
6999 } 6999 }
7000 #endif 7000 #endif
7001 dump_stack(); 7001 dump_stack();
7002 } 7002 }
7003 EXPORT_SYMBOL(__might_sleep); 7003 EXPORT_SYMBOL(__might_sleep);
7004 #endif 7004 #endif
7005 7005
7006 #ifdef CONFIG_MAGIC_SYSRQ 7006 #ifdef CONFIG_MAGIC_SYSRQ
7007 static void normalize_task(struct rq *rq, struct task_struct *p) 7007 static void normalize_task(struct rq *rq, struct task_struct *p)
7008 { 7008 {
7009 const struct sched_class *prev_class = p->sched_class; 7009 const struct sched_class *prev_class = p->sched_class;
7010 struct sched_attr attr = { 7010 struct sched_attr attr = {
7011 .sched_policy = SCHED_NORMAL, 7011 .sched_policy = SCHED_NORMAL,
7012 }; 7012 };
7013 int old_prio = p->prio; 7013 int old_prio = p->prio;
7014 int on_rq; 7014 int on_rq;
7015 7015
7016 on_rq = p->on_rq; 7016 on_rq = p->on_rq;
7017 if (on_rq) 7017 if (on_rq)
7018 dequeue_task(rq, p, 0); 7018 dequeue_task(rq, p, 0);
7019 __setscheduler(rq, p, &attr); 7019 __setscheduler(rq, p, &attr);
7020 if (on_rq) { 7020 if (on_rq) {
7021 enqueue_task(rq, p, 0); 7021 enqueue_task(rq, p, 0);
7022 resched_task(rq->curr); 7022 resched_task(rq->curr);
7023 } 7023 }
7024 7024
7025 check_class_changed(rq, p, prev_class, old_prio); 7025 check_class_changed(rq, p, prev_class, old_prio);
7026 } 7026 }
7027 7027
7028 void normalize_rt_tasks(void) 7028 void normalize_rt_tasks(void)
7029 { 7029 {
7030 struct task_struct *g, *p; 7030 struct task_struct *g, *p;
7031 unsigned long flags; 7031 unsigned long flags;
7032 struct rq *rq; 7032 struct rq *rq;
7033 7033
7034 read_lock_irqsave(&tasklist_lock, flags); 7034 read_lock_irqsave(&tasklist_lock, flags);
7035 do_each_thread(g, p) { 7035 do_each_thread(g, p) {
7036 /* 7036 /*
7037 * Only normalize user tasks: 7037 * Only normalize user tasks:
7038 */ 7038 */
7039 if (!p->mm) 7039 if (!p->mm)
7040 continue; 7040 continue;
7041 7041
7042 p->se.exec_start = 0; 7042 p->se.exec_start = 0;
7043 #ifdef CONFIG_SCHEDSTATS 7043 #ifdef CONFIG_SCHEDSTATS
7044 p->se.statistics.wait_start = 0; 7044 p->se.statistics.wait_start = 0;
7045 p->se.statistics.sleep_start = 0; 7045 p->se.statistics.sleep_start = 0;
7046 p->se.statistics.block_start = 0; 7046 p->se.statistics.block_start = 0;
7047 #endif 7047 #endif
7048 7048
7049 if (!dl_task(p) && !rt_task(p)) { 7049 if (!dl_task(p) && !rt_task(p)) {
7050 /* 7050 /*
7051 * Renice negative nice level userspace 7051 * Renice negative nice level userspace
7052 * tasks back to 0: 7052 * tasks back to 0:
7053 */ 7053 */
7054 if (task_nice(p) < 0 && p->mm) 7054 if (task_nice(p) < 0 && p->mm)
7055 set_user_nice(p, 0); 7055 set_user_nice(p, 0);
7056 continue; 7056 continue;
7057 } 7057 }
7058 7058
7059 raw_spin_lock(&p->pi_lock); 7059 raw_spin_lock(&p->pi_lock);
7060 rq = __task_rq_lock(p); 7060 rq = __task_rq_lock(p);
7061 7061
7062 normalize_task(rq, p); 7062 normalize_task(rq, p);
7063 7063
7064 __task_rq_unlock(rq); 7064 __task_rq_unlock(rq);
7065 raw_spin_unlock(&p->pi_lock); 7065 raw_spin_unlock(&p->pi_lock);
7066 } while_each_thread(g, p); 7066 } while_each_thread(g, p);
7067 7067
7068 read_unlock_irqrestore(&tasklist_lock, flags); 7068 read_unlock_irqrestore(&tasklist_lock, flags);
7069 } 7069 }
7070 7070
7071 #endif /* CONFIG_MAGIC_SYSRQ */ 7071 #endif /* CONFIG_MAGIC_SYSRQ */
7072 7072
7073 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) 7073 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7074 /* 7074 /*
7075 * These functions are only useful for the IA64 MCA handling, or kdb. 7075 * These functions are only useful for the IA64 MCA handling, or kdb.
7076 * 7076 *
7077 * They can only be called when the whole system has been 7077 * They can only be called when the whole system has been
7078 * stopped - every CPU needs to be quiescent, and no scheduling 7078 * stopped - every CPU needs to be quiescent, and no scheduling
7079 * activity can take place. Using them for anything else would 7079 * activity can take place. Using them for anything else would
7080 * be a serious bug, and as a result, they aren't even visible 7080 * be a serious bug, and as a result, they aren't even visible
7081 * under any other configuration. 7081 * under any other configuration.
7082 */ 7082 */
7083 7083
7084 /** 7084 /**
7085 * curr_task - return the current task for a given cpu. 7085 * curr_task - return the current task for a given cpu.
7086 * @cpu: the processor in question. 7086 * @cpu: the processor in question.
7087 * 7087 *
7088 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7088 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7089 * 7089 *
7090 * Return: The current task for @cpu. 7090 * Return: The current task for @cpu.
7091 */ 7091 */
7092 struct task_struct *curr_task(int cpu) 7092 struct task_struct *curr_task(int cpu)
7093 { 7093 {
7094 return cpu_curr(cpu); 7094 return cpu_curr(cpu);
7095 } 7095 }
7096 7096
7097 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ 7097 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7098 7098
7099 #ifdef CONFIG_IA64 7099 #ifdef CONFIG_IA64
7100 /** 7100 /**
7101 * set_curr_task - set the current task for a given cpu. 7101 * set_curr_task - set the current task for a given cpu.
7102 * @cpu: the processor in question. 7102 * @cpu: the processor in question.
7103 * @p: the task pointer to set. 7103 * @p: the task pointer to set.
7104 * 7104 *
7105 * Description: This function must only be used when non-maskable interrupts 7105 * Description: This function must only be used when non-maskable interrupts
7106 * are serviced on a separate stack. It allows the architecture to switch the 7106 * are serviced on a separate stack. It allows the architecture to switch the
7107 * notion of the current task on a cpu in a non-blocking manner. This function 7107 * notion of the current task on a cpu in a non-blocking manner. This function
7108 * must be called with all CPU's synchronized, and interrupts disabled, the 7108 * must be called with all CPU's synchronized, and interrupts disabled, the
7109 * and caller must save the original value of the current task (see 7109 * and caller must save the original value of the current task (see
7110 * curr_task() above) and restore that value before reenabling interrupts and 7110 * curr_task() above) and restore that value before reenabling interrupts and
7111 * re-starting the system. 7111 * re-starting the system.
7112 * 7112 *
7113 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 7113 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7114 */ 7114 */
7115 void set_curr_task(int cpu, struct task_struct *p) 7115 void set_curr_task(int cpu, struct task_struct *p)
7116 { 7116 {
7117 cpu_curr(cpu) = p; 7117 cpu_curr(cpu) = p;
7118 } 7118 }
7119 7119
7120 #endif 7120 #endif
7121 7121
7122 #ifdef CONFIG_CGROUP_SCHED 7122 #ifdef CONFIG_CGROUP_SCHED
7123 /* task_group_lock serializes the addition/removal of task groups */ 7123 /* task_group_lock serializes the addition/removal of task groups */
7124 static DEFINE_SPINLOCK(task_group_lock); 7124 static DEFINE_SPINLOCK(task_group_lock);
7125 7125
7126 static void free_sched_group(struct task_group *tg) 7126 static void free_sched_group(struct task_group *tg)
7127 { 7127 {
7128 free_fair_sched_group(tg); 7128 free_fair_sched_group(tg);
7129 free_rt_sched_group(tg); 7129 free_rt_sched_group(tg);
7130 autogroup_free(tg); 7130 autogroup_free(tg);
7131 kfree(tg); 7131 kfree(tg);
7132 } 7132 }
7133 7133
7134 /* allocate runqueue etc for a new task group */ 7134 /* allocate runqueue etc for a new task group */
7135 struct task_group *sched_create_group(struct task_group *parent) 7135 struct task_group *sched_create_group(struct task_group *parent)
7136 { 7136 {
7137 struct task_group *tg; 7137 struct task_group *tg;
7138 7138
7139 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 7139 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7140 if (!tg) 7140 if (!tg)
7141 return ERR_PTR(-ENOMEM); 7141 return ERR_PTR(-ENOMEM);
7142 7142
7143 if (!alloc_fair_sched_group(tg, parent)) 7143 if (!alloc_fair_sched_group(tg, parent))
7144 goto err; 7144 goto err;
7145 7145
7146 if (!alloc_rt_sched_group(tg, parent)) 7146 if (!alloc_rt_sched_group(tg, parent))
7147 goto err; 7147 goto err;
7148 7148
7149 return tg; 7149 return tg;
7150 7150
7151 err: 7151 err:
7152 free_sched_group(tg); 7152 free_sched_group(tg);
7153 return ERR_PTR(-ENOMEM); 7153 return ERR_PTR(-ENOMEM);
7154 } 7154 }
7155 7155
7156 void sched_online_group(struct task_group *tg, struct task_group *parent) 7156 void sched_online_group(struct task_group *tg, struct task_group *parent)
7157 { 7157 {
7158 unsigned long flags; 7158 unsigned long flags;
7159 7159
7160 spin_lock_irqsave(&task_group_lock, flags); 7160 spin_lock_irqsave(&task_group_lock, flags);
7161 list_add_rcu(&tg->list, &task_groups); 7161 list_add_rcu(&tg->list, &task_groups);
7162 7162
7163 WARN_ON(!parent); /* root should already exist */ 7163 WARN_ON(!parent); /* root should already exist */
7164 7164
7165 tg->parent = parent; 7165 tg->parent = parent;
7166 INIT_LIST_HEAD(&tg->children); 7166 INIT_LIST_HEAD(&tg->children);
7167 list_add_rcu(&tg->siblings, &parent->children); 7167 list_add_rcu(&tg->siblings, &parent->children);
7168 spin_unlock_irqrestore(&task_group_lock, flags); 7168 spin_unlock_irqrestore(&task_group_lock, flags);
7169 } 7169 }
7170 7170
7171 /* rcu callback to free various structures associated with a task group */ 7171 /* rcu callback to free various structures associated with a task group */
7172 static void free_sched_group_rcu(struct rcu_head *rhp) 7172 static void free_sched_group_rcu(struct rcu_head *rhp)
7173 { 7173 {
7174 /* now it should be safe to free those cfs_rqs */ 7174 /* now it should be safe to free those cfs_rqs */
7175 free_sched_group(container_of(rhp, struct task_group, rcu)); 7175 free_sched_group(container_of(rhp, struct task_group, rcu));
7176 } 7176 }
7177 7177
7178 /* Destroy runqueue etc associated with a task group */ 7178 /* Destroy runqueue etc associated with a task group */
7179 void sched_destroy_group(struct task_group *tg) 7179 void sched_destroy_group(struct task_group *tg)
7180 { 7180 {
7181 /* wait for possible concurrent references to cfs_rqs complete */ 7181 /* wait for possible concurrent references to cfs_rqs complete */
7182 call_rcu(&tg->rcu, free_sched_group_rcu); 7182 call_rcu(&tg->rcu, free_sched_group_rcu);
7183 } 7183 }
7184 7184
7185 void sched_offline_group(struct task_group *tg) 7185 void sched_offline_group(struct task_group *tg)
7186 { 7186 {
7187 unsigned long flags; 7187 unsigned long flags;
7188 int i; 7188 int i;
7189 7189
7190 /* end participation in shares distribution */ 7190 /* end participation in shares distribution */
7191 for_each_possible_cpu(i) 7191 for_each_possible_cpu(i)
7192 unregister_fair_sched_group(tg, i); 7192 unregister_fair_sched_group(tg, i);
7193 7193
7194 spin_lock_irqsave(&task_group_lock, flags); 7194 spin_lock_irqsave(&task_group_lock, flags);
7195 list_del_rcu(&tg->list); 7195 list_del_rcu(&tg->list);
7196 list_del_rcu(&tg->siblings); 7196 list_del_rcu(&tg->siblings);
7197 spin_unlock_irqrestore(&task_group_lock, flags); 7197 spin_unlock_irqrestore(&task_group_lock, flags);
7198 } 7198 }
7199 7199
7200 /* change task's runqueue when it moves between groups. 7200 /* change task's runqueue when it moves between groups.
7201 * The caller of this function should have put the task in its new group 7201 * The caller of this function should have put the task in its new group
7202 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 7202 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7203 * reflect its new group. 7203 * reflect its new group.
7204 */ 7204 */
7205 void sched_move_task(struct task_struct *tsk) 7205 void sched_move_task(struct task_struct *tsk)
7206 { 7206 {
7207 struct task_group *tg; 7207 struct task_group *tg;
7208 int on_rq, running; 7208 int on_rq, running;
7209 unsigned long flags; 7209 unsigned long flags;
7210 struct rq *rq; 7210 struct rq *rq;
7211 7211
7212 rq = task_rq_lock(tsk, &flags); 7212 rq = task_rq_lock(tsk, &flags);
7213 7213
7214 running = task_current(rq, tsk); 7214 running = task_current(rq, tsk);
7215 on_rq = tsk->on_rq; 7215 on_rq = tsk->on_rq;
7216 7216
7217 if (on_rq) 7217 if (on_rq)
7218 dequeue_task(rq, tsk, 0); 7218 dequeue_task(rq, tsk, 0);
7219 if (unlikely(running)) 7219 if (unlikely(running))
7220 tsk->sched_class->put_prev_task(rq, tsk); 7220 tsk->sched_class->put_prev_task(rq, tsk);
7221 7221
7222 tg = container_of(task_css_check(tsk, cpu_cgrp_id, 7222 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7223 lockdep_is_held(&tsk->sighand->siglock)), 7223 lockdep_is_held(&tsk->sighand->siglock)),
7224 struct task_group, css); 7224 struct task_group, css);
7225 tg = autogroup_task_group(tsk, tg); 7225 tg = autogroup_task_group(tsk, tg);
7226 tsk->sched_task_group = tg; 7226 tsk->sched_task_group = tg;
7227 7227
7228 #ifdef CONFIG_FAIR_GROUP_SCHED 7228 #ifdef CONFIG_FAIR_GROUP_SCHED
7229 if (tsk->sched_class->task_move_group) 7229 if (tsk->sched_class->task_move_group)
7230 tsk->sched_class->task_move_group(tsk, on_rq); 7230 tsk->sched_class->task_move_group(tsk, on_rq);
7231 else 7231 else
7232 #endif 7232 #endif
7233 set_task_rq(tsk, task_cpu(tsk)); 7233 set_task_rq(tsk, task_cpu(tsk));
7234 7234
7235 if (unlikely(running)) 7235 if (unlikely(running))
7236 tsk->sched_class->set_curr_task(rq); 7236 tsk->sched_class->set_curr_task(rq);
7237 if (on_rq) 7237 if (on_rq)
7238 enqueue_task(rq, tsk, 0); 7238 enqueue_task(rq, tsk, 0);
7239 7239
7240 task_rq_unlock(rq, tsk, &flags); 7240 task_rq_unlock(rq, tsk, &flags);
7241 } 7241 }
7242 #endif /* CONFIG_CGROUP_SCHED */ 7242 #endif /* CONFIG_CGROUP_SCHED */
7243 7243
7244 #ifdef CONFIG_RT_GROUP_SCHED 7244 #ifdef CONFIG_RT_GROUP_SCHED
7245 /* 7245 /*
7246 * Ensure that the real time constraints are schedulable. 7246 * Ensure that the real time constraints are schedulable.
7247 */ 7247 */
7248 static DEFINE_MUTEX(rt_constraints_mutex); 7248 static DEFINE_MUTEX(rt_constraints_mutex);
7249 7249
7250 /* Must be called with tasklist_lock held */ 7250 /* Must be called with tasklist_lock held */
7251 static inline int tg_has_rt_tasks(struct task_group *tg) 7251 static inline int tg_has_rt_tasks(struct task_group *tg)
7252 { 7252 {
7253 struct task_struct *g, *p; 7253 struct task_struct *g, *p;
7254 7254
7255 do_each_thread(g, p) { 7255 do_each_thread(g, p) {
7256 if (rt_task(p) && task_rq(p)->rt.tg == tg) 7256 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7257 return 1; 7257 return 1;
7258 } while_each_thread(g, p); 7258 } while_each_thread(g, p);
7259 7259
7260 return 0; 7260 return 0;
7261 } 7261 }
7262 7262
7263 struct rt_schedulable_data { 7263 struct rt_schedulable_data {
7264 struct task_group *tg; 7264 struct task_group *tg;
7265 u64 rt_period; 7265 u64 rt_period;
7266 u64 rt_runtime; 7266 u64 rt_runtime;
7267 }; 7267 };
7268 7268
7269 static int tg_rt_schedulable(struct task_group *tg, void *data) 7269 static int tg_rt_schedulable(struct task_group *tg, void *data)
7270 { 7270 {
7271 struct rt_schedulable_data *d = data; 7271 struct rt_schedulable_data *d = data;
7272 struct task_group *child; 7272 struct task_group *child;
7273 unsigned long total, sum = 0; 7273 unsigned long total, sum = 0;
7274 u64 period, runtime; 7274 u64 period, runtime;
7275 7275
7276 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7276 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7277 runtime = tg->rt_bandwidth.rt_runtime; 7277 runtime = tg->rt_bandwidth.rt_runtime;
7278 7278
7279 if (tg == d->tg) { 7279 if (tg == d->tg) {
7280 period = d->rt_period; 7280 period = d->rt_period;
7281 runtime = d->rt_runtime; 7281 runtime = d->rt_runtime;
7282 } 7282 }
7283 7283
7284 /* 7284 /*
7285 * Cannot have more runtime than the period. 7285 * Cannot have more runtime than the period.
7286 */ 7286 */
7287 if (runtime > period && runtime != RUNTIME_INF) 7287 if (runtime > period && runtime != RUNTIME_INF)
7288 return -EINVAL; 7288 return -EINVAL;
7289 7289
7290 /* 7290 /*
7291 * Ensure we don't starve existing RT tasks. 7291 * Ensure we don't starve existing RT tasks.
7292 */ 7292 */
7293 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 7293 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7294 return -EBUSY; 7294 return -EBUSY;
7295 7295
7296 total = to_ratio(period, runtime); 7296 total = to_ratio(period, runtime);
7297 7297
7298 /* 7298 /*
7299 * Nobody can have more than the global setting allows. 7299 * Nobody can have more than the global setting allows.
7300 */ 7300 */
7301 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 7301 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7302 return -EINVAL; 7302 return -EINVAL;
7303 7303
7304 /* 7304 /*
7305 * The sum of our children's runtime should not exceed our own. 7305 * The sum of our children's runtime should not exceed our own.
7306 */ 7306 */
7307 list_for_each_entry_rcu(child, &tg->children, siblings) { 7307 list_for_each_entry_rcu(child, &tg->children, siblings) {
7308 period = ktime_to_ns(child->rt_bandwidth.rt_period); 7308 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7309 runtime = child->rt_bandwidth.rt_runtime; 7309 runtime = child->rt_bandwidth.rt_runtime;
7310 7310
7311 if (child == d->tg) { 7311 if (child == d->tg) {
7312 period = d->rt_period; 7312 period = d->rt_period;
7313 runtime = d->rt_runtime; 7313 runtime = d->rt_runtime;
7314 } 7314 }
7315 7315
7316 sum += to_ratio(period, runtime); 7316 sum += to_ratio(period, runtime);
7317 } 7317 }
7318 7318
7319 if (sum > total) 7319 if (sum > total)
7320 return -EINVAL; 7320 return -EINVAL;
7321 7321
7322 return 0; 7322 return 0;
7323 } 7323 }
7324 7324
7325 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 7325 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7326 { 7326 {
7327 int ret; 7327 int ret;
7328 7328
7329 struct rt_schedulable_data data = { 7329 struct rt_schedulable_data data = {
7330 .tg = tg, 7330 .tg = tg,
7331 .rt_period = period, 7331 .rt_period = period,
7332 .rt_runtime = runtime, 7332 .rt_runtime = runtime,
7333 }; 7333 };
7334 7334
7335 rcu_read_lock(); 7335 rcu_read_lock();
7336 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 7336 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7337 rcu_read_unlock(); 7337 rcu_read_unlock();
7338 7338
7339 return ret; 7339 return ret;
7340 } 7340 }
7341 7341
7342 static int tg_set_rt_bandwidth(struct task_group *tg, 7342 static int tg_set_rt_bandwidth(struct task_group *tg,
7343 u64 rt_period, u64 rt_runtime) 7343 u64 rt_period, u64 rt_runtime)
7344 { 7344 {
7345 int i, err = 0; 7345 int i, err = 0;
7346 7346
7347 mutex_lock(&rt_constraints_mutex); 7347 mutex_lock(&rt_constraints_mutex);
7348 read_lock(&tasklist_lock); 7348 read_lock(&tasklist_lock);
7349 err = __rt_schedulable(tg, rt_period, rt_runtime); 7349 err = __rt_schedulable(tg, rt_period, rt_runtime);
7350 if (err) 7350 if (err)
7351 goto unlock; 7351 goto unlock;
7352 7352
7353 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7353 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7354 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 7354 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7355 tg->rt_bandwidth.rt_runtime = rt_runtime; 7355 tg->rt_bandwidth.rt_runtime = rt_runtime;
7356 7356
7357 for_each_possible_cpu(i) { 7357 for_each_possible_cpu(i) {
7358 struct rt_rq *rt_rq = tg->rt_rq[i]; 7358 struct rt_rq *rt_rq = tg->rt_rq[i];
7359 7359
7360 raw_spin_lock(&rt_rq->rt_runtime_lock); 7360 raw_spin_lock(&rt_rq->rt_runtime_lock);
7361 rt_rq->rt_runtime = rt_runtime; 7361 rt_rq->rt_runtime = rt_runtime;
7362 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7362 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7363 } 7363 }
7364 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 7364 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7365 unlock: 7365 unlock:
7366 read_unlock(&tasklist_lock); 7366 read_unlock(&tasklist_lock);
7367 mutex_unlock(&rt_constraints_mutex); 7367 mutex_unlock(&rt_constraints_mutex);
7368 7368
7369 return err; 7369 return err;
7370 } 7370 }
7371 7371
7372 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 7372 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7373 { 7373 {
7374 u64 rt_runtime, rt_period; 7374 u64 rt_runtime, rt_period;
7375 7375
7376 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 7376 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7377 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 7377 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7378 if (rt_runtime_us < 0) 7378 if (rt_runtime_us < 0)
7379 rt_runtime = RUNTIME_INF; 7379 rt_runtime = RUNTIME_INF;
7380 7380
7381 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7381 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7382 } 7382 }
7383 7383
7384 static long sched_group_rt_runtime(struct task_group *tg) 7384 static long sched_group_rt_runtime(struct task_group *tg)
7385 { 7385 {
7386 u64 rt_runtime_us; 7386 u64 rt_runtime_us;
7387 7387
7388 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 7388 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7389 return -1; 7389 return -1;
7390 7390
7391 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 7391 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7392 do_div(rt_runtime_us, NSEC_PER_USEC); 7392 do_div(rt_runtime_us, NSEC_PER_USEC);
7393 return rt_runtime_us; 7393 return rt_runtime_us;
7394 } 7394 }
7395 7395
7396 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 7396 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7397 { 7397 {
7398 u64 rt_runtime, rt_period; 7398 u64 rt_runtime, rt_period;
7399 7399
7400 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 7400 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7401 rt_runtime = tg->rt_bandwidth.rt_runtime; 7401 rt_runtime = tg->rt_bandwidth.rt_runtime;
7402 7402
7403 if (rt_period == 0) 7403 if (rt_period == 0)
7404 return -EINVAL; 7404 return -EINVAL;
7405 7405
7406 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 7406 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7407 } 7407 }
7408 7408
7409 static long sched_group_rt_period(struct task_group *tg) 7409 static long sched_group_rt_period(struct task_group *tg)
7410 { 7410 {
7411 u64 rt_period_us; 7411 u64 rt_period_us;
7412 7412
7413 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 7413 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7414 do_div(rt_period_us, NSEC_PER_USEC); 7414 do_div(rt_period_us, NSEC_PER_USEC);
7415 return rt_period_us; 7415 return rt_period_us;
7416 } 7416 }
7417 #endif /* CONFIG_RT_GROUP_SCHED */ 7417 #endif /* CONFIG_RT_GROUP_SCHED */
7418 7418
7419 #ifdef CONFIG_RT_GROUP_SCHED 7419 #ifdef CONFIG_RT_GROUP_SCHED
7420 static int sched_rt_global_constraints(void) 7420 static int sched_rt_global_constraints(void)
7421 { 7421 {
7422 int ret = 0; 7422 int ret = 0;
7423 7423
7424 mutex_lock(&rt_constraints_mutex); 7424 mutex_lock(&rt_constraints_mutex);
7425 read_lock(&tasklist_lock); 7425 read_lock(&tasklist_lock);
7426 ret = __rt_schedulable(NULL, 0, 0); 7426 ret = __rt_schedulable(NULL, 0, 0);
7427 read_unlock(&tasklist_lock); 7427 read_unlock(&tasklist_lock);
7428 mutex_unlock(&rt_constraints_mutex); 7428 mutex_unlock(&rt_constraints_mutex);
7429 7429
7430 return ret; 7430 return ret;
7431 } 7431 }
7432 7432
7433 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 7433 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7434 { 7434 {
7435 /* Don't accept realtime tasks when there is no way for them to run */ 7435 /* Don't accept realtime tasks when there is no way for them to run */
7436 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 7436 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7437 return 0; 7437 return 0;
7438 7438
7439 return 1; 7439 return 1;
7440 } 7440 }
7441 7441
7442 #else /* !CONFIG_RT_GROUP_SCHED */ 7442 #else /* !CONFIG_RT_GROUP_SCHED */
7443 static int sched_rt_global_constraints(void) 7443 static int sched_rt_global_constraints(void)
7444 { 7444 {
7445 unsigned long flags; 7445 unsigned long flags;
7446 int i, ret = 0; 7446 int i, ret = 0;
7447 7447
7448 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 7448 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7449 for_each_possible_cpu(i) { 7449 for_each_possible_cpu(i) {
7450 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 7450 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7451 7451
7452 raw_spin_lock(&rt_rq->rt_runtime_lock); 7452 raw_spin_lock(&rt_rq->rt_runtime_lock);
7453 rt_rq->rt_runtime = global_rt_runtime(); 7453 rt_rq->rt_runtime = global_rt_runtime();
7454 raw_spin_unlock(&rt_rq->rt_runtime_lock); 7454 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7455 } 7455 }
7456 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 7456 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7457 7457
7458 return ret; 7458 return ret;
7459 } 7459 }
7460 #endif /* CONFIG_RT_GROUP_SCHED */ 7460 #endif /* CONFIG_RT_GROUP_SCHED */
7461 7461
7462 static int sched_dl_global_constraints(void) 7462 static int sched_dl_global_constraints(void)
7463 { 7463 {
7464 u64 runtime = global_rt_runtime(); 7464 u64 runtime = global_rt_runtime();
7465 u64 period = global_rt_period(); 7465 u64 period = global_rt_period();
7466 u64 new_bw = to_ratio(period, runtime); 7466 u64 new_bw = to_ratio(period, runtime);
7467 int cpu, ret = 0; 7467 int cpu, ret = 0;
7468 unsigned long flags; 7468 unsigned long flags;
7469 7469
7470 /* 7470 /*
7471 * Here we want to check the bandwidth not being set to some 7471 * Here we want to check the bandwidth not being set to some
7472 * value smaller than the currently allocated bandwidth in 7472 * value smaller than the currently allocated bandwidth in
7473 * any of the root_domains. 7473 * any of the root_domains.
7474 * 7474 *
7475 * FIXME: Cycling on all the CPUs is overdoing, but simpler than 7475 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7476 * cycling on root_domains... Discussion on different/better 7476 * cycling on root_domains... Discussion on different/better
7477 * solutions is welcome! 7477 * solutions is welcome!
7478 */ 7478 */
7479 for_each_possible_cpu(cpu) { 7479 for_each_possible_cpu(cpu) {
7480 struct dl_bw *dl_b = dl_bw_of(cpu); 7480 struct dl_bw *dl_b = dl_bw_of(cpu);
7481 7481
7482 raw_spin_lock_irqsave(&dl_b->lock, flags); 7482 raw_spin_lock_irqsave(&dl_b->lock, flags);
7483 if (new_bw < dl_b->total_bw) 7483 if (new_bw < dl_b->total_bw)
7484 ret = -EBUSY; 7484 ret = -EBUSY;
7485 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7485 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7486 7486
7487 if (ret) 7487 if (ret)
7488 break; 7488 break;
7489 } 7489 }
7490 7490
7491 return ret; 7491 return ret;
7492 } 7492 }
7493 7493
7494 static void sched_dl_do_global(void) 7494 static void sched_dl_do_global(void)
7495 { 7495 {
7496 u64 new_bw = -1; 7496 u64 new_bw = -1;
7497 int cpu; 7497 int cpu;
7498 unsigned long flags; 7498 unsigned long flags;
7499 7499
7500 def_dl_bandwidth.dl_period = global_rt_period(); 7500 def_dl_bandwidth.dl_period = global_rt_period();
7501 def_dl_bandwidth.dl_runtime = global_rt_runtime(); 7501 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7502 7502
7503 if (global_rt_runtime() != RUNTIME_INF) 7503 if (global_rt_runtime() != RUNTIME_INF)
7504 new_bw = to_ratio(global_rt_period(), global_rt_runtime()); 7504 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7505 7505
7506 /* 7506 /*
7507 * FIXME: As above... 7507 * FIXME: As above...
7508 */ 7508 */
7509 for_each_possible_cpu(cpu) { 7509 for_each_possible_cpu(cpu) {
7510 struct dl_bw *dl_b = dl_bw_of(cpu); 7510 struct dl_bw *dl_b = dl_bw_of(cpu);
7511 7511
7512 raw_spin_lock_irqsave(&dl_b->lock, flags); 7512 raw_spin_lock_irqsave(&dl_b->lock, flags);
7513 dl_b->bw = new_bw; 7513 dl_b->bw = new_bw;
7514 raw_spin_unlock_irqrestore(&dl_b->lock, flags); 7514 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7515 } 7515 }
7516 } 7516 }
7517 7517
7518 static int sched_rt_global_validate(void) 7518 static int sched_rt_global_validate(void)
7519 { 7519 {
7520 if (sysctl_sched_rt_period <= 0) 7520 if (sysctl_sched_rt_period <= 0)
7521 return -EINVAL; 7521 return -EINVAL;
7522 7522
7523 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 7523 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7524 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 7524 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7525 return -EINVAL; 7525 return -EINVAL;
7526 7526
7527 return 0; 7527 return 0;
7528 } 7528 }
7529 7529
7530 static void sched_rt_do_global(void) 7530 static void sched_rt_do_global(void)
7531 { 7531 {
7532 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 7532 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7533 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 7533 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7534 } 7534 }
7535 7535
7536 int sched_rt_handler(struct ctl_table *table, int write, 7536 int sched_rt_handler(struct ctl_table *table, int write,
7537 void __user *buffer, size_t *lenp, 7537 void __user *buffer, size_t *lenp,
7538 loff_t *ppos) 7538 loff_t *ppos)
7539 { 7539 {
7540 int old_period, old_runtime; 7540 int old_period, old_runtime;
7541 static DEFINE_MUTEX(mutex); 7541 static DEFINE_MUTEX(mutex);
7542 int ret; 7542 int ret;
7543 7543
7544 mutex_lock(&mutex); 7544 mutex_lock(&mutex);
7545 old_period = sysctl_sched_rt_period; 7545 old_period = sysctl_sched_rt_period;
7546 old_runtime = sysctl_sched_rt_runtime; 7546 old_runtime = sysctl_sched_rt_runtime;
7547 7547
7548 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7548 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7549 7549
7550 if (!ret && write) { 7550 if (!ret && write) {
7551 ret = sched_rt_global_validate(); 7551 ret = sched_rt_global_validate();
7552 if (ret) 7552 if (ret)
7553 goto undo; 7553 goto undo;
7554 7554
7555 ret = sched_rt_global_constraints(); 7555 ret = sched_rt_global_constraints();
7556 if (ret) 7556 if (ret)
7557 goto undo; 7557 goto undo;
7558 7558
7559 ret = sched_dl_global_constraints(); 7559 ret = sched_dl_global_constraints();
7560 if (ret) 7560 if (ret)
7561 goto undo; 7561 goto undo;
7562 7562
7563 sched_rt_do_global(); 7563 sched_rt_do_global();
7564 sched_dl_do_global(); 7564 sched_dl_do_global();
7565 } 7565 }
7566 if (0) { 7566 if (0) {
7567 undo: 7567 undo:
7568 sysctl_sched_rt_period = old_period; 7568 sysctl_sched_rt_period = old_period;
7569 sysctl_sched_rt_runtime = old_runtime; 7569 sysctl_sched_rt_runtime = old_runtime;
7570 } 7570 }
7571 mutex_unlock(&mutex); 7571 mutex_unlock(&mutex);
7572 7572
7573 return ret; 7573 return ret;
7574 } 7574 }
7575 7575
7576 int sched_rr_handler(struct ctl_table *table, int write, 7576 int sched_rr_handler(struct ctl_table *table, int write,
7577 void __user *buffer, size_t *lenp, 7577 void __user *buffer, size_t *lenp,
7578 loff_t *ppos) 7578 loff_t *ppos)
7579 { 7579 {
7580 int ret; 7580 int ret;
7581 static DEFINE_MUTEX(mutex); 7581 static DEFINE_MUTEX(mutex);
7582 7582
7583 mutex_lock(&mutex); 7583 mutex_lock(&mutex);
7584 ret = proc_dointvec(table, write, buffer, lenp, ppos); 7584 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7585 /* make sure that internally we keep jiffies */ 7585 /* make sure that internally we keep jiffies */
7586 /* also, writing zero resets timeslice to default */ 7586 /* also, writing zero resets timeslice to default */
7587 if (!ret && write) { 7587 if (!ret && write) {
7588 sched_rr_timeslice = sched_rr_timeslice <= 0 ? 7588 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7589 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); 7589 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7590 } 7590 }
7591 mutex_unlock(&mutex); 7591 mutex_unlock(&mutex);
7592 return ret; 7592 return ret;
7593 } 7593 }
7594 7594
7595 #ifdef CONFIG_CGROUP_SCHED 7595 #ifdef CONFIG_CGROUP_SCHED
7596 7596
7597 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 7597 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7598 { 7598 {
7599 return css ? container_of(css, struct task_group, css) : NULL; 7599 return css ? container_of(css, struct task_group, css) : NULL;
7600 } 7600 }
7601 7601
7602 static struct cgroup_subsys_state * 7602 static struct cgroup_subsys_state *
7603 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7603 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7604 { 7604 {
7605 struct task_group *parent = css_tg(parent_css); 7605 struct task_group *parent = css_tg(parent_css);
7606 struct task_group *tg; 7606 struct task_group *tg;
7607 7607
7608 if (!parent) { 7608 if (!parent) {
7609 /* This is early initialization for the top cgroup */ 7609 /* This is early initialization for the top cgroup */
7610 return &root_task_group.css; 7610 return &root_task_group.css;
7611 } 7611 }
7612 7612
7613 tg = sched_create_group(parent); 7613 tg = sched_create_group(parent);
7614 if (IS_ERR(tg)) 7614 if (IS_ERR(tg))
7615 return ERR_PTR(-ENOMEM); 7615 return ERR_PTR(-ENOMEM);
7616 7616
7617 return &tg->css; 7617 return &tg->css;
7618 } 7618 }
7619 7619
7620 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 7620 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7621 { 7621 {
7622 struct task_group *tg = css_tg(css); 7622 struct task_group *tg = css_tg(css);
7623 struct task_group *parent = css_tg(css_parent(css)); 7623 struct task_group *parent = css_tg(css_parent(css));
7624 7624
7625 if (parent) 7625 if (parent)
7626 sched_online_group(tg, parent); 7626 sched_online_group(tg, parent);
7627 return 0; 7627 return 0;
7628 } 7628 }
7629 7629
7630 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 7630 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7631 { 7631 {
7632 struct task_group *tg = css_tg(css); 7632 struct task_group *tg = css_tg(css);
7633 7633
7634 sched_destroy_group(tg); 7634 sched_destroy_group(tg);
7635 } 7635 }
7636 7636
7637 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 7637 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7638 { 7638 {
7639 struct task_group *tg = css_tg(css); 7639 struct task_group *tg = css_tg(css);
7640 7640
7641 sched_offline_group(tg); 7641 sched_offline_group(tg);
7642 } 7642 }
7643 7643
7644 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css, 7644 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7645 struct cgroup_taskset *tset) 7645 struct cgroup_taskset *tset)
7646 { 7646 {
7647 struct task_struct *task; 7647 struct task_struct *task;
7648 7648
7649 cgroup_taskset_for_each(task, tset) { 7649 cgroup_taskset_for_each(task, tset) {
7650 #ifdef CONFIG_RT_GROUP_SCHED 7650 #ifdef CONFIG_RT_GROUP_SCHED
7651 if (!sched_rt_can_attach(css_tg(css), task)) 7651 if (!sched_rt_can_attach(css_tg(css), task))
7652 return -EINVAL; 7652 return -EINVAL;
7653 #else 7653 #else
7654 /* We don't support RT-tasks being in separate groups */ 7654 /* We don't support RT-tasks being in separate groups */
7655 if (task->sched_class != &fair_sched_class) 7655 if (task->sched_class != &fair_sched_class)
7656 return -EINVAL; 7656 return -EINVAL;
7657 #endif 7657 #endif
7658 } 7658 }
7659 return 0; 7659 return 0;
7660 } 7660 }
7661 7661
7662 static void cpu_cgroup_attach(struct cgroup_subsys_state *css, 7662 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7663 struct cgroup_taskset *tset) 7663 struct cgroup_taskset *tset)
7664 { 7664 {
7665 struct task_struct *task; 7665 struct task_struct *task;
7666 7666
7667 cgroup_taskset_for_each(task, tset) 7667 cgroup_taskset_for_each(task, tset)
7668 sched_move_task(task); 7668 sched_move_task(task);
7669 } 7669 }
7670 7670
7671 static void cpu_cgroup_exit(struct cgroup_subsys_state *css, 7671 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7672 struct cgroup_subsys_state *old_css, 7672 struct cgroup_subsys_state *old_css,
7673 struct task_struct *task) 7673 struct task_struct *task)
7674 { 7674 {
7675 /* 7675 /*
7676 * cgroup_exit() is called in the copy_process() failure path. 7676 * cgroup_exit() is called in the copy_process() failure path.
7677 * Ignore this case since the task hasn't ran yet, this avoids 7677 * Ignore this case since the task hasn't ran yet, this avoids
7678 * trying to poke a half freed task state from generic code. 7678 * trying to poke a half freed task state from generic code.
7679 */ 7679 */
7680 if (!(task->flags & PF_EXITING)) 7680 if (!(task->flags & PF_EXITING))
7681 return; 7681 return;
7682 7682
7683 sched_move_task(task); 7683 sched_move_task(task);
7684 } 7684 }
7685 7685
7686 #ifdef CONFIG_FAIR_GROUP_SCHED 7686 #ifdef CONFIG_FAIR_GROUP_SCHED
7687 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 7687 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7688 struct cftype *cftype, u64 shareval) 7688 struct cftype *cftype, u64 shareval)
7689 { 7689 {
7690 return sched_group_set_shares(css_tg(css), scale_load(shareval)); 7690 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7691 } 7691 }
7692 7692
7693 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 7693 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7694 struct cftype *cft) 7694 struct cftype *cft)
7695 { 7695 {
7696 struct task_group *tg = css_tg(css); 7696 struct task_group *tg = css_tg(css);
7697 7697
7698 return (u64) scale_load_down(tg->shares); 7698 return (u64) scale_load_down(tg->shares);
7699 } 7699 }
7700 7700
7701 #ifdef CONFIG_CFS_BANDWIDTH 7701 #ifdef CONFIG_CFS_BANDWIDTH
7702 static DEFINE_MUTEX(cfs_constraints_mutex); 7702 static DEFINE_MUTEX(cfs_constraints_mutex);
7703 7703
7704 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 7704 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7705 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 7705 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7706 7706
7707 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 7707 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7708 7708
7709 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) 7709 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7710 { 7710 {
7711 int i, ret = 0, runtime_enabled, runtime_was_enabled; 7711 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7712 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7712 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7713 7713
7714 if (tg == &root_task_group) 7714 if (tg == &root_task_group)
7715 return -EINVAL; 7715 return -EINVAL;
7716 7716
7717 /* 7717 /*
7718 * Ensure we have at some amount of bandwidth every period. This is 7718 * Ensure we have at some amount of bandwidth every period. This is
7719 * to prevent reaching a state of large arrears when throttled via 7719 * to prevent reaching a state of large arrears when throttled via
7720 * entity_tick() resulting in prolonged exit starvation. 7720 * entity_tick() resulting in prolonged exit starvation.
7721 */ 7721 */
7722 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 7722 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7723 return -EINVAL; 7723 return -EINVAL;
7724 7724
7725 /* 7725 /*
7726 * Likewise, bound things on the otherside by preventing insane quota 7726 * Likewise, bound things on the otherside by preventing insane quota
7727 * periods. This also allows us to normalize in computing quota 7727 * periods. This also allows us to normalize in computing quota
7728 * feasibility. 7728 * feasibility.
7729 */ 7729 */
7730 if (period > max_cfs_quota_period) 7730 if (period > max_cfs_quota_period)
7731 return -EINVAL; 7731 return -EINVAL;
7732 7732
7733 mutex_lock(&cfs_constraints_mutex); 7733 mutex_lock(&cfs_constraints_mutex);
7734 ret = __cfs_schedulable(tg, period, quota); 7734 ret = __cfs_schedulable(tg, period, quota);
7735 if (ret) 7735 if (ret)
7736 goto out_unlock; 7736 goto out_unlock;
7737 7737
7738 runtime_enabled = quota != RUNTIME_INF; 7738 runtime_enabled = quota != RUNTIME_INF;
7739 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 7739 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7740 /* 7740 /*
7741 * If we need to toggle cfs_bandwidth_used, off->on must occur 7741 * If we need to toggle cfs_bandwidth_used, off->on must occur
7742 * before making related changes, and on->off must occur afterwards 7742 * before making related changes, and on->off must occur afterwards
7743 */ 7743 */
7744 if (runtime_enabled && !runtime_was_enabled) 7744 if (runtime_enabled && !runtime_was_enabled)
7745 cfs_bandwidth_usage_inc(); 7745 cfs_bandwidth_usage_inc();
7746 raw_spin_lock_irq(&cfs_b->lock); 7746 raw_spin_lock_irq(&cfs_b->lock);
7747 cfs_b->period = ns_to_ktime(period); 7747 cfs_b->period = ns_to_ktime(period);
7748 cfs_b->quota = quota; 7748 cfs_b->quota = quota;
7749 7749
7750 __refill_cfs_bandwidth_runtime(cfs_b); 7750 __refill_cfs_bandwidth_runtime(cfs_b);
7751 /* restart the period timer (if active) to handle new period expiry */ 7751 /* restart the period timer (if active) to handle new period expiry */
7752 if (runtime_enabled && cfs_b->timer_active) { 7752 if (runtime_enabled && cfs_b->timer_active) {
7753 /* force a reprogram */ 7753 /* force a reprogram */
7754 cfs_b->timer_active = 0; 7754 __start_cfs_bandwidth(cfs_b, true);
7755 __start_cfs_bandwidth(cfs_b);
7756 } 7755 }
7757 raw_spin_unlock_irq(&cfs_b->lock); 7756 raw_spin_unlock_irq(&cfs_b->lock);
7758 7757
7759 for_each_possible_cpu(i) { 7758 for_each_possible_cpu(i) {
7760 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 7759 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7761 struct rq *rq = cfs_rq->rq; 7760 struct rq *rq = cfs_rq->rq;
7762 7761
7763 raw_spin_lock_irq(&rq->lock); 7762 raw_spin_lock_irq(&rq->lock);
7764 cfs_rq->runtime_enabled = runtime_enabled; 7763 cfs_rq->runtime_enabled = runtime_enabled;
7765 cfs_rq->runtime_remaining = 0; 7764 cfs_rq->runtime_remaining = 0;
7766 7765
7767 if (cfs_rq->throttled) 7766 if (cfs_rq->throttled)
7768 unthrottle_cfs_rq(cfs_rq); 7767 unthrottle_cfs_rq(cfs_rq);
7769 raw_spin_unlock_irq(&rq->lock); 7768 raw_spin_unlock_irq(&rq->lock);
7770 } 7769 }
7771 if (runtime_was_enabled && !runtime_enabled) 7770 if (runtime_was_enabled && !runtime_enabled)
7772 cfs_bandwidth_usage_dec(); 7771 cfs_bandwidth_usage_dec();
7773 out_unlock: 7772 out_unlock:
7774 mutex_unlock(&cfs_constraints_mutex); 7773 mutex_unlock(&cfs_constraints_mutex);
7775 7774
7776 return ret; 7775 return ret;
7777 } 7776 }
7778 7777
7779 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 7778 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7780 { 7779 {
7781 u64 quota, period; 7780 u64 quota, period;
7782 7781
7783 period = ktime_to_ns(tg->cfs_bandwidth.period); 7782 period = ktime_to_ns(tg->cfs_bandwidth.period);
7784 if (cfs_quota_us < 0) 7783 if (cfs_quota_us < 0)
7785 quota = RUNTIME_INF; 7784 quota = RUNTIME_INF;
7786 else 7785 else
7787 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 7786 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7788 7787
7789 return tg_set_cfs_bandwidth(tg, period, quota); 7788 return tg_set_cfs_bandwidth(tg, period, quota);
7790 } 7789 }
7791 7790
7792 long tg_get_cfs_quota(struct task_group *tg) 7791 long tg_get_cfs_quota(struct task_group *tg)
7793 { 7792 {
7794 u64 quota_us; 7793 u64 quota_us;
7795 7794
7796 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 7795 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7797 return -1; 7796 return -1;
7798 7797
7799 quota_us = tg->cfs_bandwidth.quota; 7798 quota_us = tg->cfs_bandwidth.quota;
7800 do_div(quota_us, NSEC_PER_USEC); 7799 do_div(quota_us, NSEC_PER_USEC);
7801 7800
7802 return quota_us; 7801 return quota_us;
7803 } 7802 }
7804 7803
7805 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 7804 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7806 { 7805 {
7807 u64 quota, period; 7806 u64 quota, period;
7808 7807
7809 period = (u64)cfs_period_us * NSEC_PER_USEC; 7808 period = (u64)cfs_period_us * NSEC_PER_USEC;
7810 quota = tg->cfs_bandwidth.quota; 7809 quota = tg->cfs_bandwidth.quota;
7811 7810
7812 return tg_set_cfs_bandwidth(tg, period, quota); 7811 return tg_set_cfs_bandwidth(tg, period, quota);
7813 } 7812 }
7814 7813
7815 long tg_get_cfs_period(struct task_group *tg) 7814 long tg_get_cfs_period(struct task_group *tg)
7816 { 7815 {
7817 u64 cfs_period_us; 7816 u64 cfs_period_us;
7818 7817
7819 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 7818 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7820 do_div(cfs_period_us, NSEC_PER_USEC); 7819 do_div(cfs_period_us, NSEC_PER_USEC);
7821 7820
7822 return cfs_period_us; 7821 return cfs_period_us;
7823 } 7822 }
7824 7823
7825 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 7824 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7826 struct cftype *cft) 7825 struct cftype *cft)
7827 { 7826 {
7828 return tg_get_cfs_quota(css_tg(css)); 7827 return tg_get_cfs_quota(css_tg(css));
7829 } 7828 }
7830 7829
7831 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 7830 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7832 struct cftype *cftype, s64 cfs_quota_us) 7831 struct cftype *cftype, s64 cfs_quota_us)
7833 { 7832 {
7834 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 7833 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7835 } 7834 }
7836 7835
7837 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 7836 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7838 struct cftype *cft) 7837 struct cftype *cft)
7839 { 7838 {
7840 return tg_get_cfs_period(css_tg(css)); 7839 return tg_get_cfs_period(css_tg(css));
7841 } 7840 }
7842 7841
7843 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 7842 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7844 struct cftype *cftype, u64 cfs_period_us) 7843 struct cftype *cftype, u64 cfs_period_us)
7845 { 7844 {
7846 return tg_set_cfs_period(css_tg(css), cfs_period_us); 7845 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7847 } 7846 }
7848 7847
7849 struct cfs_schedulable_data { 7848 struct cfs_schedulable_data {
7850 struct task_group *tg; 7849 struct task_group *tg;
7851 u64 period, quota; 7850 u64 period, quota;
7852 }; 7851 };
7853 7852
7854 /* 7853 /*
7855 * normalize group quota/period to be quota/max_period 7854 * normalize group quota/period to be quota/max_period
7856 * note: units are usecs 7855 * note: units are usecs
7857 */ 7856 */
7858 static u64 normalize_cfs_quota(struct task_group *tg, 7857 static u64 normalize_cfs_quota(struct task_group *tg,
7859 struct cfs_schedulable_data *d) 7858 struct cfs_schedulable_data *d)
7860 { 7859 {
7861 u64 quota, period; 7860 u64 quota, period;
7862 7861
7863 if (tg == d->tg) { 7862 if (tg == d->tg) {
7864 period = d->period; 7863 period = d->period;
7865 quota = d->quota; 7864 quota = d->quota;
7866 } else { 7865 } else {
7867 period = tg_get_cfs_period(tg); 7866 period = tg_get_cfs_period(tg);
7868 quota = tg_get_cfs_quota(tg); 7867 quota = tg_get_cfs_quota(tg);
7869 } 7868 }
7870 7869
7871 /* note: these should typically be equivalent */ 7870 /* note: these should typically be equivalent */
7872 if (quota == RUNTIME_INF || quota == -1) 7871 if (quota == RUNTIME_INF || quota == -1)
7873 return RUNTIME_INF; 7872 return RUNTIME_INF;
7874 7873
7875 return to_ratio(period, quota); 7874 return to_ratio(period, quota);
7876 } 7875 }
7877 7876
7878 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 7877 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7879 { 7878 {
7880 struct cfs_schedulable_data *d = data; 7879 struct cfs_schedulable_data *d = data;
7881 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7880 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7882 s64 quota = 0, parent_quota = -1; 7881 s64 quota = 0, parent_quota = -1;
7883 7882
7884 if (!tg->parent) { 7883 if (!tg->parent) {
7885 quota = RUNTIME_INF; 7884 quota = RUNTIME_INF;
7886 } else { 7885 } else {
7887 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 7886 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7888 7887
7889 quota = normalize_cfs_quota(tg, d); 7888 quota = normalize_cfs_quota(tg, d);
7890 parent_quota = parent_b->hierarchal_quota; 7889 parent_quota = parent_b->hierarchal_quota;
7891 7890
7892 /* 7891 /*
7893 * ensure max(child_quota) <= parent_quota, inherit when no 7892 * ensure max(child_quota) <= parent_quota, inherit when no
7894 * limit is set 7893 * limit is set
7895 */ 7894 */
7896 if (quota == RUNTIME_INF) 7895 if (quota == RUNTIME_INF)
7897 quota = parent_quota; 7896 quota = parent_quota;
7898 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 7897 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7899 return -EINVAL; 7898 return -EINVAL;
7900 } 7899 }
7901 cfs_b->hierarchal_quota = quota; 7900 cfs_b->hierarchal_quota = quota;
7902 7901
7903 return 0; 7902 return 0;
7904 } 7903 }
7905 7904
7906 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 7905 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7907 { 7906 {
7908 int ret; 7907 int ret;
7909 struct cfs_schedulable_data data = { 7908 struct cfs_schedulable_data data = {
7910 .tg = tg, 7909 .tg = tg,
7911 .period = period, 7910 .period = period,
7912 .quota = quota, 7911 .quota = quota,
7913 }; 7912 };
7914 7913
7915 if (quota != RUNTIME_INF) { 7914 if (quota != RUNTIME_INF) {
7916 do_div(data.period, NSEC_PER_USEC); 7915 do_div(data.period, NSEC_PER_USEC);
7917 do_div(data.quota, NSEC_PER_USEC); 7916 do_div(data.quota, NSEC_PER_USEC);
7918 } 7917 }
7919 7918
7920 rcu_read_lock(); 7919 rcu_read_lock();
7921 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 7920 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7922 rcu_read_unlock(); 7921 rcu_read_unlock();
7923 7922
7924 return ret; 7923 return ret;
7925 } 7924 }
7926 7925
7927 static int cpu_stats_show(struct seq_file *sf, void *v) 7926 static int cpu_stats_show(struct seq_file *sf, void *v)
7928 { 7927 {
7929 struct task_group *tg = css_tg(seq_css(sf)); 7928 struct task_group *tg = css_tg(seq_css(sf));
7930 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 7929 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7931 7930
7932 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 7931 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7933 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 7932 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7934 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 7933 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7935 7934
7936 return 0; 7935 return 0;
7937 } 7936 }
7938 #endif /* CONFIG_CFS_BANDWIDTH */ 7937 #endif /* CONFIG_CFS_BANDWIDTH */
7939 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7938 #endif /* CONFIG_FAIR_GROUP_SCHED */
7940 7939
7941 #ifdef CONFIG_RT_GROUP_SCHED 7940 #ifdef CONFIG_RT_GROUP_SCHED
7942 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 7941 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7943 struct cftype *cft, s64 val) 7942 struct cftype *cft, s64 val)
7944 { 7943 {
7945 return sched_group_set_rt_runtime(css_tg(css), val); 7944 return sched_group_set_rt_runtime(css_tg(css), val);
7946 } 7945 }
7947 7946
7948 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 7947 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7949 struct cftype *cft) 7948 struct cftype *cft)
7950 { 7949 {
7951 return sched_group_rt_runtime(css_tg(css)); 7950 return sched_group_rt_runtime(css_tg(css));
7952 } 7951 }
7953 7952
7954 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 7953 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7955 struct cftype *cftype, u64 rt_period_us) 7954 struct cftype *cftype, u64 rt_period_us)
7956 { 7955 {
7957 return sched_group_set_rt_period(css_tg(css), rt_period_us); 7956 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7958 } 7957 }
7959 7958
7960 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 7959 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7961 struct cftype *cft) 7960 struct cftype *cft)
7962 { 7961 {
7963 return sched_group_rt_period(css_tg(css)); 7962 return sched_group_rt_period(css_tg(css));
7964 } 7963 }
7965 #endif /* CONFIG_RT_GROUP_SCHED */ 7964 #endif /* CONFIG_RT_GROUP_SCHED */
7966 7965
7967 static struct cftype cpu_files[] = { 7966 static struct cftype cpu_files[] = {
7968 #ifdef CONFIG_FAIR_GROUP_SCHED 7967 #ifdef CONFIG_FAIR_GROUP_SCHED
7969 { 7968 {
7970 .name = "shares", 7969 .name = "shares",
7971 .read_u64 = cpu_shares_read_u64, 7970 .read_u64 = cpu_shares_read_u64,
7972 .write_u64 = cpu_shares_write_u64, 7971 .write_u64 = cpu_shares_write_u64,
7973 }, 7972 },
7974 #endif 7973 #endif
7975 #ifdef CONFIG_CFS_BANDWIDTH 7974 #ifdef CONFIG_CFS_BANDWIDTH
7976 { 7975 {
7977 .name = "cfs_quota_us", 7976 .name = "cfs_quota_us",
7978 .read_s64 = cpu_cfs_quota_read_s64, 7977 .read_s64 = cpu_cfs_quota_read_s64,
7979 .write_s64 = cpu_cfs_quota_write_s64, 7978 .write_s64 = cpu_cfs_quota_write_s64,
7980 }, 7979 },
7981 { 7980 {
7982 .name = "cfs_period_us", 7981 .name = "cfs_period_us",
7983 .read_u64 = cpu_cfs_period_read_u64, 7982 .read_u64 = cpu_cfs_period_read_u64,
7984 .write_u64 = cpu_cfs_period_write_u64, 7983 .write_u64 = cpu_cfs_period_write_u64,
7985 }, 7984 },
7986 { 7985 {
7987 .name = "stat", 7986 .name = "stat",
7988 .seq_show = cpu_stats_show, 7987 .seq_show = cpu_stats_show,
7989 }, 7988 },
7990 #endif 7989 #endif
7991 #ifdef CONFIG_RT_GROUP_SCHED 7990 #ifdef CONFIG_RT_GROUP_SCHED
7992 { 7991 {
7993 .name = "rt_runtime_us", 7992 .name = "rt_runtime_us",
7994 .read_s64 = cpu_rt_runtime_read, 7993 .read_s64 = cpu_rt_runtime_read,
7995 .write_s64 = cpu_rt_runtime_write, 7994 .write_s64 = cpu_rt_runtime_write,
7996 }, 7995 },
7997 { 7996 {
7998 .name = "rt_period_us", 7997 .name = "rt_period_us",
7999 .read_u64 = cpu_rt_period_read_uint, 7998 .read_u64 = cpu_rt_period_read_uint,
8000 .write_u64 = cpu_rt_period_write_uint, 7999 .write_u64 = cpu_rt_period_write_uint,
8001 }, 8000 },
8002 #endif 8001 #endif
8003 { } /* terminate */ 8002 { } /* terminate */
8004 }; 8003 };
8005 8004
8006 struct cgroup_subsys cpu_cgrp_subsys = { 8005 struct cgroup_subsys cpu_cgrp_subsys = {
8007 .css_alloc = cpu_cgroup_css_alloc, 8006 .css_alloc = cpu_cgroup_css_alloc,
8008 .css_free = cpu_cgroup_css_free, 8007 .css_free = cpu_cgroup_css_free,
8009 .css_online = cpu_cgroup_css_online, 8008 .css_online = cpu_cgroup_css_online,
8010 .css_offline = cpu_cgroup_css_offline, 8009 .css_offline = cpu_cgroup_css_offline,
8011 .can_attach = cpu_cgroup_can_attach, 8010 .can_attach = cpu_cgroup_can_attach,
8012 .attach = cpu_cgroup_attach, 8011 .attach = cpu_cgroup_attach,
8013 .exit = cpu_cgroup_exit, 8012 .exit = cpu_cgroup_exit,
8014 .base_cftypes = cpu_files, 8013 .base_cftypes = cpu_files,
8015 .early_init = 1, 8014 .early_init = 1,
8016 }; 8015 };
8017 8016
8018 #endif /* CONFIG_CGROUP_SCHED */ 8017 #endif /* CONFIG_CGROUP_SCHED */
8019 8018
8020 void dump_cpu_task(int cpu) 8019 void dump_cpu_task(int cpu)
8021 { 8020 {
8022 pr_info("Task dump for CPU %d:\n", cpu); 8021 pr_info("Task dump for CPU %d:\n", cpu);
8023 sched_show_task(cpu_curr(cpu)); 8022 sched_show_task(cpu_curr(cpu));
8024 } 8023 }
8025 8024
1 /* 1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 * 3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 * 5 *
6 * Interactivity improvements by Mike Galbraith 6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de> 7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 * 8 *
9 * Various enhancements by Dmitry Adamushko. 9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 * 11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri 12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007 13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 * 15 *
16 * Scaled math optimizations by Thomas Gleixner 16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 * 18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */ 21 */
22 22
23 #include <linux/latencytop.h> 23 #include <linux/latencytop.h>
24 #include <linux/sched.h> 24 #include <linux/sched.h>
25 #include <linux/cpumask.h> 25 #include <linux/cpumask.h>
26 #include <linux/slab.h> 26 #include <linux/slab.h>
27 #include <linux/profile.h> 27 #include <linux/profile.h>
28 #include <linux/interrupt.h> 28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h> 29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h> 30 #include <linux/migrate.h>
31 #include <linux/task_work.h> 31 #include <linux/task_work.h>
32 32
33 #include <trace/events/sched.h> 33 #include <trace/events/sched.h>
34 34
35 #include "sched.h" 35 #include "sched.h"
36 36
37 /* 37 /*
38 * Targeted preemption latency for CPU-bound tasks: 38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 * 40 *
41 * NOTE: this latency value is not the same as the concept of 41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length 42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice 43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts. 44 * based scheduling concepts.
45 * 45 *
46 * (to see the precise effective timeslice length of your workload, 46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field) 47 * run vmstat and monitor the context-switches (cs) field)
48 */ 48 */
49 unsigned int sysctl_sched_latency = 6000000ULL; 49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51 51
52 /* 52 /*
53 * The initial- and re-scaling of tunables is configurable 53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 * 55 *
56 * Options are: 56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */ 60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling 61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG; 62 = SCHED_TUNABLESCALING_LOG;
63 63
64 /* 64 /*
65 * Minimal preemption granularity for CPU-bound tasks: 65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */ 67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL; 68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 70
71 /* 71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */ 73 */
74 static unsigned int sched_nr_latency = 8; 74 static unsigned int sched_nr_latency = 8;
75 75
76 /* 76 /*
77 * After fork, child runs first. If set to 0 (default) then 77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first. 78 * parent will (try to) run first.
79 */ 79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly; 80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81 81
82 /* 82 /*
83 * SCHED_OTHER wake-up granularity. 83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 * 85 *
86 * This option delays the preemption effects of decoupled workloads 86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still 87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies. 88 * have immediate wakeup/sleep latencies.
89 */ 89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92 92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94 94
95 /* 95 /*
96 * The exponential sliding window over which load is averaged for shares 96 * The exponential sliding window over which load is averaged for shares
97 * distribution. 97 * distribution.
98 * (default: 10msec) 98 * (default: 10msec)
99 */ 99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101 101
102 #ifdef CONFIG_CFS_BANDWIDTH 102 #ifdef CONFIG_CFS_BANDWIDTH
103 /* 103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota. 105 * each time a cfs_rq requests quota.
106 * 106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due 107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice) 108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time. 109 * we will always only issue the remaining available time.
110 * 110 *
111 * default: 5 msec, units: microseconds 111 * default: 5 msec, units: microseconds
112 */ 112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif 114 #endif
115 115
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 { 117 {
118 lw->weight += inc; 118 lw->weight += inc;
119 lw->inv_weight = 0; 119 lw->inv_weight = 0;
120 } 120 }
121 121
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 { 123 {
124 lw->weight -= dec; 124 lw->weight -= dec;
125 lw->inv_weight = 0; 125 lw->inv_weight = 0;
126 } 126 }
127 127
128 static inline void update_load_set(struct load_weight *lw, unsigned long w) 128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 { 129 {
130 lw->weight = w; 130 lw->weight = w;
131 lw->inv_weight = 0; 131 lw->inv_weight = 0;
132 } 132 }
133 133
134 /* 134 /*
135 * Increase the granularity value when there are more CPUs, 135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible 136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear, 137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the 138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs. 139 * number of CPUs.
140 * 140 *
141 * This idea comes from the SD scheduler of Con Kolivas: 141 * This idea comes from the SD scheduler of Con Kolivas:
142 */ 142 */
143 static int get_update_sysctl_factor(void) 143 static int get_update_sysctl_factor(void)
144 { 144 {
145 unsigned int cpus = min_t(int, num_online_cpus(), 8); 145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor; 146 unsigned int factor;
147 147
148 switch (sysctl_sched_tunable_scaling) { 148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE: 149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1; 150 factor = 1;
151 break; 151 break;
152 case SCHED_TUNABLESCALING_LINEAR: 152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus; 153 factor = cpus;
154 break; 154 break;
155 case SCHED_TUNABLESCALING_LOG: 155 case SCHED_TUNABLESCALING_LOG:
156 default: 156 default:
157 factor = 1 + ilog2(cpus); 157 factor = 1 + ilog2(cpus);
158 break; 158 break;
159 } 159 }
160 160
161 return factor; 161 return factor;
162 } 162 }
163 163
164 static void update_sysctl(void) 164 static void update_sysctl(void)
165 { 165 {
166 unsigned int factor = get_update_sysctl_factor(); 166 unsigned int factor = get_update_sysctl_factor();
167 167
168 #define SET_SYSCTL(name) \ 168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name) 169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity); 170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency); 171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity); 172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL 173 #undef SET_SYSCTL
174 } 174 }
175 175
176 void sched_init_granularity(void) 176 void sched_init_granularity(void)
177 { 177 {
178 update_sysctl(); 178 update_sysctl();
179 } 179 }
180 180
181 #define WMULT_CONST (~0U) 181 #define WMULT_CONST (~0U)
182 #define WMULT_SHIFT 32 182 #define WMULT_SHIFT 32
183 183
184 static void __update_inv_weight(struct load_weight *lw) 184 static void __update_inv_weight(struct load_weight *lw)
185 { 185 {
186 unsigned long w; 186 unsigned long w;
187 187
188 if (likely(lw->inv_weight)) 188 if (likely(lw->inv_weight))
189 return; 189 return;
190 190
191 w = scale_load_down(lw->weight); 191 w = scale_load_down(lw->weight);
192 192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1; 194 lw->inv_weight = 1;
195 else if (unlikely(!w)) 195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST; 196 lw->inv_weight = WMULT_CONST;
197 else 197 else
198 lw->inv_weight = WMULT_CONST / w; 198 lw->inv_weight = WMULT_CONST / w;
199 } 199 }
200 200
201 /* 201 /*
202 * delta_exec * weight / lw.weight 202 * delta_exec * weight / lw.weight
203 * OR 203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 * 205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case 206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to 207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 * 209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive. 211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212 */ 212 */
213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214 { 214 {
215 u64 fact = scale_load_down(weight); 215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT; 216 int shift = WMULT_SHIFT;
217 217
218 __update_inv_weight(lw); 218 __update_inv_weight(lw);
219 219
220 if (unlikely(fact >> 32)) { 220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) { 221 while (fact >> 32) {
222 fact >>= 1; 222 fact >>= 1;
223 shift--; 223 shift--;
224 } 224 }
225 } 225 }
226 226
227 /* hint to use a 32x32->64 mul */ 227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight; 228 fact = (u64)(u32)fact * lw->inv_weight;
229 229
230 while (fact >> 32) { 230 while (fact >> 32) {
231 fact >>= 1; 231 fact >>= 1;
232 shift--; 232 shift--;
233 } 233 }
234 234
235 return mul_u64_u32_shr(delta_exec, fact, shift); 235 return mul_u64_u32_shr(delta_exec, fact, shift);
236 } 236 }
237 237
238 238
239 const struct sched_class fair_sched_class; 239 const struct sched_class fair_sched_class;
240 240
241 /************************************************************** 241 /**************************************************************
242 * CFS operations on generic schedulable entities: 242 * CFS operations on generic schedulable entities:
243 */ 243 */
244 244
245 #ifdef CONFIG_FAIR_GROUP_SCHED 245 #ifdef CONFIG_FAIR_GROUP_SCHED
246 246
247 /* cpu runqueue to which this cfs_rq is attached */ 247 /* cpu runqueue to which this cfs_rq is attached */
248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249 { 249 {
250 return cfs_rq->rq; 250 return cfs_rq->rq;
251 } 251 }
252 252
253 /* An entity is a task if it doesn't "own" a runqueue */ 253 /* An entity is a task if it doesn't "own" a runqueue */
254 #define entity_is_task(se) (!se->my_q) 254 #define entity_is_task(se) (!se->my_q)
255 255
256 static inline struct task_struct *task_of(struct sched_entity *se) 256 static inline struct task_struct *task_of(struct sched_entity *se)
257 { 257 {
258 #ifdef CONFIG_SCHED_DEBUG 258 #ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se)); 259 WARN_ON_ONCE(!entity_is_task(se));
260 #endif 260 #endif
261 return container_of(se, struct task_struct, se); 261 return container_of(se, struct task_struct, se);
262 } 262 }
263 263
264 /* Walk up scheduling entities hierarchy */ 264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \ 265 #define for_each_sched_entity(se) \
266 for (; se; se = se->parent) 266 for (; se; se = se->parent)
267 267
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269 { 269 {
270 return p->se.cfs_rq; 270 return p->se.cfs_rq;
271 } 271 }
272 272
273 /* runqueue on which this entity is (to be) queued */ 273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275 { 275 {
276 return se->cfs_rq; 276 return se->cfs_rq;
277 } 277 }
278 278
279 /* runqueue "owned" by this group */ 279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281 { 281 {
282 return grp->my_q; 282 return grp->my_q;
283 } 283 }
284 284
285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update); 286 int force_update);
287 287
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289 { 289 {
290 if (!cfs_rq->on_list) { 290 if (!cfs_rq->on_list) {
291 /* 291 /*
292 * Ensure we either appear before our parent (if already 292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is 293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up 294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases. 295 * reduces this to two cases.
296 */ 296 */
297 if (cfs_rq->tg->parent && 297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list); 300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else { 301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list); 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
304 } 304 }
305 305
306 cfs_rq->on_list = 1; 306 cfs_rq->on_list = 1;
307 /* We should have no load, but we need to update last_decay. */ 307 /* We should have no load, but we need to update last_decay. */
308 update_cfs_rq_blocked_load(cfs_rq, 0); 308 update_cfs_rq_blocked_load(cfs_rq, 0);
309 } 309 }
310 } 310 }
311 311
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313 { 313 {
314 if (cfs_rq->on_list) { 314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0; 316 cfs_rq->on_list = 0;
317 } 317 }
318 } 318 }
319 319
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323 323
324 /* Do the two (enqueued) entities belong to the same group ? */ 324 /* Do the two (enqueued) entities belong to the same group ? */
325 static inline struct cfs_rq * 325 static inline struct cfs_rq *
326 is_same_group(struct sched_entity *se, struct sched_entity *pse) 326 is_same_group(struct sched_entity *se, struct sched_entity *pse)
327 { 327 {
328 if (se->cfs_rq == pse->cfs_rq) 328 if (se->cfs_rq == pse->cfs_rq)
329 return se->cfs_rq; 329 return se->cfs_rq;
330 330
331 return NULL; 331 return NULL;
332 } 332 }
333 333
334 static inline struct sched_entity *parent_entity(struct sched_entity *se) 334 static inline struct sched_entity *parent_entity(struct sched_entity *se)
335 { 335 {
336 return se->parent; 336 return se->parent;
337 } 337 }
338 338
339 static void 339 static void
340 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 340 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341 { 341 {
342 int se_depth, pse_depth; 342 int se_depth, pse_depth;
343 343
344 /* 344 /*
345 * preemption test can be made between sibling entities who are in the 345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common 347 * both tasks until we find their ancestors who are siblings of common
348 * parent. 348 * parent.
