Commit 29f175d125f0f3a9503af8a5596f93d714cceb08

Authored by Fabian Frederick
Committed by Linus Torvalds
1 parent 55f67141a8

mm/readahead.c: inline ra_submit

Commit f9acc8c7b35a ("readahead: sanify file_ra_state names") left
ra_submit with a single function call.

Move ra_submit to internal.h and inline it to save some stack.  Thanks
to Andrew Morton for commenting different versions.

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

Showing 3 changed files with 18 additions and 21 deletions Inline Diff

1 #ifndef _LINUX_MM_H 1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H 2 #define _LINUX_MM_H
3 3
4 #include <linux/errno.h> 4 #include <linux/errno.h>
5 5
6 #ifdef __KERNEL__ 6 #ifdef __KERNEL__
7 7
8 #include <linux/mmdebug.h> 8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h> 9 #include <linux/gfp.h>
10 #include <linux/bug.h> 10 #include <linux/bug.h>
11 #include <linux/list.h> 11 #include <linux/list.h>
12 #include <linux/mmzone.h> 12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h> 13 #include <linux/rbtree.h>
14 #include <linux/atomic.h> 14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h> 15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h> 16 #include <linux/mm_types.h>
17 #include <linux/range.h> 17 #include <linux/range.h>
18 #include <linux/pfn.h> 18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h> 19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h> 20 #include <linux/shrinker.h>
21 21
22 struct mempolicy; 22 struct mempolicy;
23 struct anon_vma; 23 struct anon_vma;
24 struct anon_vma_chain; 24 struct anon_vma_chain;
25 struct file_ra_state; 25 struct file_ra_state;
26 struct user_struct; 26 struct user_struct;
27 struct writeback_control; 27 struct writeback_control;
28 28
29 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 29 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
30 extern unsigned long max_mapnr; 30 extern unsigned long max_mapnr;
31 31
32 static inline void set_max_mapnr(unsigned long limit) 32 static inline void set_max_mapnr(unsigned long limit)
33 { 33 {
34 max_mapnr = limit; 34 max_mapnr = limit;
35 } 35 }
36 #else 36 #else
37 static inline void set_max_mapnr(unsigned long limit) { } 37 static inline void set_max_mapnr(unsigned long limit) { }
38 #endif 38 #endif
39 39
40 extern unsigned long totalram_pages; 40 extern unsigned long totalram_pages;
41 extern void * high_memory; 41 extern void * high_memory;
42 extern int page_cluster; 42 extern int page_cluster;
43 43
44 #ifdef CONFIG_SYSCTL 44 #ifdef CONFIG_SYSCTL
45 extern int sysctl_legacy_va_layout; 45 extern int sysctl_legacy_va_layout;
46 #else 46 #else
47 #define sysctl_legacy_va_layout 0 47 #define sysctl_legacy_va_layout 0
48 #endif 48 #endif
49 49
50 #include <asm/page.h> 50 #include <asm/page.h>
51 #include <asm/pgtable.h> 51 #include <asm/pgtable.h>
52 #include <asm/processor.h> 52 #include <asm/processor.h>
53 53
54 #ifndef __pa_symbol 54 #ifndef __pa_symbol
55 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 55 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
56 #endif 56 #endif
57 57
58 extern unsigned long sysctl_user_reserve_kbytes; 58 extern unsigned long sysctl_user_reserve_kbytes;
59 extern unsigned long sysctl_admin_reserve_kbytes; 59 extern unsigned long sysctl_admin_reserve_kbytes;
60 60
61 extern int sysctl_overcommit_memory; 61 extern int sysctl_overcommit_memory;
62 extern int sysctl_overcommit_ratio; 62 extern int sysctl_overcommit_ratio;
63 extern unsigned long sysctl_overcommit_kbytes; 63 extern unsigned long sysctl_overcommit_kbytes;
64 64
65 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 65 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
66 size_t *, loff_t *); 66 size_t *, loff_t *);
67 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 67 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
68 size_t *, loff_t *); 68 size_t *, loff_t *);
69 69
70 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 70 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
71 71
72 /* to align the pointer to the (next) page boundary */ 72 /* to align the pointer to the (next) page boundary */
73 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 73 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
74 74
75 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 75 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
76 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 76 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
77 77
78 /* 78 /*
79 * Linux kernel virtual memory manager primitives. 79 * Linux kernel virtual memory manager primitives.
80 * The idea being to have a "virtual" mm in the same way 80 * The idea being to have a "virtual" mm in the same way
81 * we have a virtual fs - giving a cleaner interface to the 81 * we have a virtual fs - giving a cleaner interface to the
82 * mm details, and allowing different kinds of memory mappings 82 * mm details, and allowing different kinds of memory mappings
83 * (from shared memory to executable loading to arbitrary 83 * (from shared memory to executable loading to arbitrary
84 * mmap() functions). 84 * mmap() functions).
85 */ 85 */
86 86
87 extern struct kmem_cache *vm_area_cachep; 87 extern struct kmem_cache *vm_area_cachep;
88 88
89 #ifndef CONFIG_MMU 89 #ifndef CONFIG_MMU
90 extern struct rb_root nommu_region_tree; 90 extern struct rb_root nommu_region_tree;
91 extern struct rw_semaphore nommu_region_sem; 91 extern struct rw_semaphore nommu_region_sem;
92 92
93 extern unsigned int kobjsize(const void *objp); 93 extern unsigned int kobjsize(const void *objp);
94 #endif 94 #endif
95 95
96 /* 96 /*
97 * vm_flags in vm_area_struct, see mm_types.h. 97 * vm_flags in vm_area_struct, see mm_types.h.
98 */ 98 */
99 #define VM_NONE 0x00000000 99 #define VM_NONE 0x00000000
100 100
101 #define VM_READ 0x00000001 /* currently active flags */ 101 #define VM_READ 0x00000001 /* currently active flags */
102 #define VM_WRITE 0x00000002 102 #define VM_WRITE 0x00000002
103 #define VM_EXEC 0x00000004 103 #define VM_EXEC 0x00000004
104 #define VM_SHARED 0x00000008 104 #define VM_SHARED 0x00000008
105 105
106 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 106 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
107 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 107 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
108 #define VM_MAYWRITE 0x00000020 108 #define VM_MAYWRITE 0x00000020
109 #define VM_MAYEXEC 0x00000040 109 #define VM_MAYEXEC 0x00000040
110 #define VM_MAYSHARE 0x00000080 110 #define VM_MAYSHARE 0x00000080
111 111
112 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 112 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
113 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 113 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
114 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 114 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
115 115
116 #define VM_LOCKED 0x00002000 116 #define VM_LOCKED 0x00002000
117 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 117 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
118 118
119 /* Used by sys_madvise() */ 119 /* Used by sys_madvise() */
120 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 120 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
121 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 121 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
122 122
123 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 123 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
124 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 124 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
125 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 125 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
126 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 126 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
127 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 127 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
128 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 128 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
129 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 129 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
130 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 130 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
131 131
132 #ifdef CONFIG_MEM_SOFT_DIRTY 132 #ifdef CONFIG_MEM_SOFT_DIRTY
133 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 133 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
134 #else 134 #else
135 # define VM_SOFTDIRTY 0 135 # define VM_SOFTDIRTY 0
136 #endif 136 #endif
137 137
138 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 138 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
139 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 139 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
140 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 140 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
141 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 141 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
142 142
143 #if defined(CONFIG_X86) 143 #if defined(CONFIG_X86)
144 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 144 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
145 #elif defined(CONFIG_PPC) 145 #elif defined(CONFIG_PPC)
146 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 146 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
147 #elif defined(CONFIG_PARISC) 147 #elif defined(CONFIG_PARISC)
148 # define VM_GROWSUP VM_ARCH_1 148 # define VM_GROWSUP VM_ARCH_1
149 #elif defined(CONFIG_METAG) 149 #elif defined(CONFIG_METAG)
150 # define VM_GROWSUP VM_ARCH_1 150 # define VM_GROWSUP VM_ARCH_1
151 #elif defined(CONFIG_IA64) 151 #elif defined(CONFIG_IA64)
152 # define VM_GROWSUP VM_ARCH_1 152 # define VM_GROWSUP VM_ARCH_1
153 #elif !defined(CONFIG_MMU) 153 #elif !defined(CONFIG_MMU)
154 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 154 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
155 #endif 155 #endif
156 156
157 #ifndef VM_GROWSUP 157 #ifndef VM_GROWSUP
158 # define VM_GROWSUP VM_NONE 158 # define VM_GROWSUP VM_NONE
159 #endif 159 #endif
160 160
161 /* Bits set in the VMA until the stack is in its final location */ 161 /* Bits set in the VMA until the stack is in its final location */
162 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 162 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
163 163
164 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 164 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
165 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 165 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
166 #endif 166 #endif
167 167
168 #ifdef CONFIG_STACK_GROWSUP 168 #ifdef CONFIG_STACK_GROWSUP
169 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 169 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
170 #else 170 #else
171 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 171 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
172 #endif 172 #endif
173 173
174 /* 174 /*
175 * Special vmas that are non-mergable, non-mlock()able. 175 * Special vmas that are non-mergable, non-mlock()able.
176 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 176 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
177 */ 177 */
178 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 178 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
179 179
180 /* This mask defines which mm->def_flags a process can inherit its parent */ 180 /* This mask defines which mm->def_flags a process can inherit its parent */
181 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 181 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
182 182
183 /* 183 /*
184 * mapping from the currently active vm_flags protection bits (the 184 * mapping from the currently active vm_flags protection bits (the
185 * low four bits) to a page protection mask.. 185 * low four bits) to a page protection mask..
186 */ 186 */
187 extern pgprot_t protection_map[16]; 187 extern pgprot_t protection_map[16];
188 188
189 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 189 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
190 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 190 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
191 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 191 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
192 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 192 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
193 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 193 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
194 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 194 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
195 #define FAULT_FLAG_TRIED 0x40 /* second try */ 195 #define FAULT_FLAG_TRIED 0x40 /* second try */
196 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */ 196 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
197 197
198 /* 198 /*
199 * vm_fault is filled by the the pagefault handler and passed to the vma's 199 * vm_fault is filled by the the pagefault handler and passed to the vma's
200 * ->fault function. The vma's ->fault is responsible for returning a bitmask 200 * ->fault function. The vma's ->fault is responsible for returning a bitmask
201 * of VM_FAULT_xxx flags that give details about how the fault was handled. 201 * of VM_FAULT_xxx flags that give details about how the fault was handled.
202 * 202 *
203 * pgoff should be used in favour of virtual_address, if possible. If pgoff 203 * pgoff should be used in favour of virtual_address, if possible. If pgoff
204 * is used, one may implement ->remap_pages to get nonlinear mapping support. 204 * is used, one may implement ->remap_pages to get nonlinear mapping support.
205 */ 205 */
206 struct vm_fault { 206 struct vm_fault {
207 unsigned int flags; /* FAULT_FLAG_xxx flags */ 207 unsigned int flags; /* FAULT_FLAG_xxx flags */
208 pgoff_t pgoff; /* Logical page offset based on vma */ 208 pgoff_t pgoff; /* Logical page offset based on vma */
209 void __user *virtual_address; /* Faulting virtual address */ 209 void __user *virtual_address; /* Faulting virtual address */
210 210
211 struct page *page; /* ->fault handlers should return a 211 struct page *page; /* ->fault handlers should return a
212 * page here, unless VM_FAULT_NOPAGE 212 * page here, unless VM_FAULT_NOPAGE
213 * is set (which is also implied by 213 * is set (which is also implied by
214 * VM_FAULT_ERROR). 214 * VM_FAULT_ERROR).
215 */ 215 */
216 /* for ->map_pages() only */ 216 /* for ->map_pages() only */
217 pgoff_t max_pgoff; /* map pages for offset from pgoff till 217 pgoff_t max_pgoff; /* map pages for offset from pgoff till
218 * max_pgoff inclusive */ 218 * max_pgoff inclusive */
219 pte_t *pte; /* pte entry associated with ->pgoff */ 219 pte_t *pte; /* pte entry associated with ->pgoff */
220 }; 220 };
221 221
222 /* 222 /*
223 * These are the virtual MM functions - opening of an area, closing and 223 * These are the virtual MM functions - opening of an area, closing and
224 * unmapping it (needed to keep files on disk up-to-date etc), pointer 224 * unmapping it (needed to keep files on disk up-to-date etc), pointer
225 * to the functions called when a no-page or a wp-page exception occurs. 225 * to the functions called when a no-page or a wp-page exception occurs.
226 */ 226 */
227 struct vm_operations_struct { 227 struct vm_operations_struct {
228 void (*open)(struct vm_area_struct * area); 228 void (*open)(struct vm_area_struct * area);
229 void (*close)(struct vm_area_struct * area); 229 void (*close)(struct vm_area_struct * area);
230 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 230 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
231 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); 231 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
232 232
233 /* notification that a previously read-only page is about to become 233 /* notification that a previously read-only page is about to become
234 * writable, if an error is returned it will cause a SIGBUS */ 234 * writable, if an error is returned it will cause a SIGBUS */
235 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 235 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
236 236
237 /* called by access_process_vm when get_user_pages() fails, typically 237 /* called by access_process_vm when get_user_pages() fails, typically
238 * for use by special VMAs that can switch between memory and hardware 238 * for use by special VMAs that can switch between memory and hardware
239 */ 239 */
240 int (*access)(struct vm_area_struct *vma, unsigned long addr, 240 int (*access)(struct vm_area_struct *vma, unsigned long addr,
241 void *buf, int len, int write); 241 void *buf, int len, int write);
242 #ifdef CONFIG_NUMA 242 #ifdef CONFIG_NUMA
243 /* 243 /*
244 * set_policy() op must add a reference to any non-NULL @new mempolicy 244 * set_policy() op must add a reference to any non-NULL @new mempolicy
245 * to hold the policy upon return. Caller should pass NULL @new to 245 * to hold the policy upon return. Caller should pass NULL @new to
246 * remove a policy and fall back to surrounding context--i.e. do not 246 * remove a policy and fall back to surrounding context--i.e. do not
247 * install a MPOL_DEFAULT policy, nor the task or system default 247 * install a MPOL_DEFAULT policy, nor the task or system default
248 * mempolicy. 248 * mempolicy.
249 */ 249 */
250 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 250 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
251 251
252 /* 252 /*
253 * get_policy() op must add reference [mpol_get()] to any policy at 253 * get_policy() op must add reference [mpol_get()] to any policy at
254 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 254 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
255 * in mm/mempolicy.c will do this automatically. 255 * in mm/mempolicy.c will do this automatically.
256 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 256 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
257 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 257 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
258 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 258 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
259 * must return NULL--i.e., do not "fallback" to task or system default 259 * must return NULL--i.e., do not "fallback" to task or system default
260 * policy. 260 * policy.
261 */ 261 */
262 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 262 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
263 unsigned long addr); 263 unsigned long addr);
264 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 264 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
265 const nodemask_t *to, unsigned long flags); 265 const nodemask_t *to, unsigned long flags);
266 #endif 266 #endif
267 /* called by sys_remap_file_pages() to populate non-linear mapping */ 267 /* called by sys_remap_file_pages() to populate non-linear mapping */
268 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr, 268 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
269 unsigned long size, pgoff_t pgoff); 269 unsigned long size, pgoff_t pgoff);
270 }; 270 };
271 271
272 struct mmu_gather; 272 struct mmu_gather;
273 struct inode; 273 struct inode;
274 274
275 #define page_private(page) ((page)->private) 275 #define page_private(page) ((page)->private)
276 #define set_page_private(page, v) ((page)->private = (v)) 276 #define set_page_private(page, v) ((page)->private = (v))
277 277
278 /* It's valid only if the page is free path or free_list */ 278 /* It's valid only if the page is free path or free_list */
279 static inline void set_freepage_migratetype(struct page *page, int migratetype) 279 static inline void set_freepage_migratetype(struct page *page, int migratetype)
280 { 280 {
281 page->index = migratetype; 281 page->index = migratetype;
282 } 282 }
283 283
284 /* It's valid only if the page is free path or free_list */ 284 /* It's valid only if the page is free path or free_list */
285 static inline int get_freepage_migratetype(struct page *page) 285 static inline int get_freepage_migratetype(struct page *page)
286 { 286 {
287 return page->index; 287 return page->index;
288 } 288 }
289 289
290 /* 290 /*
291 * FIXME: take this include out, include page-flags.h in 291 * FIXME: take this include out, include page-flags.h in
292 * files which need it (119 of them) 292 * files which need it (119 of them)
293 */ 293 */
294 #include <linux/page-flags.h> 294 #include <linux/page-flags.h>
295 #include <linux/huge_mm.h> 295 #include <linux/huge_mm.h>
296 296
297 /* 297 /*
298 * Methods to modify the page usage count. 298 * Methods to modify the page usage count.
299 * 299 *
300 * What counts for a page usage: 300 * What counts for a page usage:
301 * - cache mapping (page->mapping) 301 * - cache mapping (page->mapping)
302 * - private data (page->private) 302 * - private data (page->private)
303 * - page mapped in a task's page tables, each mapping 303 * - page mapped in a task's page tables, each mapping
304 * is counted separately 304 * is counted separately
305 * 305 *
306 * Also, many kernel routines increase the page count before a critical 306 * Also, many kernel routines increase the page count before a critical
307 * routine so they can be sure the page doesn't go away from under them. 307 * routine so they can be sure the page doesn't go away from under them.
308 */ 308 */
309 309
310 /* 310 /*
311 * Drop a ref, return true if the refcount fell to zero (the page has no users) 311 * Drop a ref, return true if the refcount fell to zero (the page has no users)
312 */ 312 */
313 static inline int put_page_testzero(struct page *page) 313 static inline int put_page_testzero(struct page *page)
314 { 314 {
315 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); 315 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
316 return atomic_dec_and_test(&page->_count); 316 return atomic_dec_and_test(&page->_count);
317 } 317 }
318 318
319 /* 319 /*
320 * Try to grab a ref unless the page has a refcount of zero, return false if 320 * Try to grab a ref unless the page has a refcount of zero, return false if
321 * that is the case. 321 * that is the case.
322 * This can be called when MMU is off so it must not access 322 * This can be called when MMU is off so it must not access
323 * any of the virtual mappings. 323 * any of the virtual mappings.
324 */ 324 */
325 static inline int get_page_unless_zero(struct page *page) 325 static inline int get_page_unless_zero(struct page *page)
326 { 326 {
327 return atomic_inc_not_zero(&page->_count); 327 return atomic_inc_not_zero(&page->_count);
328 } 328 }
329 329
330 /* 330 /*
331 * Try to drop a ref unless the page has a refcount of one, return false if 331 * Try to drop a ref unless the page has a refcount of one, return false if
332 * that is the case. 332 * that is the case.
333 * This is to make sure that the refcount won't become zero after this drop. 333 * This is to make sure that the refcount won't become zero after this drop.
334 * This can be called when MMU is off so it must not access 334 * This can be called when MMU is off so it must not access
335 * any of the virtual mappings. 335 * any of the virtual mappings.
336 */ 336 */
337 static inline int put_page_unless_one(struct page *page) 337 static inline int put_page_unless_one(struct page *page)
338 { 338 {
339 return atomic_add_unless(&page->_count, -1, 1); 339 return atomic_add_unless(&page->_count, -1, 1);
340 } 340 }
341 341
342 extern int page_is_ram(unsigned long pfn); 342 extern int page_is_ram(unsigned long pfn);
343 343
344 /* Support for virtually mapped pages */ 344 /* Support for virtually mapped pages */
345 struct page *vmalloc_to_page(const void *addr); 345 struct page *vmalloc_to_page(const void *addr);
346 unsigned long vmalloc_to_pfn(const void *addr); 346 unsigned long vmalloc_to_pfn(const void *addr);
347 347
348 /* 348 /*
349 * Determine if an address is within the vmalloc range 349 * Determine if an address is within the vmalloc range
350 * 350 *
351 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 351 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
352 * is no special casing required. 352 * is no special casing required.
353 */ 353 */
354 static inline int is_vmalloc_addr(const void *x) 354 static inline int is_vmalloc_addr(const void *x)
355 { 355 {
356 #ifdef CONFIG_MMU 356 #ifdef CONFIG_MMU
357 unsigned long addr = (unsigned long)x; 357 unsigned long addr = (unsigned long)x;
358 358
359 return addr >= VMALLOC_START && addr < VMALLOC_END; 359 return addr >= VMALLOC_START && addr < VMALLOC_END;
360 #else 360 #else
361 return 0; 361 return 0;
362 #endif 362 #endif
363 } 363 }
364 #ifdef CONFIG_MMU 364 #ifdef CONFIG_MMU
365 extern int is_vmalloc_or_module_addr(const void *x); 365 extern int is_vmalloc_or_module_addr(const void *x);
366 #else 366 #else
367 static inline int is_vmalloc_or_module_addr(const void *x) 367 static inline int is_vmalloc_or_module_addr(const void *x)
368 { 368 {
369 return 0; 369 return 0;
370 } 370 }
371 #endif 371 #endif
372 372
373 static inline void compound_lock(struct page *page) 373 static inline void compound_lock(struct page *page)
374 { 374 {
375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
376 VM_BUG_ON_PAGE(PageSlab(page), page); 376 VM_BUG_ON_PAGE(PageSlab(page), page);
377 bit_spin_lock(PG_compound_lock, &page->flags); 377 bit_spin_lock(PG_compound_lock, &page->flags);
378 #endif 378 #endif
379 } 379 }
380 380
381 static inline void compound_unlock(struct page *page) 381 static inline void compound_unlock(struct page *page)
382 { 382 {
383 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 383 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
384 VM_BUG_ON_PAGE(PageSlab(page), page); 384 VM_BUG_ON_PAGE(PageSlab(page), page);
385 bit_spin_unlock(PG_compound_lock, &page->flags); 385 bit_spin_unlock(PG_compound_lock, &page->flags);
386 #endif 386 #endif
387 } 387 }
388 388
389 static inline unsigned long compound_lock_irqsave(struct page *page) 389 static inline unsigned long compound_lock_irqsave(struct page *page)
390 { 390 {
391 unsigned long uninitialized_var(flags); 391 unsigned long uninitialized_var(flags);
392 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 392 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
393 local_irq_save(flags); 393 local_irq_save(flags);
394 compound_lock(page); 394 compound_lock(page);
395 #endif 395 #endif
396 return flags; 396 return flags;
397 } 397 }
398 398
399 static inline void compound_unlock_irqrestore(struct page *page, 399 static inline void compound_unlock_irqrestore(struct page *page,
400 unsigned long flags) 400 unsigned long flags)
401 { 401 {
402 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 402 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
403 compound_unlock(page); 403 compound_unlock(page);
404 local_irq_restore(flags); 404 local_irq_restore(flags);
405 #endif 405 #endif
406 } 406 }
407 407
408 static inline struct page *compound_head(struct page *page) 408 static inline struct page *compound_head(struct page *page)
409 { 409 {
410 if (unlikely(PageTail(page))) { 410 if (unlikely(PageTail(page))) {
411 struct page *head = page->first_page; 411 struct page *head = page->first_page;
412 412
413 /* 413 /*
414 * page->first_page may be a dangling pointer to an old 414 * page->first_page may be a dangling pointer to an old
415 * compound page, so recheck that it is still a tail 415 * compound page, so recheck that it is still a tail
416 * page before returning. 416 * page before returning.
