Commit 0af83220a4e41797edb0915b177dae84e6e6b57f

Authored by Oleg Nesterov
Committed by Greg Kroah-Hartman
1 parent de661dfb1d

exit: call disassociate_ctty() before exit_task_namespaces()

commit c39df5fa37b0623589508c95515b4aa1531c524e upstream.

Commit 8aac62706ada ("move exit_task_namespaces() outside of
exit_notify()") breaks pppd and the exiting service crashes the kernel:

    BUG: unable to handle kernel NULL pointer dereference at 0000000000000028
    IP: ppp_register_channel+0x13/0x20 [ppp_generic]
    Call Trace:
      ppp_asynctty_open+0x12b/0x170 [ppp_async]
      tty_ldisc_open.isra.2+0x27/0x60
      tty_ldisc_hangup+0x1e3/0x220
      __tty_hangup+0x2c4/0x440
      disassociate_ctty+0x61/0x270
      do_exit+0x7f2/0xa50

ppp_register_channel() needs ->net_ns and current->nsproxy == NULL.

Move disassociate_ctty() before exit_task_namespaces(), it doesn't make
sense to delay it after perf_event_exit_task() or cgroup_exit().

This also allows to use task_work_add() inside the (nontrivial) code
paths in disassociate_ctty().

Investigated by Peter Hurley.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Sree Harsha Totakura <sreeharsha@totakura.in>
Cc: Peter Hurley <peter@hurleysoftware.com>
Cc: Sree Harsha Totakura <sreeharsha@totakura.in>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Andrey Vagin <avagin@openvz.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

Showing 1 changed file with 2 additions and 4 deletions Inline Diff

1 /* 1 /*
2 * linux/kernel/exit.c 2 * linux/kernel/exit.c
3 * 3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */ 5 */
6 6
7 #include <linux/mm.h> 7 #include <linux/mm.h>
8 #include <linux/slab.h> 8 #include <linux/slab.h>
9 #include <linux/interrupt.h> 9 #include <linux/interrupt.h>
10 #include <linux/module.h> 10 #include <linux/module.h>
11 #include <linux/capability.h> 11 #include <linux/capability.h>
12 #include <linux/completion.h> 12 #include <linux/completion.h>
13 #include <linux/personality.h> 13 #include <linux/personality.h>
14 #include <linux/tty.h> 14 #include <linux/tty.h>
15 #include <linux/iocontext.h> 15 #include <linux/iocontext.h>
16 #include <linux/key.h> 16 #include <linux/key.h>
17 #include <linux/security.h> 17 #include <linux/security.h>
18 #include <linux/cpu.h> 18 #include <linux/cpu.h>
19 #include <linux/acct.h> 19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h> 20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h> 21 #include <linux/file.h>
22 #include <linux/fdtable.h> 22 #include <linux/fdtable.h>
23 #include <linux/freezer.h> 23 #include <linux/freezer.h>
24 #include <linux/binfmts.h> 24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h> 25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h> 26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h> 27 #include <linux/ptrace.h>
28 #include <linux/profile.h> 28 #include <linux/profile.h>
29 #include <linux/mount.h> 29 #include <linux/mount.h>
30 #include <linux/proc_fs.h> 30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h> 31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h> 32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h> 33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h> 34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h> 35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h> 36 #include <linux/syscalls.h>
37 #include <linux/signal.h> 37 #include <linux/signal.h>
38 #include <linux/posix-timers.h> 38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h> 39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h> 40 #include <linux/mutex.h>
41 #include <linux/futex.h> 41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h> 42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */ 43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h> 44 #include <linux/resource.h>
45 #include <linux/blkdev.h> 45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h> 46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h> 47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h> 48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h> 49 #include <linux/init_task.h>
50 #include <linux/perf_event.h> 50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h> 51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h> 52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h> 53 #include <linux/oom.h>
54 #include <linux/writeback.h> 54 #include <linux/writeback.h>
55 #include <linux/shm.h> 55 #include <linux/shm.h>
56 56
57 #include <asm/uaccess.h> 57 #include <asm/uaccess.h>
58 #include <asm/unistd.h> 58 #include <asm/unistd.h>
59 #include <asm/pgtable.h> 59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h> 60 #include <asm/mmu_context.h>
61 61
62 static void exit_mm(struct task_struct * tsk); 62 static void exit_mm(struct task_struct * tsk);
63 63
64 static void __unhash_process(struct task_struct *p, bool group_dead) 64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 { 65 {
66 nr_threads--; 66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID); 67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) { 68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID); 69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID); 70 detach_pid(p, PIDTYPE_SID);
71 71
72 list_del_rcu(&p->tasks); 72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling); 73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts); 74 __this_cpu_dec(process_counts);
75 } 75 }
76 list_del_rcu(&p->thread_group); 76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node); 77 list_del_rcu(&p->thread_node);
78 } 78 }
79 79
80 /* 80 /*
81 * This function expects the tasklist_lock write-locked. 81 * This function expects the tasklist_lock write-locked.
82 */ 82 */
83 static void __exit_signal(struct task_struct *tsk) 83 static void __exit_signal(struct task_struct *tsk)
84 { 84 {
85 struct signal_struct *sig = tsk->signal; 85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk); 86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand; 87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty); 88 struct tty_struct *uninitialized_var(tty);
89 cputime_t utime, stime; 89 cputime_t utime, stime;
90 90
91 sighand = rcu_dereference_check(tsk->sighand, 91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held()); 92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock); 93 spin_lock(&sighand->siglock);
94 94
95 posix_cpu_timers_exit(tsk); 95 posix_cpu_timers_exit(tsk);
96 if (group_dead) { 96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk); 97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty; 98 tty = sig->tty;
99 sig->tty = NULL; 99 sig->tty = NULL;
100 } else { 100 } else {
101 /* 101 /*
102 * This can only happen if the caller is de_thread(). 102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach 103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly. 104 * posix-cpu-timers to handle this case correctly.
105 */ 105 */
106 if (unlikely(has_group_leader_pid(tsk))) 106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk); 107 posix_cpu_timers_exit_group(tsk);
108 108
109 /* 109 /*
110 * If there is any task waiting for the group exit 110 * If there is any task waiting for the group exit
111 * then notify it: 111 * then notify it:
112 */ 112 */
113 if (sig->notify_count > 0 && !--sig->notify_count) 113 if (sig->notify_count > 0 && !--sig->notify_count)
114 wake_up_process(sig->group_exit_task); 114 wake_up_process(sig->group_exit_task);
115 115
116 if (tsk == sig->curr_target) 116 if (tsk == sig->curr_target)
117 sig->curr_target = next_thread(tsk); 117 sig->curr_target = next_thread(tsk);
118 /* 118 /*
119 * Accumulate here the counters for all threads but the 119 * Accumulate here the counters for all threads but the
120 * group leader as they die, so they can be added into 120 * group leader as they die, so they can be added into
121 * the process-wide totals when those are taken. 121 * the process-wide totals when those are taken.
122 * The group leader stays around as a zombie as long 122 * The group leader stays around as a zombie as long
123 * as there are other threads. When it gets reaped, 123 * as there are other threads. When it gets reaped,
124 * the exit.c code will add its counts into these totals. 124 * the exit.c code will add its counts into these totals.
125 * We won't ever get here for the group leader, since it 125 * We won't ever get here for the group leader, since it
126 * will have been the last reference on the signal_struct. 126 * will have been the last reference on the signal_struct.
127 */ 127 */
128 task_cputime(tsk, &utime, &stime); 128 task_cputime(tsk, &utime, &stime);
129 sig->utime += utime; 129 sig->utime += utime;
130 sig->stime += stime; 130 sig->stime += stime;
131 sig->gtime += task_gtime(tsk); 131 sig->gtime += task_gtime(tsk);
132 sig->min_flt += tsk->min_flt; 132 sig->min_flt += tsk->min_flt;
133 sig->maj_flt += tsk->maj_flt; 133 sig->maj_flt += tsk->maj_flt;
134 sig->nvcsw += tsk->nvcsw; 134 sig->nvcsw += tsk->nvcsw;
135 sig->nivcsw += tsk->nivcsw; 135 sig->nivcsw += tsk->nivcsw;
136 sig->inblock += task_io_get_inblock(tsk); 136 sig->inblock += task_io_get_inblock(tsk);
137 sig->oublock += task_io_get_oublock(tsk); 137 sig->oublock += task_io_get_oublock(tsk);
138 task_io_accounting_add(&sig->ioac, &tsk->ioac); 138 task_io_accounting_add(&sig->ioac, &tsk->ioac);
139 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 139 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
140 } 140 }
141 141
142 sig->nr_threads--; 142 sig->nr_threads--;
143 __unhash_process(tsk, group_dead); 143 __unhash_process(tsk, group_dead);
144 144
145 /* 145 /*
146 * Do this under ->siglock, we can race with another thread 146 * Do this under ->siglock, we can race with another thread
147 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 147 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
148 */ 148 */
149 flush_sigqueue(&tsk->pending); 149 flush_sigqueue(&tsk->pending);
150 tsk->sighand = NULL; 150 tsk->sighand = NULL;
151 spin_unlock(&sighand->siglock); 151 spin_unlock(&sighand->siglock);
152 152
153 __cleanup_sighand(sighand); 153 __cleanup_sighand(sighand);
154 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 154 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
155 if (group_dead) { 155 if (group_dead) {
156 flush_sigqueue(&sig->shared_pending); 156 flush_sigqueue(&sig->shared_pending);
157 tty_kref_put(tty); 157 tty_kref_put(tty);
158 } 158 }
159 } 159 }
160 160
161 static void delayed_put_task_struct(struct rcu_head *rhp) 161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 { 162 {
163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
164 164
165 perf_event_delayed_put(tsk); 165 perf_event_delayed_put(tsk);
166 trace_sched_process_free(tsk); 166 trace_sched_process_free(tsk);
167 put_task_struct(tsk); 167 put_task_struct(tsk);
168 } 168 }
169 169
170 170
171 void release_task(struct task_struct * p) 171 void release_task(struct task_struct * p)
172 { 172 {
173 struct task_struct *leader; 173 struct task_struct *leader;
174 int zap_leader; 174 int zap_leader;
175 repeat: 175 repeat:
176 /* don't need to get the RCU readlock here - the process is dead and 176 /* don't need to get the RCU readlock here - the process is dead and
177 * can't be modifying its own credentials. But shut RCU-lockdep up */ 177 * can't be modifying its own credentials. But shut RCU-lockdep up */
178 rcu_read_lock(); 178 rcu_read_lock();
179 atomic_dec(&__task_cred(p)->user->processes); 179 atomic_dec(&__task_cred(p)->user->processes);
180 rcu_read_unlock(); 180 rcu_read_unlock();
181 181
182 proc_flush_task(p); 182 proc_flush_task(p);
183 183
184 write_lock_irq(&tasklist_lock); 184 write_lock_irq(&tasklist_lock);
185 ptrace_release_task(p); 185 ptrace_release_task(p);
186 __exit_signal(p); 186 __exit_signal(p);
187 187
188 /* 188 /*
189 * If we are the last non-leader member of the thread 189 * If we are the last non-leader member of the thread
190 * group, and the leader is zombie, then notify the 190 * group, and the leader is zombie, then notify the
191 * group leader's parent process. (if it wants notification.) 191 * group leader's parent process. (if it wants notification.)
192 */ 192 */
193 zap_leader = 0; 193 zap_leader = 0;
194 leader = p->group_leader; 194 leader = p->group_leader;
195 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 195 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
196 /* 196 /*
197 * If we were the last child thread and the leader has 197 * If we were the last child thread and the leader has
198 * exited already, and the leader's parent ignores SIGCHLD, 198 * exited already, and the leader's parent ignores SIGCHLD,
199 * then we are the one who should release the leader. 199 * then we are the one who should release the leader.
200 */ 200 */
201 zap_leader = do_notify_parent(leader, leader->exit_signal); 201 zap_leader = do_notify_parent(leader, leader->exit_signal);
202 if (zap_leader) 202 if (zap_leader)
203 leader->exit_state = EXIT_DEAD; 203 leader->exit_state = EXIT_DEAD;
204 } 204 }
205 205
206 write_unlock_irq(&tasklist_lock); 206 write_unlock_irq(&tasklist_lock);
207 release_thread(p); 207 release_thread(p);
208 call_rcu(&p->rcu, delayed_put_task_struct); 208 call_rcu(&p->rcu, delayed_put_task_struct);
209 209
210 p = leader; 210 p = leader;
211 if (unlikely(zap_leader)) 211 if (unlikely(zap_leader))
212 goto repeat; 212 goto repeat;
213 } 213 }
214 214
215 /* 215 /*
216 * This checks not only the pgrp, but falls back on the pid if no 216 * This checks not only the pgrp, but falls back on the pid if no
217 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 217 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
218 * without this... 218 * without this...