349 */ 349 */
350 350
351 /* First walk up until both entities are at same depth */ 351 /* First walk up until both entities are at same depth */
352 se_depth = (*se)->depth; 352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth; 353 pse_depth = (*pse)->depth;
354 354
355 while (se_depth > pse_depth) { 355 while (se_depth > pse_depth) {
356 se_depth--; 356 se_depth--;
357 *se = parent_entity(*se); 357 *se = parent_entity(*se);
358 } 358 }
359 359
360 while (pse_depth > se_depth) { 360 while (pse_depth > se_depth) {
361 pse_depth--; 361 pse_depth--;
362 *pse = parent_entity(*pse); 362 *pse = parent_entity(*pse);
363 } 363 }
364 364
365 while (!is_same_group(*se, *pse)) { 365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se); 366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse); 367 *pse = parent_entity(*pse);
368 } 368 }
369 } 369 }
370 370
371 #else /* !CONFIG_FAIR_GROUP_SCHED */ 371 #else /* !CONFIG_FAIR_GROUP_SCHED */
372 372
373 static inline struct task_struct *task_of(struct sched_entity *se) 373 static inline struct task_struct *task_of(struct sched_entity *se)
374 { 374 {
375 return container_of(se, struct task_struct, se); 375 return container_of(se, struct task_struct, se);
376 } 376 }
377 377
378 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 378 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379 { 379 {
380 return container_of(cfs_rq, struct rq, cfs); 380 return container_of(cfs_rq, struct rq, cfs);
381 } 381 }
382 382
383 #define entity_is_task(se) 1 383 #define entity_is_task(se) 1
384 384
385 #define for_each_sched_entity(se) \ 385 #define for_each_sched_entity(se) \
386 for (; se; se = NULL) 386 for (; se; se = NULL)
387 387
388 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 388 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
389 { 389 {
390 return &task_rq(p)->cfs; 390 return &task_rq(p)->cfs;
391 } 391 }
392 392
393 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 393 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394 { 394 {
395 struct task_struct *p = task_of(se); 395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p); 396 struct rq *rq = task_rq(p);
397 397
398 return &rq->cfs; 398 return &rq->cfs;
399 } 399 }
400 400
401 /* runqueue "owned" by this group */ 401 /* runqueue "owned" by this group */
402 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 402 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403 { 403 {
404 return NULL; 404 return NULL;
405 } 405 }
406 406
407 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 407 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 { 408 {
409 } 409 }
410 410
411 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 411 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412 { 412 {
413 } 413 }
414 414
415 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 415 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417 417
418 static inline struct sched_entity *parent_entity(struct sched_entity *se) 418 static inline struct sched_entity *parent_entity(struct sched_entity *se)
419 { 419 {
420 return NULL; 420 return NULL;
421 } 421 }
422 422
423 static inline void 423 static inline void
424 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 424 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425 { 425 {
426 } 426 }
427 427
428 #endif /* CONFIG_FAIR_GROUP_SCHED */ 428 #endif /* CONFIG_FAIR_GROUP_SCHED */
429 429
430 static __always_inline 430 static __always_inline
431 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 431 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
432 432
433 /************************************************************** 433 /**************************************************************
434 * Scheduling class tree data structure manipulation methods: 434 * Scheduling class tree data structure manipulation methods:
435 */ 435 */
436 436
437 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 437 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
438 { 438 {
439 s64 delta = (s64)(vruntime - max_vruntime); 439 s64 delta = (s64)(vruntime - max_vruntime);
440 if (delta > 0) 440 if (delta > 0)
441 max_vruntime = vruntime; 441 max_vruntime = vruntime;
442 442
443 return max_vruntime; 443 return max_vruntime;
444 } 444 }
445 445
446 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 446 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
447 { 447 {
448 s64 delta = (s64)(vruntime - min_vruntime); 448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0) 449 if (delta < 0)
450 min_vruntime = vruntime; 450 min_vruntime = vruntime;
451 451
452 return min_vruntime; 452 return min_vruntime;
453 } 453 }
454 454
455 static inline int entity_before(struct sched_entity *a, 455 static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b) 456 struct sched_entity *b)
457 { 457 {
458 return (s64)(a->vruntime - b->vruntime) < 0; 458 return (s64)(a->vruntime - b->vruntime) < 0;
459 } 459 }
460 460
461 static void update_min_vruntime(struct cfs_rq *cfs_rq) 461 static void update_min_vruntime(struct cfs_rq *cfs_rq)
462 { 462 {
463 u64 vruntime = cfs_rq->min_vruntime; 463 u64 vruntime = cfs_rq->min_vruntime;
464 464
465 if (cfs_rq->curr) 465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime; 466 vruntime = cfs_rq->curr->vruntime;
467 467
468 if (cfs_rq->rb_leftmost) { 468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity, 470 struct sched_entity,
471 run_node); 471 run_node);
472 472
473 if (!cfs_rq->curr) 473 if (!cfs_rq->curr)
474 vruntime = se->vruntime; 474 vruntime = se->vruntime;
475 else 475 else
476 vruntime = min_vruntime(vruntime, se->vruntime); 476 vruntime = min_vruntime(vruntime, se->vruntime);
477 } 477 }
478 478
479 /* ensure we never gain time by being placed backwards. */ 479 /* ensure we never gain time by being placed backwards. */
480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
481 #ifndef CONFIG_64BIT 481 #ifndef CONFIG_64BIT
482 smp_wmb(); 482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484 #endif 484 #endif
485 } 485 }
486 486
487 /* 487 /*
488 * Enqueue an entity into the rb-tree: 488 * Enqueue an entity into the rb-tree:
489 */ 489 */
490 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 490 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
491 { 491 {
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL; 493 struct rb_node *parent = NULL;
494 struct sched_entity *entry; 494 struct sched_entity *entry;
495 int leftmost = 1; 495 int leftmost = 1;
496 496
497 /* 497 /*
498 * Find the right place in the rbtree: 498 * Find the right place in the rbtree:
499 */ 499 */
500 while (*link) { 500 while (*link) {
501 parent = *link; 501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node); 502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /* 503 /*
504 * We dont care about collisions. Nodes with 504 * We dont care about collisions. Nodes with
505 * the same key stay together. 505 * the same key stay together.
506 */ 506 */
507 if (entity_before(se, entry)) { 507 if (entity_before(se, entry)) {
508 link = &parent->rb_left; 508 link = &parent->rb_left;
509 } else { 509 } else {
510 link = &parent->rb_right; 510 link = &parent->rb_right;
511 leftmost = 0; 511 leftmost = 0;
512 } 512 }
513 } 513 }
514 514
515 /* 515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently 516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used): 517 * used):
518 */ 518 */
519 if (leftmost) 519 if (leftmost)
520 cfs_rq->rb_leftmost = &se->run_node; 520 cfs_rq->rb_leftmost = &se->run_node;
521 521
522 rb_link_node(&se->run_node, parent, link); 522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
524 } 524 }
525 525
526 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 526 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
527 { 527 {
528 if (cfs_rq->rb_leftmost == &se->run_node) { 528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node; 529 struct rb_node *next_node;
530 530
531 next_node = rb_next(&se->run_node); 531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node; 532 cfs_rq->rb_leftmost = next_node;
533 } 533 }
534 534
535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
536 } 536 }
537 537
538 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 538 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
539 { 539 {
540 struct rb_node *left = cfs_rq->rb_leftmost; 540 struct rb_node *left = cfs_rq->rb_leftmost;
541 541
542 if (!left) 542 if (!left)
543 return NULL; 543 return NULL;
544 544
545 return rb_entry(left, struct sched_entity, run_node); 545 return rb_entry(left, struct sched_entity, run_node);
546 } 546 }
547 547
548 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 548 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549 { 549 {
550 struct rb_node *next = rb_next(&se->run_node); 550 struct rb_node *next = rb_next(&se->run_node);
551 551
552 if (!next) 552 if (!next)
553 return NULL; 553 return NULL;
554 554
555 return rb_entry(next, struct sched_entity, run_node); 555 return rb_entry(next, struct sched_entity, run_node);
556 } 556 }
557 557
558 #ifdef CONFIG_SCHED_DEBUG 558 #ifdef CONFIG_SCHED_DEBUG
559 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 559 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
560 { 560 {
561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
562 562
563 if (!last) 563 if (!last)
564 return NULL; 564 return NULL;
565 565
566 return rb_entry(last, struct sched_entity, run_node); 566 return rb_entry(last, struct sched_entity, run_node);
567 } 567 }
568 568
569 /************************************************************** 569 /**************************************************************
570 * Scheduling class statistics methods: 570 * Scheduling class statistics methods:
571 */ 571 */
572 572
573 int sched_proc_update_handler(struct ctl_table *table, int write, 573 int sched_proc_update_handler(struct ctl_table *table, int write,
574 void __user *buffer, size_t *lenp, 574 void __user *buffer, size_t *lenp,
575 loff_t *ppos) 575 loff_t *ppos)
576 { 576 {
577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
578 int factor = get_update_sysctl_factor(); 578 int factor = get_update_sysctl_factor();
579 579
580 if (ret || !write) 580 if (ret || !write)
581 return ret; 581 return ret;
582 582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity); 584 sysctl_sched_min_granularity);
585 585
586 #define WRT_SYSCTL(name) \ 586 #define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor)) 587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity); 588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency); 589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity); 590 WRT_SYSCTL(sched_wakeup_granularity);
591 #undef WRT_SYSCTL 591 #undef WRT_SYSCTL
592 592
593 return 0; 593 return 0;
594 } 594 }
595 #endif 595 #endif
596 596
597 /* 597 /*
598 * delta /= w 598 * delta /= w
599 */ 599 */
600 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 600 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
601 { 601 {
602 if (unlikely(se->load.weight != NICE_0_LOAD)) 602 if (unlikely(se->load.weight != NICE_0_LOAD))
603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
604 604
605 return delta; 605 return delta;
606 } 606 }
607 607
608 /* 608 /*
609 * The idea is to set a period in which each task runs once. 609 * The idea is to set a period in which each task runs once.
610 * 610 *
611 * When there are too many tasks (sched_nr_latency) we have to stretch 611 * When there are too many tasks (sched_nr_latency) we have to stretch
612 * this period because otherwise the slices get too small. 612 * this period because otherwise the slices get too small.
613 * 613 *
614 * p = (nr <= nl) ? l : l*nr/nl 614 * p = (nr <= nl) ? l : l*nr/nl
615 */ 615 */
616 static u64 __sched_period(unsigned long nr_running) 616 static u64 __sched_period(unsigned long nr_running)
617 { 617 {
618 u64 period = sysctl_sched_latency; 618 u64 period = sysctl_sched_latency;
619 unsigned long nr_latency = sched_nr_latency; 619 unsigned long nr_latency = sched_nr_latency;
620 620
621 if (unlikely(nr_running > nr_latency)) { 621 if (unlikely(nr_running > nr_latency)) {
622 period = sysctl_sched_min_granularity; 622 period = sysctl_sched_min_granularity;
623 period *= nr_running; 623 period *= nr_running;
624 } 624 }
625 625
626 return period; 626 return period;
627 } 627 }
628 628
629 /* 629 /*
630 * We calculate the wall-time slice from the period by taking a part 630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight. 631 * proportional to the weight.
632 * 632 *
633 * s = p*P[w/rw] 633 * s = p*P[w/rw]
634 */ 634 */
635 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 635 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
636 { 636 {
637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
638 638
639 for_each_sched_entity(se) { 639 for_each_sched_entity(se) {
640 struct load_weight *load; 640 struct load_weight *load;
641 struct load_weight lw; 641 struct load_weight lw;
642 642
643 cfs_rq = cfs_rq_of(se); 643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load; 644 load = &cfs_rq->load;
645 645
646 if (unlikely(!se->on_rq)) { 646 if (unlikely(!se->on_rq)) {
647 lw = cfs_rq->load; 647 lw = cfs_rq->load;
648 648
649 update_load_add(&lw, se->load.weight); 649 update_load_add(&lw, se->load.weight);
650 load = &lw; 650 load = &lw;
651 } 651 }
652 slice = __calc_delta(slice, se->load.weight, load); 652 slice = __calc_delta(slice, se->load.weight, load);
653 } 653 }
654 return slice; 654 return slice;
655 } 655 }
656 656
657 /* 657 /*
658 * We calculate the vruntime slice of a to-be-inserted task. 658 * We calculate the vruntime slice of a to-be-inserted task.
659 * 659 *
660 * vs = s/w 660 * vs = s/w
661 */ 661 */
662 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 662 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
663 { 663 {
664 return calc_delta_fair(sched_slice(cfs_rq, se), se); 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
665 } 665 }
666 666
667 #ifdef CONFIG_SMP 667 #ifdef CONFIG_SMP
668 static unsigned long task_h_load(struct task_struct *p); 668 static unsigned long task_h_load(struct task_struct *p);
669 669
670 static inline void __update_task_entity_contrib(struct sched_entity *se); 670 static inline void __update_task_entity_contrib(struct sched_entity *se);
671 671
672 /* Give new task start runnable values to heavy its load in infant time */ 672 /* Give new task start runnable values to heavy its load in infant time */
673 void init_task_runnable_average(struct task_struct *p) 673 void init_task_runnable_average(struct task_struct *p)
674 { 674 {
675 u32 slice; 675 u32 slice;
676 676
677 p->se.avg.decay_count = 0; 677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10; 678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice; 679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice; 680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se); 681 __update_task_entity_contrib(&p->se);
682 } 682 }
683 #else 683 #else
684 void init_task_runnable_average(struct task_struct *p) 684 void init_task_runnable_average(struct task_struct *p)
685 { 685 {
686 } 686 }
687 #endif 687 #endif
688 688
689 /* 689 /*
690 * Update the current task's runtime statistics. 690 * Update the current task's runtime statistics.
691 */ 691 */
692 static void update_curr(struct cfs_rq *cfs_rq) 692 static void update_curr(struct cfs_rq *cfs_rq)
693 { 693 {
694 struct sched_entity *curr = cfs_rq->curr; 694 struct sched_entity *curr = cfs_rq->curr;
695 u64 now = rq_clock_task(rq_of(cfs_rq)); 695 u64 now = rq_clock_task(rq_of(cfs_rq));
696 u64 delta_exec; 696 u64 delta_exec;
697 697
698 if (unlikely(!curr)) 698 if (unlikely(!curr))
699 return; 699 return;
700 700
701 delta_exec = now - curr->exec_start; 701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0)) 702 if (unlikely((s64)delta_exec <= 0))
703 return; 703 return;
704 704
705 curr->exec_start = now; 705 curr->exec_start = now;
706 706
707 schedstat_set(curr->statistics.exec_max, 707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max)); 708 max(delta_exec, curr->statistics.exec_max));
709 709
710 curr->sum_exec_runtime += delta_exec; 710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec); 711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712 712
713 curr->vruntime += calc_delta_fair(delta_exec, curr); 713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq); 714 update_min_vruntime(cfs_rq);
715 715
716 if (entity_is_task(curr)) { 716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr); 717 struct task_struct *curtask = task_of(curr);
718 718
719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
720 cpuacct_charge(curtask, delta_exec); 720 cpuacct_charge(curtask, delta_exec);
721 account_group_exec_runtime(curtask, delta_exec); 721 account_group_exec_runtime(curtask, delta_exec);
722 } 722 }
723 723
724 account_cfs_rq_runtime(cfs_rq, delta_exec); 724 account_cfs_rq_runtime(cfs_rq, delta_exec);
725 } 725 }
726 726
727 static inline void 727 static inline void
728 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 728 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
729 { 729 {
730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq))); 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
731 } 731 }
732 732
733 /* 733 /*
734 * Task is being enqueued - update stats: 734 * Task is being enqueued - update stats:
735 */ 735 */
736 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 736 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 { 737 {
738 /* 738 /*
739 * Are we enqueueing a waiting task? (for current tasks 739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP) 740 * a dequeue/enqueue event is a NOP)
741 */ 741 */
742 if (se != cfs_rq->curr) 742 if (se != cfs_rq->curr)
743 update_stats_wait_start(cfs_rq, se); 743 update_stats_wait_start(cfs_rq, se);
744 } 744 }
745 745
746 static void 746 static void
747 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 747 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
748 { 748 {
749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start)); 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); 751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + 752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
754 #ifdef CONFIG_SCHEDSTATS 754 #ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) { 755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se), 756 trace_sched_stat_wait(task_of(se),
757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
758 } 758 }
759 #endif 759 #endif
760 schedstat_set(se->statistics.wait_start, 0); 760 schedstat_set(se->statistics.wait_start, 0);
761 } 761 }
762 762
763 static inline void 763 static inline void
764 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 764 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
765 { 765 {
766 /* 766 /*
767 * Mark the end of the wait period if dequeueing a 767 * Mark the end of the wait period if dequeueing a
768 * waiting task: 768 * waiting task:
769 */ 769 */
770 if (se != cfs_rq->curr) 770 if (se != cfs_rq->curr)
771 update_stats_wait_end(cfs_rq, se); 771 update_stats_wait_end(cfs_rq, se);
772 } 772 }
773 773
774 /* 774 /*
775 * We are picking a new current task - update its stats: 775 * We are picking a new current task - update its stats:
776 */ 776 */
777 static inline void 777 static inline void
778 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 778 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 { 779 {
780 /* 780 /*
781 * We are starting a new run period: 781 * We are starting a new run period:
782 */ 782 */
783 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
784 } 784 }
785 785
786 /************************************************** 786 /**************************************************
787 * Scheduling class queueing methods: 787 * Scheduling class queueing methods:
788 */ 788 */
789 789
790 #ifdef CONFIG_NUMA_BALANCING 790 #ifdef CONFIG_NUMA_BALANCING
791 /* 791 /*
792 * Approximate time to scan a full NUMA task in ms. The task scan period is 792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and 793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size. 794 * numa_balancing_scan_size.
795 */ 795 */
796 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 796 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 797 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
798 798
799 /* Portion of address space to scan in MB */ 799 /* Portion of address space to scan in MB */
800 unsigned int sysctl_numa_balancing_scan_size = 256; 800 unsigned int sysctl_numa_balancing_scan_size = 256;
801 801
802 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 802 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803 unsigned int sysctl_numa_balancing_scan_delay = 1000; 803 unsigned int sysctl_numa_balancing_scan_delay = 1000;
804 804
805 static unsigned int task_nr_scan_windows(struct task_struct *p) 805 static unsigned int task_nr_scan_windows(struct task_struct *p)
806 { 806 {
807 unsigned long rss = 0; 807 unsigned long rss = 0;
808 unsigned long nr_scan_pages; 808 unsigned long nr_scan_pages;
809 809
810 /* 810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped 811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based 812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages 813 * on resident pages
814 */ 814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm); 816 rss = get_mm_rss(p->mm);
817 if (!rss) 817 if (!rss)
818 rss = nr_scan_pages; 818 rss = nr_scan_pages;
819 819
820 rss = round_up(rss, nr_scan_pages); 820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages; 821 return rss / nr_scan_pages;
822 } 822 }
823 823
824 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 824 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825 #define MAX_SCAN_WINDOW 2560 825 #define MAX_SCAN_WINDOW 2560
826 826
827 static unsigned int task_scan_min(struct task_struct *p) 827 static unsigned int task_scan_min(struct task_struct *p)
828 { 828 {
829 unsigned int scan, floor; 829 unsigned int scan, floor;
830 unsigned int windows = 1; 830 unsigned int windows = 1;
831 831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW) 832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size; 833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows; 834 floor = 1000 / windows;
835 835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan); 837 return max_t(unsigned int, floor, scan);
838 } 838 }
839 839
840 static unsigned int task_scan_max(struct task_struct *p) 840 static unsigned int task_scan_max(struct task_struct *p)
841 { 841 {
842 unsigned int smin = task_scan_min(p); 842 unsigned int smin = task_scan_min(p);
843 unsigned int smax; 843 unsigned int smax;
844 844
845 /* Watch for min being lower than max due to floor calculations */ 845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax); 847 return max(smin, smax);
848 } 848 }
849 849
850 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 850 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851 { 851 {
852 rq->nr_numa_running += (p->numa_preferred_nid != -1); 852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854 } 854 }
855 855
856 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 856 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857 { 857 {
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860 } 860 }
861 861
862 struct numa_group { 862 struct numa_group {
863 atomic_t refcount; 863 atomic_t refcount;
864 864
865 spinlock_t lock; /* nr_tasks, tasks */ 865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks; 866 int nr_tasks;
867 pid_t gid; 867 pid_t gid;
868 struct list_head task_list; 868 struct list_head task_list;
869 869
870 struct rcu_head rcu; 870 struct rcu_head rcu;
871 nodemask_t active_nodes; 871 nodemask_t active_nodes;
872 unsigned long total_faults; 872 unsigned long total_faults;
873 /* 873 /*
874 * Faults_cpu is used to decide whether memory should move 874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted 875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults. 876 * more by CPU use than by memory faults.
877 */ 877 */
878 unsigned long *faults_cpu; 878 unsigned long *faults_cpu;
879 unsigned long faults[0]; 879 unsigned long faults[0];
880 }; 880 };
881 881
882 /* Shared or private faults. */ 882 /* Shared or private faults. */
883 #define NR_NUMA_HINT_FAULT_TYPES 2 883 #define NR_NUMA_HINT_FAULT_TYPES 2
884 884
885 /* Memory and CPU locality */ 885 /* Memory and CPU locality */
886 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 886 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887 887
888 /* Averaged statistics, and temporary buffers. */ 888 /* Averaged statistics, and temporary buffers. */
889 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 889 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890 890
891 pid_t task_numa_group_id(struct task_struct *p) 891 pid_t task_numa_group_id(struct task_struct *p)
892 { 892 {
893 return p->numa_group ? p->numa_group->gid : 0; 893 return p->numa_group ? p->numa_group->gid : 0;
894 } 894 }
895 895
896 static inline int task_faults_idx(int nid, int priv) 896 static inline int task_faults_idx(int nid, int priv)
897 { 897 {
898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv; 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
899 } 899 }
900 900
901 static inline unsigned long task_faults(struct task_struct *p, int nid) 901 static inline unsigned long task_faults(struct task_struct *p, int nid)
902 { 902 {
903 if (!p->numa_faults_memory) 903 if (!p->numa_faults_memory)
904 return 0; 904 return 0;
905 905
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] + 906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)]; 907 p->numa_faults_memory[task_faults_idx(nid, 1)];
908 } 908 }
909 909
910 static inline unsigned long group_faults(struct task_struct *p, int nid) 910 static inline unsigned long group_faults(struct task_struct *p, int nid)
911 { 911 {
912 if (!p->numa_group) 912 if (!p->numa_group)
913 return 0; 913 return 0;
914 914
915 return p->numa_group->faults[task_faults_idx(nid, 0)] + 915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)]; 916 p->numa_group->faults[task_faults_idx(nid, 1)];
917 } 917 }
918 918
919 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 919 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920 { 920 {
921 return group->faults_cpu[task_faults_idx(nid, 0)] + 921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)]; 922 group->faults_cpu[task_faults_idx(nid, 1)];
923 } 923 }
924 924
925 /* 925 /*
926 * These return the fraction of accesses done by a particular task, or 926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a 927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost 928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes. 929 * evenly spread out between numa nodes.
930 */ 930 */
931 static inline unsigned long task_weight(struct task_struct *p, int nid) 931 static inline unsigned long task_weight(struct task_struct *p, int nid)
932 { 932 {
933 unsigned long total_faults; 933 unsigned long total_faults;
934 934
935 if (!p->numa_faults_memory) 935 if (!p->numa_faults_memory)
936 return 0; 936 return 0;
937 937
938 total_faults = p->total_numa_faults; 938 total_faults = p->total_numa_faults;
939 939
940 if (!total_faults) 940 if (!total_faults)
941 return 0; 941 return 0;
942 942
943 return 1000 * task_faults(p, nid) / total_faults; 943 return 1000 * task_faults(p, nid) / total_faults;
944 } 944 }
945 945
946 static inline unsigned long group_weight(struct task_struct *p, int nid) 946 static inline unsigned long group_weight(struct task_struct *p, int nid)
947 { 947 {
948 if (!p->numa_group || !p->numa_group->total_faults) 948 if (!p->numa_group || !p->numa_group->total_faults)
949 return 0; 949 return 0;
950 950
951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults; 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
952 } 952 }
953 953
954 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 954 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu) 955 int src_nid, int dst_cpu)
956 { 956 {
957 struct numa_group *ng = p->numa_group; 957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu); 958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid; 959 int last_cpupid, this_cpupid;
960 960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962 962
963 /* 963 /*
964 * Multi-stage node selection is used in conjunction with a periodic 964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using 965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations. 966 * a two-stage filter we remove short/unlikely relations.
967 * 967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this 969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability. 970 * page (n_t) (in a given time-span) to a probability.
971 * 971 *
972 * Our periodic faults will sample this probability and getting the 972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully 973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period 974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern. 975 * is sufficiently short compared to the usage pattern.
976 * 976 *
977 * This quadric squishes small probabilities, making it less likely we 977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation. 978 * act on an unlikely task<->page relation.
979 */ 979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) && 981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid) 982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false; 983 return false;
984 984
985 /* Always allow migrate on private faults */ 985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid)) 986 if (cpupid_match_pid(p, last_cpupid))
987 return true; 987 return true;
988 988
989 /* A shared fault, but p->numa_group has not been set up yet. */ 989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng) 990 if (!ng)
991 return true; 991 return true;
992 992
993 /* 993 /*
994 * Do not migrate if the destination is not a node that 994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group. 995 * is actively used by this numa group.
996 */ 996 */
997 if (!node_isset(dst_nid, ng->active_nodes)) 997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false; 998 return false;
999 999
1000 /* 1000 /*
1001 * Source is a node that is not actively used by this 1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate. 1002 * numa group, while the destination is. Migrate.
1003 */ 1003 */
1004 if (!node_isset(src_nid, ng->active_nodes)) 1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true; 1005 return true;
1006 1006
1007 /* 1007 /*
1008 * Both source and destination are nodes in active 1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth 1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less 1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around. 1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement. 1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */ 1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4); 1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015 } 1015 }
1016 1016
1017 static unsigned long weighted_cpuload(const int cpu); 1017 static unsigned long weighted_cpuload(const int cpu);
1018 static unsigned long source_load(int cpu, int type); 1018 static unsigned long source_load(int cpu, int type);
1019 static unsigned long target_load(int cpu, int type); 1019 static unsigned long target_load(int cpu, int type);
1020 static unsigned long power_of(int cpu); 1020 static unsigned long power_of(int cpu);
1021 static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 1021 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022 1022
1023 /* Cached statistics for all CPUs within a node */ 1023 /* Cached statistics for all CPUs within a node */
1024 struct numa_stats { 1024 struct numa_stats {
1025 unsigned long nr_running; 1025 unsigned long nr_running;
1026 unsigned long load; 1026 unsigned long load;
1027 1027
1028 /* Total compute capacity of CPUs on a node */ 1028 /* Total compute capacity of CPUs on a node */
1029 unsigned long power; 1029 unsigned long power;
1030 1030
1031 /* Approximate capacity in terms of runnable tasks on a node */ 1031 /* Approximate capacity in terms of runnable tasks on a node */
1032 unsigned long capacity; 1032 unsigned long capacity;
1033 int has_capacity; 1033 int has_capacity;
1034 }; 1034 };
1035 1035
1036 /* 1036 /*
1037 * XXX borrowed from update_sg_lb_stats 1037 * XXX borrowed from update_sg_lb_stats
1038 */ 1038 */
1039 static void update_numa_stats(struct numa_stats *ns, int nid) 1039 static void update_numa_stats(struct numa_stats *ns, int nid)
1040 { 1040 {
1041 int cpu, cpus = 0; 1041 int cpu, cpus = 0;
1042 1042
1043 memset(ns, 0, sizeof(*ns)); 1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) { 1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu); 1045 struct rq *rq = cpu_rq(cpu);
1046 1046
1047 ns->nr_running += rq->nr_running; 1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu); 1048 ns->load += weighted_cpuload(cpu);
1049 ns->power += power_of(cpu); 1049 ns->power += power_of(cpu);
1050 1050
1051 cpus++; 1051 cpus++;
1052 } 1052 }
1053 1053
1054 /* 1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask 1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will 1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive. 1057 * not find this node attractive.
1058 * 1058 *
1059 * We'll either bail at !has_capacity, or we'll detect a huge imbalance 1059 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1060 * and bail there. 1060 * and bail there.
1061 */ 1061 */
1062 if (!cpus) 1062 if (!cpus)
1063 return; 1063 return;
1064 1064
1065 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power; 1065 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1066 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE); 1066 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1067 ns->has_capacity = (ns->nr_running < ns->capacity); 1067 ns->has_capacity = (ns->nr_running < ns->capacity);
1068 } 1068 }
1069 1069
1070 struct task_numa_env { 1070 struct task_numa_env {
1071 struct task_struct *p; 1071 struct task_struct *p;
1072 1072
1073 int src_cpu, src_nid; 1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid; 1074 int dst_cpu, dst_nid;
1075 1075
1076 struct numa_stats src_stats, dst_stats; 1076 struct numa_stats src_stats, dst_stats;
1077 1077
1078 int imbalance_pct; 1078 int imbalance_pct;
1079 1079
1080 struct task_struct *best_task; 1080 struct task_struct *best_task;
1081 long best_imp; 1081 long best_imp;
1082 int best_cpu; 1082 int best_cpu;
1083 }; 1083 };
1084 1084
1085 static void task_numa_assign(struct task_numa_env *env, 1085 static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp) 1086 struct task_struct *p, long imp)
1087 { 1087 {
1088 if (env->best_task) 1088 if (env->best_task)
1089 put_task_struct(env->best_task); 1089 put_task_struct(env->best_task);
1090 if (p) 1090 if (p)
1091 get_task_struct(p); 1091 get_task_struct(p);
1092 1092
1093 env->best_task = p; 1093 env->best_task = p;
1094 env->best_imp = imp; 1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu; 1095 env->best_cpu = env->dst_cpu;
1096 } 1096 }
1097 1097
1098 /* 1098 /*
1099 * This checks if the overall compute and NUMA accesses of the system would 1099 * This checks if the overall compute and NUMA accesses of the system would
1100 * be improved if the source tasks was migrated to the target dst_cpu taking 1100 * be improved if the source tasks was migrated to the target dst_cpu taking
1101 * into account that it might be best if task running on the dst_cpu should 1101 * into account that it might be best if task running on the dst_cpu should
1102 * be exchanged with the source task 1102 * be exchanged with the source task
1103 */ 1103 */
1104 static void task_numa_compare(struct task_numa_env *env, 1104 static void task_numa_compare(struct task_numa_env *env,
1105 long taskimp, long groupimp) 1105 long taskimp, long groupimp)
1106 { 1106 {
1107 struct rq *src_rq = cpu_rq(env->src_cpu); 1107 struct rq *src_rq = cpu_rq(env->src_cpu);
1108 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1108 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1109 struct task_struct *cur; 1109 struct task_struct *cur;
1110 long dst_load, src_load; 1110 long dst_load, src_load;
1111 long load; 1111 long load;
1112 long imp = (groupimp > 0) ? groupimp : taskimp; 1112 long imp = (groupimp > 0) ? groupimp : taskimp;
1113 1113
1114 rcu_read_lock(); 1114 rcu_read_lock();
1115 cur = ACCESS_ONCE(dst_rq->curr); 1115 cur = ACCESS_ONCE(dst_rq->curr);
1116 if (cur->pid == 0) /* idle */ 1116 if (cur->pid == 0) /* idle */
1117 cur = NULL; 1117 cur = NULL;
1118 1118
1119 /* 1119 /*
1120 * "imp" is the fault differential for the source task between the 1120 * "imp" is the fault differential for the source task between the
1121 * source and destination node. Calculate the total differential for 1121 * source and destination node. Calculate the total differential for
1122 * the source task and potential destination task. The more negative 1122 * the source task and potential destination task. The more negative
1123 * the value is, the more rmeote accesses that would be expected to 1123 * the value is, the more rmeote accesses that would be expected to
1124 * be incurred if the tasks were swapped. 1124 * be incurred if the tasks were swapped.
1125 */ 1125 */
1126 if (cur) { 1126 if (cur) {
1127 /* Skip this swap candidate if cannot move to the source cpu */ 1127 /* Skip this swap candidate if cannot move to the source cpu */
1128 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) 1128 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1129 goto unlock; 1129 goto unlock;
1130 1130
1131 /* 1131 /*
1132 * If dst and source tasks are in the same NUMA group, or not 1132 * If dst and source tasks are in the same NUMA group, or not
1133 * in any group then look only at task weights. 1133 * in any group then look only at task weights.
1134 */ 1134 */
1135 if (cur->numa_group == env->p->numa_group) { 1135 if (cur->numa_group == env->p->numa_group) {
1136 imp = taskimp + task_weight(cur, env->src_nid) - 1136 imp = taskimp + task_weight(cur, env->src_nid) -
1137 task_weight(cur, env->dst_nid); 1137 task_weight(cur, env->dst_nid);
1138 /* 1138 /*
1139 * Add some hysteresis to prevent swapping the 1139 * Add some hysteresis to prevent swapping the
1140 * tasks within a group over tiny differences. 1140 * tasks within a group over tiny differences.
1141 */ 1141 */
1142 if (cur->numa_group) 1142 if (cur->numa_group)
1143 imp -= imp/16; 1143 imp -= imp/16;
1144 } else { 1144 } else {
1145 /* 1145 /*
1146 * Compare the group weights. If a task is all by 1146 * Compare the group weights. If a task is all by
1147 * itself (not part of a group), use the task weight 1147 * itself (not part of a group), use the task weight
1148 * instead. 1148 * instead.
1149 */ 1149 */
1150 if (env->p->numa_group) 1150 if (env->p->numa_group)
1151 imp = groupimp; 1151 imp = groupimp;
1152 else 1152 else
1153 imp = taskimp; 1153 imp = taskimp;
1154 1154
1155 if (cur->numa_group) 1155 if (cur->numa_group)
1156 imp += group_weight(cur, env->src_nid) - 1156 imp += group_weight(cur, env->src_nid) -
1157 group_weight(cur, env->dst_nid); 1157 group_weight(cur, env->dst_nid);
1158 else 1158 else
1159 imp += task_weight(cur, env->src_nid) - 1159 imp += task_weight(cur, env->src_nid) -
1160 task_weight(cur, env->dst_nid); 1160 task_weight(cur, env->dst_nid);
1161 } 1161 }
1162 } 1162 }
1163 1163
1164 if (imp < env->best_imp) 1164 if (imp < env->best_imp)
1165 goto unlock; 1165 goto unlock;
1166 1166
1167 if (!cur) { 1167 if (!cur) {
1168 /* Is there capacity at our destination? */ 1168 /* Is there capacity at our destination? */
1169 if (env->src_stats.has_capacity && 1169 if (env->src_stats.has_capacity &&
1170 !env->dst_stats.has_capacity) 1170 !env->dst_stats.has_capacity)
1171 goto unlock; 1171 goto unlock;
1172 1172
1173 goto balance; 1173 goto balance;
1174 } 1174 }
1175 1175
1176 /* Balance doesn't matter much if we're running a task per cpu */ 1176 /* Balance doesn't matter much if we're running a task per cpu */
1177 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1) 1177 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1178 goto assign; 1178 goto assign;
1179 1179
1180 /* 1180 /*
1181 * In the overloaded case, try and keep the load balanced. 1181 * In the overloaded case, try and keep the load balanced.
1182 */ 1182 */
1183 balance: 1183 balance:
1184 dst_load = env->dst_stats.load; 1184 dst_load = env->dst_stats.load;
1185 src_load = env->src_stats.load; 1185 src_load = env->src_stats.load;
1186 1186
1187 /* XXX missing power terms */ 1187 /* XXX missing power terms */
1188 load = task_h_load(env->p); 1188 load = task_h_load(env->p);
1189 dst_load += load; 1189 dst_load += load;
1190 src_load -= load; 1190 src_load -= load;
1191 1191
1192 if (cur) { 1192 if (cur) {
1193 load = task_h_load(cur); 1193 load = task_h_load(cur);
1194 dst_load -= load; 1194 dst_load -= load;
1195 src_load += load; 1195 src_load += load;
1196 } 1196 }
1197 1197
1198 /* make src_load the smaller */ 1198 /* make src_load the smaller */
1199 if (dst_load < src_load) 1199 if (dst_load < src_load)
1200 swap(dst_load, src_load); 1200 swap(dst_load, src_load);
1201 1201
1202 if (src_load * env->imbalance_pct < dst_load * 100) 1202 if (src_load * env->imbalance_pct < dst_load * 100)
1203 goto unlock; 1203 goto unlock;
1204 1204
1205 assign: 1205 assign:
1206 task_numa_assign(env, cur, imp); 1206 task_numa_assign(env, cur, imp);
1207 unlock: 1207 unlock:
1208 rcu_read_unlock(); 1208 rcu_read_unlock();
1209 } 1209 }
1210 1210
1211 static void task_numa_find_cpu(struct task_numa_env *env, 1211 static void task_numa_find_cpu(struct task_numa_env *env,
1212 long taskimp, long groupimp) 1212 long taskimp, long groupimp)
1213 { 1213 {
1214 int cpu; 1214 int cpu;
1215 1215
1216 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1216 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1217 /* Skip this CPU if the source task cannot migrate */ 1217 /* Skip this CPU if the source task cannot migrate */
1218 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) 1218 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1219 continue; 1219 continue;
1220 1220
1221 env->dst_cpu = cpu; 1221 env->dst_cpu = cpu;
1222 task_numa_compare(env, taskimp, groupimp); 1222 task_numa_compare(env, taskimp, groupimp);
1223 } 1223 }
1224 } 1224 }
1225 1225
1226 static int task_numa_migrate(struct task_struct *p) 1226 static int task_numa_migrate(struct task_struct *p)
1227 { 1227 {
1228 struct task_numa_env env = { 1228 struct task_numa_env env = {
1229 .p = p, 1229 .p = p,
1230 1230
1231 .src_cpu = task_cpu(p), 1231 .src_cpu = task_cpu(p),
1232 .src_nid = task_node(p), 1232 .src_nid = task_node(p),
1233 1233
1234 .imbalance_pct = 112, 1234 .imbalance_pct = 112,
1235 1235
1236 .best_task = NULL, 1236 .best_task = NULL,
1237 .best_imp = 0, 1237 .best_imp = 0,
1238 .best_cpu = -1 1238 .best_cpu = -1
1239 }; 1239 };
1240 struct sched_domain *sd; 1240 struct sched_domain *sd;
1241 unsigned long taskweight, groupweight; 1241 unsigned long taskweight, groupweight;
1242 int nid, ret; 1242 int nid, ret;
1243 long taskimp, groupimp; 1243 long taskimp, groupimp;
1244 1244
1245 /* 1245 /*
1246 * Pick the lowest SD_NUMA domain, as that would have the smallest 1246 * Pick the lowest SD_NUMA domain, as that would have the smallest
1247 * imbalance and would be the first to start moving tasks about. 1247 * imbalance and would be the first to start moving tasks about.
1248 * 1248 *
1249 * And we want to avoid any moving of tasks about, as that would create 1249 * And we want to avoid any moving of tasks about, as that would create
1250 * random movement of tasks -- counter the numa conditions we're trying 1250 * random movement of tasks -- counter the numa conditions we're trying
1251 * to satisfy here. 1251 * to satisfy here.
1252 */ 1252 */
1253 rcu_read_lock(); 1253 rcu_read_lock();
1254 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1254 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1255 if (sd) 1255 if (sd)
1256 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1256 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1257 rcu_read_unlock(); 1257 rcu_read_unlock();
1258 1258
1259 /* 1259 /*
1260 * Cpusets can break the scheduler domain tree into smaller 1260 * Cpusets can break the scheduler domain tree into smaller
1261 * balance domains, some of which do not cross NUMA boundaries. 1261 * balance domains, some of which do not cross NUMA boundaries.
1262 * Tasks that are "trapped" in such domains cannot be migrated 1262 * Tasks that are "trapped" in such domains cannot be migrated
1263 * elsewhere, so there is no point in (re)trying. 1263 * elsewhere, so there is no point in (re)trying.
1264 */ 1264 */
1265 if (unlikely(!sd)) { 1265 if (unlikely(!sd)) {
1266 p->numa_preferred_nid = task_node(p); 1266 p->numa_preferred_nid = task_node(p);
1267 return -EINVAL; 1267 return -EINVAL;
1268 } 1268 }
1269 1269
1270 taskweight = task_weight(p, env.src_nid); 1270 taskweight = task_weight(p, env.src_nid);
1271 groupweight = group_weight(p, env.src_nid); 1271 groupweight = group_weight(p, env.src_nid);
1272 update_numa_stats(&env.src_stats, env.src_nid); 1272 update_numa_stats(&env.src_stats, env.src_nid);
1273 env.dst_nid = p->numa_preferred_nid; 1273 env.dst_nid = p->numa_preferred_nid;
1274 taskimp = task_weight(p, env.dst_nid) - taskweight; 1274 taskimp = task_weight(p, env.dst_nid) - taskweight;
1275 groupimp = group_weight(p, env.dst_nid) - groupweight; 1275 groupimp = group_weight(p, env.dst_nid) - groupweight;
1276 update_numa_stats(&env.dst_stats, env.dst_nid); 1276 update_numa_stats(&env.dst_stats, env.dst_nid);
1277 1277
1278 /* If the preferred nid has capacity, try to use it. */ 1278 /* If the preferred nid has capacity, try to use it. */
1279 if (env.dst_stats.has_capacity) 1279 if (env.dst_stats.has_capacity)
1280 task_numa_find_cpu(&env, taskimp, groupimp); 1280 task_numa_find_cpu(&env, taskimp, groupimp);
1281 1281
1282 /* No space available on the preferred nid. Look elsewhere. */ 1282 /* No space available on the preferred nid. Look elsewhere. */
1283 if (env.best_cpu == -1) { 1283 if (env.best_cpu == -1) {
1284 for_each_online_node(nid) { 1284 for_each_online_node(nid) {
1285 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1285 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1286 continue; 1286 continue;
1287 1287
1288 /* Only consider nodes where both task and groups benefit */ 1288 /* Only consider nodes where both task and groups benefit */
1289 taskimp = task_weight(p, nid) - taskweight; 1289 taskimp = task_weight(p, nid) - taskweight;
1290 groupimp = group_weight(p, nid) - groupweight; 1290 groupimp = group_weight(p, nid) - groupweight;
1291 if (taskimp < 0 && groupimp < 0) 1291 if (taskimp < 0 && groupimp < 0)
1292 continue; 1292 continue;
1293 1293
1294 env.dst_nid = nid; 1294 env.dst_nid = nid;
1295 update_numa_stats(&env.dst_stats, env.dst_nid); 1295 update_numa_stats(&env.dst_stats, env.dst_nid);
1296 task_numa_find_cpu(&env, taskimp, groupimp); 1296 task_numa_find_cpu(&env, taskimp, groupimp);
1297 } 1297 }
1298 } 1298 }
1299 1299
1300 /* No better CPU than the current one was found. */ 1300 /* No better CPU than the current one was found. */
1301 if (env.best_cpu == -1) 1301 if (env.best_cpu == -1)
1302 return -EAGAIN; 1302 return -EAGAIN;
1303 1303
1304 sched_setnuma(p, env.dst_nid); 1304 sched_setnuma(p, env.dst_nid);
1305 1305
1306 /* 1306 /*
1307 * Reset the scan period if the task is being rescheduled on an 1307 * Reset the scan period if the task is being rescheduled on an
1308 * alternative node to recheck if the tasks is now properly placed. 1308 * alternative node to recheck if the tasks is now properly placed.
1309 */ 1309 */
1310 p->numa_scan_period = task_scan_min(p); 1310 p->numa_scan_period = task_scan_min(p);
1311 1311
1312 if (env.best_task == NULL) { 1312 if (env.best_task == NULL) {
1313 ret = migrate_task_to(p, env.best_cpu); 1313 ret = migrate_task_to(p, env.best_cpu);
1314 if (ret != 0) 1314 if (ret != 0)
1315 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1315 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1316 return ret; 1316 return ret;
1317 } 1317 }
1318 1318
1319 ret = migrate_swap(p, env.best_task); 1319 ret = migrate_swap(p, env.best_task);
1320 if (ret != 0) 1320 if (ret != 0)
1321 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1321 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1322 put_task_struct(env.best_task); 1322 put_task_struct(env.best_task);
1323 return ret; 1323 return ret;
1324 } 1324 }
1325 1325
1326 /* Attempt to migrate a task to a CPU on the preferred node. */ 1326 /* Attempt to migrate a task to a CPU on the preferred node. */
1327 static void numa_migrate_preferred(struct task_struct *p) 1327 static void numa_migrate_preferred(struct task_struct *p)
1328 { 1328 {
1329 /* This task has no NUMA fault statistics yet */ 1329 /* This task has no NUMA fault statistics yet */
1330 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory)) 1330 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1331 return; 1331 return;
1332 1332
1333 /* Periodically retry migrating the task to the preferred node */ 1333 /* Periodically retry migrating the task to the preferred node */
1334 p->numa_migrate_retry = jiffies + HZ; 1334 p->numa_migrate_retry = jiffies + HZ;
1335 1335
1336 /* Success if task is already running on preferred CPU */ 1336 /* Success if task is already running on preferred CPU */
1337 if (task_node(p) == p->numa_preferred_nid) 1337 if (task_node(p) == p->numa_preferred_nid)
1338 return; 1338 return;
1339 1339
1340 /* Otherwise, try migrate to a CPU on the preferred node */ 1340 /* Otherwise, try migrate to a CPU on the preferred node */
1341 task_numa_migrate(p); 1341 task_numa_migrate(p);
1342 } 1342 }
1343 1343
1344 /* 1344 /*
1345 * Find the nodes on which the workload is actively running. We do this by 1345 * Find the nodes on which the workload is actively running. We do this by
1346 * tracking the nodes from which NUMA hinting faults are triggered. This can 1346 * tracking the nodes from which NUMA hinting faults are triggered. This can
1347 * be different from the set of nodes where the workload's memory is currently 1347 * be different from the set of nodes where the workload's memory is currently
1348 * located. 1348 * located.
1349 * 1349 *
1350 * The bitmask is used to make smarter decisions on when to do NUMA page 1350 * The bitmask is used to make smarter decisions on when to do NUMA page
1351 * migrations, To prevent flip-flopping, and excessive page migrations, nodes 1351 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1352 * are added when they cause over 6/16 of the maximum number of faults, but 1352 * are added when they cause over 6/16 of the maximum number of faults, but
1353 * only removed when they drop below 3/16. 1353 * only removed when they drop below 3/16.
1354 */ 1354 */
1355 static void update_numa_active_node_mask(struct numa_group *numa_group) 1355 static void update_numa_active_node_mask(struct numa_group *numa_group)
1356 { 1356 {
1357 unsigned long faults, max_faults = 0; 1357 unsigned long faults, max_faults = 0;
1358 int nid; 1358 int nid;
1359 1359
1360 for_each_online_node(nid) { 1360 for_each_online_node(nid) {
1361 faults = group_faults_cpu(numa_group, nid); 1361 faults = group_faults_cpu(numa_group, nid);
1362 if (faults > max_faults) 1362 if (faults > max_faults)
1363 max_faults = faults; 1363 max_faults = faults;
1364 } 1364 }
1365 1365
1366 for_each_online_node(nid) { 1366 for_each_online_node(nid) {
1367 faults = group_faults_cpu(numa_group, nid); 1367 faults = group_faults_cpu(numa_group, nid);
1368 if (!node_isset(nid, numa_group->active_nodes)) { 1368 if (!node_isset(nid, numa_group->active_nodes)) {
1369 if (faults > max_faults * 6 / 16) 1369 if (faults > max_faults * 6 / 16)
1370 node_set(nid, numa_group->active_nodes); 1370 node_set(nid, numa_group->active_nodes);
1371 } else if (faults < max_faults * 3 / 16) 1371 } else if (faults < max_faults * 3 / 16)
1372 node_clear(nid, numa_group->active_nodes); 1372 node_clear(nid, numa_group->active_nodes);
1373 } 1373 }
1374 } 1374 }
1375 1375
1376 /* 1376 /*
1377 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1377 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1378 * increments. The more local the fault statistics are, the higher the scan 1378 * increments. The more local the fault statistics are, the higher the scan
1379 * period will be for the next scan window. If local/remote ratio is below 1379 * period will be for the next scan window. If local/remote ratio is below
1380 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the 1380 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1381 * scan period will decrease 1381 * scan period will decrease
1382 */ 1382 */
1383 #define NUMA_PERIOD_SLOTS 10 1383 #define NUMA_PERIOD_SLOTS 10
1384 #define NUMA_PERIOD_THRESHOLD 3 1384 #define NUMA_PERIOD_THRESHOLD 3
1385 1385
1386 /* 1386 /*
1387 * Increase the scan period (slow down scanning) if the majority of 1387 * Increase the scan period (slow down scanning) if the majority of
1388 * our memory is already on our local node, or if the majority of 1388 * our memory is already on our local node, or if the majority of
1389 * the page accesses are shared with other processes. 1389 * the page accesses are shared with other processes.
1390 * Otherwise, decrease the scan period. 1390 * Otherwise, decrease the scan period.
1391 */ 1391 */
1392 static void update_task_scan_period(struct task_struct *p, 1392 static void update_task_scan_period(struct task_struct *p,
1393 unsigned long shared, unsigned long private) 1393 unsigned long shared, unsigned long private)
1394 { 1394 {
1395 unsigned int period_slot; 1395 unsigned int period_slot;
1396 int ratio; 1396 int ratio;
1397 int diff; 1397 int diff;
1398 1398
1399 unsigned long remote = p->numa_faults_locality[0]; 1399 unsigned long remote = p->numa_faults_locality[0];
1400 unsigned long local = p->numa_faults_locality[1]; 1400 unsigned long local = p->numa_faults_locality[1];
1401 1401
1402 /* 1402 /*
1403 * If there were no record hinting faults then either the task is 1403 * If there were no record hinting faults then either the task is
1404 * completely idle or all activity is areas that are not of interest 1404 * completely idle or all activity is areas that are not of interest
1405 * to automatic numa balancing. Scan slower 1405 * to automatic numa balancing. Scan slower
1406 */ 1406 */
1407 if (local + shared == 0) { 1407 if (local + shared == 0) {
1408 p->numa_scan_period = min(p->numa_scan_period_max, 1408 p->numa_scan_period = min(p->numa_scan_period_max,
1409 p->numa_scan_period << 1); 1409 p->numa_scan_period << 1);
1410 1410
1411 p->mm->numa_next_scan = jiffies + 1411 p->mm->numa_next_scan = jiffies +
1412 msecs_to_jiffies(p->numa_scan_period); 1412 msecs_to_jiffies(p->numa_scan_period);
1413 1413
1414 return; 1414 return;
1415 } 1415 }
1416 1416
1417 /* 1417 /*
1418 * Prepare to scale scan period relative to the current period. 1418 * Prepare to scale scan period relative to the current period.
1419 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1419 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1420 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1420 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1421 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1421 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1422 */ 1422 */
1423 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1423 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1424 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1424 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1425 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1425 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1426 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1426 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1427 if (!slot) 1427 if (!slot)
1428 slot = 1; 1428 slot = 1;
1429 diff = slot * period_slot; 1429 diff = slot * period_slot;
1430 } else { 1430 } else {
1431 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1431 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1432 1432
1433 /* 1433 /*
1434 * Scale scan rate increases based on sharing. There is an 1434 * Scale scan rate increases based on sharing. There is an
1435 * inverse relationship between the degree of sharing and 1435 * inverse relationship between the degree of sharing and
1436 * the adjustment made to the scanning period. Broadly 1436 * the adjustment made to the scanning period. Broadly
1437 * speaking the intent is that there is little point 1437 * speaking the intent is that there is little point
1438 * scanning faster if shared accesses dominate as it may 1438 * scanning faster if shared accesses dominate as it may
1439 * simply bounce migrations uselessly 1439 * simply bounce migrations uselessly
1440 */ 1440 */
1441 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared)); 1441 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1442 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1442 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1443 } 1443 }
1444 1444
1445 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1445 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1446 task_scan_min(p), task_scan_max(p)); 1446 task_scan_min(p), task_scan_max(p));
1447 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1447 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1448 } 1448 }
1449 1449
1450 /* 1450 /*
1451 * Get the fraction of time the task has been running since the last 1451 * Get the fraction of time the task has been running since the last
1452 * NUMA placement cycle. The scheduler keeps similar statistics, but 1452 * NUMA placement cycle. The scheduler keeps similar statistics, but
1453 * decays those on a 32ms period, which is orders of magnitude off 1453 * decays those on a 32ms period, which is orders of magnitude off
1454 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1454 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1455 * stats only if the task is so new there are no NUMA statistics yet. 1455 * stats only if the task is so new there are no NUMA statistics yet.
1456 */ 1456 */
1457 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1457 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1458 { 1458 {
1459 u64 runtime, delta, now; 1459 u64 runtime, delta, now;
1460 /* Use the start of this time slice to avoid calculations. */ 1460 /* Use the start of this time slice to avoid calculations. */
1461 now = p->se.exec_start; 1461 now = p->se.exec_start;
1462 runtime = p->se.sum_exec_runtime; 1462 runtime = p->se.sum_exec_runtime;
1463 1463
1464 if (p->last_task_numa_placement) { 1464 if (p->last_task_numa_placement) {
1465 delta = runtime - p->last_sum_exec_runtime; 1465 delta = runtime - p->last_sum_exec_runtime;
1466 *period = now - p->last_task_numa_placement; 1466 *period = now - p->last_task_numa_placement;
1467 } else { 1467 } else {
1468 delta = p->se.avg.runnable_avg_sum; 1468 delta = p->se.avg.runnable_avg_sum;
1469 *period = p->se.avg.runnable_avg_period; 1469 *period = p->se.avg.runnable_avg_period;
1470 } 1470 }
1471 1471
1472 p->last_sum_exec_runtime = runtime; 1472 p->last_sum_exec_runtime = runtime;
1473 p->last_task_numa_placement = now; 1473 p->last_task_numa_placement = now;
1474 1474
1475 return delta; 1475 return delta;
1476 } 1476 }
1477 1477
1478 static void task_numa_placement(struct task_struct *p) 1478 static void task_numa_placement(struct task_struct *p)
1479 { 1479 {
1480 int seq, nid, max_nid = -1, max_group_nid = -1; 1480 int seq, nid, max_nid = -1, max_group_nid = -1;
1481 unsigned long max_faults = 0, max_group_faults = 0; 1481 unsigned long max_faults = 0, max_group_faults = 0;
1482 unsigned long fault_types[2] = { 0, 0 }; 1482 unsigned long fault_types[2] = { 0, 0 };
1483 unsigned long total_faults; 1483 unsigned long total_faults;
1484 u64 runtime, period; 1484 u64 runtime, period;
1485 spinlock_t *group_lock = NULL; 1485 spinlock_t *group_lock = NULL;
1486 1486
1487 seq = ACCESS_ONCE(p->mm->numa_scan_seq); 1487 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1488 if (p->numa_scan_seq == seq) 1488 if (p->numa_scan_seq == seq)
1489 return; 1489 return;
1490 p->numa_scan_seq = seq; 1490 p->numa_scan_seq = seq;
1491 p->numa_scan_period_max = task_scan_max(p); 1491 p->numa_scan_period_max = task_scan_max(p);
1492 1492
1493 total_faults = p->numa_faults_locality[0] + 1493 total_faults = p->numa_faults_locality[0] +
1494 p->numa_faults_locality[1]; 1494 p->numa_faults_locality[1];
1495 runtime = numa_get_avg_runtime(p, &period); 1495 runtime = numa_get_avg_runtime(p, &period);
1496 1496
1497 /* If the task is part of a group prevent parallel updates to group stats */ 1497 /* If the task is part of a group prevent parallel updates to group stats */
1498 if (p->numa_group) { 1498 if (p->numa_group) {
1499 group_lock = &p->numa_group->lock; 1499 group_lock = &p->numa_group->lock;
1500 spin_lock_irq(group_lock); 1500 spin_lock_irq(group_lock);
1501 } 1501 }
1502 1502
1503 /* Find the node with the highest number of faults */ 1503 /* Find the node with the highest number of faults */
1504 for_each_online_node(nid) { 1504 for_each_online_node(nid) {
1505 unsigned long faults = 0, group_faults = 0; 1505 unsigned long faults = 0, group_faults = 0;
1506 int priv, i; 1506 int priv, i;
1507 1507
1508 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 1508 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1509 long diff, f_diff, f_weight; 1509 long diff, f_diff, f_weight;
1510 1510
1511 i = task_faults_idx(nid, priv); 1511 i = task_faults_idx(nid, priv);
1512 1512
1513 /* Decay existing window, copy faults since last scan */ 1513 /* Decay existing window, copy faults since last scan */
1514 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2; 1514 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1515 fault_types[priv] += p->numa_faults_buffer_memory[i]; 1515 fault_types[priv] += p->numa_faults_buffer_memory[i];
1516 p->numa_faults_buffer_memory[i] = 0; 1516 p->numa_faults_buffer_memory[i] = 0;
1517 1517
1518 /* 1518 /*
1519 * Normalize the faults_from, so all tasks in a group 1519 * Normalize the faults_from, so all tasks in a group
1520 * count according to CPU use, instead of by the raw 1520 * count according to CPU use, instead of by the raw
1521 * number of faults. Tasks with little runtime have 1521 * number of faults. Tasks with little runtime have
1522 * little over-all impact on throughput, and thus their 1522 * little over-all impact on throughput, and thus their
1523 * faults are less important. 1523 * faults are less important.
1524 */ 1524 */
1525 f_weight = div64_u64(runtime << 16, period + 1); 1525 f_weight = div64_u64(runtime << 16, period + 1);
1526 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) / 1526 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1527 (total_faults + 1); 1527 (total_faults + 1);
1528 f_diff = f_weight - p->numa_faults_cpu[i] / 2; 1528 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1529 p->numa_faults_buffer_cpu[i] = 0; 1529 p->numa_faults_buffer_cpu[i] = 0;
1530 1530
1531 p->numa_faults_memory[i] += diff; 1531 p->numa_faults_memory[i] += diff;
1532 p->numa_faults_cpu[i] += f_diff; 1532 p->numa_faults_cpu[i] += f_diff;
1533 faults += p->numa_faults_memory[i]; 1533 faults += p->numa_faults_memory[i];
1534 p->total_numa_faults += diff; 1534 p->total_numa_faults += diff;
1535 if (p->numa_group) { 1535 if (p->numa_group) {
1536 /* safe because we can only change our own group */ 1536 /* safe because we can only change our own group */
1537 p->numa_group->faults[i] += diff; 1537 p->numa_group->faults[i] += diff;
1538 p->numa_group->faults_cpu[i] += f_diff; 1538 p->numa_group->faults_cpu[i] += f_diff;
1539 p->numa_group->total_faults += diff; 1539 p->numa_group->total_faults += diff;
1540 group_faults += p->numa_group->faults[i]; 1540 group_faults += p->numa_group->faults[i];
1541 } 1541 }
1542 } 1542 }
1543 1543
1544 if (faults > max_faults) { 1544 if (faults > max_faults) {
1545 max_faults = faults; 1545 max_faults = faults;
1546 max_nid = nid; 1546 max_nid = nid;
1547 } 1547 }
1548 1548
1549 if (group_faults > max_group_faults) { 1549 if (group_faults > max_group_faults) {
1550 max_group_faults = group_faults; 1550 max_group_faults = group_faults;
1551 max_group_nid = nid; 1551 max_group_nid = nid;
1552 } 1552 }
1553 } 1553 }
1554 1554
1555 update_task_scan_period(p, fault_types[0], fault_types[1]); 1555 update_task_scan_period(p, fault_types[0], fault_types[1]);
1556 1556
1557 if (p->numa_group) { 1557 if (p->numa_group) {
1558 update_numa_active_node_mask(p->numa_group); 1558 update_numa_active_node_mask(p->numa_group);
1559 /* 1559 /*
1560 * If the preferred task and group nids are different, 1560 * If the preferred task and group nids are different,
1561 * iterate over the nodes again to find the best place. 1561 * iterate over the nodes again to find the best place.
1562 */ 1562 */
1563 if (max_nid != max_group_nid) { 1563 if (max_nid != max_group_nid) {
1564 unsigned long weight, max_weight = 0; 1564 unsigned long weight, max_weight = 0;
1565 1565
1566 for_each_online_node(nid) { 1566 for_each_online_node(nid) {
1567 weight = task_weight(p, nid) + group_weight(p, nid); 1567 weight = task_weight(p, nid) + group_weight(p, nid);
1568 if (weight > max_weight) { 1568 if (weight > max_weight) {
1569 max_weight = weight; 1569 max_weight = weight;
1570 max_nid = nid; 1570 max_nid = nid;
1571 } 1571 }
1572 } 1572 }
1573 } 1573 }
1574 1574
1575 spin_unlock_irq(group_lock); 1575 spin_unlock_irq(group_lock);
1576 } 1576 }
1577 1577
1578 /* Preferred node as the node with the most faults */ 1578 /* Preferred node as the node with the most faults */
1579 if (max_faults && max_nid != p->numa_preferred_nid) { 1579 if (max_faults && max_nid != p->numa_preferred_nid) {
1580 /* Update the preferred nid and migrate task if possible */ 1580 /* Update the preferred nid and migrate task if possible */
1581 sched_setnuma(p, max_nid); 1581 sched_setnuma(p, max_nid);
1582 numa_migrate_preferred(p); 1582 numa_migrate_preferred(p);
1583 } 1583 }
1584 } 1584 }
1585 1585
1586 static inline int get_numa_group(struct numa_group *grp) 1586 static inline int get_numa_group(struct numa_group *grp)
1587 { 1587 {
1588 return atomic_inc_not_zero(&grp->refcount); 1588 return atomic_inc_not_zero(&grp->refcount);
1589 } 1589 }
1590 1590
1591 static inline void put_numa_group(struct numa_group *grp) 1591 static inline void put_numa_group(struct numa_group *grp)
1592 { 1592 {
1593 if (atomic_dec_and_test(&grp->refcount)) 1593 if (atomic_dec_and_test(&grp->refcount))
1594 kfree_rcu(grp, rcu); 1594 kfree_rcu(grp, rcu);
1595 } 1595 }
1596 1596
1597 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 1597 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1598 int *priv) 1598 int *priv)
1599 { 1599 {
1600 struct numa_group *grp, *my_grp; 1600 struct numa_group *grp, *my_grp;
1601 struct task_struct *tsk; 1601 struct task_struct *tsk;
1602 bool join = false; 1602 bool join = false;
1603 int cpu = cpupid_to_cpu(cpupid); 1603 int cpu = cpupid_to_cpu(cpupid);
1604 int i; 1604 int i;
1605 1605
1606 if (unlikely(!p->numa_group)) { 1606 if (unlikely(!p->numa_group)) {
1607 unsigned int size = sizeof(struct numa_group) + 1607 unsigned int size = sizeof(struct numa_group) +
1608 4*nr_node_ids*sizeof(unsigned long); 1608 4*nr_node_ids*sizeof(unsigned long);
1609 1609
1610 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1610 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1611 if (!grp) 1611 if (!grp)
1612 return; 1612 return;
1613 1613
1614 atomic_set(&grp->refcount, 1); 1614 atomic_set(&grp->refcount, 1);
1615 spin_lock_init(&grp->lock); 1615 spin_lock_init(&grp->lock);
1616 INIT_LIST_HEAD(&grp->task_list); 1616 INIT_LIST_HEAD(&grp->task_list);
1617 grp->gid = p->pid; 1617 grp->gid = p->pid;
1618 /* Second half of the array tracks nids where faults happen */ 1618 /* Second half of the array tracks nids where faults happen */
1619 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 1619 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1620 nr_node_ids; 1620 nr_node_ids;
1621 1621
1622 node_set(task_node(current), grp->active_nodes); 1622 node_set(task_node(current), grp->active_nodes);
1623 1623
1624 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 1624 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1625 grp->faults[i] = p->numa_faults_memory[i]; 1625 grp->faults[i] = p->numa_faults_memory[i];
1626 1626
1627 grp->total_faults = p->total_numa_faults; 1627 grp->total_faults = p->total_numa_faults;
1628 1628
1629 list_add(&p->numa_entry, &grp->task_list); 1629 list_add(&p->numa_entry, &grp->task_list);
1630 grp->nr_tasks++; 1630 grp->nr_tasks++;
1631 rcu_assign_pointer(p->numa_group, grp); 1631 rcu_assign_pointer(p->numa_group, grp);
1632 } 1632 }
1633 1633
1634 rcu_read_lock(); 1634 rcu_read_lock();
1635 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr); 1635 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1636 1636
1637 if (!cpupid_match_pid(tsk, cpupid)) 1637 if (!cpupid_match_pid(tsk, cpupid))
1638 goto no_join; 1638 goto no_join;
1639 1639
1640 grp = rcu_dereference(tsk->numa_group); 1640 grp = rcu_dereference(tsk->numa_group);
1641 if (!grp) 1641 if (!grp)
1642 goto no_join; 1642 goto no_join;
1643 1643
1644 my_grp = p->numa_group; 1644 my_grp = p->numa_group;
1645 if (grp == my_grp) 1645 if (grp == my_grp)
1646 goto no_join; 1646 goto no_join;
1647 1647
1648 /* 1648 /*
1649 * Only join the other group if its bigger; if we're the bigger group, 1649 * Only join the other group if its bigger; if we're the bigger group,
1650 * the other task will join us. 1650 * the other task will join us.
1651 */ 1651 */
1652 if (my_grp->nr_tasks > grp->nr_tasks) 1652 if (my_grp->nr_tasks > grp->nr_tasks)
1653 goto no_join; 1653 goto no_join;
1654 1654
1655 /* 1655 /*
1656 * Tie-break on the grp address. 1656 * Tie-break on the grp address.
1657 */ 1657 */
1658 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 1658 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1659 goto no_join; 1659 goto no_join;
1660 1660
1661 /* Always join threads in the same process. */ 1661 /* Always join threads in the same process. */
1662 if (tsk->mm == current->mm) 1662 if (tsk->mm == current->mm)
1663 join = true; 1663 join = true;
1664 1664
1665 /* Simple filter to avoid false positives due to PID collisions */ 1665 /* Simple filter to avoid false positives due to PID collisions */
1666 if (flags & TNF_SHARED) 1666 if (flags & TNF_SHARED)
1667 join = true; 1667 join = true;
1668 1668
1669 /* Update priv based on whether false sharing was detected */ 1669 /* Update priv based on whether false sharing was detected */
1670 *priv = !join; 1670 *priv = !join;
1671 1671
1672 if (join && !get_numa_group(grp)) 1672 if (join && !get_numa_group(grp))
1673 goto no_join; 1673 goto no_join;
1674 1674
1675 rcu_read_unlock(); 1675 rcu_read_unlock();
1676 1676
1677 if (!join) 1677 if (!join)
1678 return; 1678 return;
1679 1679
1680 BUG_ON(irqs_disabled()); 1680 BUG_ON(irqs_disabled());
1681 double_lock_irq(&my_grp->lock, &grp->lock); 1681 double_lock_irq(&my_grp->lock, &grp->lock);
1682 1682
1683 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 1683 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1684 my_grp->faults[i] -= p->numa_faults_memory[i]; 1684 my_grp->faults[i] -= p->numa_faults_memory[i];
1685 grp->faults[i] += p->numa_faults_memory[i]; 1685 grp->faults[i] += p->numa_faults_memory[i];
1686 } 1686 }
1687 my_grp->total_faults -= p->total_numa_faults; 1687 my_grp->total_faults -= p->total_numa_faults;
1688 grp->total_faults += p->total_numa_faults; 1688 grp->total_faults += p->total_numa_faults;
1689 1689
1690 list_move(&p->numa_entry, &grp->task_list); 1690 list_move(&p->numa_entry, &grp->task_list);
1691 my_grp->nr_tasks--; 1691 my_grp->nr_tasks--;
1692 grp->nr_tasks++; 1692 grp->nr_tasks++;
1693 1693
1694 spin_unlock(&my_grp->lock); 1694 spin_unlock(&my_grp->lock);
1695 spin_unlock_irq(&grp->lock); 1695 spin_unlock_irq(&grp->lock);
1696 1696
1697 rcu_assign_pointer(p->numa_group, grp); 1697 rcu_assign_pointer(p->numa_group, grp);
1698 1698
1699 put_numa_group(my_grp); 1699 put_numa_group(my_grp);
1700 return; 1700 return;
1701 1701
1702 no_join: 1702 no_join:
1703 rcu_read_unlock(); 1703 rcu_read_unlock();
1704 return; 1704 return;
1705 } 1705 }
1706 1706
1707 void task_numa_free(struct task_struct *p) 1707 void task_numa_free(struct task_struct *p)
1708 { 1708 {
1709 struct numa_group *grp = p->numa_group; 1709 struct numa_group *grp = p->numa_group;
1710 void *numa_faults = p->numa_faults_memory; 1710 void *numa_faults = p->numa_faults_memory;
1711 unsigned long flags; 1711 unsigned long flags;
1712 int i; 1712 int i;
1713 1713
1714 if (grp) { 1714 if (grp) {
1715 spin_lock_irqsave(&grp->lock, flags); 1715 spin_lock_irqsave(&grp->lock, flags);
1716 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 1716 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1717 grp->faults[i] -= p->numa_faults_memory[i]; 1717 grp->faults[i] -= p->numa_faults_memory[i];
1718 grp->total_faults -= p->total_numa_faults; 1718 grp->total_faults -= p->total_numa_faults;
1719 1719
1720 list_del(&p->numa_entry); 1720 list_del(&p->numa_entry);
1721 grp->nr_tasks--; 1721 grp->nr_tasks--;
1722 spin_unlock_irqrestore(&grp->lock, flags); 1722 spin_unlock_irqrestore(&grp->lock, flags);
1723 rcu_assign_pointer(p->numa_group, NULL); 1723 rcu_assign_pointer(p->numa_group, NULL);
1724 put_numa_group(grp); 1724 put_numa_group(grp);
1725 } 1725 }
1726 1726
1727 p->numa_faults_memory = NULL; 1727 p->numa_faults_memory = NULL;
1728 p->numa_faults_buffer_memory = NULL; 1728 p->numa_faults_buffer_memory = NULL;
1729 p->numa_faults_cpu= NULL; 1729 p->numa_faults_cpu= NULL;
1730 p->numa_faults_buffer_cpu = NULL; 1730 p->numa_faults_buffer_cpu = NULL;
1731 kfree(numa_faults); 1731 kfree(numa_faults);
1732 } 1732 }
1733 1733
1734 /* 1734 /*
1735 * Got a PROT_NONE fault for a page on @node. 1735 * Got a PROT_NONE fault for a page on @node.
1736 */ 1736 */
1737 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 1737 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1738 { 1738 {
1739 struct task_struct *p = current; 1739 struct task_struct *p = current;
1740 bool migrated = flags & TNF_MIGRATED; 1740 bool migrated = flags & TNF_MIGRATED;
1741 int cpu_node = task_node(current); 1741 int cpu_node = task_node(current);
1742 int priv; 1742 int priv;
1743 1743
1744 if (!numabalancing_enabled) 1744 if (!numabalancing_enabled)
1745 return; 1745 return;
1746 1746
1747 /* for example, ksmd faulting in a user's mm */ 1747 /* for example, ksmd faulting in a user's mm */
1748 if (!p->mm) 1748 if (!p->mm)
1749 return; 1749 return;
1750 1750
1751 /* Do not worry about placement if exiting */ 1751 /* Do not worry about placement if exiting */
1752 if (p->state == TASK_DEAD) 1752 if (p->state == TASK_DEAD)
1753 return; 1753 return;
1754 1754
1755 /* Allocate buffer to track faults on a per-node basis */ 1755 /* Allocate buffer to track faults on a per-node basis */
1756 if (unlikely(!p->numa_faults_memory)) { 1756 if (unlikely(!p->numa_faults_memory)) {
1757 int size = sizeof(*p->numa_faults_memory) * 1757 int size = sizeof(*p->numa_faults_memory) *
1758 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 1758 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1759 1759
1760 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 1760 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1761 if (!p->numa_faults_memory) 1761 if (!p->numa_faults_memory)
1762 return; 1762 return;
1763 1763
1764 BUG_ON(p->numa_faults_buffer_memory); 1764 BUG_ON(p->numa_faults_buffer_memory);
1765 /* 1765 /*
1766 * The averaged statistics, shared & private, memory & cpu, 1766 * The averaged statistics, shared & private, memory & cpu,
1767 * occupy the first half of the array. The second half of the 1767 * occupy the first half of the array. The second half of the
1768 * array is for current counters, which are averaged into the 1768 * array is for current counters, which are averaged into the
1769 * first set by task_numa_placement. 1769 * first set by task_numa_placement.
1770 */ 1770 */
1771 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids); 1771 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1772 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids); 1772 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1773 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids); 1773 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1774 p->total_numa_faults = 0; 1774 p->total_numa_faults = 0;
1775 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1775 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1776 } 1776 }
1777 1777
1778 /* 1778 /*
1779 * First accesses are treated as private, otherwise consider accesses 1779 * First accesses are treated as private, otherwise consider accesses
1780 * to be private if the accessing pid has not changed 1780 * to be private if the accessing pid has not changed
1781 */ 1781 */
1782 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 1782 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1783 priv = 1; 1783 priv = 1;
1784 } else { 1784 } else {
1785 priv = cpupid_match_pid(p, last_cpupid); 1785 priv = cpupid_match_pid(p, last_cpupid);
1786 if (!priv && !(flags & TNF_NO_GROUP)) 1786 if (!priv && !(flags & TNF_NO_GROUP))
1787 task_numa_group(p, last_cpupid, flags, &priv); 1787 task_numa_group(p, last_cpupid, flags, &priv);
1788 } 1788 }
1789 1789
1790 task_numa_placement(p); 1790 task_numa_placement(p);
1791 1791
1792 /* 1792 /*
1793 * Retry task to preferred node migration periodically, in case it 1793 * Retry task to preferred node migration periodically, in case it
1794 * case it previously failed, or the scheduler moved us. 1794 * case it previously failed, or the scheduler moved us.
1795 */ 1795 */
1796 if (time_after(jiffies, p->numa_migrate_retry)) 1796 if (time_after(jiffies, p->numa_migrate_retry))
1797 numa_migrate_preferred(p); 1797 numa_migrate_preferred(p);
1798 1798
1799 if (migrated) 1799 if (migrated)
1800 p->numa_pages_migrated += pages; 1800 p->numa_pages_migrated += pages;
1801 1801
1802 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages; 1802 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1803 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages; 1803 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1804 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages; 1804 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1805 } 1805 }
1806 1806
1807 static void reset_ptenuma_scan(struct task_struct *p) 1807 static void reset_ptenuma_scan(struct task_struct *p)
1808 { 1808 {
1809 ACCESS_ONCE(p->mm->numa_scan_seq)++; 1809 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1810 p->mm->numa_scan_offset = 0; 1810 p->mm->numa_scan_offset = 0;
1811 } 1811 }
1812 1812
1813 /* 1813 /*
1814 * The expensive part of numa migration is done from task_work context. 1814 * The expensive part of numa migration is done from task_work context.
1815 * Triggered from task_tick_numa(). 1815 * Triggered from task_tick_numa().