417 */ 417 */
418 smp_rmb(); 418 smp_rmb();
419 if (likely(PageTail(page))) 419 if (likely(PageTail(page)))
420 return head; 420 return head;
421 } 421 }
422 return page; 422 return page;
423 } 423 }
424 424
425 /* 425 /*
426 * The atomic page->_mapcount, starts from -1: so that transitions 426 * The atomic page->_mapcount, starts from -1: so that transitions
427 * both from it and to it can be tracked, using atomic_inc_and_test 427 * both from it and to it can be tracked, using atomic_inc_and_test
428 * and atomic_add_negative(-1). 428 * and atomic_add_negative(-1).
429 */ 429 */
430 static inline void page_mapcount_reset(struct page *page) 430 static inline void page_mapcount_reset(struct page *page)
431 { 431 {
432 atomic_set(&(page)->_mapcount, -1); 432 atomic_set(&(page)->_mapcount, -1);
433 } 433 }
434 434
435 static inline int page_mapcount(struct page *page) 435 static inline int page_mapcount(struct page *page)
436 { 436 {
437 return atomic_read(&(page)->_mapcount) + 1; 437 return atomic_read(&(page)->_mapcount) + 1;
438 } 438 }
439 439
440 static inline int page_count(struct page *page) 440 static inline int page_count(struct page *page)
441 { 441 {
442 return atomic_read(&compound_head(page)->_count); 442 return atomic_read(&compound_head(page)->_count);
443 } 443 }
444 444
445 #ifdef CONFIG_HUGETLB_PAGE 445 #ifdef CONFIG_HUGETLB_PAGE
446 extern int PageHeadHuge(struct page *page_head); 446 extern int PageHeadHuge(struct page *page_head);
447 #else /* CONFIG_HUGETLB_PAGE */ 447 #else /* CONFIG_HUGETLB_PAGE */
448 static inline int PageHeadHuge(struct page *page_head) 448 static inline int PageHeadHuge(struct page *page_head)
449 { 449 {
450 return 0; 450 return 0;
451 } 451 }
452 #endif /* CONFIG_HUGETLB_PAGE */ 452 #endif /* CONFIG_HUGETLB_PAGE */
453 453
454 static inline bool __compound_tail_refcounted(struct page *page) 454 static inline bool __compound_tail_refcounted(struct page *page)
455 { 455 {
456 return !PageSlab(page) && !PageHeadHuge(page); 456 return !PageSlab(page) && !PageHeadHuge(page);
457 } 457 }
458 458
459 /* 459 /*
460 * This takes a head page as parameter and tells if the 460 * This takes a head page as parameter and tells if the
461 * tail page reference counting can be skipped. 461 * tail page reference counting can be skipped.
462 * 462 *
463 * For this to be safe, PageSlab and PageHeadHuge must remain true on 463 * For this to be safe, PageSlab and PageHeadHuge must remain true on
464 * any given page where they return true here, until all tail pins 464 * any given page where they return true here, until all tail pins
465 * have been released. 465 * have been released.
466 */ 466 */
467 static inline bool compound_tail_refcounted(struct page *page) 467 static inline bool compound_tail_refcounted(struct page *page)
468 { 468 {
469 VM_BUG_ON_PAGE(!PageHead(page), page); 469 VM_BUG_ON_PAGE(!PageHead(page), page);
470 return __compound_tail_refcounted(page); 470 return __compound_tail_refcounted(page);
471 } 471 }
472 472
473 static inline void get_huge_page_tail(struct page *page) 473 static inline void get_huge_page_tail(struct page *page)
474 { 474 {
475 /* 475 /*
476 * __split_huge_page_refcount() cannot run from under us. 476 * __split_huge_page_refcount() cannot run from under us.
477 */ 477 */
478 VM_BUG_ON_PAGE(!PageTail(page), page); 478 VM_BUG_ON_PAGE(!PageTail(page), page);
479 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 479 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
480 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); 480 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
481 if (compound_tail_refcounted(page->first_page)) 481 if (compound_tail_refcounted(page->first_page))
482 atomic_inc(&page->_mapcount); 482 atomic_inc(&page->_mapcount);
483 } 483 }
484 484
485 extern bool __get_page_tail(struct page *page); 485 extern bool __get_page_tail(struct page *page);
486 486
487 static inline void get_page(struct page *page) 487 static inline void get_page(struct page *page)
488 { 488 {
489 if (unlikely(PageTail(page))) 489 if (unlikely(PageTail(page)))
490 if (likely(__get_page_tail(page))) 490 if (likely(__get_page_tail(page)))
491 return; 491 return;
492 /* 492 /*
493 * Getting a normal page or the head of a compound page 493 * Getting a normal page or the head of a compound page
494 * requires to already have an elevated page->_count. 494 * requires to already have an elevated page->_count.
495 */ 495 */
496 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); 496 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
497 atomic_inc(&page->_count); 497 atomic_inc(&page->_count);
498 } 498 }
499 499
500 static inline struct page *virt_to_head_page(const void *x) 500 static inline struct page *virt_to_head_page(const void *x)
501 { 501 {
502 struct page *page = virt_to_page(x); 502 struct page *page = virt_to_page(x);
503 return compound_head(page); 503 return compound_head(page);
504 } 504 }
505 505
506 /* 506 /*
507 * Setup the page count before being freed into the page allocator for 507 * Setup the page count before being freed into the page allocator for
508 * the first time (boot or memory hotplug) 508 * the first time (boot or memory hotplug)
509 */ 509 */
510 static inline void init_page_count(struct page *page) 510 static inline void init_page_count(struct page *page)
511 { 511 {
512 atomic_set(&page->_count, 1); 512 atomic_set(&page->_count, 1);
513 } 513 }
514 514
515 /* 515 /*
516 * PageBuddy() indicate that the page is free and in the buddy system 516 * PageBuddy() indicate that the page is free and in the buddy system
517 * (see mm/page_alloc.c). 517 * (see mm/page_alloc.c).
518 * 518 *
519 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 519 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
520 * -2 so that an underflow of the page_mapcount() won't be mistaken 520 * -2 so that an underflow of the page_mapcount() won't be mistaken
521 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 521 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
522 * efficiently by most CPU architectures. 522 * efficiently by most CPU architectures.
523 */ 523 */
524 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 524 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
525 525
526 static inline int PageBuddy(struct page *page) 526 static inline int PageBuddy(struct page *page)
527 { 527 {
528 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 528 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
529 } 529 }
530 530
531 static inline void __SetPageBuddy(struct page *page) 531 static inline void __SetPageBuddy(struct page *page)
532 { 532 {
533 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); 533 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
534 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 534 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
535 } 535 }
536 536
537 static inline void __ClearPageBuddy(struct page *page) 537 static inline void __ClearPageBuddy(struct page *page)
538 { 538 {
539 VM_BUG_ON_PAGE(!PageBuddy(page), page); 539 VM_BUG_ON_PAGE(!PageBuddy(page), page);
540 atomic_set(&page->_mapcount, -1); 540 atomic_set(&page->_mapcount, -1);
541 } 541 }
542 542
543 void put_page(struct page *page); 543 void put_page(struct page *page);
544 void put_pages_list(struct list_head *pages); 544 void put_pages_list(struct list_head *pages);
545 545
546 void split_page(struct page *page, unsigned int order); 546 void split_page(struct page *page, unsigned int order);
547 int split_free_page(struct page *page); 547 int split_free_page(struct page *page);
548 548
549 /* 549 /*
550 * Compound pages have a destructor function. Provide a 550 * Compound pages have a destructor function. Provide a
551 * prototype for that function and accessor functions. 551 * prototype for that function and accessor functions.
552 * These are _only_ valid on the head of a PG_compound page. 552 * These are _only_ valid on the head of a PG_compound page.
553 */ 553 */
554 typedef void compound_page_dtor(struct page *); 554 typedef void compound_page_dtor(struct page *);
555 555
556 static inline void set_compound_page_dtor(struct page *page, 556 static inline void set_compound_page_dtor(struct page *page,
557 compound_page_dtor *dtor) 557 compound_page_dtor *dtor)
558 { 558 {
559 page[1].lru.next = (void *)dtor; 559 page[1].lru.next = (void *)dtor;
560 } 560 }
561 561
562 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 562 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
563 { 563 {
564 return (compound_page_dtor *)page[1].lru.next; 564 return (compound_page_dtor *)page[1].lru.next;
565 } 565 }
566 566
567 static inline int compound_order(struct page *page) 567 static inline int compound_order(struct page *page)
568 { 568 {
569 if (!PageHead(page)) 569 if (!PageHead(page))
570 return 0; 570 return 0;
571 return (unsigned long)page[1].lru.prev; 571 return (unsigned long)page[1].lru.prev;
572 } 572 }
573 573
574 static inline void set_compound_order(struct page *page, unsigned long order) 574 static inline void set_compound_order(struct page *page, unsigned long order)
575 { 575 {
576 page[1].lru.prev = (void *)order; 576 page[1].lru.prev = (void *)order;
577 } 577 }
578 578
579 #ifdef CONFIG_MMU 579 #ifdef CONFIG_MMU
580 /* 580 /*
581 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 581 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
582 * servicing faults for write access. In the normal case, do always want 582 * servicing faults for write access. In the normal case, do always want
583 * pte_mkwrite. But get_user_pages can cause write faults for mappings 583 * pte_mkwrite. But get_user_pages can cause write faults for mappings
584 * that do not have writing enabled, when used by access_process_vm. 584 * that do not have writing enabled, when used by access_process_vm.
585 */ 585 */
586 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 586 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
587 { 587 {
588 if (likely(vma->vm_flags & VM_WRITE)) 588 if (likely(vma->vm_flags & VM_WRITE))
589 pte = pte_mkwrite(pte); 589 pte = pte_mkwrite(pte);
590 return pte; 590 return pte;
591 } 591 }
592 592
593 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 593 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
594 struct page *page, pte_t *pte, bool write, bool anon); 594 struct page *page, pte_t *pte, bool write, bool anon);
595 #endif 595 #endif
596 596
597 /* 597 /*
598 * Multiple processes may "see" the same page. E.g. for untouched 598 * Multiple processes may "see" the same page. E.g. for untouched
599 * mappings of /dev/null, all processes see the same page full of 599 * mappings of /dev/null, all processes see the same page full of
600 * zeroes, and text pages of executables and shared libraries have 600 * zeroes, and text pages of executables and shared libraries have
601 * only one copy in memory, at most, normally. 601 * only one copy in memory, at most, normally.
602 * 602 *
603 * For the non-reserved pages, page_count(page) denotes a reference count. 603 * For the non-reserved pages, page_count(page) denotes a reference count.
604 * page_count() == 0 means the page is free. page->lru is then used for 604 * page_count() == 0 means the page is free. page->lru is then used for
605 * freelist management in the buddy allocator. 605 * freelist management in the buddy allocator.
606 * page_count() > 0 means the page has been allocated. 606 * page_count() > 0 means the page has been allocated.
607 * 607 *
608 * Pages are allocated by the slab allocator in order to provide memory 608 * Pages are allocated by the slab allocator in order to provide memory
609 * to kmalloc and kmem_cache_alloc. In this case, the management of the 609 * to kmalloc and kmem_cache_alloc. In this case, the management of the
610 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 610 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
611 * unless a particular usage is carefully commented. (the responsibility of 611 * unless a particular usage is carefully commented. (the responsibility of
612 * freeing the kmalloc memory is the caller's, of course). 612 * freeing the kmalloc memory is the caller's, of course).
613 * 613 *
614 * A page may be used by anyone else who does a __get_free_page(). 614 * A page may be used by anyone else who does a __get_free_page().
615 * In this case, page_count still tracks the references, and should only 615 * In this case, page_count still tracks the references, and should only
616 * be used through the normal accessor functions. The top bits of page->flags 616 * be used through the normal accessor functions. The top bits of page->flags
617 * and page->virtual store page management information, but all other fields 617 * and page->virtual store page management information, but all other fields
618 * are unused and could be used privately, carefully. The management of this 618 * are unused and could be used privately, carefully. The management of this
619 * page is the responsibility of the one who allocated it, and those who have 619 * page is the responsibility of the one who allocated it, and those who have
620 * subsequently been given references to it. 620 * subsequently been given references to it.
621 * 621 *
622 * The other pages (we may call them "pagecache pages") are completely 622 * The other pages (we may call them "pagecache pages") are completely
623 * managed by the Linux memory manager: I/O, buffers, swapping etc. 623 * managed by the Linux memory manager: I/O, buffers, swapping etc.
624 * The following discussion applies only to them. 624 * The following discussion applies only to them.
625 * 625 *
626 * A pagecache page contains an opaque `private' member, which belongs to the 626 * A pagecache page contains an opaque `private' member, which belongs to the
627 * page's address_space. Usually, this is the address of a circular list of 627 * page's address_space. Usually, this is the address of a circular list of
628 * the page's disk buffers. PG_private must be set to tell the VM to call 628 * the page's disk buffers. PG_private must be set to tell the VM to call
629 * into the filesystem to release these pages. 629 * into the filesystem to release these pages.
630 * 630 *
631 * A page may belong to an inode's memory mapping. In this case, page->mapping 631 * A page may belong to an inode's memory mapping. In this case, page->mapping
632 * is the pointer to the inode, and page->index is the file offset of the page, 632 * is the pointer to the inode, and page->index is the file offset of the page,
633 * in units of PAGE_CACHE_SIZE. 633 * in units of PAGE_CACHE_SIZE.
634 * 634 *
635 * If pagecache pages are not associated with an inode, they are said to be 635 * If pagecache pages are not associated with an inode, they are said to be
636 * anonymous pages. These may become associated with the swapcache, and in that 636 * anonymous pages. These may become associated with the swapcache, and in that
637 * case PG_swapcache is set, and page->private is an offset into the swapcache. 637 * case PG_swapcache is set, and page->private is an offset into the swapcache.
638 * 638 *
639 * In either case (swapcache or inode backed), the pagecache itself holds one 639 * In either case (swapcache or inode backed), the pagecache itself holds one
640 * reference to the page. Setting PG_private should also increment the 640 * reference to the page. Setting PG_private should also increment the
641 * refcount. The each user mapping also has a reference to the page. 641 * refcount. The each user mapping also has a reference to the page.
642 * 642 *
643 * The pagecache pages are stored in a per-mapping radix tree, which is 643 * The pagecache pages are stored in a per-mapping radix tree, which is
644 * rooted at mapping->page_tree, and indexed by offset. 644 * rooted at mapping->page_tree, and indexed by offset.
645 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 645 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
646 * lists, we instead now tag pages as dirty/writeback in the radix tree. 646 * lists, we instead now tag pages as dirty/writeback in the radix tree.
647 * 647 *
648 * All pagecache pages may be subject to I/O: 648 * All pagecache pages may be subject to I/O:
649 * - inode pages may need to be read from disk, 649 * - inode pages may need to be read from disk,
650 * - inode pages which have been modified and are MAP_SHARED may need 650 * - inode pages which have been modified and are MAP_SHARED may need
651 * to be written back to the inode on disk, 651 * to be written back to the inode on disk,
652 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 652 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
653 * modified may need to be swapped out to swap space and (later) to be read 653 * modified may need to be swapped out to swap space and (later) to be read
654 * back into memory. 654 * back into memory.
655 */ 655 */
656 656
657 /* 657 /*
658 * The zone field is never updated after free_area_init_core() 658 * The zone field is never updated after free_area_init_core()
659 * sets it, so none of the operations on it need to be atomic. 659 * sets it, so none of the operations on it need to be atomic.
660 */ 660 */
661 661
662 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 662 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
663 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 663 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
664 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 664 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
665 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 665 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
666 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 666 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
667 667
668 /* 668 /*
669 * Define the bit shifts to access each section. For non-existent 669 * Define the bit shifts to access each section. For non-existent
670 * sections we define the shift as 0; that plus a 0 mask ensures 670 * sections we define the shift as 0; that plus a 0 mask ensures
671 * the compiler will optimise away reference to them. 671 * the compiler will optimise away reference to them.
672 */ 672 */
673 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 673 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
674 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 674 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
675 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 675 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
676 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 676 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
677 677
678 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 678 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
679 #ifdef NODE_NOT_IN_PAGE_FLAGS 679 #ifdef NODE_NOT_IN_PAGE_FLAGS
680 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 680 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
681 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 681 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
682 SECTIONS_PGOFF : ZONES_PGOFF) 682 SECTIONS_PGOFF : ZONES_PGOFF)
683 #else 683 #else
684 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 684 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
685 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 685 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
686 NODES_PGOFF : ZONES_PGOFF) 686 NODES_PGOFF : ZONES_PGOFF)
687 #endif 687 #endif
688 688
689 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 689 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
690 690
691 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 691 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
692 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 692 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
693 #endif 693 #endif
694 694
695 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 695 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
696 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 696 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
697 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 697 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
698 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_WIDTH) - 1) 698 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_WIDTH) - 1)
699 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 699 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
700 700
701 static inline enum zone_type page_zonenum(const struct page *page) 701 static inline enum zone_type page_zonenum(const struct page *page)
702 { 702 {
703 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 703 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
704 } 704 }
705 705
706 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 706 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
707 #define SECTION_IN_PAGE_FLAGS 707 #define SECTION_IN_PAGE_FLAGS
708 #endif 708 #endif
709 709
710 /* 710 /*
711 * The identification function is mainly used by the buddy allocator for 711 * The identification function is mainly used by the buddy allocator for
712 * determining if two pages could be buddies. We are not really identifying 712 * determining if two pages could be buddies. We are not really identifying
713 * the zone since we could be using the section number id if we do not have 713 * the zone since we could be using the section number id if we do not have
714 * node id available in page flags. 714 * node id available in page flags.
715 * We only guarantee that it will return the same value for two combinable 715 * We only guarantee that it will return the same value for two combinable
716 * pages in a zone. 716 * pages in a zone.