219 * 219 *
220 * The caller must hold rcu lock or the tasklist lock. 220 * The caller must hold rcu lock or the tasklist lock.
221 */ 221 */
222 struct pid *session_of_pgrp(struct pid *pgrp) 222 struct pid *session_of_pgrp(struct pid *pgrp)
223 { 223 {
224 struct task_struct *p; 224 struct task_struct *p;
225 struct pid *sid = NULL; 225 struct pid *sid = NULL;
226 226
227 p = pid_task(pgrp, PIDTYPE_PGID); 227 p = pid_task(pgrp, PIDTYPE_PGID);
228 if (p == NULL) 228 if (p == NULL)
229 p = pid_task(pgrp, PIDTYPE_PID); 229 p = pid_task(pgrp, PIDTYPE_PID);
230 if (p != NULL) 230 if (p != NULL)
231 sid = task_session(p); 231 sid = task_session(p);
232 232
233 return sid; 233 return sid;
234 } 234 }
235 235
236 /* 236 /*
237 * Determine if a process group is "orphaned", according to the POSIX 237 * Determine if a process group is "orphaned", according to the POSIX
238 * definition in 2.2.2.52. Orphaned process groups are not to be affected 238 * definition in 2.2.2.52. Orphaned process groups are not to be affected
239 * by terminal-generated stop signals. Newly orphaned process groups are 239 * by terminal-generated stop signals. Newly orphaned process groups are
240 * to receive a SIGHUP and a SIGCONT. 240 * to receive a SIGHUP and a SIGCONT.
241 * 241 *
242 * "I ask you, have you ever known what it is to be an orphan?" 242 * "I ask you, have you ever known what it is to be an orphan?"
243 */ 243 */
244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
245 { 245 {
246 struct task_struct *p; 246 struct task_struct *p;
247 247
248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 if ((p == ignored_task) || 249 if ((p == ignored_task) ||
250 (p->exit_state && thread_group_empty(p)) || 250 (p->exit_state && thread_group_empty(p)) ||
251 is_global_init(p->real_parent)) 251 is_global_init(p->real_parent))
252 continue; 252 continue;
253 253
254 if (task_pgrp(p->real_parent) != pgrp && 254 if (task_pgrp(p->real_parent) != pgrp &&
255 task_session(p->real_parent) == task_session(p)) 255 task_session(p->real_parent) == task_session(p))
256 return 0; 256 return 0;
257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258 258
259 return 1; 259 return 1;
260 } 260 }
261 261
262 int is_current_pgrp_orphaned(void) 262 int is_current_pgrp_orphaned(void)
263 { 263 {
264 int retval; 264 int retval;
265 265
266 read_lock(&tasklist_lock); 266 read_lock(&tasklist_lock);
267 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 267 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
268 read_unlock(&tasklist_lock); 268 read_unlock(&tasklist_lock);
269 269
270 return retval; 270 return retval;
271 } 271 }
272 272
273 static bool has_stopped_jobs(struct pid *pgrp) 273 static bool has_stopped_jobs(struct pid *pgrp)
274 { 274 {
275 struct task_struct *p; 275 struct task_struct *p;
276 276
277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
278 if (p->signal->flags & SIGNAL_STOP_STOPPED) 278 if (p->signal->flags & SIGNAL_STOP_STOPPED)
279 return true; 279 return true;
280 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 280 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
281 281
282 return false; 282 return false;
283 } 283 }
284 284
285 /* 285 /*
286 * Check to see if any process groups have become orphaned as 286 * Check to see if any process groups have become orphaned as
287 * a result of our exiting, and if they have any stopped jobs, 287 * a result of our exiting, and if they have any stopped jobs,
288 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 288 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
289 */ 289 */
290 static void 290 static void
291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
292 { 292 {
293 struct pid *pgrp = task_pgrp(tsk); 293 struct pid *pgrp = task_pgrp(tsk);
294 struct task_struct *ignored_task = tsk; 294 struct task_struct *ignored_task = tsk;
295 295
296 if (!parent) 296 if (!parent)
297 /* exit: our father is in a different pgrp than 297 /* exit: our father is in a different pgrp than
298 * we are and we were the only connection outside. 298 * we are and we were the only connection outside.
299 */ 299 */
300 parent = tsk->real_parent; 300 parent = tsk->real_parent;
301 else 301 else
302 /* reparent: our child is in a different pgrp than 302 /* reparent: our child is in a different pgrp than
303 * we are, and it was the only connection outside. 303 * we are, and it was the only connection outside.
304 */ 304 */
305 ignored_task = NULL; 305 ignored_task = NULL;
306 306
307 if (task_pgrp(parent) != pgrp && 307 if (task_pgrp(parent) != pgrp &&
308 task_session(parent) == task_session(tsk) && 308 task_session(parent) == task_session(tsk) &&
309 will_become_orphaned_pgrp(pgrp, ignored_task) && 309 will_become_orphaned_pgrp(pgrp, ignored_task) &&
310 has_stopped_jobs(pgrp)) { 310 has_stopped_jobs(pgrp)) {
311 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 311 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
312 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 312 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
313 } 313 }
314 } 314 }
315 315
316 /* 316 /*
317 * Let kernel threads use this to say that they allow a certain signal. 317 * Let kernel threads use this to say that they allow a certain signal.
318 * Must not be used if kthread was cloned with CLONE_SIGHAND. 318 * Must not be used if kthread was cloned with CLONE_SIGHAND.
319 */ 319 */
320 int allow_signal(int sig) 320 int allow_signal(int sig)
321 { 321 {
322 if (!valid_signal(sig) || sig < 1) 322 if (!valid_signal(sig) || sig < 1)
323 return -EINVAL; 323 return -EINVAL;
324 324
325 spin_lock_irq(&current->sighand->siglock); 325 spin_lock_irq(&current->sighand->siglock);
326 /* This is only needed for daemonize()'ed kthreads */ 326 /* This is only needed for daemonize()'ed kthreads */
327 sigdelset(&current->blocked, sig); 327 sigdelset(&current->blocked, sig);
328 /* 328 /*
329 * Kernel threads handle their own signals. Let the signal code 329 * Kernel threads handle their own signals. Let the signal code
330 * know it'll be handled, so that they don't get converted to 330 * know it'll be handled, so that they don't get converted to
331 * SIGKILL or just silently dropped. 331 * SIGKILL or just silently dropped.
332 */ 332 */
333 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 333 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
334 recalc_sigpending(); 334 recalc_sigpending();
335 spin_unlock_irq(&current->sighand->siglock); 335 spin_unlock_irq(&current->sighand->siglock);
336 return 0; 336 return 0;
337 } 337 }
338 338
339 EXPORT_SYMBOL(allow_signal); 339 EXPORT_SYMBOL(allow_signal);
340 340
341 int disallow_signal(int sig) 341 int disallow_signal(int sig)
342 { 342 {
343 if (!valid_signal(sig) || sig < 1) 343 if (!valid_signal(sig) || sig < 1)
344 return -EINVAL; 344 return -EINVAL;
345 345
346 spin_lock_irq(&current->sighand->siglock); 346 spin_lock_irq(&current->sighand->siglock);
347 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 347 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
348 recalc_sigpending(); 348 recalc_sigpending();
349 spin_unlock_irq(&current->sighand->siglock); 349 spin_unlock_irq(&current->sighand->siglock);
350 return 0; 350 return 0;
351 } 351 }
352 352
353 EXPORT_SYMBOL(disallow_signal); 353 EXPORT_SYMBOL(disallow_signal);
354 354
355 #ifdef CONFIG_MM_OWNER 355 #ifdef CONFIG_MM_OWNER
356 /* 356 /*
357 * A task is exiting. If it owned this mm, find a new owner for the mm. 357 * A task is exiting. If it owned this mm, find a new owner for the mm.
358 */ 358 */
359 void mm_update_next_owner(struct mm_struct *mm) 359 void mm_update_next_owner(struct mm_struct *mm)
360 { 360 {
361 struct task_struct *c, *g, *p = current; 361 struct task_struct *c, *g, *p = current;
362 362
363 retry: 363 retry:
364 /* 364 /*
365 * If the exiting or execing task is not the owner, it's 365 * If the exiting or execing task is not the owner, it's
366 * someone else's problem. 366 * someone else's problem.
367 */ 367 */
368 if (mm->owner != p) 368 if (mm->owner != p)
369 return; 369 return;
370 /* 370 /*
371 * The current owner is exiting/execing and there are no other 371 * The current owner is exiting/execing and there are no other
372 * candidates. Do not leave the mm pointing to a possibly 372 * candidates. Do not leave the mm pointing to a possibly
373 * freed task structure. 373 * freed task structure.
374 */ 374 */
375 if (atomic_read(&mm->mm_users) <= 1) { 375 if (atomic_read(&mm->mm_users) <= 1) {
376 mm->owner = NULL; 376 mm->owner = NULL;
377 return; 377 return;
378 } 378 }
379 379
380 read_lock(&tasklist_lock); 380 read_lock(&tasklist_lock);
381 /* 381 /*
382 * Search in the children 382 * Search in the children
383 */ 383 */
384 list_for_each_entry(c, &p->children, sibling) { 384 list_for_each_entry(c, &p->children, sibling) {
385 if (c->mm == mm) 385 if (c->mm == mm)
386 goto assign_new_owner; 386 goto assign_new_owner;
387 } 387 }
388 388
389 /* 389 /*
390 * Search in the siblings 390 * Search in the siblings
391 */ 391 */
392 list_for_each_entry(c, &p->real_parent->children, sibling) { 392 list_for_each_entry(c, &p->real_parent->children, sibling) {
393 if (c->mm == mm) 393 if (c->mm == mm)
394 goto assign_new_owner; 394 goto assign_new_owner;
395 } 395 }
396 396
397 /* 397 /*
398 * Search through everything else. We should not get 398 * Search through everything else. We should not get
399 * here often 399 * here often
400 */ 400 */
401 do_each_thread(g, c) { 401 do_each_thread(g, c) {
402 if (c->mm == mm) 402 if (c->mm == mm)
403 goto assign_new_owner; 403 goto assign_new_owner;
404 } while_each_thread(g, c); 404 } while_each_thread(g, c);
405 405
406 read_unlock(&tasklist_lock); 406 read_unlock(&tasklist_lock);
407 /* 407 /*
408 * We found no owner yet mm_users > 1: this implies that we are 408 * We found no owner yet mm_users > 1: this implies that we are
409 * most likely racing with swapoff (try_to_unuse()) or /proc or 409 * most likely racing with swapoff (try_to_unuse()) or /proc or
410 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 410 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
411 */ 411 */
412 mm->owner = NULL; 412 mm->owner = NULL;
413 return; 413 return;
414 414
415 assign_new_owner: 415 assign_new_owner:
416 BUG_ON(c == p); 416 BUG_ON(c == p);
417 get_task_struct(c); 417 get_task_struct(c);
418 /* 418 /*
419 * The task_lock protects c->mm from changing. 419 * The task_lock protects c->mm from changing.
420 * We always want mm->owner->mm == mm 420 * We always want mm->owner->mm == mm
421 */ 421 */
422 task_lock(c); 422 task_lock(c);
423 /* 423 /*
424 * Delay read_unlock() till we have the task_lock() 424 * Delay read_unlock() till we have the task_lock()
425 * to ensure that c does not slip away underneath us 425 * to ensure that c does not slip away underneath us
426 */ 426 */
427 read_unlock(&tasklist_lock); 427 read_unlock(&tasklist_lock);
428 if (c->mm != mm) { 428 if (c->mm != mm) {
429 task_unlock(c); 429 task_unlock(c);
430 put_task_struct(c); 430 put_task_struct(c);
431 goto retry; 431 goto retry;
432 } 432 }
433 mm->owner = c; 433 mm->owner = c;
434 task_unlock(c); 434 task_unlock(c);
435 put_task_struct(c); 435 put_task_struct(c);
436 } 436 }
437 #endif /* CONFIG_MM_OWNER */ 437 #endif /* CONFIG_MM_OWNER */
438 438
439 /* 439 /*
440 * Turn us into a lazy TLB process if we 440 * Turn us into a lazy TLB process if we
441 * aren't already.. 441 * aren't already..
442 */ 442 */
443 static void exit_mm(struct task_struct * tsk) 443 static void exit_mm(struct task_struct * tsk)
444 { 444 {
445 struct mm_struct *mm = tsk->mm; 445 struct mm_struct *mm = tsk->mm;
446 struct core_state *core_state; 446 struct core_state *core_state;
447 447
448 mm_release(tsk, mm); 448 mm_release(tsk, mm);
449 if (!mm) 449 if (!mm)
450 return; 450 return;
451 sync_mm_rss(mm); 451 sync_mm_rss(mm);
452 /* 452 /*
453 * Serialize with any possible pending coredump. 453 * Serialize with any possible pending coredump.