1816 */ 1816 */
1817 void task_numa_work(struct callback_head *work) 1817 void task_numa_work(struct callback_head *work)
1818 { 1818 {
1819 unsigned long migrate, next_scan, now = jiffies; 1819 unsigned long migrate, next_scan, now = jiffies;
1820 struct task_struct *p = current; 1820 struct task_struct *p = current;
1821 struct mm_struct *mm = p->mm; 1821 struct mm_struct *mm = p->mm;
1822 struct vm_area_struct *vma; 1822 struct vm_area_struct *vma;
1823 unsigned long start, end; 1823 unsigned long start, end;
1824 unsigned long nr_pte_updates = 0; 1824 unsigned long nr_pte_updates = 0;
1825 long pages; 1825 long pages;
1826 1826
1827 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 1827 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1828 1828
1829 work->next = work; /* protect against double add */ 1829 work->next = work; /* protect against double add */
1830 /* 1830 /*
1831 * Who cares about NUMA placement when they're dying. 1831 * Who cares about NUMA placement when they're dying.
1832 * 1832 *
1833 * NOTE: make sure not to dereference p->mm before this check, 1833 * NOTE: make sure not to dereference p->mm before this check,
1834 * exit_task_work() happens _after_ exit_mm() so we could be called 1834 * exit_task_work() happens _after_ exit_mm() so we could be called
1835 * without p->mm even though we still had it when we enqueued this 1835 * without p->mm even though we still had it when we enqueued this
1836 * work. 1836 * work.
1837 */ 1837 */
1838 if (p->flags & PF_EXITING) 1838 if (p->flags & PF_EXITING)
1839 return; 1839 return;
1840 1840
1841 if (!mm->numa_next_scan) { 1841 if (!mm->numa_next_scan) {
1842 mm->numa_next_scan = now + 1842 mm->numa_next_scan = now +
1843 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1843 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1844 } 1844 }
1845 1845
1846 /* 1846 /*
1847 * Enforce maximal scan/migration frequency.. 1847 * Enforce maximal scan/migration frequency..
1848 */ 1848 */
1849 migrate = mm->numa_next_scan; 1849 migrate = mm->numa_next_scan;
1850 if (time_before(now, migrate)) 1850 if (time_before(now, migrate))
1851 return; 1851 return;
1852 1852
1853 if (p->numa_scan_period == 0) { 1853 if (p->numa_scan_period == 0) {
1854 p->numa_scan_period_max = task_scan_max(p); 1854 p->numa_scan_period_max = task_scan_max(p);
1855 p->numa_scan_period = task_scan_min(p); 1855 p->numa_scan_period = task_scan_min(p);
1856 } 1856 }
1857 1857
1858 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 1858 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1859 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 1859 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1860 return; 1860 return;
1861 1861
1862 /* 1862 /*
1863 * Delay this task enough that another task of this mm will likely win 1863 * Delay this task enough that another task of this mm will likely win
1864 * the next time around. 1864 * the next time around.
1865 */ 1865 */
1866 p->node_stamp += 2 * TICK_NSEC; 1866 p->node_stamp += 2 * TICK_NSEC;
1867 1867
1868 start = mm->numa_scan_offset; 1868 start = mm->numa_scan_offset;
1869 pages = sysctl_numa_balancing_scan_size; 1869 pages = sysctl_numa_balancing_scan_size;
1870 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 1870 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1871 if (!pages) 1871 if (!pages)
1872 return; 1872 return;
1873 1873
1874 down_read(&mm->mmap_sem); 1874 down_read(&mm->mmap_sem);
1875 vma = find_vma(mm, start); 1875 vma = find_vma(mm, start);
1876 if (!vma) { 1876 if (!vma) {
1877 reset_ptenuma_scan(p); 1877 reset_ptenuma_scan(p);
1878 start = 0; 1878 start = 0;
1879 vma = mm->mmap; 1879 vma = mm->mmap;
1880 } 1880 }
1881 for (; vma; vma = vma->vm_next) { 1881 for (; vma; vma = vma->vm_next) {
1882 if (!vma_migratable(vma) || !vma_policy_mof(p, vma)) 1882 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1883 continue; 1883 continue;
1884 1884
1885 /* 1885 /*
1886 * Shared library pages mapped by multiple processes are not 1886 * Shared library pages mapped by multiple processes are not
1887 * migrated as it is expected they are cache replicated. Avoid 1887 * migrated as it is expected they are cache replicated. Avoid
1888 * hinting faults in read-only file-backed mappings or the vdso 1888 * hinting faults in read-only file-backed mappings or the vdso
1889 * as migrating the pages will be of marginal benefit. 1889 * as migrating the pages will be of marginal benefit.
1890 */ 1890 */
1891 if (!vma->vm_mm || 1891 if (!vma->vm_mm ||
1892 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 1892 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1893 continue; 1893 continue;
1894 1894
1895 /* 1895 /*
1896 * Skip inaccessible VMAs to avoid any confusion between 1896 * Skip inaccessible VMAs to avoid any confusion between
1897 * PROT_NONE and NUMA hinting ptes 1897 * PROT_NONE and NUMA hinting ptes
1898 */ 1898 */
1899 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 1899 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1900 continue; 1900 continue;
1901 1901
1902 do { 1902 do {
1903 start = max(start, vma->vm_start); 1903 start = max(start, vma->vm_start);
1904 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 1904 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1905 end = min(end, vma->vm_end); 1905 end = min(end, vma->vm_end);
1906 nr_pte_updates += change_prot_numa(vma, start, end); 1906 nr_pte_updates += change_prot_numa(vma, start, end);
1907 1907
1908 /* 1908 /*
1909 * Scan sysctl_numa_balancing_scan_size but ensure that 1909 * Scan sysctl_numa_balancing_scan_size but ensure that
1910 * at least one PTE is updated so that unused virtual 1910 * at least one PTE is updated so that unused virtual
1911 * address space is quickly skipped. 1911 * address space is quickly skipped.
1912 */ 1912 */
1913 if (nr_pte_updates) 1913 if (nr_pte_updates)
1914 pages -= (end - start) >> PAGE_SHIFT; 1914 pages -= (end - start) >> PAGE_SHIFT;
1915 1915
1916 start = end; 1916 start = end;
1917 if (pages <= 0) 1917 if (pages <= 0)
1918 goto out; 1918 goto out;
1919 1919
1920 cond_resched(); 1920 cond_resched();
1921 } while (end != vma->vm_end); 1921 } while (end != vma->vm_end);
1922 } 1922 }
1923 1923
1924 out: 1924 out:
1925 /* 1925 /*
1926 * It is possible to reach the end of the VMA list but the last few 1926 * It is possible to reach the end of the VMA list but the last few
1927 * VMAs are not guaranteed to the vma_migratable. If they are not, we 1927 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1928 * would find the !migratable VMA on the next scan but not reset the 1928 * would find the !migratable VMA on the next scan but not reset the
1929 * scanner to the start so check it now. 1929 * scanner to the start so check it now.
1930 */ 1930 */
1931 if (vma) 1931 if (vma)
1932 mm->numa_scan_offset = start; 1932 mm->numa_scan_offset = start;
1933 else 1933 else
1934 reset_ptenuma_scan(p); 1934 reset_ptenuma_scan(p);
1935 up_read(&mm->mmap_sem); 1935 up_read(&mm->mmap_sem);
1936 } 1936 }
1937 1937
1938 /* 1938 /*
1939 * Drive the periodic memory faults.. 1939 * Drive the periodic memory faults..
1940 */ 1940 */
1941 void task_tick_numa(struct rq *rq, struct task_struct *curr) 1941 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1942 { 1942 {
1943 struct callback_head *work = &curr->numa_work; 1943 struct callback_head *work = &curr->numa_work;
1944 u64 period, now; 1944 u64 period, now;
1945 1945
1946 /* 1946 /*
1947 * We don't care about NUMA placement if we don't have memory. 1947 * We don't care about NUMA placement if we don't have memory.
1948 */ 1948 */
1949 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 1949 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1950 return; 1950 return;
1951 1951
1952 /* 1952 /*
1953 * Using runtime rather than walltime has the dual advantage that 1953 * Using runtime rather than walltime has the dual advantage that
1954 * we (mostly) drive the selection from busy threads and that the 1954 * we (mostly) drive the selection from busy threads and that the
1955 * task needs to have done some actual work before we bother with 1955 * task needs to have done some actual work before we bother with
1956 * NUMA placement. 1956 * NUMA placement.
1957 */ 1957 */
1958 now = curr->se.sum_exec_runtime; 1958 now = curr->se.sum_exec_runtime;
1959 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 1959 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1960 1960
1961 if (now - curr->node_stamp > period) { 1961 if (now - curr->node_stamp > period) {
1962 if (!curr->node_stamp) 1962 if (!curr->node_stamp)
1963 curr->numa_scan_period = task_scan_min(curr); 1963 curr->numa_scan_period = task_scan_min(curr);
1964 curr->node_stamp += period; 1964 curr->node_stamp += period;
1965 1965
1966 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 1966 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1967 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 1967 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1968 task_work_add(curr, work, true); 1968 task_work_add(curr, work, true);
1969 } 1969 }
1970 } 1970 }
1971 } 1971 }
1972 #else 1972 #else
1973 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 1973 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1974 { 1974 {
1975 } 1975 }
1976 1976
1977 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1977 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1978 { 1978 {
1979 } 1979 }
1980 1980
1981 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1981 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1982 { 1982 {
1983 } 1983 }
1984 #endif /* CONFIG_NUMA_BALANCING */ 1984 #endif /* CONFIG_NUMA_BALANCING */
1985 1985
1986 static void 1986 static void
1987 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 1987 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1988 { 1988 {
1989 update_load_add(&cfs_rq->load, se->load.weight); 1989 update_load_add(&cfs_rq->load, se->load.weight);
1990 if (!parent_entity(se)) 1990 if (!parent_entity(se))
1991 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 1991 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1992 #ifdef CONFIG_SMP 1992 #ifdef CONFIG_SMP
1993 if (entity_is_task(se)) { 1993 if (entity_is_task(se)) {
1994 struct rq *rq = rq_of(cfs_rq); 1994 struct rq *rq = rq_of(cfs_rq);
1995 1995
1996 account_numa_enqueue(rq, task_of(se)); 1996 account_numa_enqueue(rq, task_of(se));
1997 list_add(&se->group_node, &rq->cfs_tasks); 1997 list_add(&se->group_node, &rq->cfs_tasks);
1998 } 1998 }
1999 #endif 1999 #endif
2000 cfs_rq->nr_running++; 2000 cfs_rq->nr_running++;
2001 } 2001 }
2002 2002
2003 static void 2003 static void
2004 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2004 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2005 { 2005 {
2006 update_load_sub(&cfs_rq->load, se->load.weight); 2006 update_load_sub(&cfs_rq->load, se->load.weight);
2007 if (!parent_entity(se)) 2007 if (!parent_entity(se))
2008 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2008 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2009 if (entity_is_task(se)) { 2009 if (entity_is_task(se)) {
2010 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2010 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2011 list_del_init(&se->group_node); 2011 list_del_init(&se->group_node);
2012 } 2012 }
2013 cfs_rq->nr_running--; 2013 cfs_rq->nr_running--;
2014 } 2014 }
2015 2015
2016 #ifdef CONFIG_FAIR_GROUP_SCHED 2016 #ifdef CONFIG_FAIR_GROUP_SCHED
2017 # ifdef CONFIG_SMP 2017 # ifdef CONFIG_SMP
2018 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 2018 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2019 { 2019 {
2020 long tg_weight; 2020 long tg_weight;
2021 2021
2022 /* 2022 /*
2023 * Use this CPU's actual weight instead of the last load_contribution 2023 * Use this CPU's actual weight instead of the last load_contribution
2024 * to gain a more accurate current total weight. See 2024 * to gain a more accurate current total weight. See
2025 * update_cfs_rq_load_contribution(). 2025 * update_cfs_rq_load_contribution().
2026 */ 2026 */
2027 tg_weight = atomic_long_read(&tg->load_avg); 2027 tg_weight = atomic_long_read(&tg->load_avg);
2028 tg_weight -= cfs_rq->tg_load_contrib; 2028 tg_weight -= cfs_rq->tg_load_contrib;
2029 tg_weight += cfs_rq->load.weight; 2029 tg_weight += cfs_rq->load.weight;
2030 2030
2031 return tg_weight; 2031 return tg_weight;
2032 } 2032 }
2033 2033
2034 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2034 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2035 { 2035 {
2036 long tg_weight, load, shares; 2036 long tg_weight, load, shares;
2037 2037
2038 tg_weight = calc_tg_weight(tg, cfs_rq); 2038 tg_weight = calc_tg_weight(tg, cfs_rq);
2039 load = cfs_rq->load.weight; 2039 load = cfs_rq->load.weight;
2040 2040
2041 shares = (tg->shares * load); 2041 shares = (tg->shares * load);
2042 if (tg_weight) 2042 if (tg_weight)
2043 shares /= tg_weight; 2043 shares /= tg_weight;
2044 2044
2045 if (shares < MIN_SHARES) 2045 if (shares < MIN_SHARES)
2046 shares = MIN_SHARES; 2046 shares = MIN_SHARES;
2047 if (shares > tg->shares) 2047 if (shares > tg->shares)
2048 shares = tg->shares; 2048 shares = tg->shares;
2049 2049
2050 return shares; 2050 return shares;
2051 } 2051 }
2052 # else /* CONFIG_SMP */ 2052 # else /* CONFIG_SMP */
2053 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2053 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2054 { 2054 {
2055 return tg->shares; 2055 return tg->shares;
2056 } 2056 }
2057 # endif /* CONFIG_SMP */ 2057 # endif /* CONFIG_SMP */
2058 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2058 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2059 unsigned long weight) 2059 unsigned long weight)
2060 { 2060 {
2061 if (se->on_rq) { 2061 if (se->on_rq) {
2062 /* commit outstanding execution time */ 2062 /* commit outstanding execution time */
2063 if (cfs_rq->curr == se) 2063 if (cfs_rq->curr == se)
2064 update_curr(cfs_rq); 2064 update_curr(cfs_rq);
2065 account_entity_dequeue(cfs_rq, se); 2065 account_entity_dequeue(cfs_rq, se);
2066 } 2066 }
2067 2067
2068 update_load_set(&se->load, weight); 2068 update_load_set(&se->load, weight);
2069 2069
2070 if (se->on_rq) 2070 if (se->on_rq)
2071 account_entity_enqueue(cfs_rq, se); 2071 account_entity_enqueue(cfs_rq, se);
2072 } 2072 }
2073 2073
2074 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2074 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2075 2075
2076 static void update_cfs_shares(struct cfs_rq *cfs_rq) 2076 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2077 { 2077 {
2078 struct task_group *tg; 2078 struct task_group *tg;
2079 struct sched_entity *se; 2079 struct sched_entity *se;
2080 long shares; 2080 long shares;
2081 2081
2082 tg = cfs_rq->tg; 2082 tg = cfs_rq->tg;
2083 se = tg->se[cpu_of(rq_of(cfs_rq))]; 2083 se = tg->se[cpu_of(rq_of(cfs_rq))];
2084 if (!se || throttled_hierarchy(cfs_rq)) 2084 if (!se || throttled_hierarchy(cfs_rq))
2085 return; 2085 return;
2086 #ifndef CONFIG_SMP 2086 #ifndef CONFIG_SMP
2087 if (likely(se->load.weight == tg->shares)) 2087 if (likely(se->load.weight == tg->shares))
2088 return; 2088 return;
2089 #endif 2089 #endif
2090 shares = calc_cfs_shares(cfs_rq, tg); 2090 shares = calc_cfs_shares(cfs_rq, tg);
2091 2091
2092 reweight_entity(cfs_rq_of(se), se, shares); 2092 reweight_entity(cfs_rq_of(se), se, shares);
2093 } 2093 }
2094 #else /* CONFIG_FAIR_GROUP_SCHED */ 2094 #else /* CONFIG_FAIR_GROUP_SCHED */
2095 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 2095 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2096 { 2096 {
2097 } 2097 }
2098 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2098 #endif /* CONFIG_FAIR_GROUP_SCHED */
2099 2099
2100 #ifdef CONFIG_SMP 2100 #ifdef CONFIG_SMP
2101 /* 2101 /*
2102 * We choose a half-life close to 1 scheduling period. 2102 * We choose a half-life close to 1 scheduling period.
2103 * Note: The tables below are dependent on this value. 2103 * Note: The tables below are dependent on this value.
2104 */ 2104 */
2105 #define LOAD_AVG_PERIOD 32 2105 #define LOAD_AVG_PERIOD 32
2106 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 2106 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2107 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ 2107 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2108 2108
2109 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 2109 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2110 static const u32 runnable_avg_yN_inv[] = { 2110 static const u32 runnable_avg_yN_inv[] = {
2111 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 2111 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2112 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 2112 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2113 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 2113 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2114 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 2114 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2115 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 2115 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2116 0x85aac367, 0x82cd8698, 2116 0x85aac367, 0x82cd8698,
2117 }; 2117 };
2118 2118
2119 /* 2119 /*
2120 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 2120 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2121 * over-estimates when re-combining. 2121 * over-estimates when re-combining.
2122 */ 2122 */
2123 static const u32 runnable_avg_yN_sum[] = { 2123 static const u32 runnable_avg_yN_sum[] = {
2124 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 2124 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2125 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 2125 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2126 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 2126 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2127 }; 2127 };
2128 2128
2129 /* 2129 /*
2130 * Approximate: 2130 * Approximate:
2131 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 2131 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2132 */ 2132 */
2133 static __always_inline u64 decay_load(u64 val, u64 n) 2133 static __always_inline u64 decay_load(u64 val, u64 n)
2134 { 2134 {
2135 unsigned int local_n; 2135 unsigned int local_n;
2136 2136
2137 if (!n) 2137 if (!n)
2138 return val; 2138 return val;
2139 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 2139 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2140 return 0; 2140 return 0;
2141 2141
2142 /* after bounds checking we can collapse to 32-bit */ 2142 /* after bounds checking we can collapse to 32-bit */
2143 local_n = n; 2143 local_n = n;
2144 2144
2145 /* 2145 /*
2146 * As y^PERIOD = 1/2, we can combine 2146 * As y^PERIOD = 1/2, we can combine
2147 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD) 2147 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2148 * With a look-up table which covers k^n (n<PERIOD) 2148 * With a look-up table which covers k^n (n<PERIOD)
2149 * 2149 *
2150 * To achieve constant time decay_load. 2150 * To achieve constant time decay_load.
2151 */ 2151 */
2152 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2152 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2153 val >>= local_n / LOAD_AVG_PERIOD; 2153 val >>= local_n / LOAD_AVG_PERIOD;
2154 local_n %= LOAD_AVG_PERIOD; 2154 local_n %= LOAD_AVG_PERIOD;
2155 } 2155 }
2156 2156
2157 val *= runnable_avg_yN_inv[local_n]; 2157 val *= runnable_avg_yN_inv[local_n];
2158 /* We don't use SRR here since we always want to round down. */ 2158 /* We don't use SRR here since we always want to round down. */
2159 return val >> 32; 2159 return val >> 32;
2160 } 2160 }
2161 2161
2162 /* 2162 /*
2163 * For updates fully spanning n periods, the contribution to runnable 2163 * For updates fully spanning n periods, the contribution to runnable
2164 * average will be: \Sum 1024*y^n 2164 * average will be: \Sum 1024*y^n
2165 * 2165 *
2166 * We can compute this reasonably efficiently by combining: 2166 * We can compute this reasonably efficiently by combining:
2167 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 2167 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2168 */ 2168 */
2169 static u32 __compute_runnable_contrib(u64 n) 2169 static u32 __compute_runnable_contrib(u64 n)
2170 { 2170 {
2171 u32 contrib = 0; 2171 u32 contrib = 0;
2172 2172
2173 if (likely(n <= LOAD_AVG_PERIOD)) 2173 if (likely(n <= LOAD_AVG_PERIOD))
2174 return runnable_avg_yN_sum[n]; 2174 return runnable_avg_yN_sum[n];
2175 else if (unlikely(n >= LOAD_AVG_MAX_N)) 2175 else if (unlikely(n >= LOAD_AVG_MAX_N))
2176 return LOAD_AVG_MAX; 2176 return LOAD_AVG_MAX;
2177 2177
2178 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ 2178 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2179 do { 2179 do {
2180 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ 2180 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2181 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; 2181 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2182 2182
2183 n -= LOAD_AVG_PERIOD; 2183 n -= LOAD_AVG_PERIOD;
2184 } while (n > LOAD_AVG_PERIOD); 2184 } while (n > LOAD_AVG_PERIOD);
2185 2185
2186 contrib = decay_load(contrib, n); 2186 contrib = decay_load(contrib, n);
2187 return contrib + runnable_avg_yN_sum[n]; 2187 return contrib + runnable_avg_yN_sum[n];
2188 } 2188 }
2189 2189
2190 /* 2190 /*
2191 * We can represent the historical contribution to runnable average as the 2191 * We can represent the historical contribution to runnable average as the
2192 * coefficients of a geometric series. To do this we sub-divide our runnable 2192 * coefficients of a geometric series. To do this we sub-divide our runnable
2193 * history into segments of approximately 1ms (1024us); label the segment that 2193 * history into segments of approximately 1ms (1024us); label the segment that
2194 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2194 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2195 * 2195 *
2196 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2196 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2197 * p0 p1 p2 2197 * p0 p1 p2
2198 * (now) (~1ms ago) (~2ms ago) 2198 * (now) (~1ms ago) (~2ms ago)
2199 * 2199 *
2200 * Let u_i denote the fraction of p_i that the entity was runnable. 2200 * Let u_i denote the fraction of p_i that the entity was runnable.
2201 * 2201 *
2202 * We then designate the fractions u_i as our co-efficients, yielding the 2202 * We then designate the fractions u_i as our co-efficients, yielding the
2203 * following representation of historical load: 2203 * following representation of historical load:
2204 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2204 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2205 * 2205 *
2206 * We choose y based on the with of a reasonably scheduling period, fixing: 2206 * We choose y based on the with of a reasonably scheduling period, fixing:
2207 * y^32 = 0.5 2207 * y^32 = 0.5
2208 * 2208 *
2209 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2209 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2210 * approximately half as much as the contribution to load within the last ms 2210 * approximately half as much as the contribution to load within the last ms
2211 * (u_0). 2211 * (u_0).
2212 * 2212 *
2213 * When a period "rolls over" and we have new u_0`, multiplying the previous 2213 * When a period "rolls over" and we have new u_0`, multiplying the previous
2214 * sum again by y is sufficient to update: 2214 * sum again by y is sufficient to update:
2215 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2215 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2216 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2216 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2217 */ 2217 */
2218 static __always_inline int __update_entity_runnable_avg(u64 now, 2218 static __always_inline int __update_entity_runnable_avg(u64 now,
2219 struct sched_avg *sa, 2219 struct sched_avg *sa,
2220 int runnable) 2220 int runnable)
2221 { 2221 {
2222 u64 delta, periods; 2222 u64 delta, periods;
2223 u32 runnable_contrib; 2223 u32 runnable_contrib;
2224 int delta_w, decayed = 0; 2224 int delta_w, decayed = 0;
2225 2225
2226 delta = now - sa->last_runnable_update; 2226 delta = now - sa->last_runnable_update;
2227 /* 2227 /*
2228 * This should only happen when time goes backwards, which it 2228 * This should only happen when time goes backwards, which it
2229 * unfortunately does during sched clock init when we swap over to TSC. 2229 * unfortunately does during sched clock init when we swap over to TSC.
2230 */ 2230 */
2231 if ((s64)delta < 0) { 2231 if ((s64)delta < 0) {
2232 sa->last_runnable_update = now; 2232 sa->last_runnable_update = now;
2233 return 0; 2233 return 0;
2234 } 2234 }
2235 2235
2236 /* 2236 /*
2237 * Use 1024ns as the unit of measurement since it's a reasonable 2237 * Use 1024ns as the unit of measurement since it's a reasonable
2238 * approximation of 1us and fast to compute. 2238 * approximation of 1us and fast to compute.
2239 */ 2239 */
2240 delta >>= 10; 2240 delta >>= 10;
2241 if (!delta) 2241 if (!delta)
2242 return 0; 2242 return 0;
2243 sa->last_runnable_update = now; 2243 sa->last_runnable_update = now;
2244 2244
2245 /* delta_w is the amount already accumulated against our next period */ 2245 /* delta_w is the amount already accumulated against our next period */
2246 delta_w = sa->runnable_avg_period % 1024; 2246 delta_w = sa->runnable_avg_period % 1024;
2247 if (delta + delta_w >= 1024) { 2247 if (delta + delta_w >= 1024) {
2248 /* period roll-over */ 2248 /* period roll-over */
2249 decayed = 1; 2249 decayed = 1;
2250 2250
2251 /* 2251 /*
2252 * Now that we know we're crossing a period boundary, figure 2252 * Now that we know we're crossing a period boundary, figure
2253 * out how much from delta we need to complete the current 2253 * out how much from delta we need to complete the current
2254 * period and accrue it. 2254 * period and accrue it.
2255 */ 2255 */
2256 delta_w = 1024 - delta_w; 2256 delta_w = 1024 - delta_w;
2257 if (runnable) 2257 if (runnable)
2258 sa->runnable_avg_sum += delta_w; 2258 sa->runnable_avg_sum += delta_w;
2259 sa->runnable_avg_period += delta_w; 2259 sa->runnable_avg_period += delta_w;
2260 2260
2261 delta -= delta_w; 2261 delta -= delta_w;
2262 2262
2263 /* Figure out how many additional periods this update spans */ 2263 /* Figure out how many additional periods this update spans */
2264 periods = delta / 1024; 2264 periods = delta / 1024;
2265 delta %= 1024; 2265 delta %= 1024;
2266 2266
2267 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum, 2267 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2268 periods + 1); 2268 periods + 1);
2269 sa->runnable_avg_period = decay_load(sa->runnable_avg_period, 2269 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2270 periods + 1); 2270 periods + 1);
2271 2271
2272 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 2272 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2273 runnable_contrib = __compute_runnable_contrib(periods); 2273 runnable_contrib = __compute_runnable_contrib(periods);
2274 if (runnable) 2274 if (runnable)
2275 sa->runnable_avg_sum += runnable_contrib; 2275 sa->runnable_avg_sum += runnable_contrib;
2276 sa->runnable_avg_period += runnable_contrib; 2276 sa->runnable_avg_period += runnable_contrib;
2277 } 2277 }
2278 2278
2279 /* Remainder of delta accrued against u_0` */ 2279 /* Remainder of delta accrued against u_0` */
2280 if (runnable) 2280 if (runnable)
2281 sa->runnable_avg_sum += delta; 2281 sa->runnable_avg_sum += delta;
2282 sa->runnable_avg_period += delta; 2282 sa->runnable_avg_period += delta;
2283 2283
2284 return decayed; 2284 return decayed;
2285 } 2285 }
2286 2286
2287 /* Synchronize an entity's decay with its parenting cfs_rq.*/ 2287 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2288 static inline u64 __synchronize_entity_decay(struct sched_entity *se) 2288 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2289 { 2289 {
2290 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2290 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2291 u64 decays = atomic64_read(&cfs_rq->decay_counter); 2291 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2292 2292
2293 decays -= se->avg.decay_count; 2293 decays -= se->avg.decay_count;
2294 if (!decays) 2294 if (!decays)
2295 return 0; 2295 return 0;
2296 2296
2297 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); 2297 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2298 se->avg.decay_count = 0; 2298 se->avg.decay_count = 0;
2299 2299
2300 return decays; 2300 return decays;
2301 } 2301 }
2302 2302
2303 #ifdef CONFIG_FAIR_GROUP_SCHED 2303 #ifdef CONFIG_FAIR_GROUP_SCHED
2304 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 2304 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2305 int force_update) 2305 int force_update)
2306 { 2306 {
2307 struct task_group *tg = cfs_rq->tg; 2307 struct task_group *tg = cfs_rq->tg;
2308 long tg_contrib; 2308 long tg_contrib;
2309 2309
2310 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg; 2310 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2311 tg_contrib -= cfs_rq->tg_load_contrib; 2311 tg_contrib -= cfs_rq->tg_load_contrib;
2312 2312
2313 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) { 2313 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2314 atomic_long_add(tg_contrib, &tg->load_avg); 2314 atomic_long_add(tg_contrib, &tg->load_avg);
2315 cfs_rq->tg_load_contrib += tg_contrib; 2315 cfs_rq->tg_load_contrib += tg_contrib;
2316 } 2316 }
2317 } 2317 }
2318 2318
2319 /* 2319 /*
2320 * Aggregate cfs_rq runnable averages into an equivalent task_group 2320 * Aggregate cfs_rq runnable averages into an equivalent task_group
2321 * representation for computing load contributions. 2321 * representation for computing load contributions.
2322 */ 2322 */
2323 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 2323 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2324 struct cfs_rq *cfs_rq) 2324 struct cfs_rq *cfs_rq)
2325 { 2325 {
2326 struct task_group *tg = cfs_rq->tg; 2326 struct task_group *tg = cfs_rq->tg;
2327 long contrib; 2327 long contrib;
2328 2328
2329 /* The fraction of a cpu used by this cfs_rq */ 2329 /* The fraction of a cpu used by this cfs_rq */
2330 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT, 2330 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2331 sa->runnable_avg_period + 1); 2331 sa->runnable_avg_period + 1);
2332 contrib -= cfs_rq->tg_runnable_contrib; 2332 contrib -= cfs_rq->tg_runnable_contrib;
2333 2333
2334 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) { 2334 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2335 atomic_add(contrib, &tg->runnable_avg); 2335 atomic_add(contrib, &tg->runnable_avg);
2336 cfs_rq->tg_runnable_contrib += contrib; 2336 cfs_rq->tg_runnable_contrib += contrib;
2337 } 2337 }
2338 } 2338 }
2339 2339
2340 static inline void __update_group_entity_contrib(struct sched_entity *se) 2340 static inline void __update_group_entity_contrib(struct sched_entity *se)
2341 { 2341 {
2342 struct cfs_rq *cfs_rq = group_cfs_rq(se); 2342 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2343 struct task_group *tg = cfs_rq->tg; 2343 struct task_group *tg = cfs_rq->tg;
2344 int runnable_avg; 2344 int runnable_avg;
2345 2345
2346 u64 contrib; 2346 u64 contrib;
2347 2347
2348 contrib = cfs_rq->tg_load_contrib * tg->shares; 2348 contrib = cfs_rq->tg_load_contrib * tg->shares;
2349 se->avg.load_avg_contrib = div_u64(contrib, 2349 se->avg.load_avg_contrib = div_u64(contrib,
2350 atomic_long_read(&tg->load_avg) + 1); 2350 atomic_long_read(&tg->load_avg) + 1);
2351 2351
2352 /* 2352 /*
2353 * For group entities we need to compute a correction term in the case 2353 * For group entities we need to compute a correction term in the case
2354 * that they are consuming <1 cpu so that we would contribute the same 2354 * that they are consuming <1 cpu so that we would contribute the same
2355 * load as a task of equal weight. 2355 * load as a task of equal weight.
2356 * 2356 *
2357 * Explicitly co-ordinating this measurement would be expensive, but 2357 * Explicitly co-ordinating this measurement would be expensive, but
2358 * fortunately the sum of each cpus contribution forms a usable 2358 * fortunately the sum of each cpus contribution forms a usable
2359 * lower-bound on the true value. 2359 * lower-bound on the true value.
2360 * 2360 *
2361 * Consider the aggregate of 2 contributions. Either they are disjoint 2361 * Consider the aggregate of 2 contributions. Either they are disjoint
2362 * (and the sum represents true value) or they are disjoint and we are 2362 * (and the sum represents true value) or they are disjoint and we are
2363 * understating by the aggregate of their overlap. 2363 * understating by the aggregate of their overlap.
2364 * 2364 *
2365 * Extending this to N cpus, for a given overlap, the maximum amount we 2365 * Extending this to N cpus, for a given overlap, the maximum amount we
2366 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of 2366 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2367 * cpus that overlap for this interval and w_i is the interval width. 2367 * cpus that overlap for this interval and w_i is the interval width.
2368 * 2368 *
2369 * On a small machine; the first term is well-bounded which bounds the 2369 * On a small machine; the first term is well-bounded which bounds the
2370 * total error since w_i is a subset of the period. Whereas on a 2370 * total error since w_i is a subset of the period. Whereas on a
2371 * larger machine, while this first term can be larger, if w_i is the 2371 * larger machine, while this first term can be larger, if w_i is the
2372 * of consequential size guaranteed to see n_i*w_i quickly converge to 2372 * of consequential size guaranteed to see n_i*w_i quickly converge to
2373 * our upper bound of 1-cpu. 2373 * our upper bound of 1-cpu.
2374 */ 2374 */
2375 runnable_avg = atomic_read(&tg->runnable_avg); 2375 runnable_avg = atomic_read(&tg->runnable_avg);
2376 if (runnable_avg < NICE_0_LOAD) { 2376 if (runnable_avg < NICE_0_LOAD) {
2377 se->avg.load_avg_contrib *= runnable_avg; 2377 se->avg.load_avg_contrib *= runnable_avg;
2378 se->avg.load_avg_contrib >>= NICE_0_SHIFT; 2378 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2379 } 2379 }
2380 } 2380 }
2381 2381
2382 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) 2382 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2383 { 2383 {
2384 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable); 2384 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2385 __update_tg_runnable_avg(&rq->avg, &rq->cfs); 2385 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2386 } 2386 }
2387 #else /* CONFIG_FAIR_GROUP_SCHED */ 2387 #else /* CONFIG_FAIR_GROUP_SCHED */
2388 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 2388 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2389 int force_update) {} 2389 int force_update) {}
2390 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 2390 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2391 struct cfs_rq *cfs_rq) {} 2391 struct cfs_rq *cfs_rq) {}
2392 static inline void __update_group_entity_contrib(struct sched_entity *se) {} 2392 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2393 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 2393 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2394 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2394 #endif /* CONFIG_FAIR_GROUP_SCHED */
2395 2395
2396 static inline void __update_task_entity_contrib(struct sched_entity *se) 2396 static inline void __update_task_entity_contrib(struct sched_entity *se)
2397 { 2397 {
2398 u32 contrib; 2398 u32 contrib;
2399 2399
2400 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ 2400 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2401 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight); 2401 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2402 contrib /= (se->avg.runnable_avg_period + 1); 2402 contrib /= (se->avg.runnable_avg_period + 1);
2403 se->avg.load_avg_contrib = scale_load(contrib); 2403 se->avg.load_avg_contrib = scale_load(contrib);
2404 } 2404 }
2405 2405
2406 /* Compute the current contribution to load_avg by se, return any delta */ 2406 /* Compute the current contribution to load_avg by se, return any delta */
2407 static long __update_entity_load_avg_contrib(struct sched_entity *se) 2407 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2408 { 2408 {
2409 long old_contrib = se->avg.load_avg_contrib; 2409 long old_contrib = se->avg.load_avg_contrib;
2410 2410
2411 if (entity_is_task(se)) { 2411 if (entity_is_task(se)) {
2412 __update_task_entity_contrib(se); 2412 __update_task_entity_contrib(se);
2413 } else { 2413 } else {
2414 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se)); 2414 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2415 __update_group_entity_contrib(se); 2415 __update_group_entity_contrib(se);
2416 } 2416 }
2417 2417
2418 return se->avg.load_avg_contrib - old_contrib; 2418 return se->avg.load_avg_contrib - old_contrib;
2419 } 2419 }
2420 2420
2421 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq, 2421 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2422 long load_contrib) 2422 long load_contrib)
2423 { 2423 {
2424 if (likely(load_contrib < cfs_rq->blocked_load_avg)) 2424 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2425 cfs_rq->blocked_load_avg -= load_contrib; 2425 cfs_rq->blocked_load_avg -= load_contrib;
2426 else 2426 else
2427 cfs_rq->blocked_load_avg = 0; 2427 cfs_rq->blocked_load_avg = 0;
2428 } 2428 }
2429 2429
2430 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 2430 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2431 2431
2432 /* Update a sched_entity's runnable average */ 2432 /* Update a sched_entity's runnable average */
2433 static inline void update_entity_load_avg(struct sched_entity *se, 2433 static inline void update_entity_load_avg(struct sched_entity *se,
2434 int update_cfs_rq) 2434 int update_cfs_rq)
2435 { 2435 {
2436 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2436 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2437 long contrib_delta; 2437 long contrib_delta;
2438 u64 now; 2438 u64 now;
2439 2439
2440 /* 2440 /*
2441 * For a group entity we need to use their owned cfs_rq_clock_task() in 2441 * For a group entity we need to use their owned cfs_rq_clock_task() in
2442 * case they are the parent of a throttled hierarchy. 2442 * case they are the parent of a throttled hierarchy.
2443 */ 2443 */
2444 if (entity_is_task(se)) 2444 if (entity_is_task(se))
2445 now = cfs_rq_clock_task(cfs_rq); 2445 now = cfs_rq_clock_task(cfs_rq);
2446 else 2446 else
2447 now = cfs_rq_clock_task(group_cfs_rq(se)); 2447 now = cfs_rq_clock_task(group_cfs_rq(se));
2448 2448
2449 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq)) 2449 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2450 return; 2450 return;
2451 2451
2452 contrib_delta = __update_entity_load_avg_contrib(se); 2452 contrib_delta = __update_entity_load_avg_contrib(se);
2453 2453
2454 if (!update_cfs_rq) 2454 if (!update_cfs_rq)
2455 return; 2455 return;
2456 2456
2457 if (se->on_rq) 2457 if (se->on_rq)
2458 cfs_rq->runnable_load_avg += contrib_delta; 2458 cfs_rq->runnable_load_avg += contrib_delta;
2459 else 2459 else
2460 subtract_blocked_load_contrib(cfs_rq, -contrib_delta); 2460 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2461 } 2461 }
2462 2462
2463 /* 2463 /*
2464 * Decay the load contributed by all blocked children and account this so that 2464 * Decay the load contributed by all blocked children and account this so that
2465 * their contribution may appropriately discounted when they wake up. 2465 * their contribution may appropriately discounted when they wake up.
2466 */ 2466 */
2467 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) 2467 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2468 { 2468 {
2469 u64 now = cfs_rq_clock_task(cfs_rq) >> 20; 2469 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2470 u64 decays; 2470 u64 decays;
2471 2471
2472 decays = now - cfs_rq->last_decay; 2472 decays = now - cfs_rq->last_decay;
2473 if (!decays && !force_update) 2473 if (!decays && !force_update)
2474 return; 2474 return;
2475 2475
2476 if (atomic_long_read(&cfs_rq->removed_load)) { 2476 if (atomic_long_read(&cfs_rq->removed_load)) {
2477 unsigned long removed_load; 2477 unsigned long removed_load;
2478 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0); 2478 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2479 subtract_blocked_load_contrib(cfs_rq, removed_load); 2479 subtract_blocked_load_contrib(cfs_rq, removed_load);
2480 } 2480 }
2481 2481
2482 if (decays) { 2482 if (decays) {
2483 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg, 2483 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2484 decays); 2484 decays);
2485 atomic64_add(decays, &cfs_rq->decay_counter); 2485 atomic64_add(decays, &cfs_rq->decay_counter);
2486 cfs_rq->last_decay = now; 2486 cfs_rq->last_decay = now;
2487 } 2487 }
2488 2488
2489 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update); 2489 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2490 } 2490 }
2491 2491
2492 /* Add the load generated by se into cfs_rq's child load-average */ 2492 /* Add the load generated by se into cfs_rq's child load-average */
2493 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 2493 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2494 struct sched_entity *se, 2494 struct sched_entity *se,
2495 int wakeup) 2495 int wakeup)
2496 { 2496 {
2497 /* 2497 /*
2498 * We track migrations using entity decay_count <= 0, on a wake-up 2498 * We track migrations using entity decay_count <= 0, on a wake-up
2499 * migration we use a negative decay count to track the remote decays 2499 * migration we use a negative decay count to track the remote decays
2500 * accumulated while sleeping. 2500 * accumulated while sleeping.
2501 * 2501 *
2502 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they 2502 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2503 * are seen by enqueue_entity_load_avg() as a migration with an already 2503 * are seen by enqueue_entity_load_avg() as a migration with an already
2504 * constructed load_avg_contrib. 2504 * constructed load_avg_contrib.
2505 */ 2505 */
2506 if (unlikely(se->avg.decay_count <= 0)) { 2506 if (unlikely(se->avg.decay_count <= 0)) {
2507 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq)); 2507 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2508 if (se->avg.decay_count) { 2508 if (se->avg.decay_count) {
2509 /* 2509 /*
2510 * In a wake-up migration we have to approximate the 2510 * In a wake-up migration we have to approximate the
2511 * time sleeping. This is because we can't synchronize 2511 * time sleeping. This is because we can't synchronize
2512 * clock_task between the two cpus, and it is not 2512 * clock_task between the two cpus, and it is not
2513 * guaranteed to be read-safe. Instead, we can 2513 * guaranteed to be read-safe. Instead, we can
2514 * approximate this using our carried decays, which are 2514 * approximate this using our carried decays, which are
2515 * explicitly atomically readable. 2515 * explicitly atomically readable.
2516 */ 2516 */
2517 se->avg.last_runnable_update -= (-se->avg.decay_count) 2517 se->avg.last_runnable_update -= (-se->avg.decay_count)
2518 << 20; 2518 << 20;
2519 update_entity_load_avg(se, 0); 2519 update_entity_load_avg(se, 0);
2520 /* Indicate that we're now synchronized and on-rq */ 2520 /* Indicate that we're now synchronized and on-rq */
2521 se->avg.decay_count = 0; 2521 se->avg.decay_count = 0;
2522 } 2522 }
2523 wakeup = 0; 2523 wakeup = 0;
2524 } else { 2524 } else {
2525 __synchronize_entity_decay(se); 2525 __synchronize_entity_decay(se);
2526 } 2526 }
2527 2527
2528 /* migrated tasks did not contribute to our blocked load */ 2528 /* migrated tasks did not contribute to our blocked load */
2529 if (wakeup) { 2529 if (wakeup) {
2530 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 2530 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2531 update_entity_load_avg(se, 0); 2531 update_entity_load_avg(se, 0);
2532 } 2532 }
2533 2533
2534 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib; 2534 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2535 /* we force update consideration on load-balancer moves */ 2535 /* we force update consideration on load-balancer moves */
2536 update_cfs_rq_blocked_load(cfs_rq, !wakeup); 2536 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2537 } 2537 }
2538 2538
2539 /* 2539 /*
2540 * Remove se's load from this cfs_rq child load-average, if the entity is 2540 * Remove se's load from this cfs_rq child load-average, if the entity is
2541 * transitioning to a blocked state we track its projected decay using 2541 * transitioning to a blocked state we track its projected decay using
2542 * blocked_load_avg. 2542 * blocked_load_avg.
2543 */ 2543 */
2544 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 2544 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2545 struct sched_entity *se, 2545 struct sched_entity *se,
2546 int sleep) 2546 int sleep)
2547 { 2547 {
2548 update_entity_load_avg(se, 1); 2548 update_entity_load_avg(se, 1);
2549 /* we force update consideration on load-balancer moves */ 2549 /* we force update consideration on load-balancer moves */
2550 update_cfs_rq_blocked_load(cfs_rq, !sleep); 2550 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2551 2551
2552 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib; 2552 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2553 if (sleep) { 2553 if (sleep) {
2554 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 2554 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2555 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 2555 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2556 } /* migrations, e.g. sleep=0 leave decay_count == 0 */ 2556 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2557 } 2557 }
2558 2558
2559 /* 2559 /*
2560 * Update the rq's load with the elapsed running time before entering 2560 * Update the rq's load with the elapsed running time before entering
2561 * idle. if the last scheduled task is not a CFS task, idle_enter will 2561 * idle. if the last scheduled task is not a CFS task, idle_enter will
2562 * be the only way to update the runnable statistic. 2562 * be the only way to update the runnable statistic.
2563 */ 2563 */
2564 void idle_enter_fair(struct rq *this_rq) 2564 void idle_enter_fair(struct rq *this_rq)
2565 { 2565 {
2566 update_rq_runnable_avg(this_rq, 1); 2566 update_rq_runnable_avg(this_rq, 1);
2567 } 2567 }
2568 2568
2569 /* 2569 /*
2570 * Update the rq's load with the elapsed idle time before a task is 2570 * Update the rq's load with the elapsed idle time before a task is
2571 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will 2571 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2572 * be the only way to update the runnable statistic. 2572 * be the only way to update the runnable statistic.
2573 */ 2573 */
2574 void idle_exit_fair(struct rq *this_rq) 2574 void idle_exit_fair(struct rq *this_rq)
2575 { 2575 {
2576 update_rq_runnable_avg(this_rq, 0); 2576 update_rq_runnable_avg(this_rq, 0);
2577 } 2577 }
2578 2578
2579 static int idle_balance(struct rq *this_rq); 2579 static int idle_balance(struct rq *this_rq);
2580 2580
2581 #else /* CONFIG_SMP */ 2581 #else /* CONFIG_SMP */
2582 2582
2583 static inline void update_entity_load_avg(struct sched_entity *se, 2583 static inline void update_entity_load_avg(struct sched_entity *se,
2584 int update_cfs_rq) {} 2584 int update_cfs_rq) {}
2585 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 2585 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2586 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 2586 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2587 struct sched_entity *se, 2587 struct sched_entity *se,
2588 int wakeup) {} 2588 int wakeup) {}
2589 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 2589 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2590 struct sched_entity *se, 2590 struct sched_entity *se,
2591 int sleep) {} 2591 int sleep) {}
2592 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 2592 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2593 int force_update) {} 2593 int force_update) {}
2594 2594
2595 static inline int idle_balance(struct rq *rq) 2595 static inline int idle_balance(struct rq *rq)
2596 { 2596 {
2597 return 0; 2597 return 0;
2598 } 2598 }
2599 2599
2600 #endif /* CONFIG_SMP */ 2600 #endif /* CONFIG_SMP */
2601 2601
2602 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 2602 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2603 { 2603 {
2604 #ifdef CONFIG_SCHEDSTATS 2604 #ifdef CONFIG_SCHEDSTATS
2605 struct task_struct *tsk = NULL; 2605 struct task_struct *tsk = NULL;
2606 2606
2607 if (entity_is_task(se)) 2607 if (entity_is_task(se))
2608 tsk = task_of(se); 2608 tsk = task_of(se);
2609 2609
2610 if (se->statistics.sleep_start) { 2610 if (se->statistics.sleep_start) {
2611 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; 2611 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2612 2612
2613 if ((s64)delta < 0) 2613 if ((s64)delta < 0)
2614 delta = 0; 2614 delta = 0;
2615 2615
2616 if (unlikely(delta > se->statistics.sleep_max)) 2616 if (unlikely(delta > se->statistics.sleep_max))
2617 se->statistics.sleep_max = delta; 2617 se->statistics.sleep_max = delta;
2618 2618
2619 se->statistics.sleep_start = 0; 2619 se->statistics.sleep_start = 0;
2620 se->statistics.sum_sleep_runtime += delta; 2620 se->statistics.sum_sleep_runtime += delta;
2621 2621
2622 if (tsk) { 2622 if (tsk) {
2623 account_scheduler_latency(tsk, delta >> 10, 1); 2623 account_scheduler_latency(tsk, delta >> 10, 1);
2624 trace_sched_stat_sleep(tsk, delta); 2624 trace_sched_stat_sleep(tsk, delta);
2625 } 2625 }
2626 } 2626 }
2627 if (se->statistics.block_start) { 2627 if (se->statistics.block_start) {
2628 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; 2628 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2629 2629
2630 if ((s64)delta < 0) 2630 if ((s64)delta < 0)
2631 delta = 0; 2631 delta = 0;
2632 2632
2633 if (unlikely(delta > se->statistics.block_max)) 2633 if (unlikely(delta > se->statistics.block_max))
2634 se->statistics.block_max = delta; 2634 se->statistics.block_max = delta;
2635 2635
2636 se->statistics.block_start = 0; 2636 se->statistics.block_start = 0;
2637 se->statistics.sum_sleep_runtime += delta; 2637 se->statistics.sum_sleep_runtime += delta;
2638 2638
2639 if (tsk) { 2639 if (tsk) {
2640 if (tsk->in_iowait) { 2640 if (tsk->in_iowait) {
2641 se->statistics.iowait_sum += delta; 2641 se->statistics.iowait_sum += delta;
2642 se->statistics.iowait_count++; 2642 se->statistics.iowait_count++;
2643 trace_sched_stat_iowait(tsk, delta); 2643 trace_sched_stat_iowait(tsk, delta);
2644 } 2644 }
2645 2645
2646 trace_sched_stat_blocked(tsk, delta); 2646 trace_sched_stat_blocked(tsk, delta);
2647 2647
2648 /* 2648 /*
2649 * Blocking time is in units of nanosecs, so shift by 2649 * Blocking time is in units of nanosecs, so shift by
2650 * 20 to get a milliseconds-range estimation of the 2650 * 20 to get a milliseconds-range estimation of the
2651 * amount of time that the task spent sleeping: 2651 * amount of time that the task spent sleeping:
2652 */ 2652 */
2653 if (unlikely(prof_on == SLEEP_PROFILING)) { 2653 if (unlikely(prof_on == SLEEP_PROFILING)) {
2654 profile_hits(SLEEP_PROFILING, 2654 profile_hits(SLEEP_PROFILING,
2655 (void *)get_wchan(tsk), 2655 (void *)get_wchan(tsk),
2656 delta >> 20); 2656 delta >> 20);
2657 } 2657 }
2658 account_scheduler_latency(tsk, delta >> 10, 0); 2658 account_scheduler_latency(tsk, delta >> 10, 0);
2659 } 2659 }
2660 } 2660 }
2661 #endif 2661 #endif
2662 } 2662 }
2663 2663
2664 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 2664 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2665 { 2665 {
2666 #ifdef CONFIG_SCHED_DEBUG 2666 #ifdef CONFIG_SCHED_DEBUG
2667 s64 d = se->vruntime - cfs_rq->min_vruntime; 2667 s64 d = se->vruntime - cfs_rq->min_vruntime;
2668 2668
2669 if (d < 0) 2669 if (d < 0)
2670 d = -d; 2670 d = -d;
2671 2671
2672 if (d > 3*sysctl_sched_latency) 2672 if (d > 3*sysctl_sched_latency)
2673 schedstat_inc(cfs_rq, nr_spread_over); 2673 schedstat_inc(cfs_rq, nr_spread_over);
2674 #endif 2674 #endif
2675 } 2675 }
2676 2676
2677 static void 2677 static void
2678 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 2678 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2679 { 2679 {
2680 u64 vruntime = cfs_rq->min_vruntime; 2680 u64 vruntime = cfs_rq->min_vruntime;
2681 2681
2682 /* 2682 /*
2683 * The 'current' period is already promised to the current tasks, 2683 * The 'current' period is already promised to the current tasks,
2684 * however the extra weight of the new task will slow them down a 2684 * however the extra weight of the new task will slow them down a
2685 * little, place the new task so that it fits in the slot that 2685 * little, place the new task so that it fits in the slot that
2686 * stays open at the end. 2686 * stays open at the end.
2687 */ 2687 */
2688 if (initial && sched_feat(START_DEBIT)) 2688 if (initial && sched_feat(START_DEBIT))
2689 vruntime += sched_vslice(cfs_rq, se); 2689 vruntime += sched_vslice(cfs_rq, se);
2690 2690
2691 /* sleeps up to a single latency don't count. */ 2691 /* sleeps up to a single latency don't count. */
2692 if (!initial) { 2692 if (!initial) {
2693 unsigned long thresh = sysctl_sched_latency; 2693 unsigned long thresh = sysctl_sched_latency;
2694 2694
2695 /* 2695 /*
2696 * Halve their sleep time's effect, to allow 2696 * Halve their sleep time's effect, to allow
2697 * for a gentler effect of sleepers: 2697 * for a gentler effect of sleepers:
2698 */ 2698 */
2699 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 2699 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2700 thresh >>= 1; 2700 thresh >>= 1;
2701 2701
2702 vruntime -= thresh; 2702 vruntime -= thresh;
2703 } 2703 }
2704 2704
2705 /* ensure we never gain time by being placed backwards. */ 2705 /* ensure we never gain time by being placed backwards. */
2706 se->vruntime = max_vruntime(se->vruntime, vruntime); 2706 se->vruntime = max_vruntime(se->vruntime, vruntime);
2707 } 2707 }
2708 2708
2709 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 2709 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2710 2710
2711 static void 2711 static void
2712 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 2712 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2713 { 2713 {
2714 /* 2714 /*
2715 * Update the normalized vruntime before updating min_vruntime 2715 * Update the normalized vruntime before updating min_vruntime
2716 * through calling update_curr(). 2716 * through calling update_curr().
2717 */ 2717 */
2718 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 2718 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2719 se->vruntime += cfs_rq->min_vruntime; 2719 se->vruntime += cfs_rq->min_vruntime;
2720 2720
2721 /* 2721 /*
2722 * Update run-time statistics of the 'current'. 2722 * Update run-time statistics of the 'current'.
2723 */ 2723 */
2724 update_curr(cfs_rq); 2724 update_curr(cfs_rq);
2725 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP); 2725 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2726 account_entity_enqueue(cfs_rq, se); 2726 account_entity_enqueue(cfs_rq, se);
2727 update_cfs_shares(cfs_rq); 2727 update_cfs_shares(cfs_rq);
2728 2728
2729 if (flags & ENQUEUE_WAKEUP) { 2729 if (flags & ENQUEUE_WAKEUP) {
2730 place_entity(cfs_rq, se, 0); 2730 place_entity(cfs_rq, se, 0);
2731 enqueue_sleeper(cfs_rq, se); 2731 enqueue_sleeper(cfs_rq, se);
2732 } 2732 }
2733 2733
2734 update_stats_enqueue(cfs_rq, se); 2734 update_stats_enqueue(cfs_rq, se);
2735 check_spread(cfs_rq, se); 2735 check_spread(cfs_rq, se);
2736 if (se != cfs_rq->curr) 2736 if (se != cfs_rq->curr)
2737 __enqueue_entity(cfs_rq, se); 2737 __enqueue_entity(cfs_rq, se);
2738 se->on_rq = 1; 2738 se->on_rq = 1;
2739 2739
2740 if (cfs_rq->nr_running == 1) { 2740 if (cfs_rq->nr_running == 1) {
2741 list_add_leaf_cfs_rq(cfs_rq); 2741 list_add_leaf_cfs_rq(cfs_rq);
2742 check_enqueue_throttle(cfs_rq); 2742 check_enqueue_throttle(cfs_rq);
2743 } 2743 }
2744 } 2744 }
2745 2745
2746 static void __clear_buddies_last(struct sched_entity *se) 2746 static void __clear_buddies_last(struct sched_entity *se)
2747 { 2747 {
2748 for_each_sched_entity(se) { 2748 for_each_sched_entity(se) {
2749 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2749 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2750 if (cfs_rq->last != se) 2750 if (cfs_rq->last != se)
2751 break; 2751 break;
2752 2752
2753 cfs_rq->last = NULL; 2753 cfs_rq->last = NULL;
2754 } 2754 }
2755 } 2755 }
2756 2756
2757 static void __clear_buddies_next(struct sched_entity *se) 2757 static void __clear_buddies_next(struct sched_entity *se)
2758 { 2758 {
2759 for_each_sched_entity(se) { 2759 for_each_sched_entity(se) {
2760 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2760 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2761 if (cfs_rq->next != se) 2761 if (cfs_rq->next != se)
2762 break; 2762 break;
2763 2763
2764 cfs_rq->next = NULL; 2764 cfs_rq->next = NULL;
2765 } 2765 }
2766 } 2766 }
2767 2767
2768 static void __clear_buddies_skip(struct sched_entity *se) 2768 static void __clear_buddies_skip(struct sched_entity *se)
2769 { 2769 {
2770 for_each_sched_entity(se) { 2770 for_each_sched_entity(se) {
2771 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2771 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2772 if (cfs_rq->skip != se) 2772 if (cfs_rq->skip != se)
2773 break; 2773 break;
2774 2774
2775 cfs_rq->skip = NULL; 2775 cfs_rq->skip = NULL;
2776 } 2776 }
2777 } 2777 }
2778 2778
2779 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 2779 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2780 { 2780 {
2781 if (cfs_rq->last == se) 2781 if (cfs_rq->last == se)
2782 __clear_buddies_last(se); 2782 __clear_buddies_last(se);
2783 2783
2784 if (cfs_rq->next == se) 2784 if (cfs_rq->next == se)
2785 __clear_buddies_next(se); 2785 __clear_buddies_next(se);
2786 2786
2787 if (cfs_rq->skip == se) 2787 if (cfs_rq->skip == se)
2788 __clear_buddies_skip(se); 2788 __clear_buddies_skip(se);
2789 } 2789 }
2790 2790
2791 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 2791 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2792 2792
2793 static void 2793 static void
2794 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 2794 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2795 { 2795 {
2796 /* 2796 /*
2797 * Update run-time statistics of the 'current'. 2797 * Update run-time statistics of the 'current'.
2798 */ 2798 */
2799 update_curr(cfs_rq); 2799 update_curr(cfs_rq);
2800 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP); 2800 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2801 2801
2802 update_stats_dequeue(cfs_rq, se); 2802 update_stats_dequeue(cfs_rq, se);
2803 if (flags & DEQUEUE_SLEEP) { 2803 if (flags & DEQUEUE_SLEEP) {
2804 #ifdef CONFIG_SCHEDSTATS 2804 #ifdef CONFIG_SCHEDSTATS
2805 if (entity_is_task(se)) { 2805 if (entity_is_task(se)) {
2806 struct task_struct *tsk = task_of(se); 2806 struct task_struct *tsk = task_of(se);
2807 2807
2808 if (tsk->state & TASK_INTERRUPTIBLE) 2808 if (tsk->state & TASK_INTERRUPTIBLE)
2809 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); 2809 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2810 if (tsk->state & TASK_UNINTERRUPTIBLE) 2810 if (tsk->state & TASK_UNINTERRUPTIBLE)
2811 se->statistics.block_start = rq_clock(rq_of(cfs_rq)); 2811 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2812 } 2812 }
2813 #endif 2813 #endif
2814 } 2814 }
2815 2815
2816 clear_buddies(cfs_rq, se); 2816 clear_buddies(cfs_rq, se);
2817 2817
2818 if (se != cfs_rq->curr) 2818 if (se != cfs_rq->curr)
2819 __dequeue_entity(cfs_rq, se); 2819 __dequeue_entity(cfs_rq, se);
2820 se->on_rq = 0; 2820 se->on_rq = 0;
2821 account_entity_dequeue(cfs_rq, se); 2821 account_entity_dequeue(cfs_rq, se);
2822 2822
2823 /* 2823 /*
2824 * Normalize the entity after updating the min_vruntime because the 2824 * Normalize the entity after updating the min_vruntime because the
2825 * update can refer to the ->curr item and we need to reflect this 2825 * update can refer to the ->curr item and we need to reflect this
2826 * movement in our normalized position. 2826 * movement in our normalized position.
2827 */ 2827 */
2828 if (!(flags & DEQUEUE_SLEEP)) 2828 if (!(flags & DEQUEUE_SLEEP))
2829 se->vruntime -= cfs_rq->min_vruntime; 2829 se->vruntime -= cfs_rq->min_vruntime;
2830 2830
2831 /* return excess runtime on last dequeue */ 2831 /* return excess runtime on last dequeue */
2832 return_cfs_rq_runtime(cfs_rq); 2832 return_cfs_rq_runtime(cfs_rq);
2833 2833
2834 update_min_vruntime(cfs_rq); 2834 update_min_vruntime(cfs_rq);
2835 update_cfs_shares(cfs_rq); 2835 update_cfs_shares(cfs_rq);
2836 } 2836 }
2837 2837
2838 /* 2838 /*
2839 * Preempt the current task with a newly woken task if needed: 2839 * Preempt the current task with a newly woken task if needed:
2840 */ 2840 */
2841 static void 2841 static void
2842 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 2842 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2843 { 2843 {
2844 unsigned long ideal_runtime, delta_exec; 2844 unsigned long ideal_runtime, delta_exec;
2845 struct sched_entity *se; 2845 struct sched_entity *se;
2846 s64 delta; 2846 s64 delta;
2847 2847
2848 ideal_runtime = sched_slice(cfs_rq, curr); 2848 ideal_runtime = sched_slice(cfs_rq, curr);
2849 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 2849 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2850 if (delta_exec > ideal_runtime) { 2850 if (delta_exec > ideal_runtime) {
2851 resched_task(rq_of(cfs_rq)->curr); 2851 resched_task(rq_of(cfs_rq)->curr);
2852 /* 2852 /*
2853 * The current task ran long enough, ensure it doesn't get 2853 * The current task ran long enough, ensure it doesn't get
2854 * re-elected due to buddy favours. 2854 * re-elected due to buddy favours.
2855 */ 2855 */
2856 clear_buddies(cfs_rq, curr); 2856 clear_buddies(cfs_rq, curr);
2857 return; 2857 return;
2858 } 2858 }
2859 2859
2860 /* 2860 /*
2861 * Ensure that a task that missed wakeup preemption by a 2861 * Ensure that a task that missed wakeup preemption by a
2862 * narrow margin doesn't have to wait for a full slice. 2862 * narrow margin doesn't have to wait for a full slice.
2863 * This also mitigates buddy induced latencies under load. 2863 * This also mitigates buddy induced latencies under load.
2864 */ 2864 */
2865 if (delta_exec < sysctl_sched_min_granularity) 2865 if (delta_exec < sysctl_sched_min_granularity)
2866 return; 2866 return;
2867 2867
2868 se = __pick_first_entity(cfs_rq); 2868 se = __pick_first_entity(cfs_rq);
2869 delta = curr->vruntime - se->vruntime; 2869 delta = curr->vruntime - se->vruntime;
2870 2870
2871 if (delta < 0) 2871 if (delta < 0)
2872 return; 2872 return;
2873 2873
2874 if (delta > ideal_runtime) 2874 if (delta > ideal_runtime)
2875 resched_task(rq_of(cfs_rq)->curr); 2875 resched_task(rq_of(cfs_rq)->curr);
2876 } 2876 }
2877 2877
2878 static void 2878 static void
2879 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 2879 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2880 { 2880 {
2881 /* 'current' is not kept within the tree. */ 2881 /* 'current' is not kept within the tree. */
2882 if (se->on_rq) { 2882 if (se->on_rq) {
2883 /* 2883 /*
2884 * Any task has to be enqueued before it get to execute on 2884 * Any task has to be enqueued before it get to execute on
2885 * a CPU. So account for the time it spent waiting on the 2885 * a CPU. So account for the time it spent waiting on the
2886 * runqueue. 2886 * runqueue.
2887 */ 2887 */
2888 update_stats_wait_end(cfs_rq, se); 2888 update_stats_wait_end(cfs_rq, se);
2889 __dequeue_entity(cfs_rq, se); 2889 __dequeue_entity(cfs_rq, se);
2890 } 2890 }
2891 2891
2892 update_stats_curr_start(cfs_rq, se); 2892 update_stats_curr_start(cfs_rq, se);
2893 cfs_rq->curr = se; 2893 cfs_rq->curr = se;
2894 #ifdef CONFIG_SCHEDSTATS 2894 #ifdef CONFIG_SCHEDSTATS
2895 /* 2895 /*
2896 * Track our maximum slice length, if the CPU's load is at 2896 * Track our maximum slice length, if the CPU's load is at
2897 * least twice that of our own weight (i.e. dont track it 2897 * least twice that of our own weight (i.e. dont track it
2898 * when there are only lesser-weight tasks around): 2898 * when there are only lesser-weight tasks around):
2899 */ 2899 */
2900 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 2900 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2901 se->statistics.slice_max = max(se->statistics.slice_max, 2901 se->statistics.slice_max = max(se->statistics.slice_max,
2902 se->sum_exec_runtime - se->prev_sum_exec_runtime); 2902 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2903 } 2903 }
2904 #endif 2904 #endif
2905 se->prev_sum_exec_runtime = se->sum_exec_runtime; 2905 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2906 } 2906 }
2907 2907
2908 static int 2908 static int
2909 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 2909 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2910 2910
2911 /* 2911 /*
2912 * Pick the next process, keeping these things in mind, in this order: 2912 * Pick the next process, keeping these things in mind, in this order:
2913 * 1) keep things fair between processes/task groups 2913 * 1) keep things fair between processes/task groups
2914 * 2) pick the "next" process, since someone really wants that to run 2914 * 2) pick the "next" process, since someone really wants that to run
2915 * 3) pick the "last" process, for cache locality 2915 * 3) pick the "last" process, for cache locality
2916 * 4) do not run the "skip" process, if something else is available 2916 * 4) do not run the "skip" process, if something else is available
2917 */ 2917 */
2918 static struct sched_entity * 2918 static struct sched_entity *
2919 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 2919 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2920 { 2920 {
2921 struct sched_entity *left = __pick_first_entity(cfs_rq); 2921 struct sched_entity *left = __pick_first_entity(cfs_rq);
2922 struct sched_entity *se; 2922 struct sched_entity *se;
2923 2923
2924 /* 2924 /*
2925 * If curr is set we have to see if its left of the leftmost entity 2925 * If curr is set we have to see if its left of the leftmost entity
2926 * still in the tree, provided there was anything in the tree at all. 2926 * still in the tree, provided there was anything in the tree at all.
2927 */ 2927 */
2928 if (!left || (curr && entity_before(curr, left))) 2928 if (!left || (curr && entity_before(curr, left)))
2929 left = curr; 2929 left = curr;
2930 2930
2931 se = left; /* ideally we run the leftmost entity */ 2931 se = left; /* ideally we run the leftmost entity */
2932 2932
2933 /* 2933 /*
2934 * Avoid running the skip buddy, if running something else can 2934 * Avoid running the skip buddy, if running something else can
2935 * be done without getting too unfair. 2935 * be done without getting too unfair.
2936 */ 2936 */
2937 if (cfs_rq->skip == se) { 2937 if (cfs_rq->skip == se) {
2938 struct sched_entity *second; 2938 struct sched_entity *second;
2939 2939
2940 if (se == curr) { 2940 if (se == curr) {
2941 second = __pick_first_entity(cfs_rq); 2941 second = __pick_first_entity(cfs_rq);
2942 } else { 2942 } else {
2943 second = __pick_next_entity(se); 2943 second = __pick_next_entity(se);
2944 if (!second || (curr && entity_before(curr, second))) 2944 if (!second || (curr && entity_before(curr, second)))
2945 second = curr; 2945 second = curr;
2946 } 2946 }
2947 2947
2948 if (second && wakeup_preempt_entity(second, left) < 1) 2948 if (second && wakeup_preempt_entity(second, left) < 1)
2949 se = second; 2949 se = second;
2950 } 2950 }
2951 2951
2952 /* 2952 /*
2953 * Prefer last buddy, try to return the CPU to a preempted task. 2953 * Prefer last buddy, try to return the CPU to a preempted task.
2954 */ 2954 */
2955 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 2955 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2956 se = cfs_rq->last; 2956 se = cfs_rq->last;
2957 2957
2958 /* 2958 /*
2959 * Someone really wants this to run. If it's not unfair, run it. 2959 * Someone really wants this to run. If it's not unfair, run it.
2960 */ 2960 */
2961 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 2961 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2962 se = cfs_rq->next; 2962 se = cfs_rq->next;
2963 2963
2964 clear_buddies(cfs_rq, se); 2964 clear_buddies(cfs_rq, se);
2965 2965
2966 return se; 2966 return se;
2967 } 2967 }
2968 2968
2969 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 2969 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2970 2970
2971 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 2971 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2972 { 2972 {
2973 /* 2973 /*
2974 * If still on the runqueue then deactivate_task() 2974 * If still on the runqueue then deactivate_task()
2975 * was not called and update_curr() has to be done: 2975 * was not called and update_curr() has to be done:
2976 */ 2976 */
2977 if (prev->on_rq) 2977 if (prev->on_rq)
2978 update_curr(cfs_rq); 2978 update_curr(cfs_rq);
2979 2979
2980 /* throttle cfs_rqs exceeding runtime */ 2980 /* throttle cfs_rqs exceeding runtime */
2981 check_cfs_rq_runtime(cfs_rq); 2981 check_cfs_rq_runtime(cfs_rq);
2982 2982
2983 check_spread(cfs_rq, prev); 2983 check_spread(cfs_rq, prev);
2984 if (prev->on_rq) { 2984 if (prev->on_rq) {
2985 update_stats_wait_start(cfs_rq, prev); 2985 update_stats_wait_start(cfs_rq, prev);
2986 /* Put 'current' back into the tree. */ 2986 /* Put 'current' back into the tree. */
2987 __enqueue_entity(cfs_rq, prev); 2987 __enqueue_entity(cfs_rq, prev);
2988 /* in !on_rq case, update occurred at dequeue */ 2988 /* in !on_rq case, update occurred at dequeue */
2989 update_entity_load_avg(prev, 1); 2989 update_entity_load_avg(prev, 1);
2990 } 2990 }
2991 cfs_rq->curr = NULL; 2991 cfs_rq->curr = NULL;
2992 } 2992 }
2993 2993
2994 static void 2994 static void
2995 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 2995 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2996 { 2996 {
2997 /* 2997 /*
2998 * Update run-time statistics of the 'current'. 2998 * Update run-time statistics of the 'current'.
2999 */ 2999 */
3000 update_curr(cfs_rq); 3000 update_curr(cfs_rq);
3001 3001
3002 /* 3002 /*
3003 * Ensure that runnable average is periodically updated. 3003 * Ensure that runnable average is periodically updated.
3004 */ 3004 */
3005 update_entity_load_avg(curr, 1); 3005 update_entity_load_avg(curr, 1);
3006 update_cfs_rq_blocked_load(cfs_rq, 1); 3006 update_cfs_rq_blocked_load(cfs_rq, 1);
3007 update_cfs_shares(cfs_rq); 3007 update_cfs_shares(cfs_rq);
3008 3008
3009 #ifdef CONFIG_SCHED_HRTICK 3009 #ifdef CONFIG_SCHED_HRTICK
3010 /* 3010 /*
3011 * queued ticks are scheduled to match the slice, so don't bother 3011 * queued ticks are scheduled to match the slice, so don't bother
3012 * validating it and just reschedule. 3012 * validating it and just reschedule.
3013 */ 3013 */
3014 if (queued) { 3014 if (queued) {
3015 resched_task(rq_of(cfs_rq)->curr); 3015 resched_task(rq_of(cfs_rq)->curr);
3016 return; 3016 return;
3017 } 3017 }
3018 /* 3018 /*
3019 * don't let the period tick interfere with the hrtick preemption 3019 * don't let the period tick interfere with the hrtick preemption
3020 */ 3020 */
3021 if (!sched_feat(DOUBLE_TICK) && 3021 if (!sched_feat(DOUBLE_TICK) &&
3022 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 3022 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3023 return; 3023 return;
3024 #endif 3024 #endif
3025 3025
3026 if (cfs_rq->nr_running > 1) 3026 if (cfs_rq->nr_running > 1)
3027 check_preempt_tick(cfs_rq, curr); 3027 check_preempt_tick(cfs_rq, curr);
3028 } 3028 }
3029 3029
3030 3030
3031 /************************************************** 3031 /**************************************************
3032 * CFS bandwidth control machinery 3032 * CFS bandwidth control machinery
3033 */ 3033 */
3034 3034
3035 #ifdef CONFIG_CFS_BANDWIDTH 3035 #ifdef CONFIG_CFS_BANDWIDTH
3036 3036
3037 #ifdef HAVE_JUMP_LABEL 3037 #ifdef HAVE_JUMP_LABEL
3038 static struct static_key __cfs_bandwidth_used; 3038 static struct static_key __cfs_bandwidth_used;
3039 3039
3040 static inline bool cfs_bandwidth_used(void) 3040 static inline bool cfs_bandwidth_used(void)
3041 { 3041 {
3042 return static_key_false(&__cfs_bandwidth_used); 3042 return static_key_false(&__cfs_bandwidth_used);
3043 } 3043 }
3044 3044
3045 void cfs_bandwidth_usage_inc(void) 3045 void cfs_bandwidth_usage_inc(void)
3046 { 3046 {
3047 static_key_slow_inc(&__cfs_bandwidth_used); 3047 static_key_slow_inc(&__cfs_bandwidth_used);
3048 } 3048 }
3049 3049
3050 void cfs_bandwidth_usage_dec(void) 3050 void cfs_bandwidth_usage_dec(void)
3051 { 3051 {
3052 static_key_slow_dec(&__cfs_bandwidth_used); 3052 static_key_slow_dec(&__cfs_bandwidth_used);
3053 } 3053 }
3054 #else /* HAVE_JUMP_LABEL */ 3054 #else /* HAVE_JUMP_LABEL */
3055 static bool cfs_bandwidth_used(void) 3055 static bool cfs_bandwidth_used(void)
3056 { 3056 {
3057 return true; 3057 return true;
3058 } 3058 }
3059 3059
3060 void cfs_bandwidth_usage_inc(void) {} 3060 void cfs_bandwidth_usage_inc(void) {}
3061 void cfs_bandwidth_usage_dec(void) {} 3061 void cfs_bandwidth_usage_dec(void) {}
3062 #endif /* HAVE_JUMP_LABEL */ 3062 #endif /* HAVE_JUMP_LABEL */
3063 3063
3064 /* 3064 /*
3065 * default period for cfs group bandwidth. 3065 * default period for cfs group bandwidth.