717 */ 717 */
718 static inline int page_zone_id(struct page *page) 718 static inline int page_zone_id(struct page *page)
719 { 719 {
720 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 720 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
721 } 721 }
722 722
723 static inline int zone_to_nid(struct zone *zone) 723 static inline int zone_to_nid(struct zone *zone)
724 { 724 {
725 #ifdef CONFIG_NUMA 725 #ifdef CONFIG_NUMA
726 return zone->node; 726 return zone->node;
727 #else 727 #else
728 return 0; 728 return 0;
729 #endif 729 #endif
730 } 730 }
731 731
732 #ifdef NODE_NOT_IN_PAGE_FLAGS 732 #ifdef NODE_NOT_IN_PAGE_FLAGS
733 extern int page_to_nid(const struct page *page); 733 extern int page_to_nid(const struct page *page);
734 #else 734 #else
735 static inline int page_to_nid(const struct page *page) 735 static inline int page_to_nid(const struct page *page)
736 { 736 {
737 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 737 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
738 } 738 }
739 #endif 739 #endif
740 740
741 #ifdef CONFIG_NUMA_BALANCING 741 #ifdef CONFIG_NUMA_BALANCING
742 static inline int cpu_pid_to_cpupid(int cpu, int pid) 742 static inline int cpu_pid_to_cpupid(int cpu, int pid)
743 { 743 {
744 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 744 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
745 } 745 }
746 746
747 static inline int cpupid_to_pid(int cpupid) 747 static inline int cpupid_to_pid(int cpupid)
748 { 748 {
749 return cpupid & LAST__PID_MASK; 749 return cpupid & LAST__PID_MASK;
750 } 750 }
751 751
752 static inline int cpupid_to_cpu(int cpupid) 752 static inline int cpupid_to_cpu(int cpupid)
753 { 753 {
754 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 754 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
755 } 755 }
756 756
757 static inline int cpupid_to_nid(int cpupid) 757 static inline int cpupid_to_nid(int cpupid)
758 { 758 {
759 return cpu_to_node(cpupid_to_cpu(cpupid)); 759 return cpu_to_node(cpupid_to_cpu(cpupid));
760 } 760 }
761 761
762 static inline bool cpupid_pid_unset(int cpupid) 762 static inline bool cpupid_pid_unset(int cpupid)
763 { 763 {
764 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 764 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
765 } 765 }
766 766
767 static inline bool cpupid_cpu_unset(int cpupid) 767 static inline bool cpupid_cpu_unset(int cpupid)
768 { 768 {
769 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 769 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
770 } 770 }
771 771
772 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 772 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
773 { 773 {
774 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 774 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
775 } 775 }
776 776
777 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 777 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
778 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 778 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
779 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 779 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
780 { 780 {
781 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 781 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
782 } 782 }
783 783
784 static inline int page_cpupid_last(struct page *page) 784 static inline int page_cpupid_last(struct page *page)
785 { 785 {
786 return page->_last_cpupid; 786 return page->_last_cpupid;
787 } 787 }
788 static inline void page_cpupid_reset_last(struct page *page) 788 static inline void page_cpupid_reset_last(struct page *page)
789 { 789 {
790 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 790 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
791 } 791 }
792 #else 792 #else
793 static inline int page_cpupid_last(struct page *page) 793 static inline int page_cpupid_last(struct page *page)
794 { 794 {
795 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 795 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
796 } 796 }
797 797
798 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 798 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
799 799
800 static inline void page_cpupid_reset_last(struct page *page) 800 static inline void page_cpupid_reset_last(struct page *page)
801 { 801 {
802 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 802 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
803 803
804 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 804 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
805 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 805 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
806 } 806 }
807 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 807 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
808 #else /* !CONFIG_NUMA_BALANCING */ 808 #else /* !CONFIG_NUMA_BALANCING */
809 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 809 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
810 { 810 {
811 return page_to_nid(page); /* XXX */ 811 return page_to_nid(page); /* XXX */
812 } 812 }
813 813
814 static inline int page_cpupid_last(struct page *page) 814 static inline int page_cpupid_last(struct page *page)
815 { 815 {
816 return page_to_nid(page); /* XXX */ 816 return page_to_nid(page); /* XXX */
817 } 817 }
818 818
819 static inline int cpupid_to_nid(int cpupid) 819 static inline int cpupid_to_nid(int cpupid)
820 { 820 {
821 return -1; 821 return -1;
822 } 822 }
823 823
824 static inline int cpupid_to_pid(int cpupid) 824 static inline int cpupid_to_pid(int cpupid)
825 { 825 {
826 return -1; 826 return -1;
827 } 827 }
828 828
829 static inline int cpupid_to_cpu(int cpupid) 829 static inline int cpupid_to_cpu(int cpupid)
830 { 830 {
831 return -1; 831 return -1;
832 } 832 }
833 833
834 static inline int cpu_pid_to_cpupid(int nid, int pid) 834 static inline int cpu_pid_to_cpupid(int nid, int pid)
835 { 835 {
836 return -1; 836 return -1;
837 } 837 }
838 838
839 static inline bool cpupid_pid_unset(int cpupid) 839 static inline bool cpupid_pid_unset(int cpupid)
840 { 840 {
841 return 1; 841 return 1;
842 } 842 }
843 843
844 static inline void page_cpupid_reset_last(struct page *page) 844 static inline void page_cpupid_reset_last(struct page *page)
845 { 845 {
846 } 846 }
847 847
848 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 848 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
849 { 849 {
850 return false; 850 return false;
851 } 851 }
852 #endif /* CONFIG_NUMA_BALANCING */ 852 #endif /* CONFIG_NUMA_BALANCING */
853 853
854 static inline struct zone *page_zone(const struct page *page) 854 static inline struct zone *page_zone(const struct page *page)
855 { 855 {
856 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 856 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
857 } 857 }
858 858
859 #ifdef SECTION_IN_PAGE_FLAGS 859 #ifdef SECTION_IN_PAGE_FLAGS
860 static inline void set_page_section(struct page *page, unsigned long section) 860 static inline void set_page_section(struct page *page, unsigned long section)
861 { 861 {
862 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 862 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
863 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 863 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
864 } 864 }
865 865
866 static inline unsigned long page_to_section(const struct page *page) 866 static inline unsigned long page_to_section(const struct page *page)
867 { 867 {
868 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 868 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
869 } 869 }
870 #endif 870 #endif
871 871
872 static inline void set_page_zone(struct page *page, enum zone_type zone) 872 static inline void set_page_zone(struct page *page, enum zone_type zone)
873 { 873 {
874 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 874 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
875 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 875 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
876 } 876 }
877 877
878 static inline void set_page_node(struct page *page, unsigned long node) 878 static inline void set_page_node(struct page *page, unsigned long node)
879 { 879 {
880 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 880 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
881 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 881 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
882 } 882 }
883 883
884 static inline void set_page_links(struct page *page, enum zone_type zone, 884 static inline void set_page_links(struct page *page, enum zone_type zone,
885 unsigned long node, unsigned long pfn) 885 unsigned long node, unsigned long pfn)
886 { 886 {
887 set_page_zone(page, zone); 887 set_page_zone(page, zone);
888 set_page_node(page, node); 888 set_page_node(page, node);
889 #ifdef SECTION_IN_PAGE_FLAGS 889 #ifdef SECTION_IN_PAGE_FLAGS
890 set_page_section(page, pfn_to_section_nr(pfn)); 890 set_page_section(page, pfn_to_section_nr(pfn));
891 #endif 891 #endif
892 } 892 }
893 893
894 /* 894 /*
895 * Some inline functions in vmstat.h depend on page_zone() 895 * Some inline functions in vmstat.h depend on page_zone()
896 */ 896 */
897 #include <linux/vmstat.h> 897 #include <linux/vmstat.h>
898 898
899 static __always_inline void *lowmem_page_address(const struct page *page) 899 static __always_inline void *lowmem_page_address(const struct page *page)
900 { 900 {
901 return __va(PFN_PHYS(page_to_pfn(page))); 901 return __va(PFN_PHYS(page_to_pfn(page)));
902 } 902 }
903 903
904 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 904 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
905 #define HASHED_PAGE_VIRTUAL 905 #define HASHED_PAGE_VIRTUAL
906 #endif 906 #endif
907 907
908 #if defined(WANT_PAGE_VIRTUAL) 908 #if defined(WANT_PAGE_VIRTUAL)
909 static inline void *page_address(const struct page *page) 909 static inline void *page_address(const struct page *page)
910 { 910 {
911 return page->virtual; 911 return page->virtual;
912 } 912 }
913 static inline void set_page_address(struct page *page, void *address) 913 static inline void set_page_address(struct page *page, void *address)
914 { 914 {
915 page->virtual = address; 915 page->virtual = address;
916 } 916 }
917 #define page_address_init() do { } while(0) 917 #define page_address_init() do { } while(0)
918 #endif 918 #endif
919 919
920 #if defined(HASHED_PAGE_VIRTUAL) 920 #if defined(HASHED_PAGE_VIRTUAL)
921 void *page_address(const struct page *page); 921 void *page_address(const struct page *page);
922 void set_page_address(struct page *page, void *virtual); 922 void set_page_address(struct page *page, void *virtual);
923 void page_address_init(void); 923 void page_address_init(void);
924 #endif 924 #endif
925 925
926 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 926 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
927 #define page_address(page) lowmem_page_address(page) 927 #define page_address(page) lowmem_page_address(page)
928 #define set_page_address(page, address) do { } while(0) 928 #define set_page_address(page, address) do { } while(0)
929 #define page_address_init() do { } while(0) 929 #define page_address_init() do { } while(0)
930 #endif 930 #endif
931 931
932 /* 932 /*
933 * On an anonymous page mapped into a user virtual memory area, 933 * On an anonymous page mapped into a user virtual memory area,
934 * page->mapping points to its anon_vma, not to a struct address_space; 934 * page->mapping points to its anon_vma, not to a struct address_space;
935 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 935 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
936 * 936 *
937 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 937 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
938 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 938 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
939 * and then page->mapping points, not to an anon_vma, but to a private 939 * and then page->mapping points, not to an anon_vma, but to a private
940 * structure which KSM associates with that merged page. See ksm.h. 940 * structure which KSM associates with that merged page. See ksm.h.
941 * 941 *
942 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 942 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
943 * 943 *
944 * Please note that, confusingly, "page_mapping" refers to the inode 944 * Please note that, confusingly, "page_mapping" refers to the inode
945 * address_space which maps the page from disk; whereas "page_mapped" 945 * address_space which maps the page from disk; whereas "page_mapped"
946 * refers to user virtual address space into which the page is mapped. 946 * refers to user virtual address space into which the page is mapped.
947 */ 947 */
948 #define PAGE_MAPPING_ANON 1 948 #define PAGE_MAPPING_ANON 1
949 #define PAGE_MAPPING_KSM 2 949 #define PAGE_MAPPING_KSM 2
950 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 950 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
951 951
952 extern struct address_space *page_mapping(struct page *page); 952 extern struct address_space *page_mapping(struct page *page);
953 953
954 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 954 /* Neutral page->mapping pointer to address_space or anon_vma or other */
955 static inline void *page_rmapping(struct page *page) 955 static inline void *page_rmapping(struct page *page)
956 { 956 {
957 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 957 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
958 } 958 }
959 959
960 extern struct address_space *__page_file_mapping(struct page *); 960 extern struct address_space *__page_file_mapping(struct page *);
961 961
962 static inline 962 static inline
963 struct address_space *page_file_mapping(struct page *page) 963 struct address_space *page_file_mapping(struct page *page)
964 { 964 {
965 if (unlikely(PageSwapCache(page))) 965 if (unlikely(PageSwapCache(page)))
966 return __page_file_mapping(page); 966 return __page_file_mapping(page);
967 967
968 return page->mapping; 968 return page->mapping;
969 } 969 }
970 970
971 static inline int PageAnon(struct page *page) 971 static inline int PageAnon(struct page *page)
972 { 972 {
973 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 973 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
974 } 974 }
975 975
976 /* 976 /*
977 * Return the pagecache index of the passed page. Regular pagecache pages 977 * Return the pagecache index of the passed page. Regular pagecache pages
978 * use ->index whereas swapcache pages use ->private 978 * use ->index whereas swapcache pages use ->private
979 */ 979 */
980 static inline pgoff_t page_index(struct page *page) 980 static inline pgoff_t page_index(struct page *page)
981 { 981 {
982 if (unlikely(PageSwapCache(page))) 982 if (unlikely(PageSwapCache(page)))
983 return page_private(page); 983 return page_private(page);
984 return page->index; 984 return page->index;
985 } 985 }
986 986
987 extern pgoff_t __page_file_index(struct page *page); 987 extern pgoff_t __page_file_index(struct page *page);
988 988
989 /* 989 /*
990 * Return the file index of the page. Regular pagecache pages use ->index 990 * Return the file index of the page. Regular pagecache pages use ->index
991 * whereas swapcache pages use swp_offset(->private) 991 * whereas swapcache pages use swp_offset(->private)
992 */ 992 */
993 static inline pgoff_t page_file_index(struct page *page) 993 static inline pgoff_t page_file_index(struct page *page)
994 { 994 {
995 if (unlikely(PageSwapCache(page))) 995 if (unlikely(PageSwapCache(page)))
996 return __page_file_index(page); 996 return __page_file_index(page);
997 997
998 return page->index; 998 return page->index;
999 } 999 }
1000 1000
1001 /* 1001 /*
1002 * Return true if this page is mapped into pagetables. 1002 * Return true if this page is mapped into pagetables.
1003 */ 1003 */
1004 static inline int page_mapped(struct page *page) 1004 static inline int page_mapped(struct page *page)
1005 { 1005 {
1006 return atomic_read(&(page)->_mapcount) >= 0; 1006 return atomic_read(&(page)->_mapcount) >= 0;
1007 } 1007 }
1008 1008
1009 /* 1009 /*
1010 * Different kinds of faults, as returned by handle_mm_fault(). 1010 * Different kinds of faults, as returned by handle_mm_fault().
1011 * Used to decide whether a process gets delivered SIGBUS or 1011 * Used to decide whether a process gets delivered SIGBUS or
1012 * just gets major/minor fault counters bumped up. 1012 * just gets major/minor fault counters bumped up.
1013 */ 1013 */
1014 1014
1015 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 1015 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1016 1016
1017 #define VM_FAULT_OOM 0x0001 1017 #define VM_FAULT_OOM 0x0001
1018 #define VM_FAULT_SIGBUS 0x0002 1018 #define VM_FAULT_SIGBUS 0x0002
1019 #define VM_FAULT_MAJOR 0x0004 1019 #define VM_FAULT_MAJOR 0x0004
1020 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1020 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1021 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1021 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1022 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1022 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1023 1023
1024 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1024 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1025 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1025 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1026 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1026 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1027 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1027 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1028 1028
1029 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1029 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1030 1030
1031 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 1031 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1032 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE) 1032 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1033 1033
1034 /* Encode hstate index for a hwpoisoned large page */ 1034 /* Encode hstate index for a hwpoisoned large page */
1035 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1035 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1036 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1036 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1037 1037
1038 /* 1038 /*
1039 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1039 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1040 */ 1040 */
1041 extern void pagefault_out_of_memory(void); 1041 extern void pagefault_out_of_memory(void);
1042 1042
1043 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1043 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1044 1044
1045 /* 1045 /*
1046 * Flags passed to show_mem() and show_free_areas() to suppress output in 1046 * Flags passed to show_mem() and show_free_areas() to suppress output in
1047 * various contexts. 1047 * various contexts.
1048 */ 1048 */
1049 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1049 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1050 1050
1051 extern void show_free_areas(unsigned int flags); 1051 extern void show_free_areas(unsigned int flags);
1052 extern bool skip_free_areas_node(unsigned int flags, int nid); 1052 extern bool skip_free_areas_node(unsigned int flags, int nid);
1053 1053
1054 int shmem_zero_setup(struct vm_area_struct *); 1054 int shmem_zero_setup(struct vm_area_struct *);
1055 #ifdef CONFIG_SHMEM 1055 #ifdef CONFIG_SHMEM
1056 bool shmem_mapping(struct address_space *mapping); 1056 bool shmem_mapping(struct address_space *mapping);
1057 #else 1057 #else
1058 static inline bool shmem_mapping(struct address_space *mapping) 1058 static inline bool shmem_mapping(struct address_space *mapping)
1059 { 1059 {
1060 return false; 1060 return false;
1061 } 1061 }
1062 #endif 1062 #endif
1063 1063
1064 extern int can_do_mlock(void); 1064 extern int can_do_mlock(void);
1065 extern int user_shm_lock(size_t, struct user_struct *); 1065 extern int user_shm_lock(size_t, struct user_struct *);
1066 extern void user_shm_unlock(size_t, struct user_struct *); 1066 extern void user_shm_unlock(size_t, struct user_struct *);
1067 1067
1068 /* 1068 /*
1069 * Parameter block passed down to zap_pte_range in exceptional cases. 1069 * Parameter block passed down to zap_pte_range in exceptional cases.
1070 */ 1070 */
1071 struct zap_details { 1071 struct zap_details {
1072 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 1072 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1073 struct address_space *check_mapping; /* Check page->mapping if set */ 1073 struct address_space *check_mapping; /* Check page->mapping if set */
1074 pgoff_t first_index; /* Lowest page->index to unmap */ 1074 pgoff_t first_index; /* Lowest page->index to unmap */
1075 pgoff_t last_index; /* Highest page->index to unmap */ 1075 pgoff_t last_index; /* Highest page->index to unmap */
1076 }; 1076 };
1077 1077
1078 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1078 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1079 pte_t pte); 1079 pte_t pte);
1080 1080
1081 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1081 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1082 unsigned long size); 1082 unsigned long size);
1083 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1083 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1084 unsigned long size, struct zap_details *); 1084 unsigned long size, struct zap_details *);
1085 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1085 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1086 unsigned long start, unsigned long end); 1086 unsigned long start, unsigned long end);
1087 1087
1088 /** 1088 /**
1089 * mm_walk - callbacks for walk_page_range 1089 * mm_walk - callbacks for walk_page_range
1090 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 1090 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1091 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1091 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1092 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1092 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1093 * this handler is required to be able to handle 1093 * this handler is required to be able to handle
1094 * pmd_trans_huge() pmds. They may simply choose to 1094 * pmd_trans_huge() pmds. They may simply choose to
1095 * split_huge_page() instead of handling it explicitly. 1095 * split_huge_page() instead of handling it explicitly.
1096 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1096 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1097 * @pte_hole: if set, called for each hole at all levels 1097 * @pte_hole: if set, called for each hole at all levels
1098 * @hugetlb_entry: if set, called for each hugetlb entry 1098 * @hugetlb_entry: if set, called for each hugetlb entry
1099 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 1099 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1100 * is used. 1100 * is used.
1101 * 1101 *
1102 * (see walk_page_range for more details) 1102 * (see walk_page_range for more details)
1103 */ 1103 */
1104 struct mm_walk { 1104 struct mm_walk {
1105 int (*pgd_entry)(pgd_t *pgd, unsigned long addr, 1105 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1106 unsigned long next, struct mm_walk *walk); 1106 unsigned long next, struct mm_walk *walk);
1107 int (*pud_entry)(pud_t *pud, unsigned long addr, 1107 int (*pud_entry)(pud_t *pud, unsigned long addr,
1108 unsigned long next, struct mm_walk *walk); 1108 unsigned long next, struct mm_walk *walk);
1109 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1109 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1110 unsigned long next, struct mm_walk *walk); 1110 unsigned long next, struct mm_walk *walk);
1111 int (*pte_entry)(pte_t *pte, unsigned long addr, 1111 int (*pte_entry)(pte_t *pte, unsigned long addr,
1112 unsigned long next, struct mm_walk *walk); 1112 unsigned long next, struct mm_walk *walk);
1113 int (*pte_hole)(unsigned long addr, unsigned long next, 1113 int (*pte_hole)(unsigned long addr, unsigned long next,
1114 struct mm_walk *walk); 1114 struct mm_walk *walk);
1115 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1115 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1116 unsigned long addr, unsigned long next, 1116 unsigned long addr, unsigned long next,
1117 struct mm_walk *walk); 1117 struct mm_walk *walk);
1118 struct mm_struct *mm; 1118 struct mm_struct *mm;
1119 void *private; 1119 void *private;
1120 }; 1120 };
1121 1121
1122 int walk_page_range(unsigned long addr, unsigned long end, 1122 int walk_page_range(unsigned long addr, unsigned long end,
1123 struct mm_walk *walk); 1123 struct mm_walk *walk);
1124 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1124 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1125 unsigned long end, unsigned long floor, unsigned long ceiling); 1125 unsigned long end, unsigned long floor, unsigned long ceiling);
1126 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1126 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1127 struct vm_area_struct *vma); 1127 struct vm_area_struct *vma);
1128 void unmap_mapping_range(struct address_space *mapping, 1128 void unmap_mapping_range(struct address_space *mapping,
1129 loff_t const holebegin, loff_t const holelen, int even_cows); 1129 loff_t const holebegin, loff_t const holelen, int even_cows);
1130 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1130 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1131 unsigned long *pfn); 1131 unsigned long *pfn);
1132 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1132 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1133 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1133 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1134 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1134 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1135 void *buf, int len, int write); 1135 void *buf, int len, int write);
1136 1136
1137 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1137 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1138 loff_t const holebegin, loff_t const holelen) 1138 loff_t const holebegin, loff_t const holelen)
1139 { 1139 {
1140 unmap_mapping_range(mapping, holebegin, holelen, 0); 1140 unmap_mapping_range(mapping, holebegin, holelen, 0);
1141 } 1141 }
1142 1142
1143 extern void truncate_pagecache(struct inode *inode, loff_t new); 1143 extern void truncate_pagecache(struct inode *inode, loff_t new);
1144 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1144 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1145 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1145 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1146 int truncate_inode_page(struct address_space *mapping, struct page *page); 1146 int truncate_inode_page(struct address_space *mapping, struct page *page);
1147 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1147 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1148 int invalidate_inode_page(struct page *page); 1148 int invalidate_inode_page(struct page *page);
1149 1149
1150 #ifdef CONFIG_MMU 1150 #ifdef CONFIG_MMU
1151 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1151 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1152 unsigned long address, unsigned int flags); 1152 unsigned long address, unsigned int flags);
1153 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1153 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1154 unsigned long address, unsigned int fault_flags); 1154 unsigned long address, unsigned int fault_flags);
1155 #else 1155 #else
1156 static inline int handle_mm_fault(struct mm_struct *mm, 1156 static inline int handle_mm_fault(struct mm_struct *mm,
1157 struct vm_area_struct *vma, unsigned long address, 1157 struct vm_area_struct *vma, unsigned long address,
1158 unsigned int flags) 1158 unsigned int flags)
1159 { 1159 {
1160 /* should never happen if there's no MMU */ 1160 /* should never happen if there's no MMU */
1161 BUG(); 1161 BUG();
1162 return VM_FAULT_SIGBUS; 1162 return VM_FAULT_SIGBUS;
1163 } 1163 }
1164 static inline int fixup_user_fault(struct task_struct *tsk, 1164 static inline int fixup_user_fault(struct task_struct *tsk,
1165 struct mm_struct *mm, unsigned long address, 1165 struct mm_struct *mm, unsigned long address,
1166 unsigned int fault_flags) 1166 unsigned int fault_flags)
1167 { 1167 {
1168 /* should never happen if there's no MMU */ 1168 /* should never happen if there's no MMU */
1169 BUG(); 1169 BUG();
1170 return -EFAULT; 1170 return -EFAULT;
1171 } 1171 }
1172 #endif 1172 #endif
1173 1173
1174 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1174 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1175 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1175 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1176 void *buf, int len, int write); 1176 void *buf, int len, int write);
1177 1177
1178 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1178 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1179 unsigned long start, unsigned long nr_pages, 1179 unsigned long start, unsigned long nr_pages,
1180 unsigned int foll_flags, struct page **pages, 1180 unsigned int foll_flags, struct page **pages,
1181 struct vm_area_struct **vmas, int *nonblocking); 1181 struct vm_area_struct **vmas, int *nonblocking);
1182 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1182 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1183 unsigned long start, unsigned long nr_pages, 1183 unsigned long start, unsigned long nr_pages,
1184 int write, int force, struct page **pages, 1184 int write, int force, struct page **pages,
1185 struct vm_area_struct **vmas); 1185 struct vm_area_struct **vmas);
1186 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1186 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1187 struct page **pages); 1187 struct page **pages);
1188 struct kvec; 1188 struct kvec;
1189 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1189 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1190 struct page **pages); 1190 struct page **pages);
1191 int get_kernel_page(unsigned long start, int write, struct page **pages); 1191 int get_kernel_page(unsigned long start, int write, struct page **pages);
1192 struct page *get_dump_page(unsigned long addr); 1192 struct page *get_dump_page(unsigned long addr);
1193 1193
1194 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1194 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1195 extern void do_invalidatepage(struct page *page, unsigned int offset, 1195 extern void do_invalidatepage(struct page *page, unsigned int offset,
1196 unsigned int length); 1196 unsigned int length);
1197 1197
1198 int __set_page_dirty_nobuffers(struct page *page); 1198 int __set_page_dirty_nobuffers(struct page *page);
1199 int __set_page_dirty_no_writeback(struct page *page); 1199 int __set_page_dirty_no_writeback(struct page *page);
1200 int redirty_page_for_writepage(struct writeback_control *wbc, 1200 int redirty_page_for_writepage(struct writeback_control *wbc,
1201 struct page *page); 1201 struct page *page);
1202 void account_page_dirtied(struct page *page, struct address_space *mapping); 1202 void account_page_dirtied(struct page *page, struct address_space *mapping);
1203 void account_page_writeback(struct page *page); 1203 void account_page_writeback(struct page *page);
1204 int set_page_dirty(struct page *page); 1204 int set_page_dirty(struct page *page);
1205 int set_page_dirty_lock(struct page *page); 1205 int set_page_dirty_lock(struct page *page);
1206 int clear_page_dirty_for_io(struct page *page); 1206 int clear_page_dirty_for_io(struct page *page);
1207 1207
1208 /* Is the vma a continuation of the stack vma above it? */ 1208 /* Is the vma a continuation of the stack vma above it? */
1209 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1209 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1210 { 1210 {
1211 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1211 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1212 } 1212 }
1213 1213
1214 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1214 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1215 unsigned long addr) 1215 unsigned long addr)
1216 { 1216 {
1217 return (vma->vm_flags & VM_GROWSDOWN) && 1217 return (vma->vm_flags & VM_GROWSDOWN) &&
1218 (vma->vm_start == addr) && 1218 (vma->vm_start == addr) &&
1219 !vma_growsdown(vma->vm_prev, addr); 1219 !vma_growsdown(vma->vm_prev, addr);
1220 } 1220 }
1221 1221
1222 /* Is the vma a continuation of the stack vma below it? */ 1222 /* Is the vma a continuation of the stack vma below it? */
1223 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1223 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1224 { 1224 {
1225 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1225 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1226 } 1226 }
1227 1227
1228 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1228 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1229 unsigned long addr) 1229 unsigned long addr)
1230 { 1230 {
1231 return (vma->vm_flags & VM_GROWSUP) && 1231 return (vma->vm_flags & VM_GROWSUP) &&
1232 (vma->vm_end == addr) && 1232 (vma->vm_end == addr) &&
1233 !vma_growsup(vma->vm_next, addr); 1233 !vma_growsup(vma->vm_next, addr);
1234 } 1234 }
1235 1235
1236 extern pid_t 1236 extern pid_t
1237 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group); 1237 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1238 1238
1239 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1239 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1240 unsigned long old_addr, struct vm_area_struct *new_vma, 1240 unsigned long old_addr, struct vm_area_struct *new_vma,
1241 unsigned long new_addr, unsigned long len, 1241 unsigned long new_addr, unsigned long len,
1242 bool need_rmap_locks); 1242 bool need_rmap_locks);
1243 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1243 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1244 unsigned long end, pgprot_t newprot, 1244 unsigned long end, pgprot_t newprot,
1245 int dirty_accountable, int prot_numa); 1245 int dirty_accountable, int prot_numa);
1246 extern int mprotect_fixup(struct vm_area_struct *vma, 1246 extern int mprotect_fixup(struct vm_area_struct *vma,
1247 struct vm_area_struct **pprev, unsigned long start, 1247 struct vm_area_struct **pprev, unsigned long start,
1248 unsigned long end, unsigned long newflags); 1248 unsigned long end, unsigned long newflags);
1249 1249
1250 /* 1250 /*
1251 * doesn't attempt to fault and will return short. 1251 * doesn't attempt to fault and will return short.
