Commit 2a7eaea02b99b6e267b1e89c79acc6e9a51cee3b

Authored by Joe Thornber
Committed by Mike Snitzer
1 parent 766a78882d

dm thin: don't allow messages to be sent to a pool target in READ_ONLY or FAIL mode

You can't modify the metadata in these modes.  It's better to fail these
messages immediately than let the block-manager deny write locks on
metadata blocks.  Otherwise these failed metadata changes will trigger
'needs_check' to get set in the metadata superblock -- requiring repair
using the thin_check utility.

Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Cc: stable@vger.kernel.org

Showing 1 changed file with 6 additions and 0 deletions Inline Diff

drivers/md/dm-thin.c
1 /* 1 /*
2 * Copyright (C) 2011-2012 Red Hat UK. 2 * Copyright (C) 2011-2012 Red Hat UK.
3 * 3 *
4 * This file is released under the GPL. 4 * This file is released under the GPL.
5 */ 5 */
6 6
7 #include "dm-thin-metadata.h" 7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h" 8 #include "dm-bio-prison.h"
9 #include "dm.h" 9 #include "dm.h"
10 10
11 #include <linux/device-mapper.h> 11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h> 12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h> 13 #include <linux/dm-kcopyd.h>
14 #include <linux/log2.h> 14 #include <linux/log2.h>
15 #include <linux/list.h> 15 #include <linux/list.h>
16 #include <linux/rculist.h> 16 #include <linux/rculist.h>
17 #include <linux/init.h> 17 #include <linux/init.h>
18 #include <linux/module.h> 18 #include <linux/module.h>
19 #include <linux/slab.h> 19 #include <linux/slab.h>
20 #include <linux/sort.h> 20 #include <linux/sort.h>
21 #include <linux/rbtree.h> 21 #include <linux/rbtree.h>
22 22
23 #define DM_MSG_PREFIX "thin" 23 #define DM_MSG_PREFIX "thin"
24 24
25 /* 25 /*
26 * Tunable constants 26 * Tunable constants
27 */ 27 */
28 #define ENDIO_HOOK_POOL_SIZE 1024 28 #define ENDIO_HOOK_POOL_SIZE 1024
29 #define MAPPING_POOL_SIZE 1024 29 #define MAPPING_POOL_SIZE 1024
30 #define COMMIT_PERIOD HZ 30 #define COMMIT_PERIOD HZ
31 #define NO_SPACE_TIMEOUT_SECS 60 31 #define NO_SPACE_TIMEOUT_SECS 60
32 32
33 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 33 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
34 34
35 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 35 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
36 "A percentage of time allocated for copy on write"); 36 "A percentage of time allocated for copy on write");
37 37
38 /* 38 /*
39 * The block size of the device holding pool data must be 39 * The block size of the device holding pool data must be
40 * between 64KB and 1GB. 40 * between 64KB and 1GB.
41 */ 41 */
42 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 42 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
43 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 43 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
44 44
45 /* 45 /*
46 * Device id is restricted to 24 bits. 46 * Device id is restricted to 24 bits.
47 */ 47 */
48 #define MAX_DEV_ID ((1 << 24) - 1) 48 #define MAX_DEV_ID ((1 << 24) - 1)
49 49
50 /* 50 /*
51 * How do we handle breaking sharing of data blocks? 51 * How do we handle breaking sharing of data blocks?
52 * ================================================= 52 * =================================================
53 * 53 *
54 * We use a standard copy-on-write btree to store the mappings for the 54 * We use a standard copy-on-write btree to store the mappings for the
55 * devices (note I'm talking about copy-on-write of the metadata here, not 55 * devices (note I'm talking about copy-on-write of the metadata here, not
56 * the data). When you take an internal snapshot you clone the root node 56 * the data). When you take an internal snapshot you clone the root node
57 * of the origin btree. After this there is no concept of an origin or a 57 * of the origin btree. After this there is no concept of an origin or a
58 * snapshot. They are just two device trees that happen to point to the 58 * snapshot. They are just two device trees that happen to point to the
59 * same data blocks. 59 * same data blocks.
60 * 60 *
61 * When we get a write in we decide if it's to a shared data block using 61 * When we get a write in we decide if it's to a shared data block using
62 * some timestamp magic. If it is, we have to break sharing. 62 * some timestamp magic. If it is, we have to break sharing.
63 * 63 *
64 * Let's say we write to a shared block in what was the origin. The 64 * Let's say we write to a shared block in what was the origin. The
65 * steps are: 65 * steps are:
66 * 66 *
67 * i) plug io further to this physical block. (see bio_prison code). 67 * i) plug io further to this physical block. (see bio_prison code).
68 * 68 *
69 * ii) quiesce any read io to that shared data block. Obviously 69 * ii) quiesce any read io to that shared data block. Obviously
70 * including all devices that share this block. (see dm_deferred_set code) 70 * including all devices that share this block. (see dm_deferred_set code)
71 * 71 *
72 * iii) copy the data block to a newly allocate block. This step can be 72 * iii) copy the data block to a newly allocate block. This step can be
73 * missed out if the io covers the block. (schedule_copy). 73 * missed out if the io covers the block. (schedule_copy).
74 * 74 *
75 * iv) insert the new mapping into the origin's btree 75 * iv) insert the new mapping into the origin's btree
76 * (process_prepared_mapping). This act of inserting breaks some 76 * (process_prepared_mapping). This act of inserting breaks some
77 * sharing of btree nodes between the two devices. Breaking sharing only 77 * sharing of btree nodes between the two devices. Breaking sharing only
78 * effects the btree of that specific device. Btrees for the other 78 * effects the btree of that specific device. Btrees for the other
79 * devices that share the block never change. The btree for the origin 79 * devices that share the block never change. The btree for the origin
80 * device as it was after the last commit is untouched, ie. we're using 80 * device as it was after the last commit is untouched, ie. we're using
81 * persistent data structures in the functional programming sense. 81 * persistent data structures in the functional programming sense.
82 * 82 *
83 * v) unplug io to this physical block, including the io that triggered 83 * v) unplug io to this physical block, including the io that triggered
84 * the breaking of sharing. 84 * the breaking of sharing.
85 * 85 *
86 * Steps (ii) and (iii) occur in parallel. 86 * Steps (ii) and (iii) occur in parallel.
87 * 87 *
88 * The metadata _doesn't_ need to be committed before the io continues. We 88 * The metadata _doesn't_ need to be committed before the io continues. We
89 * get away with this because the io is always written to a _new_ block. 89 * get away with this because the io is always written to a _new_ block.