3066 * default: 0.1s, units: nanoseconds 3066 * default: 0.1s, units: nanoseconds
3067 */ 3067 */
3068 static inline u64 default_cfs_period(void) 3068 static inline u64 default_cfs_period(void)
3069 { 3069 {
3070 return 100000000ULL; 3070 return 100000000ULL;
3071 } 3071 }
3072 3072
3073 static inline u64 sched_cfs_bandwidth_slice(void) 3073 static inline u64 sched_cfs_bandwidth_slice(void)
3074 { 3074 {
3075 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 3075 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3076 } 3076 }
3077 3077
3078 /* 3078 /*
3079 * Replenish runtime according to assigned quota and update expiration time. 3079 * Replenish runtime according to assigned quota and update expiration time.
3080 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 3080 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3081 * additional synchronization around rq->lock. 3081 * additional synchronization around rq->lock.
3082 * 3082 *
3083 * requires cfs_b->lock 3083 * requires cfs_b->lock
3084 */ 3084 */
3085 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 3085 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3086 { 3086 {
3087 u64 now; 3087 u64 now;
3088 3088
3089 if (cfs_b->quota == RUNTIME_INF) 3089 if (cfs_b->quota == RUNTIME_INF)
3090 return; 3090 return;
3091 3091
3092 now = sched_clock_cpu(smp_processor_id()); 3092 now = sched_clock_cpu(smp_processor_id());
3093 cfs_b->runtime = cfs_b->quota; 3093 cfs_b->runtime = cfs_b->quota;
3094 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 3094 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3095 } 3095 }
3096 3096
3097 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3097 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3098 { 3098 {
3099 return &tg->cfs_bandwidth; 3099 return &tg->cfs_bandwidth;
3100 } 3100 }
3101 3101
3102 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 3102 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3103 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3103 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3104 { 3104 {
3105 if (unlikely(cfs_rq->throttle_count)) 3105 if (unlikely(cfs_rq->throttle_count))
3106 return cfs_rq->throttled_clock_task; 3106 return cfs_rq->throttled_clock_task;
3107 3107
3108 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 3108 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3109 } 3109 }
3110 3110
3111 /* returns 0 on failure to allocate runtime */ 3111 /* returns 0 on failure to allocate runtime */
3112 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3112 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3113 { 3113 {
3114 struct task_group *tg = cfs_rq->tg; 3114 struct task_group *tg = cfs_rq->tg;
3115 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 3115 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3116 u64 amount = 0, min_amount, expires; 3116 u64 amount = 0, min_amount, expires;
3117 3117
3118 /* note: this is a positive sum as runtime_remaining <= 0 */ 3118 /* note: this is a positive sum as runtime_remaining <= 0 */
3119 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 3119 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3120 3120
3121 raw_spin_lock(&cfs_b->lock); 3121 raw_spin_lock(&cfs_b->lock);
3122 if (cfs_b->quota == RUNTIME_INF) 3122 if (cfs_b->quota == RUNTIME_INF)
3123 amount = min_amount; 3123 amount = min_amount;
3124 else { 3124 else {
3125 /* 3125 /*
3126 * If the bandwidth pool has become inactive, then at least one 3126 * If the bandwidth pool has become inactive, then at least one
3127 * period must have elapsed since the last consumption. 3127 * period must have elapsed since the last consumption.
3128 * Refresh the global state and ensure bandwidth timer becomes 3128 * Refresh the global state and ensure bandwidth timer becomes
3129 * active. 3129 * active.
3130 */ 3130 */
3131 if (!cfs_b->timer_active) { 3131 if (!cfs_b->timer_active) {
3132 __refill_cfs_bandwidth_runtime(cfs_b); 3132 __refill_cfs_bandwidth_runtime(cfs_b);
3133 __start_cfs_bandwidth(cfs_b); 3133 __start_cfs_bandwidth(cfs_b, false);
3134 } 3134 }
3135 3135
3136 if (cfs_b->runtime > 0) { 3136 if (cfs_b->runtime > 0) {
3137 amount = min(cfs_b->runtime, min_amount); 3137 amount = min(cfs_b->runtime, min_amount);
3138 cfs_b->runtime -= amount; 3138 cfs_b->runtime -= amount;
3139 cfs_b->idle = 0; 3139 cfs_b->idle = 0;
3140 } 3140 }
3141 } 3141 }
3142 expires = cfs_b->runtime_expires; 3142 expires = cfs_b->runtime_expires;
3143 raw_spin_unlock(&cfs_b->lock); 3143 raw_spin_unlock(&cfs_b->lock);
3144 3144
3145 cfs_rq->runtime_remaining += amount; 3145 cfs_rq->runtime_remaining += amount;
3146 /* 3146 /*
3147 * we may have advanced our local expiration to account for allowed 3147 * we may have advanced our local expiration to account for allowed
3148 * spread between our sched_clock and the one on which runtime was 3148 * spread between our sched_clock and the one on which runtime was
3149 * issued. 3149 * issued.
3150 */ 3150 */
3151 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 3151 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3152 cfs_rq->runtime_expires = expires; 3152 cfs_rq->runtime_expires = expires;
3153 3153
3154 return cfs_rq->runtime_remaining > 0; 3154 return cfs_rq->runtime_remaining > 0;
3155 } 3155 }
3156 3156
3157 /* 3157 /*
3158 * Note: This depends on the synchronization provided by sched_clock and the 3158 * Note: This depends on the synchronization provided by sched_clock and the
3159 * fact that rq->clock snapshots this value. 3159 * fact that rq->clock snapshots this value.
3160 */ 3160 */
3161 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3161 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3162 { 3162 {
3163 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3163 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3164 3164
3165 /* if the deadline is ahead of our clock, nothing to do */ 3165 /* if the deadline is ahead of our clock, nothing to do */
3166 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 3166 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3167 return; 3167 return;
3168 3168
3169 if (cfs_rq->runtime_remaining < 0) 3169 if (cfs_rq->runtime_remaining < 0)
3170 return; 3170 return;
3171 3171
3172 /* 3172 /*
3173 * If the local deadline has passed we have to consider the 3173 * If the local deadline has passed we have to consider the
3174 * possibility that our sched_clock is 'fast' and the global deadline 3174 * possibility that our sched_clock is 'fast' and the global deadline
3175 * has not truly expired. 3175 * has not truly expired.
3176 * 3176 *
3177 * Fortunately we can check determine whether this the case by checking 3177 * Fortunately we can check determine whether this the case by checking
3178 * whether the global deadline has advanced. 3178 * whether the global deadline has advanced.
3179 */ 3179 */
3180 3180
3181 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) { 3181 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3182 /* extend local deadline, drift is bounded above by 2 ticks */ 3182 /* extend local deadline, drift is bounded above by 2 ticks */
3183 cfs_rq->runtime_expires += TICK_NSEC; 3183 cfs_rq->runtime_expires += TICK_NSEC;
3184 } else { 3184 } else {
3185 /* global deadline is ahead, expiration has passed */ 3185 /* global deadline is ahead, expiration has passed */
3186 cfs_rq->runtime_remaining = 0; 3186 cfs_rq->runtime_remaining = 0;
3187 } 3187 }
3188 } 3188 }
3189 3189
3190 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3190 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3191 { 3191 {
3192 /* dock delta_exec before expiring quota (as it could span periods) */ 3192 /* dock delta_exec before expiring quota (as it could span periods) */
3193 cfs_rq->runtime_remaining -= delta_exec; 3193 cfs_rq->runtime_remaining -= delta_exec;
3194 expire_cfs_rq_runtime(cfs_rq); 3194 expire_cfs_rq_runtime(cfs_rq);
3195 3195
3196 if (likely(cfs_rq->runtime_remaining > 0)) 3196 if (likely(cfs_rq->runtime_remaining > 0))
3197 return; 3197 return;
3198 3198
3199 /* 3199 /*
3200 * if we're unable to extend our runtime we resched so that the active 3200 * if we're unable to extend our runtime we resched so that the active
3201 * hierarchy can be throttled 3201 * hierarchy can be throttled
3202 */ 3202 */
3203 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 3203 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3204 resched_task(rq_of(cfs_rq)->curr); 3204 resched_task(rq_of(cfs_rq)->curr);
3205 } 3205 }
3206 3206
3207 static __always_inline 3207 static __always_inline
3208 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3208 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3209 { 3209 {
3210 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 3210 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3211 return; 3211 return;
3212 3212
3213 __account_cfs_rq_runtime(cfs_rq, delta_exec); 3213 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3214 } 3214 }
3215 3215
3216 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3216 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3217 { 3217 {
3218 return cfs_bandwidth_used() && cfs_rq->throttled; 3218 return cfs_bandwidth_used() && cfs_rq->throttled;
3219 } 3219 }
3220 3220
3221 /* check whether cfs_rq, or any parent, is throttled */ 3221 /* check whether cfs_rq, or any parent, is throttled */
3222 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3222 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3223 { 3223 {
3224 return cfs_bandwidth_used() && cfs_rq->throttle_count; 3224 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3225 } 3225 }
3226 3226
3227 /* 3227 /*
3228 * Ensure that neither of the group entities corresponding to src_cpu or 3228 * Ensure that neither of the group entities corresponding to src_cpu or
3229 * dest_cpu are members of a throttled hierarchy when performing group 3229 * dest_cpu are members of a throttled hierarchy when performing group
3230 * load-balance operations. 3230 * load-balance operations.
3231 */ 3231 */
3232 static inline int throttled_lb_pair(struct task_group *tg, 3232 static inline int throttled_lb_pair(struct task_group *tg,
3233 int src_cpu, int dest_cpu) 3233 int src_cpu, int dest_cpu)
3234 { 3234 {
3235 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 3235 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3236 3236
3237 src_cfs_rq = tg->cfs_rq[src_cpu]; 3237 src_cfs_rq = tg->cfs_rq[src_cpu];
3238 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 3238 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3239 3239
3240 return throttled_hierarchy(src_cfs_rq) || 3240 return throttled_hierarchy(src_cfs_rq) ||
3241 throttled_hierarchy(dest_cfs_rq); 3241 throttled_hierarchy(dest_cfs_rq);
3242 } 3242 }
3243 3243
3244 /* updated child weight may affect parent so we have to do this bottom up */ 3244 /* updated child weight may affect parent so we have to do this bottom up */
3245 static int tg_unthrottle_up(struct task_group *tg, void *data) 3245 static int tg_unthrottle_up(struct task_group *tg, void *data)
3246 { 3246 {
3247 struct rq *rq = data; 3247 struct rq *rq = data;
3248 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3248 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3249 3249
3250 cfs_rq->throttle_count--; 3250 cfs_rq->throttle_count--;
3251 #ifdef CONFIG_SMP 3251 #ifdef CONFIG_SMP
3252 if (!cfs_rq->throttle_count) { 3252 if (!cfs_rq->throttle_count) {
3253 /* adjust cfs_rq_clock_task() */ 3253 /* adjust cfs_rq_clock_task() */
3254 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 3254 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3255 cfs_rq->throttled_clock_task; 3255 cfs_rq->throttled_clock_task;
3256 } 3256 }
3257 #endif 3257 #endif
3258 3258
3259 return 0; 3259 return 0;
3260 } 3260 }
3261 3261
3262 static int tg_throttle_down(struct task_group *tg, void *data) 3262 static int tg_throttle_down(struct task_group *tg, void *data)
3263 { 3263 {
3264 struct rq *rq = data; 3264 struct rq *rq = data;
3265 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3265 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3266 3266
3267 /* group is entering throttled state, stop time */ 3267 /* group is entering throttled state, stop time */
3268 if (!cfs_rq->throttle_count) 3268 if (!cfs_rq->throttle_count)
3269 cfs_rq->throttled_clock_task = rq_clock_task(rq); 3269 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3270 cfs_rq->throttle_count++; 3270 cfs_rq->throttle_count++;
3271 3271
3272 return 0; 3272 return 0;
3273 } 3273 }
3274 3274
3275 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 3275 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3276 { 3276 {
3277 struct rq *rq = rq_of(cfs_rq); 3277 struct rq *rq = rq_of(cfs_rq);
3278 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3278 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3279 struct sched_entity *se; 3279 struct sched_entity *se;
3280 long task_delta, dequeue = 1; 3280 long task_delta, dequeue = 1;
3281 3281
3282 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 3282 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3283 3283
3284 /* freeze hierarchy runnable averages while throttled */ 3284 /* freeze hierarchy runnable averages while throttled */
3285 rcu_read_lock(); 3285 rcu_read_lock();
3286 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 3286 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3287 rcu_read_unlock(); 3287 rcu_read_unlock();
3288 3288
3289 task_delta = cfs_rq->h_nr_running; 3289 task_delta = cfs_rq->h_nr_running;
3290 for_each_sched_entity(se) { 3290 for_each_sched_entity(se) {
3291 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 3291 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3292 /* throttled entity or throttle-on-deactivate */ 3292 /* throttled entity or throttle-on-deactivate */
3293 if (!se->on_rq) 3293 if (!se->on_rq)
3294 break; 3294 break;
3295 3295
3296 if (dequeue) 3296 if (dequeue)
3297 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 3297 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3298 qcfs_rq->h_nr_running -= task_delta; 3298 qcfs_rq->h_nr_running -= task_delta;
3299 3299
3300 if (qcfs_rq->load.weight) 3300 if (qcfs_rq->load.weight)
3301 dequeue = 0; 3301 dequeue = 0;
3302 } 3302 }
3303 3303
3304 if (!se) 3304 if (!se)
3305 rq->nr_running -= task_delta; 3305 rq->nr_running -= task_delta;
3306 3306
3307 cfs_rq->throttled = 1; 3307 cfs_rq->throttled = 1;
3308 cfs_rq->throttled_clock = rq_clock(rq); 3308 cfs_rq->throttled_clock = rq_clock(rq);
3309 raw_spin_lock(&cfs_b->lock); 3309 raw_spin_lock(&cfs_b->lock);
3310 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 3310 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3311 if (!cfs_b->timer_active) 3311 if (!cfs_b->timer_active)
3312 __start_cfs_bandwidth(cfs_b); 3312 __start_cfs_bandwidth(cfs_b, false);
3313 raw_spin_unlock(&cfs_b->lock); 3313 raw_spin_unlock(&cfs_b->lock);
3314 } 3314 }
3315 3315
3316 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 3316 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3317 { 3317 {
3318 struct rq *rq = rq_of(cfs_rq); 3318 struct rq *rq = rq_of(cfs_rq);
3319 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3319 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3320 struct sched_entity *se; 3320 struct sched_entity *se;
3321 int enqueue = 1; 3321 int enqueue = 1;
3322 long task_delta; 3322 long task_delta;
3323 3323
3324 se = cfs_rq->tg->se[cpu_of(rq)]; 3324 se = cfs_rq->tg->se[cpu_of(rq)];
3325 3325
3326 cfs_rq->throttled = 0; 3326 cfs_rq->throttled = 0;
3327 3327
3328 update_rq_clock(rq); 3328 update_rq_clock(rq);
3329 3329
3330 raw_spin_lock(&cfs_b->lock); 3330 raw_spin_lock(&cfs_b->lock);
3331 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 3331 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3332 list_del_rcu(&cfs_rq->throttled_list); 3332 list_del_rcu(&cfs_rq->throttled_list);
3333 raw_spin_unlock(&cfs_b->lock); 3333 raw_spin_unlock(&cfs_b->lock);
3334 3334
3335 /* update hierarchical throttle state */ 3335 /* update hierarchical throttle state */
3336 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 3336 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3337 3337
3338 if (!cfs_rq->load.weight) 3338 if (!cfs_rq->load.weight)
3339 return; 3339 return;
3340 3340
3341 task_delta = cfs_rq->h_nr_running; 3341 task_delta = cfs_rq->h_nr_running;
3342 for_each_sched_entity(se) { 3342 for_each_sched_entity(se) {
3343 if (se->on_rq) 3343 if (se->on_rq)
3344 enqueue = 0; 3344 enqueue = 0;
3345 3345
3346 cfs_rq = cfs_rq_of(se); 3346 cfs_rq = cfs_rq_of(se);
3347 if (enqueue) 3347 if (enqueue)
3348 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 3348 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3349 cfs_rq->h_nr_running += task_delta; 3349 cfs_rq->h_nr_running += task_delta;
3350 3350
3351 if (cfs_rq_throttled(cfs_rq)) 3351 if (cfs_rq_throttled(cfs_rq))
3352 break; 3352 break;
3353 } 3353 }
3354 3354
3355 if (!se) 3355 if (!se)
3356 rq->nr_running += task_delta; 3356 rq->nr_running += task_delta;
3357 3357
3358 /* determine whether we need to wake up potentially idle cpu */ 3358 /* determine whether we need to wake up potentially idle cpu */
3359 if (rq->curr == rq->idle && rq->cfs.nr_running) 3359 if (rq->curr == rq->idle && rq->cfs.nr_running)
3360 resched_task(rq->curr); 3360 resched_task(rq->curr);
3361 } 3361 }
3362 3362
3363 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 3363 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3364 u64 remaining, u64 expires) 3364 u64 remaining, u64 expires)
3365 { 3365 {
3366 struct cfs_rq *cfs_rq; 3366 struct cfs_rq *cfs_rq;
3367 u64 runtime = remaining; 3367 u64 runtime = remaining;
3368 3368
3369 rcu_read_lock(); 3369 rcu_read_lock();
3370 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 3370 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3371 throttled_list) { 3371 throttled_list) {
3372 struct rq *rq = rq_of(cfs_rq); 3372 struct rq *rq = rq_of(cfs_rq);
3373 3373
3374 raw_spin_lock(&rq->lock); 3374 raw_spin_lock(&rq->lock);
3375 if (!cfs_rq_throttled(cfs_rq)) 3375 if (!cfs_rq_throttled(cfs_rq))
3376 goto next; 3376 goto next;
3377 3377
3378 runtime = -cfs_rq->runtime_remaining + 1; 3378 runtime = -cfs_rq->runtime_remaining + 1;
3379 if (runtime > remaining) 3379 if (runtime > remaining)
3380 runtime = remaining; 3380 runtime = remaining;
3381 remaining -= runtime; 3381 remaining -= runtime;
3382 3382
3383 cfs_rq->runtime_remaining += runtime; 3383 cfs_rq->runtime_remaining += runtime;
3384 cfs_rq->runtime_expires = expires; 3384 cfs_rq->runtime_expires = expires;
3385 3385
3386 /* we check whether we're throttled above */ 3386 /* we check whether we're throttled above */
3387 if (cfs_rq->runtime_remaining > 0) 3387 if (cfs_rq->runtime_remaining > 0)
3388 unthrottle_cfs_rq(cfs_rq); 3388 unthrottle_cfs_rq(cfs_rq);
3389 3389
3390 next: 3390 next:
3391 raw_spin_unlock(&rq->lock); 3391 raw_spin_unlock(&rq->lock);
3392 3392
3393 if (!remaining) 3393 if (!remaining)
3394 break; 3394 break;
3395 } 3395 }
3396 rcu_read_unlock(); 3396 rcu_read_unlock();
3397 3397
3398 return remaining; 3398 return remaining;
3399 } 3399 }
3400 3400
3401 /* 3401 /*
3402 * Responsible for refilling a task_group's bandwidth and unthrottling its 3402 * Responsible for refilling a task_group's bandwidth and unthrottling its
3403 * cfs_rqs as appropriate. If there has been no activity within the last 3403 * cfs_rqs as appropriate. If there has been no activity within the last
3404 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 3404 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3405 * used to track this state. 3405 * used to track this state.
3406 */ 3406 */
3407 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 3407 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3408 { 3408 {
3409 u64 runtime, runtime_expires; 3409 u64 runtime, runtime_expires;
3410 int idle = 1, throttled; 3410 int idle = 1, throttled;
3411 3411
3412 raw_spin_lock(&cfs_b->lock); 3412 raw_spin_lock(&cfs_b->lock);
3413 /* no need to continue the timer with no bandwidth constraint */ 3413 /* no need to continue the timer with no bandwidth constraint */
3414 if (cfs_b->quota == RUNTIME_INF) 3414 if (cfs_b->quota == RUNTIME_INF)
3415 goto out_unlock; 3415 goto out_unlock;
3416 3416
3417 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3417 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3418 /* idle depends on !throttled (for the case of a large deficit) */ 3418 /* idle depends on !throttled (for the case of a large deficit) */
3419 idle = cfs_b->idle && !throttled; 3419 idle = cfs_b->idle && !throttled;
3420 cfs_b->nr_periods += overrun; 3420 cfs_b->nr_periods += overrun;
3421 3421
3422 /* if we're going inactive then everything else can be deferred */ 3422 /* if we're going inactive then everything else can be deferred */
3423 if (idle) 3423 if (idle)
3424 goto out_unlock; 3424 goto out_unlock;
3425 3425
3426 /* 3426 /*
3427 * if we have relooped after returning idle once, we need to update our 3427 * if we have relooped after returning idle once, we need to update our
3428 * status as actually running, so that other cpus doing 3428 * status as actually running, so that other cpus doing
3429 * __start_cfs_bandwidth will stop trying to cancel us. 3429 * __start_cfs_bandwidth will stop trying to cancel us.
3430 */ 3430 */
3431 cfs_b->timer_active = 1; 3431 cfs_b->timer_active = 1;
3432 3432
3433 __refill_cfs_bandwidth_runtime(cfs_b); 3433 __refill_cfs_bandwidth_runtime(cfs_b);
3434 3434
3435 if (!throttled) { 3435 if (!throttled) {
3436 /* mark as potentially idle for the upcoming period */ 3436 /* mark as potentially idle for the upcoming period */
3437 cfs_b->idle = 1; 3437 cfs_b->idle = 1;
3438 goto out_unlock; 3438 goto out_unlock;
3439 } 3439 }
3440 3440
3441 /* account preceding periods in which throttling occurred */ 3441 /* account preceding periods in which throttling occurred */
3442 cfs_b->nr_throttled += overrun; 3442 cfs_b->nr_throttled += overrun;
3443 3443
3444 /* 3444 /*
3445 * There are throttled entities so we must first use the new bandwidth 3445 * There are throttled entities so we must first use the new bandwidth
3446 * to unthrottle them before making it generally available. This 3446 * to unthrottle them before making it generally available. This
3447 * ensures that all existing debts will be paid before a new cfs_rq is 3447 * ensures that all existing debts will be paid before a new cfs_rq is
3448 * allowed to run. 3448 * allowed to run.
3449 */ 3449 */
3450 runtime = cfs_b->runtime; 3450 runtime = cfs_b->runtime;
3451 runtime_expires = cfs_b->runtime_expires; 3451 runtime_expires = cfs_b->runtime_expires;
3452 cfs_b->runtime = 0; 3452 cfs_b->runtime = 0;
3453 3453
3454 /* 3454 /*
3455 * This check is repeated as we are holding onto the new bandwidth 3455 * This check is repeated as we are holding onto the new bandwidth
3456 * while we unthrottle. This can potentially race with an unthrottled 3456 * while we unthrottle. This can potentially race with an unthrottled
3457 * group trying to acquire new bandwidth from the global pool. 3457 * group trying to acquire new bandwidth from the global pool.
3458 */ 3458 */
3459 while (throttled && runtime > 0) { 3459 while (throttled && runtime > 0) {
3460 raw_spin_unlock(&cfs_b->lock); 3460 raw_spin_unlock(&cfs_b->lock);
3461 /* we can't nest cfs_b->lock while distributing bandwidth */ 3461 /* we can't nest cfs_b->lock while distributing bandwidth */
3462 runtime = distribute_cfs_runtime(cfs_b, runtime, 3462 runtime = distribute_cfs_runtime(cfs_b, runtime,
3463 runtime_expires); 3463 runtime_expires);
3464 raw_spin_lock(&cfs_b->lock); 3464 raw_spin_lock(&cfs_b->lock);
3465 3465
3466 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3466 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3467 } 3467 }
3468 3468
3469 /* return (any) remaining runtime */ 3469 /* return (any) remaining runtime */
3470 cfs_b->runtime = runtime; 3470 cfs_b->runtime = runtime;
3471 /* 3471 /*
3472 * While we are ensured activity in the period following an 3472 * While we are ensured activity in the period following an
3473 * unthrottle, this also covers the case in which the new bandwidth is 3473 * unthrottle, this also covers the case in which the new bandwidth is
3474 * insufficient to cover the existing bandwidth deficit. (Forcing the 3474 * insufficient to cover the existing bandwidth deficit. (Forcing the
3475 * timer to remain active while there are any throttled entities.) 3475 * timer to remain active while there are any throttled entities.)
3476 */ 3476 */
3477 cfs_b->idle = 0; 3477 cfs_b->idle = 0;
3478 out_unlock: 3478 out_unlock:
3479 if (idle) 3479 if (idle)
3480 cfs_b->timer_active = 0; 3480 cfs_b->timer_active = 0;
3481 raw_spin_unlock(&cfs_b->lock); 3481 raw_spin_unlock(&cfs_b->lock);
3482 3482
3483 return idle; 3483 return idle;
3484 } 3484 }
3485 3485
3486 /* a cfs_rq won't donate quota below this amount */ 3486 /* a cfs_rq won't donate quota below this amount */
3487 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 3487 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3488 /* minimum remaining period time to redistribute slack quota */ 3488 /* minimum remaining period time to redistribute slack quota */
3489 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 3489 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3490 /* how long we wait to gather additional slack before distributing */ 3490 /* how long we wait to gather additional slack before distributing */
3491 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 3491 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3492 3492
3493 /* 3493 /*
3494 * Are we near the end of the current quota period? 3494 * Are we near the end of the current quota period?
3495 * 3495 *
3496 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 3496 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3497 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of 3497 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3498 * migrate_hrtimers, base is never cleared, so we are fine. 3498 * migrate_hrtimers, base is never cleared, so we are fine.
3499 */ 3499 */
3500 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 3500 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3501 { 3501 {
3502 struct hrtimer *refresh_timer = &cfs_b->period_timer; 3502 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3503 u64 remaining; 3503 u64 remaining;
3504 3504
3505 /* if the call-back is running a quota refresh is already occurring */ 3505 /* if the call-back is running a quota refresh is already occurring */
3506 if (hrtimer_callback_running(refresh_timer)) 3506 if (hrtimer_callback_running(refresh_timer))
3507 return 1; 3507 return 1;
3508 3508
3509 /* is a quota refresh about to occur? */ 3509 /* is a quota refresh about to occur? */
3510 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 3510 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3511 if (remaining < min_expire) 3511 if (remaining < min_expire)
3512 return 1; 3512 return 1;
3513 3513
3514 return 0; 3514 return 0;
3515 } 3515 }
3516 3516
3517 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 3517 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3518 { 3518 {
3519 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 3519 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3520 3520
3521 /* if there's a quota refresh soon don't bother with slack */ 3521 /* if there's a quota refresh soon don't bother with slack */
3522 if (runtime_refresh_within(cfs_b, min_left)) 3522 if (runtime_refresh_within(cfs_b, min_left))
3523 return; 3523 return;
3524 3524
3525 start_bandwidth_timer(&cfs_b->slack_timer, 3525 start_bandwidth_timer(&cfs_b->slack_timer,
3526 ns_to_ktime(cfs_bandwidth_slack_period)); 3526 ns_to_ktime(cfs_bandwidth_slack_period));
3527 } 3527 }
3528 3528
3529 /* we know any runtime found here is valid as update_curr() precedes return */ 3529 /* we know any runtime found here is valid as update_curr() precedes return */
3530 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3530 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3531 { 3531 {
3532 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3532 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3533 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 3533 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3534 3534
3535 if (slack_runtime <= 0) 3535 if (slack_runtime <= 0)
3536 return; 3536 return;
3537 3537
3538 raw_spin_lock(&cfs_b->lock); 3538 raw_spin_lock(&cfs_b->lock);
3539 if (cfs_b->quota != RUNTIME_INF && 3539 if (cfs_b->quota != RUNTIME_INF &&
3540 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 3540 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3541 cfs_b->runtime += slack_runtime; 3541 cfs_b->runtime += slack_runtime;
3542 3542
3543 /* we are under rq->lock, defer unthrottling using a timer */ 3543 /* we are under rq->lock, defer unthrottling using a timer */
3544 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 3544 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3545 !list_empty(&cfs_b->throttled_cfs_rq)) 3545 !list_empty(&cfs_b->throttled_cfs_rq))
3546 start_cfs_slack_bandwidth(cfs_b); 3546 start_cfs_slack_bandwidth(cfs_b);
3547 } 3547 }
3548 raw_spin_unlock(&cfs_b->lock); 3548 raw_spin_unlock(&cfs_b->lock);
3549 3549
3550 /* even if it's not valid for return we don't want to try again */ 3550 /* even if it's not valid for return we don't want to try again */
3551 cfs_rq->runtime_remaining -= slack_runtime; 3551 cfs_rq->runtime_remaining -= slack_runtime;
3552 } 3552 }
3553 3553
3554 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3554 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3555 { 3555 {
3556 if (!cfs_bandwidth_used()) 3556 if (!cfs_bandwidth_used())
3557 return; 3557 return;
3558 3558
3559 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 3559 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3560 return; 3560 return;
3561 3561
3562 __return_cfs_rq_runtime(cfs_rq); 3562 __return_cfs_rq_runtime(cfs_rq);
3563 } 3563 }
3564 3564
3565 /* 3565 /*
3566 * This is done with a timer (instead of inline with bandwidth return) since 3566 * This is done with a timer (instead of inline with bandwidth return) since
3567 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 3567 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3568 */ 3568 */
3569 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 3569 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3570 { 3570 {
3571 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 3571 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3572 u64 expires; 3572 u64 expires;
3573 3573
3574 /* confirm we're still not at a refresh boundary */ 3574 /* confirm we're still not at a refresh boundary */
3575 raw_spin_lock(&cfs_b->lock); 3575 raw_spin_lock(&cfs_b->lock);
3576 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 3576 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3577 raw_spin_unlock(&cfs_b->lock); 3577 raw_spin_unlock(&cfs_b->lock);
3578 return; 3578 return;
3579 } 3579 }
3580 3580
3581 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { 3581 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3582 runtime = cfs_b->runtime; 3582 runtime = cfs_b->runtime;
3583 cfs_b->runtime = 0; 3583 cfs_b->runtime = 0;
3584 } 3584 }
3585 expires = cfs_b->runtime_expires; 3585 expires = cfs_b->runtime_expires;
3586 raw_spin_unlock(&cfs_b->lock); 3586 raw_spin_unlock(&cfs_b->lock);
3587 3587
3588 if (!runtime) 3588 if (!runtime)
3589 return; 3589 return;
3590 3590
3591 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 3591 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3592 3592
3593 raw_spin_lock(&cfs_b->lock); 3593 raw_spin_lock(&cfs_b->lock);
3594 if (expires == cfs_b->runtime_expires) 3594 if (expires == cfs_b->runtime_expires)
3595 cfs_b->runtime = runtime; 3595 cfs_b->runtime = runtime;
3596 raw_spin_unlock(&cfs_b->lock); 3596 raw_spin_unlock(&cfs_b->lock);
3597 } 3597 }
3598 3598
3599 /* 3599 /*
3600 * When a group wakes up we want to make sure that its quota is not already 3600 * When a group wakes up we want to make sure that its quota is not already
3601 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 3601 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3602 * runtime as update_curr() throttling can not not trigger until it's on-rq. 3602 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3603 */ 3603 */
3604 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 3604 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3605 { 3605 {
3606 if (!cfs_bandwidth_used()) 3606 if (!cfs_bandwidth_used())
3607 return; 3607 return;
3608 3608
3609 /* an active group must be handled by the update_curr()->put() path */ 3609 /* an active group must be handled by the update_curr()->put() path */
3610 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 3610 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3611 return; 3611 return;
3612 3612
3613 /* ensure the group is not already throttled */ 3613 /* ensure the group is not already throttled */
3614 if (cfs_rq_throttled(cfs_rq)) 3614 if (cfs_rq_throttled(cfs_rq))
3615 return; 3615 return;
3616 3616
3617 /* update runtime allocation */ 3617 /* update runtime allocation */
3618 account_cfs_rq_runtime(cfs_rq, 0); 3618 account_cfs_rq_runtime(cfs_rq, 0);
3619 if (cfs_rq->runtime_remaining <= 0) 3619 if (cfs_rq->runtime_remaining <= 0)
3620 throttle_cfs_rq(cfs_rq); 3620 throttle_cfs_rq(cfs_rq);
3621 } 3621 }
3622 3622
3623 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 3623 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3624 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3624 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3625 { 3625 {
3626 if (!cfs_bandwidth_used()) 3626 if (!cfs_bandwidth_used())
3627 return false; 3627 return false;
3628 3628
3629 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 3629 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3630 return false; 3630 return false;
3631 3631
3632 /* 3632 /*
3633 * it's possible for a throttled entity to be forced into a running 3633 * it's possible for a throttled entity to be forced into a running
3634 * state (e.g. set_curr_task), in this case we're finished. 3634 * state (e.g. set_curr_task), in this case we're finished.
3635 */ 3635 */
3636 if (cfs_rq_throttled(cfs_rq)) 3636 if (cfs_rq_throttled(cfs_rq))
3637 return true; 3637 return true;
3638 3638
3639 throttle_cfs_rq(cfs_rq); 3639 throttle_cfs_rq(cfs_rq);
3640 return true; 3640 return true;
3641 } 3641 }
3642 3642
3643 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 3643 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3644 { 3644 {
3645 struct cfs_bandwidth *cfs_b = 3645 struct cfs_bandwidth *cfs_b =
3646 container_of(timer, struct cfs_bandwidth, slack_timer); 3646 container_of(timer, struct cfs_bandwidth, slack_timer);
3647 do_sched_cfs_slack_timer(cfs_b); 3647 do_sched_cfs_slack_timer(cfs_b);
3648 3648
3649 return HRTIMER_NORESTART; 3649 return HRTIMER_NORESTART;
3650 } 3650 }
3651 3651
3652 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 3652 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3653 { 3653 {
3654 struct cfs_bandwidth *cfs_b = 3654 struct cfs_bandwidth *cfs_b =
3655 container_of(timer, struct cfs_bandwidth, period_timer); 3655 container_of(timer, struct cfs_bandwidth, period_timer);
3656 ktime_t now; 3656 ktime_t now;
3657 int overrun; 3657 int overrun;
3658 int idle = 0; 3658 int idle = 0;
3659 3659
3660 for (;;) { 3660 for (;;) {
3661 now = hrtimer_cb_get_time(timer); 3661 now = hrtimer_cb_get_time(timer);
3662 overrun = hrtimer_forward(timer, now, cfs_b->period); 3662 overrun = hrtimer_forward(timer, now, cfs_b->period);
3663 3663
3664 if (!overrun) 3664 if (!overrun)
3665 break; 3665 break;
3666 3666
3667 idle = do_sched_cfs_period_timer(cfs_b, overrun); 3667 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3668 } 3668 }
3669 3669
3670 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 3670 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3671 } 3671 }
3672 3672
3673 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3673 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3674 { 3674 {
3675 raw_spin_lock_init(&cfs_b->lock); 3675 raw_spin_lock_init(&cfs_b->lock);
3676 cfs_b->runtime = 0; 3676 cfs_b->runtime = 0;
3677 cfs_b->quota = RUNTIME_INF; 3677 cfs_b->quota = RUNTIME_INF;
3678 cfs_b->period = ns_to_ktime(default_cfs_period()); 3678 cfs_b->period = ns_to_ktime(default_cfs_period());
3679 3679
3680 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 3680 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3681 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3681 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3682 cfs_b->period_timer.function = sched_cfs_period_timer; 3682 cfs_b->period_timer.function = sched_cfs_period_timer;
3683 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3683 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3684 cfs_b->slack_timer.function = sched_cfs_slack_timer; 3684 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3685 } 3685 }
3686 3686
3687 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3687 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3688 { 3688 {
3689 cfs_rq->runtime_enabled = 0; 3689 cfs_rq->runtime_enabled = 0;
3690 INIT_LIST_HEAD(&cfs_rq->throttled_list); 3690 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3691 } 3691 }
3692 3692
3693 /* requires cfs_b->lock, may release to reprogram timer */ 3693 /* requires cfs_b->lock, may release to reprogram timer */
3694 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3694 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3695 { 3695 {
3696 /* 3696 /*
3697 * The timer may be active because we're trying to set a new bandwidth 3697 * The timer may be active because we're trying to set a new bandwidth
3698 * period or because we're racing with the tear-down path 3698 * period or because we're racing with the tear-down path
3699 * (timer_active==0 becomes visible before the hrtimer call-back 3699 * (timer_active==0 becomes visible before the hrtimer call-back
3700 * terminates). In either case we ensure that it's re-programmed 3700 * terminates). In either case we ensure that it's re-programmed
3701 */ 3701 */
3702 while (unlikely(hrtimer_active(&cfs_b->period_timer)) && 3702 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3703 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) { 3703 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3704 /* bounce the lock to allow do_sched_cfs_period_timer to run */ 3704 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3705 raw_spin_unlock(&cfs_b->lock); 3705 raw_spin_unlock(&cfs_b->lock);
3706 cpu_relax(); 3706 cpu_relax();
3707 raw_spin_lock(&cfs_b->lock); 3707 raw_spin_lock(&cfs_b->lock);
3708 /* if someone else restarted the timer then we're done */ 3708 /* if someone else restarted the timer then we're done */
3709 if (cfs_b->timer_active) 3709 if (!force && cfs_b->timer_active)
3710 return; 3710 return;
3711 } 3711 }
3712 3712
3713 cfs_b->timer_active = 1; 3713 cfs_b->timer_active = 1;
3714 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); 3714 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3715 } 3715 }
3716 3716
3717 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3717 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3718 { 3718 {
3719 hrtimer_cancel(&cfs_b->period_timer); 3719 hrtimer_cancel(&cfs_b->period_timer);
3720 hrtimer_cancel(&cfs_b->slack_timer); 3720 hrtimer_cancel(&cfs_b->slack_timer);
3721 } 3721 }
3722 3722
3723 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 3723 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3724 { 3724 {
3725 struct cfs_rq *cfs_rq; 3725 struct cfs_rq *cfs_rq;
3726 3726
3727 for_each_leaf_cfs_rq(rq, cfs_rq) { 3727 for_each_leaf_cfs_rq(rq, cfs_rq) {
3728 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3728 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3729 3729
3730 if (!cfs_rq->runtime_enabled) 3730 if (!cfs_rq->runtime_enabled)
3731 continue; 3731 continue;
3732 3732
3733 /* 3733 /*
3734 * clock_task is not advancing so we just need to make sure 3734 * clock_task is not advancing so we just need to make sure
3735 * there's some valid quota amount 3735 * there's some valid quota amount
3736 */ 3736 */
3737 cfs_rq->runtime_remaining = cfs_b->quota; 3737 cfs_rq->runtime_remaining = cfs_b->quota;
3738 if (cfs_rq_throttled(cfs_rq)) 3738 if (cfs_rq_throttled(cfs_rq))
3739 unthrottle_cfs_rq(cfs_rq); 3739 unthrottle_cfs_rq(cfs_rq);
3740 } 3740 }
3741 } 3741 }
3742 3742
3743 #else /* CONFIG_CFS_BANDWIDTH */ 3743 #else /* CONFIG_CFS_BANDWIDTH */
3744 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3744 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3745 { 3745 {
3746 return rq_clock_task(rq_of(cfs_rq)); 3746 return rq_clock_task(rq_of(cfs_rq));
3747 } 3747 }
3748 3748
3749 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 3749 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3750 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 3750 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3751 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 3751 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3752 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 3752 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3753 3753
3754 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3754 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3755 { 3755 {
3756 return 0; 3756 return 0;
3757 } 3757 }
3758 3758
3759 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3759 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3760 { 3760 {
3761 return 0; 3761 return 0;
3762 } 3762 }
3763 3763
3764 static inline int throttled_lb_pair(struct task_group *tg, 3764 static inline int throttled_lb_pair(struct task_group *tg,
3765 int src_cpu, int dest_cpu) 3765 int src_cpu, int dest_cpu)
3766 { 3766 {
3767 return 0; 3767 return 0;
3768 } 3768 }
3769 3769
3770 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 3770 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3771 3771
3772 #ifdef CONFIG_FAIR_GROUP_SCHED 3772 #ifdef CONFIG_FAIR_GROUP_SCHED
3773 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 3773 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3774 #endif 3774 #endif
3775 3775
3776 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3776 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3777 { 3777 {
3778 return NULL; 3778 return NULL;
3779 } 3779 }
3780 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 3780 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3781 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 3781 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3782 3782
3783 #endif /* CONFIG_CFS_BANDWIDTH */ 3783 #endif /* CONFIG_CFS_BANDWIDTH */
3784 3784
3785 /************************************************** 3785 /**************************************************
3786 * CFS operations on tasks: 3786 * CFS operations on tasks:
3787 */ 3787 */
3788 3788
3789 #ifdef CONFIG_SCHED_HRTICK 3789 #ifdef CONFIG_SCHED_HRTICK
3790 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 3790 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3791 { 3791 {
3792 struct sched_entity *se = &p->se; 3792 struct sched_entity *se = &p->se;
3793 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3793 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3794 3794
3795 WARN_ON(task_rq(p) != rq); 3795 WARN_ON(task_rq(p) != rq);
3796 3796
3797 if (cfs_rq->nr_running > 1) { 3797 if (cfs_rq->nr_running > 1) {
3798 u64 slice = sched_slice(cfs_rq, se); 3798 u64 slice = sched_slice(cfs_rq, se);
3799 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 3799 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3800 s64 delta = slice - ran; 3800 s64 delta = slice - ran;
3801 3801
3802 if (delta < 0) { 3802 if (delta < 0) {
3803 if (rq->curr == p) 3803 if (rq->curr == p)
3804 resched_task(p); 3804 resched_task(p);
3805 return; 3805 return;
3806 } 3806 }
3807 3807
3808 /* 3808 /*
3809 * Don't schedule slices shorter than 10000ns, that just 3809 * Don't schedule slices shorter than 10000ns, that just
3810 * doesn't make sense. Rely on vruntime for fairness. 3810 * doesn't make sense. Rely on vruntime for fairness.
3811 */ 3811 */
3812 if (rq->curr != p) 3812 if (rq->curr != p)
3813 delta = max_t(s64, 10000LL, delta); 3813 delta = max_t(s64, 10000LL, delta);
3814 3814
3815 hrtick_start(rq, delta); 3815 hrtick_start(rq, delta);
3816 } 3816 }
3817 } 3817 }
3818 3818
3819 /* 3819 /*
3820 * called from enqueue/dequeue and updates the hrtick when the 3820 * called from enqueue/dequeue and updates the hrtick when the
3821 * current task is from our class and nr_running is low enough 3821 * current task is from our class and nr_running is low enough
3822 * to matter. 3822 * to matter.
3823 */ 3823 */
3824 static void hrtick_update(struct rq *rq) 3824 static void hrtick_update(struct rq *rq)
3825 { 3825 {
3826 struct task_struct *curr = rq->curr; 3826 struct task_struct *curr = rq->curr;
3827 3827
3828 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 3828 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3829 return; 3829 return;
3830 3830
3831 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 3831 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3832 hrtick_start_fair(rq, curr); 3832 hrtick_start_fair(rq, curr);
3833 } 3833 }
3834 #else /* !CONFIG_SCHED_HRTICK */ 3834 #else /* !CONFIG_SCHED_HRTICK */
3835 static inline void 3835 static inline void
3836 hrtick_start_fair(struct rq *rq, struct task_struct *p) 3836 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3837 { 3837 {
3838 } 3838 }
3839 3839
3840 static inline void hrtick_update(struct rq *rq) 3840 static inline void hrtick_update(struct rq *rq)
3841 { 3841 {
3842 } 3842 }
3843 #endif 3843 #endif
3844 3844
3845 /* 3845 /*
3846 * The enqueue_task method is called before nr_running is 3846 * The enqueue_task method is called before nr_running is
3847 * increased. Here we update the fair scheduling stats and 3847 * increased. Here we update the fair scheduling stats and
3848 * then put the task into the rbtree: 3848 * then put the task into the rbtree:
3849 */ 3849 */
3850 static void 3850 static void
3851 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 3851 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3852 { 3852 {
3853 struct cfs_rq *cfs_rq; 3853 struct cfs_rq *cfs_rq;
3854 struct sched_entity *se = &p->se; 3854 struct sched_entity *se = &p->se;
3855 3855
3856 for_each_sched_entity(se) { 3856 for_each_sched_entity(se) {
3857 if (se->on_rq) 3857 if (se->on_rq)
3858 break; 3858 break;
3859 cfs_rq = cfs_rq_of(se); 3859 cfs_rq = cfs_rq_of(se);
3860 enqueue_entity(cfs_rq, se, flags); 3860 enqueue_entity(cfs_rq, se, flags);
3861 3861
3862 /* 3862 /*
3863 * end evaluation on encountering a throttled cfs_rq 3863 * end evaluation on encountering a throttled cfs_rq
3864 * 3864 *
3865 * note: in the case of encountering a throttled cfs_rq we will 3865 * note: in the case of encountering a throttled cfs_rq we will
3866 * post the final h_nr_running increment below. 3866 * post the final h_nr_running increment below.
3867 */ 3867 */
3868 if (cfs_rq_throttled(cfs_rq)) 3868 if (cfs_rq_throttled(cfs_rq))
3869 break; 3869 break;
3870 cfs_rq->h_nr_running++; 3870 cfs_rq->h_nr_running++;
3871 3871
3872 flags = ENQUEUE_WAKEUP; 3872 flags = ENQUEUE_WAKEUP;
3873 } 3873 }
3874 3874
3875 for_each_sched_entity(se) { 3875 for_each_sched_entity(se) {
3876 cfs_rq = cfs_rq_of(se); 3876 cfs_rq = cfs_rq_of(se);
3877 cfs_rq->h_nr_running++; 3877 cfs_rq->h_nr_running++;
3878 3878
3879 if (cfs_rq_throttled(cfs_rq)) 3879 if (cfs_rq_throttled(cfs_rq))
3880 break; 3880 break;
3881 3881
3882 update_cfs_shares(cfs_rq); 3882 update_cfs_shares(cfs_rq);
3883 update_entity_load_avg(se, 1); 3883 update_entity_load_avg(se, 1);
3884 } 3884 }
3885 3885
3886 if (!se) { 3886 if (!se) {
3887 update_rq_runnable_avg(rq, rq->nr_running); 3887 update_rq_runnable_avg(rq, rq->nr_running);
3888 inc_nr_running(rq); 3888 inc_nr_running(rq);
3889 } 3889 }
3890 hrtick_update(rq); 3890 hrtick_update(rq);
3891 } 3891 }
3892 3892
3893 static void set_next_buddy(struct sched_entity *se); 3893 static void set_next_buddy(struct sched_entity *se);
3894 3894
3895 /* 3895 /*
3896 * The dequeue_task method is called before nr_running is 3896 * The dequeue_task method is called before nr_running is
3897 * decreased. We remove the task from the rbtree and 3897 * decreased. We remove the task from the rbtree and
3898 * update the fair scheduling stats: 3898 * update the fair scheduling stats:
3899 */ 3899 */
3900 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 3900 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3901 { 3901 {
3902 struct cfs_rq *cfs_rq; 3902 struct cfs_rq *cfs_rq;
3903 struct sched_entity *se = &p->se; 3903 struct sched_entity *se = &p->se;
3904 int task_sleep = flags & DEQUEUE_SLEEP; 3904 int task_sleep = flags & DEQUEUE_SLEEP;
3905 3905
3906 for_each_sched_entity(se) { 3906 for_each_sched_entity(se) {
3907 cfs_rq = cfs_rq_of(se); 3907 cfs_rq = cfs_rq_of(se);
3908 dequeue_entity(cfs_rq, se, flags); 3908 dequeue_entity(cfs_rq, se, flags);
3909 3909
3910 /* 3910 /*
3911 * end evaluation on encountering a throttled cfs_rq 3911 * end evaluation on encountering a throttled cfs_rq
3912 * 3912 *
3913 * note: in the case of encountering a throttled cfs_rq we will 3913 * note: in the case of encountering a throttled cfs_rq we will
3914 * post the final h_nr_running decrement below. 3914 * post the final h_nr_running decrement below.
3915 */ 3915 */
3916 if (cfs_rq_throttled(cfs_rq)) 3916 if (cfs_rq_throttled(cfs_rq))
3917 break; 3917 break;
3918 cfs_rq->h_nr_running--; 3918 cfs_rq->h_nr_running--;
3919 3919
3920 /* Don't dequeue parent if it has other entities besides us */ 3920 /* Don't dequeue parent if it has other entities besides us */
3921 if (cfs_rq->load.weight) { 3921 if (cfs_rq->load.weight) {
3922 /* 3922 /*
3923 * Bias pick_next to pick a task from this cfs_rq, as 3923 * Bias pick_next to pick a task from this cfs_rq, as
3924 * p is sleeping when it is within its sched_slice. 3924 * p is sleeping when it is within its sched_slice.
3925 */ 3925 */
3926 if (task_sleep && parent_entity(se)) 3926 if (task_sleep && parent_entity(se))
3927 set_next_buddy(parent_entity(se)); 3927 set_next_buddy(parent_entity(se));
3928 3928
3929 /* avoid re-evaluating load for this entity */ 3929 /* avoid re-evaluating load for this entity */
3930 se = parent_entity(se); 3930 se = parent_entity(se);
3931 break; 3931 break;
3932 } 3932 }
3933 flags |= DEQUEUE_SLEEP; 3933 flags |= DEQUEUE_SLEEP;
3934 } 3934 }
3935 3935
3936 for_each_sched_entity(se) { 3936 for_each_sched_entity(se) {
3937 cfs_rq = cfs_rq_of(se); 3937 cfs_rq = cfs_rq_of(se);
3938 cfs_rq->h_nr_running--; 3938 cfs_rq->h_nr_running--;
3939 3939
3940 if (cfs_rq_throttled(cfs_rq)) 3940 if (cfs_rq_throttled(cfs_rq))
3941 break; 3941 break;
3942 3942
3943 update_cfs_shares(cfs_rq); 3943 update_cfs_shares(cfs_rq);
3944 update_entity_load_avg(se, 1); 3944 update_entity_load_avg(se, 1);
3945 } 3945 }
3946 3946
3947 if (!se) { 3947 if (!se) {
3948 dec_nr_running(rq); 3948 dec_nr_running(rq);
3949 update_rq_runnable_avg(rq, 1); 3949 update_rq_runnable_avg(rq, 1);
3950 } 3950 }
3951 hrtick_update(rq); 3951 hrtick_update(rq);
3952 } 3952 }
3953 3953
3954 #ifdef CONFIG_SMP 3954 #ifdef CONFIG_SMP
3955 /* Used instead of source_load when we know the type == 0 */ 3955 /* Used instead of source_load when we know the type == 0 */
3956 static unsigned long weighted_cpuload(const int cpu) 3956 static unsigned long weighted_cpuload(const int cpu)
3957 { 3957 {
3958 return cpu_rq(cpu)->cfs.runnable_load_avg; 3958 return cpu_rq(cpu)->cfs.runnable_load_avg;
3959 } 3959 }
3960 3960
3961 /* 3961 /*
3962 * Return a low guess at the load of a migration-source cpu weighted 3962 * Return a low guess at the load of a migration-source cpu weighted
3963 * according to the scheduling class and "nice" value. 3963 * according to the scheduling class and "nice" value.
3964 * 3964 *
3965 * We want to under-estimate the load of migration sources, to 3965 * We want to under-estimate the load of migration sources, to
3966 * balance conservatively. 3966 * balance conservatively.
3967 */ 3967 */
3968 static unsigned long source_load(int cpu, int type) 3968 static unsigned long source_load(int cpu, int type)
3969 { 3969 {
3970 struct rq *rq = cpu_rq(cpu); 3970 struct rq *rq = cpu_rq(cpu);
3971 unsigned long total = weighted_cpuload(cpu); 3971 unsigned long total = weighted_cpuload(cpu);
3972 3972
3973 if (type == 0 || !sched_feat(LB_BIAS)) 3973 if (type == 0 || !sched_feat(LB_BIAS))
3974 return total; 3974 return total;
3975 3975
3976 return min(rq->cpu_load[type-1], total); 3976 return min(rq->cpu_load[type-1], total);
3977 } 3977 }
3978 3978
3979 /* 3979 /*
3980 * Return a high guess at the load of a migration-target cpu weighted 3980 * Return a high guess at the load of a migration-target cpu weighted
3981 * according to the scheduling class and "nice" value. 3981 * according to the scheduling class and "nice" value.
3982 */ 3982 */
3983 static unsigned long target_load(int cpu, int type) 3983 static unsigned long target_load(int cpu, int type)
3984 { 3984 {
3985 struct rq *rq = cpu_rq(cpu); 3985 struct rq *rq = cpu_rq(cpu);
3986 unsigned long total = weighted_cpuload(cpu); 3986 unsigned long total = weighted_cpuload(cpu);
3987 3987
3988 if (type == 0 || !sched_feat(LB_BIAS)) 3988 if (type == 0 || !sched_feat(LB_BIAS))
3989 return total; 3989 return total;
3990 3990
3991 return max(rq->cpu_load[type-1], total); 3991 return max(rq->cpu_load[type-1], total);
3992 } 3992 }
3993 3993
3994 static unsigned long power_of(int cpu) 3994 static unsigned long power_of(int cpu)
3995 { 3995 {
3996 return cpu_rq(cpu)->cpu_power; 3996 return cpu_rq(cpu)->cpu_power;
3997 } 3997 }
3998 3998
3999 static unsigned long cpu_avg_load_per_task(int cpu) 3999 static unsigned long cpu_avg_load_per_task(int cpu)
4000 { 4000 {
4001 struct rq *rq = cpu_rq(cpu); 4001 struct rq *rq = cpu_rq(cpu);
4002 unsigned long nr_running = ACCESS_ONCE(rq->nr_running); 4002 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
4003 unsigned long load_avg = rq->cfs.runnable_load_avg; 4003 unsigned long load_avg = rq->cfs.runnable_load_avg;
4004 4004
4005 if (nr_running) 4005 if (nr_running)
4006 return load_avg / nr_running; 4006 return load_avg / nr_running;
4007 4007
4008 return 0; 4008 return 0;
4009 } 4009 }
4010 4010
4011 static void record_wakee(struct task_struct *p) 4011 static void record_wakee(struct task_struct *p)
4012 { 4012 {
4013 /* 4013 /*
4014 * Rough decay (wiping) for cost saving, don't worry 4014 * Rough decay (wiping) for cost saving, don't worry
4015 * about the boundary, really active task won't care 4015 * about the boundary, really active task won't care
4016 * about the loss. 4016 * about the loss.
4017 */ 4017 */
4018 if (jiffies > current->wakee_flip_decay_ts + HZ) { 4018 if (jiffies > current->wakee_flip_decay_ts + HZ) {
4019 current->wakee_flips = 0; 4019 current->wakee_flips = 0;
4020 current->wakee_flip_decay_ts = jiffies; 4020 current->wakee_flip_decay_ts = jiffies;
4021 } 4021 }
4022 4022
4023 if (current->last_wakee != p) { 4023 if (current->last_wakee != p) {
4024 current->last_wakee = p; 4024 current->last_wakee = p;
4025 current->wakee_flips++; 4025 current->wakee_flips++;
4026 } 4026 }
4027 } 4027 }
4028 4028
4029 static void task_waking_fair(struct task_struct *p) 4029 static void task_waking_fair(struct task_struct *p)
4030 { 4030 {
4031 struct sched_entity *se = &p->se; 4031 struct sched_entity *se = &p->se;
4032 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4032 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4033 u64 min_vruntime; 4033 u64 min_vruntime;
4034 4034
4035 #ifndef CONFIG_64BIT 4035 #ifndef CONFIG_64BIT
4036 u64 min_vruntime_copy; 4036 u64 min_vruntime_copy;
4037 4037
4038 do { 4038 do {
4039 min_vruntime_copy = cfs_rq->min_vruntime_copy; 4039 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4040 smp_rmb(); 4040 smp_rmb();
4041 min_vruntime = cfs_rq->min_vruntime; 4041 min_vruntime = cfs_rq->min_vruntime;
4042 } while (min_vruntime != min_vruntime_copy); 4042 } while (min_vruntime != min_vruntime_copy);
4043 #else 4043 #else
4044 min_vruntime = cfs_rq->min_vruntime; 4044 min_vruntime = cfs_rq->min_vruntime;
4045 #endif 4045 #endif
4046 4046
4047 se->vruntime -= min_vruntime; 4047 se->vruntime -= min_vruntime;
4048 record_wakee(p); 4048 record_wakee(p);
4049 } 4049 }
4050 4050
4051 #ifdef CONFIG_FAIR_GROUP_SCHED 4051 #ifdef CONFIG_FAIR_GROUP_SCHED
4052 /* 4052 /*
4053 * effective_load() calculates the load change as seen from the root_task_group 4053 * effective_load() calculates the load change as seen from the root_task_group
4054 * 4054 *
4055 * Adding load to a group doesn't make a group heavier, but can cause movement 4055 * Adding load to a group doesn't make a group heavier, but can cause movement
4056 * of group shares between cpus. Assuming the shares were perfectly aligned one 4056 * of group shares between cpus. Assuming the shares were perfectly aligned one
4057 * can calculate the shift in shares. 4057 * can calculate the shift in shares.
4058 * 4058 *
4059 * Calculate the effective load difference if @wl is added (subtracted) to @tg 4059 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4060 * on this @cpu and results in a total addition (subtraction) of @wg to the 4060 * on this @cpu and results in a total addition (subtraction) of @wg to the
4061 * total group weight. 4061 * total group weight.
4062 * 4062 *
4063 * Given a runqueue weight distribution (rw_i) we can compute a shares 4063 * Given a runqueue weight distribution (rw_i) we can compute a shares
4064 * distribution (s_i) using: 4064 * distribution (s_i) using:
4065 * 4065 *
4066 * s_i = rw_i / \Sum rw_j (1) 4066 * s_i = rw_i / \Sum rw_j (1)
4067 * 4067 *
4068 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 4068 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4069 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 4069 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4070 * shares distribution (s_i): 4070 * shares distribution (s_i):
4071 * 4071 *
4072 * rw_i = { 2, 4, 1, 0 } 4072 * rw_i = { 2, 4, 1, 0 }
4073 * s_i = { 2/7, 4/7, 1/7, 0 } 4073 * s_i = { 2/7, 4/7, 1/7, 0 }
4074 * 4074 *
4075 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 4075 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4076 * task used to run on and the CPU the waker is running on), we need to 4076 * task used to run on and the CPU the waker is running on), we need to
4077 * compute the effect of waking a task on either CPU and, in case of a sync 4077 * compute the effect of waking a task on either CPU and, in case of a sync
4078 * wakeup, compute the effect of the current task going to sleep. 4078 * wakeup, compute the effect of the current task going to sleep.
4079 * 4079 *
4080 * So for a change of @wl to the local @cpu with an overall group weight change 4080 * So for a change of @wl to the local @cpu with an overall group weight change
4081 * of @wl we can compute the new shares distribution (s'_i) using: 4081 * of @wl we can compute the new shares distribution (s'_i) using:
4082 * 4082 *
4083 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 4083 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4084 * 4084 *
4085 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 4085 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4086 * differences in waking a task to CPU 0. The additional task changes the 4086 * differences in waking a task to CPU 0. The additional task changes the
4087 * weight and shares distributions like: 4087 * weight and shares distributions like:
4088 * 4088 *
4089 * rw'_i = { 3, 4, 1, 0 } 4089 * rw'_i = { 3, 4, 1, 0 }
4090 * s'_i = { 3/8, 4/8, 1/8, 0 } 4090 * s'_i = { 3/8, 4/8, 1/8, 0 }
4091 * 4091 *
4092 * We can then compute the difference in effective weight by using: 4092 * We can then compute the difference in effective weight by using:
4093 * 4093 *
4094 * dw_i = S * (s'_i - s_i) (3) 4094 * dw_i = S * (s'_i - s_i) (3)
4095 * 4095 *
4096 * Where 'S' is the group weight as seen by its parent. 4096 * Where 'S' is the group weight as seen by its parent.
4097 * 4097 *
4098 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 4098 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4099 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 4099 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4100 * 4/7) times the weight of the group. 4100 * 4/7) times the weight of the group.
4101 */ 4101 */
4102 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4102 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4103 { 4103 {
4104 struct sched_entity *se = tg->se[cpu]; 4104 struct sched_entity *se = tg->se[cpu];
4105 4105
4106 if (!tg->parent) /* the trivial, non-cgroup case */ 4106 if (!tg->parent) /* the trivial, non-cgroup case */
4107 return wl; 4107 return wl;
4108 4108
4109 for_each_sched_entity(se) { 4109 for_each_sched_entity(se) {
4110 long w, W; 4110 long w, W;
4111 4111
4112 tg = se->my_q->tg; 4112 tg = se->my_q->tg;
4113 4113
4114 /* 4114 /*
4115 * W = @wg + \Sum rw_j 4115 * W = @wg + \Sum rw_j
4116 */ 4116 */
4117 W = wg + calc_tg_weight(tg, se->my_q); 4117 W = wg + calc_tg_weight(tg, se->my_q);
4118 4118
4119 /* 4119 /*
4120 * w = rw_i + @wl 4120 * w = rw_i + @wl
4121 */ 4121 */
4122 w = se->my_q->load.weight + wl; 4122 w = se->my_q->load.weight + wl;
4123 4123
4124 /* 4124 /*
4125 * wl = S * s'_i; see (2) 4125 * wl = S * s'_i; see (2)
4126 */ 4126 */
4127 if (W > 0 && w < W) 4127 if (W > 0 && w < W)
4128 wl = (w * tg->shares) / W; 4128 wl = (w * tg->shares) / W;
4129 else 4129 else
4130 wl = tg->shares; 4130 wl = tg->shares;
4131 4131
4132 /* 4132 /*
4133 * Per the above, wl is the new se->load.weight value; since 4133 * Per the above, wl is the new se->load.weight value; since
4134 * those are clipped to [MIN_SHARES, ...) do so now. See 4134 * those are clipped to [MIN_SHARES, ...) do so now. See
4135 * calc_cfs_shares(). 4135 * calc_cfs_shares().
4136 */ 4136 */
4137 if (wl < MIN_SHARES) 4137 if (wl < MIN_SHARES)
4138 wl = MIN_SHARES; 4138 wl = MIN_SHARES;
4139 4139
4140 /* 4140 /*
4141 * wl = dw_i = S * (s'_i - s_i); see (3) 4141 * wl = dw_i = S * (s'_i - s_i); see (3)
4142 */ 4142 */
4143 wl -= se->load.weight; 4143 wl -= se->load.weight;
4144 4144
4145 /* 4145 /*
4146 * Recursively apply this logic to all parent groups to compute 4146 * Recursively apply this logic to all parent groups to compute
4147 * the final effective load change on the root group. Since 4147 * the final effective load change on the root group. Since
4148 * only the @tg group gets extra weight, all parent groups can 4148 * only the @tg group gets extra weight, all parent groups can
4149 * only redistribute existing shares. @wl is the shift in shares 4149 * only redistribute existing shares. @wl is the shift in shares
4150 * resulting from this level per the above. 4150 * resulting from this level per the above.
4151 */ 4151 */
4152 wg = 0; 4152 wg = 0;
4153 } 4153 }
4154 4154
4155 return wl; 4155 return wl;
4156 } 4156 }
4157 #else 4157 #else
4158 4158
4159 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4159 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4160 { 4160 {
4161 return wl; 4161 return wl;
4162 } 4162 }
4163 4163
4164 #endif 4164 #endif
4165 4165
4166 static int wake_wide(struct task_struct *p) 4166 static int wake_wide(struct task_struct *p)
4167 { 4167 {
4168 int factor = this_cpu_read(sd_llc_size); 4168 int factor = this_cpu_read(sd_llc_size);
4169 4169
4170 /* 4170 /*
4171 * Yeah, it's the switching-frequency, could means many wakee or 4171 * Yeah, it's the switching-frequency, could means many wakee or
4172 * rapidly switch, use factor here will just help to automatically 4172 * rapidly switch, use factor here will just help to automatically
4173 * adjust the loose-degree, so bigger node will lead to more pull. 4173 * adjust the loose-degree, so bigger node will lead to more pull.
4174 */ 4174 */
4175 if (p->wakee_flips > factor) { 4175 if (p->wakee_flips > factor) {
4176 /* 4176 /*
4177 * wakee is somewhat hot, it needs certain amount of cpu 4177 * wakee is somewhat hot, it needs certain amount of cpu
4178 * resource, so if waker is far more hot, prefer to leave 4178 * resource, so if waker is far more hot, prefer to leave
4179 * it alone. 4179 * it alone.
4180 */ 4180 */
4181 if (current->wakee_flips > (factor * p->wakee_flips)) 4181 if (current->wakee_flips > (factor * p->wakee_flips))
4182 return 1; 4182 return 1;
4183 } 4183 }
4184 4184
4185 return 0; 4185 return 0;
4186 } 4186 }
4187 4187
4188 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 4188 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4189 { 4189 {
4190 s64 this_load, load; 4190 s64 this_load, load;
4191 int idx, this_cpu, prev_cpu; 4191 int idx, this_cpu, prev_cpu;
4192 unsigned long tl_per_task; 4192 unsigned long tl_per_task;
4193 struct task_group *tg; 4193 struct task_group *tg;
4194 unsigned long weight; 4194 unsigned long weight;
4195 int balanced; 4195 int balanced;
4196 4196
4197 /* 4197 /*
4198 * If we wake multiple tasks be careful to not bounce 4198 * If we wake multiple tasks be careful to not bounce
4199 * ourselves around too much. 4199 * ourselves around too much.
4200 */ 4200 */
4201 if (wake_wide(p)) 4201 if (wake_wide(p))
4202 return 0; 4202 return 0;
4203 4203
4204 idx = sd->wake_idx; 4204 idx = sd->wake_idx;
4205 this_cpu = smp_processor_id(); 4205 this_cpu = smp_processor_id();
4206 prev_cpu = task_cpu(p); 4206 prev_cpu = task_cpu(p);
4207 load = source_load(prev_cpu, idx); 4207 load = source_load(prev_cpu, idx);
4208 this_load = target_load(this_cpu, idx); 4208 this_load = target_load(this_cpu, idx);
4209 4209
4210 /* 4210 /*
4211 * If sync wakeup then subtract the (maximum possible) 4211 * If sync wakeup then subtract the (maximum possible)
4212 * effect of the currently running task from the load 4212 * effect of the currently running task from the load
4213 * of the current CPU: 4213 * of the current CPU:
4214 */ 4214 */
4215 if (sync) { 4215 if (sync) {
4216 tg = task_group(current); 4216 tg = task_group(current);
4217 weight = current->se.load.weight; 4217 weight = current->se.load.weight;
4218 4218
4219 this_load += effective_load(tg, this_cpu, -weight, -weight); 4219 this_load += effective_load(tg, this_cpu, -weight, -weight);
4220 load += effective_load(tg, prev_cpu, 0, -weight); 4220 load += effective_load(tg, prev_cpu, 0, -weight);
4221 } 4221 }
4222 4222
4223 tg = task_group(p); 4223 tg = task_group(p);
4224 weight = p->se.load.weight; 4224 weight = p->se.load.weight;
4225 4225
4226 /* 4226 /*
4227 * In low-load situations, where prev_cpu is idle and this_cpu is idle 4227 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4228 * due to the sync cause above having dropped this_load to 0, we'll 4228 * due to the sync cause above having dropped this_load to 0, we'll
4229 * always have an imbalance, but there's really nothing you can do 4229 * always have an imbalance, but there's really nothing you can do
4230 * about that, so that's good too. 4230 * about that, so that's good too.
4231 * 4231 *
4232 * Otherwise check if either cpus are near enough in load to allow this 4232 * Otherwise check if either cpus are near enough in load to allow this
4233 * task to be woken on this_cpu. 4233 * task to be woken on this_cpu.
4234 */ 4234 */
4235 if (this_load > 0) { 4235 if (this_load > 0) {
4236 s64 this_eff_load, prev_eff_load; 4236 s64 this_eff_load, prev_eff_load;
4237 4237
4238 this_eff_load = 100; 4238 this_eff_load = 100;
4239 this_eff_load *= power_of(prev_cpu); 4239 this_eff_load *= power_of(prev_cpu);
4240 this_eff_load *= this_load + 4240 this_eff_load *= this_load +
4241 effective_load(tg, this_cpu, weight, weight); 4241 effective_load(tg, this_cpu, weight, weight);
4242 4242
4243 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 4243 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4244 prev_eff_load *= power_of(this_cpu); 4244 prev_eff_load *= power_of(this_cpu);
4245 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 4245 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4246 4246
4247 balanced = this_eff_load <= prev_eff_load; 4247 balanced = this_eff_load <= prev_eff_load;
4248 } else 4248 } else
4249 balanced = true; 4249 balanced = true;
4250 4250
4251 /* 4251 /*
4252 * If the currently running task will sleep within 4252 * If the currently running task will sleep within
4253 * a reasonable amount of time then attract this newly 4253 * a reasonable amount of time then attract this newly
4254 * woken task: 4254 * woken task:
4255 */ 4255 */
4256 if (sync && balanced) 4256 if (sync && balanced)
4257 return 1; 4257 return 1;
4258 4258
4259 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 4259 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4260 tl_per_task = cpu_avg_load_per_task(this_cpu); 4260 tl_per_task = cpu_avg_load_per_task(this_cpu);
4261 4261
4262 if (balanced || 4262 if (balanced ||
4263 (this_load <= load && 4263 (this_load <= load &&
4264 this_load + target_load(prev_cpu, idx) <= tl_per_task)) { 4264 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4265 /* 4265 /*
4266 * This domain has SD_WAKE_AFFINE and 4266 * This domain has SD_WAKE_AFFINE and
4267 * p is cache cold in this domain, and 4267 * p is cache cold in this domain, and
4268 * there is no bad imbalance. 4268 * there is no bad imbalance.
4269 */ 4269 */
4270 schedstat_inc(sd, ttwu_move_affine); 4270 schedstat_inc(sd, ttwu_move_affine);
4271 schedstat_inc(p, se.statistics.nr_wakeups_affine); 4271 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4272 4272
4273 return 1; 4273 return 1;
4274 } 4274 }
4275 return 0; 4275 return 0;
4276 } 4276 }
4277 4277
4278 /* 4278 /*
4279 * find_idlest_group finds and returns the least busy CPU group within the 4279 * find_idlest_group finds and returns the least busy CPU group within the
4280 * domain. 4280 * domain.
4281 */ 4281 */
4282 static struct sched_group * 4282 static struct sched_group *
4283 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 4283 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4284 int this_cpu, int sd_flag) 4284 int this_cpu, int sd_flag)
4285 { 4285 {
4286 struct sched_group *idlest = NULL, *group = sd->groups; 4286 struct sched_group *idlest = NULL, *group = sd->groups;
4287 unsigned long min_load = ULONG_MAX, this_load = 0; 4287 unsigned long min_load = ULONG_MAX, this_load = 0;
4288 int load_idx = sd->forkexec_idx; 4288 int load_idx = sd->forkexec_idx;
4289 int imbalance = 100 + (sd->imbalance_pct-100)/2; 4289 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4290 4290
4291 if (sd_flag & SD_BALANCE_WAKE) 4291 if (sd_flag & SD_BALANCE_WAKE)
4292 load_idx = sd->wake_idx; 4292 load_idx = sd->wake_idx;
4293 4293
4294 do { 4294 do {
4295 unsigned long load, avg_load; 4295 unsigned long load, avg_load;
4296 int local_group; 4296 int local_group;
4297 int i; 4297 int i;
4298 4298
4299 /* Skip over this group if it has no CPUs allowed */ 4299 /* Skip over this group if it has no CPUs allowed */
4300 if (!cpumask_intersects(sched_group_cpus(group), 4300 if (!cpumask_intersects(sched_group_cpus(group),
4301 tsk_cpus_allowed(p))) 4301 tsk_cpus_allowed(p)))
4302 continue; 4302 continue;
4303 4303
4304 local_group = cpumask_test_cpu(this_cpu, 4304 local_group = cpumask_test_cpu(this_cpu,
4305 sched_group_cpus(group)); 4305 sched_group_cpus(group));
4306 4306
4307 /* Tally up the load of all CPUs in the group */ 4307 /* Tally up the load of all CPUs in the group */
4308 avg_load = 0; 4308 avg_load = 0;
4309 4309
4310 for_each_cpu(i, sched_group_cpus(group)) { 4310 for_each_cpu(i, sched_group_cpus(group)) {
4311 /* Bias balancing toward cpus of our domain */ 4311 /* Bias balancing toward cpus of our domain */
4312 if (local_group) 4312 if (local_group)
4313 load = source_load(i, load_idx); 4313 load = source_load(i, load_idx);
4314 else 4314 else
4315 load = target_load(i, load_idx); 4315 load = target_load(i, load_idx);
4316 4316
4317 avg_load += load; 4317 avg_load += load;
4318 } 4318 }
4319 4319
4320 /* Adjust by relative CPU power of the group */ 4320 /* Adjust by relative CPU power of the group */
4321 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power; 4321 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4322 4322
4323 if (local_group) { 4323 if (local_group) {
4324 this_load = avg_load; 4324 this_load = avg_load;
4325 } else if (avg_load < min_load) { 4325 } else if (avg_load < min_load) {
4326 min_load = avg_load; 4326 min_load = avg_load;
4327 idlest = group; 4327 idlest = group;
4328 } 4328 }
4329 } while (group = group->next, group != sd->groups); 4329 } while (group = group->next, group != sd->groups);
4330 4330
4331 if (!idlest || 100*this_load < imbalance*min_load) 4331 if (!idlest || 100*this_load < imbalance*min_load)
4332 return NULL; 4332 return NULL;
4333 return idlest; 4333 return idlest;
4334 } 4334 }
4335 4335
4336 /* 4336 /*
4337 * find_idlest_cpu - find the idlest cpu among the cpus in group. 4337 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4338 */ 4338 */
4339 static int 4339 static int
4340 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 4340 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4341 { 4341 {
4342 unsigned long load, min_load = ULONG_MAX; 4342 unsigned long load, min_load = ULONG_MAX;
4343 int idlest = -1; 4343 int idlest = -1;
4344 int i; 4344 int i;
4345 4345
4346 /* Traverse only the allowed CPUs */ 4346 /* Traverse only the allowed CPUs */
4347 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 4347 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4348 load = weighted_cpuload(i); 4348 load = weighted_cpuload(i);
4349 4349
4350 if (load < min_load || (load == min_load && i == this_cpu)) { 4350 if (load < min_load || (load == min_load && i == this_cpu)) {
4351 min_load = load; 4351 min_load = load;
4352 idlest = i; 4352 idlest = i;
4353 } 4353 }
4354 } 4354 }
4355 4355
4356 return idlest; 4356 return idlest;
4357 } 4357 }
4358 4358
4359 /* 4359 /*
4360 * Try and locate an idle CPU in the sched_domain. 4360 * Try and locate an idle CPU in the sched_domain.