1252 */ 1252 */
1253 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1253 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1254 struct page **pages); 1254 struct page **pages);
1255 /* 1255 /*
1256 * per-process(per-mm_struct) statistics. 1256 * per-process(per-mm_struct) statistics.
1257 */ 1257 */
1258 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1258 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1259 { 1259 {
1260 long val = atomic_long_read(&mm->rss_stat.count[member]); 1260 long val = atomic_long_read(&mm->rss_stat.count[member]);
1261 1261
1262 #ifdef SPLIT_RSS_COUNTING 1262 #ifdef SPLIT_RSS_COUNTING
1263 /* 1263 /*
1264 * counter is updated in asynchronous manner and may go to minus. 1264 * counter is updated in asynchronous manner and may go to minus.
1265 * But it's never be expected number for users. 1265 * But it's never be expected number for users.
1266 */ 1266 */
1267 if (val < 0) 1267 if (val < 0)
1268 val = 0; 1268 val = 0;
1269 #endif 1269 #endif
1270 return (unsigned long)val; 1270 return (unsigned long)val;
1271 } 1271 }
1272 1272
1273 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1273 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1274 { 1274 {
1275 atomic_long_add(value, &mm->rss_stat.count[member]); 1275 atomic_long_add(value, &mm->rss_stat.count[member]);
1276 } 1276 }
1277 1277
1278 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1278 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1279 { 1279 {
1280 atomic_long_inc(&mm->rss_stat.count[member]); 1280 atomic_long_inc(&mm->rss_stat.count[member]);
1281 } 1281 }
1282 1282
1283 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1283 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1284 { 1284 {
1285 atomic_long_dec(&mm->rss_stat.count[member]); 1285 atomic_long_dec(&mm->rss_stat.count[member]);
1286 } 1286 }
1287 1287
1288 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1288 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1289 { 1289 {
1290 return get_mm_counter(mm, MM_FILEPAGES) + 1290 return get_mm_counter(mm, MM_FILEPAGES) +
1291 get_mm_counter(mm, MM_ANONPAGES); 1291 get_mm_counter(mm, MM_ANONPAGES);
1292 } 1292 }
1293 1293
1294 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1294 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1295 { 1295 {
1296 return max(mm->hiwater_rss, get_mm_rss(mm)); 1296 return max(mm->hiwater_rss, get_mm_rss(mm));
1297 } 1297 }
1298 1298
1299 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1299 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1300 { 1300 {
1301 return max(mm->hiwater_vm, mm->total_vm); 1301 return max(mm->hiwater_vm, mm->total_vm);
1302 } 1302 }
1303 1303
1304 static inline void update_hiwater_rss(struct mm_struct *mm) 1304 static inline void update_hiwater_rss(struct mm_struct *mm)
1305 { 1305 {
1306 unsigned long _rss = get_mm_rss(mm); 1306 unsigned long _rss = get_mm_rss(mm);
1307 1307
1308 if ((mm)->hiwater_rss < _rss) 1308 if ((mm)->hiwater_rss < _rss)
1309 (mm)->hiwater_rss = _rss; 1309 (mm)->hiwater_rss = _rss;
1310 } 1310 }
1311 1311
1312 static inline void update_hiwater_vm(struct mm_struct *mm) 1312 static inline void update_hiwater_vm(struct mm_struct *mm)
1313 { 1313 {
1314 if (mm->hiwater_vm < mm->total_vm) 1314 if (mm->hiwater_vm < mm->total_vm)
1315 mm->hiwater_vm = mm->total_vm; 1315 mm->hiwater_vm = mm->total_vm;
1316 } 1316 }
1317 1317
1318 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1318 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1319 struct mm_struct *mm) 1319 struct mm_struct *mm)
1320 { 1320 {
1321 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1321 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1322 1322
1323 if (*maxrss < hiwater_rss) 1323 if (*maxrss < hiwater_rss)
1324 *maxrss = hiwater_rss; 1324 *maxrss = hiwater_rss;
1325 } 1325 }
1326 1326
1327 #if defined(SPLIT_RSS_COUNTING) 1327 #if defined(SPLIT_RSS_COUNTING)
1328 void sync_mm_rss(struct mm_struct *mm); 1328 void sync_mm_rss(struct mm_struct *mm);
1329 #else 1329 #else
1330 static inline void sync_mm_rss(struct mm_struct *mm) 1330 static inline void sync_mm_rss(struct mm_struct *mm)
1331 { 1331 {
1332 } 1332 }
1333 #endif 1333 #endif
1334 1334
1335 int vma_wants_writenotify(struct vm_area_struct *vma); 1335 int vma_wants_writenotify(struct vm_area_struct *vma);
1336 1336
1337 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1337 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1338 spinlock_t **ptl); 1338 spinlock_t **ptl);
1339 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1339 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1340 spinlock_t **ptl) 1340 spinlock_t **ptl)
1341 { 1341 {
1342 pte_t *ptep; 1342 pte_t *ptep;
1343 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1343 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1344 return ptep; 1344 return ptep;
1345 } 1345 }
1346 1346
1347 #ifdef __PAGETABLE_PUD_FOLDED 1347 #ifdef __PAGETABLE_PUD_FOLDED
1348 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1348 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1349 unsigned long address) 1349 unsigned long address)
1350 { 1350 {
1351 return 0; 1351 return 0;
1352 } 1352 }
1353 #else 1353 #else
1354 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1354 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1355 #endif 1355 #endif
1356 1356
1357 #ifdef __PAGETABLE_PMD_FOLDED 1357 #ifdef __PAGETABLE_PMD_FOLDED
1358 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1358 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1359 unsigned long address) 1359 unsigned long address)
1360 { 1360 {
1361 return 0; 1361 return 0;
1362 } 1362 }
1363 #else 1363 #else
1364 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1364 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1365 #endif 1365 #endif
1366 1366
1367 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1367 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1368 pmd_t *pmd, unsigned long address); 1368 pmd_t *pmd, unsigned long address);
1369 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1369 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1370 1370
1371 /* 1371 /*
1372 * The following ifdef needed to get the 4level-fixup.h header to work. 1372 * The following ifdef needed to get the 4level-fixup.h header to work.
1373 * Remove it when 4level-fixup.h has been removed. 1373 * Remove it when 4level-fixup.h has been removed.
1374 */ 1374 */
1375 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1375 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1376 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1376 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1377 { 1377 {
1378 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1378 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1379 NULL: pud_offset(pgd, address); 1379 NULL: pud_offset(pgd, address);
1380 } 1380 }
1381 1381
1382 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1382 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1383 { 1383 {
1384 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1384 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1385 NULL: pmd_offset(pud, address); 1385 NULL: pmd_offset(pud, address);
1386 } 1386 }
1387 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1387 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1388 1388
1389 #if USE_SPLIT_PTE_PTLOCKS 1389 #if USE_SPLIT_PTE_PTLOCKS
1390 #if ALLOC_SPLIT_PTLOCKS 1390 #if ALLOC_SPLIT_PTLOCKS
1391 void __init ptlock_cache_init(void); 1391 void __init ptlock_cache_init(void);
1392 extern bool ptlock_alloc(struct page *page); 1392 extern bool ptlock_alloc(struct page *page);
1393 extern void ptlock_free(struct page *page); 1393 extern void ptlock_free(struct page *page);
1394 1394
1395 static inline spinlock_t *ptlock_ptr(struct page *page) 1395 static inline spinlock_t *ptlock_ptr(struct page *page)
1396 { 1396 {
1397 return page->ptl; 1397 return page->ptl;
1398 } 1398 }
1399 #else /* ALLOC_SPLIT_PTLOCKS */ 1399 #else /* ALLOC_SPLIT_PTLOCKS */
1400 static inline void ptlock_cache_init(void) 1400 static inline void ptlock_cache_init(void)
1401 { 1401 {
1402 } 1402 }
1403 1403
1404 static inline bool ptlock_alloc(struct page *page) 1404 static inline bool ptlock_alloc(struct page *page)
1405 { 1405 {
1406 return true; 1406 return true;
1407 } 1407 }
1408 1408
1409 static inline void ptlock_free(struct page *page) 1409 static inline void ptlock_free(struct page *page)
1410 { 1410 {
1411 } 1411 }
1412 1412
1413 static inline spinlock_t *ptlock_ptr(struct page *page) 1413 static inline spinlock_t *ptlock_ptr(struct page *page)
1414 { 1414 {
1415 return &page->ptl; 1415 return &page->ptl;
1416 } 1416 }
1417 #endif /* ALLOC_SPLIT_PTLOCKS */ 1417 #endif /* ALLOC_SPLIT_PTLOCKS */
1418 1418
1419 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1419 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1420 { 1420 {
1421 return ptlock_ptr(pmd_page(*pmd)); 1421 return ptlock_ptr(pmd_page(*pmd));
1422 } 1422 }
1423 1423
1424 static inline bool ptlock_init(struct page *page) 1424 static inline bool ptlock_init(struct page *page)
1425 { 1425 {
1426 /* 1426 /*
1427 * prep_new_page() initialize page->private (and therefore page->ptl) 1427 * prep_new_page() initialize page->private (and therefore page->ptl)
1428 * with 0. Make sure nobody took it in use in between. 1428 * with 0. Make sure nobody took it in use in between.
1429 * 1429 *
1430 * It can happen if arch try to use slab for page table allocation: 1430 * It can happen if arch try to use slab for page table allocation:
1431 * slab code uses page->slab_cache and page->first_page (for tail 1431 * slab code uses page->slab_cache and page->first_page (for tail
1432 * pages), which share storage with page->ptl. 1432 * pages), which share storage with page->ptl.
1433 */ 1433 */
1434 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1434 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1435 if (!ptlock_alloc(page)) 1435 if (!ptlock_alloc(page))
1436 return false; 1436 return false;
1437 spin_lock_init(ptlock_ptr(page)); 1437 spin_lock_init(ptlock_ptr(page));
1438 return true; 1438 return true;
1439 } 1439 }
1440 1440
1441 /* Reset page->mapping so free_pages_check won't complain. */ 1441 /* Reset page->mapping so free_pages_check won't complain. */
1442 static inline void pte_lock_deinit(struct page *page) 1442 static inline void pte_lock_deinit(struct page *page)
1443 { 1443 {
1444 page->mapping = NULL; 1444 page->mapping = NULL;
1445 ptlock_free(page); 1445 ptlock_free(page);
1446 } 1446 }
1447 1447
1448 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1448 #else /* !USE_SPLIT_PTE_PTLOCKS */
1449 /* 1449 /*
1450 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1450 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1451 */ 1451 */
1452 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1452 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1453 { 1453 {
1454 return &mm->page_table_lock; 1454 return &mm->page_table_lock;
1455 } 1455 }
1456 static inline void ptlock_cache_init(void) {} 1456 static inline void ptlock_cache_init(void) {}
1457 static inline bool ptlock_init(struct page *page) { return true; } 1457 static inline bool ptlock_init(struct page *page) { return true; }
1458 static inline void pte_lock_deinit(struct page *page) {} 1458 static inline void pte_lock_deinit(struct page *page) {}
1459 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1459 #endif /* USE_SPLIT_PTE_PTLOCKS */
1460 1460
1461 static inline void pgtable_init(void) 1461 static inline void pgtable_init(void)
1462 { 1462 {
1463 ptlock_cache_init(); 1463 ptlock_cache_init();
1464 pgtable_cache_init(); 1464 pgtable_cache_init();
1465 } 1465 }
1466 1466
1467 static inline bool pgtable_page_ctor(struct page *page) 1467 static inline bool pgtable_page_ctor(struct page *page)
1468 { 1468 {
1469 inc_zone_page_state(page, NR_PAGETABLE); 1469 inc_zone_page_state(page, NR_PAGETABLE);
1470 return ptlock_init(page); 1470 return ptlock_init(page);
1471 } 1471 }
1472 1472
1473 static inline void pgtable_page_dtor(struct page *page) 1473 static inline void pgtable_page_dtor(struct page *page)
1474 { 1474 {
1475 pte_lock_deinit(page); 1475 pte_lock_deinit(page);
1476 dec_zone_page_state(page, NR_PAGETABLE); 1476 dec_zone_page_state(page, NR_PAGETABLE);
1477 } 1477 }
1478 1478
1479 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1479 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1480 ({ \ 1480 ({ \
1481 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1481 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1482 pte_t *__pte = pte_offset_map(pmd, address); \ 1482 pte_t *__pte = pte_offset_map(pmd, address); \
1483 *(ptlp) = __ptl; \ 1483 *(ptlp) = __ptl; \
1484 spin_lock(__ptl); \ 1484 spin_lock(__ptl); \
1485 __pte; \ 1485 __pte; \
1486 }) 1486 })
1487 1487
1488 #define pte_unmap_unlock(pte, ptl) do { \ 1488 #define pte_unmap_unlock(pte, ptl) do { \
1489 spin_unlock(ptl); \ 1489 spin_unlock(ptl); \
1490 pte_unmap(pte); \ 1490 pte_unmap(pte); \
1491 } while (0) 1491 } while (0)
1492 1492
1493 #define pte_alloc_map(mm, vma, pmd, address) \ 1493 #define pte_alloc_map(mm, vma, pmd, address) \
1494 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1494 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1495 pmd, address))? \ 1495 pmd, address))? \
1496 NULL: pte_offset_map(pmd, address)) 1496 NULL: pte_offset_map(pmd, address))
1497 1497
1498 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1498 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1499 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1499 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1500 pmd, address))? \ 1500 pmd, address))? \
1501 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1501 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1502 1502
1503 #define pte_alloc_kernel(pmd, address) \ 1503 #define pte_alloc_kernel(pmd, address) \
1504 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1504 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1505 NULL: pte_offset_kernel(pmd, address)) 1505 NULL: pte_offset_kernel(pmd, address))
1506 1506
1507 #if USE_SPLIT_PMD_PTLOCKS 1507 #if USE_SPLIT_PMD_PTLOCKS
1508 1508
1509 static struct page *pmd_to_page(pmd_t *pmd) 1509 static struct page *pmd_to_page(pmd_t *pmd)
1510 { 1510 {
1511 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1511 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1512 return virt_to_page((void *)((unsigned long) pmd & mask)); 1512 return virt_to_page((void *)((unsigned long) pmd & mask));
1513 } 1513 }
1514 1514
1515 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1515 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1516 { 1516 {
1517 return ptlock_ptr(pmd_to_page(pmd)); 1517 return ptlock_ptr(pmd_to_page(pmd));
1518 } 1518 }
1519 1519
1520 static inline bool pgtable_pmd_page_ctor(struct page *page) 1520 static inline bool pgtable_pmd_page_ctor(struct page *page)
1521 { 1521 {
1522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1523 page->pmd_huge_pte = NULL; 1523 page->pmd_huge_pte = NULL;
1524 #endif 1524 #endif
1525 return ptlock_init(page); 1525 return ptlock_init(page);
1526 } 1526 }
1527 1527
1528 static inline void pgtable_pmd_page_dtor(struct page *page) 1528 static inline void pgtable_pmd_page_dtor(struct page *page)
1529 { 1529 {
1530 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1530 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1531 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1531 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1532 #endif 1532 #endif
1533 ptlock_free(page); 1533 ptlock_free(page);
1534 } 1534 }
1535 1535
1536 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1536 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1537 1537
1538 #else 1538 #else
1539 1539
1540 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1540 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1541 { 1541 {
1542 return &mm->page_table_lock; 1542 return &mm->page_table_lock;
1543 } 1543 }
1544 1544
1545 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1545 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1546 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1546 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1547 1547
1548 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1548 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1549 1549
1550 #endif 1550 #endif
1551 1551
1552 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1552 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1553 { 1553 {
1554 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1554 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1555 spin_lock(ptl); 1555 spin_lock(ptl);
1556 return ptl; 1556 return ptl;
1557 } 1557 }
1558 1558
1559 extern void free_area_init(unsigned long * zones_size); 1559 extern void free_area_init(unsigned long * zones_size);
1560 extern void free_area_init_node(int nid, unsigned long * zones_size, 1560 extern void free_area_init_node(int nid, unsigned long * zones_size,
1561 unsigned long zone_start_pfn, unsigned long *zholes_size); 1561 unsigned long zone_start_pfn, unsigned long *zholes_size);
1562 extern void free_initmem(void); 1562 extern void free_initmem(void);
1563 1563
1564 /* 1564 /*
1565 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1565 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1566 * into the buddy system. The freed pages will be poisoned with pattern 1566 * into the buddy system. The freed pages will be poisoned with pattern
1567 * "poison" if it's within range [0, UCHAR_MAX]. 1567 * "poison" if it's within range [0, UCHAR_MAX].
1568 * Return pages freed into the buddy system. 1568 * Return pages freed into the buddy system.
1569 */ 1569 */
1570 extern unsigned long free_reserved_area(void *start, void *end, 1570 extern unsigned long free_reserved_area(void *start, void *end,
1571 int poison, char *s); 1571 int poison, char *s);
1572 1572
1573 #ifdef CONFIG_HIGHMEM 1573 #ifdef CONFIG_HIGHMEM
1574 /* 1574 /*
1575 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1575 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1576 * and totalram_pages. 1576 * and totalram_pages.
1577 */ 1577 */
1578 extern void free_highmem_page(struct page *page); 1578 extern void free_highmem_page(struct page *page);
1579 #endif 1579 #endif
1580 1580
1581 extern void adjust_managed_page_count(struct page *page, long count); 1581 extern void adjust_managed_page_count(struct page *page, long count);
1582 extern void mem_init_print_info(const char *str); 1582 extern void mem_init_print_info(const char *str);
1583 1583
1584 /* Free the reserved page into the buddy system, so it gets managed. */ 1584 /* Free the reserved page into the buddy system, so it gets managed. */
1585 static inline void __free_reserved_page(struct page *page) 1585 static inline void __free_reserved_page(struct page *page)
1586 { 1586 {
1587 ClearPageReserved(page); 1587 ClearPageReserved(page);
1588 init_page_count(page); 1588 init_page_count(page);
1589 __free_page(page); 1589 __free_page(page);
1590 } 1590 }
1591 1591
1592 static inline void free_reserved_page(struct page *page) 1592 static inline void free_reserved_page(struct page *page)
1593 { 1593 {
1594 __free_reserved_page(page); 1594 __free_reserved_page(page);
1595 adjust_managed_page_count(page, 1); 1595 adjust_managed_page_count(page, 1);
1596 } 1596 }
1597 1597
1598 static inline void mark_page_reserved(struct page *page) 1598 static inline void mark_page_reserved(struct page *page)
1599 { 1599 {
1600 SetPageReserved(page); 1600 SetPageReserved(page);
1601 adjust_managed_page_count(page, -1); 1601 adjust_managed_page_count(page, -1);
1602 } 1602 }
1603 1603
1604 /* 1604 /*
1605 * Default method to free all the __init memory into the buddy system. 1605 * Default method to free all the __init memory into the buddy system.
1606 * The freed pages will be poisoned with pattern "poison" if it's within 1606 * The freed pages will be poisoned with pattern "poison" if it's within
1607 * range [0, UCHAR_MAX]. 1607 * range [0, UCHAR_MAX].
1608 * Return pages freed into the buddy system. 1608 * Return pages freed into the buddy system.