454 * We must hold mmap_sem around checking core_state 454 * We must hold mmap_sem around checking core_state
455 * and clearing tsk->mm. The core-inducing thread 455 * and clearing tsk->mm. The core-inducing thread
456 * will increment ->nr_threads for each thread in the 456 * will increment ->nr_threads for each thread in the
457 * group with ->mm != NULL. 457 * group with ->mm != NULL.
458 */ 458 */
459 down_read(&mm->mmap_sem); 459 down_read(&mm->mmap_sem);
460 core_state = mm->core_state; 460 core_state = mm->core_state;
461 if (core_state) { 461 if (core_state) {
462 struct core_thread self; 462 struct core_thread self;
463 up_read(&mm->mmap_sem); 463 up_read(&mm->mmap_sem);
464 464
465 self.task = tsk; 465 self.task = tsk;
466 self.next = xchg(&core_state->dumper.next, &self); 466 self.next = xchg(&core_state->dumper.next, &self);
467 /* 467 /*
468 * Implies mb(), the result of xchg() must be visible 468 * Implies mb(), the result of xchg() must be visible
469 * to core_state->dumper. 469 * to core_state->dumper.
470 */ 470 */
471 if (atomic_dec_and_test(&core_state->nr_threads)) 471 if (atomic_dec_and_test(&core_state->nr_threads))
472 complete(&core_state->startup); 472 complete(&core_state->startup);
473 473
474 for (;;) { 474 for (;;) {
475 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 475 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
476 if (!self.task) /* see coredump_finish() */ 476 if (!self.task) /* see coredump_finish() */
477 break; 477 break;
478 freezable_schedule(); 478 freezable_schedule();
479 } 479 }
480 __set_task_state(tsk, TASK_RUNNING); 480 __set_task_state(tsk, TASK_RUNNING);
481 down_read(&mm->mmap_sem); 481 down_read(&mm->mmap_sem);
482 } 482 }
483 atomic_inc(&mm->mm_count); 483 atomic_inc(&mm->mm_count);
484 BUG_ON(mm != tsk->active_mm); 484 BUG_ON(mm != tsk->active_mm);
485 /* more a memory barrier than a real lock */ 485 /* more a memory barrier than a real lock */
486 task_lock(tsk); 486 task_lock(tsk);
487 tsk->mm = NULL; 487 tsk->mm = NULL;
488 up_read(&mm->mmap_sem); 488 up_read(&mm->mmap_sem);
489 enter_lazy_tlb(mm, current); 489 enter_lazy_tlb(mm, current);
490 task_unlock(tsk); 490 task_unlock(tsk);
491 mm_update_next_owner(mm); 491 mm_update_next_owner(mm);
492 mmput(mm); 492 mmput(mm);
493 } 493 }
494 494
495 /* 495 /*
496 * When we die, we re-parent all our children, and try to: 496 * When we die, we re-parent all our children, and try to:
497 * 1. give them to another thread in our thread group, if such a member exists 497 * 1. give them to another thread in our thread group, if such a member exists
498 * 2. give it to the first ancestor process which prctl'd itself as a 498 * 2. give it to the first ancestor process which prctl'd itself as a
499 * child_subreaper for its children (like a service manager) 499 * child_subreaper for its children (like a service manager)
500 * 3. give it to the init process (PID 1) in our pid namespace 500 * 3. give it to the init process (PID 1) in our pid namespace
501 */ 501 */
502 static struct task_struct *find_new_reaper(struct task_struct *father) 502 static struct task_struct *find_new_reaper(struct task_struct *father)
503 __releases(&tasklist_lock) 503 __releases(&tasklist_lock)
504 __acquires(&tasklist_lock) 504 __acquires(&tasklist_lock)
505 { 505 {
506 struct pid_namespace *pid_ns = task_active_pid_ns(father); 506 struct pid_namespace *pid_ns = task_active_pid_ns(father);
507 struct task_struct *thread; 507 struct task_struct *thread;
508 508
509 thread = father; 509 thread = father;
510 while_each_thread(father, thread) { 510 while_each_thread(father, thread) {
511 if (thread->flags & PF_EXITING) 511 if (thread->flags & PF_EXITING)
512 continue; 512 continue;
513 if (unlikely(pid_ns->child_reaper == father)) 513 if (unlikely(pid_ns->child_reaper == father))
514 pid_ns->child_reaper = thread; 514 pid_ns->child_reaper = thread;
515 return thread; 515 return thread;
516 } 516 }
517 517
518 if (unlikely(pid_ns->child_reaper == father)) { 518 if (unlikely(pid_ns->child_reaper == father)) {
519 write_unlock_irq(&tasklist_lock); 519 write_unlock_irq(&tasklist_lock);
520 if (unlikely(pid_ns == &init_pid_ns)) { 520 if (unlikely(pid_ns == &init_pid_ns)) {
521 panic("Attempted to kill init! exitcode=0x%08x\n", 521 panic("Attempted to kill init! exitcode=0x%08x\n",
522 father->signal->group_exit_code ?: 522 father->signal->group_exit_code ?:
523 father->exit_code); 523 father->exit_code);
524 } 524 }
525 525
526 zap_pid_ns_processes(pid_ns); 526 zap_pid_ns_processes(pid_ns);
527 write_lock_irq(&tasklist_lock); 527 write_lock_irq(&tasklist_lock);
528 } else if (father->signal->has_child_subreaper) { 528 } else if (father->signal->has_child_subreaper) {
529 struct task_struct *reaper; 529 struct task_struct *reaper;
530 530
531 /* 531 /*
532 * Find the first ancestor marked as child_subreaper. 532 * Find the first ancestor marked as child_subreaper.
533 * Note that the code below checks same_thread_group(reaper, 533 * Note that the code below checks same_thread_group(reaper,
534 * pid_ns->child_reaper). This is what we need to DTRT in a 534 * pid_ns->child_reaper). This is what we need to DTRT in a
535 * PID namespace. However we still need the check above, see 535 * PID namespace. However we still need the check above, see
536 * http://marc.info/?l=linux-kernel&m=131385460420380 536 * http://marc.info/?l=linux-kernel&m=131385460420380
537 */ 537 */
538 for (reaper = father->real_parent; 538 for (reaper = father->real_parent;
539 reaper != &init_task; 539 reaper != &init_task;
540 reaper = reaper->real_parent) { 540 reaper = reaper->real_parent) {
541 if (same_thread_group(reaper, pid_ns->child_reaper)) 541 if (same_thread_group(reaper, pid_ns->child_reaper))
542 break; 542 break;
543 if (!reaper->signal->is_child_subreaper) 543 if (!reaper->signal->is_child_subreaper)
544 continue; 544 continue;
545 thread = reaper; 545 thread = reaper;
546 do { 546 do {
547 if (!(thread->flags & PF_EXITING)) 547 if (!(thread->flags & PF_EXITING))
548 return reaper; 548 return reaper;
549 } while_each_thread(reaper, thread); 549 } while_each_thread(reaper, thread);
550 } 550 }
551 } 551 }
552 552
553 return pid_ns->child_reaper; 553 return pid_ns->child_reaper;
554 } 554 }
555 555
556 /* 556 /*
557 * Any that need to be release_task'd are put on the @dead list. 557 * Any that need to be release_task'd are put on the @dead list.
558 */ 558 */
559 static void reparent_leader(struct task_struct *father, struct task_struct *p, 559 static void reparent_leader(struct task_struct *father, struct task_struct *p,
560 struct list_head *dead) 560 struct list_head *dead)
561 { 561 {
562 list_move_tail(&p->sibling, &p->real_parent->children); 562 list_move_tail(&p->sibling, &p->real_parent->children);
563 /* 563 /*
564 * If this is a threaded reparent there is no need to 564 * If this is a threaded reparent there is no need to
565 * notify anyone anything has happened. 565 * notify anyone anything has happened.
566 */ 566 */
567 if (same_thread_group(p->real_parent, father)) 567 if (same_thread_group(p->real_parent, father))
568 return; 568 return;
569 569
570 /* 570 /*
571 * We don't want people slaying init. 571 * We don't want people slaying init.
572 * 572 *
573 * Note: we do this even if it is EXIT_DEAD, wait_task_zombie() 573 * Note: we do this even if it is EXIT_DEAD, wait_task_zombie()
574 * can change ->exit_state to EXIT_ZOMBIE. If this is the final 574 * can change ->exit_state to EXIT_ZOMBIE. If this is the final
575 * state, do_notify_parent() was already called and ->exit_signal 575 * state, do_notify_parent() was already called and ->exit_signal
576 * doesn't matter. 576 * doesn't matter.
577 */ 577 */
578 p->exit_signal = SIGCHLD; 578 p->exit_signal = SIGCHLD;
579 579
580 if (p->exit_state == EXIT_DEAD) 580 if (p->exit_state == EXIT_DEAD)
581 return; 581 return;
582 582
583 /* If it has exited notify the new parent about this child's death. */ 583 /* If it has exited notify the new parent about this child's death. */
584 if (!p->ptrace && 584 if (!p->ptrace &&
585 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 585 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
586 if (do_notify_parent(p, p->exit_signal)) { 586 if (do_notify_parent(p, p->exit_signal)) {
587 p->exit_state = EXIT_DEAD; 587 p->exit_state = EXIT_DEAD;
588 list_move_tail(&p->sibling, dead); 588 list_move_tail(&p->sibling, dead);
589 } 589 }
590 } 590 }
591 591
592 kill_orphaned_pgrp(p, father); 592 kill_orphaned_pgrp(p, father);
593 } 593 }
594 594
595 static void forget_original_parent(struct task_struct *father) 595 static void forget_original_parent(struct task_struct *father)
596 { 596 {
597 struct task_struct *p, *n, *reaper; 597 struct task_struct *p, *n, *reaper;
598 LIST_HEAD(dead_children); 598 LIST_HEAD(dead_children);
599 599
600 write_lock_irq(&tasklist_lock); 600 write_lock_irq(&tasklist_lock);
601 /* 601 /*
602 * Note that exit_ptrace() and find_new_reaper() might 602 * Note that exit_ptrace() and find_new_reaper() might
603 * drop tasklist_lock and reacquire it. 603 * drop tasklist_lock and reacquire it.
604 */ 604 */
605 exit_ptrace(father); 605 exit_ptrace(father);
606 reaper = find_new_reaper(father); 606 reaper = find_new_reaper(father);
607 607
608 list_for_each_entry_safe(p, n, &father->children, sibling) { 608 list_for_each_entry_safe(p, n, &father->children, sibling) {
609 struct task_struct *t = p; 609 struct task_struct *t = p;
610 do { 610 do {
611 t->real_parent = reaper; 611 t->real_parent = reaper;
612 if (t->parent == father) { 612 if (t->parent == father) {
613 BUG_ON(t->ptrace); 613 BUG_ON(t->ptrace);
614 t->parent = t->real_parent; 614 t->parent = t->real_parent;
615 } 615 }
616 if (t->pdeath_signal) 616 if (t->pdeath_signal)
617 group_send_sig_info(t->pdeath_signal, 617 group_send_sig_info(t->pdeath_signal,
618 SEND_SIG_NOINFO, t); 618 SEND_SIG_NOINFO, t);
619 } while_each_thread(p, t); 619 } while_each_thread(p, t);
620 reparent_leader(father, p, &dead_children); 620 reparent_leader(father, p, &dead_children);
621 } 621 }
622 write_unlock_irq(&tasklist_lock); 622 write_unlock_irq(&tasklist_lock);
623 623
624 BUG_ON(!list_empty(&father->children)); 624 BUG_ON(!list_empty(&father->children));
625 625
626 list_for_each_entry_safe(p, n, &dead_children, sibling) { 626 list_for_each_entry_safe(p, n, &dead_children, sibling) {
627 list_del_init(&p->sibling); 627 list_del_init(&p->sibling);
628 release_task(p); 628 release_task(p);
629 } 629 }
630 } 630 }
631 631
632 /* 632 /*
633 * Send signals to all our closest relatives so that they know 633 * Send signals to all our closest relatives so that they know
634 * to properly mourn us.. 634 * to properly mourn us..