4361 */ 4361 */
4362 static int select_idle_sibling(struct task_struct *p, int target) 4362 static int select_idle_sibling(struct task_struct *p, int target)
4363 { 4363 {
4364 struct sched_domain *sd; 4364 struct sched_domain *sd;
4365 struct sched_group *sg; 4365 struct sched_group *sg;
4366 int i = task_cpu(p); 4366 int i = task_cpu(p);
4367 4367
4368 if (idle_cpu(target)) 4368 if (idle_cpu(target))
4369 return target; 4369 return target;
4370 4370
4371 /* 4371 /*
4372 * If the prevous cpu is cache affine and idle, don't be stupid. 4372 * If the prevous cpu is cache affine and idle, don't be stupid.
4373 */ 4373 */
4374 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) 4374 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4375 return i; 4375 return i;
4376 4376
4377 /* 4377 /*
4378 * Otherwise, iterate the domains and find an elegible idle cpu. 4378 * Otherwise, iterate the domains and find an elegible idle cpu.
4379 */ 4379 */
4380 sd = rcu_dereference(per_cpu(sd_llc, target)); 4380 sd = rcu_dereference(per_cpu(sd_llc, target));
4381 for_each_lower_domain(sd) { 4381 for_each_lower_domain(sd) {
4382 sg = sd->groups; 4382 sg = sd->groups;
4383 do { 4383 do {
4384 if (!cpumask_intersects(sched_group_cpus(sg), 4384 if (!cpumask_intersects(sched_group_cpus(sg),
4385 tsk_cpus_allowed(p))) 4385 tsk_cpus_allowed(p)))
4386 goto next; 4386 goto next;
4387 4387
4388 for_each_cpu(i, sched_group_cpus(sg)) { 4388 for_each_cpu(i, sched_group_cpus(sg)) {
4389 if (i == target || !idle_cpu(i)) 4389 if (i == target || !idle_cpu(i))
4390 goto next; 4390 goto next;
4391 } 4391 }
4392 4392
4393 target = cpumask_first_and(sched_group_cpus(sg), 4393 target = cpumask_first_and(sched_group_cpus(sg),
4394 tsk_cpus_allowed(p)); 4394 tsk_cpus_allowed(p));
4395 goto done; 4395 goto done;
4396 next: 4396 next:
4397 sg = sg->next; 4397 sg = sg->next;
4398 } while (sg != sd->groups); 4398 } while (sg != sd->groups);
4399 } 4399 }
4400 done: 4400 done:
4401 return target; 4401 return target;
4402 } 4402 }
4403 4403
4404 /* 4404 /*
4405 * select_task_rq_fair: Select target runqueue for the waking task in domains 4405 * select_task_rq_fair: Select target runqueue for the waking task in domains
4406 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 4406 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4407 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 4407 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4408 * 4408 *
4409 * Balances load by selecting the idlest cpu in the idlest group, or under 4409 * Balances load by selecting the idlest cpu in the idlest group, or under
4410 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 4410 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4411 * 4411 *
4412 * Returns the target cpu number. 4412 * Returns the target cpu number.
4413 * 4413 *
4414 * preempt must be disabled. 4414 * preempt must be disabled.
4415 */ 4415 */
4416 static int 4416 static int
4417 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 4417 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4418 { 4418 {
4419 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 4419 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4420 int cpu = smp_processor_id(); 4420 int cpu = smp_processor_id();
4421 int new_cpu = cpu; 4421 int new_cpu = cpu;
4422 int want_affine = 0; 4422 int want_affine = 0;
4423 int sync = wake_flags & WF_SYNC; 4423 int sync = wake_flags & WF_SYNC;
4424 4424
4425 if (p->nr_cpus_allowed == 1) 4425 if (p->nr_cpus_allowed == 1)
4426 return prev_cpu; 4426 return prev_cpu;
4427 4427
4428 if (sd_flag & SD_BALANCE_WAKE) { 4428 if (sd_flag & SD_BALANCE_WAKE) {
4429 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 4429 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4430 want_affine = 1; 4430 want_affine = 1;
4431 new_cpu = prev_cpu; 4431 new_cpu = prev_cpu;
4432 } 4432 }
4433 4433
4434 rcu_read_lock(); 4434 rcu_read_lock();
4435 for_each_domain(cpu, tmp) { 4435 for_each_domain(cpu, tmp) {
4436 if (!(tmp->flags & SD_LOAD_BALANCE)) 4436 if (!(tmp->flags & SD_LOAD_BALANCE))
4437 continue; 4437 continue;
4438 4438
4439 /* 4439 /*
4440 * If both cpu and prev_cpu are part of this domain, 4440 * If both cpu and prev_cpu are part of this domain,
4441 * cpu is a valid SD_WAKE_AFFINE target. 4441 * cpu is a valid SD_WAKE_AFFINE target.
4442 */ 4442 */
4443 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 4443 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4444 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 4444 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4445 affine_sd = tmp; 4445 affine_sd = tmp;
4446 break; 4446 break;
4447 } 4447 }
4448 4448
4449 if (tmp->flags & sd_flag) 4449 if (tmp->flags & sd_flag)
4450 sd = tmp; 4450 sd = tmp;
4451 } 4451 }
4452 4452
4453 if (affine_sd) { 4453 if (affine_sd) {
4454 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 4454 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4455 prev_cpu = cpu; 4455 prev_cpu = cpu;
4456 4456
4457 new_cpu = select_idle_sibling(p, prev_cpu); 4457 new_cpu = select_idle_sibling(p, prev_cpu);
4458 goto unlock; 4458 goto unlock;
4459 } 4459 }
4460 4460
4461 while (sd) { 4461 while (sd) {
4462 struct sched_group *group; 4462 struct sched_group *group;
4463 int weight; 4463 int weight;
4464 4464
4465 if (!(sd->flags & sd_flag)) { 4465 if (!(sd->flags & sd_flag)) {
4466 sd = sd->child; 4466 sd = sd->child;
4467 continue; 4467 continue;
4468 } 4468 }
4469 4469
4470 group = find_idlest_group(sd, p, cpu, sd_flag); 4470 group = find_idlest_group(sd, p, cpu, sd_flag);
4471 if (!group) { 4471 if (!group) {
4472 sd = sd->child; 4472 sd = sd->child;
4473 continue; 4473 continue;
4474 } 4474 }
4475 4475
4476 new_cpu = find_idlest_cpu(group, p, cpu); 4476 new_cpu = find_idlest_cpu(group, p, cpu);
4477 if (new_cpu == -1 || new_cpu == cpu) { 4477 if (new_cpu == -1 || new_cpu == cpu) {
4478 /* Now try balancing at a lower domain level of cpu */ 4478 /* Now try balancing at a lower domain level of cpu */
4479 sd = sd->child; 4479 sd = sd->child;
4480 continue; 4480 continue;
4481 } 4481 }
4482 4482
4483 /* Now try balancing at a lower domain level of new_cpu */ 4483 /* Now try balancing at a lower domain level of new_cpu */
4484 cpu = new_cpu; 4484 cpu = new_cpu;
4485 weight = sd->span_weight; 4485 weight = sd->span_weight;
4486 sd = NULL; 4486 sd = NULL;
4487 for_each_domain(cpu, tmp) { 4487 for_each_domain(cpu, tmp) {
4488 if (weight <= tmp->span_weight) 4488 if (weight <= tmp->span_weight)
4489 break; 4489 break;
4490 if (tmp->flags & sd_flag) 4490 if (tmp->flags & sd_flag)
4491 sd = tmp; 4491 sd = tmp;
4492 } 4492 }
4493 /* while loop will break here if sd == NULL */ 4493 /* while loop will break here if sd == NULL */
4494 } 4494 }
4495 unlock: 4495 unlock:
4496 rcu_read_unlock(); 4496 rcu_read_unlock();
4497 4497
4498 return new_cpu; 4498 return new_cpu;
4499 } 4499 }
4500 4500
4501 /* 4501 /*
4502 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 4502 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4503 * cfs_rq_of(p) references at time of call are still valid and identify the 4503 * cfs_rq_of(p) references at time of call are still valid and identify the
4504 * previous cpu. However, the caller only guarantees p->pi_lock is held; no 4504 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4505 * other assumptions, including the state of rq->lock, should be made. 4505 * other assumptions, including the state of rq->lock, should be made.
4506 */ 4506 */
4507 static void 4507 static void
4508 migrate_task_rq_fair(struct task_struct *p, int next_cpu) 4508 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4509 { 4509 {
4510 struct sched_entity *se = &p->se; 4510 struct sched_entity *se = &p->se;
4511 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4511 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4512 4512
4513 /* 4513 /*
4514 * Load tracking: accumulate removed load so that it can be processed 4514 * Load tracking: accumulate removed load so that it can be processed
4515 * when we next update owning cfs_rq under rq->lock. Tasks contribute 4515 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4516 * to blocked load iff they have a positive decay-count. It can never 4516 * to blocked load iff they have a positive decay-count. It can never
4517 * be negative here since on-rq tasks have decay-count == 0. 4517 * be negative here since on-rq tasks have decay-count == 0.
4518 */ 4518 */
4519 if (se->avg.decay_count) { 4519 if (se->avg.decay_count) {
4520 se->avg.decay_count = -__synchronize_entity_decay(se); 4520 se->avg.decay_count = -__synchronize_entity_decay(se);
4521 atomic_long_add(se->avg.load_avg_contrib, 4521 atomic_long_add(se->avg.load_avg_contrib,
4522 &cfs_rq->removed_load); 4522 &cfs_rq->removed_load);
4523 } 4523 }
4524 } 4524 }
4525 #endif /* CONFIG_SMP */ 4525 #endif /* CONFIG_SMP */
4526 4526
4527 static unsigned long 4527 static unsigned long
4528 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 4528 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4529 { 4529 {
4530 unsigned long gran = sysctl_sched_wakeup_granularity; 4530 unsigned long gran = sysctl_sched_wakeup_granularity;
4531 4531
4532 /* 4532 /*
4533 * Since its curr running now, convert the gran from real-time 4533 * Since its curr running now, convert the gran from real-time
4534 * to virtual-time in his units. 4534 * to virtual-time in his units.
4535 * 4535 *
4536 * By using 'se' instead of 'curr' we penalize light tasks, so 4536 * By using 'se' instead of 'curr' we penalize light tasks, so
4537 * they get preempted easier. That is, if 'se' < 'curr' then 4537 * they get preempted easier. That is, if 'se' < 'curr' then
4538 * the resulting gran will be larger, therefore penalizing the 4538 * the resulting gran will be larger, therefore penalizing the
4539 * lighter, if otoh 'se' > 'curr' then the resulting gran will 4539 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4540 * be smaller, again penalizing the lighter task. 4540 * be smaller, again penalizing the lighter task.
4541 * 4541 *
4542 * This is especially important for buddies when the leftmost 4542 * This is especially important for buddies when the leftmost
4543 * task is higher priority than the buddy. 4543 * task is higher priority than the buddy.
4544 */ 4544 */
4545 return calc_delta_fair(gran, se); 4545 return calc_delta_fair(gran, se);
4546 } 4546 }
4547 4547
4548 /* 4548 /*
4549 * Should 'se' preempt 'curr'. 4549 * Should 'se' preempt 'curr'.
4550 * 4550 *
4551 * |s1 4551 * |s1
4552 * |s2 4552 * |s2
4553 * |s3 4553 * |s3
4554 * g 4554 * g
4555 * |<--->|c 4555 * |<--->|c
4556 * 4556 *
4557 * w(c, s1) = -1 4557 * w(c, s1) = -1
4558 * w(c, s2) = 0 4558 * w(c, s2) = 0
4559 * w(c, s3) = 1 4559 * w(c, s3) = 1
4560 * 4560 *
4561 */ 4561 */
4562 static int 4562 static int
4563 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 4563 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4564 { 4564 {
4565 s64 gran, vdiff = curr->vruntime - se->vruntime; 4565 s64 gran, vdiff = curr->vruntime - se->vruntime;
4566 4566
4567 if (vdiff <= 0) 4567 if (vdiff <= 0)
4568 return -1; 4568 return -1;
4569 4569
4570 gran = wakeup_gran(curr, se); 4570 gran = wakeup_gran(curr, se);
4571 if (vdiff > gran) 4571 if (vdiff > gran)
4572 return 1; 4572 return 1;
4573 4573
4574 return 0; 4574 return 0;
4575 } 4575 }
4576 4576
4577 static void set_last_buddy(struct sched_entity *se) 4577 static void set_last_buddy(struct sched_entity *se)
4578 { 4578 {
4579 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 4579 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4580 return; 4580 return;
4581 4581
4582 for_each_sched_entity(se) 4582 for_each_sched_entity(se)
4583 cfs_rq_of(se)->last = se; 4583 cfs_rq_of(se)->last = se;
4584 } 4584 }
4585 4585
4586 static void set_next_buddy(struct sched_entity *se) 4586 static void set_next_buddy(struct sched_entity *se)
4587 { 4587 {
4588 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 4588 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4589 return; 4589 return;
4590 4590
4591 for_each_sched_entity(se) 4591 for_each_sched_entity(se)
4592 cfs_rq_of(se)->next = se; 4592 cfs_rq_of(se)->next = se;
4593 } 4593 }
4594 4594
4595 static void set_skip_buddy(struct sched_entity *se) 4595 static void set_skip_buddy(struct sched_entity *se)
4596 { 4596 {
4597 for_each_sched_entity(se) 4597 for_each_sched_entity(se)
4598 cfs_rq_of(se)->skip = se; 4598 cfs_rq_of(se)->skip = se;
4599 } 4599 }
4600 4600
4601 /* 4601 /*
4602 * Preempt the current task with a newly woken task if needed: 4602 * Preempt the current task with a newly woken task if needed:
4603 */ 4603 */
4604 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 4604 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4605 { 4605 {
4606 struct task_struct *curr = rq->curr; 4606 struct task_struct *curr = rq->curr;
4607 struct sched_entity *se = &curr->se, *pse = &p->se; 4607 struct sched_entity *se = &curr->se, *pse = &p->se;
4608 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 4608 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4609 int scale = cfs_rq->nr_running >= sched_nr_latency; 4609 int scale = cfs_rq->nr_running >= sched_nr_latency;
4610 int next_buddy_marked = 0; 4610 int next_buddy_marked = 0;
4611 4611
4612 if (unlikely(se == pse)) 4612 if (unlikely(se == pse))
4613 return; 4613 return;
4614 4614
4615 /* 4615 /*
4616 * This is possible from callers such as move_task(), in which we 4616 * This is possible from callers such as move_task(), in which we
4617 * unconditionally check_prempt_curr() after an enqueue (which may have 4617 * unconditionally check_prempt_curr() after an enqueue (which may have
4618 * lead to a throttle). This both saves work and prevents false 4618 * lead to a throttle). This both saves work and prevents false
4619 * next-buddy nomination below. 4619 * next-buddy nomination below.
4620 */ 4620 */
4621 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 4621 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4622 return; 4622 return;
4623 4623
4624 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 4624 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4625 set_next_buddy(pse); 4625 set_next_buddy(pse);
4626 next_buddy_marked = 1; 4626 next_buddy_marked = 1;
4627 } 4627 }
4628 4628
4629 /* 4629 /*
4630 * We can come here with TIF_NEED_RESCHED already set from new task 4630 * We can come here with TIF_NEED_RESCHED already set from new task
4631 * wake up path. 4631 * wake up path.
4632 * 4632 *
4633 * Note: this also catches the edge-case of curr being in a throttled 4633 * Note: this also catches the edge-case of curr being in a throttled
4634 * group (e.g. via set_curr_task), since update_curr() (in the 4634 * group (e.g. via set_curr_task), since update_curr() (in the
4635 * enqueue of curr) will have resulted in resched being set. This 4635 * enqueue of curr) will have resulted in resched being set. This
4636 * prevents us from potentially nominating it as a false LAST_BUDDY 4636 * prevents us from potentially nominating it as a false LAST_BUDDY
4637 * below. 4637 * below.
4638 */ 4638 */
4639 if (test_tsk_need_resched(curr)) 4639 if (test_tsk_need_resched(curr))
4640 return; 4640 return;
4641 4641
4642 /* Idle tasks are by definition preempted by non-idle tasks. */ 4642 /* Idle tasks are by definition preempted by non-idle tasks. */
4643 if (unlikely(curr->policy == SCHED_IDLE) && 4643 if (unlikely(curr->policy == SCHED_IDLE) &&
4644 likely(p->policy != SCHED_IDLE)) 4644 likely(p->policy != SCHED_IDLE))
4645 goto preempt; 4645 goto preempt;
4646 4646
4647 /* 4647 /*
4648 * Batch and idle tasks do not preempt non-idle tasks (their preemption 4648 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4649 * is driven by the tick): 4649 * is driven by the tick):
4650 */ 4650 */
4651 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 4651 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4652 return; 4652 return;
4653 4653
4654 find_matching_se(&se, &pse); 4654 find_matching_se(&se, &pse);
4655 update_curr(cfs_rq_of(se)); 4655 update_curr(cfs_rq_of(se));
4656 BUG_ON(!pse); 4656 BUG_ON(!pse);
4657 if (wakeup_preempt_entity(se, pse) == 1) { 4657 if (wakeup_preempt_entity(se, pse) == 1) {
4658 /* 4658 /*
4659 * Bias pick_next to pick the sched entity that is 4659 * Bias pick_next to pick the sched entity that is
4660 * triggering this preemption. 4660 * triggering this preemption.
4661 */ 4661 */
4662 if (!next_buddy_marked) 4662 if (!next_buddy_marked)
4663 set_next_buddy(pse); 4663 set_next_buddy(pse);
4664 goto preempt; 4664 goto preempt;
4665 } 4665 }
4666 4666
4667 return; 4667 return;
4668 4668
4669 preempt: 4669 preempt:
4670 resched_task(curr); 4670 resched_task(curr);
4671 /* 4671 /*
4672 * Only set the backward buddy when the current task is still 4672 * Only set the backward buddy when the current task is still
4673 * on the rq. This can happen when a wakeup gets interleaved 4673 * on the rq. This can happen when a wakeup gets interleaved
4674 * with schedule on the ->pre_schedule() or idle_balance() 4674 * with schedule on the ->pre_schedule() or idle_balance()
4675 * point, either of which can * drop the rq lock. 4675 * point, either of which can * drop the rq lock.
4676 * 4676 *
4677 * Also, during early boot the idle thread is in the fair class, 4677 * Also, during early boot the idle thread is in the fair class,
4678 * for obvious reasons its a bad idea to schedule back to it. 4678 * for obvious reasons its a bad idea to schedule back to it.
4679 */ 4679 */
4680 if (unlikely(!se->on_rq || curr == rq->idle)) 4680 if (unlikely(!se->on_rq || curr == rq->idle))
4681 return; 4681 return;
4682 4682
4683 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 4683 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4684 set_last_buddy(se); 4684 set_last_buddy(se);
4685 } 4685 }
4686 4686
4687 static struct task_struct * 4687 static struct task_struct *
4688 pick_next_task_fair(struct rq *rq, struct task_struct *prev) 4688 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4689 { 4689 {
4690 struct cfs_rq *cfs_rq = &rq->cfs; 4690 struct cfs_rq *cfs_rq = &rq->cfs;
4691 struct sched_entity *se; 4691 struct sched_entity *se;
4692 struct task_struct *p; 4692 struct task_struct *p;
4693 int new_tasks; 4693 int new_tasks;
4694 4694
4695 again: 4695 again:
4696 #ifdef CONFIG_FAIR_GROUP_SCHED 4696 #ifdef CONFIG_FAIR_GROUP_SCHED
4697 if (!cfs_rq->nr_running) 4697 if (!cfs_rq->nr_running)
4698 goto idle; 4698 goto idle;
4699 4699
4700 if (prev->sched_class != &fair_sched_class) 4700 if (prev->sched_class != &fair_sched_class)
4701 goto simple; 4701 goto simple;
4702 4702
4703 /* 4703 /*
4704 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 4704 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4705 * likely that a next task is from the same cgroup as the current. 4705 * likely that a next task is from the same cgroup as the current.
4706 * 4706 *
4707 * Therefore attempt to avoid putting and setting the entire cgroup 4707 * Therefore attempt to avoid putting and setting the entire cgroup
4708 * hierarchy, only change the part that actually changes. 4708 * hierarchy, only change the part that actually changes.
4709 */ 4709 */
4710 4710
4711 do { 4711 do {
4712 struct sched_entity *curr = cfs_rq->curr; 4712 struct sched_entity *curr = cfs_rq->curr;
4713 4713
4714 /* 4714 /*
4715 * Since we got here without doing put_prev_entity() we also 4715 * Since we got here without doing put_prev_entity() we also
4716 * have to consider cfs_rq->curr. If it is still a runnable 4716 * have to consider cfs_rq->curr. If it is still a runnable
4717 * entity, update_curr() will update its vruntime, otherwise 4717 * entity, update_curr() will update its vruntime, otherwise
4718 * forget we've ever seen it. 4718 * forget we've ever seen it.
4719 */ 4719 */
4720 if (curr && curr->on_rq) 4720 if (curr && curr->on_rq)
4721 update_curr(cfs_rq); 4721 update_curr(cfs_rq);
4722 else 4722 else
4723 curr = NULL; 4723 curr = NULL;
4724 4724
4725 /* 4725 /*
4726 * This call to check_cfs_rq_runtime() will do the throttle and 4726 * This call to check_cfs_rq_runtime() will do the throttle and
4727 * dequeue its entity in the parent(s). Therefore the 'simple' 4727 * dequeue its entity in the parent(s). Therefore the 'simple'
4728 * nr_running test will indeed be correct. 4728 * nr_running test will indeed be correct.
4729 */ 4729 */
4730 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 4730 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4731 goto simple; 4731 goto simple;
4732 4732
4733 se = pick_next_entity(cfs_rq, curr); 4733 se = pick_next_entity(cfs_rq, curr);
4734 cfs_rq = group_cfs_rq(se); 4734 cfs_rq = group_cfs_rq(se);
4735 } while (cfs_rq); 4735 } while (cfs_rq);
4736 4736
4737 p = task_of(se); 4737 p = task_of(se);
4738 4738
4739 /* 4739 /*
4740 * Since we haven't yet done put_prev_entity and if the selected task 4740 * Since we haven't yet done put_prev_entity and if the selected task
4741 * is a different task than we started out with, try and touch the 4741 * is a different task than we started out with, try and touch the
4742 * least amount of cfs_rqs. 4742 * least amount of cfs_rqs.
4743 */ 4743 */
4744 if (prev != p) { 4744 if (prev != p) {
4745 struct sched_entity *pse = &prev->se; 4745 struct sched_entity *pse = &prev->se;
4746 4746
4747 while (!(cfs_rq = is_same_group(se, pse))) { 4747 while (!(cfs_rq = is_same_group(se, pse))) {
4748 int se_depth = se->depth; 4748 int se_depth = se->depth;
4749 int pse_depth = pse->depth; 4749 int pse_depth = pse->depth;
4750 4750
4751 if (se_depth <= pse_depth) { 4751 if (se_depth <= pse_depth) {
4752 put_prev_entity(cfs_rq_of(pse), pse); 4752 put_prev_entity(cfs_rq_of(pse), pse);
4753 pse = parent_entity(pse); 4753 pse = parent_entity(pse);
4754 } 4754 }
4755 if (se_depth >= pse_depth) { 4755 if (se_depth >= pse_depth) {
4756 set_next_entity(cfs_rq_of(se), se); 4756 set_next_entity(cfs_rq_of(se), se);
4757 se = parent_entity(se); 4757 se = parent_entity(se);
4758 } 4758 }
4759 } 4759 }
4760 4760
4761 put_prev_entity(cfs_rq, pse); 4761 put_prev_entity(cfs_rq, pse);
4762 set_next_entity(cfs_rq, se); 4762 set_next_entity(cfs_rq, se);
4763 } 4763 }
4764 4764
4765 if (hrtick_enabled(rq)) 4765 if (hrtick_enabled(rq))
4766 hrtick_start_fair(rq, p); 4766 hrtick_start_fair(rq, p);
4767 4767
4768 return p; 4768 return p;
4769 simple: 4769 simple:
4770 cfs_rq = &rq->cfs; 4770 cfs_rq = &rq->cfs;
4771 #endif 4771 #endif
4772 4772
4773 if (!cfs_rq->nr_running) 4773 if (!cfs_rq->nr_running)
4774 goto idle; 4774 goto idle;
4775 4775
4776 put_prev_task(rq, prev); 4776 put_prev_task(rq, prev);
4777 4777
4778 do { 4778 do {
4779 se = pick_next_entity(cfs_rq, NULL); 4779 se = pick_next_entity(cfs_rq, NULL);
4780 set_next_entity(cfs_rq, se); 4780 set_next_entity(cfs_rq, se);
4781 cfs_rq = group_cfs_rq(se); 4781 cfs_rq = group_cfs_rq(se);
4782 } while (cfs_rq); 4782 } while (cfs_rq);
4783 4783
4784 p = task_of(se); 4784 p = task_of(se);
4785 4785
4786 if (hrtick_enabled(rq)) 4786 if (hrtick_enabled(rq))
4787 hrtick_start_fair(rq, p); 4787 hrtick_start_fair(rq, p);
4788 4788
4789 return p; 4789 return p;
4790 4790
4791 idle: 4791 idle:
4792 new_tasks = idle_balance(rq); 4792 new_tasks = idle_balance(rq);
4793 /* 4793 /*
4794 * Because idle_balance() releases (and re-acquires) rq->lock, it is 4794 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4795 * possible for any higher priority task to appear. In that case we 4795 * possible for any higher priority task to appear. In that case we
4796 * must re-start the pick_next_entity() loop. 4796 * must re-start the pick_next_entity() loop.
4797 */ 4797 */
4798 if (new_tasks < 0) 4798 if (new_tasks < 0)
4799 return RETRY_TASK; 4799 return RETRY_TASK;
4800 4800
4801 if (new_tasks > 0) 4801 if (new_tasks > 0)
4802 goto again; 4802 goto again;
4803 4803
4804 return NULL; 4804 return NULL;
4805 } 4805 }
4806 4806
4807 /* 4807 /*
4808 * Account for a descheduled task: 4808 * Account for a descheduled task:
4809 */ 4809 */
4810 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 4810 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4811 { 4811 {
4812 struct sched_entity *se = &prev->se; 4812 struct sched_entity *se = &prev->se;
4813 struct cfs_rq *cfs_rq; 4813 struct cfs_rq *cfs_rq;
4814 4814
4815 for_each_sched_entity(se) { 4815 for_each_sched_entity(se) {
4816 cfs_rq = cfs_rq_of(se); 4816 cfs_rq = cfs_rq_of(se);
4817 put_prev_entity(cfs_rq, se); 4817 put_prev_entity(cfs_rq, se);
4818 } 4818 }
4819 } 4819 }
4820 4820
4821 /* 4821 /*
4822 * sched_yield() is very simple 4822 * sched_yield() is very simple
4823 * 4823 *
4824 * The magic of dealing with the ->skip buddy is in pick_next_entity. 4824 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4825 */ 4825 */
4826 static void yield_task_fair(struct rq *rq) 4826 static void yield_task_fair(struct rq *rq)
4827 { 4827 {
4828 struct task_struct *curr = rq->curr; 4828 struct task_struct *curr = rq->curr;
4829 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 4829 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4830 struct sched_entity *se = &curr->se; 4830 struct sched_entity *se = &curr->se;
4831 4831
4832 /* 4832 /*
4833 * Are we the only task in the tree? 4833 * Are we the only task in the tree?
4834 */ 4834 */
4835 if (unlikely(rq->nr_running == 1)) 4835 if (unlikely(rq->nr_running == 1))
4836 return; 4836 return;
4837 4837
4838 clear_buddies(cfs_rq, se); 4838 clear_buddies(cfs_rq, se);
4839 4839
4840 if (curr->policy != SCHED_BATCH) { 4840 if (curr->policy != SCHED_BATCH) {
4841 update_rq_clock(rq); 4841 update_rq_clock(rq);
4842 /* 4842 /*
4843 * Update run-time statistics of the 'current'. 4843 * Update run-time statistics of the 'current'.
4844 */ 4844 */
4845 update_curr(cfs_rq); 4845 update_curr(cfs_rq);
4846 /* 4846 /*
4847 * Tell update_rq_clock() that we've just updated, 4847 * Tell update_rq_clock() that we've just updated,
4848 * so we don't do microscopic update in schedule() 4848 * so we don't do microscopic update in schedule()
4849 * and double the fastpath cost. 4849 * and double the fastpath cost.
4850 */ 4850 */
4851 rq->skip_clock_update = 1; 4851 rq->skip_clock_update = 1;
4852 } 4852 }
4853 4853
4854 set_skip_buddy(se); 4854 set_skip_buddy(se);
4855 } 4855 }
4856 4856
4857 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 4857 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4858 { 4858 {
4859 struct sched_entity *se = &p->se; 4859 struct sched_entity *se = &p->se;
4860 4860
4861 /* throttled hierarchies are not runnable */ 4861 /* throttled hierarchies are not runnable */
4862 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 4862 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4863 return false; 4863 return false;
4864 4864
4865 /* Tell the scheduler that we'd really like pse to run next. */ 4865 /* Tell the scheduler that we'd really like pse to run next. */
4866 set_next_buddy(se); 4866 set_next_buddy(se);
4867 4867
4868 yield_task_fair(rq); 4868 yield_task_fair(rq);
4869 4869
4870 return true; 4870 return true;
4871 } 4871 }
4872 4872
4873 #ifdef CONFIG_SMP 4873 #ifdef CONFIG_SMP
4874 /************************************************** 4874 /**************************************************
4875 * Fair scheduling class load-balancing methods. 4875 * Fair scheduling class load-balancing methods.
4876 * 4876 *
4877 * BASICS 4877 * BASICS
4878 * 4878 *
4879 * The purpose of load-balancing is to achieve the same basic fairness the 4879 * The purpose of load-balancing is to achieve the same basic fairness the
4880 * per-cpu scheduler provides, namely provide a proportional amount of compute 4880 * per-cpu scheduler provides, namely provide a proportional amount of compute
4881 * time to each task. This is expressed in the following equation: 4881 * time to each task. This is expressed in the following equation:
4882 * 4882 *
4883 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 4883 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4884 * 4884 *
4885 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 4885 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4886 * W_i,0 is defined as: 4886 * W_i,0 is defined as:
4887 * 4887 *
4888 * W_i,0 = \Sum_j w_i,j (2) 4888 * W_i,0 = \Sum_j w_i,j (2)
4889 * 4889 *
4890 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 4890 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4891 * is derived from the nice value as per prio_to_weight[]. 4891 * is derived from the nice value as per prio_to_weight[].
4892 * 4892 *
4893 * The weight average is an exponential decay average of the instantaneous 4893 * The weight average is an exponential decay average of the instantaneous
4894 * weight: 4894 * weight:
4895 * 4895 *
4896 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 4896 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4897 * 4897 *
4898 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the 4898 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4899 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 4899 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4900 * can also include other factors [XXX]. 4900 * can also include other factors [XXX].
4901 * 4901 *
4902 * To achieve this balance we define a measure of imbalance which follows 4902 * To achieve this balance we define a measure of imbalance which follows
4903 * directly from (1): 4903 * directly from (1):
4904 * 4904 *
4905 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4) 4905 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4906 * 4906 *
4907 * We them move tasks around to minimize the imbalance. In the continuous 4907 * We them move tasks around to minimize the imbalance. In the continuous
4908 * function space it is obvious this converges, in the discrete case we get 4908 * function space it is obvious this converges, in the discrete case we get
4909 * a few fun cases generally called infeasible weight scenarios. 4909 * a few fun cases generally called infeasible weight scenarios.
4910 * 4910 *
4911 * [XXX expand on: 4911 * [XXX expand on:
4912 * - infeasible weights; 4912 * - infeasible weights;
4913 * - local vs global optima in the discrete case. ] 4913 * - local vs global optima in the discrete case. ]
4914 * 4914 *
4915 * 4915 *
4916 * SCHED DOMAINS 4916 * SCHED DOMAINS
4917 * 4917 *
4918 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 4918 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4919 * for all i,j solution, we create a tree of cpus that follows the hardware 4919 * for all i,j solution, we create a tree of cpus that follows the hardware
4920 * topology where each level pairs two lower groups (or better). This results 4920 * topology where each level pairs two lower groups (or better). This results
4921 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 4921 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4922 * tree to only the first of the previous level and we decrease the frequency 4922 * tree to only the first of the previous level and we decrease the frequency
4923 * of load-balance at each level inv. proportional to the number of cpus in 4923 * of load-balance at each level inv. proportional to the number of cpus in
4924 * the groups. 4924 * the groups.
4925 * 4925 *
4926 * This yields: 4926 * This yields:
4927 * 4927 *
4928 * log_2 n 1 n 4928 * log_2 n 1 n
4929 * \Sum { --- * --- * 2^i } = O(n) (5) 4929 * \Sum { --- * --- * 2^i } = O(n) (5)
4930 * i = 0 2^i 2^i 4930 * i = 0 2^i 2^i
4931 * `- size of each group 4931 * `- size of each group
4932 * | | `- number of cpus doing load-balance 4932 * | | `- number of cpus doing load-balance
4933 * | `- freq 4933 * | `- freq
4934 * `- sum over all levels 4934 * `- sum over all levels
4935 * 4935 *
4936 * Coupled with a limit on how many tasks we can migrate every balance pass, 4936 * Coupled with a limit on how many tasks we can migrate every balance pass,
4937 * this makes (5) the runtime complexity of the balancer. 4937 * this makes (5) the runtime complexity of the balancer.
4938 * 4938 *
4939 * An important property here is that each CPU is still (indirectly) connected 4939 * An important property here is that each CPU is still (indirectly) connected
4940 * to every other cpu in at most O(log n) steps: 4940 * to every other cpu in at most O(log n) steps:
4941 * 4941 *
4942 * The adjacency matrix of the resulting graph is given by: 4942 * The adjacency matrix of the resulting graph is given by:
4943 * 4943 *
4944 * log_2 n 4944 * log_2 n
4945 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 4945 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4946 * k = 0 4946 * k = 0
4947 * 4947 *
4948 * And you'll find that: 4948 * And you'll find that:
4949 * 4949 *
4950 * A^(log_2 n)_i,j != 0 for all i,j (7) 4950 * A^(log_2 n)_i,j != 0 for all i,j (7)
4951 * 4951 *
4952 * Showing there's indeed a path between every cpu in at most O(log n) steps. 4952 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4953 * The task movement gives a factor of O(m), giving a convergence complexity 4953 * The task movement gives a factor of O(m), giving a convergence complexity
4954 * of: 4954 * of:
4955 * 4955 *
4956 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 4956 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4957 * 4957 *
4958 * 4958 *
4959 * WORK CONSERVING 4959 * WORK CONSERVING
4960 * 4960 *
4961 * In order to avoid CPUs going idle while there's still work to do, new idle 4961 * In order to avoid CPUs going idle while there's still work to do, new idle
4962 * balancing is more aggressive and has the newly idle cpu iterate up the domain 4962 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4963 * tree itself instead of relying on other CPUs to bring it work. 4963 * tree itself instead of relying on other CPUs to bring it work.
4964 * 4964 *
4965 * This adds some complexity to both (5) and (8) but it reduces the total idle 4965 * This adds some complexity to both (5) and (8) but it reduces the total idle
4966 * time. 4966 * time.
4967 * 4967 *
4968 * [XXX more?] 4968 * [XXX more?]
4969 * 4969 *
4970 * 4970 *
4971 * CGROUPS 4971 * CGROUPS
4972 * 4972 *
4973 * Cgroups make a horror show out of (2), instead of a simple sum we get: 4973 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4974 * 4974 *
4975 * s_k,i 4975 * s_k,i
4976 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 4976 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4977 * S_k 4977 * S_k
4978 * 4978 *
4979 * Where 4979 * Where
4980 * 4980 *
4981 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 4981 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4982 * 4982 *
4983 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 4983 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4984 * 4984 *
4985 * The big problem is S_k, its a global sum needed to compute a local (W_i) 4985 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4986 * property. 4986 * property.
4987 * 4987 *
4988 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 4988 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4989 * rewrite all of this once again.] 4989 * rewrite all of this once again.]
4990 */ 4990 */
4991 4991
4992 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 4992 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4993 4993
4994 enum fbq_type { regular, remote, all }; 4994 enum fbq_type { regular, remote, all };
4995 4995
4996 #define LBF_ALL_PINNED 0x01 4996 #define LBF_ALL_PINNED 0x01
4997 #define LBF_NEED_BREAK 0x02 4997 #define LBF_NEED_BREAK 0x02
4998 #define LBF_DST_PINNED 0x04 4998 #define LBF_DST_PINNED 0x04
4999 #define LBF_SOME_PINNED 0x08 4999 #define LBF_SOME_PINNED 0x08
5000 5000
5001 struct lb_env { 5001 struct lb_env {
5002 struct sched_domain *sd; 5002 struct sched_domain *sd;
5003 5003
5004 struct rq *src_rq; 5004 struct rq *src_rq;
5005 int src_cpu; 5005 int src_cpu;
5006 5006
5007 int dst_cpu; 5007 int dst_cpu;
5008 struct rq *dst_rq; 5008 struct rq *dst_rq;
5009 5009
5010 struct cpumask *dst_grpmask; 5010 struct cpumask *dst_grpmask;
5011 int new_dst_cpu; 5011 int new_dst_cpu;
5012 enum cpu_idle_type idle; 5012 enum cpu_idle_type idle;
5013 long imbalance; 5013 long imbalance;
5014 /* The set of CPUs under consideration for load-balancing */ 5014 /* The set of CPUs under consideration for load-balancing */
5015 struct cpumask *cpus; 5015 struct cpumask *cpus;
5016 5016
5017 unsigned int flags; 5017 unsigned int flags;
5018 5018
5019 unsigned int loop; 5019 unsigned int loop;
5020 unsigned int loop_break; 5020 unsigned int loop_break;
5021 unsigned int loop_max; 5021 unsigned int loop_max;
5022 5022
5023 enum fbq_type fbq_type; 5023 enum fbq_type fbq_type;
5024 }; 5024 };
5025 5025
5026 /* 5026 /*
5027 * move_task - move a task from one runqueue to another runqueue. 5027 * move_task - move a task from one runqueue to another runqueue.
5028 * Both runqueues must be locked. 5028 * Both runqueues must be locked.
5029 */ 5029 */
5030 static void move_task(struct task_struct *p, struct lb_env *env) 5030 static void move_task(struct task_struct *p, struct lb_env *env)
5031 { 5031 {
5032 deactivate_task(env->src_rq, p, 0); 5032 deactivate_task(env->src_rq, p, 0);
5033 set_task_cpu(p, env->dst_cpu); 5033 set_task_cpu(p, env->dst_cpu);
5034 activate_task(env->dst_rq, p, 0); 5034 activate_task(env->dst_rq, p, 0);
5035 check_preempt_curr(env->dst_rq, p, 0); 5035 check_preempt_curr(env->dst_rq, p, 0);
5036 } 5036 }
5037 5037
5038 /* 5038 /*
5039 * Is this task likely cache-hot: 5039 * Is this task likely cache-hot:
5040 */ 5040 */
5041 static int 5041 static int
5042 task_hot(struct task_struct *p, u64 now) 5042 task_hot(struct task_struct *p, u64 now)
5043 { 5043 {
5044 s64 delta; 5044 s64 delta;
5045 5045
5046 if (p->sched_class != &fair_sched_class) 5046 if (p->sched_class != &fair_sched_class)
5047 return 0; 5047 return 0;
5048 5048
5049 if (unlikely(p->policy == SCHED_IDLE)) 5049 if (unlikely(p->policy == SCHED_IDLE))
5050 return 0; 5050 return 0;
5051 5051
5052 /* 5052 /*
5053 * Buddy candidates are cache hot: 5053 * Buddy candidates are cache hot:
5054 */ 5054 */
5055 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && 5055 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5056 (&p->se == cfs_rq_of(&p->se)->next || 5056 (&p->se == cfs_rq_of(&p->se)->next ||
5057 &p->se == cfs_rq_of(&p->se)->last)) 5057 &p->se == cfs_rq_of(&p->se)->last))
5058 return 1; 5058 return 1;
5059 5059
5060 if (sysctl_sched_migration_cost == -1) 5060 if (sysctl_sched_migration_cost == -1)
5061 return 1; 5061 return 1;
5062 if (sysctl_sched_migration_cost == 0) 5062 if (sysctl_sched_migration_cost == 0)
5063 return 0; 5063 return 0;
5064 5064
5065 delta = now - p->se.exec_start; 5065 delta = now - p->se.exec_start;
5066 5066
5067 return delta < (s64)sysctl_sched_migration_cost; 5067 return delta < (s64)sysctl_sched_migration_cost;
5068 } 5068 }
5069 5069
5070 #ifdef CONFIG_NUMA_BALANCING 5070 #ifdef CONFIG_NUMA_BALANCING
5071 /* Returns true if the destination node has incurred more faults */ 5071 /* Returns true if the destination node has incurred more faults */
5072 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env) 5072 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5073 { 5073 {
5074 int src_nid, dst_nid; 5074 int src_nid, dst_nid;
5075 5075
5076 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory || 5076 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5077 !(env->sd->flags & SD_NUMA)) { 5077 !(env->sd->flags & SD_NUMA)) {
5078 return false; 5078 return false;
5079 } 5079 }
5080 5080
5081 src_nid = cpu_to_node(env->src_cpu); 5081 src_nid = cpu_to_node(env->src_cpu);
5082 dst_nid = cpu_to_node(env->dst_cpu); 5082 dst_nid = cpu_to_node(env->dst_cpu);
5083 5083
5084 if (src_nid == dst_nid) 5084 if (src_nid == dst_nid)
5085 return false; 5085 return false;
5086 5086
5087 /* Always encourage migration to the preferred node. */ 5087 /* Always encourage migration to the preferred node. */
5088 if (dst_nid == p->numa_preferred_nid) 5088 if (dst_nid == p->numa_preferred_nid)
5089 return true; 5089 return true;
5090 5090
5091 /* If both task and group weight improve, this move is a winner. */ 5091 /* If both task and group weight improve, this move is a winner. */
5092 if (task_weight(p, dst_nid) > task_weight(p, src_nid) && 5092 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
5093 group_weight(p, dst_nid) > group_weight(p, src_nid)) 5093 group_weight(p, dst_nid) > group_weight(p, src_nid))
5094 return true; 5094 return true;
5095 5095
5096 return false; 5096 return false;
5097 } 5097 }
5098 5098
5099 5099
5100 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 5100 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5101 { 5101 {
5102 int src_nid, dst_nid; 5102 int src_nid, dst_nid;
5103 5103
5104 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER)) 5104 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5105 return false; 5105 return false;
5106 5106
5107 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA)) 5107 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5108 return false; 5108 return false;
5109 5109
5110 src_nid = cpu_to_node(env->src_cpu); 5110 src_nid = cpu_to_node(env->src_cpu);
5111 dst_nid = cpu_to_node(env->dst_cpu); 5111 dst_nid = cpu_to_node(env->dst_cpu);
5112 5112
5113 if (src_nid == dst_nid) 5113 if (src_nid == dst_nid)
5114 return false; 5114 return false;
5115 5115
5116 /* Migrating away from the preferred node is always bad. */ 5116 /* Migrating away from the preferred node is always bad. */
5117 if (src_nid == p->numa_preferred_nid) 5117 if (src_nid == p->numa_preferred_nid)
5118 return true; 5118 return true;
5119 5119
5120 /* If either task or group weight get worse, don't do it. */ 5120 /* If either task or group weight get worse, don't do it. */
5121 if (task_weight(p, dst_nid) < task_weight(p, src_nid) || 5121 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
5122 group_weight(p, dst_nid) < group_weight(p, src_nid)) 5122 group_weight(p, dst_nid) < group_weight(p, src_nid))
5123 return true; 5123 return true;
5124 5124
5125 return false; 5125 return false;
5126 } 5126 }
5127 5127
5128 #else 5128 #else
5129 static inline bool migrate_improves_locality(struct task_struct *p, 5129 static inline bool migrate_improves_locality(struct task_struct *p,
5130 struct lb_env *env) 5130 struct lb_env *env)
5131 { 5131 {
5132 return false; 5132 return false;
5133 } 5133 }
5134 5134
5135 static inline bool migrate_degrades_locality(struct task_struct *p, 5135 static inline bool migrate_degrades_locality(struct task_struct *p,
5136 struct lb_env *env) 5136 struct lb_env *env)
5137 { 5137 {
5138 return false; 5138 return false;
5139 } 5139 }
5140 #endif 5140 #endif
5141 5141
5142 /* 5142 /*
5143 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 5143 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5144 */ 5144 */
5145 static 5145 static
5146 int can_migrate_task(struct task_struct *p, struct lb_env *env) 5146 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5147 { 5147 {
5148 int tsk_cache_hot = 0; 5148 int tsk_cache_hot = 0;
5149 /* 5149 /*
5150 * We do not migrate tasks that are: 5150 * We do not migrate tasks that are:
5151 * 1) throttled_lb_pair, or 5151 * 1) throttled_lb_pair, or
5152 * 2) cannot be migrated to this CPU due to cpus_allowed, or 5152 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5153 * 3) running (obviously), or 5153 * 3) running (obviously), or
5154 * 4) are cache-hot on their current CPU. 5154 * 4) are cache-hot on their current CPU.
5155 */ 5155 */
5156 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 5156 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5157 return 0; 5157 return 0;
5158 5158
5159 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 5159 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5160 int cpu; 5160 int cpu;
5161 5161
5162 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 5162 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5163 5163
5164 env->flags |= LBF_SOME_PINNED; 5164 env->flags |= LBF_SOME_PINNED;
5165 5165
5166 /* 5166 /*
5167 * Remember if this task can be migrated to any other cpu in 5167 * Remember if this task can be migrated to any other cpu in
5168 * our sched_group. We may want to revisit it if we couldn't 5168 * our sched_group. We may want to revisit it if we couldn't
5169 * meet load balance goals by pulling other tasks on src_cpu. 5169 * meet load balance goals by pulling other tasks on src_cpu.
5170 * 5170 *
5171 * Also avoid computing new_dst_cpu if we have already computed 5171 * Also avoid computing new_dst_cpu if we have already computed
5172 * one in current iteration. 5172 * one in current iteration.
5173 */ 5173 */
5174 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 5174 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5175 return 0; 5175 return 0;
5176 5176
5177 /* Prevent to re-select dst_cpu via env's cpus */ 5177 /* Prevent to re-select dst_cpu via env's cpus */
5178 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 5178 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5179 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 5179 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5180 env->flags |= LBF_DST_PINNED; 5180 env->flags |= LBF_DST_PINNED;
5181 env->new_dst_cpu = cpu; 5181 env->new_dst_cpu = cpu;
5182 break; 5182 break;
5183 } 5183 }
5184 } 5184 }
5185 5185
5186 return 0; 5186 return 0;
5187 } 5187 }
5188 5188
5189 /* Record that we found atleast one task that could run on dst_cpu */ 5189 /* Record that we found atleast one task that could run on dst_cpu */
5190 env->flags &= ~LBF_ALL_PINNED; 5190 env->flags &= ~LBF_ALL_PINNED;
5191 5191
5192 if (task_running(env->src_rq, p)) { 5192 if (task_running(env->src_rq, p)) {
5193 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 5193 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5194 return 0; 5194 return 0;
5195 } 5195 }
5196 5196
5197 /* 5197 /*
5198 * Aggressive migration if: 5198 * Aggressive migration if:
5199 * 1) destination numa is preferred 5199 * 1) destination numa is preferred
5200 * 2) task is cache cold, or 5200 * 2) task is cache cold, or
5201 * 3) too many balance attempts have failed. 5201 * 3) too many balance attempts have failed.
5202 */ 5202 */
5203 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq)); 5203 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
5204 if (!tsk_cache_hot) 5204 if (!tsk_cache_hot)
5205 tsk_cache_hot = migrate_degrades_locality(p, env); 5205 tsk_cache_hot = migrate_degrades_locality(p, env);
5206 5206
5207 if (migrate_improves_locality(p, env)) { 5207 if (migrate_improves_locality(p, env)) {
5208 #ifdef CONFIG_SCHEDSTATS 5208 #ifdef CONFIG_SCHEDSTATS
5209 if (tsk_cache_hot) { 5209 if (tsk_cache_hot) {
5210 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 5210 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5211 schedstat_inc(p, se.statistics.nr_forced_migrations); 5211 schedstat_inc(p, se.statistics.nr_forced_migrations);
5212 } 5212 }
5213 #endif 5213 #endif
5214 return 1; 5214 return 1;
5215 } 5215 }
5216 5216
5217 if (!tsk_cache_hot || 5217 if (!tsk_cache_hot ||
5218 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 5218 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5219 5219
5220 if (tsk_cache_hot) { 5220 if (tsk_cache_hot) {
5221 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 5221 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5222 schedstat_inc(p, se.statistics.nr_forced_migrations); 5222 schedstat_inc(p, se.statistics.nr_forced_migrations);
5223 } 5223 }
5224 5224
5225 return 1; 5225 return 1;
5226 } 5226 }
5227 5227
5228 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 5228 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5229 return 0; 5229 return 0;
5230 } 5230 }
5231 5231
5232 /* 5232 /*
5233 * move_one_task tries to move exactly one task from busiest to this_rq, as 5233 * move_one_task tries to move exactly one task from busiest to this_rq, as
5234 * part of active balancing operations within "domain". 5234 * part of active balancing operations within "domain".
5235 * Returns 1 if successful and 0 otherwise. 5235 * Returns 1 if successful and 0 otherwise.
5236 * 5236 *
5237 * Called with both runqueues locked. 5237 * Called with both runqueues locked.
5238 */ 5238 */
5239 static int move_one_task(struct lb_env *env) 5239 static int move_one_task(struct lb_env *env)
5240 { 5240 {
5241 struct task_struct *p, *n; 5241 struct task_struct *p, *n;
5242 5242
5243 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 5243 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5244 if (!can_migrate_task(p, env)) 5244 if (!can_migrate_task(p, env))
5245 continue; 5245 continue;
5246 5246
5247 move_task(p, env); 5247 move_task(p, env);
5248 /* 5248 /*
5249 * Right now, this is only the second place move_task() 5249 * Right now, this is only the second place move_task()
5250 * is called, so we can safely collect move_task() 5250 * is called, so we can safely collect move_task()
5251 * stats here rather than inside move_task(). 5251 * stats here rather than inside move_task().
5252 */ 5252 */
5253 schedstat_inc(env->sd, lb_gained[env->idle]); 5253 schedstat_inc(env->sd, lb_gained[env->idle]);
5254 return 1; 5254 return 1;
5255 } 5255 }
5256 return 0; 5256 return 0;
5257 } 5257 }
5258 5258
5259 static const unsigned int sched_nr_migrate_break = 32; 5259 static const unsigned int sched_nr_migrate_break = 32;
5260 5260
5261 /* 5261 /*
5262 * move_tasks tries to move up to imbalance weighted load from busiest to 5262 * move_tasks tries to move up to imbalance weighted load from busiest to
5263 * this_rq, as part of a balancing operation within domain "sd". 5263 * this_rq, as part of a balancing operation within domain "sd".
5264 * Returns 1 if successful and 0 otherwise. 5264 * Returns 1 if successful and 0 otherwise.
5265 * 5265 *
5266 * Called with both runqueues locked. 5266 * Called with both runqueues locked.
5267 */ 5267 */
5268 static int move_tasks(struct lb_env *env) 5268 static int move_tasks(struct lb_env *env)
5269 { 5269 {
5270 struct list_head *tasks = &env->src_rq->cfs_tasks; 5270 struct list_head *tasks = &env->src_rq->cfs_tasks;
5271 struct task_struct *p; 5271 struct task_struct *p;
5272 unsigned long load; 5272 unsigned long load;
5273 int pulled = 0; 5273 int pulled = 0;
5274 5274
5275 if (env->imbalance <= 0) 5275 if (env->imbalance <= 0)
5276 return 0; 5276 return 0;
5277 5277
5278 while (!list_empty(tasks)) { 5278 while (!list_empty(tasks)) {
5279 p = list_first_entry(tasks, struct task_struct, se.group_node); 5279 p = list_first_entry(tasks, struct task_struct, se.group_node);
5280 5280
5281 env->loop++; 5281 env->loop++;
5282 /* We've more or less seen every task there is, call it quits */ 5282 /* We've more or less seen every task there is, call it quits */
5283 if (env->loop > env->loop_max) 5283 if (env->loop > env->loop_max)
5284 break; 5284 break;
5285 5285
5286 /* take a breather every nr_migrate tasks */ 5286 /* take a breather every nr_migrate tasks */
5287 if (env->loop > env->loop_break) { 5287 if (env->loop > env->loop_break) {
5288 env->loop_break += sched_nr_migrate_break; 5288 env->loop_break += sched_nr_migrate_break;
5289 env->flags |= LBF_NEED_BREAK; 5289 env->flags |= LBF_NEED_BREAK;
5290 break; 5290 break;
5291 } 5291 }
5292 5292
5293 if (!can_migrate_task(p, env)) 5293 if (!can_migrate_task(p, env))
5294 goto next; 5294 goto next;
5295 5295
5296 load = task_h_load(p); 5296 load = task_h_load(p);
5297 5297
5298 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 5298 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5299 goto next; 5299 goto next;
5300 5300
5301 if ((load / 2) > env->imbalance) 5301 if ((load / 2) > env->imbalance)
5302 goto next; 5302 goto next;
5303 5303
5304 move_task(p, env); 5304 move_task(p, env);
5305 pulled++; 5305 pulled++;
5306 env->imbalance -= load; 5306 env->imbalance -= load;
5307 5307
5308 #ifdef CONFIG_PREEMPT 5308 #ifdef CONFIG_PREEMPT
5309 /* 5309 /*
5310 * NEWIDLE balancing is a source of latency, so preemptible 5310 * NEWIDLE balancing is a source of latency, so preemptible
5311 * kernels will stop after the first task is pulled to minimize 5311 * kernels will stop after the first task is pulled to minimize
5312 * the critical section. 5312 * the critical section.
5313 */ 5313 */
5314 if (env->idle == CPU_NEWLY_IDLE) 5314 if (env->idle == CPU_NEWLY_IDLE)
5315 break; 5315 break;
5316 #endif 5316 #endif
5317 5317
5318 /* 5318 /*
5319 * We only want to steal up to the prescribed amount of 5319 * We only want to steal up to the prescribed amount of
5320 * weighted load. 5320 * weighted load.
5321 */ 5321 */
5322 if (env->imbalance <= 0) 5322 if (env->imbalance <= 0)
5323 break; 5323 break;
5324 5324
5325 continue; 5325 continue;
5326 next: 5326 next:
5327 list_move_tail(&p->se.group_node, tasks); 5327 list_move_tail(&p->se.group_node, tasks);
5328 } 5328 }
5329 5329
5330 /* 5330 /*
5331 * Right now, this is one of only two places move_task() is called, 5331 * Right now, this is one of only two places move_task() is called,
5332 * so we can safely collect move_task() stats here rather than 5332 * so we can safely collect move_task() stats here rather than
5333 * inside move_task(). 5333 * inside move_task().
5334 */ 5334 */
5335 schedstat_add(env->sd, lb_gained[env->idle], pulled); 5335 schedstat_add(env->sd, lb_gained[env->idle], pulled);
5336 5336
5337 return pulled; 5337 return pulled;
5338 } 5338 }
5339 5339
5340 #ifdef CONFIG_FAIR_GROUP_SCHED 5340 #ifdef CONFIG_FAIR_GROUP_SCHED
5341 /* 5341 /*
5342 * update tg->load_weight by folding this cpu's load_avg 5342 * update tg->load_weight by folding this cpu's load_avg
5343 */ 5343 */
5344 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu) 5344 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5345 { 5345 {
5346 struct sched_entity *se = tg->se[cpu]; 5346 struct sched_entity *se = tg->se[cpu];
5347 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 5347 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5348 5348
5349 /* throttled entities do not contribute to load */ 5349 /* throttled entities do not contribute to load */
5350 if (throttled_hierarchy(cfs_rq)) 5350 if (throttled_hierarchy(cfs_rq))
5351 return; 5351 return;
5352 5352
5353 update_cfs_rq_blocked_load(cfs_rq, 1); 5353 update_cfs_rq_blocked_load(cfs_rq, 1);
5354 5354
5355 if (se) { 5355 if (se) {
5356 update_entity_load_avg(se, 1); 5356 update_entity_load_avg(se, 1);
5357 /* 5357 /*
5358 * We pivot on our runnable average having decayed to zero for 5358 * We pivot on our runnable average having decayed to zero for
5359 * list removal. This generally implies that all our children 5359 * list removal. This generally implies that all our children
5360 * have also been removed (modulo rounding error or bandwidth 5360 * have also been removed (modulo rounding error or bandwidth
5361 * control); however, such cases are rare and we can fix these 5361 * control); however, such cases are rare and we can fix these
5362 * at enqueue. 5362 * at enqueue.
5363 * 5363 *
5364 * TODO: fix up out-of-order children on enqueue. 5364 * TODO: fix up out-of-order children on enqueue.
5365 */ 5365 */
5366 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running) 5366 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5367 list_del_leaf_cfs_rq(cfs_rq); 5367 list_del_leaf_cfs_rq(cfs_rq);
5368 } else { 5368 } else {
5369 struct rq *rq = rq_of(cfs_rq); 5369 struct rq *rq = rq_of(cfs_rq);
5370 update_rq_runnable_avg(rq, rq->nr_running); 5370 update_rq_runnable_avg(rq, rq->nr_running);
5371 } 5371 }
5372 } 5372 }
5373 5373
5374 static void update_blocked_averages(int cpu) 5374 static void update_blocked_averages(int cpu)
5375 { 5375 {
5376 struct rq *rq = cpu_rq(cpu); 5376 struct rq *rq = cpu_rq(cpu);
5377 struct cfs_rq *cfs_rq; 5377 struct cfs_rq *cfs_rq;
5378 unsigned long flags; 5378 unsigned long flags;
5379 5379
5380 raw_spin_lock_irqsave(&rq->lock, flags); 5380 raw_spin_lock_irqsave(&rq->lock, flags);
5381 update_rq_clock(rq); 5381 update_rq_clock(rq);
5382 /* 5382 /*
5383 * Iterates the task_group tree in a bottom up fashion, see 5383 * Iterates the task_group tree in a bottom up fashion, see
5384 * list_add_leaf_cfs_rq() for details. 5384 * list_add_leaf_cfs_rq() for details.
5385 */ 5385 */
5386 for_each_leaf_cfs_rq(rq, cfs_rq) { 5386 for_each_leaf_cfs_rq(rq, cfs_rq) {
5387 /* 5387 /*
5388 * Note: We may want to consider periodically releasing 5388 * Note: We may want to consider periodically releasing
5389 * rq->lock about these updates so that creating many task 5389 * rq->lock about these updates so that creating many task
5390 * groups does not result in continually extending hold time. 5390 * groups does not result in continually extending hold time.
5391 */ 5391 */
5392 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu); 5392 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5393 } 5393 }
5394 5394
5395 raw_spin_unlock_irqrestore(&rq->lock, flags); 5395 raw_spin_unlock_irqrestore(&rq->lock, flags);
5396 } 5396 }
5397 5397
5398 /* 5398 /*
5399 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 5399 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5400 * This needs to be done in a top-down fashion because the load of a child 5400 * This needs to be done in a top-down fashion because the load of a child
5401 * group is a fraction of its parents load. 5401 * group is a fraction of its parents load.
5402 */ 5402 */
5403 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 5403 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5404 { 5404 {
5405 struct rq *rq = rq_of(cfs_rq); 5405 struct rq *rq = rq_of(cfs_rq);
5406 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 5406 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5407 unsigned long now = jiffies; 5407 unsigned long now = jiffies;
5408 unsigned long load; 5408 unsigned long load;
5409 5409
5410 if (cfs_rq->last_h_load_update == now) 5410 if (cfs_rq->last_h_load_update == now)
5411 return; 5411 return;
5412 5412
5413 cfs_rq->h_load_next = NULL; 5413 cfs_rq->h_load_next = NULL;
5414 for_each_sched_entity(se) { 5414 for_each_sched_entity(se) {
5415 cfs_rq = cfs_rq_of(se); 5415 cfs_rq = cfs_rq_of(se);
5416 cfs_rq->h_load_next = se; 5416 cfs_rq->h_load_next = se;
5417 if (cfs_rq->last_h_load_update == now) 5417 if (cfs_rq->last_h_load_update == now)
5418 break; 5418 break;
5419 } 5419 }
5420 5420
5421 if (!se) { 5421 if (!se) {
5422 cfs_rq->h_load = cfs_rq->runnable_load_avg; 5422 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5423 cfs_rq->last_h_load_update = now; 5423 cfs_rq->last_h_load_update = now;
5424 } 5424 }
5425 5425
5426 while ((se = cfs_rq->h_load_next) != NULL) { 5426 while ((se = cfs_rq->h_load_next) != NULL) {
5427 load = cfs_rq->h_load; 5427 load = cfs_rq->h_load;
5428 load = div64_ul(load * se->avg.load_avg_contrib, 5428 load = div64_ul(load * se->avg.load_avg_contrib,
5429 cfs_rq->runnable_load_avg + 1); 5429 cfs_rq->runnable_load_avg + 1);
5430 cfs_rq = group_cfs_rq(se); 5430 cfs_rq = group_cfs_rq(se);
5431 cfs_rq->h_load = load; 5431 cfs_rq->h_load = load;
5432 cfs_rq->last_h_load_update = now; 5432 cfs_rq->last_h_load_update = now;
5433 } 5433 }
5434 } 5434 }
5435 5435
5436 static unsigned long task_h_load(struct task_struct *p) 5436 static unsigned long task_h_load(struct task_struct *p)
5437 { 5437 {
5438 struct cfs_rq *cfs_rq = task_cfs_rq(p); 5438 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5439 5439
5440 update_cfs_rq_h_load(cfs_rq); 5440 update_cfs_rq_h_load(cfs_rq);
5441 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load, 5441 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5442 cfs_rq->runnable_load_avg + 1); 5442 cfs_rq->runnable_load_avg + 1);
5443 } 5443 }
5444 #else 5444 #else
5445 static inline void update_blocked_averages(int cpu) 5445 static inline void update_blocked_averages(int cpu)
5446 { 5446 {
5447 } 5447 }
5448 5448
5449 static unsigned long task_h_load(struct task_struct *p) 5449 static unsigned long task_h_load(struct task_struct *p)
5450 { 5450 {
5451 return p->se.avg.load_avg_contrib; 5451 return p->se.avg.load_avg_contrib;
5452 } 5452 }
5453 #endif 5453 #endif
5454 5454
5455 /********** Helpers for find_busiest_group ************************/ 5455 /********** Helpers for find_busiest_group ************************/
5456 /* 5456 /*
5457 * sg_lb_stats - stats of a sched_group required for load_balancing 5457 * sg_lb_stats - stats of a sched_group required for load_balancing
5458 */ 5458 */
5459 struct sg_lb_stats { 5459 struct sg_lb_stats {
5460 unsigned long avg_load; /*Avg load across the CPUs of the group */ 5460 unsigned long avg_load; /*Avg load across the CPUs of the group */
5461 unsigned long group_load; /* Total load over the CPUs of the group */ 5461 unsigned long group_load; /* Total load over the CPUs of the group */
5462 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 5462 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5463 unsigned long load_per_task; 5463 unsigned long load_per_task;
5464 unsigned long group_power; 5464 unsigned long group_power;
5465 unsigned int sum_nr_running; /* Nr tasks running in the group */ 5465 unsigned int sum_nr_running; /* Nr tasks running in the group */
5466 unsigned int group_capacity; 5466 unsigned int group_capacity;
5467 unsigned int idle_cpus; 5467 unsigned int idle_cpus;
5468 unsigned int group_weight; 5468 unsigned int group_weight;
5469 int group_imb; /* Is there an imbalance in the group ? */ 5469 int group_imb; /* Is there an imbalance in the group ? */
5470 int group_has_capacity; /* Is there extra capacity in the group? */ 5470 int group_has_capacity; /* Is there extra capacity in the group? */
5471 #ifdef CONFIG_NUMA_BALANCING 5471 #ifdef CONFIG_NUMA_BALANCING
5472 unsigned int nr_numa_running; 5472 unsigned int nr_numa_running;
5473 unsigned int nr_preferred_running; 5473 unsigned int nr_preferred_running;
5474 #endif 5474 #endif
5475 }; 5475 };
5476 5476
5477 /* 5477 /*
5478 * sd_lb_stats - Structure to store the statistics of a sched_domain 5478 * sd_lb_stats - Structure to store the statistics of a sched_domain
5479 * during load balancing. 5479 * during load balancing.
5480 */ 5480 */
5481 struct sd_lb_stats { 5481 struct sd_lb_stats {
5482 struct sched_group *busiest; /* Busiest group in this sd */ 5482 struct sched_group *busiest; /* Busiest group in this sd */
5483 struct sched_group *local; /* Local group in this sd */ 5483 struct sched_group *local; /* Local group in this sd */
5484 unsigned long total_load; /* Total load of all groups in sd */ 5484 unsigned long total_load; /* Total load of all groups in sd */
5485 unsigned long total_pwr; /* Total power of all groups in sd */ 5485 unsigned long total_pwr; /* Total power of all groups in sd */
5486 unsigned long avg_load; /* Average load across all groups in sd */ 5486 unsigned long avg_load; /* Average load across all groups in sd */
5487 5487
5488 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 5488 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5489 struct sg_lb_stats local_stat; /* Statistics of the local group */ 5489 struct sg_lb_stats local_stat; /* Statistics of the local group */
5490 }; 5490 };
5491 5491
5492 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 5492 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5493 { 5493 {
5494 /* 5494 /*
5495 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 5495 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5496 * local_stat because update_sg_lb_stats() does a full clear/assignment. 5496 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5497 * We must however clear busiest_stat::avg_load because 5497 * We must however clear busiest_stat::avg_load because
5498 * update_sd_pick_busiest() reads this before assignment. 5498 * update_sd_pick_busiest() reads this before assignment.
5499 */ 5499 */
5500 *sds = (struct sd_lb_stats){ 5500 *sds = (struct sd_lb_stats){
5501 .busiest = NULL, 5501 .busiest = NULL,
5502 .local = NULL, 5502 .local = NULL,
5503 .total_load = 0UL, 5503 .total_load = 0UL,
5504 .total_pwr = 0UL, 5504 .total_pwr = 0UL,
5505 .busiest_stat = { 5505 .busiest_stat = {
5506 .avg_load = 0UL, 5506 .avg_load = 0UL,
5507 }, 5507 },
5508 }; 5508 };
5509 } 5509 }
5510 5510
5511 /** 5511 /**
5512 * get_sd_load_idx - Obtain the load index for a given sched domain. 5512 * get_sd_load_idx - Obtain the load index for a given sched domain.
5513 * @sd: The sched_domain whose load_idx is to be obtained. 5513 * @sd: The sched_domain whose load_idx is to be obtained.
5514 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 5514 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5515 * 5515 *
5516 * Return: The load index. 5516 * Return: The load index.
5517 */ 5517 */
5518 static inline int get_sd_load_idx(struct sched_domain *sd, 5518 static inline int get_sd_load_idx(struct sched_domain *sd,
5519 enum cpu_idle_type idle) 5519 enum cpu_idle_type idle)
5520 { 5520 {
5521 int load_idx; 5521 int load_idx;
5522 5522
5523 switch (idle) { 5523 switch (idle) {
5524 case CPU_NOT_IDLE: 5524 case CPU_NOT_IDLE:
5525 load_idx = sd->busy_idx; 5525 load_idx = sd->busy_idx;
5526 break; 5526 break;
5527 5527
5528 case CPU_NEWLY_IDLE: 5528 case CPU_NEWLY_IDLE:
5529 load_idx = sd->newidle_idx; 5529 load_idx = sd->newidle_idx;
5530 break; 5530 break;
5531 default: 5531 default:
5532 load_idx = sd->idle_idx; 5532 load_idx = sd->idle_idx;
5533 break; 5533 break;
5534 } 5534 }
5535 5535
5536 return load_idx; 5536 return load_idx;
5537 } 5537 }
5538 5538
5539 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) 5539 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5540 { 5540 {
5541 return SCHED_POWER_SCALE; 5541 return SCHED_POWER_SCALE;
5542 } 5542 }
5543 5543
5544 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) 5544 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5545 { 5545 {
5546 return default_scale_freq_power(sd, cpu); 5546 return default_scale_freq_power(sd, cpu);
5547 } 5547 }
5548 5548
5549 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) 5549 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5550 { 5550 {
5551 unsigned long weight = sd->span_weight; 5551 unsigned long weight = sd->span_weight;
5552 unsigned long smt_gain = sd->smt_gain; 5552 unsigned long smt_gain = sd->smt_gain;
5553 5553
5554 smt_gain /= weight; 5554 smt_gain /= weight;
5555 5555
5556 return smt_gain; 5556 return smt_gain;
5557 } 5557 }
5558 5558
5559 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) 5559 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5560 { 5560 {
5561 return default_scale_smt_power(sd, cpu); 5561 return default_scale_smt_power(sd, cpu);
5562 } 5562 }
5563 5563
5564 static unsigned long scale_rt_power(int cpu) 5564 static unsigned long scale_rt_power(int cpu)
5565 { 5565 {
5566 struct rq *rq = cpu_rq(cpu); 5566 struct rq *rq = cpu_rq(cpu);
5567 u64 total, available, age_stamp, avg; 5567 u64 total, available, age_stamp, avg;
5568 5568
5569 /* 5569 /*
5570 * Since we're reading these variables without serialization make sure 5570 * Since we're reading these variables without serialization make sure
5571 * we read them once before doing sanity checks on them. 5571 * we read them once before doing sanity checks on them.