1609 */ 1609 */
1610 static inline unsigned long free_initmem_default(int poison) 1610 static inline unsigned long free_initmem_default(int poison)
1611 { 1611 {
1612 extern char __init_begin[], __init_end[]; 1612 extern char __init_begin[], __init_end[];
1613 1613
1614 return free_reserved_area(&__init_begin, &__init_end, 1614 return free_reserved_area(&__init_begin, &__init_end,
1615 poison, "unused kernel"); 1615 poison, "unused kernel");
1616 } 1616 }
1617 1617
1618 static inline unsigned long get_num_physpages(void) 1618 static inline unsigned long get_num_physpages(void)
1619 { 1619 {
1620 int nid; 1620 int nid;
1621 unsigned long phys_pages = 0; 1621 unsigned long phys_pages = 0;
1622 1622
1623 for_each_online_node(nid) 1623 for_each_online_node(nid)
1624 phys_pages += node_present_pages(nid); 1624 phys_pages += node_present_pages(nid);
1625 1625
1626 return phys_pages; 1626 return phys_pages;
1627 } 1627 }
1628 1628
1629 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1629 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1630 /* 1630 /*
1631 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1631 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1632 * zones, allocate the backing mem_map and account for memory holes in a more 1632 * zones, allocate the backing mem_map and account for memory holes in a more
1633 * architecture independent manner. This is a substitute for creating the 1633 * architecture independent manner. This is a substitute for creating the
1634 * zone_sizes[] and zholes_size[] arrays and passing them to 1634 * zone_sizes[] and zholes_size[] arrays and passing them to
1635 * free_area_init_node() 1635 * free_area_init_node()
1636 * 1636 *
1637 * An architecture is expected to register range of page frames backed by 1637 * An architecture is expected to register range of page frames backed by
1638 * physical memory with memblock_add[_node]() before calling 1638 * physical memory with memblock_add[_node]() before calling
1639 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1639 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1640 * usage, an architecture is expected to do something like 1640 * usage, an architecture is expected to do something like
1641 * 1641 *
1642 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1642 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1643 * max_highmem_pfn}; 1643 * max_highmem_pfn};
1644 * for_each_valid_physical_page_range() 1644 * for_each_valid_physical_page_range()
1645 * memblock_add_node(base, size, nid) 1645 * memblock_add_node(base, size, nid)
1646 * free_area_init_nodes(max_zone_pfns); 1646 * free_area_init_nodes(max_zone_pfns);
1647 * 1647 *
1648 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1648 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1649 * registered physical page range. Similarly 1649 * registered physical page range. Similarly
1650 * sparse_memory_present_with_active_regions() calls memory_present() for 1650 * sparse_memory_present_with_active_regions() calls memory_present() for
1651 * each range when SPARSEMEM is enabled. 1651 * each range when SPARSEMEM is enabled.
1652 * 1652 *
1653 * See mm/page_alloc.c for more information on each function exposed by 1653 * See mm/page_alloc.c for more information on each function exposed by
1654 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1654 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1655 */ 1655 */
1656 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1656 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1657 unsigned long node_map_pfn_alignment(void); 1657 unsigned long node_map_pfn_alignment(void);
1658 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1658 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1659 unsigned long end_pfn); 1659 unsigned long end_pfn);
1660 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1660 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1661 unsigned long end_pfn); 1661 unsigned long end_pfn);
1662 extern void get_pfn_range_for_nid(unsigned int nid, 1662 extern void get_pfn_range_for_nid(unsigned int nid,
1663 unsigned long *start_pfn, unsigned long *end_pfn); 1663 unsigned long *start_pfn, unsigned long *end_pfn);
1664 extern unsigned long find_min_pfn_with_active_regions(void); 1664 extern unsigned long find_min_pfn_with_active_regions(void);
1665 extern void free_bootmem_with_active_regions(int nid, 1665 extern void free_bootmem_with_active_regions(int nid,
1666 unsigned long max_low_pfn); 1666 unsigned long max_low_pfn);
1667 extern void sparse_memory_present_with_active_regions(int nid); 1667 extern void sparse_memory_present_with_active_regions(int nid);
1668 1668
1669 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1669 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1670 1670
1671 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1671 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1672 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1672 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1673 static inline int __early_pfn_to_nid(unsigned long pfn) 1673 static inline int __early_pfn_to_nid(unsigned long pfn)
1674 { 1674 {
1675 return 0; 1675 return 0;
1676 } 1676 }
1677 #else 1677 #else
1678 /* please see mm/page_alloc.c */ 1678 /* please see mm/page_alloc.c */
1679 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1679 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1680 /* there is a per-arch backend function. */ 1680 /* there is a per-arch backend function. */
1681 extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1681 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1682 #endif 1682 #endif
1683 1683
1684 extern void set_dma_reserve(unsigned long new_dma_reserve); 1684 extern void set_dma_reserve(unsigned long new_dma_reserve);
1685 extern void memmap_init_zone(unsigned long, int, unsigned long, 1685 extern void memmap_init_zone(unsigned long, int, unsigned long,
1686 unsigned long, enum memmap_context); 1686 unsigned long, enum memmap_context);
1687 extern void setup_per_zone_wmarks(void); 1687 extern void setup_per_zone_wmarks(void);
1688 extern int __meminit init_per_zone_wmark_min(void); 1688 extern int __meminit init_per_zone_wmark_min(void);
1689 extern void mem_init(void); 1689 extern void mem_init(void);
1690 extern void __init mmap_init(void); 1690 extern void __init mmap_init(void);
1691 extern void show_mem(unsigned int flags); 1691 extern void show_mem(unsigned int flags);
1692 extern void si_meminfo(struct sysinfo * val); 1692 extern void si_meminfo(struct sysinfo * val);
1693 extern void si_meminfo_node(struct sysinfo *val, int nid); 1693 extern void si_meminfo_node(struct sysinfo *val, int nid);
1694 1694
1695 extern __printf(3, 4) 1695 extern __printf(3, 4)
1696 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1696 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1697 1697
1698 extern void setup_per_cpu_pageset(void); 1698 extern void setup_per_cpu_pageset(void);
1699 1699
1700 extern void zone_pcp_update(struct zone *zone); 1700 extern void zone_pcp_update(struct zone *zone);
1701 extern void zone_pcp_reset(struct zone *zone); 1701 extern void zone_pcp_reset(struct zone *zone);
1702 1702
1703 /* page_alloc.c */ 1703 /* page_alloc.c */
1704 extern int min_free_kbytes; 1704 extern int min_free_kbytes;
1705 1705
1706 /* nommu.c */ 1706 /* nommu.c */
1707 extern atomic_long_t mmap_pages_allocated; 1707 extern atomic_long_t mmap_pages_allocated;
1708 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1708 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1709 1709
1710 /* interval_tree.c */ 1710 /* interval_tree.c */
1711 void vma_interval_tree_insert(struct vm_area_struct *node, 1711 void vma_interval_tree_insert(struct vm_area_struct *node,
1712 struct rb_root *root); 1712 struct rb_root *root);
1713 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1713 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1714 struct vm_area_struct *prev, 1714 struct vm_area_struct *prev,
1715 struct rb_root *root); 1715 struct rb_root *root);
1716 void vma_interval_tree_remove(struct vm_area_struct *node, 1716 void vma_interval_tree_remove(struct vm_area_struct *node,
1717 struct rb_root *root); 1717 struct rb_root *root);
1718 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1718 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1719 unsigned long start, unsigned long last); 1719 unsigned long start, unsigned long last);
1720 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1720 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1721 unsigned long start, unsigned long last); 1721 unsigned long start, unsigned long last);
1722 1722
1723 #define vma_interval_tree_foreach(vma, root, start, last) \ 1723 #define vma_interval_tree_foreach(vma, root, start, last) \
1724 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1724 for (vma = vma_interval_tree_iter_first(root, start, last); \
1725 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1725 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1726 1726
1727 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1727 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1728 struct list_head *list) 1728 struct list_head *list)
1729 { 1729 {
1730 list_add_tail(&vma->shared.nonlinear, list); 1730 list_add_tail(&vma->shared.nonlinear, list);
1731 } 1731 }
1732 1732
1733 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1733 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1734 struct rb_root *root); 1734 struct rb_root *root);
1735 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1735 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1736 struct rb_root *root); 1736 struct rb_root *root);
1737 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1737 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1738 struct rb_root *root, unsigned long start, unsigned long last); 1738 struct rb_root *root, unsigned long start, unsigned long last);
1739 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1739 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1740 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1740 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1741 #ifdef CONFIG_DEBUG_VM_RB 1741 #ifdef CONFIG_DEBUG_VM_RB
1742 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1742 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1743 #endif 1743 #endif
1744 1744
1745 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1745 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1746 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1746 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1747 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1747 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1748 1748
1749 /* mmap.c */ 1749 /* mmap.c */
1750 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1750 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1751 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1751 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1752 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1752 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1753 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1753 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1754 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1754 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1755 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1755 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1756 struct mempolicy *); 1756 struct mempolicy *);
1757 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1757 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1758 extern int split_vma(struct mm_struct *, 1758 extern int split_vma(struct mm_struct *,
1759 struct vm_area_struct *, unsigned long addr, int new_below); 1759 struct vm_area_struct *, unsigned long addr, int new_below);
1760 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1760 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1761 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1761 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1762 struct rb_node **, struct rb_node *); 1762 struct rb_node **, struct rb_node *);
1763 extern void unlink_file_vma(struct vm_area_struct *); 1763 extern void unlink_file_vma(struct vm_area_struct *);
1764 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1764 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1765 unsigned long addr, unsigned long len, pgoff_t pgoff, 1765 unsigned long addr, unsigned long len, pgoff_t pgoff,
1766 bool *need_rmap_locks); 1766 bool *need_rmap_locks);
1767 extern void exit_mmap(struct mm_struct *); 1767 extern void exit_mmap(struct mm_struct *);
1768 1768
1769 extern int mm_take_all_locks(struct mm_struct *mm); 1769 extern int mm_take_all_locks(struct mm_struct *mm);
1770 extern void mm_drop_all_locks(struct mm_struct *mm); 1770 extern void mm_drop_all_locks(struct mm_struct *mm);
1771 1771
1772 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1772 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1773 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1773 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1774 1774
1775 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1775 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1776 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 1776 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1777 unsigned long addr, unsigned long len, 1777 unsigned long addr, unsigned long len,
1778 unsigned long flags, struct page **pages); 1778 unsigned long flags, struct page **pages);
1779 extern int install_special_mapping(struct mm_struct *mm, 1779 extern int install_special_mapping(struct mm_struct *mm,
1780 unsigned long addr, unsigned long len, 1780 unsigned long addr, unsigned long len,
1781 unsigned long flags, struct page **pages); 1781 unsigned long flags, struct page **pages);
1782 1782
1783 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1783 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1784 1784
1785 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1785 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1786 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1786 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1787 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1787 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1788 unsigned long len, unsigned long prot, unsigned long flags, 1788 unsigned long len, unsigned long prot, unsigned long flags,
1789 unsigned long pgoff, unsigned long *populate); 1789 unsigned long pgoff, unsigned long *populate);
1790 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1790 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1791 1791
1792 #ifdef CONFIG_MMU 1792 #ifdef CONFIG_MMU
1793 extern int __mm_populate(unsigned long addr, unsigned long len, 1793 extern int __mm_populate(unsigned long addr, unsigned long len,
1794 int ignore_errors); 1794 int ignore_errors);
1795 static inline void mm_populate(unsigned long addr, unsigned long len) 1795 static inline void mm_populate(unsigned long addr, unsigned long len)
1796 { 1796 {
1797 /* Ignore errors */ 1797 /* Ignore errors */
1798 (void) __mm_populate(addr, len, 1); 1798 (void) __mm_populate(addr, len, 1);
1799 } 1799 }
1800 #else 1800 #else
1801 static inline void mm_populate(unsigned long addr, unsigned long len) {} 1801 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1802 #endif 1802 #endif
1803 1803
1804 /* These take the mm semaphore themselves */ 1804 /* These take the mm semaphore themselves */
1805 extern unsigned long vm_brk(unsigned long, unsigned long); 1805 extern unsigned long vm_brk(unsigned long, unsigned long);
1806 extern int vm_munmap(unsigned long, size_t); 1806 extern int vm_munmap(unsigned long, size_t);
1807 extern unsigned long vm_mmap(struct file *, unsigned long, 1807 extern unsigned long vm_mmap(struct file *, unsigned long,
1808 unsigned long, unsigned long, 1808 unsigned long, unsigned long,
1809 unsigned long, unsigned long); 1809 unsigned long, unsigned long);
1810 1810
1811 struct vm_unmapped_area_info { 1811 struct vm_unmapped_area_info {
1812 #define VM_UNMAPPED_AREA_TOPDOWN 1 1812 #define VM_UNMAPPED_AREA_TOPDOWN 1
1813 unsigned long flags; 1813 unsigned long flags;
1814 unsigned long length; 1814 unsigned long length;
1815 unsigned long low_limit; 1815 unsigned long low_limit;
1816 unsigned long high_limit; 1816 unsigned long high_limit;
1817 unsigned long align_mask; 1817 unsigned long align_mask;
1818 unsigned long align_offset; 1818 unsigned long align_offset;
1819 }; 1819 };
1820 1820
1821 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1821 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1822 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1822 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1823 1823
1824 /* 1824 /*
1825 * Search for an unmapped address range. 1825 * Search for an unmapped address range.
1826 * 1826 *
1827 * We are looking for a range that: 1827 * We are looking for a range that:
1828 * - does not intersect with any VMA; 1828 * - does not intersect with any VMA;
1829 * - is contained within the [low_limit, high_limit) interval; 1829 * - is contained within the [low_limit, high_limit) interval;
1830 * - is at least the desired size. 1830 * - is at least the desired size.
1831 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1831 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1832 */ 1832 */
1833 static inline unsigned long 1833 static inline unsigned long
1834 vm_unmapped_area(struct vm_unmapped_area_info *info) 1834 vm_unmapped_area(struct vm_unmapped_area_info *info)
1835 { 1835 {
1836 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN)) 1836 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1837 return unmapped_area(info); 1837 return unmapped_area(info);
1838 else 1838 else
1839 return unmapped_area_topdown(info); 1839 return unmapped_area_topdown(info);
1840 } 1840 }
1841 1841
1842 /* truncate.c */ 1842 /* truncate.c */
1843 extern void truncate_inode_pages(struct address_space *, loff_t); 1843 extern void truncate_inode_pages(struct address_space *, loff_t);
1844 extern void truncate_inode_pages_range(struct address_space *, 1844 extern void truncate_inode_pages_range(struct address_space *,
1845 loff_t lstart, loff_t lend); 1845 loff_t lstart, loff_t lend);
1846 extern void truncate_inode_pages_final(struct address_space *); 1846 extern void truncate_inode_pages_final(struct address_space *);
1847 1847
1848 /* generic vm_area_ops exported for stackable file systems */ 1848 /* generic vm_area_ops exported for stackable file systems */
1849 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1849 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1850 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); 1850 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1851 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1851 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1852 1852
1853 /* mm/page-writeback.c */ 1853 /* mm/page-writeback.c */
1854 int write_one_page(struct page *page, int wait); 1854 int write_one_page(struct page *page, int wait);
1855 void task_dirty_inc(struct task_struct *tsk); 1855 void task_dirty_inc(struct task_struct *tsk);
1856 1856
1857 /* readahead.c */ 1857 /* readahead.c */
1858 #define VM_MAX_READAHEAD 128 /* kbytes */ 1858 #define VM_MAX_READAHEAD 128 /* kbytes */
1859 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1859 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1860 1860
1861 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1861 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1862 pgoff_t offset, unsigned long nr_to_read); 1862 pgoff_t offset, unsigned long nr_to_read);
1863 1863
1864 void page_cache_sync_readahead(struct address_space *mapping, 1864 void page_cache_sync_readahead(struct address_space *mapping,
1865 struct file_ra_state *ra, 1865 struct file_ra_state *ra,
1866 struct file *filp, 1866 struct file *filp,
1867 pgoff_t offset, 1867 pgoff_t offset,
1868 unsigned long size); 1868 unsigned long size);
1869 1869
1870 void page_cache_async_readahead(struct address_space *mapping, 1870 void page_cache_async_readahead(struct address_space *mapping,
1871 struct file_ra_state *ra, 1871 struct file_ra_state *ra,
1872 struct file *filp, 1872 struct file *filp,
1873 struct page *pg, 1873 struct page *pg,
1874 pgoff_t offset, 1874 pgoff_t offset,
1875 unsigned long size); 1875 unsigned long size);
1876 1876
1877 unsigned long max_sane_readahead(unsigned long nr); 1877 unsigned long max_sane_readahead(unsigned long nr);
1878 unsigned long ra_submit(struct file_ra_state *ra,
1879 struct address_space *mapping,
1880 struct file *filp);
1881 1878
1882 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1879 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1883 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1880 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1884 1881
1885 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1882 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1886 extern int expand_downwards(struct vm_area_struct *vma, 1883 extern int expand_downwards(struct vm_area_struct *vma,
1887 unsigned long address); 1884 unsigned long address);
1888 #if VM_GROWSUP 1885 #if VM_GROWSUP
1889 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1886 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1890 #else 1887 #else
1891 #define expand_upwards(vma, address) do { } while (0) 1888 #define expand_upwards(vma, address) do { } while (0)
1892 #endif 1889 #endif
1893 1890
1894 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1891 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1895 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1892 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1896 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1893 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1897 struct vm_area_struct **pprev); 1894 struct vm_area_struct **pprev);
1898 1895
1899 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1896 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1900 NULL if none. Assume start_addr < end_addr. */ 1897 NULL if none. Assume start_addr < end_addr. */
1901 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1898 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1902 { 1899 {
1903 struct vm_area_struct * vma = find_vma(mm,start_addr); 1900 struct vm_area_struct * vma = find_vma(mm,start_addr);
1904 1901
1905 if (vma && end_addr <= vma->vm_start) 1902 if (vma && end_addr <= vma->vm_start)
1906 vma = NULL; 1903 vma = NULL;
1907 return vma; 1904 return vma;
1908 } 1905 }
1909 1906
1910 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1907 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1911 { 1908 {
1912 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1909 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1913 } 1910 }
1914 1911
1915 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1912 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1916 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1913 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1917 unsigned long vm_start, unsigned long vm_end) 1914 unsigned long vm_start, unsigned long vm_end)
1918 { 1915 {
1919 struct vm_area_struct *vma = find_vma(mm, vm_start); 1916 struct vm_area_struct *vma = find_vma(mm, vm_start);
1920 1917
1921 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1918 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1922 vma = NULL; 1919 vma = NULL;
1923 1920
1924 return vma; 1921 return vma;
1925 } 1922 }
1926 1923
1927 #ifdef CONFIG_MMU 1924 #ifdef CONFIG_MMU
1928 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1925 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1929 #else 1926 #else
1930 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1927 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1931 { 1928 {
1932 return __pgprot(0); 1929 return __pgprot(0);
1933 } 1930 }
1934 #endif 1931 #endif
1935 1932
1936 #ifdef CONFIG_NUMA_BALANCING 1933 #ifdef CONFIG_NUMA_BALANCING
1937 unsigned long change_prot_numa(struct vm_area_struct *vma, 1934 unsigned long change_prot_numa(struct vm_area_struct *vma,
1938 unsigned long start, unsigned long end); 1935 unsigned long start, unsigned long end);
1939 #endif 1936 #endif
1940 1937
1941 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1938 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1942 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1939 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1943 unsigned long pfn, unsigned long size, pgprot_t); 1940 unsigned long pfn, unsigned long size, pgprot_t);
1944 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1941 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1945 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1942 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1946 unsigned long pfn); 1943 unsigned long pfn);
1947 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1944 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1948 unsigned long pfn); 1945 unsigned long pfn);
1949 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 1946 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1950 1947
1951 1948
1952 struct page *follow_page_mask(struct vm_area_struct *vma, 1949 struct page *follow_page_mask(struct vm_area_struct *vma,
1953 unsigned long address, unsigned int foll_flags, 1950 unsigned long address, unsigned int foll_flags,
1954 unsigned int *page_mask); 1951 unsigned int *page_mask);
1955 1952