635 */ 635 */
636 static void exit_notify(struct task_struct *tsk, int group_dead) 636 static void exit_notify(struct task_struct *tsk, int group_dead)
637 { 637 {
638 bool autoreap; 638 bool autoreap;
639 639
640 /* 640 /*
641 * This does two things: 641 * This does two things:
642 * 642 *
643 * A. Make init inherit all the child processes 643 * A. Make init inherit all the child processes
644 * B. Check to see if any process groups have become orphaned 644 * B. Check to see if any process groups have become orphaned
645 * as a result of our exiting, and if they have any stopped 645 * as a result of our exiting, and if they have any stopped
646 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 646 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
647 */ 647 */
648 forget_original_parent(tsk); 648 forget_original_parent(tsk);
649 649
650 write_lock_irq(&tasklist_lock); 650 write_lock_irq(&tasklist_lock);
651 if (group_dead) 651 if (group_dead)
652 kill_orphaned_pgrp(tsk->group_leader, NULL); 652 kill_orphaned_pgrp(tsk->group_leader, NULL);
653 653
654 if (unlikely(tsk->ptrace)) { 654 if (unlikely(tsk->ptrace)) {
655 int sig = thread_group_leader(tsk) && 655 int sig = thread_group_leader(tsk) &&
656 thread_group_empty(tsk) && 656 thread_group_empty(tsk) &&
657 !ptrace_reparented(tsk) ? 657 !ptrace_reparented(tsk) ?
658 tsk->exit_signal : SIGCHLD; 658 tsk->exit_signal : SIGCHLD;
659 autoreap = do_notify_parent(tsk, sig); 659 autoreap = do_notify_parent(tsk, sig);
660 } else if (thread_group_leader(tsk)) { 660 } else if (thread_group_leader(tsk)) {
661 autoreap = thread_group_empty(tsk) && 661 autoreap = thread_group_empty(tsk) &&
662 do_notify_parent(tsk, tsk->exit_signal); 662 do_notify_parent(tsk, tsk->exit_signal);
663 } else { 663 } else {
664 autoreap = true; 664 autoreap = true;
665 } 665 }
666 666
667 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 667 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
668 668
669 /* mt-exec, de_thread() is waiting for group leader */ 669 /* mt-exec, de_thread() is waiting for group leader */
670 if (unlikely(tsk->signal->notify_count < 0)) 670 if (unlikely(tsk->signal->notify_count < 0))
671 wake_up_process(tsk->signal->group_exit_task); 671 wake_up_process(tsk->signal->group_exit_task);
672 write_unlock_irq(&tasklist_lock); 672 write_unlock_irq(&tasklist_lock);
673 673
674 /* If the process is dead, release it - nobody will wait for it */ 674 /* If the process is dead, release it - nobody will wait for it */
675 if (autoreap) 675 if (autoreap)
676 release_task(tsk); 676 release_task(tsk);
677 } 677 }
678 678
679 #ifdef CONFIG_DEBUG_STACK_USAGE 679 #ifdef CONFIG_DEBUG_STACK_USAGE
680 static void check_stack_usage(void) 680 static void check_stack_usage(void)
681 { 681 {
682 static DEFINE_SPINLOCK(low_water_lock); 682 static DEFINE_SPINLOCK(low_water_lock);
683 static int lowest_to_date = THREAD_SIZE; 683 static int lowest_to_date = THREAD_SIZE;
684 unsigned long free; 684 unsigned long free;
685 685
686 free = stack_not_used(current); 686 free = stack_not_used(current);
687 687
688 if (free >= lowest_to_date) 688 if (free >= lowest_to_date)
689 return; 689 return;
690 690
691 spin_lock(&low_water_lock); 691 spin_lock(&low_water_lock);
692 if (free < lowest_to_date) { 692 if (free < lowest_to_date) {
693 printk(KERN_WARNING "%s (%d) used greatest stack depth: " 693 printk(KERN_WARNING "%s (%d) used greatest stack depth: "
694 "%lu bytes left\n", 694 "%lu bytes left\n",
695 current->comm, task_pid_nr(current), free); 695 current->comm, task_pid_nr(current), free);
696 lowest_to_date = free; 696 lowest_to_date = free;
697 } 697 }
698 spin_unlock(&low_water_lock); 698 spin_unlock(&low_water_lock);
699 } 699 }
700 #else 700 #else
701 static inline void check_stack_usage(void) {} 701 static inline void check_stack_usage(void) {}
702 #endif 702 #endif
703 703
704 void do_exit(long code) 704 void do_exit(long code)
705 { 705 {
706 struct task_struct *tsk = current; 706 struct task_struct *tsk = current;
707 int group_dead; 707 int group_dead;
708 708
709 profile_task_exit(tsk); 709 profile_task_exit(tsk);
710 710
711 WARN_ON(blk_needs_flush_plug(tsk)); 711 WARN_ON(blk_needs_flush_plug(tsk));
712 712
713 if (unlikely(in_interrupt())) 713 if (unlikely(in_interrupt()))
714 panic("Aiee, killing interrupt handler!"); 714 panic("Aiee, killing interrupt handler!");
715 if (unlikely(!tsk->pid)) 715 if (unlikely(!tsk->pid))
716 panic("Attempted to kill the idle task!"); 716 panic("Attempted to kill the idle task!");
717 717
718 /* 718 /*
719 * If do_exit is called because this processes oopsed, it's possible 719 * If do_exit is called because this processes oopsed, it's possible
720 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 720 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
721 * continuing. Amongst other possible reasons, this is to prevent 721 * continuing. Amongst other possible reasons, this is to prevent
722 * mm_release()->clear_child_tid() from writing to a user-controlled 722 * mm_release()->clear_child_tid() from writing to a user-controlled
723 * kernel address. 723 * kernel address.
724 */ 724 */
725 set_fs(USER_DS); 725 set_fs(USER_DS);
726 726
727 ptrace_event(PTRACE_EVENT_EXIT, code); 727 ptrace_event(PTRACE_EVENT_EXIT, code);
728 728
729 validate_creds_for_do_exit(tsk); 729 validate_creds_for_do_exit(tsk);
730 730
731 /* 731 /*
732 * We're taking recursive faults here in do_exit. Safest is to just 732 * We're taking recursive faults here in do_exit. Safest is to just
733 * leave this task alone and wait for reboot. 733 * leave this task alone and wait for reboot.
734 */ 734 */
735 if (unlikely(tsk->flags & PF_EXITING)) { 735 if (unlikely(tsk->flags & PF_EXITING)) {
736 printk(KERN_ALERT 736 printk(KERN_ALERT
737 "Fixing recursive fault but reboot is needed!\n"); 737 "Fixing recursive fault but reboot is needed!\n");
738 /* 738 /*
739 * We can do this unlocked here. The futex code uses 739 * We can do this unlocked here. The futex code uses
740 * this flag just to verify whether the pi state 740 * this flag just to verify whether the pi state
741 * cleanup has been done or not. In the worst case it 741 * cleanup has been done or not. In the worst case it
742 * loops once more. We pretend that the cleanup was 742 * loops once more. We pretend that the cleanup was
743 * done as there is no way to return. Either the 743 * done as there is no way to return. Either the
744 * OWNER_DIED bit is set by now or we push the blocked 744 * OWNER_DIED bit is set by now or we push the blocked
745 * task into the wait for ever nirwana as well. 745 * task into the wait for ever nirwana as well.
746 */ 746 */
747 tsk->flags |= PF_EXITPIDONE; 747 tsk->flags |= PF_EXITPIDONE;
748 set_current_state(TASK_UNINTERRUPTIBLE); 748 set_current_state(TASK_UNINTERRUPTIBLE);
749 schedule(); 749 schedule();
750 } 750 }
751 751
752 exit_signals(tsk); /* sets PF_EXITING */ 752 exit_signals(tsk); /* sets PF_EXITING */
753 /* 753 /*
754 * tsk->flags are checked in the futex code to protect against 754 * tsk->flags are checked in the futex code to protect against
755 * an exiting task cleaning up the robust pi futexes. 755 * an exiting task cleaning up the robust pi futexes.
756 */ 756 */
757 smp_mb(); 757 smp_mb();
758 raw_spin_unlock_wait(&tsk->pi_lock); 758 raw_spin_unlock_wait(&tsk->pi_lock);
759 759
760 if (unlikely(in_atomic())) 760 if (unlikely(in_atomic()))
761 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 761 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
762 current->comm, task_pid_nr(current), 762 current->comm, task_pid_nr(current),
763 preempt_count()); 763 preempt_count());
764 764
765 acct_update_integrals(tsk); 765 acct_update_integrals(tsk);
766 /* sync mm's RSS info before statistics gathering */ 766 /* sync mm's RSS info before statistics gathering */
767 if (tsk->mm) 767 if (tsk->mm)
768 sync_mm_rss(tsk->mm); 768 sync_mm_rss(tsk->mm);
769 group_dead = atomic_dec_and_test(&tsk->signal->live); 769 group_dead = atomic_dec_and_test(&tsk->signal->live);
770 if (group_dead) { 770 if (group_dead) {
771 hrtimer_cancel(&tsk->signal->real_timer); 771 hrtimer_cancel(&tsk->signal->real_timer);
772 exit_itimers(tsk->signal); 772 exit_itimers(tsk->signal);
773 if (tsk->mm) 773 if (tsk->mm)
774 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 774 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
775 } 775 }
776 acct_collect(code, group_dead); 776 acct_collect(code, group_dead);
777 if (group_dead) 777 if (group_dead)
778 tty_audit_exit(); 778 tty_audit_exit();
779 audit_free(tsk); 779 audit_free(tsk);
780 780
781 tsk->exit_code = code; 781 tsk->exit_code = code;
782 taskstats_exit(tsk, group_dead); 782 taskstats_exit(tsk, group_dead);
783 783
784 exit_mm(tsk); 784 exit_mm(tsk);
785 785
786 if (group_dead) 786 if (group_dead)
787 acct_process(); 787 acct_process();
788 trace_sched_process_exit(tsk); 788 trace_sched_process_exit(tsk);
789 789
790 exit_sem(tsk); 790 exit_sem(tsk);
791 exit_shm(tsk); 791 exit_shm(tsk);
792 exit_files(tsk); 792 exit_files(tsk);
793 exit_fs(tsk); 793 exit_fs(tsk);
794 if (group_dead)
795 disassociate_ctty(1);
794 exit_task_namespaces(tsk); 796 exit_task_namespaces(tsk);
795 exit_task_work(tsk); 797 exit_task_work(tsk);
796 check_stack_usage(); 798 check_stack_usage();
797 exit_thread(); 799 exit_thread();
798 800
799 /* 801 /*
800 * Flush inherited counters to the parent - before the parent 802 * Flush inherited counters to the parent - before the parent
801 * gets woken up by child-exit notifications. 803 * gets woken up by child-exit notifications.
802 * 804 *
803 * because of cgroup mode, must be called before cgroup_exit() 805 * because of cgroup mode, must be called before cgroup_exit()
804 */ 806 */
805 perf_event_exit_task(tsk); 807 perf_event_exit_task(tsk);
806 808
807 cgroup_exit(tsk, 1); 809 cgroup_exit(tsk, 1);
808 810
809 if (group_dead)
810 disassociate_ctty(1);
811
812 module_put(task_thread_info(tsk)->exec_domain->module); 811 module_put(task_thread_info(tsk)->exec_domain->module);
813 812
814 proc_exit_connector(tsk); 813 proc_exit_connector(tsk);
815
816 /* 814 /*
817 * FIXME: do that only when needed, using sched_exit tracepoint 815 * FIXME: do that only when needed, using sched_exit tracepoint
818 */ 816 */
819 flush_ptrace_hw_breakpoint(tsk); 817 flush_ptrace_hw_breakpoint(tsk);
820 818
821 exit_notify(tsk, group_dead); 819 exit_notify(tsk, group_dead);
822 #ifdef CONFIG_NUMA 820 #ifdef CONFIG_NUMA
823 task_lock(tsk); 821 task_lock(tsk);
824 mpol_put(tsk->mempolicy); 822 mpol_put(tsk->mempolicy);
825 tsk->mempolicy = NULL; 823 tsk->mempolicy = NULL;
826 task_unlock(tsk); 824 task_unlock(tsk);
827 #endif 825 #endif
828 #ifdef CONFIG_FUTEX 826 #ifdef CONFIG_FUTEX
829 if (unlikely(current->pi_state_cache)) 827 if (unlikely(current->pi_state_cache))
830 kfree(current->pi_state_cache); 828 kfree(current->pi_state_cache);
831 #endif 829 #endif
832 /* 830 /*
833 * Make sure we are holding no locks: 831 * Make sure we are holding no locks:
834 */ 832 */
835 debug_check_no_locks_held(); 833 debug_check_no_locks_held();
836 /* 834 /*
837 * We can do this unlocked here. The futex code uses this flag 835 * We can do this unlocked here. The futex code uses this flag
838 * just to verify whether the pi state cleanup has been done 836 * just to verify whether the pi state cleanup has been done
839 * or not. In the worst case it loops once more. 837 * or not. In the worst case it loops once more.