5572 */ 5572 */
5573 age_stamp = ACCESS_ONCE(rq->age_stamp); 5573 age_stamp = ACCESS_ONCE(rq->age_stamp);
5574 avg = ACCESS_ONCE(rq->rt_avg); 5574 avg = ACCESS_ONCE(rq->rt_avg);
5575 5575
5576 total = sched_avg_period() + (rq_clock(rq) - age_stamp); 5576 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5577 5577
5578 if (unlikely(total < avg)) { 5578 if (unlikely(total < avg)) {
5579 /* Ensures that power won't end up being negative */ 5579 /* Ensures that power won't end up being negative */
5580 available = 0; 5580 available = 0;
5581 } else { 5581 } else {
5582 available = total - avg; 5582 available = total - avg;
5583 } 5583 }
5584 5584
5585 if (unlikely((s64)total < SCHED_POWER_SCALE)) 5585 if (unlikely((s64)total < SCHED_POWER_SCALE))
5586 total = SCHED_POWER_SCALE; 5586 total = SCHED_POWER_SCALE;
5587 5587
5588 total >>= SCHED_POWER_SHIFT; 5588 total >>= SCHED_POWER_SHIFT;
5589 5589
5590 return div_u64(available, total); 5590 return div_u64(available, total);
5591 } 5591 }
5592 5592
5593 static void update_cpu_power(struct sched_domain *sd, int cpu) 5593 static void update_cpu_power(struct sched_domain *sd, int cpu)
5594 { 5594 {
5595 unsigned long weight = sd->span_weight; 5595 unsigned long weight = sd->span_weight;
5596 unsigned long power = SCHED_POWER_SCALE; 5596 unsigned long power = SCHED_POWER_SCALE;
5597 struct sched_group *sdg = sd->groups; 5597 struct sched_group *sdg = sd->groups;
5598 5598
5599 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { 5599 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5600 if (sched_feat(ARCH_POWER)) 5600 if (sched_feat(ARCH_POWER))
5601 power *= arch_scale_smt_power(sd, cpu); 5601 power *= arch_scale_smt_power(sd, cpu);
5602 else 5602 else
5603 power *= default_scale_smt_power(sd, cpu); 5603 power *= default_scale_smt_power(sd, cpu);
5604 5604
5605 power >>= SCHED_POWER_SHIFT; 5605 power >>= SCHED_POWER_SHIFT;
5606 } 5606 }
5607 5607
5608 sdg->sgp->power_orig = power; 5608 sdg->sgp->power_orig = power;
5609 5609
5610 if (sched_feat(ARCH_POWER)) 5610 if (sched_feat(ARCH_POWER))
5611 power *= arch_scale_freq_power(sd, cpu); 5611 power *= arch_scale_freq_power(sd, cpu);
5612 else 5612 else
5613 power *= default_scale_freq_power(sd, cpu); 5613 power *= default_scale_freq_power(sd, cpu);
5614 5614
5615 power >>= SCHED_POWER_SHIFT; 5615 power >>= SCHED_POWER_SHIFT;
5616 5616
5617 power *= scale_rt_power(cpu); 5617 power *= scale_rt_power(cpu);
5618 power >>= SCHED_POWER_SHIFT; 5618 power >>= SCHED_POWER_SHIFT;
5619 5619
5620 if (!power) 5620 if (!power)
5621 power = 1; 5621 power = 1;
5622 5622
5623 cpu_rq(cpu)->cpu_power = power; 5623 cpu_rq(cpu)->cpu_power = power;
5624 sdg->sgp->power = power; 5624 sdg->sgp->power = power;
5625 } 5625 }
5626 5626
5627 void update_group_power(struct sched_domain *sd, int cpu) 5627 void update_group_power(struct sched_domain *sd, int cpu)
5628 { 5628 {
5629 struct sched_domain *child = sd->child; 5629 struct sched_domain *child = sd->child;
5630 struct sched_group *group, *sdg = sd->groups; 5630 struct sched_group *group, *sdg = sd->groups;
5631 unsigned long power, power_orig; 5631 unsigned long power, power_orig;
5632 unsigned long interval; 5632 unsigned long interval;
5633 5633
5634 interval = msecs_to_jiffies(sd->balance_interval); 5634 interval = msecs_to_jiffies(sd->balance_interval);
5635 interval = clamp(interval, 1UL, max_load_balance_interval); 5635 interval = clamp(interval, 1UL, max_load_balance_interval);
5636 sdg->sgp->next_update = jiffies + interval; 5636 sdg->sgp->next_update = jiffies + interval;
5637 5637
5638 if (!child) { 5638 if (!child) {
5639 update_cpu_power(sd, cpu); 5639 update_cpu_power(sd, cpu);
5640 return; 5640 return;
5641 } 5641 }
5642 5642
5643 power_orig = power = 0; 5643 power_orig = power = 0;
5644 5644
5645 if (child->flags & SD_OVERLAP) { 5645 if (child->flags & SD_OVERLAP) {
5646 /* 5646 /*
5647 * SD_OVERLAP domains cannot assume that child groups 5647 * SD_OVERLAP domains cannot assume that child groups
5648 * span the current group. 5648 * span the current group.
5649 */ 5649 */
5650 5650
5651 for_each_cpu(cpu, sched_group_cpus(sdg)) { 5651 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5652 struct sched_group_power *sgp; 5652 struct sched_group_power *sgp;
5653 struct rq *rq = cpu_rq(cpu); 5653 struct rq *rq = cpu_rq(cpu);
5654 5654
5655 /* 5655 /*
5656 * build_sched_domains() -> init_sched_groups_power() 5656 * build_sched_domains() -> init_sched_groups_power()
5657 * gets here before we've attached the domains to the 5657 * gets here before we've attached the domains to the
5658 * runqueues. 5658 * runqueues.
5659 * 5659 *
5660 * Use power_of(), which is set irrespective of domains 5660 * Use power_of(), which is set irrespective of domains
5661 * in update_cpu_power(). 5661 * in update_cpu_power().
5662 * 5662 *
5663 * This avoids power/power_orig from being 0 and 5663 * This avoids power/power_orig from being 0 and
5664 * causing divide-by-zero issues on boot. 5664 * causing divide-by-zero issues on boot.
5665 * 5665 *
5666 * Runtime updates will correct power_orig. 5666 * Runtime updates will correct power_orig.
5667 */ 5667 */
5668 if (unlikely(!rq->sd)) { 5668 if (unlikely(!rq->sd)) {
5669 power_orig += power_of(cpu); 5669 power_orig += power_of(cpu);
5670 power += power_of(cpu); 5670 power += power_of(cpu);
5671 continue; 5671 continue;
5672 } 5672 }
5673 5673
5674 sgp = rq->sd->groups->sgp; 5674 sgp = rq->sd->groups->sgp;
5675 power_orig += sgp->power_orig; 5675 power_orig += sgp->power_orig;
5676 power += sgp->power; 5676 power += sgp->power;
5677 } 5677 }
5678 } else { 5678 } else {
5679 /* 5679 /*
5680 * !SD_OVERLAP domains can assume that child groups 5680 * !SD_OVERLAP domains can assume that child groups
5681 * span the current group. 5681 * span the current group.
5682 */ 5682 */
5683 5683
5684 group = child->groups; 5684 group = child->groups;
5685 do { 5685 do {
5686 power_orig += group->sgp->power_orig; 5686 power_orig += group->sgp->power_orig;
5687 power += group->sgp->power; 5687 power += group->sgp->power;
5688 group = group->next; 5688 group = group->next;
5689 } while (group != child->groups); 5689 } while (group != child->groups);
5690 } 5690 }
5691 5691
5692 sdg->sgp->power_orig = power_orig; 5692 sdg->sgp->power_orig = power_orig;
5693 sdg->sgp->power = power; 5693 sdg->sgp->power = power;
5694 } 5694 }
5695 5695
5696 /* 5696 /*
5697 * Try and fix up capacity for tiny siblings, this is needed when 5697 * Try and fix up capacity for tiny siblings, this is needed when
5698 * things like SD_ASYM_PACKING need f_b_g to select another sibling 5698 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5699 * which on its own isn't powerful enough. 5699 * which on its own isn't powerful enough.
5700 * 5700 *
5701 * See update_sd_pick_busiest() and check_asym_packing(). 5701 * See update_sd_pick_busiest() and check_asym_packing().
5702 */ 5702 */
5703 static inline int 5703 static inline int
5704 fix_small_capacity(struct sched_domain *sd, struct sched_group *group) 5704 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5705 { 5705 {
5706 /* 5706 /*
5707 * Only siblings can have significantly less than SCHED_POWER_SCALE 5707 * Only siblings can have significantly less than SCHED_POWER_SCALE
5708 */ 5708 */
5709 if (!(sd->flags & SD_SHARE_CPUPOWER)) 5709 if (!(sd->flags & SD_SHARE_CPUPOWER))
5710 return 0; 5710 return 0;
5711 5711
5712 /* 5712 /*
5713 * If ~90% of the cpu_power is still there, we're good. 5713 * If ~90% of the cpu_power is still there, we're good.
5714 */ 5714 */
5715 if (group->sgp->power * 32 > group->sgp->power_orig * 29) 5715 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5716 return 1; 5716 return 1;
5717 5717
5718 return 0; 5718 return 0;
5719 } 5719 }
5720 5720
5721 /* 5721 /*
5722 * Group imbalance indicates (and tries to solve) the problem where balancing 5722 * Group imbalance indicates (and tries to solve) the problem where balancing
5723 * groups is inadequate due to tsk_cpus_allowed() constraints. 5723 * groups is inadequate due to tsk_cpus_allowed() constraints.
5724 * 5724 *
5725 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 5725 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5726 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 5726 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5727 * Something like: 5727 * Something like:
5728 * 5728 *
5729 * { 0 1 2 3 } { 4 5 6 7 } 5729 * { 0 1 2 3 } { 4 5 6 7 }
5730 * * * * * 5730 * * * * *
5731 * 5731 *
5732 * If we were to balance group-wise we'd place two tasks in the first group and 5732 * If we were to balance group-wise we'd place two tasks in the first group and
5733 * two tasks in the second group. Clearly this is undesired as it will overload 5733 * two tasks in the second group. Clearly this is undesired as it will overload
5734 * cpu 3 and leave one of the cpus in the second group unused. 5734 * cpu 3 and leave one of the cpus in the second group unused.
5735 * 5735 *
5736 * The current solution to this issue is detecting the skew in the first group 5736 * The current solution to this issue is detecting the skew in the first group
5737 * by noticing the lower domain failed to reach balance and had difficulty 5737 * by noticing the lower domain failed to reach balance and had difficulty
5738 * moving tasks due to affinity constraints. 5738 * moving tasks due to affinity constraints.
5739 * 5739 *
5740 * When this is so detected; this group becomes a candidate for busiest; see 5740 * When this is so detected; this group becomes a candidate for busiest; see
5741 * update_sd_pick_busiest(). And calculate_imbalance() and 5741 * update_sd_pick_busiest(). And calculate_imbalance() and
5742 * find_busiest_group() avoid some of the usual balance conditions to allow it 5742 * find_busiest_group() avoid some of the usual balance conditions to allow it
5743 * to create an effective group imbalance. 5743 * to create an effective group imbalance.
5744 * 5744 *
5745 * This is a somewhat tricky proposition since the next run might not find the 5745 * This is a somewhat tricky proposition since the next run might not find the
5746 * group imbalance and decide the groups need to be balanced again. A most 5746 * group imbalance and decide the groups need to be balanced again. A most
5747 * subtle and fragile situation. 5747 * subtle and fragile situation.
5748 */ 5748 */
5749 5749
5750 static inline int sg_imbalanced(struct sched_group *group) 5750 static inline int sg_imbalanced(struct sched_group *group)
5751 { 5751 {
5752 return group->sgp->imbalance; 5752 return group->sgp->imbalance;
5753 } 5753 }
5754 5754
5755 /* 5755 /*
5756 * Compute the group capacity. 5756 * Compute the group capacity.
5757 * 5757 *
5758 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by 5758 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5759 * first dividing out the smt factor and computing the actual number of cores 5759 * first dividing out the smt factor and computing the actual number of cores
5760 * and limit power unit capacity with that. 5760 * and limit power unit capacity with that.
5761 */ 5761 */
5762 static inline int sg_capacity(struct lb_env *env, struct sched_group *group) 5762 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5763 { 5763 {
5764 unsigned int capacity, smt, cpus; 5764 unsigned int capacity, smt, cpus;
5765 unsigned int power, power_orig; 5765 unsigned int power, power_orig;
5766 5766
5767 power = group->sgp->power; 5767 power = group->sgp->power;
5768 power_orig = group->sgp->power_orig; 5768 power_orig = group->sgp->power_orig;
5769 cpus = group->group_weight; 5769 cpus = group->group_weight;
5770 5770
5771 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */ 5771 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5772 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig); 5772 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5773 capacity = cpus / smt; /* cores */ 5773 capacity = cpus / smt; /* cores */
5774 5774
5775 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE)); 5775 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5776 if (!capacity) 5776 if (!capacity)
5777 capacity = fix_small_capacity(env->sd, group); 5777 capacity = fix_small_capacity(env->sd, group);
5778 5778
5779 return capacity; 5779 return capacity;
5780 } 5780 }
5781 5781
5782 /** 5782 /**
5783 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 5783 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5784 * @env: The load balancing environment. 5784 * @env: The load balancing environment.
5785 * @group: sched_group whose statistics are to be updated. 5785 * @group: sched_group whose statistics are to be updated.
5786 * @load_idx: Load index of sched_domain of this_cpu for load calc. 5786 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5787 * @local_group: Does group contain this_cpu. 5787 * @local_group: Does group contain this_cpu.
5788 * @sgs: variable to hold the statistics for this group. 5788 * @sgs: variable to hold the statistics for this group.
5789 */ 5789 */
5790 static inline void update_sg_lb_stats(struct lb_env *env, 5790 static inline void update_sg_lb_stats(struct lb_env *env,
5791 struct sched_group *group, int load_idx, 5791 struct sched_group *group, int load_idx,
5792 int local_group, struct sg_lb_stats *sgs) 5792 int local_group, struct sg_lb_stats *sgs)
5793 { 5793 {
5794 unsigned long load; 5794 unsigned long load;
5795 int i; 5795 int i;
5796 5796
5797 memset(sgs, 0, sizeof(*sgs)); 5797 memset(sgs, 0, sizeof(*sgs));
5798 5798
5799 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 5799 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5800 struct rq *rq = cpu_rq(i); 5800 struct rq *rq = cpu_rq(i);
5801 5801
5802 /* Bias balancing toward cpus of our domain */ 5802 /* Bias balancing toward cpus of our domain */
5803 if (local_group) 5803 if (local_group)
5804 load = target_load(i, load_idx); 5804 load = target_load(i, load_idx);
5805 else 5805 else
5806 load = source_load(i, load_idx); 5806 load = source_load(i, load_idx);
5807 5807
5808 sgs->group_load += load; 5808 sgs->group_load += load;
5809 sgs->sum_nr_running += rq->nr_running; 5809 sgs->sum_nr_running += rq->nr_running;
5810 #ifdef CONFIG_NUMA_BALANCING 5810 #ifdef CONFIG_NUMA_BALANCING
5811 sgs->nr_numa_running += rq->nr_numa_running; 5811 sgs->nr_numa_running += rq->nr_numa_running;
5812 sgs->nr_preferred_running += rq->nr_preferred_running; 5812 sgs->nr_preferred_running += rq->nr_preferred_running;
5813 #endif 5813 #endif
5814 sgs->sum_weighted_load += weighted_cpuload(i); 5814 sgs->sum_weighted_load += weighted_cpuload(i);
5815 if (idle_cpu(i)) 5815 if (idle_cpu(i))
5816 sgs->idle_cpus++; 5816 sgs->idle_cpus++;
5817 } 5817 }
5818 5818
5819 /* Adjust by relative CPU power of the group */ 5819 /* Adjust by relative CPU power of the group */
5820 sgs->group_power = group->sgp->power; 5820 sgs->group_power = group->sgp->power;
5821 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power; 5821 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5822 5822
5823 if (sgs->sum_nr_running) 5823 if (sgs->sum_nr_running)
5824 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 5824 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5825 5825
5826 sgs->group_weight = group->group_weight; 5826 sgs->group_weight = group->group_weight;
5827 5827
5828 sgs->group_imb = sg_imbalanced(group); 5828 sgs->group_imb = sg_imbalanced(group);
5829 sgs->group_capacity = sg_capacity(env, group); 5829 sgs->group_capacity = sg_capacity(env, group);
5830 5830
5831 if (sgs->group_capacity > sgs->sum_nr_running) 5831 if (sgs->group_capacity > sgs->sum_nr_running)
5832 sgs->group_has_capacity = 1; 5832 sgs->group_has_capacity = 1;
5833 } 5833 }
5834 5834
5835 /** 5835 /**
5836 * update_sd_pick_busiest - return 1 on busiest group 5836 * update_sd_pick_busiest - return 1 on busiest group
5837 * @env: The load balancing environment. 5837 * @env: The load balancing environment.
5838 * @sds: sched_domain statistics 5838 * @sds: sched_domain statistics
5839 * @sg: sched_group candidate to be checked for being the busiest 5839 * @sg: sched_group candidate to be checked for being the busiest
5840 * @sgs: sched_group statistics 5840 * @sgs: sched_group statistics
5841 * 5841 *
5842 * Determine if @sg is a busier group than the previously selected 5842 * Determine if @sg is a busier group than the previously selected
5843 * busiest group. 5843 * busiest group.
5844 * 5844 *
5845 * Return: %true if @sg is a busier group than the previously selected 5845 * Return: %true if @sg is a busier group than the previously selected
5846 * busiest group. %false otherwise. 5846 * busiest group. %false otherwise.
5847 */ 5847 */
5848 static bool update_sd_pick_busiest(struct lb_env *env, 5848 static bool update_sd_pick_busiest(struct lb_env *env,
5849 struct sd_lb_stats *sds, 5849 struct sd_lb_stats *sds,
5850 struct sched_group *sg, 5850 struct sched_group *sg,
5851 struct sg_lb_stats *sgs) 5851 struct sg_lb_stats *sgs)
5852 { 5852 {
5853 if (sgs->avg_load <= sds->busiest_stat.avg_load) 5853 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5854 return false; 5854 return false;
5855 5855
5856 if (sgs->sum_nr_running > sgs->group_capacity) 5856 if (sgs->sum_nr_running > sgs->group_capacity)
5857 return true; 5857 return true;
5858 5858
5859 if (sgs->group_imb) 5859 if (sgs->group_imb)
5860 return true; 5860 return true;
5861 5861
5862 /* 5862 /*
5863 * ASYM_PACKING needs to move all the work to the lowest 5863 * ASYM_PACKING needs to move all the work to the lowest
5864 * numbered CPUs in the group, therefore mark all groups 5864 * numbered CPUs in the group, therefore mark all groups
5865 * higher than ourself as busy. 5865 * higher than ourself as busy.
5866 */ 5866 */
5867 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && 5867 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5868 env->dst_cpu < group_first_cpu(sg)) { 5868 env->dst_cpu < group_first_cpu(sg)) {
5869 if (!sds->busiest) 5869 if (!sds->busiest)
5870 return true; 5870 return true;
5871 5871
5872 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 5872 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5873 return true; 5873 return true;
5874 } 5874 }
5875 5875
5876 return false; 5876 return false;
5877 } 5877 }
5878 5878
5879 #ifdef CONFIG_NUMA_BALANCING 5879 #ifdef CONFIG_NUMA_BALANCING
5880 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 5880 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5881 { 5881 {
5882 if (sgs->sum_nr_running > sgs->nr_numa_running) 5882 if (sgs->sum_nr_running > sgs->nr_numa_running)
5883 return regular; 5883 return regular;
5884 if (sgs->sum_nr_running > sgs->nr_preferred_running) 5884 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5885 return remote; 5885 return remote;
5886 return all; 5886 return all;
5887 } 5887 }
5888 5888
5889 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 5889 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5890 { 5890 {
5891 if (rq->nr_running > rq->nr_numa_running) 5891 if (rq->nr_running > rq->nr_numa_running)
5892 return regular; 5892 return regular;
5893 if (rq->nr_running > rq->nr_preferred_running) 5893 if (rq->nr_running > rq->nr_preferred_running)
5894 return remote; 5894 return remote;
5895 return all; 5895 return all;
5896 } 5896 }
5897 #else 5897 #else
5898 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 5898 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5899 { 5899 {
5900 return all; 5900 return all;
5901 } 5901 }
5902 5902
5903 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 5903 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5904 { 5904 {
5905 return regular; 5905 return regular;
5906 } 5906 }
5907 #endif /* CONFIG_NUMA_BALANCING */ 5907 #endif /* CONFIG_NUMA_BALANCING */
5908 5908
5909 /** 5909 /**
5910 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 5910 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5911 * @env: The load balancing environment. 5911 * @env: The load balancing environment.
5912 * @sds: variable to hold the statistics for this sched_domain. 5912 * @sds: variable to hold the statistics for this sched_domain.
5913 */ 5913 */
5914 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 5914 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5915 { 5915 {
5916 struct sched_domain *child = env->sd->child; 5916 struct sched_domain *child = env->sd->child;
5917 struct sched_group *sg = env->sd->groups; 5917 struct sched_group *sg = env->sd->groups;
5918 struct sg_lb_stats tmp_sgs; 5918 struct sg_lb_stats tmp_sgs;
5919 int load_idx, prefer_sibling = 0; 5919 int load_idx, prefer_sibling = 0;
5920 5920
5921 if (child && child->flags & SD_PREFER_SIBLING) 5921 if (child && child->flags & SD_PREFER_SIBLING)
5922 prefer_sibling = 1; 5922 prefer_sibling = 1;
5923 5923
5924 load_idx = get_sd_load_idx(env->sd, env->idle); 5924 load_idx = get_sd_load_idx(env->sd, env->idle);
5925 5925
5926 do { 5926 do {
5927 struct sg_lb_stats *sgs = &tmp_sgs; 5927 struct sg_lb_stats *sgs = &tmp_sgs;
5928 int local_group; 5928 int local_group;
5929 5929
5930 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 5930 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5931 if (local_group) { 5931 if (local_group) {
5932 sds->local = sg; 5932 sds->local = sg;
5933 sgs = &sds->local_stat; 5933 sgs = &sds->local_stat;
5934 5934
5935 if (env->idle != CPU_NEWLY_IDLE || 5935 if (env->idle != CPU_NEWLY_IDLE ||
5936 time_after_eq(jiffies, sg->sgp->next_update)) 5936 time_after_eq(jiffies, sg->sgp->next_update))
5937 update_group_power(env->sd, env->dst_cpu); 5937 update_group_power(env->sd, env->dst_cpu);
5938 } 5938 }
5939 5939
5940 update_sg_lb_stats(env, sg, load_idx, local_group, sgs); 5940 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5941 5941
5942 if (local_group) 5942 if (local_group)
5943 goto next_group; 5943 goto next_group;
5944 5944
5945 /* 5945 /*
5946 * In case the child domain prefers tasks go to siblings 5946 * In case the child domain prefers tasks go to siblings
5947 * first, lower the sg capacity to one so that we'll try 5947 * first, lower the sg capacity to one so that we'll try
5948 * and move all the excess tasks away. We lower the capacity 5948 * and move all the excess tasks away. We lower the capacity
5949 * of a group only if the local group has the capacity to fit 5949 * of a group only if the local group has the capacity to fit
5950 * these excess tasks, i.e. nr_running < group_capacity. The 5950 * these excess tasks, i.e. nr_running < group_capacity. The
5951 * extra check prevents the case where you always pull from the 5951 * extra check prevents the case where you always pull from the
5952 * heaviest group when it is already under-utilized (possible 5952 * heaviest group when it is already under-utilized (possible
5953 * with a large weight task outweighs the tasks on the system). 5953 * with a large weight task outweighs the tasks on the system).
5954 */ 5954 */
5955 if (prefer_sibling && sds->local && 5955 if (prefer_sibling && sds->local &&
5956 sds->local_stat.group_has_capacity) 5956 sds->local_stat.group_has_capacity)
5957 sgs->group_capacity = min(sgs->group_capacity, 1U); 5957 sgs->group_capacity = min(sgs->group_capacity, 1U);
5958 5958
5959 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 5959 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5960 sds->busiest = sg; 5960 sds->busiest = sg;
5961 sds->busiest_stat = *sgs; 5961 sds->busiest_stat = *sgs;
5962 } 5962 }
5963 5963
5964 next_group: 5964 next_group:
5965 /* Now, start updating sd_lb_stats */ 5965 /* Now, start updating sd_lb_stats */
5966 sds->total_load += sgs->group_load; 5966 sds->total_load += sgs->group_load;
5967 sds->total_pwr += sgs->group_power; 5967 sds->total_pwr += sgs->group_power;
5968 5968
5969 sg = sg->next; 5969 sg = sg->next;
5970 } while (sg != env->sd->groups); 5970 } while (sg != env->sd->groups);
5971 5971
5972 if (env->sd->flags & SD_NUMA) 5972 if (env->sd->flags & SD_NUMA)
5973 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 5973 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5974 } 5974 }
5975 5975
5976 /** 5976 /**
5977 * check_asym_packing - Check to see if the group is packed into the 5977 * check_asym_packing - Check to see if the group is packed into the
5978 * sched doman. 5978 * sched doman.
5979 * 5979 *
5980 * This is primarily intended to used at the sibling level. Some 5980 * This is primarily intended to used at the sibling level. Some
5981 * cores like POWER7 prefer to use lower numbered SMT threads. In the 5981 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5982 * case of POWER7, it can move to lower SMT modes only when higher 5982 * case of POWER7, it can move to lower SMT modes only when higher
5983 * threads are idle. When in lower SMT modes, the threads will 5983 * threads are idle. When in lower SMT modes, the threads will
5984 * perform better since they share less core resources. Hence when we 5984 * perform better since they share less core resources. Hence when we
5985 * have idle threads, we want them to be the higher ones. 5985 * have idle threads, we want them to be the higher ones.
5986 * 5986 *
5987 * This packing function is run on idle threads. It checks to see if 5987 * This packing function is run on idle threads. It checks to see if
5988 * the busiest CPU in this domain (core in the P7 case) has a higher 5988 * the busiest CPU in this domain (core in the P7 case) has a higher
5989 * CPU number than the packing function is being run on. Here we are 5989 * CPU number than the packing function is being run on. Here we are
5990 * assuming lower CPU number will be equivalent to lower a SMT thread 5990 * assuming lower CPU number will be equivalent to lower a SMT thread
5991 * number. 5991 * number.
5992 * 5992 *
5993 * Return: 1 when packing is required and a task should be moved to 5993 * Return: 1 when packing is required and a task should be moved to
5994 * this CPU. The amount of the imbalance is returned in *imbalance. 5994 * this CPU. The amount of the imbalance is returned in *imbalance.
5995 * 5995 *
5996 * @env: The load balancing environment. 5996 * @env: The load balancing environment.
5997 * @sds: Statistics of the sched_domain which is to be packed 5997 * @sds: Statistics of the sched_domain which is to be packed
5998 */ 5998 */
5999 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 5999 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6000 { 6000 {
6001 int busiest_cpu; 6001 int busiest_cpu;
6002 6002
6003 if (!(env->sd->flags & SD_ASYM_PACKING)) 6003 if (!(env->sd->flags & SD_ASYM_PACKING))
6004 return 0; 6004 return 0;
6005 6005
6006 if (!sds->busiest) 6006 if (!sds->busiest)
6007 return 0; 6007 return 0;
6008 6008
6009 busiest_cpu = group_first_cpu(sds->busiest); 6009 busiest_cpu = group_first_cpu(sds->busiest);
6010 if (env->dst_cpu > busiest_cpu) 6010 if (env->dst_cpu > busiest_cpu)
6011 return 0; 6011 return 0;
6012 6012
6013 env->imbalance = DIV_ROUND_CLOSEST( 6013 env->imbalance = DIV_ROUND_CLOSEST(
6014 sds->busiest_stat.avg_load * sds->busiest_stat.group_power, 6014 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6015 SCHED_POWER_SCALE); 6015 SCHED_POWER_SCALE);
6016 6016
6017 return 1; 6017 return 1;
6018 } 6018 }
6019 6019
6020 /** 6020 /**
6021 * fix_small_imbalance - Calculate the minor imbalance that exists 6021 * fix_small_imbalance - Calculate the minor imbalance that exists
6022 * amongst the groups of a sched_domain, during 6022 * amongst the groups of a sched_domain, during
6023 * load balancing. 6023 * load balancing.
6024 * @env: The load balancing environment. 6024 * @env: The load balancing environment.
6025 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 6025 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6026 */ 6026 */
6027 static inline 6027 static inline
6028 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6028 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6029 { 6029 {
6030 unsigned long tmp, pwr_now = 0, pwr_move = 0; 6030 unsigned long tmp, pwr_now = 0, pwr_move = 0;
6031 unsigned int imbn = 2; 6031 unsigned int imbn = 2;
6032 unsigned long scaled_busy_load_per_task; 6032 unsigned long scaled_busy_load_per_task;
6033 struct sg_lb_stats *local, *busiest; 6033 struct sg_lb_stats *local, *busiest;
6034 6034
6035 local = &sds->local_stat; 6035 local = &sds->local_stat;
6036 busiest = &sds->busiest_stat; 6036 busiest = &sds->busiest_stat;
6037 6037
6038 if (!local->sum_nr_running) 6038 if (!local->sum_nr_running)
6039 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 6039 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6040 else if (busiest->load_per_task > local->load_per_task) 6040 else if (busiest->load_per_task > local->load_per_task)
6041 imbn = 1; 6041 imbn = 1;
6042 6042
6043 scaled_busy_load_per_task = 6043 scaled_busy_load_per_task =
6044 (busiest->load_per_task * SCHED_POWER_SCALE) / 6044 (busiest->load_per_task * SCHED_POWER_SCALE) /
6045 busiest->group_power; 6045 busiest->group_power;
6046 6046
6047 if (busiest->avg_load + scaled_busy_load_per_task >= 6047 if (busiest->avg_load + scaled_busy_load_per_task >=
6048 local->avg_load + (scaled_busy_load_per_task * imbn)) { 6048 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6049 env->imbalance = busiest->load_per_task; 6049 env->imbalance = busiest->load_per_task;
6050 return; 6050 return;
6051 } 6051 }
6052 6052
6053 /* 6053 /*
6054 * OK, we don't have enough imbalance to justify moving tasks, 6054 * OK, we don't have enough imbalance to justify moving tasks,
6055 * however we may be able to increase total CPU power used by 6055 * however we may be able to increase total CPU power used by
6056 * moving them. 6056 * moving them.
6057 */ 6057 */
6058 6058
6059 pwr_now += busiest->group_power * 6059 pwr_now += busiest->group_power *
6060 min(busiest->load_per_task, busiest->avg_load); 6060 min(busiest->load_per_task, busiest->avg_load);
6061 pwr_now += local->group_power * 6061 pwr_now += local->group_power *
6062 min(local->load_per_task, local->avg_load); 6062 min(local->load_per_task, local->avg_load);
6063 pwr_now /= SCHED_POWER_SCALE; 6063 pwr_now /= SCHED_POWER_SCALE;
6064 6064
6065 /* Amount of load we'd subtract */ 6065 /* Amount of load we'd subtract */
6066 if (busiest->avg_load > scaled_busy_load_per_task) { 6066 if (busiest->avg_load > scaled_busy_load_per_task) {
6067 pwr_move += busiest->group_power * 6067 pwr_move += busiest->group_power *
6068 min(busiest->load_per_task, 6068 min(busiest->load_per_task,
6069 busiest->avg_load - scaled_busy_load_per_task); 6069 busiest->avg_load - scaled_busy_load_per_task);
6070 } 6070 }
6071 6071
6072 /* Amount of load we'd add */ 6072 /* Amount of load we'd add */
6073 if (busiest->avg_load * busiest->group_power < 6073 if (busiest->avg_load * busiest->group_power <
6074 busiest->load_per_task * SCHED_POWER_SCALE) { 6074 busiest->load_per_task * SCHED_POWER_SCALE) {
6075 tmp = (busiest->avg_load * busiest->group_power) / 6075 tmp = (busiest->avg_load * busiest->group_power) /
6076 local->group_power; 6076 local->group_power;
6077 } else { 6077 } else {
6078 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) / 6078 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
6079 local->group_power; 6079 local->group_power;
6080 } 6080 }
6081 pwr_move += local->group_power * 6081 pwr_move += local->group_power *
6082 min(local->load_per_task, local->avg_load + tmp); 6082 min(local->load_per_task, local->avg_load + tmp);
6083 pwr_move /= SCHED_POWER_SCALE; 6083 pwr_move /= SCHED_POWER_SCALE;
6084 6084
6085 /* Move if we gain throughput */ 6085 /* Move if we gain throughput */
6086 if (pwr_move > pwr_now) 6086 if (pwr_move > pwr_now)
6087 env->imbalance = busiest->load_per_task; 6087 env->imbalance = busiest->load_per_task;
6088 } 6088 }
6089 6089
6090 /** 6090 /**
6091 * calculate_imbalance - Calculate the amount of imbalance present within the 6091 * calculate_imbalance - Calculate the amount of imbalance present within the
6092 * groups of a given sched_domain during load balance. 6092 * groups of a given sched_domain during load balance.
6093 * @env: load balance environment 6093 * @env: load balance environment
6094 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 6094 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6095 */ 6095 */
6096 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6096 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6097 { 6097 {
6098 unsigned long max_pull, load_above_capacity = ~0UL; 6098 unsigned long max_pull, load_above_capacity = ~0UL;
6099 struct sg_lb_stats *local, *busiest; 6099 struct sg_lb_stats *local, *busiest;
6100 6100
6101 local = &sds->local_stat; 6101 local = &sds->local_stat;
6102 busiest = &sds->busiest_stat; 6102 busiest = &sds->busiest_stat;
6103 6103
6104 if (busiest->group_imb) { 6104 if (busiest->group_imb) {
6105 /* 6105 /*
6106 * In the group_imb case we cannot rely on group-wide averages 6106 * In the group_imb case we cannot rely on group-wide averages
6107 * to ensure cpu-load equilibrium, look at wider averages. XXX 6107 * to ensure cpu-load equilibrium, look at wider averages. XXX
6108 */ 6108 */
6109 busiest->load_per_task = 6109 busiest->load_per_task =
6110 min(busiest->load_per_task, sds->avg_load); 6110 min(busiest->load_per_task, sds->avg_load);
6111 } 6111 }
6112 6112
6113 /* 6113 /*
6114 * In the presence of smp nice balancing, certain scenarios can have 6114 * In the presence of smp nice balancing, certain scenarios can have
6115 * max load less than avg load(as we skip the groups at or below 6115 * max load less than avg load(as we skip the groups at or below
6116 * its cpu_power, while calculating max_load..) 6116 * its cpu_power, while calculating max_load..)
6117 */ 6117 */
6118 if (busiest->avg_load <= sds->avg_load || 6118 if (busiest->avg_load <= sds->avg_load ||
6119 local->avg_load >= sds->avg_load) { 6119 local->avg_load >= sds->avg_load) {
6120 env->imbalance = 0; 6120 env->imbalance = 0;
6121 return fix_small_imbalance(env, sds); 6121 return fix_small_imbalance(env, sds);
6122 } 6122 }
6123 6123
6124 if (!busiest->group_imb) { 6124 if (!busiest->group_imb) {
6125 /* 6125 /*
6126 * Don't want to pull so many tasks that a group would go idle. 6126 * Don't want to pull so many tasks that a group would go idle.
6127 * Except of course for the group_imb case, since then we might 6127 * Except of course for the group_imb case, since then we might
6128 * have to drop below capacity to reach cpu-load equilibrium. 6128 * have to drop below capacity to reach cpu-load equilibrium.
6129 */ 6129 */
6130 load_above_capacity = 6130 load_above_capacity =
6131 (busiest->sum_nr_running - busiest->group_capacity); 6131 (busiest->sum_nr_running - busiest->group_capacity);
6132 6132
6133 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); 6133 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
6134 load_above_capacity /= busiest->group_power; 6134 load_above_capacity /= busiest->group_power;
6135 } 6135 }
6136 6136
6137 /* 6137 /*
6138 * We're trying to get all the cpus to the average_load, so we don't 6138 * We're trying to get all the cpus to the average_load, so we don't
6139 * want to push ourselves above the average load, nor do we wish to 6139 * want to push ourselves above the average load, nor do we wish to
6140 * reduce the max loaded cpu below the average load. At the same time, 6140 * reduce the max loaded cpu below the average load. At the same time,
6141 * we also don't want to reduce the group load below the group capacity 6141 * we also don't want to reduce the group load below the group capacity
6142 * (so that we can implement power-savings policies etc). Thus we look 6142 * (so that we can implement power-savings policies etc). Thus we look
6143 * for the minimum possible imbalance. 6143 * for the minimum possible imbalance.
6144 */ 6144 */
6145 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 6145 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6146 6146
6147 /* How much load to actually move to equalise the imbalance */ 6147 /* How much load to actually move to equalise the imbalance */
6148 env->imbalance = min( 6148 env->imbalance = min(
6149 max_pull * busiest->group_power, 6149 max_pull * busiest->group_power,
6150 (sds->avg_load - local->avg_load) * local->group_power 6150 (sds->avg_load - local->avg_load) * local->group_power
6151 ) / SCHED_POWER_SCALE; 6151 ) / SCHED_POWER_SCALE;
6152 6152
6153 /* 6153 /*
6154 * if *imbalance is less than the average load per runnable task 6154 * if *imbalance is less than the average load per runnable task
6155 * there is no guarantee that any tasks will be moved so we'll have 6155 * there is no guarantee that any tasks will be moved so we'll have
6156 * a think about bumping its value to force at least one task to be 6156 * a think about bumping its value to force at least one task to be
6157 * moved 6157 * moved
6158 */ 6158 */
6159 if (env->imbalance < busiest->load_per_task) 6159 if (env->imbalance < busiest->load_per_task)
6160 return fix_small_imbalance(env, sds); 6160 return fix_small_imbalance(env, sds);
6161 } 6161 }
6162 6162
6163 /******* find_busiest_group() helpers end here *********************/ 6163 /******* find_busiest_group() helpers end here *********************/
6164 6164
6165 /** 6165 /**
6166 * find_busiest_group - Returns the busiest group within the sched_domain 6166 * find_busiest_group - Returns the busiest group within the sched_domain
6167 * if there is an imbalance. If there isn't an imbalance, and 6167 * if there is an imbalance. If there isn't an imbalance, and
6168 * the user has opted for power-savings, it returns a group whose 6168 * the user has opted for power-savings, it returns a group whose
6169 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 6169 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6170 * such a group exists. 6170 * such a group exists.
6171 * 6171 *
6172 * Also calculates the amount of weighted load which should be moved 6172 * Also calculates the amount of weighted load which should be moved
6173 * to restore balance. 6173 * to restore balance.
6174 * 6174 *
6175 * @env: The load balancing environment. 6175 * @env: The load balancing environment.
6176 * 6176 *
6177 * Return: - The busiest group if imbalance exists. 6177 * Return: - The busiest group if imbalance exists.
6178 * - If no imbalance and user has opted for power-savings balance, 6178 * - If no imbalance and user has opted for power-savings balance,
6179 * return the least loaded group whose CPUs can be 6179 * return the least loaded group whose CPUs can be
6180 * put to idle by rebalancing its tasks onto our group. 6180 * put to idle by rebalancing its tasks onto our group.
6181 */ 6181 */
6182 static struct sched_group *find_busiest_group(struct lb_env *env) 6182 static struct sched_group *find_busiest_group(struct lb_env *env)
6183 { 6183 {
6184 struct sg_lb_stats *local, *busiest; 6184 struct sg_lb_stats *local, *busiest;
6185 struct sd_lb_stats sds; 6185 struct sd_lb_stats sds;
6186 6186
6187 init_sd_lb_stats(&sds); 6187 init_sd_lb_stats(&sds);
6188 6188
6189 /* 6189 /*
6190 * Compute the various statistics relavent for load balancing at 6190 * Compute the various statistics relavent for load balancing at
6191 * this level. 6191 * this level.
6192 */ 6192 */
6193 update_sd_lb_stats(env, &sds); 6193 update_sd_lb_stats(env, &sds);
6194 local = &sds.local_stat; 6194 local = &sds.local_stat;
6195 busiest = &sds.busiest_stat; 6195 busiest = &sds.busiest_stat;
6196 6196
6197 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && 6197 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6198 check_asym_packing(env, &sds)) 6198 check_asym_packing(env, &sds))
6199 return sds.busiest; 6199 return sds.busiest;
6200 6200
6201 /* There is no busy sibling group to pull tasks from */ 6201 /* There is no busy sibling group to pull tasks from */
6202 if (!sds.busiest || busiest->sum_nr_running == 0) 6202 if (!sds.busiest || busiest->sum_nr_running == 0)
6203 goto out_balanced; 6203 goto out_balanced;
6204 6204
6205 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr; 6205 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
6206 6206
6207 /* 6207 /*
6208 * If the busiest group is imbalanced the below checks don't 6208 * If the busiest group is imbalanced the below checks don't
6209 * work because they assume all things are equal, which typically 6209 * work because they assume all things are equal, which typically
6210 * isn't true due to cpus_allowed constraints and the like. 6210 * isn't true due to cpus_allowed constraints and the like.
6211 */ 6211 */
6212 if (busiest->group_imb) 6212 if (busiest->group_imb)
6213 goto force_balance; 6213 goto force_balance;
6214 6214
6215 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 6215 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6216 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity && 6216 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6217 !busiest->group_has_capacity) 6217 !busiest->group_has_capacity)
6218 goto force_balance; 6218 goto force_balance;
6219 6219
6220 /* 6220 /*
6221 * If the local group is more busy than the selected busiest group 6221 * If the local group is more busy than the selected busiest group
6222 * don't try and pull any tasks. 6222 * don't try and pull any tasks.
6223 */ 6223 */
6224 if (local->avg_load >= busiest->avg_load) 6224 if (local->avg_load >= busiest->avg_load)
6225 goto out_balanced; 6225 goto out_balanced;
6226 6226
6227 /* 6227 /*
6228 * Don't pull any tasks if this group is already above the domain 6228 * Don't pull any tasks if this group is already above the domain
6229 * average load. 6229 * average load.
6230 */ 6230 */
6231 if (local->avg_load >= sds.avg_load) 6231 if (local->avg_load >= sds.avg_load)
6232 goto out_balanced; 6232 goto out_balanced;
6233 6233
6234 if (env->idle == CPU_IDLE) { 6234 if (env->idle == CPU_IDLE) {
6235 /* 6235 /*
6236 * This cpu is idle. If the busiest group load doesn't 6236 * This cpu is idle. If the busiest group load doesn't
6237 * have more tasks than the number of available cpu's and 6237 * have more tasks than the number of available cpu's and
6238 * there is no imbalance between this and busiest group 6238 * there is no imbalance between this and busiest group
6239 * wrt to idle cpu's, it is balanced. 6239 * wrt to idle cpu's, it is balanced.
6240 */ 6240 */
6241 if ((local->idle_cpus < busiest->idle_cpus) && 6241 if ((local->idle_cpus < busiest->idle_cpus) &&
6242 busiest->sum_nr_running <= busiest->group_weight) 6242 busiest->sum_nr_running <= busiest->group_weight)
6243 goto out_balanced; 6243 goto out_balanced;
6244 } else { 6244 } else {
6245 /* 6245 /*
6246 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 6246 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6247 * imbalance_pct to be conservative. 6247 * imbalance_pct to be conservative.
6248 */ 6248 */
6249 if (100 * busiest->avg_load <= 6249 if (100 * busiest->avg_load <=
6250 env->sd->imbalance_pct * local->avg_load) 6250 env->sd->imbalance_pct * local->avg_load)
6251 goto out_balanced; 6251 goto out_balanced;
6252 } 6252 }
6253 6253
6254 force_balance: 6254 force_balance:
6255 /* Looks like there is an imbalance. Compute it */ 6255 /* Looks like there is an imbalance. Compute it */
6256 calculate_imbalance(env, &sds); 6256 calculate_imbalance(env, &sds);
6257 return sds.busiest; 6257 return sds.busiest;
6258 6258
6259 out_balanced: 6259 out_balanced:
6260 env->imbalance = 0; 6260 env->imbalance = 0;
6261 return NULL; 6261 return NULL;
6262 } 6262 }
6263 6263
6264 /* 6264 /*
6265 * find_busiest_queue - find the busiest runqueue among the cpus in group. 6265 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6266 */ 6266 */
6267 static struct rq *find_busiest_queue(struct lb_env *env, 6267 static struct rq *find_busiest_queue(struct lb_env *env,
6268 struct sched_group *group) 6268 struct sched_group *group)
6269 { 6269 {
6270 struct rq *busiest = NULL, *rq; 6270 struct rq *busiest = NULL, *rq;
6271 unsigned long busiest_load = 0, busiest_power = 1; 6271 unsigned long busiest_load = 0, busiest_power = 1;
6272 int i; 6272 int i;
6273 6273
6274 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6274 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6275 unsigned long power, capacity, wl; 6275 unsigned long power, capacity, wl;
6276 enum fbq_type rt; 6276 enum fbq_type rt;
6277 6277
6278 rq = cpu_rq(i); 6278 rq = cpu_rq(i);
6279 rt = fbq_classify_rq(rq); 6279 rt = fbq_classify_rq(rq);
6280 6280
6281 /* 6281 /*
6282 * We classify groups/runqueues into three groups: 6282 * We classify groups/runqueues into three groups:
6283 * - regular: there are !numa tasks 6283 * - regular: there are !numa tasks
6284 * - remote: there are numa tasks that run on the 'wrong' node 6284 * - remote: there are numa tasks that run on the 'wrong' node
6285 * - all: there is no distinction 6285 * - all: there is no distinction
6286 * 6286 *
6287 * In order to avoid migrating ideally placed numa tasks, 6287 * In order to avoid migrating ideally placed numa tasks,
6288 * ignore those when there's better options. 6288 * ignore those when there's better options.
6289 * 6289 *
6290 * If we ignore the actual busiest queue to migrate another 6290 * If we ignore the actual busiest queue to migrate another
6291 * task, the next balance pass can still reduce the busiest 6291 * task, the next balance pass can still reduce the busiest
6292 * queue by moving tasks around inside the node. 6292 * queue by moving tasks around inside the node.
6293 * 6293 *
6294 * If we cannot move enough load due to this classification 6294 * If we cannot move enough load due to this classification
6295 * the next pass will adjust the group classification and 6295 * the next pass will adjust the group classification and
6296 * allow migration of more tasks. 6296 * allow migration of more tasks.
6297 * 6297 *
6298 * Both cases only affect the total convergence complexity. 6298 * Both cases only affect the total convergence complexity.
6299 */ 6299 */
6300 if (rt > env->fbq_type) 6300 if (rt > env->fbq_type)
6301 continue; 6301 continue;
6302 6302
6303 power = power_of(i); 6303 power = power_of(i);
6304 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE); 6304 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6305 if (!capacity) 6305 if (!capacity)
6306 capacity = fix_small_capacity(env->sd, group); 6306 capacity = fix_small_capacity(env->sd, group);
6307 6307
6308 wl = weighted_cpuload(i); 6308 wl = weighted_cpuload(i);
6309 6309
6310 /* 6310 /*
6311 * When comparing with imbalance, use weighted_cpuload() 6311 * When comparing with imbalance, use weighted_cpuload()
6312 * which is not scaled with the cpu power. 6312 * which is not scaled with the cpu power.
6313 */ 6313 */
6314 if (capacity && rq->nr_running == 1 && wl > env->imbalance) 6314 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6315 continue; 6315 continue;
6316 6316
6317 /* 6317 /*
6318 * For the load comparisons with the other cpu's, consider 6318 * For the load comparisons with the other cpu's, consider
6319 * the weighted_cpuload() scaled with the cpu power, so that 6319 * the weighted_cpuload() scaled with the cpu power, so that
6320 * the load can be moved away from the cpu that is potentially 6320 * the load can be moved away from the cpu that is potentially
6321 * running at a lower capacity. 6321 * running at a lower capacity.
6322 * 6322 *
6323 * Thus we're looking for max(wl_i / power_i), crosswise 6323 * Thus we're looking for max(wl_i / power_i), crosswise
6324 * multiplication to rid ourselves of the division works out 6324 * multiplication to rid ourselves of the division works out
6325 * to: wl_i * power_j > wl_j * power_i; where j is our 6325 * to: wl_i * power_j > wl_j * power_i; where j is our
6326 * previous maximum. 6326 * previous maximum.
6327 */ 6327 */
6328 if (wl * busiest_power > busiest_load * power) { 6328 if (wl * busiest_power > busiest_load * power) {
6329 busiest_load = wl; 6329 busiest_load = wl;
6330 busiest_power = power; 6330 busiest_power = power;
6331 busiest = rq; 6331 busiest = rq;
6332 } 6332 }
6333 } 6333 }
6334 6334
6335 return busiest; 6335 return busiest;
6336 } 6336 }
6337 6337
6338 /* 6338 /*
6339 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 6339 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6340 * so long as it is large enough. 6340 * so long as it is large enough.
6341 */ 6341 */
6342 #define MAX_PINNED_INTERVAL 512 6342 #define MAX_PINNED_INTERVAL 512
6343 6343
6344 /* Working cpumask for load_balance and load_balance_newidle. */ 6344 /* Working cpumask for load_balance and load_balance_newidle. */
6345 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6345 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6346 6346
6347 static int need_active_balance(struct lb_env *env) 6347 static int need_active_balance(struct lb_env *env)
6348 { 6348 {
6349 struct sched_domain *sd = env->sd; 6349 struct sched_domain *sd = env->sd;
6350 6350
6351 if (env->idle == CPU_NEWLY_IDLE) { 6351 if (env->idle == CPU_NEWLY_IDLE) {
6352 6352
6353 /* 6353 /*
6354 * ASYM_PACKING needs to force migrate tasks from busy but 6354 * ASYM_PACKING needs to force migrate tasks from busy but
6355 * higher numbered CPUs in order to pack all tasks in the 6355 * higher numbered CPUs in order to pack all tasks in the
6356 * lowest numbered CPUs. 6356 * lowest numbered CPUs.
6357 */ 6357 */
6358 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 6358 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6359 return 1; 6359 return 1;
6360 } 6360 }
6361 6361
6362 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 6362 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6363 } 6363 }
6364 6364
6365 static int active_load_balance_cpu_stop(void *data); 6365 static int active_load_balance_cpu_stop(void *data);
6366 6366
6367 static int should_we_balance(struct lb_env *env) 6367 static int should_we_balance(struct lb_env *env)
6368 { 6368 {
6369 struct sched_group *sg = env->sd->groups; 6369 struct sched_group *sg = env->sd->groups;
6370 struct cpumask *sg_cpus, *sg_mask; 6370 struct cpumask *sg_cpus, *sg_mask;
6371 int cpu, balance_cpu = -1; 6371 int cpu, balance_cpu = -1;
6372 6372
6373 /* 6373 /*
6374 * In the newly idle case, we will allow all the cpu's 6374 * In the newly idle case, we will allow all the cpu's
6375 * to do the newly idle load balance. 6375 * to do the newly idle load balance.
6376 */ 6376 */
6377 if (env->idle == CPU_NEWLY_IDLE) 6377 if (env->idle == CPU_NEWLY_IDLE)
6378 return 1; 6378 return 1;
6379 6379
6380 sg_cpus = sched_group_cpus(sg); 6380 sg_cpus = sched_group_cpus(sg);
6381 sg_mask = sched_group_mask(sg); 6381 sg_mask = sched_group_mask(sg);
6382 /* Try to find first idle cpu */ 6382 /* Try to find first idle cpu */
6383 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 6383 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6384 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 6384 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6385 continue; 6385 continue;
6386 6386
6387 balance_cpu = cpu; 6387 balance_cpu = cpu;
6388 break; 6388 break;
6389 } 6389 }
6390 6390
6391 if (balance_cpu == -1) 6391 if (balance_cpu == -1)
6392 balance_cpu = group_balance_cpu(sg); 6392 balance_cpu = group_balance_cpu(sg);
6393 6393
6394 /* 6394 /*
6395 * First idle cpu or the first cpu(busiest) in this sched group 6395 * First idle cpu or the first cpu(busiest) in this sched group
6396 * is eligible for doing load balancing at this and above domains. 6396 * is eligible for doing load balancing at this and above domains.
6397 */ 6397 */
6398 return balance_cpu == env->dst_cpu; 6398 return balance_cpu == env->dst_cpu;
6399 } 6399 }
6400 6400
6401 /* 6401 /*
6402 * Check this_cpu to ensure it is balanced within domain. Attempt to move 6402 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6403 * tasks if there is an imbalance. 6403 * tasks if there is an imbalance.
6404 */ 6404 */
6405 static int load_balance(int this_cpu, struct rq *this_rq, 6405 static int load_balance(int this_cpu, struct rq *this_rq,
6406 struct sched_domain *sd, enum cpu_idle_type idle, 6406 struct sched_domain *sd, enum cpu_idle_type idle,
6407 int *continue_balancing) 6407 int *continue_balancing)
6408 { 6408 {
6409 int ld_moved, cur_ld_moved, active_balance = 0; 6409 int ld_moved, cur_ld_moved, active_balance = 0;
6410 struct sched_domain *sd_parent = sd->parent; 6410 struct sched_domain *sd_parent = sd->parent;
6411 struct sched_group *group; 6411 struct sched_group *group;
6412 struct rq *busiest; 6412 struct rq *busiest;
6413 unsigned long flags; 6413 unsigned long flags;
6414 struct cpumask *cpus = __get_cpu_var(load_balance_mask); 6414 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6415 6415
6416 struct lb_env env = { 6416 struct lb_env env = {
6417 .sd = sd, 6417 .sd = sd,
6418 .dst_cpu = this_cpu, 6418 .dst_cpu = this_cpu,
6419 .dst_rq = this_rq, 6419 .dst_rq = this_rq,
6420 .dst_grpmask = sched_group_cpus(sd->groups), 6420 .dst_grpmask = sched_group_cpus(sd->groups),
6421 .idle = idle, 6421 .idle = idle,
6422 .loop_break = sched_nr_migrate_break, 6422 .loop_break = sched_nr_migrate_break,
6423 .cpus = cpus, 6423 .cpus = cpus,
6424 .fbq_type = all, 6424 .fbq_type = all,
6425 }; 6425 };
6426 6426
6427 /* 6427 /*
6428 * For NEWLY_IDLE load_balancing, we don't need to consider 6428 * For NEWLY_IDLE load_balancing, we don't need to consider
6429 * other cpus in our group 6429 * other cpus in our group
6430 */ 6430 */
6431 if (idle == CPU_NEWLY_IDLE) 6431 if (idle == CPU_NEWLY_IDLE)
6432 env.dst_grpmask = NULL; 6432 env.dst_grpmask = NULL;
6433 6433
6434 cpumask_copy(cpus, cpu_active_mask); 6434 cpumask_copy(cpus, cpu_active_mask);
6435 6435
6436 schedstat_inc(sd, lb_count[idle]); 6436 schedstat_inc(sd, lb_count[idle]);
6437 6437
6438 redo: 6438 redo:
6439 if (!should_we_balance(&env)) { 6439 if (!should_we_balance(&env)) {
6440 *continue_balancing = 0; 6440 *continue_balancing = 0;
6441 goto out_balanced; 6441 goto out_balanced;
6442 } 6442 }
6443 6443
6444 group = find_busiest_group(&env); 6444 group = find_busiest_group(&env);
6445 if (!group) { 6445 if (!group) {
6446 schedstat_inc(sd, lb_nobusyg[idle]); 6446 schedstat_inc(sd, lb_nobusyg[idle]);
6447 goto out_balanced; 6447 goto out_balanced;
6448 } 6448 }
6449 6449
6450 busiest = find_busiest_queue(&env, group); 6450 busiest = find_busiest_queue(&env, group);
6451 if (!busiest) { 6451 if (!busiest) {
6452 schedstat_inc(sd, lb_nobusyq[idle]); 6452 schedstat_inc(sd, lb_nobusyq[idle]);
6453 goto out_balanced; 6453 goto out_balanced;
6454 } 6454 }
6455 6455
6456 BUG_ON(busiest == env.dst_rq); 6456 BUG_ON(busiest == env.dst_rq);
6457 6457
6458 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 6458 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6459 6459
6460 ld_moved = 0; 6460 ld_moved = 0;
6461 if (busiest->nr_running > 1) { 6461 if (busiest->nr_running > 1) {
6462 /* 6462 /*
6463 * Attempt to move tasks. If find_busiest_group has found 6463 * Attempt to move tasks. If find_busiest_group has found
6464 * an imbalance but busiest->nr_running <= 1, the group is 6464 * an imbalance but busiest->nr_running <= 1, the group is
6465 * still unbalanced. ld_moved simply stays zero, so it is 6465 * still unbalanced. ld_moved simply stays zero, so it is
6466 * correctly treated as an imbalance. 6466 * correctly treated as an imbalance.
6467 */ 6467 */
6468 env.flags |= LBF_ALL_PINNED; 6468 env.flags |= LBF_ALL_PINNED;
6469 env.src_cpu = busiest->cpu; 6469 env.src_cpu = busiest->cpu;
6470 env.src_rq = busiest; 6470 env.src_rq = busiest;
6471 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 6471 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6472 6472
6473 more_balance: 6473 more_balance:
6474 local_irq_save(flags); 6474 local_irq_save(flags);
6475 double_rq_lock(env.dst_rq, busiest); 6475 double_rq_lock(env.dst_rq, busiest);
6476 6476
6477 /* 6477 /*
6478 * cur_ld_moved - load moved in current iteration 6478 * cur_ld_moved - load moved in current iteration
6479 * ld_moved - cumulative load moved across iterations 6479 * ld_moved - cumulative load moved across iterations
6480 */ 6480 */
6481 cur_ld_moved = move_tasks(&env); 6481 cur_ld_moved = move_tasks(&env);
6482 ld_moved += cur_ld_moved; 6482 ld_moved += cur_ld_moved;
6483 double_rq_unlock(env.dst_rq, busiest); 6483 double_rq_unlock(env.dst_rq, busiest);
6484 local_irq_restore(flags); 6484 local_irq_restore(flags);
6485 6485
6486 /* 6486 /*
6487 * some other cpu did the load balance for us. 6487 * some other cpu did the load balance for us.
6488 */ 6488 */
6489 if (cur_ld_moved && env.dst_cpu != smp_processor_id()) 6489 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6490 resched_cpu(env.dst_cpu); 6490 resched_cpu(env.dst_cpu);
6491 6491
6492 if (env.flags & LBF_NEED_BREAK) { 6492 if (env.flags & LBF_NEED_BREAK) {
6493 env.flags &= ~LBF_NEED_BREAK; 6493 env.flags &= ~LBF_NEED_BREAK;
6494 goto more_balance; 6494 goto more_balance;
6495 } 6495 }
6496 6496
6497 /* 6497 /*
6498 * Revisit (affine) tasks on src_cpu that couldn't be moved to 6498 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6499 * us and move them to an alternate dst_cpu in our sched_group 6499 * us and move them to an alternate dst_cpu in our sched_group
6500 * where they can run. The upper limit on how many times we 6500 * where they can run. The upper limit on how many times we
6501 * iterate on same src_cpu is dependent on number of cpus in our 6501 * iterate on same src_cpu is dependent on number of cpus in our
6502 * sched_group. 6502 * sched_group.
6503 * 6503 *
6504 * This changes load balance semantics a bit on who can move 6504 * This changes load balance semantics a bit on who can move
6505 * load to a given_cpu. In addition to the given_cpu itself 6505 * load to a given_cpu. In addition to the given_cpu itself
6506 * (or a ilb_cpu acting on its behalf where given_cpu is 6506 * (or a ilb_cpu acting on its behalf where given_cpu is
6507 * nohz-idle), we now have balance_cpu in a position to move 6507 * nohz-idle), we now have balance_cpu in a position to move
6508 * load to given_cpu. In rare situations, this may cause 6508 * load to given_cpu. In rare situations, this may cause
6509 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 6509 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6510 * _independently_ and at _same_ time to move some load to 6510 * _independently_ and at _same_ time to move some load to
6511 * given_cpu) causing exceess load to be moved to given_cpu. 6511 * given_cpu) causing exceess load to be moved to given_cpu.
6512 * This however should not happen so much in practice and 6512 * This however should not happen so much in practice and
6513 * moreover subsequent load balance cycles should correct the 6513 * moreover subsequent load balance cycles should correct the
6514 * excess load moved. 6514 * excess load moved.
6515 */ 6515 */
6516 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 6516 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6517 6517
6518 /* Prevent to re-select dst_cpu via env's cpus */ 6518 /* Prevent to re-select dst_cpu via env's cpus */
6519 cpumask_clear_cpu(env.dst_cpu, env.cpus); 6519 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6520 6520
6521 env.dst_rq = cpu_rq(env.new_dst_cpu); 6521 env.dst_rq = cpu_rq(env.new_dst_cpu);
6522 env.dst_cpu = env.new_dst_cpu; 6522 env.dst_cpu = env.new_dst_cpu;
6523 env.flags &= ~LBF_DST_PINNED; 6523 env.flags &= ~LBF_DST_PINNED;
6524 env.loop = 0; 6524 env.loop = 0;
6525 env.loop_break = sched_nr_migrate_break; 6525 env.loop_break = sched_nr_migrate_break;
6526 6526
6527 /* 6527 /*
6528 * Go back to "more_balance" rather than "redo" since we 6528 * Go back to "more_balance" rather than "redo" since we
6529 * need to continue with same src_cpu. 6529 * need to continue with same src_cpu.
6530 */ 6530 */
6531 goto more_balance; 6531 goto more_balance;
6532 } 6532 }
6533 6533
6534 /* 6534 /*
6535 * We failed to reach balance because of affinity. 6535 * We failed to reach balance because of affinity.
6536 */ 6536 */
6537 if (sd_parent) { 6537 if (sd_parent) {
6538 int *group_imbalance = &sd_parent->groups->sgp->imbalance; 6538 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6539 6539
6540 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) { 6540 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6541 *group_imbalance = 1; 6541 *group_imbalance = 1;
6542 } else if (*group_imbalance) 6542 } else if (*group_imbalance)
6543 *group_imbalance = 0; 6543 *group_imbalance = 0;
6544 } 6544 }
6545 6545
6546 /* All tasks on this runqueue were pinned by CPU affinity */ 6546 /* All tasks on this runqueue were pinned by CPU affinity */
6547 if (unlikely(env.flags & LBF_ALL_PINNED)) { 6547 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6548 cpumask_clear_cpu(cpu_of(busiest), cpus); 6548 cpumask_clear_cpu(cpu_of(busiest), cpus);
6549 if (!cpumask_empty(cpus)) { 6549 if (!cpumask_empty(cpus)) {
6550 env.loop = 0; 6550 env.loop = 0;
6551 env.loop_break = sched_nr_migrate_break; 6551 env.loop_break = sched_nr_migrate_break;
6552 goto redo; 6552 goto redo;
6553 } 6553 }
6554 goto out_balanced; 6554 goto out_balanced;
6555 } 6555 }
6556 } 6556 }
6557 6557
6558 if (!ld_moved) { 6558 if (!ld_moved) {
6559 schedstat_inc(sd, lb_failed[idle]); 6559 schedstat_inc(sd, lb_failed[idle]);
6560 /* 6560 /*
6561 * Increment the failure counter only on periodic balance. 6561 * Increment the failure counter only on periodic balance.
6562 * We do not want newidle balance, which can be very 6562 * We do not want newidle balance, which can be very
6563 * frequent, pollute the failure counter causing 6563 * frequent, pollute the failure counter causing
6564 * excessive cache_hot migrations and active balances. 6564 * excessive cache_hot migrations and active balances.
6565 */ 6565 */
6566 if (idle != CPU_NEWLY_IDLE) 6566 if (idle != CPU_NEWLY_IDLE)
6567 sd->nr_balance_failed++; 6567 sd->nr_balance_failed++;
6568 6568
6569 if (need_active_balance(&env)) { 6569 if (need_active_balance(&env)) {
6570 raw_spin_lock_irqsave(&busiest->lock, flags); 6570 raw_spin_lock_irqsave(&busiest->lock, flags);
6571 6571
6572 /* don't kick the active_load_balance_cpu_stop, 6572 /* don't kick the active_load_balance_cpu_stop,
6573 * if the curr task on busiest cpu can't be 6573 * if the curr task on busiest cpu can't be
6574 * moved to this_cpu 6574 * moved to this_cpu
6575 */ 6575 */
6576 if (!cpumask_test_cpu(this_cpu, 6576 if (!cpumask_test_cpu(this_cpu,
6577 tsk_cpus_allowed(busiest->curr))) { 6577 tsk_cpus_allowed(busiest->curr))) {
6578 raw_spin_unlock_irqrestore(&busiest->lock, 6578 raw_spin_unlock_irqrestore(&busiest->lock,
6579 flags); 6579 flags);
6580 env.flags |= LBF_ALL_PINNED; 6580 env.flags |= LBF_ALL_PINNED;
6581 goto out_one_pinned; 6581 goto out_one_pinned;
6582 } 6582 }
6583 6583
6584 /* 6584 /*
6585 * ->active_balance synchronizes accesses to 6585 * ->active_balance synchronizes accesses to
6586 * ->active_balance_work. Once set, it's cleared 6586 * ->active_balance_work. Once set, it's cleared
6587 * only after active load balance is finished. 6587 * only after active load balance is finished.
6588 */ 6588 */
6589 if (!busiest->active_balance) { 6589 if (!busiest->active_balance) {
6590 busiest->active_balance = 1; 6590 busiest->active_balance = 1;
6591 busiest->push_cpu = this_cpu; 6591 busiest->push_cpu = this_cpu;
6592 active_balance = 1; 6592 active_balance = 1;
6593 } 6593 }
6594 raw_spin_unlock_irqrestore(&busiest->lock, flags); 6594 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6595 6595
6596 if (active_balance) { 6596 if (active_balance) {
6597 stop_one_cpu_nowait(cpu_of(busiest), 6597 stop_one_cpu_nowait(cpu_of(busiest),
6598 active_load_balance_cpu_stop, busiest, 6598 active_load_balance_cpu_stop, busiest,
6599 &busiest->active_balance_work); 6599 &busiest->active_balance_work);
6600 } 6600 }
6601 6601
6602 /* 6602 /*
6603 * We've kicked active balancing, reset the failure 6603 * We've kicked active balancing, reset the failure
6604 * counter. 6604 * counter.
6605 */ 6605 */
6606 sd->nr_balance_failed = sd->cache_nice_tries+1; 6606 sd->nr_balance_failed = sd->cache_nice_tries+1;
6607 } 6607 }
6608 } else 6608 } else
6609 sd->nr_balance_failed = 0; 6609 sd->nr_balance_failed = 0;
6610 6610
6611 if (likely(!active_balance)) { 6611 if (likely(!active_balance)) {
6612 /* We were unbalanced, so reset the balancing interval */ 6612 /* We were unbalanced, so reset the balancing interval */
6613 sd->balance_interval = sd->min_interval; 6613 sd->balance_interval = sd->min_interval;
6614 } else { 6614 } else {
6615 /* 6615 /*
6616 * If we've begun active balancing, start to back off. This 6616 * If we've begun active balancing, start to back off. This
6617 * case may not be covered by the all_pinned logic if there 6617 * case may not be covered by the all_pinned logic if there
6618 * is only 1 task on the busy runqueue (because we don't call 6618 * is only 1 task on the busy runqueue (because we don't call
6619 * move_tasks). 6619 * move_tasks).
6620 */ 6620 */
6621 if (sd->balance_interval < sd->max_interval) 6621 if (sd->balance_interval < sd->max_interval)
6622 sd->balance_interval *= 2; 6622 sd->balance_interval *= 2;
6623 } 6623 }
6624 6624
6625 goto out; 6625 goto out;
6626 6626
6627 out_balanced: 6627 out_balanced:
6628 schedstat_inc(sd, lb_balanced[idle]); 6628 schedstat_inc(sd, lb_balanced[idle]);
6629 6629
6630 sd->nr_balance_failed = 0; 6630 sd->nr_balance_failed = 0;
6631 6631
6632 out_one_pinned: 6632 out_one_pinned:
6633 /* tune up the balancing interval */ 6633 /* tune up the balancing interval */
6634 if (((env.flags & LBF_ALL_PINNED) && 6634 if (((env.flags & LBF_ALL_PINNED) &&
6635 sd->balance_interval < MAX_PINNED_INTERVAL) || 6635 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6636 (sd->balance_interval < sd->max_interval)) 6636 (sd->balance_interval < sd->max_interval))
6637 sd->balance_interval *= 2; 6637 sd->balance_interval *= 2;
6638 6638
6639 ld_moved = 0; 6639 ld_moved = 0;
6640 out: 6640 out:
6641 return ld_moved; 6641 return ld_moved;
6642 } 6642 }
6643 6643
6644 /* 6644 /*
6645 * idle_balance is called by schedule() if this_cpu is about to become 6645 * idle_balance is called by schedule() if this_cpu is about to become
6646 * idle. Attempts to pull tasks from other CPUs. 6646 * idle. Attempts to pull tasks from other CPUs.
6647 */ 6647 */
6648 static int idle_balance(struct rq *this_rq) 6648 static int idle_balance(struct rq *this_rq)
6649 { 6649 {
6650 struct sched_domain *sd; 6650 struct sched_domain *sd;
6651 int pulled_task = 0; 6651 int pulled_task = 0;
6652 unsigned long next_balance = jiffies + HZ; 6652 unsigned long next_balance = jiffies + HZ;
6653 u64 curr_cost = 0; 6653 u64 curr_cost = 0;
6654 int this_cpu = this_rq->cpu; 6654 int this_cpu = this_rq->cpu;
6655 6655
6656 idle_enter_fair(this_rq); 6656 idle_enter_fair(this_rq);
6657 6657
6658 /* 6658 /*
6659 * We must set idle_stamp _before_ calling idle_balance(), such that we 6659 * We must set idle_stamp _before_ calling idle_balance(), such that we
6660 * measure the duration of idle_balance() as idle time. 6660 * measure the duration of idle_balance() as idle time.
6661 */ 6661 */
6662 this_rq->idle_stamp = rq_clock(this_rq); 6662 this_rq->idle_stamp = rq_clock(this_rq);
6663 6663
6664 if (this_rq->avg_idle < sysctl_sched_migration_cost) 6664 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6665 goto out; 6665 goto out;
6666 6666
6667 /* 6667 /*
6668 * Drop the rq->lock, but keep IRQ/preempt disabled. 6668 * Drop the rq->lock, but keep IRQ/preempt disabled.
6669 */ 6669 */
6670 raw_spin_unlock(&this_rq->lock); 6670 raw_spin_unlock(&this_rq->lock);
6671 6671
6672 update_blocked_averages(this_cpu); 6672 update_blocked_averages(this_cpu);
6673 rcu_read_lock(); 6673 rcu_read_lock();
6674 for_each_domain(this_cpu, sd) { 6674 for_each_domain(this_cpu, sd) {
6675 unsigned long interval; 6675 unsigned long interval;
6676 int continue_balancing = 1; 6676 int continue_balancing = 1;
6677 u64 t0, domain_cost; 6677 u64 t0, domain_cost;
6678 6678
6679 if (!(sd->flags & SD_LOAD_BALANCE)) 6679 if (!(sd->flags & SD_LOAD_BALANCE))
6680 continue; 6680 continue;
6681 6681
6682 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 6682 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6683 break; 6683 break;
6684 6684
6685 if (sd->flags & SD_BALANCE_NEWIDLE) { 6685 if (sd->flags & SD_BALANCE_NEWIDLE) {
6686 t0 = sched_clock_cpu(this_cpu); 6686 t0 = sched_clock_cpu(this_cpu);
6687 6687
6688 /* If we've pulled tasks over stop searching: */ 6688 /* If we've pulled tasks over stop searching: */
6689 pulled_task = load_balance(this_cpu, this_rq, 6689 pulled_task = load_balance(this_cpu, this_rq,
6690 sd, CPU_NEWLY_IDLE, 6690 sd, CPU_NEWLY_IDLE,
6691 &continue_balancing); 6691 &continue_balancing);
6692 6692
6693 domain_cost = sched_clock_cpu(this_cpu) - t0; 6693 domain_cost = sched_clock_cpu(this_cpu) - t0;
6694 if (domain_cost > sd->max_newidle_lb_cost) 6694 if (domain_cost > sd->max_newidle_lb_cost)
6695 sd->max_newidle_lb_cost = domain_cost; 6695 sd->max_newidle_lb_cost = domain_cost;
6696 6696
6697 curr_cost += domain_cost; 6697 curr_cost += domain_cost;
6698 } 6698 }
6699 6699
6700 interval = msecs_to_jiffies(sd->balance_interval); 6700 interval = msecs_to_jiffies(sd->balance_interval);
6701 if (time_after(next_balance, sd->last_balance + interval)) 6701 if (time_after(next_balance, sd->last_balance + interval))
6702 next_balance = sd->last_balance + interval; 6702 next_balance = sd->last_balance + interval;
6703 if (pulled_task) 6703 if (pulled_task)
6704 break; 6704 break;
6705 } 6705 }
6706 rcu_read_unlock(); 6706 rcu_read_unlock();
6707 6707
6708 raw_spin_lock(&this_rq->lock); 6708 raw_spin_lock(&this_rq->lock);
6709 6709
6710 if (curr_cost > this_rq->max_idle_balance_cost) 6710 if (curr_cost > this_rq->max_idle_balance_cost)
6711 this_rq->max_idle_balance_cost = curr_cost; 6711 this_rq->max_idle_balance_cost = curr_cost;
6712 6712
6713 /* 6713 /*
6714 * While browsing the domains, we released the rq lock, a task could 6714 * While browsing the domains, we released the rq lock, a task could
6715 * have been enqueued in the meantime. Since we're not going idle, 6715 * have been enqueued in the meantime. Since we're not going idle,
6716 * pretend we pulled a task. 6716 * pretend we pulled a task.
6717 */ 6717 */
6718 if (this_rq->cfs.h_nr_running && !pulled_task) 6718 if (this_rq->cfs.h_nr_running && !pulled_task)
6719 pulled_task = 1; 6719 pulled_task = 1;
6720 6720
6721 if (pulled_task || time_after(jiffies, this_rq->next_balance)) { 6721 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6722 /* 6722 /*
6723 * We are going idle. next_balance may be set based on 6723 * We are going idle. next_balance may be set based on
6724 * a busy processor. So reset next_balance. 6724 * a busy processor. So reset next_balance.