90 * If there's a crash, then: 90 * If there's a crash, then:
91 * 91 *
92 * - The origin mapping will point to the old origin block (the shared 92 * - The origin mapping will point to the old origin block (the shared
93 * one). This will contain the data as it was before the io that triggered 93 * one). This will contain the data as it was before the io that triggered
94 * the breaking of sharing came in. 94 * the breaking of sharing came in.
95 * 95 *
96 * - The snap mapping still points to the old block. As it would after 96 * - The snap mapping still points to the old block. As it would after
97 * the commit. 97 * the commit.
98 * 98 *
99 * The downside of this scheme is the timestamp magic isn't perfect, and 99 * The downside of this scheme is the timestamp magic isn't perfect, and
100 * will continue to think that data block in the snapshot device is shared 100 * will continue to think that data block in the snapshot device is shared
101 * even after the write to the origin has broken sharing. I suspect data 101 * even after the write to the origin has broken sharing. I suspect data
102 * blocks will typically be shared by many different devices, so we're 102 * blocks will typically be shared by many different devices, so we're
103 * breaking sharing n + 1 times, rather than n, where n is the number of 103 * breaking sharing n + 1 times, rather than n, where n is the number of
104 * devices that reference this data block. At the moment I think the 104 * devices that reference this data block. At the moment I think the
105 * benefits far, far outweigh the disadvantages. 105 * benefits far, far outweigh the disadvantages.
106 */ 106 */
107 107
108 /*----------------------------------------------------------------*/ 108 /*----------------------------------------------------------------*/
109 109
110 /* 110 /*
111 * Key building. 111 * Key building.
112 */ 112 */
113 static void build_data_key(struct dm_thin_device *td, 113 static void build_data_key(struct dm_thin_device *td,
114 dm_block_t b, struct dm_cell_key *key) 114 dm_block_t b, struct dm_cell_key *key)
115 { 115 {
116 key->virtual = 0; 116 key->virtual = 0;
117 key->dev = dm_thin_dev_id(td); 117 key->dev = dm_thin_dev_id(td);
118 key->block_begin = b; 118 key->block_begin = b;
119 key->block_end = b + 1ULL; 119 key->block_end = b + 1ULL;
120 } 120 }
121 121
122 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 122 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
123 struct dm_cell_key *key) 123 struct dm_cell_key *key)
124 { 124 {
125 key->virtual = 1; 125 key->virtual = 1;
126 key->dev = dm_thin_dev_id(td); 126 key->dev = dm_thin_dev_id(td);
127 key->block_begin = b; 127 key->block_begin = b;
128 key->block_end = b + 1ULL; 128 key->block_end = b + 1ULL;
129 } 129 }
130 130
131 /*----------------------------------------------------------------*/ 131 /*----------------------------------------------------------------*/
132 132
133 #define THROTTLE_THRESHOLD (1 * HZ) 133 #define THROTTLE_THRESHOLD (1 * HZ)
134 134
135 struct throttle { 135 struct throttle {
136 struct rw_semaphore lock; 136 struct rw_semaphore lock;
137 unsigned long threshold; 137 unsigned long threshold;
138 bool throttle_applied; 138 bool throttle_applied;
139 }; 139 };
140 140
141 static void throttle_init(struct throttle *t) 141 static void throttle_init(struct throttle *t)
142 { 142 {
143 init_rwsem(&t->lock); 143 init_rwsem(&t->lock);
144 t->throttle_applied = false; 144 t->throttle_applied = false;
145 } 145 }
146 146
147 static void throttle_work_start(struct throttle *t) 147 static void throttle_work_start(struct throttle *t)
148 { 148 {
149 t->threshold = jiffies + THROTTLE_THRESHOLD; 149 t->threshold = jiffies + THROTTLE_THRESHOLD;
150 } 150 }
151 151
152 static void throttle_work_update(struct throttle *t) 152 static void throttle_work_update(struct throttle *t)
153 { 153 {
154 if (!t->throttle_applied && jiffies > t->threshold) { 154 if (!t->throttle_applied && jiffies > t->threshold) {
155 down_write(&t->lock); 155 down_write(&t->lock);
156 t->throttle_applied = true; 156 t->throttle_applied = true;
157 } 157 }
158 } 158 }
159 159
160 static void throttle_work_complete(struct throttle *t) 160 static void throttle_work_complete(struct throttle *t)
161 { 161 {
162 if (t->throttle_applied) { 162 if (t->throttle_applied) {
163 t->throttle_applied = false; 163 t->throttle_applied = false;
164 up_write(&t->lock); 164 up_write(&t->lock);
165 } 165 }
166 } 166 }
167 167
168 static void throttle_lock(struct throttle *t) 168 static void throttle_lock(struct throttle *t)
169 { 169 {
170 down_read(&t->lock); 170 down_read(&t->lock);
171 } 171 }
172 172
173 static void throttle_unlock(struct throttle *t) 173 static void throttle_unlock(struct throttle *t)
174 { 174 {
175 up_read(&t->lock); 175 up_read(&t->lock);
176 } 176 }
177 177
178 /*----------------------------------------------------------------*/ 178 /*----------------------------------------------------------------*/
179 179
180 /* 180 /*
181 * A pool device ties together a metadata device and a data device. It 181 * A pool device ties together a metadata device and a data device. It
182 * also provides the interface for creating and destroying internal 182 * also provides the interface for creating and destroying internal
183 * devices. 183 * devices.