840 */ 838 */
841 tsk->flags |= PF_EXITPIDONE; 839 tsk->flags |= PF_EXITPIDONE;
842 840
843 if (tsk->io_context) 841 if (tsk->io_context)
844 exit_io_context(tsk); 842 exit_io_context(tsk);
845 843
846 if (tsk->splice_pipe) 844 if (tsk->splice_pipe)
847 free_pipe_info(tsk->splice_pipe); 845 free_pipe_info(tsk->splice_pipe);
848 846
849 if (tsk->task_frag.page) 847 if (tsk->task_frag.page)
850 put_page(tsk->task_frag.page); 848 put_page(tsk->task_frag.page);
851 849
852 validate_creds_for_do_exit(tsk); 850 validate_creds_for_do_exit(tsk);
853 851
854 preempt_disable(); 852 preempt_disable();
855 if (tsk->nr_dirtied) 853 if (tsk->nr_dirtied)
856 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 854 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
857 exit_rcu(); 855 exit_rcu();
858 856
859 /* 857 /*
860 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 858 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
861 * when the following two conditions become true. 859 * when the following two conditions become true.
862 * - There is race condition of mmap_sem (It is acquired by 860 * - There is race condition of mmap_sem (It is acquired by
863 * exit_mm()), and 861 * exit_mm()), and
864 * - SMI occurs before setting TASK_RUNINNG. 862 * - SMI occurs before setting TASK_RUNINNG.
865 * (or hypervisor of virtual machine switches to other guest) 863 * (or hypervisor of virtual machine switches to other guest)
866 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 864 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
867 * 865 *
868 * To avoid it, we have to wait for releasing tsk->pi_lock which 866 * To avoid it, we have to wait for releasing tsk->pi_lock which
869 * is held by try_to_wake_up() 867 * is held by try_to_wake_up()
870 */ 868 */
871 smp_mb(); 869 smp_mb();
872 raw_spin_unlock_wait(&tsk->pi_lock); 870 raw_spin_unlock_wait(&tsk->pi_lock);
873 871
874 /* causes final put_task_struct in finish_task_switch(). */ 872 /* causes final put_task_struct in finish_task_switch(). */
875 tsk->state = TASK_DEAD; 873 tsk->state = TASK_DEAD;
876 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ 874 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
877 schedule(); 875 schedule();
878 BUG(); 876 BUG();
879 /* Avoid "noreturn function does return". */ 877 /* Avoid "noreturn function does return". */
880 for (;;) 878 for (;;)
881 cpu_relax(); /* For when BUG is null */ 879 cpu_relax(); /* For when BUG is null */
882 } 880 }
883 881
884 EXPORT_SYMBOL_GPL(do_exit); 882 EXPORT_SYMBOL_GPL(do_exit);
885 883
886 void complete_and_exit(struct completion *comp, long code) 884 void complete_and_exit(struct completion *comp, long code)
887 { 885 {
888 if (comp) 886 if (comp)
889 complete(comp); 887 complete(comp);
890 888
891 do_exit(code); 889 do_exit(code);
892 } 890 }
893 891
894 EXPORT_SYMBOL(complete_and_exit); 892 EXPORT_SYMBOL(complete_and_exit);
895 893
896 SYSCALL_DEFINE1(exit, int, error_code) 894 SYSCALL_DEFINE1(exit, int, error_code)
897 { 895 {
898 do_exit((error_code&0xff)<<8); 896 do_exit((error_code&0xff)<<8);
899 } 897 }
900 898
901 /* 899 /*
902 * Take down every thread in the group. This is called by fatal signals 900 * Take down every thread in the group. This is called by fatal signals
903 * as well as by sys_exit_group (below). 901 * as well as by sys_exit_group (below).
904 */ 902 */
905 void 903 void
906 do_group_exit(int exit_code) 904 do_group_exit(int exit_code)
907 { 905 {
908 struct signal_struct *sig = current->signal; 906 struct signal_struct *sig = current->signal;
909 907
910 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 908 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
911 909
912 if (signal_group_exit(sig)) 910 if (signal_group_exit(sig))
913 exit_code = sig->group_exit_code; 911 exit_code = sig->group_exit_code;
914 else if (!thread_group_empty(current)) { 912 else if (!thread_group_empty(current)) {
915 struct sighand_struct *const sighand = current->sighand; 913 struct sighand_struct *const sighand = current->sighand;
916 spin_lock_irq(&sighand->siglock); 914 spin_lock_irq(&sighand->siglock);
917 if (signal_group_exit(sig)) 915 if (signal_group_exit(sig))
918 /* Another thread got here before we took the lock. */ 916 /* Another thread got here before we took the lock. */
919 exit_code = sig->group_exit_code; 917 exit_code = sig->group_exit_code;
920 else { 918 else {
921 sig->group_exit_code = exit_code; 919 sig->group_exit_code = exit_code;
922 sig->flags = SIGNAL_GROUP_EXIT; 920 sig->flags = SIGNAL_GROUP_EXIT;
923 zap_other_threads(current); 921 zap_other_threads(current);
924 } 922 }
925 spin_unlock_irq(&sighand->siglock); 923 spin_unlock_irq(&sighand->siglock);
926 } 924 }
927 925
928 do_exit(exit_code); 926 do_exit(exit_code);
929 /* NOTREACHED */ 927 /* NOTREACHED */
930 } 928 }
931 929
932 /* 930 /*
933 * this kills every thread in the thread group. Note that any externally 931 * this kills every thread in the thread group. Note that any externally
934 * wait4()-ing process will get the correct exit code - even if this 932 * wait4()-ing process will get the correct exit code - even if this
935 * thread is not the thread group leader. 933 * thread is not the thread group leader.
936 */ 934 */
937 SYSCALL_DEFINE1(exit_group, int, error_code) 935 SYSCALL_DEFINE1(exit_group, int, error_code)
938 { 936 {
939 do_group_exit((error_code & 0xff) << 8); 937 do_group_exit((error_code & 0xff) << 8);
940 /* NOTREACHED */ 938 /* NOTREACHED */
941 return 0; 939 return 0;
942 } 940 }
943 941
944 struct wait_opts { 942 struct wait_opts {
945 enum pid_type wo_type; 943 enum pid_type wo_type;
946 int wo_flags; 944 int wo_flags;
947 struct pid *wo_pid; 945 struct pid *wo_pid;
948 946
949 struct siginfo __user *wo_info; 947 struct siginfo __user *wo_info;
950 int __user *wo_stat; 948 int __user *wo_stat;
951 struct rusage __user *wo_rusage; 949 struct rusage __user *wo_rusage;
952 950
953 wait_queue_t child_wait; 951 wait_queue_t child_wait;
954 int notask_error; 952 int notask_error;
955 }; 953 };
956 954
957 static inline 955 static inline
958 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 956 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
959 { 957 {
960 if (type != PIDTYPE_PID) 958 if (type != PIDTYPE_PID)
961 task = task->group_leader; 959 task = task->group_leader;
962 return task->pids[type].pid; 960 return task->pids[type].pid;
963 } 961 }
964 962
965 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 963 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
966 { 964 {
967 return wo->wo_type == PIDTYPE_MAX || 965 return wo->wo_type == PIDTYPE_MAX ||
968 task_pid_type(p, wo->wo_type) == wo->wo_pid; 966 task_pid_type(p, wo->wo_type) == wo->wo_pid;
969 } 967 }
970 968
971 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 969 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
972 { 970 {
973 if (!eligible_pid(wo, p)) 971 if (!eligible_pid(wo, p))
974 return 0; 972 return 0;
975 /* Wait for all children (clone and not) if __WALL is set; 973 /* Wait for all children (clone and not) if __WALL is set;
976 * otherwise, wait for clone children *only* if __WCLONE is 974 * otherwise, wait for clone children *only* if __WCLONE is
977 * set; otherwise, wait for non-clone children *only*. (Note: 975 * set; otherwise, wait for non-clone children *only*. (Note:
978 * A "clone" child here is one that reports to its parent 976 * A "clone" child here is one that reports to its parent
979 * using a signal other than SIGCHLD.) */ 977 * using a signal other than SIGCHLD.) */
980 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 978 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
981 && !(wo->wo_flags & __WALL)) 979 && !(wo->wo_flags & __WALL))
982 return 0; 980 return 0;
983 981
984 return 1; 982 return 1;
985 } 983 }
986 984
987 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 985 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
988 pid_t pid, uid_t uid, int why, int status) 986 pid_t pid, uid_t uid, int why, int status)
989 { 987 {
990 struct siginfo __user *infop; 988 struct siginfo __user *infop;
991 int retval = wo->wo_rusage 989 int retval = wo->wo_rusage
992 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 990 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
993 991
994 put_task_struct(p); 992 put_task_struct(p);
995 infop = wo->wo_info; 993 infop = wo->wo_info;
996 if (infop) { 994 if (infop) {
997 if (!retval) 995 if (!retval)
998 retval = put_user(SIGCHLD, &infop->si_signo); 996 retval = put_user(SIGCHLD, &infop->si_signo);
999 if (!retval) 997 if (!retval)
1000 retval = put_user(0, &infop->si_errno); 998 retval = put_user(0, &infop->si_errno);
1001 if (!retval) 999 if (!retval)
1002 retval = put_user((short)why, &infop->si_code); 1000 retval = put_user((short)why, &infop->si_code);
1003 if (!retval) 1001 if (!retval)
1004 retval = put_user(pid, &infop->si_pid); 1002 retval = put_user(pid, &infop->si_pid);
1005 if (!retval) 1003 if (!retval)
1006 retval = put_user(uid, &infop->si_uid); 1004 retval = put_user(uid, &infop->si_uid);
1007 if (!retval) 1005 if (!retval)
1008 retval = put_user(status, &infop->si_status); 1006 retval = put_user(status, &infop->si_status);
1009 } 1007 }
1010 if (!retval) 1008 if (!retval)
1011 retval = pid; 1009 retval = pid;
1012 return retval; 1010 return retval;
1013 } 1011 }
1014 1012
1015 /* 1013 /*
1016 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1014 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1017 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1015 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1018 * the lock and this task is uninteresting. If we return nonzero, we have 1016 * the lock and this task is uninteresting. If we return nonzero, we have
1019 * released the lock and the system call should return. 1017 * released the lock and the system call should return.
1020 */ 1018 */
1021 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1019 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1022 { 1020 {
1023 unsigned long state; 1021 unsigned long state;
1024 int retval, status, traced; 1022 int retval, status, traced;
1025 pid_t pid = task_pid_vnr(p); 1023 pid_t pid = task_pid_vnr(p);
1026 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1024 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1027 struct siginfo __user *infop; 1025 struct siginfo __user *infop;
1028 1026
1029 if (!likely(wo->wo_flags & WEXITED)) 1027 if (!likely(wo->wo_flags & WEXITED))
1030 return 0; 1028 return 0;
1031 1029
1032 if (unlikely(wo->wo_flags & WNOWAIT)) { 1030 if (unlikely(wo->wo_flags & WNOWAIT)) {
1033 int exit_code = p->exit_code; 1031 int exit_code = p->exit_code;
1034 int why; 1032 int why;
1035 1033
1036 get_task_struct(p); 1034 get_task_struct(p);
1037 read_unlock(&tasklist_lock); 1035 read_unlock(&tasklist_lock);
1038 if ((exit_code & 0x7f) == 0) { 1036 if ((exit_code & 0x7f) == 0) {
1039 why = CLD_EXITED; 1037 why = CLD_EXITED;
1040 status = exit_code >> 8; 1038 status = exit_code >> 8;
1041 } else { 1039 } else {
1042 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1040 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1043 status = exit_code & 0x7f; 1041 status = exit_code & 0x7f;
1044 } 1042 }
1045 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1043 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1046 } 1044 }
1047 1045
1048 /* 1046 /*
1049 * Try to move the task's state to DEAD 1047 * Try to move the task's state to DEAD
1050 * only one thread is allowed to do this: 1048 * only one thread is allowed to do this:
1051 */ 1049 */
1052 state = xchg(&p->exit_state, EXIT_DEAD); 1050 state = xchg(&p->exit_state, EXIT_DEAD);
1053 if (state != EXIT_ZOMBIE) { 1051 if (state != EXIT_ZOMBIE) {
1054 BUG_ON(state != EXIT_DEAD); 1052 BUG_ON(state != EXIT_DEAD);
1055 return 0; 1053 return 0;
1056 } 1054 }
1057 1055
1058 traced = ptrace_reparented(p); 1056 traced = ptrace_reparented(p);
1059 /* 1057 /*
1060 * It can be ptraced but not reparented, check 1058 * It can be ptraced but not reparented, check
1061 * thread_group_leader() to filter out sub-threads. 1059 * thread_group_leader() to filter out sub-threads.