6725 */ 6725 */
6726 this_rq->next_balance = next_balance; 6726 this_rq->next_balance = next_balance;
6727 } 6727 }
6728 6728
6729 out: 6729 out:
6730 /* Is there a task of a high priority class? */ 6730 /* Is there a task of a high priority class? */
6731 if (this_rq->nr_running != this_rq->cfs.h_nr_running && 6731 if (this_rq->nr_running != this_rq->cfs.h_nr_running &&
6732 ((this_rq->stop && this_rq->stop->on_rq) || 6732 ((this_rq->stop && this_rq->stop->on_rq) ||
6733 this_rq->dl.dl_nr_running || 6733 this_rq->dl.dl_nr_running ||
6734 (this_rq->rt.rt_nr_running && !rt_rq_throttled(&this_rq->rt)))) 6734 (this_rq->rt.rt_nr_running && !rt_rq_throttled(&this_rq->rt))))
6735 pulled_task = -1; 6735 pulled_task = -1;
6736 6736
6737 if (pulled_task) { 6737 if (pulled_task) {
6738 idle_exit_fair(this_rq); 6738 idle_exit_fair(this_rq);
6739 this_rq->idle_stamp = 0; 6739 this_rq->idle_stamp = 0;
6740 } 6740 }
6741 6741
6742 return pulled_task; 6742 return pulled_task;
6743 } 6743 }
6744 6744
6745 /* 6745 /*
6746 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 6746 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6747 * running tasks off the busiest CPU onto idle CPUs. It requires at 6747 * running tasks off the busiest CPU onto idle CPUs. It requires at
6748 * least 1 task to be running on each physical CPU where possible, and 6748 * least 1 task to be running on each physical CPU where possible, and
6749 * avoids physical / logical imbalances. 6749 * avoids physical / logical imbalances.
6750 */ 6750 */
6751 static int active_load_balance_cpu_stop(void *data) 6751 static int active_load_balance_cpu_stop(void *data)
6752 { 6752 {
6753 struct rq *busiest_rq = data; 6753 struct rq *busiest_rq = data;
6754 int busiest_cpu = cpu_of(busiest_rq); 6754 int busiest_cpu = cpu_of(busiest_rq);
6755 int target_cpu = busiest_rq->push_cpu; 6755 int target_cpu = busiest_rq->push_cpu;
6756 struct rq *target_rq = cpu_rq(target_cpu); 6756 struct rq *target_rq = cpu_rq(target_cpu);
6757 struct sched_domain *sd; 6757 struct sched_domain *sd;
6758 6758
6759 raw_spin_lock_irq(&busiest_rq->lock); 6759 raw_spin_lock_irq(&busiest_rq->lock);
6760 6760
6761 /* make sure the requested cpu hasn't gone down in the meantime */ 6761 /* make sure the requested cpu hasn't gone down in the meantime */
6762 if (unlikely(busiest_cpu != smp_processor_id() || 6762 if (unlikely(busiest_cpu != smp_processor_id() ||
6763 !busiest_rq->active_balance)) 6763 !busiest_rq->active_balance))
6764 goto out_unlock; 6764 goto out_unlock;
6765 6765
6766 /* Is there any task to move? */ 6766 /* Is there any task to move? */
6767 if (busiest_rq->nr_running <= 1) 6767 if (busiest_rq->nr_running <= 1)
6768 goto out_unlock; 6768 goto out_unlock;
6769 6769
6770 /* 6770 /*
6771 * This condition is "impossible", if it occurs 6771 * This condition is "impossible", if it occurs
6772 * we need to fix it. Originally reported by 6772 * we need to fix it. Originally reported by
6773 * Bjorn Helgaas on a 128-cpu setup. 6773 * Bjorn Helgaas on a 128-cpu setup.
6774 */ 6774 */
6775 BUG_ON(busiest_rq == target_rq); 6775 BUG_ON(busiest_rq == target_rq);
6776 6776
6777 /* move a task from busiest_rq to target_rq */ 6777 /* move a task from busiest_rq to target_rq */
6778 double_lock_balance(busiest_rq, target_rq); 6778 double_lock_balance(busiest_rq, target_rq);
6779 6779
6780 /* Search for an sd spanning us and the target CPU. */ 6780 /* Search for an sd spanning us and the target CPU. */
6781 rcu_read_lock(); 6781 rcu_read_lock();
6782 for_each_domain(target_cpu, sd) { 6782 for_each_domain(target_cpu, sd) {
6783 if ((sd->flags & SD_LOAD_BALANCE) && 6783 if ((sd->flags & SD_LOAD_BALANCE) &&
6784 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 6784 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6785 break; 6785 break;
6786 } 6786 }
6787 6787
6788 if (likely(sd)) { 6788 if (likely(sd)) {
6789 struct lb_env env = { 6789 struct lb_env env = {
6790 .sd = sd, 6790 .sd = sd,
6791 .dst_cpu = target_cpu, 6791 .dst_cpu = target_cpu,
6792 .dst_rq = target_rq, 6792 .dst_rq = target_rq,
6793 .src_cpu = busiest_rq->cpu, 6793 .src_cpu = busiest_rq->cpu,
6794 .src_rq = busiest_rq, 6794 .src_rq = busiest_rq,
6795 .idle = CPU_IDLE, 6795 .idle = CPU_IDLE,
6796 }; 6796 };
6797 6797
6798 schedstat_inc(sd, alb_count); 6798 schedstat_inc(sd, alb_count);
6799 6799
6800 if (move_one_task(&env)) 6800 if (move_one_task(&env))
6801 schedstat_inc(sd, alb_pushed); 6801 schedstat_inc(sd, alb_pushed);
6802 else 6802 else
6803 schedstat_inc(sd, alb_failed); 6803 schedstat_inc(sd, alb_failed);
6804 } 6804 }
6805 rcu_read_unlock(); 6805 rcu_read_unlock();
6806 double_unlock_balance(busiest_rq, target_rq); 6806 double_unlock_balance(busiest_rq, target_rq);
6807 out_unlock: 6807 out_unlock:
6808 busiest_rq->active_balance = 0; 6808 busiest_rq->active_balance = 0;
6809 raw_spin_unlock_irq(&busiest_rq->lock); 6809 raw_spin_unlock_irq(&busiest_rq->lock);
6810 return 0; 6810 return 0;
6811 } 6811 }
6812 6812
6813 static inline int on_null_domain(struct rq *rq) 6813 static inline int on_null_domain(struct rq *rq)
6814 { 6814 {
6815 return unlikely(!rcu_dereference_sched(rq->sd)); 6815 return unlikely(!rcu_dereference_sched(rq->sd));
6816 } 6816 }
6817 6817
6818 #ifdef CONFIG_NO_HZ_COMMON 6818 #ifdef CONFIG_NO_HZ_COMMON
6819 /* 6819 /*
6820 * idle load balancing details 6820 * idle load balancing details
6821 * - When one of the busy CPUs notice that there may be an idle rebalancing 6821 * - When one of the busy CPUs notice that there may be an idle rebalancing
6822 * needed, they will kick the idle load balancer, which then does idle 6822 * needed, they will kick the idle load balancer, which then does idle
6823 * load balancing for all the idle CPUs. 6823 * load balancing for all the idle CPUs.
6824 */ 6824 */
6825 static struct { 6825 static struct {
6826 cpumask_var_t idle_cpus_mask; 6826 cpumask_var_t idle_cpus_mask;
6827 atomic_t nr_cpus; 6827 atomic_t nr_cpus;
6828 unsigned long next_balance; /* in jiffy units */ 6828 unsigned long next_balance; /* in jiffy units */
6829 } nohz ____cacheline_aligned; 6829 } nohz ____cacheline_aligned;
6830 6830
6831 static inline int find_new_ilb(void) 6831 static inline int find_new_ilb(void)
6832 { 6832 {
6833 int ilb = cpumask_first(nohz.idle_cpus_mask); 6833 int ilb = cpumask_first(nohz.idle_cpus_mask);
6834 6834
6835 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 6835 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6836 return ilb; 6836 return ilb;
6837 6837
6838 return nr_cpu_ids; 6838 return nr_cpu_ids;
6839 } 6839 }
6840 6840
6841 /* 6841 /*
6842 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 6842 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6843 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 6843 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6844 * CPU (if there is one). 6844 * CPU (if there is one).
6845 */ 6845 */
6846 static void nohz_balancer_kick(void) 6846 static void nohz_balancer_kick(void)
6847 { 6847 {
6848 int ilb_cpu; 6848 int ilb_cpu;
6849 6849
6850 nohz.next_balance++; 6850 nohz.next_balance++;
6851 6851
6852 ilb_cpu = find_new_ilb(); 6852 ilb_cpu = find_new_ilb();
6853 6853
6854 if (ilb_cpu >= nr_cpu_ids) 6854 if (ilb_cpu >= nr_cpu_ids)
6855 return; 6855 return;
6856 6856
6857 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 6857 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6858 return; 6858 return;
6859 /* 6859 /*
6860 * Use smp_send_reschedule() instead of resched_cpu(). 6860 * Use smp_send_reschedule() instead of resched_cpu().
6861 * This way we generate a sched IPI on the target cpu which 6861 * This way we generate a sched IPI on the target cpu which
6862 * is idle. And the softirq performing nohz idle load balance 6862 * is idle. And the softirq performing nohz idle load balance
6863 * will be run before returning from the IPI. 6863 * will be run before returning from the IPI.
6864 */ 6864 */
6865 smp_send_reschedule(ilb_cpu); 6865 smp_send_reschedule(ilb_cpu);
6866 return; 6866 return;
6867 } 6867 }
6868 6868
6869 static inline void nohz_balance_exit_idle(int cpu) 6869 static inline void nohz_balance_exit_idle(int cpu)
6870 { 6870 {
6871 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 6871 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6872 /* 6872 /*
6873 * Completely isolated CPUs don't ever set, so we must test. 6873 * Completely isolated CPUs don't ever set, so we must test.
6874 */ 6874 */
6875 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 6875 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6876 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 6876 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6877 atomic_dec(&nohz.nr_cpus); 6877 atomic_dec(&nohz.nr_cpus);
6878 } 6878 }
6879 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 6879 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6880 } 6880 }
6881 } 6881 }
6882 6882
6883 static inline void set_cpu_sd_state_busy(void) 6883 static inline void set_cpu_sd_state_busy(void)
6884 { 6884 {
6885 struct sched_domain *sd; 6885 struct sched_domain *sd;
6886 int cpu = smp_processor_id(); 6886 int cpu = smp_processor_id();
6887 6887
6888 rcu_read_lock(); 6888 rcu_read_lock();
6889 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 6889 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6890 6890
6891 if (!sd || !sd->nohz_idle) 6891 if (!sd || !sd->nohz_idle)
6892 goto unlock; 6892 goto unlock;
6893 sd->nohz_idle = 0; 6893 sd->nohz_idle = 0;
6894 6894
6895 atomic_inc(&sd->groups->sgp->nr_busy_cpus); 6895 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6896 unlock: 6896 unlock:
6897 rcu_read_unlock(); 6897 rcu_read_unlock();
6898 } 6898 }
6899 6899
6900 void set_cpu_sd_state_idle(void) 6900 void set_cpu_sd_state_idle(void)
6901 { 6901 {
6902 struct sched_domain *sd; 6902 struct sched_domain *sd;
6903 int cpu = smp_processor_id(); 6903 int cpu = smp_processor_id();
6904 6904
6905 rcu_read_lock(); 6905 rcu_read_lock();
6906 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 6906 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6907 6907
6908 if (!sd || sd->nohz_idle) 6908 if (!sd || sd->nohz_idle)
6909 goto unlock; 6909 goto unlock;
6910 sd->nohz_idle = 1; 6910 sd->nohz_idle = 1;
6911 6911
6912 atomic_dec(&sd->groups->sgp->nr_busy_cpus); 6912 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6913 unlock: 6913 unlock:
6914 rcu_read_unlock(); 6914 rcu_read_unlock();
6915 } 6915 }
6916 6916
6917 /* 6917 /*
6918 * This routine will record that the cpu is going idle with tick stopped. 6918 * This routine will record that the cpu is going idle with tick stopped.
6919 * This info will be used in performing idle load balancing in the future. 6919 * This info will be used in performing idle load balancing in the future.
6920 */ 6920 */
6921 void nohz_balance_enter_idle(int cpu) 6921 void nohz_balance_enter_idle(int cpu)
6922 { 6922 {
6923 /* 6923 /*
6924 * If this cpu is going down, then nothing needs to be done. 6924 * If this cpu is going down, then nothing needs to be done.
6925 */ 6925 */
6926 if (!cpu_active(cpu)) 6926 if (!cpu_active(cpu))
6927 return; 6927 return;
6928 6928
6929 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 6929 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6930 return; 6930 return;
6931 6931
6932 /* 6932 /*
6933 * If we're a completely isolated CPU, we don't play. 6933 * If we're a completely isolated CPU, we don't play.
6934 */ 6934 */
6935 if (on_null_domain(cpu_rq(cpu))) 6935 if (on_null_domain(cpu_rq(cpu)))
6936 return; 6936 return;
6937 6937
6938 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 6938 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6939 atomic_inc(&nohz.nr_cpus); 6939 atomic_inc(&nohz.nr_cpus);
6940 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 6940 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6941 } 6941 }
6942 6942
6943 static int sched_ilb_notifier(struct notifier_block *nfb, 6943 static int sched_ilb_notifier(struct notifier_block *nfb,
6944 unsigned long action, void *hcpu) 6944 unsigned long action, void *hcpu)
6945 { 6945 {
6946 switch (action & ~CPU_TASKS_FROZEN) { 6946 switch (action & ~CPU_TASKS_FROZEN) {
6947 case CPU_DYING: 6947 case CPU_DYING:
6948 nohz_balance_exit_idle(smp_processor_id()); 6948 nohz_balance_exit_idle(smp_processor_id());
6949 return NOTIFY_OK; 6949 return NOTIFY_OK;
6950 default: 6950 default:
6951 return NOTIFY_DONE; 6951 return NOTIFY_DONE;
6952 } 6952 }
6953 } 6953 }
6954 #endif 6954 #endif
6955 6955
6956 static DEFINE_SPINLOCK(balancing); 6956 static DEFINE_SPINLOCK(balancing);
6957 6957
6958 /* 6958 /*
6959 * Scale the max load_balance interval with the number of CPUs in the system. 6959 * Scale the max load_balance interval with the number of CPUs in the system.
6960 * This trades load-balance latency on larger machines for less cross talk. 6960 * This trades load-balance latency on larger machines for less cross talk.
6961 */ 6961 */
6962 void update_max_interval(void) 6962 void update_max_interval(void)
6963 { 6963 {
6964 max_load_balance_interval = HZ*num_online_cpus()/10; 6964 max_load_balance_interval = HZ*num_online_cpus()/10;
6965 } 6965 }
6966 6966
6967 /* 6967 /*
6968 * It checks each scheduling domain to see if it is due to be balanced, 6968 * It checks each scheduling domain to see if it is due to be balanced,
6969 * and initiates a balancing operation if so. 6969 * and initiates a balancing operation if so.
6970 * 6970 *
6971 * Balancing parameters are set up in init_sched_domains. 6971 * Balancing parameters are set up in init_sched_domains.
6972 */ 6972 */
6973 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 6973 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
6974 { 6974 {
6975 int continue_balancing = 1; 6975 int continue_balancing = 1;
6976 int cpu = rq->cpu; 6976 int cpu = rq->cpu;
6977 unsigned long interval; 6977 unsigned long interval;
6978 struct sched_domain *sd; 6978 struct sched_domain *sd;
6979 /* Earliest time when we have to do rebalance again */ 6979 /* Earliest time when we have to do rebalance again */
6980 unsigned long next_balance = jiffies + 60*HZ; 6980 unsigned long next_balance = jiffies + 60*HZ;
6981 int update_next_balance = 0; 6981 int update_next_balance = 0;
6982 int need_serialize, need_decay = 0; 6982 int need_serialize, need_decay = 0;
6983 u64 max_cost = 0; 6983 u64 max_cost = 0;
6984 6984
6985 update_blocked_averages(cpu); 6985 update_blocked_averages(cpu);
6986 6986
6987 rcu_read_lock(); 6987 rcu_read_lock();
6988 for_each_domain(cpu, sd) { 6988 for_each_domain(cpu, sd) {
6989 /* 6989 /*
6990 * Decay the newidle max times here because this is a regular 6990 * Decay the newidle max times here because this is a regular
6991 * visit to all the domains. Decay ~1% per second. 6991 * visit to all the domains. Decay ~1% per second.
6992 */ 6992 */
6993 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 6993 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6994 sd->max_newidle_lb_cost = 6994 sd->max_newidle_lb_cost =
6995 (sd->max_newidle_lb_cost * 253) / 256; 6995 (sd->max_newidle_lb_cost * 253) / 256;
6996 sd->next_decay_max_lb_cost = jiffies + HZ; 6996 sd->next_decay_max_lb_cost = jiffies + HZ;
6997 need_decay = 1; 6997 need_decay = 1;
6998 } 6998 }
6999 max_cost += sd->max_newidle_lb_cost; 6999 max_cost += sd->max_newidle_lb_cost;
7000 7000
7001 if (!(sd->flags & SD_LOAD_BALANCE)) 7001 if (!(sd->flags & SD_LOAD_BALANCE))
7002 continue; 7002 continue;
7003 7003
7004 /* 7004 /*
7005 * Stop the load balance at this level. There is another 7005 * Stop the load balance at this level. There is another
7006 * CPU in our sched group which is doing load balancing more 7006 * CPU in our sched group which is doing load balancing more
7007 * actively. 7007 * actively.
7008 */ 7008 */
7009 if (!continue_balancing) { 7009 if (!continue_balancing) {
7010 if (need_decay) 7010 if (need_decay)
7011 continue; 7011 continue;
7012 break; 7012 break;
7013 } 7013 }
7014 7014
7015 interval = sd->balance_interval; 7015 interval = sd->balance_interval;
7016 if (idle != CPU_IDLE) 7016 if (idle != CPU_IDLE)
7017 interval *= sd->busy_factor; 7017 interval *= sd->busy_factor;
7018 7018
7019 /* scale ms to jiffies */ 7019 /* scale ms to jiffies */
7020 interval = msecs_to_jiffies(interval); 7020 interval = msecs_to_jiffies(interval);
7021 interval = clamp(interval, 1UL, max_load_balance_interval); 7021 interval = clamp(interval, 1UL, max_load_balance_interval);
7022 7022
7023 need_serialize = sd->flags & SD_SERIALIZE; 7023 need_serialize = sd->flags & SD_SERIALIZE;
7024 7024
7025 if (need_serialize) { 7025 if (need_serialize) {
7026 if (!spin_trylock(&balancing)) 7026 if (!spin_trylock(&balancing))
7027 goto out; 7027 goto out;
7028 } 7028 }
7029 7029
7030 if (time_after_eq(jiffies, sd->last_balance + interval)) { 7030 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7031 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 7031 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7032 /* 7032 /*
7033 * The LBF_DST_PINNED logic could have changed 7033 * The LBF_DST_PINNED logic could have changed
7034 * env->dst_cpu, so we can't know our idle 7034 * env->dst_cpu, so we can't know our idle
7035 * state even if we migrated tasks. Update it. 7035 * state even if we migrated tasks. Update it.
7036 */ 7036 */
7037 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 7037 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7038 } 7038 }
7039 sd->last_balance = jiffies; 7039 sd->last_balance = jiffies;
7040 } 7040 }
7041 if (need_serialize) 7041 if (need_serialize)
7042 spin_unlock(&balancing); 7042 spin_unlock(&balancing);
7043 out: 7043 out:
7044 if (time_after(next_balance, sd->last_balance + interval)) { 7044 if (time_after(next_balance, sd->last_balance + interval)) {
7045 next_balance = sd->last_balance + interval; 7045 next_balance = sd->last_balance + interval;
7046 update_next_balance = 1; 7046 update_next_balance = 1;
7047 } 7047 }
7048 } 7048 }
7049 if (need_decay) { 7049 if (need_decay) {
7050 /* 7050 /*
7051 * Ensure the rq-wide value also decays but keep it at a 7051 * Ensure the rq-wide value also decays but keep it at a
7052 * reasonable floor to avoid funnies with rq->avg_idle. 7052 * reasonable floor to avoid funnies with rq->avg_idle.
7053 */ 7053 */
7054 rq->max_idle_balance_cost = 7054 rq->max_idle_balance_cost =
7055 max((u64)sysctl_sched_migration_cost, max_cost); 7055 max((u64)sysctl_sched_migration_cost, max_cost);
7056 } 7056 }
7057 rcu_read_unlock(); 7057 rcu_read_unlock();
7058 7058
7059 /* 7059 /*
7060 * next_balance will be updated only when there is a need. 7060 * next_balance will be updated only when there is a need.
7061 * When the cpu is attached to null domain for ex, it will not be 7061 * When the cpu is attached to null domain for ex, it will not be
7062 * updated. 7062 * updated.
7063 */ 7063 */
7064 if (likely(update_next_balance)) 7064 if (likely(update_next_balance))
7065 rq->next_balance = next_balance; 7065 rq->next_balance = next_balance;
7066 } 7066 }
7067 7067
7068 #ifdef CONFIG_NO_HZ_COMMON 7068 #ifdef CONFIG_NO_HZ_COMMON
7069 /* 7069 /*
7070 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 7070 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7071 * rebalancing for all the cpus for whom scheduler ticks are stopped. 7071 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7072 */ 7072 */
7073 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 7073 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7074 { 7074 {
7075 int this_cpu = this_rq->cpu; 7075 int this_cpu = this_rq->cpu;
7076 struct rq *rq; 7076 struct rq *rq;
7077 int balance_cpu; 7077 int balance_cpu;
7078 7078
7079 if (idle != CPU_IDLE || 7079 if (idle != CPU_IDLE ||
7080 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 7080 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7081 goto end; 7081 goto end;
7082 7082
7083 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 7083 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7084 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 7084 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7085 continue; 7085 continue;
7086 7086
7087 /* 7087 /*
7088 * If this cpu gets work to do, stop the load balancing 7088 * If this cpu gets work to do, stop the load balancing
7089 * work being done for other cpus. Next load 7089 * work being done for other cpus. Next load
7090 * balancing owner will pick it up. 7090 * balancing owner will pick it up.
7091 */ 7091 */
7092 if (need_resched()) 7092 if (need_resched())
7093 break; 7093 break;
7094 7094
7095 rq = cpu_rq(balance_cpu); 7095 rq = cpu_rq(balance_cpu);
7096 7096
7097 raw_spin_lock_irq(&rq->lock); 7097 raw_spin_lock_irq(&rq->lock);
7098 update_rq_clock(rq); 7098 update_rq_clock(rq);
7099 update_idle_cpu_load(rq); 7099 update_idle_cpu_load(rq);
7100 raw_spin_unlock_irq(&rq->lock); 7100 raw_spin_unlock_irq(&rq->lock);
7101 7101
7102 rebalance_domains(rq, CPU_IDLE); 7102 rebalance_domains(rq, CPU_IDLE);
7103 7103
7104 if (time_after(this_rq->next_balance, rq->next_balance)) 7104 if (time_after(this_rq->next_balance, rq->next_balance))
7105 this_rq->next_balance = rq->next_balance; 7105 this_rq->next_balance = rq->next_balance;
7106 } 7106 }
7107 nohz.next_balance = this_rq->next_balance; 7107 nohz.next_balance = this_rq->next_balance;
7108 end: 7108 end:
7109 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 7109 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7110 } 7110 }
7111 7111
7112 /* 7112 /*
7113 * Current heuristic for kicking the idle load balancer in the presence 7113 * Current heuristic for kicking the idle load balancer in the presence
7114 * of an idle cpu is the system. 7114 * of an idle cpu is the system.
7115 * - This rq has more than one task. 7115 * - This rq has more than one task.
7116 * - At any scheduler domain level, this cpu's scheduler group has multiple 7116 * - At any scheduler domain level, this cpu's scheduler group has multiple
7117 * busy cpu's exceeding the group's power. 7117 * busy cpu's exceeding the group's power.
7118 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 7118 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7119 * domain span are idle. 7119 * domain span are idle.
7120 */ 7120 */
7121 static inline int nohz_kick_needed(struct rq *rq) 7121 static inline int nohz_kick_needed(struct rq *rq)
7122 { 7122 {
7123 unsigned long now = jiffies; 7123 unsigned long now = jiffies;
7124 struct sched_domain *sd; 7124 struct sched_domain *sd;
7125 struct sched_group_power *sgp; 7125 struct sched_group_power *sgp;
7126 int nr_busy, cpu = rq->cpu; 7126 int nr_busy, cpu = rq->cpu;
7127 7127
7128 if (unlikely(rq->idle_balance)) 7128 if (unlikely(rq->idle_balance))
7129 return 0; 7129 return 0;
7130 7130
7131 /* 7131 /*
7132 * We may be recently in ticked or tickless idle mode. At the first 7132 * We may be recently in ticked or tickless idle mode. At the first
7133 * busy tick after returning from idle, we will update the busy stats. 7133 * busy tick after returning from idle, we will update the busy stats.
7134 */ 7134 */
7135 set_cpu_sd_state_busy(); 7135 set_cpu_sd_state_busy();
7136 nohz_balance_exit_idle(cpu); 7136 nohz_balance_exit_idle(cpu);
7137 7137
7138 /* 7138 /*
7139 * None are in tickless mode and hence no need for NOHZ idle load 7139 * None are in tickless mode and hence no need for NOHZ idle load
7140 * balancing. 7140 * balancing.
7141 */ 7141 */
7142 if (likely(!atomic_read(&nohz.nr_cpus))) 7142 if (likely(!atomic_read(&nohz.nr_cpus)))
7143 return 0; 7143 return 0;
7144 7144
7145 if (time_before(now, nohz.next_balance)) 7145 if (time_before(now, nohz.next_balance))
7146 return 0; 7146 return 0;
7147 7147
7148 if (rq->nr_running >= 2) 7148 if (rq->nr_running >= 2)
7149 goto need_kick; 7149 goto need_kick;
7150 7150
7151 rcu_read_lock(); 7151 rcu_read_lock();
7152 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7152 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7153 7153
7154 if (sd) { 7154 if (sd) {
7155 sgp = sd->groups->sgp; 7155 sgp = sd->groups->sgp;
7156 nr_busy = atomic_read(&sgp->nr_busy_cpus); 7156 nr_busy = atomic_read(&sgp->nr_busy_cpus);
7157 7157
7158 if (nr_busy > 1) 7158 if (nr_busy > 1)
7159 goto need_kick_unlock; 7159 goto need_kick_unlock;
7160 } 7160 }
7161 7161
7162 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 7162 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7163 7163
7164 if (sd && (cpumask_first_and(nohz.idle_cpus_mask, 7164 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7165 sched_domain_span(sd)) < cpu)) 7165 sched_domain_span(sd)) < cpu))
7166 goto need_kick_unlock; 7166 goto need_kick_unlock;
7167 7167
7168 rcu_read_unlock(); 7168 rcu_read_unlock();
7169 return 0; 7169 return 0;
7170 7170
7171 need_kick_unlock: 7171 need_kick_unlock:
7172 rcu_read_unlock(); 7172 rcu_read_unlock();
7173 need_kick: 7173 need_kick:
7174 return 1; 7174 return 1;
7175 } 7175 }
7176 #else 7176 #else
7177 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 7177 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7178 #endif 7178 #endif
7179 7179
7180 /* 7180 /*
7181 * run_rebalance_domains is triggered when needed from the scheduler tick. 7181 * run_rebalance_domains is triggered when needed from the scheduler tick.
7182 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 7182 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7183 */ 7183 */
7184 static void run_rebalance_domains(struct softirq_action *h) 7184 static void run_rebalance_domains(struct softirq_action *h)
7185 { 7185 {
7186 struct rq *this_rq = this_rq(); 7186 struct rq *this_rq = this_rq();
7187 enum cpu_idle_type idle = this_rq->idle_balance ? 7187 enum cpu_idle_type idle = this_rq->idle_balance ?
7188 CPU_IDLE : CPU_NOT_IDLE; 7188 CPU_IDLE : CPU_NOT_IDLE;
7189 7189
7190 rebalance_domains(this_rq, idle); 7190 rebalance_domains(this_rq, idle);
7191 7191
7192 /* 7192 /*
7193 * If this cpu has a pending nohz_balance_kick, then do the 7193 * If this cpu has a pending nohz_balance_kick, then do the
7194 * balancing on behalf of the other idle cpus whose ticks are 7194 * balancing on behalf of the other idle cpus whose ticks are
7195 * stopped. 7195 * stopped.
7196 */ 7196 */
7197 nohz_idle_balance(this_rq, idle); 7197 nohz_idle_balance(this_rq, idle);
7198 } 7198 }
7199 7199
7200 /* 7200 /*
7201 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 7201 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7202 */ 7202 */
7203 void trigger_load_balance(struct rq *rq) 7203 void trigger_load_balance(struct rq *rq)
7204 { 7204 {
7205 /* Don't need to rebalance while attached to NULL domain */ 7205 /* Don't need to rebalance while attached to NULL domain */
7206 if (unlikely(on_null_domain(rq))) 7206 if (unlikely(on_null_domain(rq)))
7207 return; 7207 return;
7208 7208
7209 if (time_after_eq(jiffies, rq->next_balance)) 7209 if (time_after_eq(jiffies, rq->next_balance))
7210 raise_softirq(SCHED_SOFTIRQ); 7210 raise_softirq(SCHED_SOFTIRQ);
7211 #ifdef CONFIG_NO_HZ_COMMON 7211 #ifdef CONFIG_NO_HZ_COMMON
7212 if (nohz_kick_needed(rq)) 7212 if (nohz_kick_needed(rq))
7213 nohz_balancer_kick(); 7213 nohz_balancer_kick();
7214 #endif 7214 #endif
7215 } 7215 }
7216 7216
7217 static void rq_online_fair(struct rq *rq) 7217 static void rq_online_fair(struct rq *rq)
7218 { 7218 {
7219 update_sysctl(); 7219 update_sysctl();
7220 } 7220 }
7221 7221
7222 static void rq_offline_fair(struct rq *rq) 7222 static void rq_offline_fair(struct rq *rq)
7223 { 7223 {
7224 update_sysctl(); 7224 update_sysctl();
7225 7225
7226 /* Ensure any throttled groups are reachable by pick_next_task */ 7226 /* Ensure any throttled groups are reachable by pick_next_task */
7227 unthrottle_offline_cfs_rqs(rq); 7227 unthrottle_offline_cfs_rqs(rq);
7228 } 7228 }
7229 7229
7230 #endif /* CONFIG_SMP */ 7230 #endif /* CONFIG_SMP */
7231 7231
7232 /* 7232 /*
7233 * scheduler tick hitting a task of our scheduling class: 7233 * scheduler tick hitting a task of our scheduling class:
7234 */ 7234 */
7235 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 7235 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7236 { 7236 {
7237 struct cfs_rq *cfs_rq; 7237 struct cfs_rq *cfs_rq;
7238 struct sched_entity *se = &curr->se; 7238 struct sched_entity *se = &curr->se;
7239 7239
7240 for_each_sched_entity(se) { 7240 for_each_sched_entity(se) {
7241 cfs_rq = cfs_rq_of(se); 7241 cfs_rq = cfs_rq_of(se);
7242 entity_tick(cfs_rq, se, queued); 7242 entity_tick(cfs_rq, se, queued);
7243 } 7243 }
7244 7244
7245 if (numabalancing_enabled) 7245 if (numabalancing_enabled)
7246 task_tick_numa(rq, curr); 7246 task_tick_numa(rq, curr);
7247 7247
7248 update_rq_runnable_avg(rq, 1); 7248 update_rq_runnable_avg(rq, 1);
7249 } 7249 }
7250 7250
7251 /* 7251 /*
7252 * called on fork with the child task as argument from the parent's context 7252 * called on fork with the child task as argument from the parent's context
7253 * - child not yet on the tasklist 7253 * - child not yet on the tasklist
7254 * - preemption disabled 7254 * - preemption disabled
7255 */ 7255 */
7256 static void task_fork_fair(struct task_struct *p) 7256 static void task_fork_fair(struct task_struct *p)
7257 { 7257 {
7258 struct cfs_rq *cfs_rq; 7258 struct cfs_rq *cfs_rq;
7259 struct sched_entity *se = &p->se, *curr; 7259 struct sched_entity *se = &p->se, *curr;
7260 int this_cpu = smp_processor_id(); 7260 int this_cpu = smp_processor_id();
7261 struct rq *rq = this_rq(); 7261 struct rq *rq = this_rq();
7262 unsigned long flags; 7262 unsigned long flags;
7263 7263
7264 raw_spin_lock_irqsave(&rq->lock, flags); 7264 raw_spin_lock_irqsave(&rq->lock, flags);
7265 7265
7266 update_rq_clock(rq); 7266 update_rq_clock(rq);
7267 7267
7268 cfs_rq = task_cfs_rq(current); 7268 cfs_rq = task_cfs_rq(current);
7269 curr = cfs_rq->curr; 7269 curr = cfs_rq->curr;
7270 7270
7271 /* 7271 /*
7272 * Not only the cpu but also the task_group of the parent might have 7272 * Not only the cpu but also the task_group of the parent might have
7273 * been changed after parent->se.parent,cfs_rq were copied to 7273 * been changed after parent->se.parent,cfs_rq were copied to
7274 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those 7274 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7275 * of child point to valid ones. 7275 * of child point to valid ones.
7276 */ 7276 */
7277 rcu_read_lock(); 7277 rcu_read_lock();
7278 __set_task_cpu(p, this_cpu); 7278 __set_task_cpu(p, this_cpu);
7279 rcu_read_unlock(); 7279 rcu_read_unlock();
7280 7280
7281 update_curr(cfs_rq); 7281 update_curr(cfs_rq);
7282 7282
7283 if (curr) 7283 if (curr)
7284 se->vruntime = curr->vruntime; 7284 se->vruntime = curr->vruntime;
7285 place_entity(cfs_rq, se, 1); 7285 place_entity(cfs_rq, se, 1);
7286 7286
7287 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 7287 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7288 /* 7288 /*
7289 * Upon rescheduling, sched_class::put_prev_task() will place 7289 * Upon rescheduling, sched_class::put_prev_task() will place
7290 * 'current' within the tree based on its new key value. 7290 * 'current' within the tree based on its new key value.
7291 */ 7291 */
7292 swap(curr->vruntime, se->vruntime); 7292 swap(curr->vruntime, se->vruntime);
7293 resched_task(rq->curr); 7293 resched_task(rq->curr);
7294 } 7294 }
7295 7295
7296 se->vruntime -= cfs_rq->min_vruntime; 7296 se->vruntime -= cfs_rq->min_vruntime;
7297 7297
7298 raw_spin_unlock_irqrestore(&rq->lock, flags); 7298 raw_spin_unlock_irqrestore(&rq->lock, flags);
7299 } 7299 }
7300 7300
7301 /* 7301 /*
7302 * Priority of the task has changed. Check to see if we preempt 7302 * Priority of the task has changed. Check to see if we preempt
7303 * the current task. 7303 * the current task.
7304 */ 7304 */
7305 static void 7305 static void
7306 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 7306 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7307 { 7307 {
7308 if (!p->se.on_rq) 7308 if (!p->se.on_rq)
7309 return; 7309 return;
7310 7310
7311 /* 7311 /*
7312 * Reschedule if we are currently running on this runqueue and 7312 * Reschedule if we are currently running on this runqueue and
7313 * our priority decreased, or if we are not currently running on 7313 * our priority decreased, or if we are not currently running on
7314 * this runqueue and our priority is higher than the current's 7314 * this runqueue and our priority is higher than the current's
7315 */ 7315 */
7316 if (rq->curr == p) { 7316 if (rq->curr == p) {
7317 if (p->prio > oldprio) 7317 if (p->prio > oldprio)
7318 resched_task(rq->curr); 7318 resched_task(rq->curr);
7319 } else 7319 } else
7320 check_preempt_curr(rq, p, 0); 7320 check_preempt_curr(rq, p, 0);
7321 } 7321 }
7322 7322
7323 static void switched_from_fair(struct rq *rq, struct task_struct *p) 7323 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7324 { 7324 {
7325 struct sched_entity *se = &p->se; 7325 struct sched_entity *se = &p->se;
7326 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7326 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7327 7327
7328 /* 7328 /*
7329 * Ensure the task's vruntime is normalized, so that when it's 7329 * Ensure the task's vruntime is normalized, so that when it's
7330 * switched back to the fair class the enqueue_entity(.flags=0) will 7330 * switched back to the fair class the enqueue_entity(.flags=0) will
7331 * do the right thing. 7331 * do the right thing.
7332 * 7332 *
7333 * If it's on_rq, then the dequeue_entity(.flags=0) will already 7333 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7334 * have normalized the vruntime, if it's !on_rq, then only when 7334 * have normalized the vruntime, if it's !on_rq, then only when
7335 * the task is sleeping will it still have non-normalized vruntime. 7335 * the task is sleeping will it still have non-normalized vruntime.
7336 */ 7336 */
7337 if (!p->on_rq && p->state != TASK_RUNNING) { 7337 if (!p->on_rq && p->state != TASK_RUNNING) {
7338 /* 7338 /*
7339 * Fix up our vruntime so that the current sleep doesn't 7339 * Fix up our vruntime so that the current sleep doesn't
7340 * cause 'unlimited' sleep bonus. 7340 * cause 'unlimited' sleep bonus.
7341 */ 7341 */
7342 place_entity(cfs_rq, se, 0); 7342 place_entity(cfs_rq, se, 0);
7343 se->vruntime -= cfs_rq->min_vruntime; 7343 se->vruntime -= cfs_rq->min_vruntime;
7344 } 7344 }
7345 7345
7346 #ifdef CONFIG_SMP 7346 #ifdef CONFIG_SMP
7347 /* 7347 /*
7348 * Remove our load from contribution when we leave sched_fair 7348 * Remove our load from contribution when we leave sched_fair
7349 * and ensure we don't carry in an old decay_count if we 7349 * and ensure we don't carry in an old decay_count if we
7350 * switch back. 7350 * switch back.
7351 */ 7351 */
7352 if (se->avg.decay_count) { 7352 if (se->avg.decay_count) {
7353 __synchronize_entity_decay(se); 7353 __synchronize_entity_decay(se);
7354 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 7354 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7355 } 7355 }
7356 #endif 7356 #endif
7357 } 7357 }
7358 7358
7359 /* 7359 /*
7360 * We switched to the sched_fair class. 7360 * We switched to the sched_fair class.
7361 */ 7361 */
7362 static void switched_to_fair(struct rq *rq, struct task_struct *p) 7362 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7363 { 7363 {
7364 struct sched_entity *se = &p->se; 7364 struct sched_entity *se = &p->se;
7365 #ifdef CONFIG_FAIR_GROUP_SCHED 7365 #ifdef CONFIG_FAIR_GROUP_SCHED
7366 /* 7366 /*
7367 * Since the real-depth could have been changed (only FAIR 7367 * Since the real-depth could have been changed (only FAIR
7368 * class maintain depth value), reset depth properly. 7368 * class maintain depth value), reset depth properly.
7369 */ 7369 */
7370 se->depth = se->parent ? se->parent->depth + 1 : 0; 7370 se->depth = se->parent ? se->parent->depth + 1 : 0;
7371 #endif 7371 #endif
7372 if (!se->on_rq) 7372 if (!se->on_rq)
7373 return; 7373 return;
7374 7374
7375 /* 7375 /*
7376 * We were most likely switched from sched_rt, so 7376 * We were most likely switched from sched_rt, so
7377 * kick off the schedule if running, otherwise just see 7377 * kick off the schedule if running, otherwise just see
7378 * if we can still preempt the current task. 7378 * if we can still preempt the current task.
7379 */ 7379 */
7380 if (rq->curr == p) 7380 if (rq->curr == p)
7381 resched_task(rq->curr); 7381 resched_task(rq->curr);
7382 else 7382 else
7383 check_preempt_curr(rq, p, 0); 7383 check_preempt_curr(rq, p, 0);
7384 } 7384 }
7385 7385
7386 /* Account for a task changing its policy or group. 7386 /* Account for a task changing its policy or group.
7387 * 7387 *
7388 * This routine is mostly called to set cfs_rq->curr field when a task 7388 * This routine is mostly called to set cfs_rq->curr field when a task
7389 * migrates between groups/classes. 7389 * migrates between groups/classes.
7390 */ 7390 */
7391 static void set_curr_task_fair(struct rq *rq) 7391 static void set_curr_task_fair(struct rq *rq)
7392 { 7392 {
7393 struct sched_entity *se = &rq->curr->se; 7393 struct sched_entity *se = &rq->curr->se;
7394 7394
7395 for_each_sched_entity(se) { 7395 for_each_sched_entity(se) {
7396 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7396 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7397 7397
7398 set_next_entity(cfs_rq, se); 7398 set_next_entity(cfs_rq, se);
7399 /* ensure bandwidth has been allocated on our new cfs_rq */ 7399 /* ensure bandwidth has been allocated on our new cfs_rq */
7400 account_cfs_rq_runtime(cfs_rq, 0); 7400 account_cfs_rq_runtime(cfs_rq, 0);
7401 } 7401 }
7402 } 7402 }
7403 7403
7404 void init_cfs_rq(struct cfs_rq *cfs_rq) 7404 void init_cfs_rq(struct cfs_rq *cfs_rq)
7405 { 7405 {
7406 cfs_rq->tasks_timeline = RB_ROOT; 7406 cfs_rq->tasks_timeline = RB_ROOT;
7407 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 7407 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7408 #ifndef CONFIG_64BIT 7408 #ifndef CONFIG_64BIT
7409 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 7409 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7410 #endif 7410 #endif
7411 #ifdef CONFIG_SMP 7411 #ifdef CONFIG_SMP
7412 atomic64_set(&cfs_rq->decay_counter, 1); 7412 atomic64_set(&cfs_rq->decay_counter, 1);
7413 atomic_long_set(&cfs_rq->removed_load, 0); 7413 atomic_long_set(&cfs_rq->removed_load, 0);
7414 #endif 7414 #endif
7415 } 7415 }
7416 7416
7417 #ifdef CONFIG_FAIR_GROUP_SCHED 7417 #ifdef CONFIG_FAIR_GROUP_SCHED
7418 static void task_move_group_fair(struct task_struct *p, int on_rq) 7418 static void task_move_group_fair(struct task_struct *p, int on_rq)
7419 { 7419 {
7420 struct sched_entity *se = &p->se; 7420 struct sched_entity *se = &p->se;
7421 struct cfs_rq *cfs_rq; 7421 struct cfs_rq *cfs_rq;
7422 7422
7423 /* 7423 /*
7424 * If the task was not on the rq at the time of this cgroup movement 7424 * If the task was not on the rq at the time of this cgroup movement
7425 * it must have been asleep, sleeping tasks keep their ->vruntime 7425 * it must have been asleep, sleeping tasks keep their ->vruntime
7426 * absolute on their old rq until wakeup (needed for the fair sleeper 7426 * absolute on their old rq until wakeup (needed for the fair sleeper
7427 * bonus in place_entity()). 7427 * bonus in place_entity()).
7428 * 7428 *
7429 * If it was on the rq, we've just 'preempted' it, which does convert 7429 * If it was on the rq, we've just 'preempted' it, which does convert
7430 * ->vruntime to a relative base. 7430 * ->vruntime to a relative base.
7431 * 7431 *
7432 * Make sure both cases convert their relative position when migrating 7432 * Make sure both cases convert their relative position when migrating
7433 * to another cgroup's rq. This does somewhat interfere with the 7433 * to another cgroup's rq. This does somewhat interfere with the
7434 * fair sleeper stuff for the first placement, but who cares. 7434 * fair sleeper stuff for the first placement, but who cares.
7435 */ 7435 */
7436 /* 7436 /*
7437 * When !on_rq, vruntime of the task has usually NOT been normalized. 7437 * When !on_rq, vruntime of the task has usually NOT been normalized.
7438 * But there are some cases where it has already been normalized: 7438 * But there are some cases where it has already been normalized:
7439 * 7439 *
7440 * - Moving a forked child which is waiting for being woken up by 7440 * - Moving a forked child which is waiting for being woken up by
7441 * wake_up_new_task(). 7441 * wake_up_new_task().
7442 * - Moving a task which has been woken up by try_to_wake_up() and 7442 * - Moving a task which has been woken up by try_to_wake_up() and
7443 * waiting for actually being woken up by sched_ttwu_pending(). 7443 * waiting for actually being woken up by sched_ttwu_pending().
7444 * 7444 *
7445 * To prevent boost or penalty in the new cfs_rq caused by delta 7445 * To prevent boost or penalty in the new cfs_rq caused by delta
7446 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. 7446 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7447 */ 7447 */
7448 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING)) 7448 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7449 on_rq = 1; 7449 on_rq = 1;
7450 7450
7451 if (!on_rq) 7451 if (!on_rq)
7452 se->vruntime -= cfs_rq_of(se)->min_vruntime; 7452 se->vruntime -= cfs_rq_of(se)->min_vruntime;
7453 set_task_rq(p, task_cpu(p)); 7453 set_task_rq(p, task_cpu(p));
7454 se->depth = se->parent ? se->parent->depth + 1 : 0; 7454 se->depth = se->parent ? se->parent->depth + 1 : 0;
7455 if (!on_rq) { 7455 if (!on_rq) {
7456 cfs_rq = cfs_rq_of(se); 7456 cfs_rq = cfs_rq_of(se);
7457 se->vruntime += cfs_rq->min_vruntime; 7457 se->vruntime += cfs_rq->min_vruntime;
7458 #ifdef CONFIG_SMP 7458 #ifdef CONFIG_SMP
7459 /* 7459 /*
7460 * migrate_task_rq_fair() will have removed our previous 7460 * migrate_task_rq_fair() will have removed our previous
7461 * contribution, but we must synchronize for ongoing future 7461 * contribution, but we must synchronize for ongoing future
7462 * decay. 7462 * decay.
7463 */ 7463 */
7464 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 7464 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7465 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 7465 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7466 #endif 7466 #endif
7467 } 7467 }
7468 } 7468 }
7469 7469
7470 void free_fair_sched_group(struct task_group *tg) 7470 void free_fair_sched_group(struct task_group *tg)
7471 { 7471 {
7472 int i; 7472 int i;
7473 7473
7474 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 7474 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7475 7475
7476 for_each_possible_cpu(i) { 7476 for_each_possible_cpu(i) {
7477 if (tg->cfs_rq) 7477 if (tg->cfs_rq)
7478 kfree(tg->cfs_rq[i]); 7478 kfree(tg->cfs_rq[i]);
7479 if (tg->se) 7479 if (tg->se)
7480 kfree(tg->se[i]); 7480 kfree(tg->se[i]);
7481 } 7481 }
7482 7482
7483 kfree(tg->cfs_rq); 7483 kfree(tg->cfs_rq);
7484 kfree(tg->se); 7484 kfree(tg->se);
7485 } 7485 }
7486 7486
7487 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 7487 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7488 { 7488 {
7489 struct cfs_rq *cfs_rq; 7489 struct cfs_rq *cfs_rq;
7490 struct sched_entity *se; 7490 struct sched_entity *se;
7491 int i; 7491 int i;
7492 7492
7493 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 7493 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7494 if (!tg->cfs_rq) 7494 if (!tg->cfs_rq)
7495 goto err; 7495 goto err;
7496 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 7496 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7497 if (!tg->se) 7497 if (!tg->se)
7498 goto err; 7498 goto err;
7499 7499
7500 tg->shares = NICE_0_LOAD; 7500 tg->shares = NICE_0_LOAD;
7501 7501
7502 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 7502 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7503 7503
7504 for_each_possible_cpu(i) { 7504 for_each_possible_cpu(i) {
7505 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 7505 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7506 GFP_KERNEL, cpu_to_node(i)); 7506 GFP_KERNEL, cpu_to_node(i));
7507 if (!cfs_rq) 7507 if (!cfs_rq)
7508 goto err; 7508 goto err;
7509 7509
7510 se = kzalloc_node(sizeof(struct sched_entity), 7510 se = kzalloc_node(sizeof(struct sched_entity),
7511 GFP_KERNEL, cpu_to_node(i)); 7511 GFP_KERNEL, cpu_to_node(i));
7512 if (!se) 7512 if (!se)
7513 goto err_free_rq; 7513 goto err_free_rq;
7514 7514
7515 init_cfs_rq(cfs_rq); 7515 init_cfs_rq(cfs_rq);
7516 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 7516 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7517 } 7517 }
7518 7518
7519 return 1; 7519 return 1;
7520 7520
7521 err_free_rq: 7521 err_free_rq:
7522 kfree(cfs_rq); 7522 kfree(cfs_rq);
7523 err: 7523 err:
7524 return 0; 7524 return 0;
7525 } 7525 }
7526 7526
7527 void unregister_fair_sched_group(struct task_group *tg, int cpu) 7527 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7528 { 7528 {
7529 struct rq *rq = cpu_rq(cpu); 7529 struct rq *rq = cpu_rq(cpu);
7530 unsigned long flags; 7530 unsigned long flags;
7531 7531
7532 /* 7532 /*
7533 * Only empty task groups can be destroyed; so we can speculatively 7533 * Only empty task groups can be destroyed; so we can speculatively
7534 * check on_list without danger of it being re-added. 7534 * check on_list without danger of it being re-added.
7535 */ 7535 */
7536 if (!tg->cfs_rq[cpu]->on_list) 7536 if (!tg->cfs_rq[cpu]->on_list)
7537 return; 7537 return;
7538 7538
7539 raw_spin_lock_irqsave(&rq->lock, flags); 7539 raw_spin_lock_irqsave(&rq->lock, flags);
7540 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 7540 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7541 raw_spin_unlock_irqrestore(&rq->lock, flags); 7541 raw_spin_unlock_irqrestore(&rq->lock, flags);
7542 } 7542 }
7543 7543
7544 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 7544 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7545 struct sched_entity *se, int cpu, 7545 struct sched_entity *se, int cpu,
7546 struct sched_entity *parent) 7546 struct sched_entity *parent)
7547 { 7547 {
7548 struct rq *rq = cpu_rq(cpu); 7548 struct rq *rq = cpu_rq(cpu);
7549 7549
7550 cfs_rq->tg = tg; 7550 cfs_rq->tg = tg;
7551 cfs_rq->rq = rq; 7551 cfs_rq->rq = rq;
7552 init_cfs_rq_runtime(cfs_rq); 7552 init_cfs_rq_runtime(cfs_rq);
7553 7553
7554 tg->cfs_rq[cpu] = cfs_rq; 7554 tg->cfs_rq[cpu] = cfs_rq;
7555 tg->se[cpu] = se; 7555 tg->se[cpu] = se;
7556 7556
7557 /* se could be NULL for root_task_group */ 7557 /* se could be NULL for root_task_group */
7558 if (!se) 7558 if (!se)
7559 return; 7559 return;
7560 7560
7561 if (!parent) { 7561 if (!parent) {
7562 se->cfs_rq = &rq->cfs; 7562 se->cfs_rq = &rq->cfs;
7563 se->depth = 0; 7563 se->depth = 0;
7564 } else { 7564 } else {
7565 se->cfs_rq = parent->my_q; 7565 se->cfs_rq = parent->my_q;
7566 se->depth = parent->depth + 1; 7566 se->depth = parent->depth + 1;
7567 } 7567 }
7568 7568
7569 se->my_q = cfs_rq; 7569 se->my_q = cfs_rq;
7570 /* guarantee group entities always have weight */ 7570 /* guarantee group entities always have weight */
7571 update_load_set(&se->load, NICE_0_LOAD); 7571 update_load_set(&se->load, NICE_0_LOAD);
7572 se->parent = parent; 7572 se->parent = parent;
7573 } 7573 }
7574 7574
7575 static DEFINE_MUTEX(shares_mutex); 7575 static DEFINE_MUTEX(shares_mutex);
7576 7576
7577 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 7577 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7578 { 7578 {
7579 int i; 7579 int i;
7580 unsigned long flags; 7580 unsigned long flags;
7581 7581
7582 /* 7582 /*
7583 * We can't change the weight of the root cgroup. 7583 * We can't change the weight of the root cgroup.
7584 */ 7584 */
7585 if (!tg->se[0]) 7585 if (!tg->se[0])
7586 return -EINVAL; 7586 return -EINVAL;
7587 7587
7588 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 7588 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7589 7589
7590 mutex_lock(&shares_mutex); 7590 mutex_lock(&shares_mutex);
7591 if (tg->shares == shares) 7591 if (tg->shares == shares)
7592 goto done; 7592 goto done;
7593 7593
7594 tg->shares = shares; 7594 tg->shares = shares;
7595 for_each_possible_cpu(i) { 7595 for_each_possible_cpu(i) {
7596 struct rq *rq = cpu_rq(i); 7596 struct rq *rq = cpu_rq(i);
7597 struct sched_entity *se; 7597 struct sched_entity *se;
7598 7598
7599 se = tg->se[i]; 7599 se = tg->se[i];
7600 /* Propagate contribution to hierarchy */ 7600 /* Propagate contribution to hierarchy */
7601 raw_spin_lock_irqsave(&rq->lock, flags); 7601 raw_spin_lock_irqsave(&rq->lock, flags);
7602 7602
7603 /* Possible calls to update_curr() need rq clock */ 7603 /* Possible calls to update_curr() need rq clock */
7604 update_rq_clock(rq); 7604 update_rq_clock(rq);
7605 for_each_sched_entity(se) 7605 for_each_sched_entity(se)
7606 update_cfs_shares(group_cfs_rq(se)); 7606 update_cfs_shares(group_cfs_rq(se));
7607 raw_spin_unlock_irqrestore(&rq->lock, flags); 7607 raw_spin_unlock_irqrestore(&rq->lock, flags);
7608 } 7608 }
7609 7609
7610 done: 7610 done:
7611 mutex_unlock(&shares_mutex); 7611 mutex_unlock(&shares_mutex);
7612 return 0; 7612 return 0;
7613 } 7613 }
7614 #else /* CONFIG_FAIR_GROUP_SCHED */ 7614 #else /* CONFIG_FAIR_GROUP_SCHED */
7615 7615
7616 void free_fair_sched_group(struct task_group *tg) { } 7616 void free_fair_sched_group(struct task_group *tg) { }
7617 7617
7618 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 7618 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7619 { 7619 {
7620 return 1; 7620 return 1;
7621 } 7621 }
7622 7622
7623 void unregister_fair_sched_group(struct task_group *tg, int cpu) { } 7623 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7624 7624
7625 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7625 #endif /* CONFIG_FAIR_GROUP_SCHED */
7626 7626
7627 7627
7628 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 7628 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7629 { 7629 {
7630 struct sched_entity *se = &task->se; 7630 struct sched_entity *se = &task->se;
7631 unsigned int rr_interval = 0; 7631 unsigned int rr_interval = 0;
7632 7632
7633 /* 7633 /*
7634 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 7634 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7635 * idle runqueue: 7635 * idle runqueue:
7636 */ 7636 */
7637 if (rq->cfs.load.weight) 7637 if (rq->cfs.load.weight)
7638 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 7638 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7639 7639
7640 return rr_interval; 7640 return rr_interval;
7641 } 7641 }
7642 7642
7643 /* 7643 /*
7644 * All the scheduling class methods: 7644 * All the scheduling class methods:
7645 */ 7645 */
7646 const struct sched_class fair_sched_class = { 7646 const struct sched_class fair_sched_class = {
7647 .next = &idle_sched_class, 7647 .next = &idle_sched_class,
7648 .enqueue_task = enqueue_task_fair, 7648 .enqueue_task = enqueue_task_fair,
7649 .dequeue_task = dequeue_task_fair, 7649 .dequeue_task = dequeue_task_fair,
7650 .yield_task = yield_task_fair, 7650 .yield_task = yield_task_fair,
7651 .yield_to_task = yield_to_task_fair, 7651 .yield_to_task = yield_to_task_fair,
7652 7652
7653 .check_preempt_curr = check_preempt_wakeup, 7653 .check_preempt_curr = check_preempt_wakeup,
7654 7654
7655 .pick_next_task = pick_next_task_fair, 7655 .pick_next_task = pick_next_task_fair,
7656 .put_prev_task = put_prev_task_fair, 7656 .put_prev_task = put_prev_task_fair,
7657 7657
7658 #ifdef CONFIG_SMP 7658 #ifdef CONFIG_SMP
7659 .select_task_rq = select_task_rq_fair, 7659 .select_task_rq = select_task_rq_fair,
7660 .migrate_task_rq = migrate_task_rq_fair, 7660 .migrate_task_rq = migrate_task_rq_fair,
7661 7661
7662 .rq_online = rq_online_fair, 7662 .rq_online = rq_online_fair,
7663 .rq_offline = rq_offline_fair, 7663 .rq_offline = rq_offline_fair,
7664 7664
7665 .task_waking = task_waking_fair, 7665 .task_waking = task_waking_fair,
7666 #endif 7666 #endif
7667 7667
7668 .set_curr_task = set_curr_task_fair, 7668 .set_curr_task = set_curr_task_fair,
7669 .task_tick = task_tick_fair, 7669 .task_tick = task_tick_fair,
7670 .task_fork = task_fork_fair, 7670 .task_fork = task_fork_fair,
7671 7671
7672 .prio_changed = prio_changed_fair, 7672 .prio_changed = prio_changed_fair,
7673 .switched_from = switched_from_fair, 7673 .switched_from = switched_from_fair,
7674 .switched_to = switched_to_fair, 7674 .switched_to = switched_to_fair,
7675 7675
7676 .get_rr_interval = get_rr_interval_fair, 7676 .get_rr_interval = get_rr_interval_fair,
7677 7677
7678 #ifdef CONFIG_FAIR_GROUP_SCHED 7678 #ifdef CONFIG_FAIR_GROUP_SCHED
7679 .task_move_group = task_move_group_fair, 7679 .task_move_group = task_move_group_fair,
7680 #endif 7680 #endif
7681 }; 7681 };
7682 7682
7683 #ifdef CONFIG_SCHED_DEBUG 7683 #ifdef CONFIG_SCHED_DEBUG
7684 void print_cfs_stats(struct seq_file *m, int cpu) 7684 void print_cfs_stats(struct seq_file *m, int cpu)
7685 { 7685 {
7686 struct cfs_rq *cfs_rq; 7686 struct cfs_rq *cfs_rq;
7687 7687
7688 rcu_read_lock(); 7688 rcu_read_lock();
7689 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 7689 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7690 print_cfs_rq(m, cpu, cfs_rq); 7690 print_cfs_rq(m, cpu, cfs_rq);
7691 rcu_read_unlock(); 7691 rcu_read_unlock();
7692 } 7692 }
7693 #endif 7693 #endif
7694 7694
7695 __init void init_sched_fair_class(void) 7695 __init void init_sched_fair_class(void)
7696 { 7696 {
7697 #ifdef CONFIG_SMP 7697 #ifdef CONFIG_SMP
7698 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 7698 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7699 7699
7700 #ifdef CONFIG_NO_HZ_COMMON 7700 #ifdef CONFIG_NO_HZ_COMMON
7701 nohz.next_balance = jiffies; 7701 nohz.next_balance = jiffies;
7702 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 7702 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7703 cpu_notifier(sched_ilb_notifier, 0); 7703 cpu_notifier(sched_ilb_notifier, 0);
7704 #endif 7704 #endif
7705 #endif /* SMP */ 7705 #endif /* SMP */
7706 7706
7707 } 7707 }
7708 7708
kernel/sched/sched.h
1 1
2 #include <linux/sched.h> 2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h> 3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h> 4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h> 5 #include <linux/sched/deadline.h>
6 #include <linux/mutex.h> 6 #include <linux/mutex.h>
7 #include <linux/spinlock.h> 7 #include <linux/spinlock.h>
8 #include <linux/stop_machine.h> 8 #include <linux/stop_machine.h>
9 #include <linux/tick.h> 9 #include <linux/tick.h>
10 #include <linux/slab.h> 10 #include <linux/slab.h>
11 11
12 #include "cpupri.h" 12 #include "cpupri.h"
13 #include "cpudeadline.h" 13 #include "cpudeadline.h"
14 #include "cpuacct.h" 14 #include "cpuacct.h"
15 15
16 struct rq; 16 struct rq;
17 17
18 extern __read_mostly int scheduler_running; 18 extern __read_mostly int scheduler_running;
19 19
20 extern unsigned long calc_load_update; 20 extern unsigned long calc_load_update;
21 extern atomic_long_t calc_load_tasks; 21 extern atomic_long_t calc_load_tasks;
22 22
23 extern long calc_load_fold_active(struct rq *this_rq); 23 extern long calc_load_fold_active(struct rq *this_rq);
24 extern void update_cpu_load_active(struct rq *this_rq); 24 extern void update_cpu_load_active(struct rq *this_rq);
25 25
26 /* 26 /*
27 * Helpers for converting nanosecond timing to jiffy resolution 27 * Helpers for converting nanosecond timing to jiffy resolution
28 */ 28 */
29 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 29 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
30 30
31 /* 31 /*
32 * Increase resolution of nice-level calculations for 64-bit architectures. 32 * Increase resolution of nice-level calculations for 64-bit architectures.
33 * The extra resolution improves shares distribution and load balancing of 33 * The extra resolution improves shares distribution and load balancing of
34 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 34 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
35 * hierarchies, especially on larger systems. This is not a user-visible change 35 * hierarchies, especially on larger systems. This is not a user-visible change
36 * and does not change the user-interface for setting shares/weights. 36 * and does not change the user-interface for setting shares/weights.
37 * 37 *
38 * We increase resolution only if we have enough bits to allow this increased 38 * We increase resolution only if we have enough bits to allow this increased
39 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 39 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
40 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 40 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
41 * increased costs. 41 * increased costs.
42 */ 42 */
43 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 43 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
44 # define SCHED_LOAD_RESOLUTION 10 44 # define SCHED_LOAD_RESOLUTION 10
45 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 45 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
46 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 46 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
47 #else 47 #else
48 # define SCHED_LOAD_RESOLUTION 0 48 # define SCHED_LOAD_RESOLUTION 0
49 # define scale_load(w) (w) 49 # define scale_load(w) (w)
50 # define scale_load_down(w) (w) 50 # define scale_load_down(w) (w)
51 #endif 51 #endif
52 52
53 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 53 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
54 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 54 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
55 55
56 #define NICE_0_LOAD SCHED_LOAD_SCALE 56 #define NICE_0_LOAD SCHED_LOAD_SCALE
57 #define NICE_0_SHIFT SCHED_LOAD_SHIFT 57 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
58 58
59 /* 59 /*
60 * Single value that decides SCHED_DEADLINE internal math precision. 60 * Single value that decides SCHED_DEADLINE internal math precision.
61 * 10 -> just above 1us 61 * 10 -> just above 1us
62 * 9 -> just above 0.5us 62 * 9 -> just above 0.5us
63 */ 63 */
64 #define DL_SCALE (10) 64 #define DL_SCALE (10)
65 65
66 /* 66 /*
67 * These are the 'tuning knobs' of the scheduler: 67 * These are the 'tuning knobs' of the scheduler:
68 */ 68 */
69 69
70 /* 70 /*
71 * single value that denotes runtime == period, ie unlimited time. 71 * single value that denotes runtime == period, ie unlimited time.
72 */ 72 */
73 #define RUNTIME_INF ((u64)~0ULL) 73 #define RUNTIME_INF ((u64)~0ULL)
74 74
75 static inline int fair_policy(int policy) 75 static inline int fair_policy(int policy)
76 { 76 {
77 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 77 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
78 } 78 }
79 79
80 static inline int rt_policy(int policy) 80 static inline int rt_policy(int policy)
81 { 81 {
82 return policy == SCHED_FIFO || policy == SCHED_RR; 82 return policy == SCHED_FIFO || policy == SCHED_RR;
83 } 83 }
84 84
85 static inline int dl_policy(int policy) 85 static inline int dl_policy(int policy)
86 { 86 {
87 return policy == SCHED_DEADLINE; 87 return policy == SCHED_DEADLINE;
88 } 88 }
89 89
90 static inline int task_has_rt_policy(struct task_struct *p) 90 static inline int task_has_rt_policy(struct task_struct *p)
91 { 91 {
92 return rt_policy(p->policy); 92 return rt_policy(p->policy);
93 } 93 }
94 94
95 static inline int task_has_dl_policy(struct task_struct *p) 95 static inline int task_has_dl_policy(struct task_struct *p)
96 { 96 {
97 return dl_policy(p->policy); 97 return dl_policy(p->policy);
98 } 98 }
99 99
100 static inline bool dl_time_before(u64 a, u64 b) 100 static inline bool dl_time_before(u64 a, u64 b)
101 { 101 {
102 return (s64)(a - b) < 0; 102 return (s64)(a - b) < 0;
103 } 103 }
104 104
105 /* 105 /*
106 * Tells if entity @a should preempt entity @b. 106 * Tells if entity @a should preempt entity @b.
107 */ 107 */
108 static inline bool 108 static inline bool
109 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 109 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
110 { 110 {
111 return dl_time_before(a->deadline, b->deadline); 111 return dl_time_before(a->deadline, b->deadline);
112 } 112 }
113 113
114 /* 114 /*
115 * This is the priority-queue data structure of the RT scheduling class: 115 * This is the priority-queue data structure of the RT scheduling class:
116 */ 116 */
117 struct rt_prio_array { 117 struct rt_prio_array {
118 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 118 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
119 struct list_head queue[MAX_RT_PRIO]; 119 struct list_head queue[MAX_RT_PRIO];
120 }; 120 };
121 121
122 struct rt_bandwidth { 122 struct rt_bandwidth {
123 /* nests inside the rq lock: */ 123 /* nests inside the rq lock: */
124 raw_spinlock_t rt_runtime_lock; 124 raw_spinlock_t rt_runtime_lock;
125 ktime_t rt_period; 125 ktime_t rt_period;
126 u64 rt_runtime; 126 u64 rt_runtime;
127 struct hrtimer rt_period_timer; 127 struct hrtimer rt_period_timer;
128 }; 128 };
129 /* 129 /*
130 * To keep the bandwidth of -deadline tasks and groups under control 130 * To keep the bandwidth of -deadline tasks and groups under control
131 * we need some place where: 131 * we need some place where:
132 * - store the maximum -deadline bandwidth of the system (the group); 132 * - store the maximum -deadline bandwidth of the system (the group);
133 * - cache the fraction of that bandwidth that is currently allocated. 133 * - cache the fraction of that bandwidth that is currently allocated.
134 * 134 *
135 * This is all done in the data structure below. It is similar to the 135 * This is all done in the data structure below. It is similar to the
136 * one used for RT-throttling (rt_bandwidth), with the main difference 136 * one used for RT-throttling (rt_bandwidth), with the main difference
137 * that, since here we are only interested in admission control, we 137 * that, since here we are only interested in admission control, we
138 * do not decrease any runtime while the group "executes", neither we 138 * do not decrease any runtime while the group "executes", neither we
139 * need a timer to replenish it. 139 * need a timer to replenish it.
140 * 140 *
141 * With respect to SMP, the bandwidth is given on a per-CPU basis, 141 * With respect to SMP, the bandwidth is given on a per-CPU basis,
142 * meaning that: 142 * meaning that:
143 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; 143 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
144 * - dl_total_bw array contains, in the i-eth element, the currently 144 * - dl_total_bw array contains, in the i-eth element, the currently
145 * allocated bandwidth on the i-eth CPU. 145 * allocated bandwidth on the i-eth CPU.
146 * Moreover, groups consume bandwidth on each CPU, while tasks only 146 * Moreover, groups consume bandwidth on each CPU, while tasks only
147 * consume bandwidth on the CPU they're running on. 147 * consume bandwidth on the CPU they're running on.
148 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw 148 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
149 * that will be shown the next time the proc or cgroup controls will 149 * that will be shown the next time the proc or cgroup controls will
150 * be red. It on its turn can be changed by writing on its own 150 * be red. It on its turn can be changed by writing on its own
151 * control. 151 * control.
152 */ 152 */
153 struct dl_bandwidth { 153 struct dl_bandwidth {
154 raw_spinlock_t dl_runtime_lock; 154 raw_spinlock_t dl_runtime_lock;
155 u64 dl_runtime; 155 u64 dl_runtime;
156 u64 dl_period; 156 u64 dl_period;
157 }; 157 };
158 158
159 static inline int dl_bandwidth_enabled(void) 159 static inline int dl_bandwidth_enabled(void)
160 { 160 {
161 return sysctl_sched_rt_runtime >= 0; 161 return sysctl_sched_rt_runtime >= 0;
162 } 162 }
163 163
164 extern struct dl_bw *dl_bw_of(int i); 164 extern struct dl_bw *dl_bw_of(int i);
165 165
166 struct dl_bw { 166 struct dl_bw {
167 raw_spinlock_t lock; 167 raw_spinlock_t lock;
168 u64 bw, total_bw; 168 u64 bw, total_bw;
169 }; 169 };
170 170
171 extern struct mutex sched_domains_mutex; 171 extern struct mutex sched_domains_mutex;
172 172
173 #ifdef CONFIG_CGROUP_SCHED 173 #ifdef CONFIG_CGROUP_SCHED
174 174
175 #include <linux/cgroup.h> 175 #include <linux/cgroup.h>
176 176
177 struct cfs_rq; 177 struct cfs_rq;
178 struct rt_rq; 178 struct rt_rq;
179 179
180 extern struct list_head task_groups; 180 extern struct list_head task_groups;
181 181
182 struct cfs_bandwidth { 182 struct cfs_bandwidth {
183 #ifdef CONFIG_CFS_BANDWIDTH 183 #ifdef CONFIG_CFS_BANDWIDTH
184 raw_spinlock_t lock; 184 raw_spinlock_t lock;
185 ktime_t period; 185 ktime_t period;
186 u64 quota, runtime; 186 u64 quota, runtime;
187 s64 hierarchal_quota; 187 s64 hierarchal_quota;
188 u64 runtime_expires; 188 u64 runtime_expires;
189 189
190 int idle, timer_active; 190 int idle, timer_active;
191 struct hrtimer period_timer, slack_timer; 191 struct hrtimer period_timer, slack_timer;
192 struct list_head throttled_cfs_rq; 192 struct list_head throttled_cfs_rq;
193 193
194 /* statistics */ 194 /* statistics */
195 int nr_periods, nr_throttled; 195 int nr_periods, nr_throttled;
196 u64 throttled_time; 196 u64 throttled_time;
197 #endif 197 #endif
198 }; 198 };
199 199
200 /* task group related information */ 200 /* task group related information */
201 struct task_group { 201 struct task_group {
202 struct cgroup_subsys_state css; 202 struct cgroup_subsys_state css;
203 203
204 #ifdef CONFIG_FAIR_GROUP_SCHED 204 #ifdef CONFIG_FAIR_GROUP_SCHED
205 /* schedulable entities of this group on each cpu */ 205 /* schedulable entities of this group on each cpu */
206 struct sched_entity **se; 206 struct sched_entity **se;
207 /* runqueue "owned" by this group on each cpu */ 207 /* runqueue "owned" by this group on each cpu */
208 struct cfs_rq **cfs_rq; 208 struct cfs_rq **cfs_rq;
209 unsigned long shares; 209 unsigned long shares;
210 210
211 #ifdef CONFIG_SMP 211 #ifdef CONFIG_SMP
212 atomic_long_t load_avg; 212 atomic_long_t load_avg;
213 atomic_t runnable_avg; 213 atomic_t runnable_avg;
214 #endif 214 #endif
215 #endif 215 #endif
216 216
217 #ifdef CONFIG_RT_GROUP_SCHED 217 #ifdef CONFIG_RT_GROUP_SCHED
218 struct sched_rt_entity **rt_se; 218 struct sched_rt_entity **rt_se;
219 struct rt_rq **rt_rq; 219 struct rt_rq **rt_rq;
220 220
221 struct rt_bandwidth rt_bandwidth; 221 struct rt_bandwidth rt_bandwidth;
222 #endif 222 #endif
223 223
224 struct rcu_head rcu; 224 struct rcu_head rcu;
225 struct list_head list; 225 struct list_head list;
226 226
227 struct task_group *parent; 227 struct task_group *parent;
228 struct list_head siblings; 228 struct list_head siblings;
229 struct list_head children; 229 struct list_head children;
230 230
231 #ifdef CONFIG_SCHED_AUTOGROUP 231 #ifdef CONFIG_SCHED_AUTOGROUP
232 struct autogroup *autogroup; 232 struct autogroup *autogroup;
233 #endif 233 #endif
234 234
235 struct cfs_bandwidth cfs_bandwidth; 235 struct cfs_bandwidth cfs_bandwidth;
236 }; 236 };
237 237
238 #ifdef CONFIG_FAIR_GROUP_SCHED 238 #ifdef CONFIG_FAIR_GROUP_SCHED
239 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 239 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
240 240
241 /* 241 /*
242 * A weight of 0 or 1 can cause arithmetics problems. 242 * A weight of 0 or 1 can cause arithmetics problems.
243 * A weight of a cfs_rq is the sum of weights of which entities 243 * A weight of a cfs_rq is the sum of weights of which entities
244 * are queued on this cfs_rq, so a weight of a entity should not be 244 * are queued on this cfs_rq, so a weight of a entity should not be
245 * too large, so as the shares value of a task group. 245 * too large, so as the shares value of a task group.
246 * (The default weight is 1024 - so there's no practical 246 * (The default weight is 1024 - so there's no practical
247 * limitation from this.) 247 * limitation from this.)
248 */ 248 */
249 #define MIN_SHARES (1UL << 1) 249 #define MIN_SHARES (1UL << 1)
250 #define MAX_SHARES (1UL << 18) 250 #define MAX_SHARES (1UL << 18)
251 #endif 251 #endif
252 252
253 typedef int (*tg_visitor)(struct task_group *, void *); 253 typedef int (*tg_visitor)(struct task_group *, void *);
254 254
255 extern int walk_tg_tree_from(struct task_group *from, 255 extern int walk_tg_tree_from(struct task_group *from,
256 tg_visitor down, tg_visitor up, void *data); 256 tg_visitor down, tg_visitor up, void *data);
257 257
258 /* 258 /*
259 * Iterate the full tree, calling @down when first entering a node and @up when 259 * Iterate the full tree, calling @down when first entering a node and @up when
260 * leaving it for the final time. 260 * leaving it for the final time.