184 */ 184 */
185 struct dm_thin_new_mapping; 185 struct dm_thin_new_mapping;
186 186
187 /* 187 /*
188 * The pool runs in 4 modes. Ordered in degraded order for comparisons. 188 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
189 */ 189 */
190 enum pool_mode { 190 enum pool_mode {
191 PM_WRITE, /* metadata may be changed */ 191 PM_WRITE, /* metadata may be changed */
192 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 192 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
193 PM_READ_ONLY, /* metadata may not be changed */ 193 PM_READ_ONLY, /* metadata may not be changed */
194 PM_FAIL, /* all I/O fails */ 194 PM_FAIL, /* all I/O fails */
195 }; 195 };
196 196
197 struct pool_features { 197 struct pool_features {
198 enum pool_mode mode; 198 enum pool_mode mode;
199 199
200 bool zero_new_blocks:1; 200 bool zero_new_blocks:1;
201 bool discard_enabled:1; 201 bool discard_enabled:1;
202 bool discard_passdown:1; 202 bool discard_passdown:1;
203 bool error_if_no_space:1; 203 bool error_if_no_space:1;
204 }; 204 };
205 205
206 struct thin_c; 206 struct thin_c;
207 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 207 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
208 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 208 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
209 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 209 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
210 210
211 #define CELL_SORT_ARRAY_SIZE 8192 211 #define CELL_SORT_ARRAY_SIZE 8192
212 212
213 struct pool { 213 struct pool {
214 struct list_head list; 214 struct list_head list;
215 struct dm_target *ti; /* Only set if a pool target is bound */ 215 struct dm_target *ti; /* Only set if a pool target is bound */
216 216
217 struct mapped_device *pool_md; 217 struct mapped_device *pool_md;
218 struct block_device *md_dev; 218 struct block_device *md_dev;
219 struct dm_pool_metadata *pmd; 219 struct dm_pool_metadata *pmd;
220 220
221 dm_block_t low_water_blocks; 221 dm_block_t low_water_blocks;
222 uint32_t sectors_per_block; 222 uint32_t sectors_per_block;
223 int sectors_per_block_shift; 223 int sectors_per_block_shift;
224 224
225 struct pool_features pf; 225 struct pool_features pf;
226 bool low_water_triggered:1; /* A dm event has been sent */ 226 bool low_water_triggered:1; /* A dm event has been sent */
227 bool suspended:1; 227 bool suspended:1;
228 228
229 struct dm_bio_prison *prison; 229 struct dm_bio_prison *prison;
230 struct dm_kcopyd_client *copier; 230 struct dm_kcopyd_client *copier;
231 231
232 struct workqueue_struct *wq; 232 struct workqueue_struct *wq;
233 struct throttle throttle; 233 struct throttle throttle;
234 struct work_struct worker; 234 struct work_struct worker;
235 struct delayed_work waker; 235 struct delayed_work waker;
236 struct delayed_work no_space_timeout; 236 struct delayed_work no_space_timeout;
237 237
238 unsigned long last_commit_jiffies; 238 unsigned long last_commit_jiffies;
239 unsigned ref_count; 239 unsigned ref_count;
240 240
241 spinlock_t lock; 241 spinlock_t lock;
242 struct bio_list deferred_flush_bios; 242 struct bio_list deferred_flush_bios;
243 struct list_head prepared_mappings; 243 struct list_head prepared_mappings;
244 struct list_head prepared_discards; 244 struct list_head prepared_discards;
245 struct list_head active_thins; 245 struct list_head active_thins;
246 246
247 struct dm_deferred_set *shared_read_ds; 247 struct dm_deferred_set *shared_read_ds;
248 struct dm_deferred_set *all_io_ds; 248 struct dm_deferred_set *all_io_ds;
249 249
250 struct dm_thin_new_mapping *next_mapping; 250 struct dm_thin_new_mapping *next_mapping;
251 mempool_t *mapping_pool; 251 mempool_t *mapping_pool;
252 252
253 process_bio_fn process_bio; 253 process_bio_fn process_bio;
254 process_bio_fn process_discard; 254 process_bio_fn process_discard;
255 255
256 process_cell_fn process_cell; 256 process_cell_fn process_cell;
257 process_cell_fn process_discard_cell; 257 process_cell_fn process_discard_cell;
258 258
259 process_mapping_fn process_prepared_mapping; 259 process_mapping_fn process_prepared_mapping;
260 process_mapping_fn process_prepared_discard; 260 process_mapping_fn process_prepared_discard;
261 261
262 struct dm_bio_prison_cell *cell_sort_array[CELL_SORT_ARRAY_SIZE]; 262 struct dm_bio_prison_cell *cell_sort_array[CELL_SORT_ARRAY_SIZE];
263 }; 263 };
264 264
265 static enum pool_mode get_pool_mode(struct pool *pool); 265 static enum pool_mode get_pool_mode(struct pool *pool);
266 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 266 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
267 267
268 /* 268 /*
269 * Target context for a pool. 269 * Target context for a pool.
270 */ 270 */
271 struct pool_c { 271 struct pool_c {
272 struct dm_target *ti; 272 struct dm_target *ti;
273 struct pool *pool; 273 struct pool *pool;
274 struct dm_dev *data_dev; 274 struct dm_dev *data_dev;
275 struct dm_dev *metadata_dev; 275 struct dm_dev *metadata_dev;
276 struct dm_target_callbacks callbacks; 276 struct dm_target_callbacks callbacks;
277 277
278 dm_block_t low_water_blocks; 278 dm_block_t low_water_blocks;
279 struct pool_features requested_pf; /* Features requested during table load */ 279 struct pool_features requested_pf; /* Features requested during table load */
280 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 280 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
281 }; 281 };
282 282
283 /* 283 /*
284 * Target context for a thin. 284 * Target context for a thin.
285 */ 285 */
286 struct thin_c { 286 struct thin_c {
287 struct list_head list; 287 struct list_head list;
288 struct dm_dev *pool_dev; 288 struct dm_dev *pool_dev;
289 struct dm_dev *origin_dev; 289 struct dm_dev *origin_dev;
290 sector_t origin_size; 290 sector_t origin_size;
291 dm_thin_id dev_id; 291 dm_thin_id dev_id;
292 292
293 struct pool *pool; 293 struct pool *pool;
294 struct dm_thin_device *td; 294 struct dm_thin_device *td;
295 struct mapped_device *thin_md; 295 struct mapped_device *thin_md;
296 296
297 bool requeue_mode:1; 297 bool requeue_mode:1;
298 spinlock_t lock; 298 spinlock_t lock;
299 struct list_head deferred_cells; 299 struct list_head deferred_cells;
300 struct bio_list deferred_bio_list; 300 struct bio_list deferred_bio_list;
301 struct bio_list retry_on_resume_list; 301 struct bio_list retry_on_resume_list;
302 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 302 struct rb_root sort_bio_list; /* sorted list of deferred bios */
303 303
304 /* 304 /*
305 * Ensures the thin is not destroyed until the worker has finished 305 * Ensures the thin is not destroyed until the worker has finished
306 * iterating the active_thins list. 306 * iterating the active_thins list.
307 */ 307 */
308 atomic_t refcount; 308 atomic_t refcount;
309 struct completion can_destroy; 309 struct completion can_destroy;
310 }; 310 };
311 311
312 /*----------------------------------------------------------------*/ 312 /*----------------------------------------------------------------*/
313 313
314 /* 314 /*
315 * wake_worker() is used when new work is queued and when pool_resume is 315 * wake_worker() is used when new work is queued and when pool_resume is
316 * ready to continue deferred IO processing. 316 * ready to continue deferred IO processing.