1062 */ 1060 */
1063 if (likely(!traced) && thread_group_leader(p)) { 1061 if (likely(!traced) && thread_group_leader(p)) {
1064 struct signal_struct *psig; 1062 struct signal_struct *psig;
1065 struct signal_struct *sig; 1063 struct signal_struct *sig;
1066 unsigned long maxrss; 1064 unsigned long maxrss;
1067 cputime_t tgutime, tgstime; 1065 cputime_t tgutime, tgstime;
1068 1066
1069 /* 1067 /*
1070 * The resource counters for the group leader are in its 1068 * The resource counters for the group leader are in its
1071 * own task_struct. Those for dead threads in the group 1069 * own task_struct. Those for dead threads in the group
1072 * are in its signal_struct, as are those for the child 1070 * are in its signal_struct, as are those for the child
1073 * processes it has previously reaped. All these 1071 * processes it has previously reaped. All these
1074 * accumulate in the parent's signal_struct c* fields. 1072 * accumulate in the parent's signal_struct c* fields.
1075 * 1073 *
1076 * We don't bother to take a lock here to protect these 1074 * We don't bother to take a lock here to protect these
1077 * p->signal fields, because they are only touched by 1075 * p->signal fields, because they are only touched by
1078 * __exit_signal, which runs with tasklist_lock 1076 * __exit_signal, which runs with tasklist_lock
1079 * write-locked anyway, and so is excluded here. We do 1077 * write-locked anyway, and so is excluded here. We do
1080 * need to protect the access to parent->signal fields, 1078 * need to protect the access to parent->signal fields,
1081 * as other threads in the parent group can be right 1079 * as other threads in the parent group can be right
1082 * here reaping other children at the same time. 1080 * here reaping other children at the same time.
1083 * 1081 *
1084 * We use thread_group_cputime_adjusted() to get times for the thread 1082 * We use thread_group_cputime_adjusted() to get times for the thread
1085 * group, which consolidates times for all threads in the 1083 * group, which consolidates times for all threads in the
1086 * group including the group leader. 1084 * group including the group leader.
1087 */ 1085 */
1088 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1086 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1089 spin_lock_irq(&p->real_parent->sighand->siglock); 1087 spin_lock_irq(&p->real_parent->sighand->siglock);
1090 psig = p->real_parent->signal; 1088 psig = p->real_parent->signal;
1091 sig = p->signal; 1089 sig = p->signal;
1092 psig->cutime += tgutime + sig->cutime; 1090 psig->cutime += tgutime + sig->cutime;
1093 psig->cstime += tgstime + sig->cstime; 1091 psig->cstime += tgstime + sig->cstime;
1094 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1092 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1095 psig->cmin_flt += 1093 psig->cmin_flt +=
1096 p->min_flt + sig->min_flt + sig->cmin_flt; 1094 p->min_flt + sig->min_flt + sig->cmin_flt;
1097 psig->cmaj_flt += 1095 psig->cmaj_flt +=
1098 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1096 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1099 psig->cnvcsw += 1097 psig->cnvcsw +=
1100 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1098 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1101 psig->cnivcsw += 1099 psig->cnivcsw +=
1102 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1100 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1103 psig->cinblock += 1101 psig->cinblock +=
1104 task_io_get_inblock(p) + 1102 task_io_get_inblock(p) +
1105 sig->inblock + sig->cinblock; 1103 sig->inblock + sig->cinblock;
1106 psig->coublock += 1104 psig->coublock +=
1107 task_io_get_oublock(p) + 1105 task_io_get_oublock(p) +
1108 sig->oublock + sig->coublock; 1106 sig->oublock + sig->coublock;
1109 maxrss = max(sig->maxrss, sig->cmaxrss); 1107 maxrss = max(sig->maxrss, sig->cmaxrss);
1110 if (psig->cmaxrss < maxrss) 1108 if (psig->cmaxrss < maxrss)
1111 psig->cmaxrss = maxrss; 1109 psig->cmaxrss = maxrss;
1112 task_io_accounting_add(&psig->ioac, &p->ioac); 1110 task_io_accounting_add(&psig->ioac, &p->ioac);
1113 task_io_accounting_add(&psig->ioac, &sig->ioac); 1111 task_io_accounting_add(&psig->ioac, &sig->ioac);
1114 spin_unlock_irq(&p->real_parent->sighand->siglock); 1112 spin_unlock_irq(&p->real_parent->sighand->siglock);
1115 } 1113 }
1116 1114
1117 /* 1115 /*
1118 * Now we are sure this task is interesting, and no other 1116 * Now we are sure this task is interesting, and no other
1119 * thread can reap it because we set its state to EXIT_DEAD. 1117 * thread can reap it because we set its state to EXIT_DEAD.
1120 */ 1118 */
1121 read_unlock(&tasklist_lock); 1119 read_unlock(&tasklist_lock);
1122 1120
1123 retval = wo->wo_rusage 1121 retval = wo->wo_rusage
1124 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1122 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1125 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1123 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1126 ? p->signal->group_exit_code : p->exit_code; 1124 ? p->signal->group_exit_code : p->exit_code;
1127 if (!retval && wo->wo_stat) 1125 if (!retval && wo->wo_stat)
1128 retval = put_user(status, wo->wo_stat); 1126 retval = put_user(status, wo->wo_stat);
1129 1127
1130 infop = wo->wo_info; 1128 infop = wo->wo_info;
1131 if (!retval && infop) 1129 if (!retval && infop)
1132 retval = put_user(SIGCHLD, &infop->si_signo); 1130 retval = put_user(SIGCHLD, &infop->si_signo);
1133 if (!retval && infop) 1131 if (!retval && infop)
1134 retval = put_user(0, &infop->si_errno); 1132 retval = put_user(0, &infop->si_errno);
1135 if (!retval && infop) { 1133 if (!retval && infop) {
1136 int why; 1134 int why;
1137 1135
1138 if ((status & 0x7f) == 0) { 1136 if ((status & 0x7f) == 0) {
1139 why = CLD_EXITED; 1137 why = CLD_EXITED;
1140 status >>= 8; 1138 status >>= 8;
1141 } else { 1139 } else {
1142 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1140 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1143 status &= 0x7f; 1141 status &= 0x7f;
1144 } 1142 }
1145 retval = put_user((short)why, &infop->si_code); 1143 retval = put_user((short)why, &infop->si_code);
1146 if (!retval) 1144 if (!retval)
1147 retval = put_user(status, &infop->si_status); 1145 retval = put_user(status, &infop->si_status);
1148 } 1146 }
1149 if (!retval && infop) 1147 if (!retval && infop)
1150 retval = put_user(pid, &infop->si_pid); 1148 retval = put_user(pid, &infop->si_pid);
1151 if (!retval && infop) 1149 if (!retval && infop)
1152 retval = put_user(uid, &infop->si_uid); 1150 retval = put_user(uid, &infop->si_uid);
1153 if (!retval) 1151 if (!retval)
1154 retval = pid; 1152 retval = pid;
1155 1153
1156 if (traced) { 1154 if (traced) {
1157 write_lock_irq(&tasklist_lock); 1155 write_lock_irq(&tasklist_lock);
1158 /* We dropped tasklist, ptracer could die and untrace */ 1156 /* We dropped tasklist, ptracer could die and untrace */
1159 ptrace_unlink(p); 1157 ptrace_unlink(p);
1160 /* 1158 /*
1161 * If this is not a sub-thread, notify the parent. 1159 * If this is not a sub-thread, notify the parent.
1162 * If parent wants a zombie, don't release it now. 1160 * If parent wants a zombie, don't release it now.
1163 */ 1161 */
1164 if (thread_group_leader(p) && 1162 if (thread_group_leader(p) &&
1165 !do_notify_parent(p, p->exit_signal)) { 1163 !do_notify_parent(p, p->exit_signal)) {
1166 p->exit_state = EXIT_ZOMBIE; 1164 p->exit_state = EXIT_ZOMBIE;
1167 p = NULL; 1165 p = NULL;
1168 } 1166 }
1169 write_unlock_irq(&tasklist_lock); 1167 write_unlock_irq(&tasklist_lock);
1170 } 1168 }
1171 if (p != NULL) 1169 if (p != NULL)
1172 release_task(p); 1170 release_task(p);
1173 1171
1174 return retval; 1172 return retval;
1175 } 1173 }
1176 1174
1177 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1175 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1178 { 1176 {
1179 if (ptrace) { 1177 if (ptrace) {
1180 if (task_is_stopped_or_traced(p) && 1178 if (task_is_stopped_or_traced(p) &&
1181 !(p->jobctl & JOBCTL_LISTENING)) 1179 !(p->jobctl & JOBCTL_LISTENING))
1182 return &p->exit_code; 1180 return &p->exit_code;
1183 } else { 1181 } else {
1184 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1182 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1185 return &p->signal->group_exit_code; 1183 return &p->signal->group_exit_code;
1186 } 1184 }
1187 return NULL; 1185 return NULL;
1188 } 1186 }
1189 1187
1190 /** 1188 /**
1191 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1189 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1192 * @wo: wait options 1190 * @wo: wait options
1193 * @ptrace: is the wait for ptrace 1191 * @ptrace: is the wait for ptrace
1194 * @p: task to wait for 1192 * @p: task to wait for
1195 * 1193 *
1196 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1194 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1197 * 1195 *
1198 * CONTEXT: 1196 * CONTEXT:
1199 * read_lock(&tasklist_lock), which is released if return value is 1197 * read_lock(&tasklist_lock), which is released if return value is
1200 * non-zero. Also, grabs and releases @p->sighand->siglock. 1198 * non-zero. Also, grabs and releases @p->sighand->siglock.
1201 * 1199 *
1202 * RETURNS: 1200 * RETURNS:
1203 * 0 if wait condition didn't exist and search for other wait conditions 1201 * 0 if wait condition didn't exist and search for other wait conditions
1204 * should continue. Non-zero return, -errno on failure and @p's pid on 1202 * should continue. Non-zero return, -errno on failure and @p's pid on
1205 * success, implies that tasklist_lock is released and wait condition 1203 * success, implies that tasklist_lock is released and wait condition
1206 * search should terminate. 1204 * search should terminate.
1207 */ 1205 */
1208 static int wait_task_stopped(struct wait_opts *wo, 1206 static int wait_task_stopped(struct wait_opts *wo,
1209 int ptrace, struct task_struct *p) 1207 int ptrace, struct task_struct *p)
1210 { 1208 {
1211 struct siginfo __user *infop; 1209 struct siginfo __user *infop;
1212 int retval, exit_code, *p_code, why; 1210 int retval, exit_code, *p_code, why;
1213 uid_t uid = 0; /* unneeded, required by compiler */ 1211 uid_t uid = 0; /* unneeded, required by compiler */
1214 pid_t pid; 1212 pid_t pid;
1215 1213
1216 /* 1214 /*
1217 * Traditionally we see ptrace'd stopped tasks regardless of options. 1215 * Traditionally we see ptrace'd stopped tasks regardless of options.
1218 */ 1216 */
1219 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1217 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1220 return 0; 1218 return 0;
1221 1219
1222 if (!task_stopped_code(p, ptrace)) 1220 if (!task_stopped_code(p, ptrace))
1223 return 0; 1221 return 0;
1224 1222
1225 exit_code = 0; 1223 exit_code = 0;
1226 spin_lock_irq(&p->sighand->siglock); 1224 spin_lock_irq(&p->sighand->siglock);
1227 1225
1228 p_code = task_stopped_code(p, ptrace); 1226 p_code = task_stopped_code(p, ptrace);
1229 if (unlikely(!p_code)) 1227 if (unlikely(!p_code))
1230 goto unlock_sig; 1228 goto unlock_sig;
1231 1229
1232 exit_code = *p_code; 1230 exit_code = *p_code;
1233 if (!exit_code) 1231 if (!exit_code)
1234 goto unlock_sig; 1232 goto unlock_sig;
1235 1233
1236 if (!unlikely(wo->wo_flags & WNOWAIT)) 1234 if (!unlikely(wo->wo_flags & WNOWAIT))
1237 *p_code = 0; 1235 *p_code = 0;
1238 1236
1239 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1237 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1240 unlock_sig: 1238 unlock_sig:
1241 spin_unlock_irq(&p->sighand->siglock); 1239 spin_unlock_irq(&p->sighand->siglock);
1242 if (!exit_code) 1240 if (!exit_code)
1243 return 0; 1241 return 0;
1244 1242
1245 /* 1243 /*
1246 * Now we are pretty sure this task is interesting. 1244 * Now we are pretty sure this task is interesting.
1247 * Make sure it doesn't get reaped out from under us while we 1245 * Make sure it doesn't get reaped out from under us while we
1248 * give up the lock and then examine it below. We don't want to 1246 * give up the lock and then examine it below. We don't want to
1249 * keep holding onto the tasklist_lock while we call getrusage and 1247 * keep holding onto the tasklist_lock while we call getrusage and
1250 * possibly take page faults for user memory. 1248 * possibly take page faults for user memory.