1956 static inline struct page *follow_page(struct vm_area_struct *vma, 1953 static inline struct page *follow_page(struct vm_area_struct *vma,
1957 unsigned long address, unsigned int foll_flags) 1954 unsigned long address, unsigned int foll_flags)
1958 { 1955 {
1959 unsigned int unused_page_mask; 1956 unsigned int unused_page_mask;
1960 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 1957 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1961 } 1958 }
1962 1959
1963 #define FOLL_WRITE 0x01 /* check pte is writable */ 1960 #define FOLL_WRITE 0x01 /* check pte is writable */
1964 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1961 #define FOLL_TOUCH 0x02 /* mark page accessed */
1965 #define FOLL_GET 0x04 /* do get_page on page */ 1962 #define FOLL_GET 0x04 /* do get_page on page */
1966 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1963 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1967 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1964 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1968 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1965 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1969 * and return without waiting upon it */ 1966 * and return without waiting upon it */
1970 #define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1967 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1971 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1968 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1972 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1969 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1973 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 1970 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1974 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 1971 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1975 1972
1976 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1973 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1977 void *data); 1974 void *data);
1978 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1975 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1979 unsigned long size, pte_fn_t fn, void *data); 1976 unsigned long size, pte_fn_t fn, void *data);
1980 1977
1981 #ifdef CONFIG_PROC_FS 1978 #ifdef CONFIG_PROC_FS
1982 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1979 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1983 #else 1980 #else
1984 static inline void vm_stat_account(struct mm_struct *mm, 1981 static inline void vm_stat_account(struct mm_struct *mm,
1985 unsigned long flags, struct file *file, long pages) 1982 unsigned long flags, struct file *file, long pages)
1986 { 1983 {
1987 mm->total_vm += pages; 1984 mm->total_vm += pages;
1988 } 1985 }
1989 #endif /* CONFIG_PROC_FS */ 1986 #endif /* CONFIG_PROC_FS */
1990 1987
1991 #ifdef CONFIG_DEBUG_PAGEALLOC 1988 #ifdef CONFIG_DEBUG_PAGEALLOC
1992 extern void kernel_map_pages(struct page *page, int numpages, int enable); 1989 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1993 #ifdef CONFIG_HIBERNATION 1990 #ifdef CONFIG_HIBERNATION
1994 extern bool kernel_page_present(struct page *page); 1991 extern bool kernel_page_present(struct page *page);
1995 #endif /* CONFIG_HIBERNATION */ 1992 #endif /* CONFIG_HIBERNATION */
1996 #else 1993 #else
1997 static inline void 1994 static inline void
1998 kernel_map_pages(struct page *page, int numpages, int enable) {} 1995 kernel_map_pages(struct page *page, int numpages, int enable) {}
1999 #ifdef CONFIG_HIBERNATION 1996 #ifdef CONFIG_HIBERNATION
2000 static inline bool kernel_page_present(struct page *page) { return true; } 1997 static inline bool kernel_page_present(struct page *page) { return true; }
2001 #endif /* CONFIG_HIBERNATION */ 1998 #endif /* CONFIG_HIBERNATION */
2002 #endif 1999 #endif
2003 2000
2004 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2001 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2005 #ifdef __HAVE_ARCH_GATE_AREA 2002 #ifdef __HAVE_ARCH_GATE_AREA
2006 int in_gate_area_no_mm(unsigned long addr); 2003 int in_gate_area_no_mm(unsigned long addr);
2007 int in_gate_area(struct mm_struct *mm, unsigned long addr); 2004 int in_gate_area(struct mm_struct *mm, unsigned long addr);
2008 #else 2005 #else
2009 int in_gate_area_no_mm(unsigned long addr); 2006 int in_gate_area_no_mm(unsigned long addr);
2010 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 2007 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
2011 #endif /* __HAVE_ARCH_GATE_AREA */ 2008 #endif /* __HAVE_ARCH_GATE_AREA */
2012 2009
2013 #ifdef CONFIG_SYSCTL 2010 #ifdef CONFIG_SYSCTL
2014 extern int sysctl_drop_caches; 2011 extern int sysctl_drop_caches;
2015 int drop_caches_sysctl_handler(struct ctl_table *, int, 2012 int drop_caches_sysctl_handler(struct ctl_table *, int,
2016 void __user *, size_t *, loff_t *); 2013 void __user *, size_t *, loff_t *);
2017 #endif 2014 #endif
2018 2015
2019 unsigned long shrink_slab(struct shrink_control *shrink, 2016 unsigned long shrink_slab(struct shrink_control *shrink,
2020 unsigned long nr_pages_scanned, 2017 unsigned long nr_pages_scanned,
2021 unsigned long lru_pages); 2018 unsigned long lru_pages);
2022 2019
2023 #ifndef CONFIG_MMU 2020 #ifndef CONFIG_MMU
2024 #define randomize_va_space 0 2021 #define randomize_va_space 0
2025 #else 2022 #else
2026 extern int randomize_va_space; 2023 extern int randomize_va_space;
2027 #endif 2024 #endif
2028 2025
2029 const char * arch_vma_name(struct vm_area_struct *vma); 2026 const char * arch_vma_name(struct vm_area_struct *vma);
2030 void print_vma_addr(char *prefix, unsigned long rip); 2027 void print_vma_addr(char *prefix, unsigned long rip);
2031 2028
2032 void sparse_mem_maps_populate_node(struct page **map_map, 2029 void sparse_mem_maps_populate_node(struct page **map_map,
2033 unsigned long pnum_begin, 2030 unsigned long pnum_begin,
2034 unsigned long pnum_end, 2031 unsigned long pnum_end,
2035 unsigned long map_count, 2032 unsigned long map_count,
2036 int nodeid); 2033 int nodeid);
2037 2034
2038 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2035 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2039 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2036 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2040 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2037 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2041 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2038 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2042 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2039 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2043 void *vmemmap_alloc_block(unsigned long size, int node); 2040 void *vmemmap_alloc_block(unsigned long size, int node);
2044 void *vmemmap_alloc_block_buf(unsigned long size, int node); 2041 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2045 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2042 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2046 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2043 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2047 int node); 2044 int node);
2048 int vmemmap_populate(unsigned long start, unsigned long end, int node); 2045 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2049 void vmemmap_populate_print_last(void); 2046 void vmemmap_populate_print_last(void);
2050 #ifdef CONFIG_MEMORY_HOTPLUG 2047 #ifdef CONFIG_MEMORY_HOTPLUG
2051 void vmemmap_free(unsigned long start, unsigned long end); 2048 void vmemmap_free(unsigned long start, unsigned long end);
2052 #endif 2049 #endif
2053 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2050 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2054 unsigned long size); 2051 unsigned long size);
2055 2052
2056 enum mf_flags { 2053 enum mf_flags {
2057 MF_COUNT_INCREASED = 1 << 0, 2054 MF_COUNT_INCREASED = 1 << 0,
2058 MF_ACTION_REQUIRED = 1 << 1, 2055 MF_ACTION_REQUIRED = 1 << 1,
2059 MF_MUST_KILL = 1 << 2, 2056 MF_MUST_KILL = 1 << 2,
2060 MF_SOFT_OFFLINE = 1 << 3, 2057 MF_SOFT_OFFLINE = 1 << 3,
2061 }; 2058 };
2062 extern int memory_failure(unsigned long pfn, int trapno, int flags); 2059 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2063 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2060 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2064 extern int unpoison_memory(unsigned long pfn); 2061 extern int unpoison_memory(unsigned long pfn);
2065 extern int sysctl_memory_failure_early_kill; 2062 extern int sysctl_memory_failure_early_kill;
2066 extern int sysctl_memory_failure_recovery; 2063 extern int sysctl_memory_failure_recovery;
2067 extern void shake_page(struct page *p, int access); 2064 extern void shake_page(struct page *p, int access);
2068 extern atomic_long_t num_poisoned_pages; 2065 extern atomic_long_t num_poisoned_pages;
2069 extern int soft_offline_page(struct page *page, int flags); 2066 extern int soft_offline_page(struct page *page, int flags);
2070 2067
2071 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2068 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2072 extern void clear_huge_page(struct page *page, 2069 extern void clear_huge_page(struct page *page,
2073 unsigned long addr, 2070 unsigned long addr,
2074 unsigned int pages_per_huge_page); 2071 unsigned int pages_per_huge_page);
2075 extern void copy_user_huge_page(struct page *dst, struct page *src, 2072 extern void copy_user_huge_page(struct page *dst, struct page *src,
2076 unsigned long addr, struct vm_area_struct *vma, 2073 unsigned long addr, struct vm_area_struct *vma,
2077 unsigned int pages_per_huge_page); 2074 unsigned int pages_per_huge_page);
2078 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2075 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2079 2076
2080 #ifdef CONFIG_DEBUG_PAGEALLOC 2077 #ifdef CONFIG_DEBUG_PAGEALLOC
2081 extern unsigned int _debug_guardpage_minorder; 2078 extern unsigned int _debug_guardpage_minorder;
2082 2079
2083 static inline unsigned int debug_guardpage_minorder(void) 2080 static inline unsigned int debug_guardpage_minorder(void)
2084 { 2081 {
2085 return _debug_guardpage_minorder; 2082 return _debug_guardpage_minorder;
2086 } 2083 }
2087 2084
2088 static inline bool page_is_guard(struct page *page) 2085 static inline bool page_is_guard(struct page *page)
2089 { 2086 {
2090 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 2087 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2091 } 2088 }
2092 #else 2089 #else
2093 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2090 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2094 static inline bool page_is_guard(struct page *page) { return false; } 2091 static inline bool page_is_guard(struct page *page) { return false; }
2095 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2092 #endif /* CONFIG_DEBUG_PAGEALLOC */
2096 2093
2097 #if MAX_NUMNODES > 1 2094 #if MAX_NUMNODES > 1
2098 void __init setup_nr_node_ids(void); 2095 void __init setup_nr_node_ids(void);
2099 #else 2096 #else
2100 static inline void setup_nr_node_ids(void) {} 2097 static inline void setup_nr_node_ids(void) {}
2101 #endif 2098 #endif
2102 2099
2103 #endif /* __KERNEL__ */ 2100 #endif /* __KERNEL__ */
2104 #endif /* _LINUX_MM_H */ 2101 #endif /* _LINUX_MM_H */
2105 2102
1 /* internal.h: mm/ internal definitions 1 /* internal.h: mm/ internal definitions
2 * 2 *
3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com) 4 * Written by David Howells (dhowells@redhat.com)
5 * 5 *
6 * This program is free software; you can redistribute it and/or 6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License 7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version. 9 * 2 of the License, or (at your option) any later version.
10 */ 10 */
11 #ifndef __MM_INTERNAL_H 11 #ifndef __MM_INTERNAL_H
12 #define __MM_INTERNAL_H 12 #define __MM_INTERNAL_H
13 13
14 #include <linux/fs.h>
14 #include <linux/mm.h> 15 #include <linux/mm.h>
15 16
16 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 17 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
17 unsigned long floor, unsigned long ceiling); 18 unsigned long floor, unsigned long ceiling);
18 19
19 static inline void set_page_count(struct page *page, int v) 20 static inline void set_page_count(struct page *page, int v)
20 { 21 {
21 atomic_set(&page->_count, v); 22 atomic_set(&page->_count, v);
23 }
24
25 extern int __do_page_cache_readahead(struct address_space *mapping,
26 struct file *filp, pgoff_t offset, unsigned long nr_to_read,
27 unsigned long lookahead_size);
28
29 /*
30 * Submit IO for the read-ahead request in file_ra_state.
31 */
32 static inline unsigned long ra_submit(struct file_ra_state *ra,
33 struct address_space *mapping, struct file *filp)
34 {
35 return __do_page_cache_readahead(mapping, filp,
36 ra->start, ra->size, ra->async_size);
22 } 37 }
23 38
24 /* 39 /*
25 * Turn a non-refcounted page (->_count == 0) into refcounted with 40 * Turn a non-refcounted page (->_count == 0) into refcounted with
26 * a count of one. 41 * a count of one.
27 */ 42 */
28 static inline void set_page_refcounted(struct page *page) 43 static inline void set_page_refcounted(struct page *page)
29 { 44 {
30 VM_BUG_ON_PAGE(PageTail(page), page); 45 VM_BUG_ON_PAGE(PageTail(page), page);
31 VM_BUG_ON_PAGE(atomic_read(&page->_count), page); 46 VM_BUG_ON_PAGE(atomic_read(&page->_count), page);
32 set_page_count(page, 1); 47 set_page_count(page, 1);
33 } 48 }
34 49
35 static inline void __get_page_tail_foll(struct page *page, 50 static inline void __get_page_tail_foll(struct page *page,
36 bool get_page_head) 51 bool get_page_head)
37 { 52 {
38 /* 53 /*
39 * If we're getting a tail page, the elevated page->_count is 54 * If we're getting a tail page, the elevated page->_count is
40 * required only in the head page and we will elevate the head 55 * required only in the head page and we will elevate the head
41 * page->_count and tail page->_mapcount. 56 * page->_count and tail page->_mapcount.
42 * 57 *
43 * We elevate page_tail->_mapcount for tail pages to force 58 * We elevate page_tail->_mapcount for tail pages to force
44 * page_tail->_count to be zero at all times to avoid getting 59 * page_tail->_count to be zero at all times to avoid getting
45 * false positives from get_page_unless_zero() with 60 * false positives from get_page_unless_zero() with
46 * speculative page access (like in 61 * speculative page access (like in
47 * page_cache_get_speculative()) on tail pages. 62 * page_cache_get_speculative()) on tail pages.
48 */ 63 */
49 VM_BUG_ON_PAGE(atomic_read(&page->first_page->_count) <= 0, page); 64 VM_BUG_ON_PAGE(atomic_read(&page->first_page->_count) <= 0, page);
50 if (get_page_head) 65 if (get_page_head)
51 atomic_inc(&page->first_page->_count); 66 atomic_inc(&page->first_page->_count);
52 get_huge_page_tail(page); 67 get_huge_page_tail(page);
53 } 68 }
54 69
55 /* 70 /*
56 * This is meant to be called as the FOLL_GET operation of 71 * This is meant to be called as the FOLL_GET operation of
57 * follow_page() and it must be called while holding the proper PT 72 * follow_page() and it must be called while holding the proper PT
58 * lock while the pte (or pmd_trans_huge) is still mapping the page. 73 * lock while the pte (or pmd_trans_huge) is still mapping the page.
59 */ 74 */
60 static inline void get_page_foll(struct page *page) 75 static inline void get_page_foll(struct page *page)
61 { 76 {
62 if (unlikely(PageTail(page))) 77 if (unlikely(PageTail(page)))
63 /* 78 /*
64 * This is safe only because 79 * This is safe only because
65 * __split_huge_page_refcount() can't run under 80 * __split_huge_page_refcount() can't run under
66 * get_page_foll() because we hold the proper PT lock. 81 * get_page_foll() because we hold the proper PT lock.
67 */ 82 */
68 __get_page_tail_foll(page, true); 83 __get_page_tail_foll(page, true);
69 else { 84 else {
70 /* 85 /*
71 * Getting a normal page or the head of a compound page 86 * Getting a normal page or the head of a compound page
72 * requires to already have an elevated page->_count. 87 * requires to already have an elevated page->_count.
73 */ 88 */
74 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); 89 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
75 atomic_inc(&page->_count); 90 atomic_inc(&page->_count);
76 } 91 }
77 } 92 }
78 93
79 extern unsigned long highest_memmap_pfn; 94 extern unsigned long highest_memmap_pfn;
80 95
81 /* 96 /*
82 * in mm/vmscan.c: 97 * in mm/vmscan.c:
83 */ 98 */
84 extern int isolate_lru_page(struct page *page); 99 extern int isolate_lru_page(struct page *page);
85 extern void putback_lru_page(struct page *page); 100 extern void putback_lru_page(struct page *page);
86 extern bool zone_reclaimable(struct zone *zone); 101 extern bool zone_reclaimable(struct zone *zone);
87 102
88 /* 103 /*
89 * in mm/rmap.c: 104 * in mm/rmap.c:
90 */ 105 */
91 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 106 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
92 107
93 /* 108 /*
94 * in mm/page_alloc.c 109 * in mm/page_alloc.c
95 */ 110 */
96 extern void __free_pages_bootmem(struct page *page, unsigned int order); 111 extern void __free_pages_bootmem(struct page *page, unsigned int order);
97 extern void prep_compound_page(struct page *page, unsigned long order); 112 extern void prep_compound_page(struct page *page, unsigned long order);
98 #ifdef CONFIG_MEMORY_FAILURE 113 #ifdef CONFIG_MEMORY_FAILURE
99 extern bool is_free_buddy_page(struct page *page); 114 extern bool is_free_buddy_page(struct page *page);
100 #endif 115 #endif
101 extern int user_min_free_kbytes; 116 extern int user_min_free_kbytes;
102 117
103 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 118 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
104 119
105 /* 120 /*
106 * in mm/compaction.c 121 * in mm/compaction.c
107 */ 122 */
108 /* 123 /*
109 * compact_control is used to track pages being migrated and the free pages 124 * compact_control is used to track pages being migrated and the free pages
110 * they are being migrated to during memory compaction. The free_pfn starts 125 * they are being migrated to during memory compaction. The free_pfn starts
111 * at the end of a zone and migrate_pfn begins at the start. Movable pages 126 * at the end of a zone and migrate_pfn begins at the start. Movable pages
112 * are moved to the end of a zone during a compaction run and the run 127 * are moved to the end of a zone during a compaction run and the run
113 * completes when free_pfn <= migrate_pfn 128 * completes when free_pfn <= migrate_pfn
114 */ 129 */
115 struct compact_control { 130 struct compact_control {
116 struct list_head freepages; /* List of free pages to migrate to */ 131 struct list_head freepages; /* List of free pages to migrate to */
117 struct list_head migratepages; /* List of pages being migrated */ 132 struct list_head migratepages; /* List of pages being migrated */
118 unsigned long nr_freepages; /* Number of isolated free pages */ 133 unsigned long nr_freepages; /* Number of isolated free pages */
119 unsigned long nr_migratepages; /* Number of pages to migrate */ 134 unsigned long nr_migratepages; /* Number of pages to migrate */
120 unsigned long free_pfn; /* isolate_freepages search base */ 135 unsigned long free_pfn; /* isolate_freepages search base */
121 unsigned long migrate_pfn; /* isolate_migratepages search base */ 136 unsigned long migrate_pfn; /* isolate_migratepages search base */
122 bool sync; /* Synchronous migration */ 137 bool sync; /* Synchronous migration */
123 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 138 bool ignore_skip_hint; /* Scan blocks even if marked skip */
124 bool finished_update_free; /* True when the zone cached pfns are 139 bool finished_update_free; /* True when the zone cached pfns are
125 * no longer being updated 140 * no longer being updated
126 */ 141 */
127 bool finished_update_migrate; 142 bool finished_update_migrate;
128 143
129 int order; /* order a direct compactor needs */ 144 int order; /* order a direct compactor needs */
130 int migratetype; /* MOVABLE, RECLAIMABLE etc */ 145 int migratetype; /* MOVABLE, RECLAIMABLE etc */
131 struct zone *zone; 146 struct zone *zone;
132 bool contended; /* True if a lock was contended */ 147 bool contended; /* True if a lock was contended */
133 }; 148 };
134 149
135 unsigned long 150 unsigned long
136 isolate_freepages_range(struct compact_control *cc, 151 isolate_freepages_range(struct compact_control *cc,
137 unsigned long start_pfn, unsigned long end_pfn); 152 unsigned long start_pfn, unsigned long end_pfn);
138 unsigned long 153 unsigned long
139 isolate_migratepages_range(struct zone *zone, struct compact_control *cc, 154 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
140 unsigned long low_pfn, unsigned long end_pfn, bool unevictable); 155 unsigned long low_pfn, unsigned long end_pfn, bool unevictable);
141 156
142 #endif 157 #endif
143 158
144 /* 159 /*
145 * This function returns the order of a free page in the buddy system. In 160 * This function returns the order of a free page in the buddy system. In
146 * general, page_zone(page)->lock must be held by the caller to prevent the 161 * general, page_zone(page)->lock must be held by the caller to prevent the
147 * page from being allocated in parallel and returning garbage as the order. 162 * page from being allocated in parallel and returning garbage as the order.
148 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 163 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
149 * page cannot be allocated or merged in parallel. 164 * page cannot be allocated or merged in parallel.
150 */ 165 */
151 static inline unsigned long page_order(struct page *page) 166 static inline unsigned long page_order(struct page *page)
152 { 167 {
153 /* PageBuddy() must be checked by the caller */ 168 /* PageBuddy() must be checked by the caller */
154 return page_private(page); 169 return page_private(page);
155 } 170 }
156 171
157 /* mm/util.c */ 172 /* mm/util.c */
158 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 173 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
159 struct vm_area_struct *prev, struct rb_node *rb_parent); 174 struct vm_area_struct *prev, struct rb_node *rb_parent);
160 175
161 #ifdef CONFIG_MMU 176 #ifdef CONFIG_MMU
162 extern long __mlock_vma_pages_range(struct vm_area_struct *vma, 177 extern long __mlock_vma_pages_range(struct vm_area_struct *vma,
163 unsigned long start, unsigned long end, int *nonblocking); 178 unsigned long start, unsigned long end, int *nonblocking);
164 extern void munlock_vma_pages_range(struct vm_area_struct *vma, 179 extern void munlock_vma_pages_range(struct vm_area_struct *vma,
165 unsigned long start, unsigned long end); 180 unsigned long start, unsigned long end);
166 static inline void munlock_vma_pages_all(struct vm_area_struct *vma) 181 static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
167 { 182 {
168 munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); 183 munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
169 } 184 }
170 185
171 /* 186 /*
172 * Called only in fault path, to determine if a new page is being 187 * Called only in fault path, to determine if a new page is being
173 * mapped into a LOCKED vma. If it is, mark page as mlocked. 188 * mapped into a LOCKED vma. If it is, mark page as mlocked.
174 */ 189 */
175 static inline int mlocked_vma_newpage(struct vm_area_struct *vma, 190 static inline int mlocked_vma_newpage(struct vm_area_struct *vma,
176 struct page *page) 191 struct page *page)
177 { 192 {
178 VM_BUG_ON_PAGE(PageLRU(page), page); 193 VM_BUG_ON_PAGE(PageLRU(page), page);
179 194
180 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) 195 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
181 return 0; 196 return 0;
182 197
183 if (!TestSetPageMlocked(page)) { 198 if (!TestSetPageMlocked(page)) {
184 mod_zone_page_state(page_zone(page), NR_MLOCK, 199 mod_zone_page_state(page_zone(page), NR_MLOCK,
185 hpage_nr_pages(page)); 200 hpage_nr_pages(page));
186 count_vm_event(UNEVICTABLE_PGMLOCKED); 201 count_vm_event(UNEVICTABLE_PGMLOCKED);
187 } 202 }
188 return 1; 203 return 1;
189 } 204 }
190 205
191 /* 206 /*
192 * must be called with vma's mmap_sem held for read or write, and page locked. 207 * must be called with vma's mmap_sem held for read or write, and page locked.
193 */ 208 */
194 extern void mlock_vma_page(struct page *page); 209 extern void mlock_vma_page(struct page *page);
195 extern unsigned int munlock_vma_page(struct page *page); 210 extern unsigned int munlock_vma_page(struct page *page);
196 211
197 /* 212 /*
198 * Clear the page's PageMlocked(). This can be useful in a situation where 213 * Clear the page's PageMlocked(). This can be useful in a situation where
199 * we want to unconditionally remove a page from the pagecache -- e.g., 214 * we want to unconditionally remove a page from the pagecache -- e.g.,
200 * on truncation or freeing. 215 * on truncation or freeing.
201 * 216 *
202 * It is legal to call this function for any page, mlocked or not. 217 * It is legal to call this function for any page, mlocked or not.
203 * If called for a page that is still mapped by mlocked vmas, all we do 218 * If called for a page that is still mapped by mlocked vmas, all we do
204 * is revert to lazy LRU behaviour -- semantics are not broken. 219 * is revert to lazy LRU behaviour -- semantics are not broken.
205 */ 220 */
206 extern void clear_page_mlock(struct page *page); 221 extern void clear_page_mlock(struct page *page);
207 222
208 /* 223 /*
209 * mlock_migrate_page - called only from migrate_page_copy() to 224 * mlock_migrate_page - called only from migrate_page_copy() to
210 * migrate the Mlocked page flag; update statistics. 225 * migrate the Mlocked page flag; update statistics.