317 */ 317 */
318 static void wake_worker(struct pool *pool) 318 static void wake_worker(struct pool *pool)
319 { 319 {
320 queue_work(pool->wq, &pool->worker); 320 queue_work(pool->wq, &pool->worker);
321 } 321 }
322 322
323 /*----------------------------------------------------------------*/ 323 /*----------------------------------------------------------------*/
324 324
325 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 325 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
326 struct dm_bio_prison_cell **cell_result) 326 struct dm_bio_prison_cell **cell_result)
327 { 327 {
328 int r; 328 int r;
329 struct dm_bio_prison_cell *cell_prealloc; 329 struct dm_bio_prison_cell *cell_prealloc;
330 330
331 /* 331 /*
332 * Allocate a cell from the prison's mempool. 332 * Allocate a cell from the prison's mempool.
333 * This might block but it can't fail. 333 * This might block but it can't fail.
334 */ 334 */
335 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 335 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
336 336
337 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 337 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
338 if (r) 338 if (r)
339 /* 339 /*
340 * We reused an old cell; we can get rid of 340 * We reused an old cell; we can get rid of
341 * the new one. 341 * the new one.
342 */ 342 */
343 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 343 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
344 344
345 return r; 345 return r;
346 } 346 }
347 347
348 static void cell_release(struct pool *pool, 348 static void cell_release(struct pool *pool,
349 struct dm_bio_prison_cell *cell, 349 struct dm_bio_prison_cell *cell,
350 struct bio_list *bios) 350 struct bio_list *bios)
351 { 351 {
352 dm_cell_release(pool->prison, cell, bios); 352 dm_cell_release(pool->prison, cell, bios);
353 dm_bio_prison_free_cell(pool->prison, cell); 353 dm_bio_prison_free_cell(pool->prison, cell);
354 } 354 }
355 355
356 static void cell_visit_release(struct pool *pool, 356 static void cell_visit_release(struct pool *pool,
357 void (*fn)(void *, struct dm_bio_prison_cell *), 357 void (*fn)(void *, struct dm_bio_prison_cell *),
358 void *context, 358 void *context,
359 struct dm_bio_prison_cell *cell) 359 struct dm_bio_prison_cell *cell)
360 { 360 {
361 dm_cell_visit_release(pool->prison, fn, context, cell); 361 dm_cell_visit_release(pool->prison, fn, context, cell);
362 dm_bio_prison_free_cell(pool->prison, cell); 362 dm_bio_prison_free_cell(pool->prison, cell);
363 } 363 }
364 364
365 static void cell_release_no_holder(struct pool *pool, 365 static void cell_release_no_holder(struct pool *pool,
366 struct dm_bio_prison_cell *cell, 366 struct dm_bio_prison_cell *cell,
367 struct bio_list *bios) 367 struct bio_list *bios)
368 { 368 {
369 dm_cell_release_no_holder(pool->prison, cell, bios); 369 dm_cell_release_no_holder(pool->prison, cell, bios);
370 dm_bio_prison_free_cell(pool->prison, cell); 370 dm_bio_prison_free_cell(pool->prison, cell);
371 } 371 }
372 372
373 static void cell_error_with_code(struct pool *pool, 373 static void cell_error_with_code(struct pool *pool,
374 struct dm_bio_prison_cell *cell, int error_code) 374 struct dm_bio_prison_cell *cell, int error_code)
375 { 375 {
376 dm_cell_error(pool->prison, cell, error_code); 376 dm_cell_error(pool->prison, cell, error_code);
377 dm_bio_prison_free_cell(pool->prison, cell); 377 dm_bio_prison_free_cell(pool->prison, cell);
378 } 378 }
379 379
380 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 380 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
381 { 381 {
382 cell_error_with_code(pool, cell, -EIO); 382 cell_error_with_code(pool, cell, -EIO);
383 } 383 }
384 384
385 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 385 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
386 { 386 {
387 cell_error_with_code(pool, cell, 0); 387 cell_error_with_code(pool, cell, 0);
388 } 388 }
389 389
390 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 390 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
391 { 391 {
392 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE); 392 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
393 } 393 }
394 394
395 /*----------------------------------------------------------------*/ 395 /*----------------------------------------------------------------*/
396 396
397 /* 397 /*
398 * A global list of pools that uses a struct mapped_device as a key. 398 * A global list of pools that uses a struct mapped_device as a key.
399 */ 399 */
400 static struct dm_thin_pool_table { 400 static struct dm_thin_pool_table {
401 struct mutex mutex; 401 struct mutex mutex;
402 struct list_head pools; 402 struct list_head pools;
403 } dm_thin_pool_table; 403 } dm_thin_pool_table;
404 404
405 static void pool_table_init(void) 405 static void pool_table_init(void)
406 { 406 {
407 mutex_init(&dm_thin_pool_table.mutex); 407 mutex_init(&dm_thin_pool_table.mutex);
408 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 408 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
409 } 409 }
410 410
411 static void __pool_table_insert(struct pool *pool) 411 static void __pool_table_insert(struct pool *pool)
412 { 412 {
413 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 413 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
414 list_add(&pool->list, &dm_thin_pool_table.pools); 414 list_add(&pool->list, &dm_thin_pool_table.pools);
415 } 415 }
416 416
417 static void __pool_table_remove(struct pool *pool) 417 static void __pool_table_remove(struct pool *pool)
418 { 418 {
419 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 419 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
420 list_del(&pool->list); 420 list_del(&pool->list);
421 } 421 }
422 422
423 static struct pool *__pool_table_lookup(struct mapped_device *md) 423 static struct pool *__pool_table_lookup(struct mapped_device *md)
424 { 424 {