1251 */ 1249 */
1252 get_task_struct(p); 1250 get_task_struct(p);
1253 pid = task_pid_vnr(p); 1251 pid = task_pid_vnr(p);
1254 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1252 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1255 read_unlock(&tasklist_lock); 1253 read_unlock(&tasklist_lock);
1256 1254
1257 if (unlikely(wo->wo_flags & WNOWAIT)) 1255 if (unlikely(wo->wo_flags & WNOWAIT))
1258 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1256 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1259 1257
1260 retval = wo->wo_rusage 1258 retval = wo->wo_rusage
1261 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1259 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1262 if (!retval && wo->wo_stat) 1260 if (!retval && wo->wo_stat)
1263 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1261 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1264 1262
1265 infop = wo->wo_info; 1263 infop = wo->wo_info;
1266 if (!retval && infop) 1264 if (!retval && infop)
1267 retval = put_user(SIGCHLD, &infop->si_signo); 1265 retval = put_user(SIGCHLD, &infop->si_signo);
1268 if (!retval && infop) 1266 if (!retval && infop)
1269 retval = put_user(0, &infop->si_errno); 1267 retval = put_user(0, &infop->si_errno);
1270 if (!retval && infop) 1268 if (!retval && infop)
1271 retval = put_user((short)why, &infop->si_code); 1269 retval = put_user((short)why, &infop->si_code);
1272 if (!retval && infop) 1270 if (!retval && infop)
1273 retval = put_user(exit_code, &infop->si_status); 1271 retval = put_user(exit_code, &infop->si_status);
1274 if (!retval && infop) 1272 if (!retval && infop)
1275 retval = put_user(pid, &infop->si_pid); 1273 retval = put_user(pid, &infop->si_pid);
1276 if (!retval && infop) 1274 if (!retval && infop)
1277 retval = put_user(uid, &infop->si_uid); 1275 retval = put_user(uid, &infop->si_uid);
1278 if (!retval) 1276 if (!retval)
1279 retval = pid; 1277 retval = pid;
1280 put_task_struct(p); 1278 put_task_struct(p);
1281 1279
1282 BUG_ON(!retval); 1280 BUG_ON(!retval);
1283 return retval; 1281 return retval;
1284 } 1282 }
1285 1283
1286 /* 1284 /*
1287 * Handle do_wait work for one task in a live, non-stopped state. 1285 * Handle do_wait work for one task in a live, non-stopped state.
1288 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1286 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1289 * the lock and this task is uninteresting. If we return nonzero, we have 1287 * the lock and this task is uninteresting. If we return nonzero, we have
1290 * released the lock and the system call should return. 1288 * released the lock and the system call should return.
1291 */ 1289 */
1292 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1290 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1293 { 1291 {
1294 int retval; 1292 int retval;
1295 pid_t pid; 1293 pid_t pid;
1296 uid_t uid; 1294 uid_t uid;
1297 1295
1298 if (!unlikely(wo->wo_flags & WCONTINUED)) 1296 if (!unlikely(wo->wo_flags & WCONTINUED))
1299 return 0; 1297 return 0;
1300 1298
1301 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1299 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1302 return 0; 1300 return 0;
1303 1301
1304 spin_lock_irq(&p->sighand->siglock); 1302 spin_lock_irq(&p->sighand->siglock);
1305 /* Re-check with the lock held. */ 1303 /* Re-check with the lock held. */
1306 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1304 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1307 spin_unlock_irq(&p->sighand->siglock); 1305 spin_unlock_irq(&p->sighand->siglock);
1308 return 0; 1306 return 0;
1309 } 1307 }
1310 if (!unlikely(wo->wo_flags & WNOWAIT)) 1308 if (!unlikely(wo->wo_flags & WNOWAIT))
1311 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1309 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1312 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1310 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1313 spin_unlock_irq(&p->sighand->siglock); 1311 spin_unlock_irq(&p->sighand->siglock);
1314 1312
1315 pid = task_pid_vnr(p); 1313 pid = task_pid_vnr(p);
1316 get_task_struct(p); 1314 get_task_struct(p);
1317 read_unlock(&tasklist_lock); 1315 read_unlock(&tasklist_lock);
1318 1316
1319 if (!wo->wo_info) { 1317 if (!wo->wo_info) {
1320 retval = wo->wo_rusage 1318 retval = wo->wo_rusage
1321 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1319 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1322 put_task_struct(p); 1320 put_task_struct(p);
1323 if (!retval && wo->wo_stat) 1321 if (!retval && wo->wo_stat)
1324 retval = put_user(0xffff, wo->wo_stat); 1322 retval = put_user(0xffff, wo->wo_stat);
1325 if (!retval) 1323 if (!retval)
1326 retval = pid; 1324 retval = pid;
1327 } else { 1325 } else {
1328 retval = wait_noreap_copyout(wo, p, pid, uid, 1326 retval = wait_noreap_copyout(wo, p, pid, uid,
1329 CLD_CONTINUED, SIGCONT); 1327 CLD_CONTINUED, SIGCONT);
1330 BUG_ON(retval == 0); 1328 BUG_ON(retval == 0);
1331 } 1329 }
1332 1330
1333 return retval; 1331 return retval;
1334 } 1332 }
1335 1333
1336 /* 1334 /*
1337 * Consider @p for a wait by @parent. 1335 * Consider @p for a wait by @parent.
1338 * 1336 *
1339 * -ECHILD should be in ->notask_error before the first call. 1337 * -ECHILD should be in ->notask_error before the first call.
1340 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1338 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1341 * Returns zero if the search for a child should continue; 1339 * Returns zero if the search for a child should continue;
1342 * then ->notask_error is 0 if @p is an eligible child, 1340 * then ->notask_error is 0 if @p is an eligible child,
1343 * or another error from security_task_wait(), or still -ECHILD. 1341 * or another error from security_task_wait(), or still -ECHILD.
1344 */ 1342 */
1345 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1343 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1346 struct task_struct *p) 1344 struct task_struct *p)
1347 { 1345 {
1348 int ret = eligible_child(wo, p); 1346 int ret = eligible_child(wo, p);
1349 if (!ret) 1347 if (!ret)
1350 return ret; 1348 return ret;
1351 1349
1352 ret = security_task_wait(p); 1350 ret = security_task_wait(p);
1353 if (unlikely(ret < 0)) { 1351 if (unlikely(ret < 0)) {
1354 /* 1352 /*
1355 * If we have not yet seen any eligible child, 1353 * If we have not yet seen any eligible child,
1356 * then let this error code replace -ECHILD. 1354 * then let this error code replace -ECHILD.
1357 * A permission error will give the user a clue 1355 * A permission error will give the user a clue
1358 * to look for security policy problems, rather 1356 * to look for security policy problems, rather
1359 * than for mysterious wait bugs. 1357 * than for mysterious wait bugs.
1360 */ 1358 */
1361 if (wo->notask_error) 1359 if (wo->notask_error)
1362 wo->notask_error = ret; 1360 wo->notask_error = ret;
1363 return 0; 1361 return 0;
1364 } 1362 }
1365 1363
1366 /* dead body doesn't have much to contribute */ 1364 /* dead body doesn't have much to contribute */
1367 if (unlikely(p->exit_state == EXIT_DEAD)) { 1365 if (unlikely(p->exit_state == EXIT_DEAD)) {
1368 /* 1366 /*
1369 * But do not ignore this task until the tracer does 1367 * But do not ignore this task until the tracer does
1370 * wait_task_zombie()->do_notify_parent(). 1368 * wait_task_zombie()->do_notify_parent().
1371 */ 1369 */
1372 if (likely(!ptrace) && unlikely(ptrace_reparented(p))) 1370 if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1373 wo->notask_error = 0; 1371 wo->notask_error = 0;
1374 return 0; 1372 return 0;
1375 } 1373 }
1376 1374
1377 /* slay zombie? */ 1375 /* slay zombie? */
1378 if (p->exit_state == EXIT_ZOMBIE) { 1376 if (p->exit_state == EXIT_ZOMBIE) {
1379 /* 1377 /*
1380 * A zombie ptracee is only visible to its ptracer. 1378 * A zombie ptracee is only visible to its ptracer.
1381 * Notification and reaping will be cascaded to the real 1379 * Notification and reaping will be cascaded to the real
1382 * parent when the ptracer detaches. 1380 * parent when the ptracer detaches.
1383 */ 1381 */
1384 if (likely(!ptrace) && unlikely(p->ptrace)) { 1382 if (likely(!ptrace) && unlikely(p->ptrace)) {
1385 /* it will become visible, clear notask_error */ 1383 /* it will become visible, clear notask_error */
1386 wo->notask_error = 0; 1384 wo->notask_error = 0;
1387 return 0; 1385 return 0;
1388 } 1386 }
1389 1387
1390 /* we don't reap group leaders with subthreads */ 1388 /* we don't reap group leaders with subthreads */
1391 if (!delay_group_leader(p)) 1389 if (!delay_group_leader(p))
1392 return wait_task_zombie(wo, p); 1390 return wait_task_zombie(wo, p);
1393 1391
1394 /* 1392 /*
1395 * Allow access to stopped/continued state via zombie by 1393 * Allow access to stopped/continued state via zombie by
1396 * falling through. Clearing of notask_error is complex. 1394 * falling through. Clearing of notask_error is complex.
1397 * 1395 *
1398 * When !@ptrace: 1396 * When !@ptrace:
1399 * 1397 *
1400 * If WEXITED is set, notask_error should naturally be 1398 * If WEXITED is set, notask_error should naturally be
1401 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1399 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1402 * so, if there are live subthreads, there are events to 1400 * so, if there are live subthreads, there are events to
1403 * wait for. If all subthreads are dead, it's still safe 1401 * wait for. If all subthreads are dead, it's still safe
1404 * to clear - this function will be called again in finite 1402 * to clear - this function will be called again in finite
1405 * amount time once all the subthreads are released and 1403 * amount time once all the subthreads are released and
1406 * will then return without clearing. 1404 * will then return without clearing.
1407 * 1405 *
1408 * When @ptrace: 1406 * When @ptrace:
1409 * 1407 *
1410 * Stopped state is per-task and thus can't change once the 1408 * Stopped state is per-task and thus can't change once the
1411 * target task dies. Only continued and exited can happen. 1409 * target task dies. Only continued and exited can happen.
1412 * Clear notask_error if WCONTINUED | WEXITED. 1410 * Clear notask_error if WCONTINUED | WEXITED.
1413 */ 1411 */
1414 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1412 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1415 wo->notask_error = 0; 1413 wo->notask_error = 0;
1416 } else { 1414 } else {
1417 /* 1415 /*
1418 * If @p is ptraced by a task in its real parent's group, 1416 * If @p is ptraced by a task in its real parent's group,
1419 * hide group stop/continued state when looking at @p as 1417 * hide group stop/continued state when looking at @p as
1420 * the real parent; otherwise, a single stop can be 1418 * the real parent; otherwise, a single stop can be
1421 * reported twice as group and ptrace stops. 1419 * reported twice as group and ptrace stops.
1422 * 1420 *
1423 * If a ptracer wants to distinguish the two events for its 1421 * If a ptracer wants to distinguish the two events for its
1424 * own children, it should create a separate process which 1422 * own children, it should create a separate process which
1425 * takes the role of real parent. 1423 * takes the role of real parent.
1426 */ 1424 */
1427 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p)) 1425 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1428 return 0; 1426 return 0;
1429 1427
1430 /* 1428 /*
1431 * @p is alive and it's gonna stop, continue or exit, so 1429 * @p is alive and it's gonna stop, continue or exit, so
1432 * there always is something to wait for. 1430 * there always is something to wait for.
1433 */ 1431 */
1434 wo->notask_error = 0; 1432 wo->notask_error = 0;
1435 } 1433 }
1436 1434
1437 /* 1435 /*
1438 * Wait for stopped. Depending on @ptrace, different stopped state 1436 * Wait for stopped. Depending on @ptrace, different stopped state
1439 * is used and the two don't interact with each other. 1437 * is used and the two don't interact with each other.
1440 */ 1438 */
1441 ret = wait_task_stopped(wo, ptrace, p); 1439 ret = wait_task_stopped(wo, ptrace, p);
1442 if (ret) 1440 if (ret)
1443 return ret; 1441 return ret;
1444 1442
1445 /* 1443 /*
1446 * Wait for continued. There's only one continued state and the 1444 * Wait for continued. There's only one continued state and the
1447 * ptracer can consume it which can confuse the real parent. Don't 1445 * ptracer can consume it which can confuse the real parent. Don't
1448 * use WCONTINUED from ptracer. You don't need or want it. 1446 * use WCONTINUED from ptracer. You don't need or want it.
1449 */ 1447 */
1450 return wait_task_continued(wo, p); 1448 return wait_task_continued(wo, p);
1451 } 1449 }
1452 1450
1453 /* 1451 /*
1454 * Do the work of do_wait() for one thread in the group, @tsk. 1452 * Do the work of do_wait() for one thread in the group, @tsk.