211 */ 226 */
212 static inline void mlock_migrate_page(struct page *newpage, struct page *page) 227 static inline void mlock_migrate_page(struct page *newpage, struct page *page)
213 { 228 {
214 if (TestClearPageMlocked(page)) { 229 if (TestClearPageMlocked(page)) {
215 unsigned long flags; 230 unsigned long flags;
216 int nr_pages = hpage_nr_pages(page); 231 int nr_pages = hpage_nr_pages(page);
217 232
218 local_irq_save(flags); 233 local_irq_save(flags);
219 __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); 234 __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
220 SetPageMlocked(newpage); 235 SetPageMlocked(newpage);
221 __mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages); 236 __mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages);
222 local_irq_restore(flags); 237 local_irq_restore(flags);
223 } 238 }
224 } 239 }
225 240
226 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 241 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
227 242
228 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 243 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
229 extern unsigned long vma_address(struct page *page, 244 extern unsigned long vma_address(struct page *page,
230 struct vm_area_struct *vma); 245 struct vm_area_struct *vma);
231 #endif 246 #endif
232 #else /* !CONFIG_MMU */ 247 #else /* !CONFIG_MMU */
233 static inline int mlocked_vma_newpage(struct vm_area_struct *v, struct page *p) 248 static inline int mlocked_vma_newpage(struct vm_area_struct *v, struct page *p)
234 { 249 {
235 return 0; 250 return 0;
236 } 251 }
237 static inline void clear_page_mlock(struct page *page) { } 252 static inline void clear_page_mlock(struct page *page) { }
238 static inline void mlock_vma_page(struct page *page) { } 253 static inline void mlock_vma_page(struct page *page) { }
239 static inline void mlock_migrate_page(struct page *new, struct page *old) { } 254 static inline void mlock_migrate_page(struct page *new, struct page *old) { }
240 255
241 #endif /* !CONFIG_MMU */ 256 #endif /* !CONFIG_MMU */
242 257
243 /* 258 /*
244 * Return the mem_map entry representing the 'offset' subpage within 259 * Return the mem_map entry representing the 'offset' subpage within
245 * the maximally aligned gigantic page 'base'. Handle any discontiguity 260 * the maximally aligned gigantic page 'base'. Handle any discontiguity
246 * in the mem_map at MAX_ORDER_NR_PAGES boundaries. 261 * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
247 */ 262 */
248 static inline struct page *mem_map_offset(struct page *base, int offset) 263 static inline struct page *mem_map_offset(struct page *base, int offset)
249 { 264 {
250 if (unlikely(offset >= MAX_ORDER_NR_PAGES)) 265 if (unlikely(offset >= MAX_ORDER_NR_PAGES))
251 return pfn_to_page(page_to_pfn(base) + offset); 266 return pfn_to_page(page_to_pfn(base) + offset);
252 return base + offset; 267 return base + offset;
253 } 268 }
254 269
255 /* 270 /*
256 * Iterator over all subpages within the maximally aligned gigantic 271 * Iterator over all subpages within the maximally aligned gigantic
257 * page 'base'. Handle any discontiguity in the mem_map. 272 * page 'base'. Handle any discontiguity in the mem_map.
258 */ 273 */
259 static inline struct page *mem_map_next(struct page *iter, 274 static inline struct page *mem_map_next(struct page *iter,
260 struct page *base, int offset) 275 struct page *base, int offset)
261 { 276 {
262 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) { 277 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
263 unsigned long pfn = page_to_pfn(base) + offset; 278 unsigned long pfn = page_to_pfn(base) + offset;
264 if (!pfn_valid(pfn)) 279 if (!pfn_valid(pfn))
265 return NULL; 280 return NULL;
266 return pfn_to_page(pfn); 281 return pfn_to_page(pfn);
267 } 282 }
268 return iter + 1; 283 return iter + 1;
269 } 284 }
270 285
271 /* 286 /*
272 * FLATMEM and DISCONTIGMEM configurations use alloc_bootmem_node, 287 * FLATMEM and DISCONTIGMEM configurations use alloc_bootmem_node,
273 * so all functions starting at paging_init should be marked __init 288 * so all functions starting at paging_init should be marked __init
274 * in those cases. SPARSEMEM, however, allows for memory hotplug, 289 * in those cases. SPARSEMEM, however, allows for memory hotplug,
275 * and alloc_bootmem_node is not used. 290 * and alloc_bootmem_node is not used.
276 */ 291 */
277 #ifdef CONFIG_SPARSEMEM 292 #ifdef CONFIG_SPARSEMEM
278 #define __paginginit __meminit 293 #define __paginginit __meminit
279 #else 294 #else
280 #define __paginginit __init 295 #define __paginginit __init
281 #endif 296 #endif
282 297
283 /* Memory initialisation debug and verification */ 298 /* Memory initialisation debug and verification */
284 enum mminit_level { 299 enum mminit_level {
285 MMINIT_WARNING, 300 MMINIT_WARNING,
286 MMINIT_VERIFY, 301 MMINIT_VERIFY,
287 MMINIT_TRACE 302 MMINIT_TRACE
288 }; 303 };
289 304
290 #ifdef CONFIG_DEBUG_MEMORY_INIT 305 #ifdef CONFIG_DEBUG_MEMORY_INIT
291 306
292 extern int mminit_loglevel; 307 extern int mminit_loglevel;
293 308
294 #define mminit_dprintk(level, prefix, fmt, arg...) \ 309 #define mminit_dprintk(level, prefix, fmt, arg...) \
295 do { \ 310 do { \
296 if (level < mminit_loglevel) { \ 311 if (level < mminit_loglevel) { \
297 printk(level <= MMINIT_WARNING ? KERN_WARNING : KERN_DEBUG); \ 312 printk(level <= MMINIT_WARNING ? KERN_WARNING : KERN_DEBUG); \
298 printk(KERN_CONT "mminit::" prefix " " fmt, ##arg); \ 313 printk(KERN_CONT "mminit::" prefix " " fmt, ##arg); \
299 } \ 314 } \
300 } while (0) 315 } while (0)
301 316
302 extern void mminit_verify_pageflags_layout(void); 317 extern void mminit_verify_pageflags_layout(void);
303 extern void mminit_verify_page_links(struct page *page, 318 extern void mminit_verify_page_links(struct page *page,
304 enum zone_type zone, unsigned long nid, unsigned long pfn); 319 enum zone_type zone, unsigned long nid, unsigned long pfn);
305 extern void mminit_verify_zonelist(void); 320 extern void mminit_verify_zonelist(void);
306 321
307 #else 322 #else
308 323
309 static inline void mminit_dprintk(enum mminit_level level, 324 static inline void mminit_dprintk(enum mminit_level level,
310 const char *prefix, const char *fmt, ...) 325 const char *prefix, const char *fmt, ...)
311 { 326 {
312 } 327 }
313 328
314 static inline void mminit_verify_pageflags_layout(void) 329 static inline void mminit_verify_pageflags_layout(void)
315 { 330 {
316 } 331 }
317 332
318 static inline void mminit_verify_page_links(struct page *page, 333 static inline void mminit_verify_page_links(struct page *page,
319 enum zone_type zone, unsigned long nid, unsigned long pfn) 334 enum zone_type zone, unsigned long nid, unsigned long pfn)
320 { 335 {
321 } 336 }
322 337
323 static inline void mminit_verify_zonelist(void) 338 static inline void mminit_verify_zonelist(void)
324 { 339 {
325 } 340 }
326 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 341 #endif /* CONFIG_DEBUG_MEMORY_INIT */
327 342
328 /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ 343 /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
329 #if defined(CONFIG_SPARSEMEM) 344 #if defined(CONFIG_SPARSEMEM)
330 extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, 345 extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
331 unsigned long *end_pfn); 346 unsigned long *end_pfn);
332 #else 347 #else
333 static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, 348 static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
334 unsigned long *end_pfn) 349 unsigned long *end_pfn)
335 { 350 {
336 } 351 }
337 #endif /* CONFIG_SPARSEMEM */ 352 #endif /* CONFIG_SPARSEMEM */
338 353
339 #define ZONE_RECLAIM_NOSCAN -2 354 #define ZONE_RECLAIM_NOSCAN -2
340 #define ZONE_RECLAIM_FULL -1 355 #define ZONE_RECLAIM_FULL -1
341 #define ZONE_RECLAIM_SOME 0 356 #define ZONE_RECLAIM_SOME 0
342 #define ZONE_RECLAIM_SUCCESS 1 357 #define ZONE_RECLAIM_SUCCESS 1
343 358
344 extern int hwpoison_filter(struct page *p); 359 extern int hwpoison_filter(struct page *p);
345 360
346 extern u32 hwpoison_filter_dev_major; 361 extern u32 hwpoison_filter_dev_major;
347 extern u32 hwpoison_filter_dev_minor; 362 extern u32 hwpoison_filter_dev_minor;
348 extern u64 hwpoison_filter_flags_mask; 363 extern u64 hwpoison_filter_flags_mask;
349 extern u64 hwpoison_filter_flags_value; 364 extern u64 hwpoison_filter_flags_value;
350 extern u64 hwpoison_filter_memcg; 365 extern u64 hwpoison_filter_memcg;
351 extern u32 hwpoison_filter_enable; 366 extern u32 hwpoison_filter_enable;
352 367
353 extern unsigned long vm_mmap_pgoff(struct file *, unsigned long, 368 extern unsigned long vm_mmap_pgoff(struct file *, unsigned long,
354 unsigned long, unsigned long, 369 unsigned long, unsigned long,
355 unsigned long, unsigned long); 370 unsigned long, unsigned long);
356 371
357 extern void set_pageblock_order(void); 372 extern void set_pageblock_order(void);
358 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 373 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
359 struct list_head *page_list); 374 struct list_head *page_list);
360 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 375 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
361 #define ALLOC_WMARK_MIN WMARK_MIN 376 #define ALLOC_WMARK_MIN WMARK_MIN
362 #define ALLOC_WMARK_LOW WMARK_LOW 377 #define ALLOC_WMARK_LOW WMARK_LOW
363 #define ALLOC_WMARK_HIGH WMARK_HIGH 378 #define ALLOC_WMARK_HIGH WMARK_HIGH
364 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 379 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
365 380
366 /* Mask to get the watermark bits */ 381 /* Mask to get the watermark bits */
367 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 382 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
368 383
369 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 384 #define ALLOC_HARDER 0x10 /* try to alloc harder */
370 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 385 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
371 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 386 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
372 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 387 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
373 #define ALLOC_FAIR 0x100 /* fair zone allocation */ 388 #define ALLOC_FAIR 0x100 /* fair zone allocation */
374 389
375 #endif /* __MM_INTERNAL_H */ 390 #endif /* __MM_INTERNAL_H */
376 391
1 /* 1 /*
2 * mm/readahead.c - address_space-level file readahead. 2 * mm/readahead.c - address_space-level file readahead.
3 * 3 *
4 * Copyright (C) 2002, Linus Torvalds 4 * Copyright (C) 2002, Linus Torvalds
5 * 5 *
6 * 09Apr2002 Andrew Morton 6 * 09Apr2002 Andrew Morton
7 * Initial version. 7 * Initial version.
8 */ 8 */
9 9
10 #include <linux/kernel.h> 10 #include <linux/kernel.h>
11 #include <linux/fs.h>
12 #include <linux/gfp.h> 11 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/export.h> 12 #include <linux/export.h>
15 #include <linux/blkdev.h> 13 #include <linux/blkdev.h>
16 #include <linux/backing-dev.h> 14 #include <linux/backing-dev.h>
17 #include <linux/task_io_accounting_ops.h> 15 #include <linux/task_io_accounting_ops.h>
18 #include <linux/pagevec.h> 16 #include <linux/pagevec.h>
19 #include <linux/pagemap.h> 17 #include <linux/pagemap.h>
20 #include <linux/syscalls.h> 18 #include <linux/syscalls.h>
21 #include <linux/file.h> 19 #include <linux/file.h>
22 20
21 #include "internal.h"
22
23 /* 23 /*
24 * Initialise a struct file's readahead state. Assumes that the caller has 24 * Initialise a struct file's readahead state. Assumes that the caller has
25 * memset *ra to zero. 25 * memset *ra to zero.
26 */ 26 */
27 void 27 void
28 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping) 28 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
29 { 29 {
30 ra->ra_pages = mapping->backing_dev_info->ra_pages; 30 ra->ra_pages = mapping->backing_dev_info->ra_pages;
31 ra->prev_pos = -1; 31 ra->prev_pos = -1;
32 } 32 }
33 EXPORT_SYMBOL_GPL(file_ra_state_init); 33 EXPORT_SYMBOL_GPL(file_ra_state_init);
34 34
35 #define list_to_page(head) (list_entry((head)->prev, struct page, lru)) 35 #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
36 36
37 /* 37 /*
38 * see if a page needs releasing upon read_cache_pages() failure 38 * see if a page needs releasing upon read_cache_pages() failure
39 * - the caller of read_cache_pages() may have set PG_private or PG_fscache 39 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
40 * before calling, such as the NFS fs marking pages that are cached locally 40 * before calling, such as the NFS fs marking pages that are cached locally
41 * on disk, thus we need to give the fs a chance to clean up in the event of 41 * on disk, thus we need to give the fs a chance to clean up in the event of
42 * an error 42 * an error
43 */ 43 */
44 static void read_cache_pages_invalidate_page(struct address_space *mapping, 44 static void read_cache_pages_invalidate_page(struct address_space *mapping,
45 struct page *page) 45 struct page *page)
46 { 46 {
47 if (page_has_private(page)) { 47 if (page_has_private(page)) {
48 if (!trylock_page(page)) 48 if (!trylock_page(page))
49 BUG(); 49 BUG();
50 page->mapping = mapping; 50 page->mapping = mapping;
51 do_invalidatepage(page, 0, PAGE_CACHE_SIZE); 51 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
52 page->mapping = NULL; 52 page->mapping = NULL;
53 unlock_page(page); 53 unlock_page(page);
54 } 54 }
55 page_cache_release(page); 55 page_cache_release(page);
56 } 56 }
57 57
58 /* 58 /*
59 * release a list of pages, invalidating them first if need be 59 * release a list of pages, invalidating them first if need be
60 */ 60 */
61 static void read_cache_pages_invalidate_pages(struct address_space *mapping, 61 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
62 struct list_head *pages) 62 struct list_head *pages)
63 { 63 {
64 struct page *victim; 64 struct page *victim;
65 65
66 while (!list_empty(pages)) { 66 while (!list_empty(pages)) {
67 victim = list_to_page(pages); 67 victim = list_to_page(pages);
68 list_del(&victim->lru); 68 list_del(&victim->lru);
69 read_cache_pages_invalidate_page(mapping, victim); 69 read_cache_pages_invalidate_page(mapping, victim);
70 } 70 }
71 } 71 }
72 72
73 /** 73 /**
74 * read_cache_pages - populate an address space with some pages & start reads against them 74 * read_cache_pages - populate an address space with some pages & start reads against them
75 * @mapping: the address_space 75 * @mapping: the address_space
76 * @pages: The address of a list_head which contains the target pages. These 76 * @pages: The address of a list_head which contains the target pages. These
77 * pages have their ->index populated and are otherwise uninitialised. 77 * pages have their ->index populated and are otherwise uninitialised.
78 * @filler: callback routine for filling a single page. 78 * @filler: callback routine for filling a single page.
79 * @data: private data for the callback routine. 79 * @data: private data for the callback routine.
80 * 80 *
81 * Hides the details of the LRU cache etc from the filesystems. 81 * Hides the details of the LRU cache etc from the filesystems.
82 */ 82 */
83 int read_cache_pages(struct address_space *mapping, struct list_head *pages, 83 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
84 int (*filler)(void *, struct page *), void *data) 84 int (*filler)(void *, struct page *), void *data)
85 { 85 {
86 struct page *page; 86 struct page *page;
87 int ret = 0; 87 int ret = 0;
88 88
89 while (!list_empty(pages)) { 89 while (!list_empty(pages)) {
90 page = list_to_page(pages); 90 page = list_to_page(pages);
91 list_del(&page->lru); 91 list_del(&page->lru);
92 if (add_to_page_cache_lru(page, mapping, 92 if (add_to_page_cache_lru(page, mapping,
93 page->index, GFP_KERNEL)) { 93 page->index, GFP_KERNEL)) {
94 read_cache_pages_invalidate_page(mapping, page); 94 read_cache_pages_invalidate_page(mapping, page);
95 continue; 95 continue;
96 } 96 }
97 page_cache_release(page); 97 page_cache_release(page);
98 98
99 ret = filler(data, page); 99 ret = filler(data, page);
100 if (unlikely(ret)) { 100 if (unlikely(ret)) {
101 read_cache_pages_invalidate_pages(mapping, pages); 101 read_cache_pages_invalidate_pages(mapping, pages);
102 break; 102 break;
103 } 103 }
104 task_io_account_read(PAGE_CACHE_SIZE); 104 task_io_account_read(PAGE_CACHE_SIZE);
105 } 105 }
106 return ret; 106 return ret;
107 } 107 }
108 108
109 EXPORT_SYMBOL(read_cache_pages); 109 EXPORT_SYMBOL(read_cache_pages);
110 110
111 static int read_pages(struct address_space *mapping, struct file *filp, 111 static int read_pages(struct address_space *mapping, struct file *filp,
112 struct list_head *pages, unsigned nr_pages) 112 struct list_head *pages, unsigned nr_pages)
113 { 113 {
114 struct blk_plug plug; 114 struct blk_plug plug;
115 unsigned page_idx; 115 unsigned page_idx;
116 int ret; 116 int ret;
117 117
118 blk_start_plug(&plug); 118 blk_start_plug(&plug);
119 119
120 if (mapping->a_ops->readpages) { 120 if (mapping->a_ops->readpages) {
121 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages); 121 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
122 /* Clean up the remaining pages */ 122 /* Clean up the remaining pages */
123 put_pages_list(pages); 123 put_pages_list(pages);
124 goto out; 124 goto out;
125 } 125 }
126 126
127 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 127 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
128 struct page *page = list_to_page(pages); 128 struct page *page = list_to_page(pages);
129 list_del(&page->lru); 129 list_del(&page->lru);
130 if (!add_to_page_cache_lru(page, mapping, 130 if (!add_to_page_cache_lru(page, mapping,
131 page->index, GFP_KERNEL)) { 131 page->index, GFP_KERNEL)) {
132 mapping->a_ops->readpage(filp, page); 132 mapping->a_ops->readpage(filp, page);
133 } 133 }
134 page_cache_release(page); 134 page_cache_release(page);
135 } 135 }
136 ret = 0; 136 ret = 0;
137 137
138 out: 138 out:
139 blk_finish_plug(&plug); 139 blk_finish_plug(&plug);
140 140
141 return ret; 141 return ret;
142 } 142 }
143 143
144 /* 144 /*
145 * __do_page_cache_readahead() actually reads a chunk of disk. It allocates all 145 * __do_page_cache_readahead() actually reads a chunk of disk. It allocates all
146 * the pages first, then submits them all for I/O. This avoids the very bad 146 * the pages first, then submits them all for I/O. This avoids the very bad
147 * behaviour which would occur if page allocations are causing VM writeback. 147 * behaviour which would occur if page allocations are causing VM writeback.
148 * We really don't want to intermingle reads and writes like that. 148 * We really don't want to intermingle reads and writes like that.
149 * 149 *
150 * Returns the number of pages requested, or the maximum amount of I/O allowed. 150 * Returns the number of pages requested, or the maximum amount of I/O allowed.
151 */ 151 */
152 static int 152 int __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
153 __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
154 pgoff_t offset, unsigned long nr_to_read, 153 pgoff_t offset, unsigned long nr_to_read,
155 unsigned long lookahead_size) 154 unsigned long lookahead_size)
156 { 155 {
157 struct inode *inode = mapping->host; 156 struct inode *inode = mapping->host;
158 struct page *page; 157 struct page *page;
159 unsigned long end_index; /* The last page we want to read */ 158 unsigned long end_index; /* The last page we want to read */
160 LIST_HEAD(page_pool); 159 LIST_HEAD(page_pool);
161 int page_idx; 160 int page_idx;
162 int ret = 0; 161 int ret = 0;
163 loff_t isize = i_size_read(inode); 162 loff_t isize = i_size_read(inode);
164 163
165 if (isize == 0) 164 if (isize == 0)
166 goto out; 165 goto out;
167 166
168 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT); 167 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
169 168
170 /* 169 /*
171 * Preallocate as many pages as we will need. 170 * Preallocate as many pages as we will need.
172 */ 171 */
173 for (page_idx = 0; page_idx < nr_to_read; page_idx++) { 172 for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
174 pgoff_t page_offset = offset + page_idx; 173 pgoff_t page_offset = offset + page_idx;
175 174
176 if (page_offset > end_index) 175 if (page_offset > end_index)
177 break; 176 break;
178 177
179 rcu_read_lock(); 178 rcu_read_lock();
180 page = radix_tree_lookup(&mapping->page_tree, page_offset); 179 page = radix_tree_lookup(&mapping->page_tree, page_offset);
181 rcu_read_unlock(); 180 rcu_read_unlock();
182 if (page && !radix_tree_exceptional_entry(page)) 181 if (page && !radix_tree_exceptional_entry(page))
183 continue; 182 continue;
184 183
185 page = page_cache_alloc_readahead(mapping); 184 page = page_cache_alloc_readahead(mapping);
186 if (!page) 185 if (!page)
187 break; 186 break;
188 page->index = page_offset; 187 page->index = page_offset;
189 list_add(&page->lru, &page_pool); 188 list_add(&page->lru, &page_pool);
190 if (page_idx == nr_to_read - lookahead_size) 189 if (page_idx == nr_to_read - lookahead_size)
191 SetPageReadahead(page); 190 SetPageReadahead(page);
192 ret++; 191 ret++;
193 } 192 }
194 193
195 /* 194 /*
196 * Now start the IO. We ignore I/O errors - if the page is not 195 * Now start the IO. We ignore I/O errors - if the page is not
197 * uptodate then the caller will launch readpage again, and 196 * uptodate then the caller will launch readpage again, and
198 * will then handle the error. 197 * will then handle the error.
199 */ 198 */
200 if (ret) 199 if (ret)
201 read_pages(mapping, filp, &page_pool, ret); 200 read_pages(mapping, filp, &page_pool, ret);
202 BUG_ON(!list_empty(&page_pool)); 201 BUG_ON(!list_empty(&page_pool));
203 out: 202 out:
204 return ret; 203 return ret;
205 } 204 }
206 205
207 /* 206 /*
208 * Chunk the readahead into 2 megabyte units, so that we don't pin too much 207 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
209 * memory at once. 208 * memory at once.