425 struct pool *pool = NULL, *tmp; 425 struct pool *pool = NULL, *tmp;
426 426
427 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 427 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
428 428
429 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 429 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
430 if (tmp->pool_md == md) { 430 if (tmp->pool_md == md) {
431 pool = tmp; 431 pool = tmp;
432 break; 432 break;
433 } 433 }
434 } 434 }
435 435
436 return pool; 436 return pool;
437 } 437 }
438 438
439 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 439 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
440 { 440 {
441 struct pool *pool = NULL, *tmp; 441 struct pool *pool = NULL, *tmp;
442 442
443 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 443 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
444 444
445 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 445 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
446 if (tmp->md_dev == md_dev) { 446 if (tmp->md_dev == md_dev) {
447 pool = tmp; 447 pool = tmp;
448 break; 448 break;
449 } 449 }
450 } 450 }
451 451
452 return pool; 452 return pool;
453 } 453 }
454 454
455 /*----------------------------------------------------------------*/ 455 /*----------------------------------------------------------------*/
456 456
457 struct dm_thin_endio_hook { 457 struct dm_thin_endio_hook {
458 struct thin_c *tc; 458 struct thin_c *tc;
459 struct dm_deferred_entry *shared_read_entry; 459 struct dm_deferred_entry *shared_read_entry;
460 struct dm_deferred_entry *all_io_entry; 460 struct dm_deferred_entry *all_io_entry;
461 struct dm_thin_new_mapping *overwrite_mapping; 461 struct dm_thin_new_mapping *overwrite_mapping;
462 struct rb_node rb_node; 462 struct rb_node rb_node;
463 }; 463 };
464 464
465 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 465 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
466 { 466 {
467 bio_list_merge(bios, master); 467 bio_list_merge(bios, master);
468 bio_list_init(master); 468 bio_list_init(master);
469 } 469 }
470 470
471 static void error_bio_list(struct bio_list *bios, int error) 471 static void error_bio_list(struct bio_list *bios, int error)
472 { 472 {
473 struct bio *bio; 473 struct bio *bio;
474 474
475 while ((bio = bio_list_pop(bios))) 475 while ((bio = bio_list_pop(bios)))
476 bio_endio(bio, error); 476 bio_endio(bio, error);
477 } 477 }
478 478
479 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error) 479 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
480 { 480 {
481 struct bio_list bios; 481 struct bio_list bios;
482 unsigned long flags; 482 unsigned long flags;
483 483
484 bio_list_init(&bios); 484 bio_list_init(&bios);
485 485
486 spin_lock_irqsave(&tc->lock, flags); 486 spin_lock_irqsave(&tc->lock, flags);
487 __merge_bio_list(&bios, master); 487 __merge_bio_list(&bios, master);
488 spin_unlock_irqrestore(&tc->lock, flags); 488 spin_unlock_irqrestore(&tc->lock, flags);
489 489
490 error_bio_list(&bios, error); 490 error_bio_list(&bios, error);
491 } 491 }
492 492
493 static void requeue_deferred_cells(struct thin_c *tc) 493 static void requeue_deferred_cells(struct thin_c *tc)
494 { 494 {
495 struct pool *pool = tc->pool; 495 struct pool *pool = tc->pool;
496 unsigned long flags; 496 unsigned long flags;
497 struct list_head cells; 497 struct list_head cells;
498 struct dm_bio_prison_cell *cell, *tmp; 498 struct dm_bio_prison_cell *cell, *tmp;
499 499
500 INIT_LIST_HEAD(&cells); 500 INIT_LIST_HEAD(&cells);
501 501
502 spin_lock_irqsave(&tc->lock, flags); 502 spin_lock_irqsave(&tc->lock, flags);
503 list_splice_init(&tc->deferred_cells, &cells); 503 list_splice_init(&tc->deferred_cells, &cells);
504 spin_unlock_irqrestore(&tc->lock, flags); 504 spin_unlock_irqrestore(&tc->lock, flags);
505 505
506 list_for_each_entry_safe(cell, tmp, &cells, user_list) 506 list_for_each_entry_safe(cell, tmp, &cells, user_list)
507 cell_requeue(pool, cell); 507 cell_requeue(pool, cell);
508 } 508 }
509 509
510 static void requeue_io(struct thin_c *tc) 510 static void requeue_io(struct thin_c *tc)
511 { 511 {
512 struct bio_list bios; 512 struct bio_list bios;
513 unsigned long flags; 513 unsigned long flags;
514 514
515 bio_list_init(&bios); 515 bio_list_init(&bios);
516 516
517 spin_lock_irqsave(&tc->lock, flags); 517 spin_lock_irqsave(&tc->lock, flags);
518 __merge_bio_list(&bios, &tc->deferred_bio_list); 518 __merge_bio_list(&bios, &tc->deferred_bio_list);
519 __merge_bio_list(&bios, &tc->retry_on_resume_list); 519 __merge_bio_list(&bios, &tc->retry_on_resume_list);
520 spin_unlock_irqrestore(&tc->lock, flags); 520 spin_unlock_irqrestore(&tc->lock, flags);
521 521
522 error_bio_list(&bios, DM_ENDIO_REQUEUE); 522 error_bio_list(&bios, DM_ENDIO_REQUEUE);
523 requeue_deferred_cells(tc); 523 requeue_deferred_cells(tc);
524 } 524 }
525 525
526 static void error_retry_list(struct pool *pool) 526 static void error_retry_list(struct pool *pool)
527 { 527 {
528 struct thin_c *tc; 528 struct thin_c *tc;
529 529
530 rcu_read_lock(); 530 rcu_read_lock();
531 list_for_each_entry_rcu(tc, &pool->active_thins, list) 531 list_for_each_entry_rcu(tc, &pool->active_thins, list)
532 error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO); 532 error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO);
533 rcu_read_unlock(); 533 rcu_read_unlock();
534 } 534 }
535 535
536 /* 536 /*
537 * This section of code contains the logic for processing a thin device's IO. 537 * This section of code contains the logic for processing a thin device's IO.
538 * Much of the code depends on pool object resources (lists, workqueues, etc) 538 * Much of the code depends on pool object resources (lists, workqueues, etc)
539 * but most is exclusively called from the thin target rather than the thin-pool 539 * but most is exclusively called from the thin target rather than the thin-pool
540 * target. 540 * target.