261 * 261 *
262 * Caller must hold rcu_lock or sufficient equivalent. 262 * Caller must hold rcu_lock or sufficient equivalent.
263 */ 263 */
264 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 264 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
265 { 265 {
266 return walk_tg_tree_from(&root_task_group, down, up, data); 266 return walk_tg_tree_from(&root_task_group, down, up, data);
267 } 267 }
268 268
269 extern int tg_nop(struct task_group *tg, void *data); 269 extern int tg_nop(struct task_group *tg, void *data);
270 270
271 extern void free_fair_sched_group(struct task_group *tg); 271 extern void free_fair_sched_group(struct task_group *tg);
272 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 272 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
273 extern void unregister_fair_sched_group(struct task_group *tg, int cpu); 273 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
274 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 274 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
275 struct sched_entity *se, int cpu, 275 struct sched_entity *se, int cpu,
276 struct sched_entity *parent); 276 struct sched_entity *parent);
277 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 277 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
278 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 278 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
279 279
280 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 280 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
281 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 281 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
282 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 282 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
283 283
284 extern void free_rt_sched_group(struct task_group *tg); 284 extern void free_rt_sched_group(struct task_group *tg);
285 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 285 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
286 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 286 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
287 struct sched_rt_entity *rt_se, int cpu, 287 struct sched_rt_entity *rt_se, int cpu,
288 struct sched_rt_entity *parent); 288 struct sched_rt_entity *parent);
289 289
290 extern struct task_group *sched_create_group(struct task_group *parent); 290 extern struct task_group *sched_create_group(struct task_group *parent);
291 extern void sched_online_group(struct task_group *tg, 291 extern void sched_online_group(struct task_group *tg,
292 struct task_group *parent); 292 struct task_group *parent);
293 extern void sched_destroy_group(struct task_group *tg); 293 extern void sched_destroy_group(struct task_group *tg);
294 extern void sched_offline_group(struct task_group *tg); 294 extern void sched_offline_group(struct task_group *tg);
295 295
296 extern void sched_move_task(struct task_struct *tsk); 296 extern void sched_move_task(struct task_struct *tsk);
297 297
298 #ifdef CONFIG_FAIR_GROUP_SCHED 298 #ifdef CONFIG_FAIR_GROUP_SCHED
299 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 299 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
300 #endif 300 #endif
301 301
302 #else /* CONFIG_CGROUP_SCHED */ 302 #else /* CONFIG_CGROUP_SCHED */
303 303
304 struct cfs_bandwidth { }; 304 struct cfs_bandwidth { };
305 305
306 #endif /* CONFIG_CGROUP_SCHED */ 306 #endif /* CONFIG_CGROUP_SCHED */
307 307
308 /* CFS-related fields in a runqueue */ 308 /* CFS-related fields in a runqueue */
309 struct cfs_rq { 309 struct cfs_rq {
310 struct load_weight load; 310 struct load_weight load;
311 unsigned int nr_running, h_nr_running; 311 unsigned int nr_running, h_nr_running;
312 312
313 u64 exec_clock; 313 u64 exec_clock;
314 u64 min_vruntime; 314 u64 min_vruntime;
315 #ifndef CONFIG_64BIT 315 #ifndef CONFIG_64BIT
316 u64 min_vruntime_copy; 316 u64 min_vruntime_copy;
317 #endif 317 #endif
318 318
319 struct rb_root tasks_timeline; 319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost; 320 struct rb_node *rb_leftmost;
321 321
322 /* 322 /*
323 * 'curr' points to currently running entity on this cfs_rq. 323 * 'curr' points to currently running entity on this cfs_rq.
324 * It is set to NULL otherwise (i.e when none are currently running). 324 * It is set to NULL otherwise (i.e when none are currently running).
325 */ 325 */
326 struct sched_entity *curr, *next, *last, *skip; 326 struct sched_entity *curr, *next, *last, *skip;
327 327
328 #ifdef CONFIG_SCHED_DEBUG 328 #ifdef CONFIG_SCHED_DEBUG
329 unsigned int nr_spread_over; 329 unsigned int nr_spread_over;
330 #endif 330 #endif
331 331
332 #ifdef CONFIG_SMP 332 #ifdef CONFIG_SMP
333 /* 333 /*
334 * CFS Load tracking 334 * CFS Load tracking
335 * Under CFS, load is tracked on a per-entity basis and aggregated up. 335 * Under CFS, load is tracked on a per-entity basis and aggregated up.
336 * This allows for the description of both thread and group usage (in 336 * This allows for the description of both thread and group usage (in
337 * the FAIR_GROUP_SCHED case). 337 * the FAIR_GROUP_SCHED case).
338 */ 338 */
339 unsigned long runnable_load_avg, blocked_load_avg; 339 unsigned long runnable_load_avg, blocked_load_avg;
340 atomic64_t decay_counter; 340 atomic64_t decay_counter;
341 u64 last_decay; 341 u64 last_decay;
342 atomic_long_t removed_load; 342 atomic_long_t removed_load;
343 343
344 #ifdef CONFIG_FAIR_GROUP_SCHED 344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 /* Required to track per-cpu representation of a task_group */ 345 /* Required to track per-cpu representation of a task_group */
346 u32 tg_runnable_contrib; 346 u32 tg_runnable_contrib;
347 unsigned long tg_load_contrib; 347 unsigned long tg_load_contrib;
348 348
349 /* 349 /*
350 * h_load = weight * f(tg) 350 * h_load = weight * f(tg)
351 * 351 *
352 * Where f(tg) is the recursive weight fraction assigned to 352 * Where f(tg) is the recursive weight fraction assigned to
353 * this group. 353 * this group.
354 */ 354 */
355 unsigned long h_load; 355 unsigned long h_load;
356 u64 last_h_load_update; 356 u64 last_h_load_update;
357 struct sched_entity *h_load_next; 357 struct sched_entity *h_load_next;
358 #endif /* CONFIG_FAIR_GROUP_SCHED */ 358 #endif /* CONFIG_FAIR_GROUP_SCHED */
359 #endif /* CONFIG_SMP */ 359 #endif /* CONFIG_SMP */
360 360
361 #ifdef CONFIG_FAIR_GROUP_SCHED 361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ 362 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
363 363
364 /* 364 /*
365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
367 * (like users, containers etc.) 367 * (like users, containers etc.)
368 * 368 *
369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This 369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
370 * list is used during load balance. 370 * list is used during load balance.
371 */ 371 */
372 int on_list; 372 int on_list;
373 struct list_head leaf_cfs_rq_list; 373 struct list_head leaf_cfs_rq_list;
374 struct task_group *tg; /* group that "owns" this runqueue */ 374 struct task_group *tg; /* group that "owns" this runqueue */
375 375
376 #ifdef CONFIG_CFS_BANDWIDTH 376 #ifdef CONFIG_CFS_BANDWIDTH
377 int runtime_enabled; 377 int runtime_enabled;
378 u64 runtime_expires; 378 u64 runtime_expires;
379 s64 runtime_remaining; 379 s64 runtime_remaining;
380 380
381 u64 throttled_clock, throttled_clock_task; 381 u64 throttled_clock, throttled_clock_task;
382 u64 throttled_clock_task_time; 382 u64 throttled_clock_task_time;
383 int throttled, throttle_count; 383 int throttled, throttle_count;
384 struct list_head throttled_list; 384 struct list_head throttled_list;
385 #endif /* CONFIG_CFS_BANDWIDTH */ 385 #endif /* CONFIG_CFS_BANDWIDTH */
386 #endif /* CONFIG_FAIR_GROUP_SCHED */ 386 #endif /* CONFIG_FAIR_GROUP_SCHED */
387 }; 387 };
388 388
389 static inline int rt_bandwidth_enabled(void) 389 static inline int rt_bandwidth_enabled(void)
390 { 390 {
391 return sysctl_sched_rt_runtime >= 0; 391 return sysctl_sched_rt_runtime >= 0;
392 } 392 }
393 393
394 /* Real-Time classes' related field in a runqueue: */ 394 /* Real-Time classes' related field in a runqueue: */
395 struct rt_rq { 395 struct rt_rq {
396 struct rt_prio_array active; 396 struct rt_prio_array active;
397 unsigned int rt_nr_running; 397 unsigned int rt_nr_running;
398 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 398 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
399 struct { 399 struct {
400 int curr; /* highest queued rt task prio */ 400 int curr; /* highest queued rt task prio */
401 #ifdef CONFIG_SMP 401 #ifdef CONFIG_SMP
402 int next; /* next highest */ 402 int next; /* next highest */
403 #endif 403 #endif
404 } highest_prio; 404 } highest_prio;
405 #endif 405 #endif
406 #ifdef CONFIG_SMP 406 #ifdef CONFIG_SMP
407 unsigned long rt_nr_migratory; 407 unsigned long rt_nr_migratory;
408 unsigned long rt_nr_total; 408 unsigned long rt_nr_total;
409 int overloaded; 409 int overloaded;
410 struct plist_head pushable_tasks; 410 struct plist_head pushable_tasks;
411 #endif 411 #endif
412 int rt_throttled; 412 int rt_throttled;
413 u64 rt_time; 413 u64 rt_time;
414 u64 rt_runtime; 414 u64 rt_runtime;
415 /* Nests inside the rq lock: */ 415 /* Nests inside the rq lock: */
416 raw_spinlock_t rt_runtime_lock; 416 raw_spinlock_t rt_runtime_lock;
417 417
418 #ifdef CONFIG_RT_GROUP_SCHED 418 #ifdef CONFIG_RT_GROUP_SCHED
419 unsigned long rt_nr_boosted; 419 unsigned long rt_nr_boosted;
420 420
421 struct rq *rq; 421 struct rq *rq;
422 struct task_group *tg; 422 struct task_group *tg;
423 #endif 423 #endif
424 }; 424 };
425 425
426 #ifdef CONFIG_RT_GROUP_SCHED 426 #ifdef CONFIG_RT_GROUP_SCHED
427 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 427 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
428 { 428 {
429 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 429 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
430 } 430 }
431 #else 431 #else
432 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 432 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
433 { 433 {
434 return rt_rq->rt_throttled; 434 return rt_rq->rt_throttled;
435 } 435 }
436 #endif 436 #endif
437 437
438 /* Deadline class' related fields in a runqueue */ 438 /* Deadline class' related fields in a runqueue */
439 struct dl_rq { 439 struct dl_rq {
440 /* runqueue is an rbtree, ordered by deadline */ 440 /* runqueue is an rbtree, ordered by deadline */
441 struct rb_root rb_root; 441 struct rb_root rb_root;
442 struct rb_node *rb_leftmost; 442 struct rb_node *rb_leftmost;
443 443
444 unsigned long dl_nr_running; 444 unsigned long dl_nr_running;
445 445
446 #ifdef CONFIG_SMP 446 #ifdef CONFIG_SMP
447 /* 447 /*
448 * Deadline values of the currently executing and the 448 * Deadline values of the currently executing and the
449 * earliest ready task on this rq. Caching these facilitates 449 * earliest ready task on this rq. Caching these facilitates
450 * the decision wether or not a ready but not running task 450 * the decision wether or not a ready but not running task
451 * should migrate somewhere else. 451 * should migrate somewhere else.
452 */ 452 */
453 struct { 453 struct {
454 u64 curr; 454 u64 curr;
455 u64 next; 455 u64 next;
456 } earliest_dl; 456 } earliest_dl;
457 457
458 unsigned long dl_nr_migratory; 458 unsigned long dl_nr_migratory;
459 int overloaded; 459 int overloaded;
460 460
461 /* 461 /*
462 * Tasks on this rq that can be pushed away. They are kept in 462 * Tasks on this rq that can be pushed away. They are kept in
463 * an rb-tree, ordered by tasks' deadlines, with caching 463 * an rb-tree, ordered by tasks' deadlines, with caching
464 * of the leftmost (earliest deadline) element. 464 * of the leftmost (earliest deadline) element.
465 */ 465 */
466 struct rb_root pushable_dl_tasks_root; 466 struct rb_root pushable_dl_tasks_root;
467 struct rb_node *pushable_dl_tasks_leftmost; 467 struct rb_node *pushable_dl_tasks_leftmost;
468 #else 468 #else
469 struct dl_bw dl_bw; 469 struct dl_bw dl_bw;
470 #endif 470 #endif
471 }; 471 };
472 472
473 #ifdef CONFIG_SMP 473 #ifdef CONFIG_SMP
474 474
475 /* 475 /*
476 * We add the notion of a root-domain which will be used to define per-domain 476 * We add the notion of a root-domain which will be used to define per-domain
477 * variables. Each exclusive cpuset essentially defines an island domain by 477 * variables. Each exclusive cpuset essentially defines an island domain by
478 * fully partitioning the member cpus from any other cpuset. Whenever a new 478 * fully partitioning the member cpus from any other cpuset. Whenever a new
479 * exclusive cpuset is created, we also create and attach a new root-domain 479 * exclusive cpuset is created, we also create and attach a new root-domain
480 * object. 480 * object.
481 * 481 *
482 */ 482 */
483 struct root_domain { 483 struct root_domain {
484 atomic_t refcount; 484 atomic_t refcount;
485 atomic_t rto_count; 485 atomic_t rto_count;
486 struct rcu_head rcu; 486 struct rcu_head rcu;
487 cpumask_var_t span; 487 cpumask_var_t span;
488 cpumask_var_t online; 488 cpumask_var_t online;
489 489
490 /* 490 /*
491 * The bit corresponding to a CPU gets set here if such CPU has more 491 * The bit corresponding to a CPU gets set here if such CPU has more
492 * than one runnable -deadline task (as it is below for RT tasks). 492 * than one runnable -deadline task (as it is below for RT tasks).
493 */ 493 */
494 cpumask_var_t dlo_mask; 494 cpumask_var_t dlo_mask;
495 atomic_t dlo_count; 495 atomic_t dlo_count;
496 struct dl_bw dl_bw; 496 struct dl_bw dl_bw;
497 struct cpudl cpudl; 497 struct cpudl cpudl;
498 498
499 /* 499 /*
500 * The "RT overload" flag: it gets set if a CPU has more than 500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task. 501 * one runnable RT task.
502 */ 502 */
503 cpumask_var_t rto_mask; 503 cpumask_var_t rto_mask;
504 struct cpupri cpupri; 504 struct cpupri cpupri;
505 }; 505 };
506 506
507 extern struct root_domain def_root_domain; 507 extern struct root_domain def_root_domain;
508 508
509 #endif /* CONFIG_SMP */ 509 #endif /* CONFIG_SMP */
510 510
511 /* 511 /*
512 * This is the main, per-CPU runqueue data structure. 512 * This is the main, per-CPU runqueue data structure.
513 * 513 *
514 * Locking rule: those places that want to lock multiple runqueues 514 * Locking rule: those places that want to lock multiple runqueues
515 * (such as the load balancing or the thread migration code), lock 515 * (such as the load balancing or the thread migration code), lock
516 * acquire operations must be ordered by ascending &runqueue. 516 * acquire operations must be ordered by ascending &runqueue.
517 */ 517 */
518 struct rq { 518 struct rq {
519 /* runqueue lock: */ 519 /* runqueue lock: */
520 raw_spinlock_t lock; 520 raw_spinlock_t lock;
521 521
522 /* 522 /*
523 * nr_running and cpu_load should be in the same cacheline because 523 * nr_running and cpu_load should be in the same cacheline because
524 * remote CPUs use both these fields when doing load calculation. 524 * remote CPUs use both these fields when doing load calculation.
525 */ 525 */
526 unsigned int nr_running; 526 unsigned int nr_running;
527 #ifdef CONFIG_NUMA_BALANCING 527 #ifdef CONFIG_NUMA_BALANCING
528 unsigned int nr_numa_running; 528 unsigned int nr_numa_running;
529 unsigned int nr_preferred_running; 529 unsigned int nr_preferred_running;
530 #endif 530 #endif
531 #define CPU_LOAD_IDX_MAX 5 531 #define CPU_LOAD_IDX_MAX 5
532 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 532 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
533 unsigned long last_load_update_tick; 533 unsigned long last_load_update_tick;
534 #ifdef CONFIG_NO_HZ_COMMON 534 #ifdef CONFIG_NO_HZ_COMMON
535 u64 nohz_stamp; 535 u64 nohz_stamp;
536 unsigned long nohz_flags; 536 unsigned long nohz_flags;
537 #endif 537 #endif
538 #ifdef CONFIG_NO_HZ_FULL 538 #ifdef CONFIG_NO_HZ_FULL
539 unsigned long last_sched_tick; 539 unsigned long last_sched_tick;
540 #endif 540 #endif
541 int skip_clock_update; 541 int skip_clock_update;
542 542
543 /* capture load from *all* tasks on this cpu: */ 543 /* capture load from *all* tasks on this cpu: */
544 struct load_weight load; 544 struct load_weight load;
545 unsigned long nr_load_updates; 545 unsigned long nr_load_updates;
546 u64 nr_switches; 546 u64 nr_switches;
547 547
548 struct cfs_rq cfs; 548 struct cfs_rq cfs;
549 struct rt_rq rt; 549 struct rt_rq rt;
550 struct dl_rq dl; 550 struct dl_rq dl;
551 551
552 #ifdef CONFIG_FAIR_GROUP_SCHED 552 #ifdef CONFIG_FAIR_GROUP_SCHED
553 /* list of leaf cfs_rq on this cpu: */ 553 /* list of leaf cfs_rq on this cpu: */
554 struct list_head leaf_cfs_rq_list; 554 struct list_head leaf_cfs_rq_list;
555 555
556 struct sched_avg avg; 556 struct sched_avg avg;
557 #endif /* CONFIG_FAIR_GROUP_SCHED */ 557 #endif /* CONFIG_FAIR_GROUP_SCHED */
558 558
559 /* 559 /*
560 * This is part of a global counter where only the total sum 560 * This is part of a global counter where only the total sum
561 * over all CPUs matters. A task can increase this counter on 561 * over all CPUs matters. A task can increase this counter on
562 * one CPU and if it got migrated afterwards it may decrease 562 * one CPU and if it got migrated afterwards it may decrease
563 * it on another CPU. Always updated under the runqueue lock: 563 * it on another CPU. Always updated under the runqueue lock:
564 */ 564 */
565 unsigned long nr_uninterruptible; 565 unsigned long nr_uninterruptible;
566 566
567 struct task_struct *curr, *idle, *stop; 567 struct task_struct *curr, *idle, *stop;
568 unsigned long next_balance; 568 unsigned long next_balance;
569 struct mm_struct *prev_mm; 569 struct mm_struct *prev_mm;
570 570
571 u64 clock; 571 u64 clock;
572 u64 clock_task; 572 u64 clock_task;
573 573
574 atomic_t nr_iowait; 574 atomic_t nr_iowait;
575 575
576 #ifdef CONFIG_SMP 576 #ifdef CONFIG_SMP
577 struct root_domain *rd; 577 struct root_domain *rd;
578 struct sched_domain *sd; 578 struct sched_domain *sd;
579 579
580 unsigned long cpu_power; 580 unsigned long cpu_power;
581 581
582 unsigned char idle_balance; 582 unsigned char idle_balance;
583 /* For active balancing */ 583 /* For active balancing */
584 int post_schedule; 584 int post_schedule;
585 int active_balance; 585 int active_balance;
586 int push_cpu; 586 int push_cpu;
587 struct cpu_stop_work active_balance_work; 587 struct cpu_stop_work active_balance_work;
588 /* cpu of this runqueue: */ 588 /* cpu of this runqueue: */
589 int cpu; 589 int cpu;
590 int online; 590 int online;
591 591
592 struct list_head cfs_tasks; 592 struct list_head cfs_tasks;
593 593
594 u64 rt_avg; 594 u64 rt_avg;
595 u64 age_stamp; 595 u64 age_stamp;
596 u64 idle_stamp; 596 u64 idle_stamp;
597 u64 avg_idle; 597 u64 avg_idle;
598 598
599 /* This is used to determine avg_idle's max value */ 599 /* This is used to determine avg_idle's max value */
600 u64 max_idle_balance_cost; 600 u64 max_idle_balance_cost;
601 #endif 601 #endif
602 602
603 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 603 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
604 u64 prev_irq_time; 604 u64 prev_irq_time;
605 #endif 605 #endif
606 #ifdef CONFIG_PARAVIRT 606 #ifdef CONFIG_PARAVIRT
607 u64 prev_steal_time; 607 u64 prev_steal_time;
608 #endif 608 #endif
609 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 609 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
610 u64 prev_steal_time_rq; 610 u64 prev_steal_time_rq;
611 #endif 611 #endif
612 612
613 /* calc_load related fields */ 613 /* calc_load related fields */
614 unsigned long calc_load_update; 614 unsigned long calc_load_update;
615 long calc_load_active; 615 long calc_load_active;
616 616
617 #ifdef CONFIG_SCHED_HRTICK 617 #ifdef CONFIG_SCHED_HRTICK
618 #ifdef CONFIG_SMP 618 #ifdef CONFIG_SMP
619 int hrtick_csd_pending; 619 int hrtick_csd_pending;
620 struct call_single_data hrtick_csd; 620 struct call_single_data hrtick_csd;
621 #endif 621 #endif
622 struct hrtimer hrtick_timer; 622 struct hrtimer hrtick_timer;
623 #endif 623 #endif
624 624
625 #ifdef CONFIG_SCHEDSTATS 625 #ifdef CONFIG_SCHEDSTATS
626 /* latency stats */ 626 /* latency stats */
627 struct sched_info rq_sched_info; 627 struct sched_info rq_sched_info;
628 unsigned long long rq_cpu_time; 628 unsigned long long rq_cpu_time;
629 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 629 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
630 630
631 /* sys_sched_yield() stats */ 631 /* sys_sched_yield() stats */
632 unsigned int yld_count; 632 unsigned int yld_count;
633 633
634 /* schedule() stats */ 634 /* schedule() stats */
635 unsigned int sched_count; 635 unsigned int sched_count;
636 unsigned int sched_goidle; 636 unsigned int sched_goidle;
637 637
638 /* try_to_wake_up() stats */ 638 /* try_to_wake_up() stats */
639 unsigned int ttwu_count; 639 unsigned int ttwu_count;
640 unsigned int ttwu_local; 640 unsigned int ttwu_local;
641 #endif 641 #endif
642 642
643 #ifdef CONFIG_SMP 643 #ifdef CONFIG_SMP
644 struct llist_head wake_list; 644 struct llist_head wake_list;
645 #endif 645 #endif
646 }; 646 };
647 647
648 static inline int cpu_of(struct rq *rq) 648 static inline int cpu_of(struct rq *rq)
649 { 649 {
650 #ifdef CONFIG_SMP 650 #ifdef CONFIG_SMP
651 return rq->cpu; 651 return rq->cpu;
652 #else 652 #else
653 return 0; 653 return 0;
654 #endif 654 #endif
655 } 655 }
656 656
657 DECLARE_PER_CPU(struct rq, runqueues); 657 DECLARE_PER_CPU(struct rq, runqueues);
658 658
659 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 659 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
660 #define this_rq() (&__get_cpu_var(runqueues)) 660 #define this_rq() (&__get_cpu_var(runqueues))
661 #define task_rq(p) cpu_rq(task_cpu(p)) 661 #define task_rq(p) cpu_rq(task_cpu(p))
662 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 662 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
663 #define raw_rq() (&__raw_get_cpu_var(runqueues)) 663 #define raw_rq() (&__raw_get_cpu_var(runqueues))
664 664
665 static inline u64 rq_clock(struct rq *rq) 665 static inline u64 rq_clock(struct rq *rq)
666 { 666 {
667 return rq->clock; 667 return rq->clock;
668 } 668 }
669 669
670 static inline u64 rq_clock_task(struct rq *rq) 670 static inline u64 rq_clock_task(struct rq *rq)
671 { 671 {
672 return rq->clock_task; 672 return rq->clock_task;
673 } 673 }
674 674
675 #ifdef CONFIG_NUMA_BALANCING 675 #ifdef CONFIG_NUMA_BALANCING
676 extern void sched_setnuma(struct task_struct *p, int node); 676 extern void sched_setnuma(struct task_struct *p, int node);
677 extern int migrate_task_to(struct task_struct *p, int cpu); 677 extern int migrate_task_to(struct task_struct *p, int cpu);
678 extern int migrate_swap(struct task_struct *, struct task_struct *); 678 extern int migrate_swap(struct task_struct *, struct task_struct *);
679 #endif /* CONFIG_NUMA_BALANCING */ 679 #endif /* CONFIG_NUMA_BALANCING */
680 680
681 #ifdef CONFIG_SMP 681 #ifdef CONFIG_SMP
682 682
683 #define rcu_dereference_check_sched_domain(p) \ 683 #define rcu_dereference_check_sched_domain(p) \
684 rcu_dereference_check((p), \ 684 rcu_dereference_check((p), \
685 lockdep_is_held(&sched_domains_mutex)) 685 lockdep_is_held(&sched_domains_mutex))
686 686
687 /* 687 /*
688 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 688 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
689 * See detach_destroy_domains: synchronize_sched for details. 689 * See detach_destroy_domains: synchronize_sched for details.
690 * 690 *
691 * The domain tree of any CPU may only be accessed from within 691 * The domain tree of any CPU may only be accessed from within
692 * preempt-disabled sections. 692 * preempt-disabled sections.
693 */ 693 */
694 #define for_each_domain(cpu, __sd) \ 694 #define for_each_domain(cpu, __sd) \
695 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 695 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
696 __sd; __sd = __sd->parent) 696 __sd; __sd = __sd->parent)
697 697
698 #define for_each_lower_domain(sd) for (; sd; sd = sd->child) 698 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
699 699
700 /** 700 /**
701 * highest_flag_domain - Return highest sched_domain containing flag. 701 * highest_flag_domain - Return highest sched_domain containing flag.
702 * @cpu: The cpu whose highest level of sched domain is to 702 * @cpu: The cpu whose highest level of sched domain is to
703 * be returned. 703 * be returned.
704 * @flag: The flag to check for the highest sched_domain 704 * @flag: The flag to check for the highest sched_domain
705 * for the given cpu. 705 * for the given cpu.
706 * 706 *
707 * Returns the highest sched_domain of a cpu which contains the given flag. 707 * Returns the highest sched_domain of a cpu which contains the given flag.
708 */ 708 */
709 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 709 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
710 { 710 {
711 struct sched_domain *sd, *hsd = NULL; 711 struct sched_domain *sd, *hsd = NULL;
712 712
713 for_each_domain(cpu, sd) { 713 for_each_domain(cpu, sd) {
714 if (!(sd->flags & flag)) 714 if (!(sd->flags & flag))
715 break; 715 break;
716 hsd = sd; 716 hsd = sd;
717 } 717 }
718 718
719 return hsd; 719 return hsd;
720 } 720 }
721 721
722 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 722 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
723 { 723 {
724 struct sched_domain *sd; 724 struct sched_domain *sd;
725 725
726 for_each_domain(cpu, sd) { 726 for_each_domain(cpu, sd) {
727 if (sd->flags & flag) 727 if (sd->flags & flag)
728 break; 728 break;
729 } 729 }
730 730
731 return sd; 731 return sd;
732 } 732 }
733 733
734 DECLARE_PER_CPU(struct sched_domain *, sd_llc); 734 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
735 DECLARE_PER_CPU(int, sd_llc_size); 735 DECLARE_PER_CPU(int, sd_llc_size);
736 DECLARE_PER_CPU(int, sd_llc_id); 736 DECLARE_PER_CPU(int, sd_llc_id);
737 DECLARE_PER_CPU(struct sched_domain *, sd_numa); 737 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
738 DECLARE_PER_CPU(struct sched_domain *, sd_busy); 738 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
739 DECLARE_PER_CPU(struct sched_domain *, sd_asym); 739 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
740 740
741 struct sched_group_power { 741 struct sched_group_power {
742 atomic_t ref; 742 atomic_t ref;
743 /* 743 /*
744 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 744 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
745 * single CPU. 745 * single CPU.
746 */ 746 */
747 unsigned int power, power_orig; 747 unsigned int power, power_orig;
748 unsigned long next_update; 748 unsigned long next_update;
749 int imbalance; /* XXX unrelated to power but shared group state */ 749 int imbalance; /* XXX unrelated to power but shared group state */
750 /* 750 /*
751 * Number of busy cpus in this group. 751 * Number of busy cpus in this group.
752 */ 752 */
753 atomic_t nr_busy_cpus; 753 atomic_t nr_busy_cpus;
754 754
755 unsigned long cpumask[0]; /* iteration mask */ 755 unsigned long cpumask[0]; /* iteration mask */
756 }; 756 };
757 757
758 struct sched_group { 758 struct sched_group {
759 struct sched_group *next; /* Must be a circular list */ 759 struct sched_group *next; /* Must be a circular list */
760 atomic_t ref; 760 atomic_t ref;
761 761
762 unsigned int group_weight; 762 unsigned int group_weight;
763 struct sched_group_power *sgp; 763 struct sched_group_power *sgp;
764 764
765 /* 765 /*
766 * The CPUs this group covers. 766 * The CPUs this group covers.
767 * 767 *
768 * NOTE: this field is variable length. (Allocated dynamically 768 * NOTE: this field is variable length. (Allocated dynamically
769 * by attaching extra space to the end of the structure, 769 * by attaching extra space to the end of the structure,
770 * depending on how many CPUs the kernel has booted up with) 770 * depending on how many CPUs the kernel has booted up with)
771 */ 771 */
772 unsigned long cpumask[0]; 772 unsigned long cpumask[0];
773 }; 773 };
774 774
775 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 775 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
776 { 776 {
777 return to_cpumask(sg->cpumask); 777 return to_cpumask(sg->cpumask);
778 } 778 }
779 779
780 /* 780 /*
781 * cpumask masking which cpus in the group are allowed to iterate up the domain 781 * cpumask masking which cpus in the group are allowed to iterate up the domain
782 * tree. 782 * tree.
783 */ 783 */
784 static inline struct cpumask *sched_group_mask(struct sched_group *sg) 784 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
785 { 785 {
786 return to_cpumask(sg->sgp->cpumask); 786 return to_cpumask(sg->sgp->cpumask);
787 } 787 }
788 788
789 /** 789 /**
790 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 790 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
791 * @group: The group whose first cpu is to be returned. 791 * @group: The group whose first cpu is to be returned.
792 */ 792 */
793 static inline unsigned int group_first_cpu(struct sched_group *group) 793 static inline unsigned int group_first_cpu(struct sched_group *group)
794 { 794 {
795 return cpumask_first(sched_group_cpus(group)); 795 return cpumask_first(sched_group_cpus(group));
796 } 796 }
797 797
798 extern int group_balance_cpu(struct sched_group *sg); 798 extern int group_balance_cpu(struct sched_group *sg);
799 799
800 #endif /* CONFIG_SMP */ 800 #endif /* CONFIG_SMP */
801 801
802 #include "stats.h" 802 #include "stats.h"
803 #include "auto_group.h" 803 #include "auto_group.h"
804 804
805 #ifdef CONFIG_CGROUP_SCHED 805 #ifdef CONFIG_CGROUP_SCHED
806 806
807 /* 807 /*
808 * Return the group to which this tasks belongs. 808 * Return the group to which this tasks belongs.
809 * 809 *
810 * We cannot use task_css() and friends because the cgroup subsystem 810 * We cannot use task_css() and friends because the cgroup subsystem
811 * changes that value before the cgroup_subsys::attach() method is called, 811 * changes that value before the cgroup_subsys::attach() method is called,
812 * therefore we cannot pin it and might observe the wrong value. 812 * therefore we cannot pin it and might observe the wrong value.
813 * 813 *
814 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 814 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
815 * core changes this before calling sched_move_task(). 815 * core changes this before calling sched_move_task().
816 * 816 *
817 * Instead we use a 'copy' which is updated from sched_move_task() while 817 * Instead we use a 'copy' which is updated from sched_move_task() while
818 * holding both task_struct::pi_lock and rq::lock. 818 * holding both task_struct::pi_lock and rq::lock.
819 */ 819 */
820 static inline struct task_group *task_group(struct task_struct *p) 820 static inline struct task_group *task_group(struct task_struct *p)
821 { 821 {
822 return p->sched_task_group; 822 return p->sched_task_group;
823 } 823 }
824 824
825 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 825 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
826 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 826 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
827 { 827 {
828 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 828 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
829 struct task_group *tg = task_group(p); 829 struct task_group *tg = task_group(p);
830 #endif 830 #endif
831 831
832 #ifdef CONFIG_FAIR_GROUP_SCHED 832 #ifdef CONFIG_FAIR_GROUP_SCHED
833 p->se.cfs_rq = tg->cfs_rq[cpu]; 833 p->se.cfs_rq = tg->cfs_rq[cpu];
834 p->se.parent = tg->se[cpu]; 834 p->se.parent = tg->se[cpu];
835 #endif 835 #endif
836 836
837 #ifdef CONFIG_RT_GROUP_SCHED 837 #ifdef CONFIG_RT_GROUP_SCHED
838 p->rt.rt_rq = tg->rt_rq[cpu]; 838 p->rt.rt_rq = tg->rt_rq[cpu];
839 p->rt.parent = tg->rt_se[cpu]; 839 p->rt.parent = tg->rt_se[cpu];
840 #endif 840 #endif
841 } 841 }
842 842
843 #else /* CONFIG_CGROUP_SCHED */ 843 #else /* CONFIG_CGROUP_SCHED */
844 844
845 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 845 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
846 static inline struct task_group *task_group(struct task_struct *p) 846 static inline struct task_group *task_group(struct task_struct *p)
847 { 847 {
848 return NULL; 848 return NULL;
849 } 849 }
850 850
851 #endif /* CONFIG_CGROUP_SCHED */ 851 #endif /* CONFIG_CGROUP_SCHED */
852 852
853 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 853 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
854 { 854 {
855 set_task_rq(p, cpu); 855 set_task_rq(p, cpu);
856 #ifdef CONFIG_SMP 856 #ifdef CONFIG_SMP
857 /* 857 /*
858 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 858 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
859 * successfuly executed on another CPU. We must ensure that updates of 859 * successfuly executed on another CPU. We must ensure that updates of
860 * per-task data have been completed by this moment. 860 * per-task data have been completed by this moment.
861 */ 861 */
862 smp_wmb(); 862 smp_wmb();
863 task_thread_info(p)->cpu = cpu; 863 task_thread_info(p)->cpu = cpu;
864 p->wake_cpu = cpu; 864 p->wake_cpu = cpu;
865 #endif 865 #endif
866 } 866 }
867 867
868 /* 868 /*
869 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 869 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
870 */ 870 */
871 #ifdef CONFIG_SCHED_DEBUG 871 #ifdef CONFIG_SCHED_DEBUG
872 # include <linux/static_key.h> 872 # include <linux/static_key.h>
873 # define const_debug __read_mostly 873 # define const_debug __read_mostly
874 #else 874 #else
875 # define const_debug const 875 # define const_debug const
876 #endif 876 #endif
877 877
878 extern const_debug unsigned int sysctl_sched_features; 878 extern const_debug unsigned int sysctl_sched_features;
879 879
880 #define SCHED_FEAT(name, enabled) \ 880 #define SCHED_FEAT(name, enabled) \
881 __SCHED_FEAT_##name , 881 __SCHED_FEAT_##name ,
882 882
883 enum { 883 enum {
884 #include "features.h" 884 #include "features.h"
885 __SCHED_FEAT_NR, 885 __SCHED_FEAT_NR,
886 }; 886 };
887 887
888 #undef SCHED_FEAT 888 #undef SCHED_FEAT
889 889
890 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 890 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
891 static __always_inline bool static_branch__true(struct static_key *key) 891 static __always_inline bool static_branch__true(struct static_key *key)
892 { 892 {
893 return static_key_true(key); /* Not out of line branch. */ 893 return static_key_true(key); /* Not out of line branch. */
894 } 894 }
895 895
896 static __always_inline bool static_branch__false(struct static_key *key) 896 static __always_inline bool static_branch__false(struct static_key *key)
897 { 897 {
898 return static_key_false(key); /* Out of line branch. */ 898 return static_key_false(key); /* Out of line branch. */
899 } 899 }
900 900
901 #define SCHED_FEAT(name, enabled) \ 901 #define SCHED_FEAT(name, enabled) \
902 static __always_inline bool static_branch_##name(struct static_key *key) \ 902 static __always_inline bool static_branch_##name(struct static_key *key) \
903 { \ 903 { \
904 return static_branch__##enabled(key); \ 904 return static_branch__##enabled(key); \
905 } 905 }
906 906
907 #include "features.h" 907 #include "features.h"
908 908
909 #undef SCHED_FEAT 909 #undef SCHED_FEAT
910 910
911 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 911 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
912 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 912 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
913 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ 913 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
914 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 914 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
915 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ 915 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
916 916
917 #ifdef CONFIG_NUMA_BALANCING 917 #ifdef CONFIG_NUMA_BALANCING
918 #define sched_feat_numa(x) sched_feat(x) 918 #define sched_feat_numa(x) sched_feat(x)
919 #ifdef CONFIG_SCHED_DEBUG 919 #ifdef CONFIG_SCHED_DEBUG
920 #define numabalancing_enabled sched_feat_numa(NUMA) 920 #define numabalancing_enabled sched_feat_numa(NUMA)
921 #else 921 #else
922 extern bool numabalancing_enabled; 922 extern bool numabalancing_enabled;
923 #endif /* CONFIG_SCHED_DEBUG */ 923 #endif /* CONFIG_SCHED_DEBUG */
924 #else 924 #else
925 #define sched_feat_numa(x) (0) 925 #define sched_feat_numa(x) (0)
926 #define numabalancing_enabled (0) 926 #define numabalancing_enabled (0)
927 #endif /* CONFIG_NUMA_BALANCING */ 927 #endif /* CONFIG_NUMA_BALANCING */
928 928
929 static inline u64 global_rt_period(void) 929 static inline u64 global_rt_period(void)
930 { 930 {
931 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 931 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
932 } 932 }
933 933
934 static inline u64 global_rt_runtime(void) 934 static inline u64 global_rt_runtime(void)
935 { 935 {
936 if (sysctl_sched_rt_runtime < 0) 936 if (sysctl_sched_rt_runtime < 0)
937 return RUNTIME_INF; 937 return RUNTIME_INF;
938 938
939 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 939 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
940 } 940 }
941 941
942 static inline int task_current(struct rq *rq, struct task_struct *p) 942 static inline int task_current(struct rq *rq, struct task_struct *p)
943 { 943 {
944 return rq->curr == p; 944 return rq->curr == p;
945 } 945 }
946 946
947 static inline int task_running(struct rq *rq, struct task_struct *p) 947 static inline int task_running(struct rq *rq, struct task_struct *p)
948 { 948 {
949 #ifdef CONFIG_SMP 949 #ifdef CONFIG_SMP
950 return p->on_cpu; 950 return p->on_cpu;
951 #else 951 #else
952 return task_current(rq, p); 952 return task_current(rq, p);
953 #endif 953 #endif
954 } 954 }
955 955
956 956
957 #ifndef prepare_arch_switch 957 #ifndef prepare_arch_switch
958 # define prepare_arch_switch(next) do { } while (0) 958 # define prepare_arch_switch(next) do { } while (0)
959 #endif 959 #endif
960 #ifndef finish_arch_switch 960 #ifndef finish_arch_switch
961 # define finish_arch_switch(prev) do { } while (0) 961 # define finish_arch_switch(prev) do { } while (0)
962 #endif 962 #endif
963 #ifndef finish_arch_post_lock_switch 963 #ifndef finish_arch_post_lock_switch
964 # define finish_arch_post_lock_switch() do { } while (0) 964 # define finish_arch_post_lock_switch() do { } while (0)
965 #endif 965 #endif
966 966
967 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 967 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
968 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 968 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
969 { 969 {
970 #ifdef CONFIG_SMP 970 #ifdef CONFIG_SMP
971 /* 971 /*
972 * We can optimise this out completely for !SMP, because the 972 * We can optimise this out completely for !SMP, because the
973 * SMP rebalancing from interrupt is the only thing that cares 973 * SMP rebalancing from interrupt is the only thing that cares
974 * here. 974 * here.
975 */ 975 */
976 next->on_cpu = 1; 976 next->on_cpu = 1;
977 #endif 977 #endif
978 } 978 }
979 979
980 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 980 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
981 { 981 {
982 #ifdef CONFIG_SMP 982 #ifdef CONFIG_SMP
983 /* 983 /*
984 * After ->on_cpu is cleared, the task can be moved to a different CPU. 984 * After ->on_cpu is cleared, the task can be moved to a different CPU.
985 * We must ensure this doesn't happen until the switch is completely 985 * We must ensure this doesn't happen until the switch is completely
986 * finished. 986 * finished.
987 */ 987 */
988 smp_wmb(); 988 smp_wmb();
989 prev->on_cpu = 0; 989 prev->on_cpu = 0;
990 #endif 990 #endif
991 #ifdef CONFIG_DEBUG_SPINLOCK 991 #ifdef CONFIG_DEBUG_SPINLOCK
992 /* this is a valid case when another task releases the spinlock */ 992 /* this is a valid case when another task releases the spinlock */
993 rq->lock.owner = current; 993 rq->lock.owner = current;
994 #endif 994 #endif
995 /* 995 /*
996 * If we are tracking spinlock dependencies then we have to 996 * If we are tracking spinlock dependencies then we have to
997 * fix up the runqueue lock - which gets 'carried over' from 997 * fix up the runqueue lock - which gets 'carried over' from
998 * prev into current: 998 * prev into current:
999 */ 999 */
1000 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 1000 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1001 1001
1002 raw_spin_unlock_irq(&rq->lock); 1002 raw_spin_unlock_irq(&rq->lock);
1003 } 1003 }
1004 1004
1005 #else /* __ARCH_WANT_UNLOCKED_CTXSW */ 1005 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1006 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 1006 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1007 { 1007 {
1008 #ifdef CONFIG_SMP 1008 #ifdef CONFIG_SMP
1009 /* 1009 /*
1010 * We can optimise this out completely for !SMP, because the 1010 * We can optimise this out completely for !SMP, because the
1011 * SMP rebalancing from interrupt is the only thing that cares 1011 * SMP rebalancing from interrupt is the only thing that cares
1012 * here. 1012 * here.
1013 */ 1013 */
1014 next->on_cpu = 1; 1014 next->on_cpu = 1;
1015 #endif 1015 #endif
1016 raw_spin_unlock(&rq->lock); 1016 raw_spin_unlock(&rq->lock);
1017 } 1017 }
1018 1018
1019 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 1019 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1020 { 1020 {
1021 #ifdef CONFIG_SMP 1021 #ifdef CONFIG_SMP
1022 /* 1022 /*
1023 * After ->on_cpu is cleared, the task can be moved to a different CPU. 1023 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1024 * We must ensure this doesn't happen until the switch is completely 1024 * We must ensure this doesn't happen until the switch is completely
1025 * finished. 1025 * finished.
1026 */ 1026 */
1027 smp_wmb(); 1027 smp_wmb();
1028 prev->on_cpu = 0; 1028 prev->on_cpu = 0;
1029 #endif 1029 #endif
1030 local_irq_enable(); 1030 local_irq_enable();
1031 } 1031 }
1032 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ 1032 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1033 1033
1034 /* 1034 /*
1035 * wake flags 1035 * wake flags
1036 */ 1036 */
1037 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */ 1037 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1038 #define WF_FORK 0x02 /* child wakeup after fork */ 1038 #define WF_FORK 0x02 /* child wakeup after fork */
1039 #define WF_MIGRATED 0x4 /* internal use, task got migrated */ 1039 #define WF_MIGRATED 0x4 /* internal use, task got migrated */
1040 1040
1041 /* 1041 /*
1042 * To aid in avoiding the subversion of "niceness" due to uneven distribution 1042 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1043 * of tasks with abnormal "nice" values across CPUs the contribution that 1043 * of tasks with abnormal "nice" values across CPUs the contribution that
1044 * each task makes to its run queue's load is weighted according to its 1044 * each task makes to its run queue's load is weighted according to its
1045 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 1045 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1046 * scaled version of the new time slice allocation that they receive on time 1046 * scaled version of the new time slice allocation that they receive on time
1047 * slice expiry etc. 1047 * slice expiry etc.
1048 */ 1048 */
1049 1049
1050 #define WEIGHT_IDLEPRIO 3 1050 #define WEIGHT_IDLEPRIO 3
1051 #define WMULT_IDLEPRIO 1431655765 1051 #define WMULT_IDLEPRIO 1431655765
1052 1052
1053 /* 1053 /*
1054 * Nice levels are multiplicative, with a gentle 10% change for every 1054 * Nice levels are multiplicative, with a gentle 10% change for every
1055 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 1055 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1056 * nice 1, it will get ~10% less CPU time than another CPU-bound task 1056 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1057 * that remained on nice 0. 1057 * that remained on nice 0.
1058 * 1058 *
1059 * The "10% effect" is relative and cumulative: from _any_ nice level, 1059 * The "10% effect" is relative and cumulative: from _any_ nice level,
1060 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 1060 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1061 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 1061 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1062 * If a task goes up by ~10% and another task goes down by ~10% then 1062 * If a task goes up by ~10% and another task goes down by ~10% then
1063 * the relative distance between them is ~25%.) 1063 * the relative distance between them is ~25%.)
1064 */ 1064 */
1065 static const int prio_to_weight[40] = { 1065 static const int prio_to_weight[40] = {
1066 /* -20 */ 88761, 71755, 56483, 46273, 36291, 1066 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1067 /* -15 */ 29154, 23254, 18705, 14949, 11916, 1067 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1068 /* -10 */ 9548, 7620, 6100, 4904, 3906, 1068 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1069 /* -5 */ 3121, 2501, 1991, 1586, 1277, 1069 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1070 /* 0 */ 1024, 820, 655, 526, 423, 1070 /* 0 */ 1024, 820, 655, 526, 423,
1071 /* 5 */ 335, 272, 215, 172, 137, 1071 /* 5 */ 335, 272, 215, 172, 137,
1072 /* 10 */ 110, 87, 70, 56, 45, 1072 /* 10 */ 110, 87, 70, 56, 45,
1073 /* 15 */ 36, 29, 23, 18, 15, 1073 /* 15 */ 36, 29, 23, 18, 15,
1074 }; 1074 };
1075 1075
1076 /* 1076 /*
1077 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. 1077 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1078 * 1078 *
1079 * In cases where the weight does not change often, we can use the 1079 * In cases where the weight does not change often, we can use the
1080 * precalculated inverse to speed up arithmetics by turning divisions 1080 * precalculated inverse to speed up arithmetics by turning divisions
1081 * into multiplications: 1081 * into multiplications:
1082 */ 1082 */
1083 static const u32 prio_to_wmult[40] = { 1083 static const u32 prio_to_wmult[40] = {
1084 /* -20 */ 48388, 59856, 76040, 92818, 118348, 1084 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1085 /* -15 */ 147320, 184698, 229616, 287308, 360437, 1085 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1086 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 1086 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1087 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 1087 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1088 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 1088 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1089 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 1089 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1090 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 1090 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1091 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 1091 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1092 }; 1092 };
1093 1093
1094 #define ENQUEUE_WAKEUP 1 1094 #define ENQUEUE_WAKEUP 1
1095 #define ENQUEUE_HEAD 2 1095 #define ENQUEUE_HEAD 2
1096 #ifdef CONFIG_SMP 1096 #ifdef CONFIG_SMP
1097 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1097 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1098 #else 1098 #else
1099 #define ENQUEUE_WAKING 0 1099 #define ENQUEUE_WAKING 0
1100 #endif 1100 #endif
1101 #define ENQUEUE_REPLENISH 8 1101 #define ENQUEUE_REPLENISH 8
1102 1102
1103 #define DEQUEUE_SLEEP 1 1103 #define DEQUEUE_SLEEP 1
1104 1104
1105 #define RETRY_TASK ((void *)-1UL) 1105 #define RETRY_TASK ((void *)-1UL)
1106 1106
1107 struct sched_class { 1107 struct sched_class {
1108 const struct sched_class *next; 1108 const struct sched_class *next;
1109 1109
1110 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1110 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1111 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1111 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1112 void (*yield_task) (struct rq *rq); 1112 void (*yield_task) (struct rq *rq);
1113 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1113 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1114 1114
1115 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1115 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1116 1116
1117 /* 1117 /*
1118 * It is the responsibility of the pick_next_task() method that will 1118 * It is the responsibility of the pick_next_task() method that will
1119 * return the next task to call put_prev_task() on the @prev task or 1119 * return the next task to call put_prev_task() on the @prev task or
1120 * something equivalent. 1120 * something equivalent.
1121 * 1121 *
1122 * May return RETRY_TASK when it finds a higher prio class has runnable 1122 * May return RETRY_TASK when it finds a higher prio class has runnable
1123 * tasks. 1123 * tasks.
1124 */ 1124 */
1125 struct task_struct * (*pick_next_task) (struct rq *rq, 1125 struct task_struct * (*pick_next_task) (struct rq *rq,
1126 struct task_struct *prev); 1126 struct task_struct *prev);
1127 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1127 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1128 1128
1129 #ifdef CONFIG_SMP 1129 #ifdef CONFIG_SMP
1130 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); 1130 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1131 void (*migrate_task_rq)(struct task_struct *p, int next_cpu); 1131 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1132 1132
1133 void (*post_schedule) (struct rq *this_rq); 1133 void (*post_schedule) (struct rq *this_rq);
1134 void (*task_waking) (struct task_struct *task); 1134 void (*task_waking) (struct task_struct *task);
1135 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1135 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1136 1136
1137 void (*set_cpus_allowed)(struct task_struct *p, 1137 void (*set_cpus_allowed)(struct task_struct *p,
1138 const struct cpumask *newmask); 1138 const struct cpumask *newmask);
1139 1139
1140 void (*rq_online)(struct rq *rq); 1140 void (*rq_online)(struct rq *rq);
1141 void (*rq_offline)(struct rq *rq); 1141 void (*rq_offline)(struct rq *rq);
1142 #endif 1142 #endif
1143 1143
1144 void (*set_curr_task) (struct rq *rq); 1144 void (*set_curr_task) (struct rq *rq);
1145 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1145 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1146 void (*task_fork) (struct task_struct *p); 1146 void (*task_fork) (struct task_struct *p);
1147 void (*task_dead) (struct task_struct *p); 1147 void (*task_dead) (struct task_struct *p);
1148 1148
1149 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1149 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1150 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1150 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1151 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1151 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1152 int oldprio); 1152 int oldprio);
1153 1153
1154 unsigned int (*get_rr_interval) (struct rq *rq, 1154 unsigned int (*get_rr_interval) (struct rq *rq,
1155 struct task_struct *task); 1155 struct task_struct *task);
1156 1156
1157 #ifdef CONFIG_FAIR_GROUP_SCHED 1157 #ifdef CONFIG_FAIR_GROUP_SCHED
1158 void (*task_move_group) (struct task_struct *p, int on_rq); 1158 void (*task_move_group) (struct task_struct *p, int on_rq);
1159 #endif 1159 #endif
1160 }; 1160 };
1161 1161
1162 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 1162 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1163 { 1163 {
1164 prev->sched_class->put_prev_task(rq, prev); 1164 prev->sched_class->put_prev_task(rq, prev);
1165 } 1165 }
1166 1166
1167 #define sched_class_highest (&stop_sched_class) 1167 #define sched_class_highest (&stop_sched_class)
1168 #define for_each_class(class) \ 1168 #define for_each_class(class) \
1169 for (class = sched_class_highest; class; class = class->next) 1169 for (class = sched_class_highest; class; class = class->next)
1170 1170
1171 extern const struct sched_class stop_sched_class; 1171 extern const struct sched_class stop_sched_class;
1172 extern const struct sched_class dl_sched_class; 1172 extern const struct sched_class dl_sched_class;
1173 extern const struct sched_class rt_sched_class; 1173 extern const struct sched_class rt_sched_class;
1174 extern const struct sched_class fair_sched_class; 1174 extern const struct sched_class fair_sched_class;
1175 extern const struct sched_class idle_sched_class; 1175 extern const struct sched_class idle_sched_class;
1176 1176
1177 1177
1178 #ifdef CONFIG_SMP 1178 #ifdef CONFIG_SMP
1179 1179
1180 extern void update_group_power(struct sched_domain *sd, int cpu); 1180 extern void update_group_power(struct sched_domain *sd, int cpu);
1181 1181
1182 extern void trigger_load_balance(struct rq *rq); 1182 extern void trigger_load_balance(struct rq *rq);
1183 1183
1184 extern void idle_enter_fair(struct rq *this_rq); 1184 extern void idle_enter_fair(struct rq *this_rq);
1185 extern void idle_exit_fair(struct rq *this_rq); 1185 extern void idle_exit_fair(struct rq *this_rq);
1186 1186
1187 #else 1187 #else
1188 1188
1189 static inline void idle_enter_fair(struct rq *rq) { } 1189 static inline void idle_enter_fair(struct rq *rq) { }
1190 static inline void idle_exit_fair(struct rq *rq) { } 1190 static inline void idle_exit_fair(struct rq *rq) { }
1191 1191
1192 #endif 1192 #endif
1193 1193
1194 extern void sysrq_sched_debug_show(void); 1194 extern void sysrq_sched_debug_show(void);
1195 extern void sched_init_granularity(void); 1195 extern void sched_init_granularity(void);
1196 extern void update_max_interval(void); 1196 extern void update_max_interval(void);
1197 1197
1198 extern void init_sched_dl_class(void); 1198 extern void init_sched_dl_class(void);
1199 extern void init_sched_rt_class(void); 1199 extern void init_sched_rt_class(void);
1200 extern void init_sched_fair_class(void); 1200 extern void init_sched_fair_class(void);
1201 extern void init_sched_dl_class(void); 1201 extern void init_sched_dl_class(void);
1202 1202
1203 extern void resched_task(struct task_struct *p); 1203 extern void resched_task(struct task_struct *p);
1204 extern void resched_cpu(int cpu); 1204 extern void resched_cpu(int cpu);
1205 1205
1206 extern struct rt_bandwidth def_rt_bandwidth; 1206 extern struct rt_bandwidth def_rt_bandwidth;
1207 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 1207 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1208 1208
1209 extern struct dl_bandwidth def_dl_bandwidth; 1209 extern struct dl_bandwidth def_dl_bandwidth;
1210 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 1210 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1211 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 1211 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1212 1212
1213 unsigned long to_ratio(u64 period, u64 runtime); 1213 unsigned long to_ratio(u64 period, u64 runtime);
1214 1214
1215 extern void update_idle_cpu_load(struct rq *this_rq); 1215 extern void update_idle_cpu_load(struct rq *this_rq);
1216 1216
1217 extern void init_task_runnable_average(struct task_struct *p); 1217 extern void init_task_runnable_average(struct task_struct *p);
1218 1218
1219 static inline void inc_nr_running(struct rq *rq) 1219 static inline void inc_nr_running(struct rq *rq)
1220 { 1220 {
1221 rq->nr_running++; 1221 rq->nr_running++;
1222 1222
1223 #ifdef CONFIG_NO_HZ_FULL 1223 #ifdef CONFIG_NO_HZ_FULL
1224 if (rq->nr_running == 2) { 1224 if (rq->nr_running == 2) {
1225 if (tick_nohz_full_cpu(rq->cpu)) { 1225 if (tick_nohz_full_cpu(rq->cpu)) {
1226 /* Order rq->nr_running write against the IPI */ 1226 /* Order rq->nr_running write against the IPI */
1227 smp_wmb(); 1227 smp_wmb();
1228 smp_send_reschedule(rq->cpu); 1228 smp_send_reschedule(rq->cpu);
1229 } 1229 }
1230 } 1230 }
1231 #endif 1231 #endif
1232 } 1232 }
1233 1233
1234 static inline void dec_nr_running(struct rq *rq) 1234 static inline void dec_nr_running(struct rq *rq)
1235 { 1235 {
1236 rq->nr_running--; 1236 rq->nr_running--;
1237 } 1237 }
1238 1238
1239 static inline void rq_last_tick_reset(struct rq *rq) 1239 static inline void rq_last_tick_reset(struct rq *rq)
1240 { 1240 {
1241 #ifdef CONFIG_NO_HZ_FULL 1241 #ifdef CONFIG_NO_HZ_FULL
1242 rq->last_sched_tick = jiffies; 1242 rq->last_sched_tick = jiffies;
1243 #endif 1243 #endif
1244 } 1244 }
1245 1245
1246 extern void update_rq_clock(struct rq *rq); 1246 extern void update_rq_clock(struct rq *rq);
1247 1247
1248 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 1248 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1249 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 1249 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1250 1250
1251 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 1251 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1252 1252
1253 extern const_debug unsigned int sysctl_sched_time_avg; 1253 extern const_debug unsigned int sysctl_sched_time_avg;
1254 extern const_debug unsigned int sysctl_sched_nr_migrate; 1254 extern const_debug unsigned int sysctl_sched_nr_migrate;
1255 extern const_debug unsigned int sysctl_sched_migration_cost; 1255 extern const_debug unsigned int sysctl_sched_migration_cost;
1256 1256
1257 static inline u64 sched_avg_period(void) 1257 static inline u64 sched_avg_period(void)
1258 { 1258 {
1259 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; 1259 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1260 } 1260 }
1261 1261
1262 #ifdef CONFIG_SCHED_HRTICK 1262 #ifdef CONFIG_SCHED_HRTICK
1263 1263
1264 /* 1264 /*
1265 * Use hrtick when: 1265 * Use hrtick when:
1266 * - enabled by features 1266 * - enabled by features
1267 * - hrtimer is actually high res 1267 * - hrtimer is actually high res
1268 */ 1268 */
1269 static inline int hrtick_enabled(struct rq *rq) 1269 static inline int hrtick_enabled(struct rq *rq)
1270 { 1270 {
1271 if (!sched_feat(HRTICK)) 1271 if (!sched_feat(HRTICK))
1272 return 0; 1272 return 0;
1273 if (!cpu_active(cpu_of(rq))) 1273 if (!cpu_active(cpu_of(rq)))
1274 return 0; 1274 return 0;
1275 return hrtimer_is_hres_active(&rq->hrtick_timer); 1275 return hrtimer_is_hres_active(&rq->hrtick_timer);
1276 } 1276 }
1277 1277
1278 void hrtick_start(struct rq *rq, u64 delay); 1278 void hrtick_start(struct rq *rq, u64 delay);
1279 1279
1280 #else 1280 #else
1281 1281
1282 static inline int hrtick_enabled(struct rq *rq) 1282 static inline int hrtick_enabled(struct rq *rq)
1283 { 1283 {
1284 return 0; 1284 return 0;
1285 } 1285 }
1286 1286
1287 #endif /* CONFIG_SCHED_HRTICK */ 1287 #endif /* CONFIG_SCHED_HRTICK */
1288 1288
1289 #ifdef CONFIG_SMP 1289 #ifdef CONFIG_SMP
1290 extern void sched_avg_update(struct rq *rq); 1290 extern void sched_avg_update(struct rq *rq);
1291 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) 1291 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1292 { 1292 {
1293 rq->rt_avg += rt_delta; 1293 rq->rt_avg += rt_delta;
1294 sched_avg_update(rq); 1294 sched_avg_update(rq);
1295 } 1295 }
1296 #else 1296 #else
1297 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } 1297 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1298 static inline void sched_avg_update(struct rq *rq) { } 1298 static inline void sched_avg_update(struct rq *rq) { }
1299 #endif 1299 #endif
1300 1300
1301 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); 1301 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1302 1302
1303 #ifdef CONFIG_SMP 1303 #ifdef CONFIG_SMP
1304 #ifdef CONFIG_PREEMPT 1304 #ifdef CONFIG_PREEMPT
1305 1305
1306 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); 1306 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1307 1307
1308 /* 1308 /*
1309 * fair double_lock_balance: Safely acquires both rq->locks in a fair 1309 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1310 * way at the expense of forcing extra atomic operations in all 1310 * way at the expense of forcing extra atomic operations in all
1311 * invocations. This assures that the double_lock is acquired using the 1311 * invocations. This assures that the double_lock is acquired using the
1312 * same underlying policy as the spinlock_t on this architecture, which 1312 * same underlying policy as the spinlock_t on this architecture, which
1313 * reduces latency compared to the unfair variant below. However, it 1313 * reduces latency compared to the unfair variant below. However, it
1314 * also adds more overhead and therefore may reduce throughput. 1314 * also adds more overhead and therefore may reduce throughput.
1315 */ 1315 */
1316 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1316 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1317 __releases(this_rq->lock) 1317 __releases(this_rq->lock)
1318 __acquires(busiest->lock) 1318 __acquires(busiest->lock)
1319 __acquires(this_rq->lock) 1319 __acquires(this_rq->lock)
1320 { 1320 {
1321 raw_spin_unlock(&this_rq->lock); 1321 raw_spin_unlock(&this_rq->lock);
1322 double_rq_lock(this_rq, busiest); 1322 double_rq_lock(this_rq, busiest);
1323 1323
1324 return 1; 1324 return 1;
1325 } 1325 }
1326 1326
1327 #else 1327 #else
1328 /* 1328 /*
1329 * Unfair double_lock_balance: Optimizes throughput at the expense of 1329 * Unfair double_lock_balance: Optimizes throughput at the expense of
1330 * latency by eliminating extra atomic operations when the locks are 1330 * latency by eliminating extra atomic operations when the locks are
1331 * already in proper order on entry. This favors lower cpu-ids and will 1331 * already in proper order on entry. This favors lower cpu-ids and will
1332 * grant the double lock to lower cpus over higher ids under contention, 1332 * grant the double lock to lower cpus over higher ids under contention,
1333 * regardless of entry order into the function. 1333 * regardless of entry order into the function.
1334 */ 1334 */
1335 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1335 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1336 __releases(this_rq->lock) 1336 __releases(this_rq->lock)
1337 __acquires(busiest->lock) 1337 __acquires(busiest->lock)
1338 __acquires(this_rq->lock) 1338 __acquires(this_rq->lock)
1339 { 1339 {
1340 int ret = 0; 1340 int ret = 0;
1341 1341
1342 if (unlikely(!raw_spin_trylock(&busiest->lock))) { 1342 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1343 if (busiest < this_rq) { 1343 if (busiest < this_rq) {
1344 raw_spin_unlock(&this_rq->lock); 1344 raw_spin_unlock(&this_rq->lock);
1345 raw_spin_lock(&busiest->lock); 1345 raw_spin_lock(&busiest->lock);
1346 raw_spin_lock_nested(&this_rq->lock, 1346 raw_spin_lock_nested(&this_rq->lock,
1347 SINGLE_DEPTH_NESTING); 1347 SINGLE_DEPTH_NESTING);
1348 ret = 1; 1348 ret = 1;
1349 } else 1349 } else
1350 raw_spin_lock_nested(&busiest->lock, 1350 raw_spin_lock_nested(&busiest->lock,
1351 SINGLE_DEPTH_NESTING); 1351 SINGLE_DEPTH_NESTING);
1352 } 1352 }
1353 return ret; 1353 return ret;
1354 } 1354 }
1355 1355
1356 #endif /* CONFIG_PREEMPT */ 1356 #endif /* CONFIG_PREEMPT */
1357 1357
1358 /* 1358 /*
1359 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 1359 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1360 */ 1360 */
1361 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 1361 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1362 { 1362 {
1363 if (unlikely(!irqs_disabled())) { 1363 if (unlikely(!irqs_disabled())) {
1364 /* printk() doesn't work good under rq->lock */ 1364 /* printk() doesn't work good under rq->lock */
1365 raw_spin_unlock(&this_rq->lock); 1365 raw_spin_unlock(&this_rq->lock);
1366 BUG_ON(1); 1366 BUG_ON(1);
1367 } 1367 }
1368 1368
1369 return _double_lock_balance(this_rq, busiest); 1369 return _double_lock_balance(this_rq, busiest);
1370 } 1370 }
1371 1371
1372 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 1372 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1373 __releases(busiest->lock) 1373 __releases(busiest->lock)
1374 { 1374 {
1375 raw_spin_unlock(&busiest->lock); 1375 raw_spin_unlock(&busiest->lock);
1376 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1376 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1377 } 1377 }
1378 1378
1379 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 1379 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1380 { 1380 {
1381 if (l1 > l2) 1381 if (l1 > l2)
1382 swap(l1, l2); 1382 swap(l1, l2);
1383 1383
1384 spin_lock(l1); 1384 spin_lock(l1);
1385 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1385 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1386 } 1386 }
1387 1387
1388 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 1388 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1389 { 1389 {
1390 if (l1 > l2) 1390 if (l1 > l2)
1391 swap(l1, l2); 1391 swap(l1, l2);
1392 1392
1393 spin_lock_irq(l1); 1393 spin_lock_irq(l1);
1394 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1394 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1395 } 1395 }
1396 1396
1397 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 1397 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1398 { 1398 {
1399 if (l1 > l2) 1399 if (l1 > l2)
1400 swap(l1, l2); 1400 swap(l1, l2);
1401 1401
1402 raw_spin_lock(l1); 1402 raw_spin_lock(l1);
1403 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1403 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1404 } 1404 }
1405 1405
1406 /* 1406 /*
1407 * double_rq_lock - safely lock two runqueues 1407 * double_rq_lock - safely lock two runqueues
1408 * 1408 *
1409 * Note this does not disable interrupts like task_rq_lock, 1409 * Note this does not disable interrupts like task_rq_lock,
1410 * you need to do so manually before calling. 1410 * you need to do so manually before calling.
1411 */ 1411 */
1412 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1412 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1413 __acquires(rq1->lock) 1413 __acquires(rq1->lock)
1414 __acquires(rq2->lock) 1414 __acquires(rq2->lock)
1415 { 1415 {
1416 BUG_ON(!irqs_disabled()); 1416 BUG_ON(!irqs_disabled());
1417 if (rq1 == rq2) { 1417 if (rq1 == rq2) {
1418 raw_spin_lock(&rq1->lock); 1418 raw_spin_lock(&rq1->lock);
1419 __acquire(rq2->lock); /* Fake it out ;) */ 1419 __acquire(rq2->lock); /* Fake it out ;) */
1420 } else { 1420 } else {
1421 if (rq1 < rq2) { 1421 if (rq1 < rq2) {
1422 raw_spin_lock(&rq1->lock); 1422 raw_spin_lock(&rq1->lock);
1423 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 1423 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1424 } else { 1424 } else {
1425 raw_spin_lock(&rq2->lock); 1425 raw_spin_lock(&rq2->lock);
1426 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 1426 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1427 } 1427 }
1428 } 1428 }
1429 } 1429 }
1430 1430
1431 /* 1431 /*
1432 * double_rq_unlock - safely unlock two runqueues 1432 * double_rq_unlock - safely unlock two runqueues
1433 * 1433 *
1434 * Note this does not restore interrupts like task_rq_unlock, 1434 * Note this does not restore interrupts like task_rq_unlock,
1435 * you need to do so manually after calling. 1435 * you need to do so manually after calling.
1436 */ 1436 */
1437 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1437 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1438 __releases(rq1->lock) 1438 __releases(rq1->lock)
1439 __releases(rq2->lock) 1439 __releases(rq2->lock)
1440 { 1440 {
1441 raw_spin_unlock(&rq1->lock); 1441 raw_spin_unlock(&rq1->lock);
1442 if (rq1 != rq2) 1442 if (rq1 != rq2)
1443 raw_spin_unlock(&rq2->lock); 1443 raw_spin_unlock(&rq2->lock);
1444 else 1444 else
1445 __release(rq2->lock); 1445 __release(rq2->lock);
1446 } 1446 }
1447 1447
1448 #else /* CONFIG_SMP */ 1448 #else /* CONFIG_SMP */
1449 1449
1450 /* 1450 /*
1451 * double_rq_lock - safely lock two runqueues 1451 * double_rq_lock - safely lock two runqueues
1452 * 1452 *
1453 * Note this does not disable interrupts like task_rq_lock, 1453 * Note this does not disable interrupts like task_rq_lock,
1454 * you need to do so manually before calling. 1454 * you need to do so manually before calling.
1455 */ 1455 */
1456 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1456 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1457 __acquires(rq1->lock) 1457 __acquires(rq1->lock)
1458 __acquires(rq2->lock) 1458 __acquires(rq2->lock)
1459 { 1459 {
1460 BUG_ON(!irqs_disabled()); 1460 BUG_ON(!irqs_disabled());
1461 BUG_ON(rq1 != rq2); 1461 BUG_ON(rq1 != rq2);
1462 raw_spin_lock(&rq1->lock); 1462 raw_spin_lock(&rq1->lock);
1463 __acquire(rq2->lock); /* Fake it out ;) */ 1463 __acquire(rq2->lock); /* Fake it out ;) */
1464 } 1464 }
1465 1465
1466 /* 1466 /*
1467 * double_rq_unlock - safely unlock two runqueues 1467 * double_rq_unlock - safely unlock two runqueues
1468 * 1468 *
1469 * Note this does not restore interrupts like task_rq_unlock, 1469 * Note this does not restore interrupts like task_rq_unlock,
1470 * you need to do so manually after calling. 1470 * you need to do so manually after calling.
1471 */ 1471 */
1472 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1472 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1473 __releases(rq1->lock) 1473 __releases(rq1->lock)
1474 __releases(rq2->lock) 1474 __releases(rq2->lock)
1475 { 1475 {
1476 BUG_ON(rq1 != rq2); 1476 BUG_ON(rq1 != rq2);
1477 raw_spin_unlock(&rq1->lock); 1477 raw_spin_unlock(&rq1->lock);
1478 __release(rq2->lock); 1478 __release(rq2->lock);
1479 } 1479 }
1480 1480
1481 #endif 1481 #endif
1482 1482
1483 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 1483 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1484 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 1484 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1485 extern void print_cfs_stats(struct seq_file *m, int cpu); 1485 extern void print_cfs_stats(struct seq_file *m, int cpu);
1486 extern void print_rt_stats(struct seq_file *m, int cpu); 1486 extern void print_rt_stats(struct seq_file *m, int cpu);
1487 1487
1488 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 1488 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1489 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); 1489 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1490 extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq); 1490 extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
1491 1491
1492 extern void cfs_bandwidth_usage_inc(void); 1492 extern void cfs_bandwidth_usage_inc(void);
1493 extern void cfs_bandwidth_usage_dec(void); 1493 extern void cfs_bandwidth_usage_dec(void);
1494 1494
1495 #ifdef CONFIG_NO_HZ_COMMON 1495 #ifdef CONFIG_NO_HZ_COMMON
1496 enum rq_nohz_flag_bits { 1496 enum rq_nohz_flag_bits {
1497 NOHZ_TICK_STOPPED, 1497 NOHZ_TICK_STOPPED,
1498 NOHZ_BALANCE_KICK, 1498 NOHZ_BALANCE_KICK,
1499 }; 1499 };
1500 1500
1501 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 1501 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1502 #endif 1502 #endif
1503 1503
1504 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1504 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1505 1505
1506 DECLARE_PER_CPU(u64, cpu_hardirq_time); 1506 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1507 DECLARE_PER_CPU(u64, cpu_softirq_time); 1507 DECLARE_PER_CPU(u64, cpu_softirq_time);
1508 1508
1509 #ifndef CONFIG_64BIT 1509 #ifndef CONFIG_64BIT
1510 DECLARE_PER_CPU(seqcount_t, irq_time_seq); 1510 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1511 1511
1512 static inline void irq_time_write_begin(void) 1512 static inline void irq_time_write_begin(void)
1513 { 1513 {
1514 __this_cpu_inc(irq_time_seq.sequence); 1514 __this_cpu_inc(irq_time_seq.sequence);
1515 smp_wmb(); 1515 smp_wmb();
1516 } 1516 }
1517 1517
1518 static inline void irq_time_write_end(void) 1518 static inline void irq_time_write_end(void)
1519 { 1519 {
1520 smp_wmb(); 1520 smp_wmb();
1521 __this_cpu_inc(irq_time_seq.sequence); 1521 __this_cpu_inc(irq_time_seq.sequence);
1522 } 1522 }
1523 1523
1524 static inline u64 irq_time_read(int cpu) 1524 static inline u64 irq_time_read(int cpu)
1525 { 1525 {
1526 u64 irq_time; 1526 u64 irq_time;
1527 unsigned seq; 1527 unsigned seq;
1528 1528
1529 do { 1529 do {
1530 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); 1530 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1531 irq_time = per_cpu(cpu_softirq_time, cpu) + 1531 irq_time = per_cpu(cpu_softirq_time, cpu) +
1532 per_cpu(cpu_hardirq_time, cpu); 1532 per_cpu(cpu_hardirq_time, cpu);
1533 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); 1533 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1534 1534
1535 return irq_time; 1535 return irq_time;
1536 } 1536 }
1537 #else /* CONFIG_64BIT */ 1537 #else /* CONFIG_64BIT */
1538 static inline void irq_time_write_begin(void) 1538 static inline void irq_time_write_begin(void)
1539 { 1539 {
1540 } 1540 }
1541 1541
1542 static inline void irq_time_write_end(void) 1542 static inline void irq_time_write_end(void)
1543 { 1543 {
1544 } 1544 }
1545 1545
1546 static inline u64 irq_time_read(int cpu) 1546 static inline u64 irq_time_read(int cpu)
1547 { 1547 {
1548 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 1548 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1549 } 1549 }
1550 #endif /* CONFIG_64BIT */ 1550 #endif /* CONFIG_64BIT */
1551 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 1551 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1552 1552