1455 * 1453 *
1456 * -ECHILD should be in ->notask_error before the first call. 1454 * -ECHILD should be in ->notask_error before the first call.
1457 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1455 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1458 * Returns zero if the search for a child should continue; then 1456 * Returns zero if the search for a child should continue; then
1459 * ->notask_error is 0 if there were any eligible children, 1457 * ->notask_error is 0 if there were any eligible children,
1460 * or another error from security_task_wait(), or still -ECHILD. 1458 * or another error from security_task_wait(), or still -ECHILD.
1461 */ 1459 */
1462 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1460 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1463 { 1461 {
1464 struct task_struct *p; 1462 struct task_struct *p;
1465 1463
1466 list_for_each_entry(p, &tsk->children, sibling) { 1464 list_for_each_entry(p, &tsk->children, sibling) {
1467 int ret = wait_consider_task(wo, 0, p); 1465 int ret = wait_consider_task(wo, 0, p);
1468 if (ret) 1466 if (ret)
1469 return ret; 1467 return ret;
1470 } 1468 }
1471 1469
1472 return 0; 1470 return 0;
1473 } 1471 }
1474 1472
1475 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1473 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1476 { 1474 {
1477 struct task_struct *p; 1475 struct task_struct *p;
1478 1476
1479 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1477 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1480 int ret = wait_consider_task(wo, 1, p); 1478 int ret = wait_consider_task(wo, 1, p);
1481 if (ret) 1479 if (ret)
1482 return ret; 1480 return ret;
1483 } 1481 }
1484 1482
1485 return 0; 1483 return 0;
1486 } 1484 }
1487 1485
1488 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1486 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1489 int sync, void *key) 1487 int sync, void *key)
1490 { 1488 {
1491 struct wait_opts *wo = container_of(wait, struct wait_opts, 1489 struct wait_opts *wo = container_of(wait, struct wait_opts,
1492 child_wait); 1490 child_wait);
1493 struct task_struct *p = key; 1491 struct task_struct *p = key;
1494 1492
1495 if (!eligible_pid(wo, p)) 1493 if (!eligible_pid(wo, p))
1496 return 0; 1494 return 0;
1497 1495
1498 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1496 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1499 return 0; 1497 return 0;
1500 1498
1501 return default_wake_function(wait, mode, sync, key); 1499 return default_wake_function(wait, mode, sync, key);
1502 } 1500 }
1503 1501
1504 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1502 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1505 { 1503 {
1506 __wake_up_sync_key(&parent->signal->wait_chldexit, 1504 __wake_up_sync_key(&parent->signal->wait_chldexit,
1507 TASK_INTERRUPTIBLE, 1, p); 1505 TASK_INTERRUPTIBLE, 1, p);
1508 } 1506 }
1509 1507
1510 static long do_wait(struct wait_opts *wo) 1508 static long do_wait(struct wait_opts *wo)
1511 { 1509 {
1512 struct task_struct *tsk; 1510 struct task_struct *tsk;
1513 int retval; 1511 int retval;
1514 1512
1515 trace_sched_process_wait(wo->wo_pid); 1513 trace_sched_process_wait(wo->wo_pid);
1516 1514
1517 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1515 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1518 wo->child_wait.private = current; 1516 wo->child_wait.private = current;
1519 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait); 1517 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1520 repeat: 1518 repeat:
1521 /* 1519 /*
1522 * If there is nothing that can match our critiera just get out. 1520 * If there is nothing that can match our critiera just get out.
1523 * We will clear ->notask_error to zero if we see any child that 1521 * We will clear ->notask_error to zero if we see any child that
1524 * might later match our criteria, even if we are not able to reap 1522 * might later match our criteria, even if we are not able to reap
1525 * it yet. 1523 * it yet.
1526 */ 1524 */
1527 wo->notask_error = -ECHILD; 1525 wo->notask_error = -ECHILD;
1528 if ((wo->wo_type < PIDTYPE_MAX) && 1526 if ((wo->wo_type < PIDTYPE_MAX) &&
1529 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1527 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1530 goto notask; 1528 goto notask;
1531 1529
1532 set_current_state(TASK_INTERRUPTIBLE); 1530 set_current_state(TASK_INTERRUPTIBLE);
1533 read_lock(&tasklist_lock); 1531 read_lock(&tasklist_lock);
1534 tsk = current; 1532 tsk = current;
1535 do { 1533 do {
1536 retval = do_wait_thread(wo, tsk); 1534 retval = do_wait_thread(wo, tsk);
1537 if (retval) 1535 if (retval)
1538 goto end; 1536 goto end;
1539 1537
1540 retval = ptrace_do_wait(wo, tsk); 1538 retval = ptrace_do_wait(wo, tsk);
1541 if (retval) 1539 if (retval)
1542 goto end; 1540 goto end;
1543 1541
1544 if (wo->wo_flags & __WNOTHREAD) 1542 if (wo->wo_flags & __WNOTHREAD)
1545 break; 1543 break;
1546 } while_each_thread(current, tsk); 1544 } while_each_thread(current, tsk);
1547 read_unlock(&tasklist_lock); 1545 read_unlock(&tasklist_lock);
1548 1546
1549 notask: 1547 notask:
1550 retval = wo->notask_error; 1548 retval = wo->notask_error;
1551 if (!retval && !(wo->wo_flags & WNOHANG)) { 1549 if (!retval && !(wo->wo_flags & WNOHANG)) {
1552 retval = -ERESTARTSYS; 1550 retval = -ERESTARTSYS;
1553 if (!signal_pending(current)) { 1551 if (!signal_pending(current)) {
1554 schedule(); 1552 schedule();
1555 goto repeat; 1553 goto repeat;
1556 } 1554 }
1557 } 1555 }
1558 end: 1556 end:
1559 __set_current_state(TASK_RUNNING); 1557 __set_current_state(TASK_RUNNING);
1560 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait); 1558 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1561 return retval; 1559 return retval;
1562 } 1560 }
1563 1561
1564 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1562 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1565 infop, int, options, struct rusage __user *, ru) 1563 infop, int, options, struct rusage __user *, ru)
1566 { 1564 {
1567 struct wait_opts wo; 1565 struct wait_opts wo;
1568 struct pid *pid = NULL; 1566 struct pid *pid = NULL;
1569 enum pid_type type; 1567 enum pid_type type;
1570 long ret; 1568 long ret;
1571 1569
1572 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1570 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1573 return -EINVAL; 1571 return -EINVAL;
1574 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1572 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1575 return -EINVAL; 1573 return -EINVAL;
1576 1574
1577 switch (which) { 1575 switch (which) {
1578 case P_ALL: 1576 case P_ALL:
1579 type = PIDTYPE_MAX; 1577 type = PIDTYPE_MAX;
1580 break; 1578 break;
1581 case P_PID: 1579 case P_PID:
1582 type = PIDTYPE_PID; 1580 type = PIDTYPE_PID;
1583 if (upid <= 0) 1581 if (upid <= 0)
1584 return -EINVAL; 1582 return -EINVAL;
1585 break; 1583 break;
1586 case P_PGID: 1584 case P_PGID:
1587 type = PIDTYPE_PGID; 1585 type = PIDTYPE_PGID;
1588 if (upid <= 0) 1586 if (upid <= 0)
1589 return -EINVAL; 1587 return -EINVAL;
1590 break; 1588 break;
1591 default: 1589 default:
1592 return -EINVAL; 1590 return -EINVAL;
1593 } 1591 }
1594 1592
1595 if (type < PIDTYPE_MAX) 1593 if (type < PIDTYPE_MAX)
1596 pid = find_get_pid(upid); 1594 pid = find_get_pid(upid);
1597 1595
1598 wo.wo_type = type; 1596 wo.wo_type = type;
1599 wo.wo_pid = pid; 1597 wo.wo_pid = pid;
1600 wo.wo_flags = options; 1598 wo.wo_flags = options;
1601 wo.wo_info = infop; 1599 wo.wo_info = infop;
1602 wo.wo_stat = NULL; 1600 wo.wo_stat = NULL;
1603 wo.wo_rusage = ru; 1601 wo.wo_rusage = ru;
1604 ret = do_wait(&wo); 1602 ret = do_wait(&wo);
1605 1603
1606 if (ret > 0) { 1604 if (ret > 0) {
1607 ret = 0; 1605 ret = 0;
1608 } else if (infop) { 1606 } else if (infop) {
1609 /* 1607 /*
1610 * For a WNOHANG return, clear out all the fields 1608 * For a WNOHANG return, clear out all the fields
1611 * we would set so the user can easily tell the 1609 * we would set so the user can easily tell the
1612 * difference. 1610 * difference.
1613 */ 1611 */
1614 if (!ret) 1612 if (!ret)
1615 ret = put_user(0, &infop->si_signo); 1613 ret = put_user(0, &infop->si_signo);
1616 if (!ret) 1614 if (!ret)
1617 ret = put_user(0, &infop->si_errno); 1615 ret = put_user(0, &infop->si_errno);
1618 if (!ret) 1616 if (!ret)
1619 ret = put_user(0, &infop->si_code); 1617 ret = put_user(0, &infop->si_code);
1620 if (!ret) 1618 if (!ret)
1621 ret = put_user(0, &infop->si_pid); 1619 ret = put_user(0, &infop->si_pid);
1622 if (!ret) 1620 if (!ret)
1623 ret = put_user(0, &infop->si_uid); 1621 ret = put_user(0, &infop->si_uid);
1624 if (!ret) 1622 if (!ret)
1625 ret = put_user(0, &infop->si_status); 1623 ret = put_user(0, &infop->si_status);
1626 } 1624 }
1627 1625
1628 put_pid(pid); 1626 put_pid(pid);
1629 return ret; 1627 return ret;
1630 } 1628 }
1631 1629
1632 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1630 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1633 int, options, struct rusage __user *, ru) 1631 int, options, struct rusage __user *, ru)
1634 { 1632 {
1635 struct wait_opts wo; 1633 struct wait_opts wo;
1636 struct pid *pid = NULL; 1634 struct pid *pid = NULL;
1637 enum pid_type type; 1635 enum pid_type type;
1638 long ret; 1636 long ret;
1639 1637
1640 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1638 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1641 __WNOTHREAD|__WCLONE|__WALL)) 1639 __WNOTHREAD|__WCLONE|__WALL))
1642 return -EINVAL; 1640 return -EINVAL;
1643 1641
1644 if (upid == -1) 1642 if (upid == -1)
1645 type = PIDTYPE_MAX; 1643 type = PIDTYPE_MAX;
1646 else if (upid < 0) { 1644 else if (upid < 0) {
1647 type = PIDTYPE_PGID; 1645 type = PIDTYPE_PGID;
1648 pid = find_get_pid(-upid); 1646 pid = find_get_pid(-upid);
1649 } else if (upid == 0) { 1647 } else if (upid == 0) {
1650 type = PIDTYPE_PGID; 1648 type = PIDTYPE_PGID;
1651 pid = get_task_pid(current, PIDTYPE_PGID); 1649 pid = get_task_pid(current, PIDTYPE_PGID);
1652 } else /* upid > 0 */ { 1650 } else /* upid > 0 */ {
1653 type = PIDTYPE_PID; 1651 type = PIDTYPE_PID;
1654 pid = find_get_pid(upid); 1652 pid = find_get_pid(upid);
1655 } 1653 }
1656 1654
1657 wo.wo_type = type; 1655 wo.wo_type = type;
1658 wo.wo_pid = pid; 1656 wo.wo_pid = pid;
1659 wo.wo_flags = options | WEXITED; 1657 wo.wo_flags = options | WEXITED;
1660 wo.wo_info = NULL; 1658 wo.wo_info = NULL;
1661 wo.wo_stat = stat_addr; 1659 wo.wo_stat = stat_addr;
1662 wo.wo_rusage = ru; 1660 wo.wo_rusage = ru;
1663 ret = do_wait(&wo); 1661 ret = do_wait(&wo);
1664 put_pid(pid); 1662 put_pid(pid);
1665 1663
1666 return ret; 1664 return ret;
1667 } 1665 }
1668 1666
1669 #ifdef __ARCH_WANT_SYS_WAITPID 1667 #ifdef __ARCH_WANT_SYS_WAITPID
1670 1668
1671 /* 1669 /*
1672 * sys_waitpid() remains for compatibility. waitpid() should be 1670 * sys_waitpid() remains for compatibility. waitpid() should be
1673 * implemented by calling sys_wait4() from libc.a. 1671 * implemented by calling sys_wait4() from libc.a.
1674 */ 1672 */
1675 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1673 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1676 { 1674 {
1677 return sys_wait4(pid, stat_addr, options, NULL); 1675 return sys_wait4(pid, stat_addr, options, NULL);
1678 } 1676 }
1679 1677