541 */ 541 */
542 542
543 static bool block_size_is_power_of_two(struct pool *pool) 543 static bool block_size_is_power_of_two(struct pool *pool)
544 { 544 {
545 return pool->sectors_per_block_shift >= 0; 545 return pool->sectors_per_block_shift >= 0;
546 } 546 }
547 547
548 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 548 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
549 { 549 {
550 struct pool *pool = tc->pool; 550 struct pool *pool = tc->pool;
551 sector_t block_nr = bio->bi_iter.bi_sector; 551 sector_t block_nr = bio->bi_iter.bi_sector;
552 552
553 if (block_size_is_power_of_two(pool)) 553 if (block_size_is_power_of_two(pool))
554 block_nr >>= pool->sectors_per_block_shift; 554 block_nr >>= pool->sectors_per_block_shift;
555 else 555 else
556 (void) sector_div(block_nr, pool->sectors_per_block); 556 (void) sector_div(block_nr, pool->sectors_per_block);
557 557
558 return block_nr; 558 return block_nr;
559 } 559 }
560 560
561 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 561 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
562 { 562 {
563 struct pool *pool = tc->pool; 563 struct pool *pool = tc->pool;
564 sector_t bi_sector = bio->bi_iter.bi_sector; 564 sector_t bi_sector = bio->bi_iter.bi_sector;
565 565
566 bio->bi_bdev = tc->pool_dev->bdev; 566 bio->bi_bdev = tc->pool_dev->bdev;
567 if (block_size_is_power_of_two(pool)) 567 if (block_size_is_power_of_two(pool))
568 bio->bi_iter.bi_sector = 568 bio->bi_iter.bi_sector =
569 (block << pool->sectors_per_block_shift) | 569 (block << pool->sectors_per_block_shift) |
570 (bi_sector & (pool->sectors_per_block - 1)); 570 (bi_sector & (pool->sectors_per_block - 1));
571 else 571 else
572 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 572 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
573 sector_div(bi_sector, pool->sectors_per_block); 573 sector_div(bi_sector, pool->sectors_per_block);
574 } 574 }
575 575
576 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 576 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
577 { 577 {
578 bio->bi_bdev = tc->origin_dev->bdev; 578 bio->bi_bdev = tc->origin_dev->bdev;
579 } 579 }
580 580
581 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 581 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
582 { 582 {
583 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && 583 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
584 dm_thin_changed_this_transaction(tc->td); 584 dm_thin_changed_this_transaction(tc->td);
585 } 585 }
586 586
587 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 587 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
588 { 588 {
589 struct dm_thin_endio_hook *h; 589 struct dm_thin_endio_hook *h;
590 590
591 if (bio->bi_rw & REQ_DISCARD) 591 if (bio->bi_rw & REQ_DISCARD)
592 return; 592 return;
593 593
594 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 594 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
595 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 595 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
596 } 596 }
597 597
598 static void issue(struct thin_c *tc, struct bio *bio) 598 static void issue(struct thin_c *tc, struct bio *bio)
599 { 599 {
600 struct pool *pool = tc->pool; 600 struct pool *pool = tc->pool;
601 unsigned long flags; 601 unsigned long flags;
602 602
603 if (!bio_triggers_commit(tc, bio)) { 603 if (!bio_triggers_commit(tc, bio)) {
604 generic_make_request(bio); 604 generic_make_request(bio);
605 return; 605 return;
606 } 606 }
607 607
608 /* 608 /*
609 * Complete bio with an error if earlier I/O caused changes to 609 * Complete bio with an error if earlier I/O caused changes to
610 * the metadata that can't be committed e.g, due to I/O errors 610 * the metadata that can't be committed e.g, due to I/O errors
611 * on the metadata device. 611 * on the metadata device.
612 */ 612 */
613 if (dm_thin_aborted_changes(tc->td)) { 613 if (dm_thin_aborted_changes(tc->td)) {
614 bio_io_error(bio); 614 bio_io_error(bio);
615 return; 615 return;
616 } 616 }
617 617
618 /* 618 /*
619 * Batch together any bios that trigger commits and then issue a 619 * Batch together any bios that trigger commits and then issue a
620 * single commit for them in process_deferred_bios(). 620 * single commit for them in process_deferred_bios().
621 */ 621 */
622 spin_lock_irqsave(&pool->lock, flags); 622 spin_lock_irqsave(&pool->lock, flags);
623 bio_list_add(&pool->deferred_flush_bios, bio); 623 bio_list_add(&pool->deferred_flush_bios, bio);
624 spin_unlock_irqrestore(&pool->lock, flags); 624 spin_unlock_irqrestore(&pool->lock, flags);
625 } 625 }
626 626
627 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 627 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
628 { 628 {
629 remap_to_origin(tc, bio); 629 remap_to_origin(tc, bio);
630 issue(tc, bio); 630 issue(tc, bio);
631 } 631 }
632 632
633 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 633 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
634 dm_block_t block) 634 dm_block_t block)
635 { 635 {
636 remap(tc, bio, block); 636 remap(tc, bio, block);
637 issue(tc, bio); 637 issue(tc, bio);
638 } 638 }
639 639
640 /*----------------------------------------------------------------*/ 640 /*----------------------------------------------------------------*/
641 641
642 /* 642 /*
643 * Bio endio functions. 643 * Bio endio functions.
644 */ 644 */
645 struct dm_thin_new_mapping { 645 struct dm_thin_new_mapping {
646 struct list_head list; 646 struct list_head list;
647 647
648 bool pass_discard:1; 648 bool pass_discard:1;
649 bool definitely_not_shared:1; 649 bool definitely_not_shared:1;
650 650
651 /* 651 /*
652 * Track quiescing, copying and zeroing preparation actions. When this 652 * Track quiescing, copying and zeroing preparation actions. When this
653 * counter hits zero the block is prepared and can be inserted into the 653 * counter hits zero the block is prepared and can be inserted into the
654 * btree. 654 * btree.
655 */ 655 */
656 atomic_t prepare_actions; 656 atomic_t prepare_actions;
657 657
658 int err; 658 int err;
659 struct thin_c *tc; 659 struct thin_c *tc;
660 dm_block_t virt_block; 660 dm_block_t virt_block;
661 dm_block_t data_block; 661 dm_block_t data_block;
662 struct dm_bio_prison_cell *cell, *cell2; 662 struct dm_bio_prison_cell *cell, *cell2;
663 663
664 /* 664 /*
665 * If the bio covers the whole area of a block then we can avoid 665 * If the bio covers the whole area of a block then we can avoid
666 * zeroing or copying. Instead this bio is hooked. The bio will 666 * zeroing or copying. Instead this bio is hooked. The bio will
667 * still be in the cell, so care has to be taken to avoid issuing 667 * still be in the cell, so care has to be taken to avoid issuing
668 * the bio twice. 668 * the bio twice.
669 */ 669 */
670 struct bio *bio; 670 struct bio *bio;
671 bio_end_io_t *saved_bi_end_io; 671 bio_end_io_t *saved_bi_end_io;
672 }; 672 };
673 673
674 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 674 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
675 { 675 {
676 struct pool *pool = m->tc->pool; 676 struct pool *pool = m->tc->pool;
677 677
678 if (atomic_dec_and_test(&m->prepare_actions)) { 678 if (atomic_dec_and_test(&m->prepare_actions)) {
679 list_add_tail(&m->list, &pool->prepared_mappings); 679 list_add_tail(&m->list, &pool->prepared_mappings);
680 wake_worker(pool); 680 wake_worker(pool);
681 } 681 }
682 } 682 }
683 683
684 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 684 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
685 { 685 {
686 unsigned long flags; 686 unsigned long flags;
687 struct pool *pool = m->tc->pool; 687 struct pool *pool = m->tc->pool;
688 688
689 spin_lock_irqsave(&pool->lock, flags); 689 spin_lock_irqsave(&pool->lock, flags);
690 __complete_mapping_preparation(m); 690 __complete_mapping_preparation(m);
691 spin_unlock_irqrestore(&pool->lock, flags); 691 spin_unlock_irqrestore(&pool->lock, flags);
692 } 692 }
693 693
694 static void copy_complete(int read_err, unsigned long write_err, void *context) 694 static void copy_complete(int read_err, unsigned long write_err, void *context)
695 { 695 {
696 struct dm_thin_new_mapping *m = context; 696 struct dm_thin_new_mapping *m = context;
697 697
698 m->err = read_err || write_err ? -EIO : 0; 698 m->err = read_err || write_err ? -EIO : 0;
699 complete_mapping_preparation(m); 699 complete_mapping_preparation(m);
700 } 700 }
701 701
702 static void overwrite_endio(struct bio *bio, int err) 702 static void overwrite_endio(struct bio *bio, int err)
703 { 703 {
704 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 704 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
705 struct dm_thin_new_mapping *m = h->overwrite_mapping; 705 struct dm_thin_new_mapping *m = h->overwrite_mapping;
706 706
707 m->err = err; 707 m->err = err;
708 complete_mapping_preparation(m); 708 complete_mapping_preparation(m);
709 } 709 }
710 710
711 /*----------------------------------------------------------------*/ 711 /*----------------------------------------------------------------*/
712 712
713 /* 713 /*
714 * Workqueue. 714 * Workqueue.