210 */ 209 */
211 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 210 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
212 pgoff_t offset, unsigned long nr_to_read) 211 pgoff_t offset, unsigned long nr_to_read)
213 { 212 {
214 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages)) 213 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
215 return -EINVAL; 214 return -EINVAL;
216 215
217 nr_to_read = max_sane_readahead(nr_to_read); 216 nr_to_read = max_sane_readahead(nr_to_read);
218 while (nr_to_read) { 217 while (nr_to_read) {
219 int err; 218 int err;
220 219
221 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE; 220 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
222 221
223 if (this_chunk > nr_to_read) 222 if (this_chunk > nr_to_read)
224 this_chunk = nr_to_read; 223 this_chunk = nr_to_read;
225 err = __do_page_cache_readahead(mapping, filp, 224 err = __do_page_cache_readahead(mapping, filp,
226 offset, this_chunk, 0); 225 offset, this_chunk, 0);
227 if (err < 0) 226 if (err < 0)
228 return err; 227 return err;
229 228
230 offset += this_chunk; 229 offset += this_chunk;
231 nr_to_read -= this_chunk; 230 nr_to_read -= this_chunk;
232 } 231 }
233 return 0; 232 return 0;
234 } 233 }
235 234
236 #define MAX_READAHEAD ((512*4096)/PAGE_CACHE_SIZE) 235 #define MAX_READAHEAD ((512*4096)/PAGE_CACHE_SIZE)
237 /* 236 /*
238 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a 237 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
239 * sensible upper limit. 238 * sensible upper limit.
240 */ 239 */
241 unsigned long max_sane_readahead(unsigned long nr) 240 unsigned long max_sane_readahead(unsigned long nr)
242 { 241 {
243 return min(nr, MAX_READAHEAD); 242 return min(nr, MAX_READAHEAD);
244 }
245
246 /*
247 * Submit IO for the read-ahead request in file_ra_state.
248 */
249 unsigned long ra_submit(struct file_ra_state *ra,
250 struct address_space *mapping, struct file *filp)
251 {
252 int actual;
253
254 actual = __do_page_cache_readahead(mapping, filp,
255 ra->start, ra->size, ra->async_size);
256
257 return actual;
258 } 243 }
259 244
260 /* 245 /*
261 * Set the initial window size, round to next power of 2 and square 246 * Set the initial window size, round to next power of 2 and square
262 * for small size, x 4 for medium, and x 2 for large 247 * for small size, x 4 for medium, and x 2 for large
263 * for 128k (32 page) max ra 248 * for 128k (32 page) max ra
264 * 1-8 page = 32k initial, > 8 page = 128k initial 249 * 1-8 page = 32k initial, > 8 page = 128k initial
265 */ 250 */
266 static unsigned long get_init_ra_size(unsigned long size, unsigned long max) 251 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
267 { 252 {
268 unsigned long newsize = roundup_pow_of_two(size); 253 unsigned long newsize = roundup_pow_of_two(size);
269 254
270 if (newsize <= max / 32) 255 if (newsize <= max / 32)
271 newsize = newsize * 4; 256 newsize = newsize * 4;
272 else if (newsize <= max / 4) 257 else if (newsize <= max / 4)
273 newsize = newsize * 2; 258 newsize = newsize * 2;
274 else 259 else
275 newsize = max; 260 newsize = max;
276 261
277 return newsize; 262 return newsize;
278 } 263 }
279 264
280 /* 265 /*
281 * Get the previous window size, ramp it up, and 266 * Get the previous window size, ramp it up, and
282 * return it as the new window size. 267 * return it as the new window size.
283 */ 268 */
284 static unsigned long get_next_ra_size(struct file_ra_state *ra, 269 static unsigned long get_next_ra_size(struct file_ra_state *ra,
285 unsigned long max) 270 unsigned long max)
286 { 271 {
287 unsigned long cur = ra->size; 272 unsigned long cur = ra->size;
288 unsigned long newsize; 273 unsigned long newsize;
289 274
290 if (cur < max / 16) 275 if (cur < max / 16)
291 newsize = 4 * cur; 276 newsize = 4 * cur;
292 else 277 else
293 newsize = 2 * cur; 278 newsize = 2 * cur;
294 279
295 return min(newsize, max); 280 return min(newsize, max);
296 } 281 }
297 282
298 /* 283 /*
299 * On-demand readahead design. 284 * On-demand readahead design.
300 * 285 *
301 * The fields in struct file_ra_state represent the most-recently-executed 286 * The fields in struct file_ra_state represent the most-recently-executed
302 * readahead attempt: 287 * readahead attempt:
303 * 288 *
304 * |<----- async_size ---------| 289 * |<----- async_size ---------|
305 * |------------------- size -------------------->| 290 * |------------------- size -------------------->|
306 * |==================#===========================| 291 * |==================#===========================|
307 * ^start ^page marked with PG_readahead 292 * ^start ^page marked with PG_readahead
308 * 293 *
309 * To overlap application thinking time and disk I/O time, we do 294 * To overlap application thinking time and disk I/O time, we do
310 * `readahead pipelining': Do not wait until the application consumed all 295 * `readahead pipelining': Do not wait until the application consumed all
311 * readahead pages and stalled on the missing page at readahead_index; 296 * readahead pages and stalled on the missing page at readahead_index;
312 * Instead, submit an asynchronous readahead I/O as soon as there are 297 * Instead, submit an asynchronous readahead I/O as soon as there are
313 * only async_size pages left in the readahead window. Normally async_size 298 * only async_size pages left in the readahead window. Normally async_size
314 * will be equal to size, for maximum pipelining. 299 * will be equal to size, for maximum pipelining.
315 * 300 *
316 * In interleaved sequential reads, concurrent streams on the same fd can 301 * In interleaved sequential reads, concurrent streams on the same fd can
317 * be invalidating each other's readahead state. So we flag the new readahead 302 * be invalidating each other's readahead state. So we flag the new readahead
318 * page at (start+size-async_size) with PG_readahead, and use it as readahead 303 * page at (start+size-async_size) with PG_readahead, and use it as readahead
319 * indicator. The flag won't be set on already cached pages, to avoid the 304 * indicator. The flag won't be set on already cached pages, to avoid the
320 * readahead-for-nothing fuss, saving pointless page cache lookups. 305 * readahead-for-nothing fuss, saving pointless page cache lookups.
321 * 306 *
322 * prev_pos tracks the last visited byte in the _previous_ read request. 307 * prev_pos tracks the last visited byte in the _previous_ read request.
323 * It should be maintained by the caller, and will be used for detecting 308 * It should be maintained by the caller, and will be used for detecting
324 * small random reads. Note that the readahead algorithm checks loosely 309 * small random reads. Note that the readahead algorithm checks loosely
325 * for sequential patterns. Hence interleaved reads might be served as 310 * for sequential patterns. Hence interleaved reads might be served as
326 * sequential ones. 311 * sequential ones.
327 * 312 *
328 * There is a special-case: if the first page which the application tries to 313 * There is a special-case: if the first page which the application tries to
329 * read happens to be the first page of the file, it is assumed that a linear 314 * read happens to be the first page of the file, it is assumed that a linear
330 * read is about to happen and the window is immediately set to the initial size 315 * read is about to happen and the window is immediately set to the initial size
331 * based on I/O request size and the max_readahead. 316 * based on I/O request size and the max_readahead.
332 * 317 *
333 * The code ramps up the readahead size aggressively at first, but slow down as 318 * The code ramps up the readahead size aggressively at first, but slow down as
334 * it approaches max_readhead. 319 * it approaches max_readhead.
335 */ 320 */
336 321
337 /* 322 /*
338 * Count contiguously cached pages from @offset-1 to @offset-@max, 323 * Count contiguously cached pages from @offset-1 to @offset-@max,
339 * this count is a conservative estimation of 324 * this count is a conservative estimation of
340 * - length of the sequential read sequence, or 325 * - length of the sequential read sequence, or
341 * - thrashing threshold in memory tight systems 326 * - thrashing threshold in memory tight systems
342 */ 327 */
343 static pgoff_t count_history_pages(struct address_space *mapping, 328 static pgoff_t count_history_pages(struct address_space *mapping,
344 struct file_ra_state *ra, 329 struct file_ra_state *ra,
345 pgoff_t offset, unsigned long max) 330 pgoff_t offset, unsigned long max)
346 { 331 {
347 pgoff_t head; 332 pgoff_t head;
348 333
349 rcu_read_lock(); 334 rcu_read_lock();
350 head = page_cache_prev_hole(mapping, offset - 1, max); 335 head = page_cache_prev_hole(mapping, offset - 1, max);
351 rcu_read_unlock(); 336 rcu_read_unlock();
352 337
353 return offset - 1 - head; 338 return offset - 1 - head;
354 } 339 }
355 340
356 /* 341 /*
357 * page cache context based read-ahead 342 * page cache context based read-ahead
358 */ 343 */
359 static int try_context_readahead(struct address_space *mapping, 344 static int try_context_readahead(struct address_space *mapping,
360 struct file_ra_state *ra, 345 struct file_ra_state *ra,
361 pgoff_t offset, 346 pgoff_t offset,
362 unsigned long req_size, 347 unsigned long req_size,
363 unsigned long max) 348 unsigned long max)
364 { 349 {
365 pgoff_t size; 350 pgoff_t size;
366 351
367 size = count_history_pages(mapping, ra, offset, max); 352 size = count_history_pages(mapping, ra, offset, max);
368 353
369 /* 354 /*
370 * not enough history pages: 355 * not enough history pages:
371 * it could be a random read 356 * it could be a random read
372 */ 357 */
373 if (size <= req_size) 358 if (size <= req_size)
374 return 0; 359 return 0;
375 360
376 /* 361 /*
377 * starts from beginning of file: 362 * starts from beginning of file:
378 * it is a strong indication of long-run stream (or whole-file-read) 363 * it is a strong indication of long-run stream (or whole-file-read)
379 */ 364 */
380 if (size >= offset) 365 if (size >= offset)
381 size *= 2; 366 size *= 2;
382 367
383 ra->start = offset; 368 ra->start = offset;
384 ra->size = min(size + req_size, max); 369 ra->size = min(size + req_size, max);
385 ra->async_size = 1; 370 ra->async_size = 1;
386 371
387 return 1; 372 return 1;
388 } 373 }
389 374
390 /* 375 /*
391 * A minimal readahead algorithm for trivial sequential/random reads. 376 * A minimal readahead algorithm for trivial sequential/random reads.
392 */ 377 */
393 static unsigned long 378 static unsigned long
394 ondemand_readahead(struct address_space *mapping, 379 ondemand_readahead(struct address_space *mapping,
395 struct file_ra_state *ra, struct file *filp, 380 struct file_ra_state *ra, struct file *filp,
396 bool hit_readahead_marker, pgoff_t offset, 381 bool hit_readahead_marker, pgoff_t offset,
397 unsigned long req_size) 382 unsigned long req_size)
398 { 383 {
399 unsigned long max = max_sane_readahead(ra->ra_pages); 384 unsigned long max = max_sane_readahead(ra->ra_pages);
400 pgoff_t prev_offset; 385 pgoff_t prev_offset;
401 386
402 /* 387 /*
403 * start of file 388 * start of file
404 */ 389 */
405 if (!offset) 390 if (!offset)
406 goto initial_readahead; 391 goto initial_readahead;
407 392
408 /* 393 /*
409 * It's the expected callback offset, assume sequential access. 394 * It's the expected callback offset, assume sequential access.
410 * Ramp up sizes, and push forward the readahead window. 395 * Ramp up sizes, and push forward the readahead window.
411 */ 396 */
412 if ((offset == (ra->start + ra->size - ra->async_size) || 397 if ((offset == (ra->start + ra->size - ra->async_size) ||
413 offset == (ra->start + ra->size))) { 398 offset == (ra->start + ra->size))) {
414 ra->start += ra->size; 399 ra->start += ra->size;
415 ra->size = get_next_ra_size(ra, max); 400 ra->size = get_next_ra_size(ra, max);
416 ra->async_size = ra->size; 401 ra->async_size = ra->size;
417 goto readit; 402 goto readit;
418 } 403 }
419 404
420 /* 405 /*
421 * Hit a marked page without valid readahead state. 406 * Hit a marked page without valid readahead state.
422 * E.g. interleaved reads. 407 * E.g. interleaved reads.
423 * Query the pagecache for async_size, which normally equals to 408 * Query the pagecache for async_size, which normally equals to
424 * readahead size. Ramp it up and use it as the new readahead size. 409 * readahead size. Ramp it up and use it as the new readahead size.
425 */ 410 */
426 if (hit_readahead_marker) { 411 if (hit_readahead_marker) {
427 pgoff_t start; 412 pgoff_t start;
428 413
429 rcu_read_lock(); 414 rcu_read_lock();
430 start = page_cache_next_hole(mapping, offset + 1, max); 415 start = page_cache_next_hole(mapping, offset + 1, max);
431 rcu_read_unlock(); 416 rcu_read_unlock();
432 417
433 if (!start || start - offset > max) 418 if (!start || start - offset > max)
434 return 0; 419 return 0;
435 420
436 ra->start = start; 421 ra->start = start;
437 ra->size = start - offset; /* old async_size */ 422 ra->size = start - offset; /* old async_size */
438 ra->size += req_size; 423 ra->size += req_size;
439 ra->size = get_next_ra_size(ra, max); 424 ra->size = get_next_ra_size(ra, max);
440 ra->async_size = ra->size; 425 ra->async_size = ra->size;
441 goto readit; 426 goto readit;
442 } 427 }
443 428
444 /* 429 /*
445 * oversize read 430 * oversize read
446 */ 431 */
447 if (req_size > max) 432 if (req_size > max)
448 goto initial_readahead; 433 goto initial_readahead;
449 434
450 /* 435 /*
451 * sequential cache miss 436 * sequential cache miss
452 * trivial case: (offset - prev_offset) == 1 437 * trivial case: (offset - prev_offset) == 1
453 * unaligned reads: (offset - prev_offset) == 0 438 * unaligned reads: (offset - prev_offset) == 0
454 */ 439 */
455 prev_offset = (unsigned long long)ra->prev_pos >> PAGE_CACHE_SHIFT; 440 prev_offset = (unsigned long long)ra->prev_pos >> PAGE_CACHE_SHIFT;
456 if (offset - prev_offset <= 1UL) 441 if (offset - prev_offset <= 1UL)
457 goto initial_readahead; 442 goto initial_readahead;
458 443
459 /* 444 /*
460 * Query the page cache and look for the traces(cached history pages) 445 * Query the page cache and look for the traces(cached history pages)
461 * that a sequential stream would leave behind. 446 * that a sequential stream would leave behind.
462 */ 447 */
463 if (try_context_readahead(mapping, ra, offset, req_size, max)) 448 if (try_context_readahead(mapping, ra, offset, req_size, max))
464 goto readit; 449 goto readit;
465 450
466 /* 451 /*
467 * standalone, small random read 452 * standalone, small random read
468 * Read as is, and do not pollute the readahead state. 453 * Read as is, and do not pollute the readahead state.
469 */ 454 */
470 return __do_page_cache_readahead(mapping, filp, offset, req_size, 0); 455 return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
471 456
472 initial_readahead: 457 initial_readahead:
473 ra->start = offset; 458 ra->start = offset;
474 ra->size = get_init_ra_size(req_size, max); 459 ra->size = get_init_ra_size(req_size, max);
475 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size; 460 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
476 461
477 readit: 462 readit:
478 /* 463 /*
479 * Will this read hit the readahead marker made by itself? 464 * Will this read hit the readahead marker made by itself?
480 * If so, trigger the readahead marker hit now, and merge 465 * If so, trigger the readahead marker hit now, and merge
481 * the resulted next readahead window into the current one. 466 * the resulted next readahead window into the current one.
482 */ 467 */
483 if (offset == ra->start && ra->size == ra->async_size) { 468 if (offset == ra->start && ra->size == ra->async_size) {
484 ra->async_size = get_next_ra_size(ra, max); 469 ra->async_size = get_next_ra_size(ra, max);
485 ra->size += ra->async_size; 470 ra->size += ra->async_size;
486 } 471 }
487 472
488 return ra_submit(ra, mapping, filp); 473 return ra_submit(ra, mapping, filp);
489 } 474 }
490 475
491 /** 476 /**
492 * page_cache_sync_readahead - generic file readahead 477 * page_cache_sync_readahead - generic file readahead
493 * @mapping: address_space which holds the pagecache and I/O vectors 478 * @mapping: address_space which holds the pagecache and I/O vectors
494 * @ra: file_ra_state which holds the readahead state 479 * @ra: file_ra_state which holds the readahead state
495 * @filp: passed on to ->readpage() and ->readpages() 480 * @filp: passed on to ->readpage() and ->readpages()
496 * @offset: start offset into @mapping, in pagecache page-sized units 481 * @offset: start offset into @mapping, in pagecache page-sized units
497 * @req_size: hint: total size of the read which the caller is performing in 482 * @req_size: hint: total size of the read which the caller is performing in
498 * pagecache pages 483 * pagecache pages
499 * 484 *
500 * page_cache_sync_readahead() should be called when a cache miss happened: 485 * page_cache_sync_readahead() should be called when a cache miss happened:
501 * it will submit the read. The readahead logic may decide to piggyback more 486 * it will submit the read. The readahead logic may decide to piggyback more
502 * pages onto the read request if access patterns suggest it will improve 487 * pages onto the read request if access patterns suggest it will improve
503 * performance. 488 * performance.
504 */ 489 */
505 void page_cache_sync_readahead(struct address_space *mapping, 490 void page_cache_sync_readahead(struct address_space *mapping,
506 struct file_ra_state *ra, struct file *filp, 491 struct file_ra_state *ra, struct file *filp,
507 pgoff_t offset, unsigned long req_size) 492 pgoff_t offset, unsigned long req_size)
508 { 493 {
509 /* no read-ahead */ 494 /* no read-ahead */
510 if (!ra->ra_pages) 495 if (!ra->ra_pages)
511 return; 496 return;
512 497
513 /* be dumb */ 498 /* be dumb */
514 if (filp && (filp->f_mode & FMODE_RANDOM)) { 499 if (filp && (filp->f_mode & FMODE_RANDOM)) {
515 force_page_cache_readahead(mapping, filp, offset, req_size); 500 force_page_cache_readahead(mapping, filp, offset, req_size);
516 return; 501 return;
517 } 502 }
518 503
519 /* do read-ahead */ 504 /* do read-ahead */
520 ondemand_readahead(mapping, ra, filp, false, offset, req_size); 505 ondemand_readahead(mapping, ra, filp, false, offset, req_size);
521 } 506 }
522 EXPORT_SYMBOL_GPL(page_cache_sync_readahead); 507 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
523 508
524 /** 509 /**
525 * page_cache_async_readahead - file readahead for marked pages 510 * page_cache_async_readahead - file readahead for marked pages
526 * @mapping: address_space which holds the pagecache and I/O vectors 511 * @mapping: address_space which holds the pagecache and I/O vectors
527 * @ra: file_ra_state which holds the readahead state 512 * @ra: file_ra_state which holds the readahead state
528 * @filp: passed on to ->readpage() and ->readpages() 513 * @filp: passed on to ->readpage() and ->readpages()
529 * @page: the page at @offset which has the PG_readahead flag set 514 * @page: the page at @offset which has the PG_readahead flag set
530 * @offset: start offset into @mapping, in pagecache page-sized units 515 * @offset: start offset into @mapping, in pagecache page-sized units
531 * @req_size: hint: total size of the read which the caller is performing in 516 * @req_size: hint: total size of the read which the caller is performing in
532 * pagecache pages 517 * pagecache pages
533 * 518 *
534 * page_cache_async_readahead() should be called when a page is used which 519 * page_cache_async_readahead() should be called when a page is used which
535 * has the PG_readahead flag; this is a marker to suggest that the application 520 * has the PG_readahead flag; this is a marker to suggest that the application
536 * has used up enough of the readahead window that we should start pulling in 521 * has used up enough of the readahead window that we should start pulling in
537 * more pages. 522 * more pages.
538 */ 523 */
539 void 524 void
540 page_cache_async_readahead(struct address_space *mapping, 525 page_cache_async_readahead(struct address_space *mapping,
541 struct file_ra_state *ra, struct file *filp, 526 struct file_ra_state *ra, struct file *filp,
542 struct page *page, pgoff_t offset, 527 struct page *page, pgoff_t offset,
543 unsigned long req_size) 528 unsigned long req_size)
544 { 529 {
545 /* no read-ahead */ 530 /* no read-ahead */
546 if (!ra->ra_pages) 531 if (!ra->ra_pages)
547 return; 532 return;
548 533
549 /* 534 /*
550 * Same bit is used for PG_readahead and PG_reclaim. 535 * Same bit is used for PG_readahead and PG_reclaim.
551 */ 536 */
552 if (PageWriteback(page)) 537 if (PageWriteback(page))
553 return; 538 return;
554 539
555 ClearPageReadahead(page); 540 ClearPageReadahead(page);
556 541
557 /* 542 /*
558 * Defer asynchronous read-ahead on IO congestion. 543 * Defer asynchronous read-ahead on IO congestion.
559 */ 544 */
560 if (bdi_read_congested(mapping->backing_dev_info)) 545 if (bdi_read_congested(mapping->backing_dev_info))
561 return; 546 return;
562 547
563 /* do read-ahead */ 548 /* do read-ahead */
564 ondemand_readahead(mapping, ra, filp, true, offset, req_size); 549 ondemand_readahead(mapping, ra, filp, true, offset, req_size);
565 } 550 }
566 EXPORT_SYMBOL_GPL(page_cache_async_readahead); 551 EXPORT_SYMBOL_GPL(page_cache_async_readahead);
567 552
568 static ssize_t 553 static ssize_t
569 do_readahead(struct address_space *mapping, struct file *filp, 554 do_readahead(struct address_space *mapping, struct file *filp,
570 pgoff_t index, unsigned long nr) 555 pgoff_t index, unsigned long nr)
571 { 556 {
572 if (!mapping || !mapping->a_ops) 557 if (!mapping || !mapping->a_ops)
573 return -EINVAL; 558 return -EINVAL;
574 559
575 return force_page_cache_readahead(mapping, filp, index, nr); 560 return force_page_cache_readahead(mapping, filp, index, nr);
576 } 561 }
577 562
578 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count) 563 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
579 { 564 {
580 ssize_t ret; 565 ssize_t ret;
581 struct fd f; 566 struct fd f;
582 567
583 ret = -EBADF; 568 ret = -EBADF;
584 f = fdget(fd); 569 f = fdget(fd);
585 if (f.file) { 570 if (f.file) {
586 if (f.file->f_mode & FMODE_READ) { 571 if (f.file->f_mode & FMODE_READ) {
587 struct address_space *mapping = f.file->f_mapping; 572 struct address_space *mapping = f.file->f_mapping;
588 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 573 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
589 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 574 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
590 unsigned long len = end - start + 1; 575 unsigned long len = end - start + 1;
591 ret = do_readahead(mapping, f.file, start, len); 576 ret = do_readahead(mapping, f.file, start, len);
592 } 577 }
593 fdput(f); 578 fdput(f);
594 } 579 }
595 return ret; 580 return ret;