715 */ 715 */
716 716
717 /* 717 /*
718 * Prepared mapping jobs. 718 * Prepared mapping jobs.
719 */ 719 */
720 720
721 /* 721 /*
722 * This sends the bios in the cell, except the original holder, back 722 * This sends the bios in the cell, except the original holder, back
723 * to the deferred_bios list. 723 * to the deferred_bios list.
724 */ 724 */
725 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 725 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
726 { 726 {
727 struct pool *pool = tc->pool; 727 struct pool *pool = tc->pool;
728 unsigned long flags; 728 unsigned long flags;
729 729
730 spin_lock_irqsave(&tc->lock, flags); 730 spin_lock_irqsave(&tc->lock, flags);
731 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 731 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
732 spin_unlock_irqrestore(&tc->lock, flags); 732 spin_unlock_irqrestore(&tc->lock, flags);
733 733
734 wake_worker(pool); 734 wake_worker(pool);
735 } 735 }
736 736
737 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 737 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
738 738
739 struct remap_info { 739 struct remap_info {
740 struct thin_c *tc; 740 struct thin_c *tc;
741 struct bio_list defer_bios; 741 struct bio_list defer_bios;
742 struct bio_list issue_bios; 742 struct bio_list issue_bios;
743 }; 743 };
744 744
745 static void __inc_remap_and_issue_cell(void *context, 745 static void __inc_remap_and_issue_cell(void *context,
746 struct dm_bio_prison_cell *cell) 746 struct dm_bio_prison_cell *cell)
747 { 747 {
748 struct remap_info *info = context; 748 struct remap_info *info = context;
749 struct bio *bio; 749 struct bio *bio;
750 750
751 while ((bio = bio_list_pop(&cell->bios))) { 751 while ((bio = bio_list_pop(&cell->bios))) {
752 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) 752 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
753 bio_list_add(&info->defer_bios, bio); 753 bio_list_add(&info->defer_bios, bio);
754 else { 754 else {
755 inc_all_io_entry(info->tc->pool, bio); 755 inc_all_io_entry(info->tc->pool, bio);
756 756
757 /* 757 /*
758 * We can't issue the bios with the bio prison lock 758 * We can't issue the bios with the bio prison lock
759 * held, so we add them to a list to issue on 759 * held, so we add them to a list to issue on
760 * return from this function. 760 * return from this function.
761 */ 761 */
762 bio_list_add(&info->issue_bios, bio); 762 bio_list_add(&info->issue_bios, bio);
763 } 763 }
764 } 764 }
765 } 765 }
766 766
767 static void inc_remap_and_issue_cell(struct thin_c *tc, 767 static void inc_remap_and_issue_cell(struct thin_c *tc,
768 struct dm_bio_prison_cell *cell, 768 struct dm_bio_prison_cell *cell,
769 dm_block_t block) 769 dm_block_t block)
770 { 770 {
771 struct bio *bio; 771 struct bio *bio;
772 struct remap_info info; 772 struct remap_info info;
773 773
774 info.tc = tc; 774 info.tc = tc;
775 bio_list_init(&info.defer_bios); 775 bio_list_init(&info.defer_bios);
776 bio_list_init(&info.issue_bios); 776 bio_list_init(&info.issue_bios);
777 777
778 /* 778 /*
779 * We have to be careful to inc any bios we're about to issue 779 * We have to be careful to inc any bios we're about to issue
780 * before the cell is released, and avoid a race with new bios 780 * before the cell is released, and avoid a race with new bios
781 * being added to the cell. 781 * being added to the cell.
782 */ 782 */
783 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 783 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
784 &info, cell); 784 &info, cell);
785 785
786 while ((bio = bio_list_pop(&info.defer_bios))) 786 while ((bio = bio_list_pop(&info.defer_bios)))
787 thin_defer_bio(tc, bio); 787 thin_defer_bio(tc, bio);
788 788
789 while ((bio = bio_list_pop(&info.issue_bios))) 789 while ((bio = bio_list_pop(&info.issue_bios)))
790 remap_and_issue(info.tc, bio, block); 790 remap_and_issue(info.tc, bio, block);
791 } 791 }
792 792
793 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 793 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
794 { 794 {
795 if (m->bio) { 795 if (m->bio) {
796 m->bio->bi_end_io = m->saved_bi_end_io; 796 m->bio->bi_end_io = m->saved_bi_end_io;
797 atomic_inc(&m->bio->bi_remaining); 797 atomic_inc(&m->bio->bi_remaining);
798 } 798 }
799 cell_error(m->tc->pool, m->cell); 799 cell_error(m->tc->pool, m->cell);
800 list_del(&m->list); 800 list_del(&m->list);
801 mempool_free(m, m->tc->pool->mapping_pool); 801 mempool_free(m, m->tc->pool->mapping_pool);
802 } 802 }
803 803
804 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 804 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
805 { 805 {
806 struct thin_c *tc = m->tc; 806 struct thin_c *tc = m->tc;
807 struct pool *pool = tc->pool; 807 struct pool *pool = tc->pool;
808 struct bio *bio; 808 struct bio *bio;
809 int r; 809 int r;
810 810
811 bio = m->bio; 811 bio = m->bio;
812 if (bio) { 812 if (bio) {
813 bio->bi_end_io = m->saved_bi_end_io; 813 bio->bi_end_io = m->saved_bi_end_io;
814 atomic_inc(&bio->bi_remaining); 814 atomic_inc(&bio->bi_remaining);
815 } 815 }
816 816
817 if (m->err) { 817 if (m->err) {
818 cell_error(pool, m->cell); 818 cell_error(pool, m->cell);
819 goto out; 819 goto out;
820 } 820 }
821 821
822 /* 822 /*
823 * Commit the prepared block into the mapping btree. 823 * Commit the prepared block into the mapping btree.
824 * Any I/O for this block arriving after this point will get 824 * Any I/O for this block arriving after this point will get
825 * remapped to it directly. 825 * remapped to it directly.
826 */ 826 */
827 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block); 827 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
828 if (r) { 828 if (r) {
829 metadata_operation_failed(pool, "dm_thin_insert_block", r); 829 metadata_operation_failed(pool, "dm_thin_insert_block", r);
830 cell_error(pool, m->cell); 830 cell_error(pool, m->cell);
831 goto out; 831 goto out;
832 } 832 }
833 833
834 /* 834 /*
835 * Release any bios held while the block was being provisioned. 835 * Release any bios held while the block was being provisioned.
836 * If we are processing a write bio that completely covers the block, 836 * If we are processing a write bio that completely covers the block,
837 * we already processed it so can ignore it now when processing 837 * we already processed it so can ignore it now when processing
838 * the bios in the cell. 838 * the bios in the cell.
839 */ 839 */
840 if (bio) { 840 if (bio) {
841 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 841 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
842 bio_endio(bio, 0); 842 bio_endio(bio, 0);
843 } else { 843 } else {
844 inc_all_io_entry(tc->pool, m->cell->holder); 844 inc_all_io_entry(tc->pool, m->cell->holder);
845 remap_and_issue(tc, m->cell->holder, m->data_block); 845 remap_and_issue(tc, m->cell->holder, m->data_block);
846 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 846 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
847 } 847 }
848 848
849 out: 849 out:
850 list_del(&m->list); 850 list_del(&m->list);
851 mempool_free(m, pool->mapping_pool); 851 mempool_free(m, pool->mapping_pool);
852 } 852 }
853 853
854 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 854 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
855 { 855 {
856 struct thin_c *tc = m->tc; 856 struct thin_c *tc = m->tc;
857 857
858 bio_io_error(m->bio); 858 bio_io_error(m->bio);
859 cell_defer_no_holder(tc, m->cell); 859 cell_defer_no_holder(tc, m->cell);
860 cell_defer_no_holder(tc, m->cell2); 860 cell_defer_no_holder(tc, m->cell2);
861 mempool_free(m, tc->pool->mapping_pool); 861 mempool_free(m, tc->pool->mapping_pool);
862 } 862 }
863 863
864 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m) 864 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
865 { 865 {
866 struct thin_c *tc = m->tc; 866 struct thin_c *tc = m->tc;
867 867
868 inc_all_io_entry(tc->pool, m->bio); 868 inc_all_io_entry(tc->pool, m->bio);
869 cell_defer_no_holder(tc, m->cell); 869 cell_defer_no_holder(tc, m->cell);
870 cell_defer_no_holder(tc, m->cell2); 870 cell_defer_no_holder(tc, m->cell2);
871 871
872 if (m->pass_discard) 872 if (m->pass_discard)
873 if (m->definitely_not_shared) 873 if (m->definitely_not_shared)
874 remap_and_issue(tc, m->bio, m->data_block); 874 remap_and_issue(tc, m->bio, m->data_block);
875 else { 875 else {
876 bool used = false; 876 bool used = false;
877 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used) 877 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
878 bio_endio(m->bio, 0); 878 bio_endio(m->bio, 0);
879 else 879 else
880 remap_and_issue(tc, m->bio, m->data_block); 880 remap_and_issue(tc, m->bio, m->data_block);
881 } 881 }
882 else 882 else
883 bio_endio(m->bio, 0); 883 bio_endio(m->bio, 0);
884 884
885 mempool_free(m, tc->pool->mapping_pool); 885 mempool_free(m, tc->pool->mapping_pool);
886 } 886 }
887 887
888 static void process_prepared_discard(struct dm_thin_new_mapping *m) 888 static void process_prepared_discard(struct dm_thin_new_mapping *m)
889 { 889 {
890 int r; 890 int r;
891 struct thin_c *tc = m->tc; 891 struct thin_c *tc = m->tc;
892 892
893 r = dm_thin_remove_block(tc->td, m->virt_block); 893 r = dm_thin_remove_block(tc->td, m->virt_block);
894 if (r) 894 if (r)
895 DMERR_LIMIT("dm_thin_remove_block() failed"); 895 DMERR_LIMIT("dm_thin_remove_block() failed");
896 896
897 process_prepared_discard_passdown(m); 897 process_prepared_discard_passdown(m);
898 } 898 }
899 899
900 static void process_prepared(struct pool *pool, struct list_head *head, 900 static void process_prepared(struct pool *pool, struct list_head *head,
901 process_mapping_fn *fn) 901 process_mapping_fn *fn)
902 { 902 {
903 unsigned long flags; 903 unsigned long flags;
904 struct list_head maps; 904 struct list_head maps;
905 struct dm_thin_new_mapping *m, *tmp; 905 struct dm_thin_new_mapping *m, *tmp;
906 906
907 INIT_LIST_HEAD(&maps); 907 INIT_LIST_HEAD(&maps);
908 spin_lock_irqsave(&pool->lock, flags); 908 spin_lock_irqsave(&pool->lock, flags);
909 list_splice_init(head, &maps); 909 list_splice_init(head, &maps);
910 spin_unlock_irqrestore(&pool->lock, flags); 910 spin_unlock_irqrestore(&pool->lock, flags);
911 911
912 list_for_each_entry_safe(m, tmp, &maps, list) 912 list_for_each_entry_safe(m, tmp, &maps, list)
913 (*fn)(m); 913 (*fn)(m);
914 } 914 }
915 915
916 /* 916 /*
917 * Deferred bio jobs. 917 * Deferred bio jobs.
918 */ 918 */
919 static int io_overlaps_block(struct pool *pool, struct bio *bio) 919 static int io_overlaps_block(struct pool *pool, struct bio *bio)
920 { 920 {
921 return bio->bi_iter.bi_size == 921 return bio->bi_iter.bi_size ==
922 (pool->sectors_per_block << SECTOR_SHIFT); 922 (pool->sectors_per_block << SECTOR_SHIFT);
923 } 923 }
924 924
925 static int io_overwrites_block(struct pool *pool, struct bio *bio) 925 static int io_overwrites_block(struct pool *pool, struct bio *bio)
926 { 926 {
927 return (bio_data_dir(bio) == WRITE) && 927 return (bio_data_dir(bio) == WRITE) &&
928 io_overlaps_block(pool, bio); 928 io_overlaps_block(pool, bio);
929 } 929 }
930 930
931 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 931 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
932 bio_end_io_t *fn) 932 bio_end_io_t *fn)
933 { 933 {
934 *save = bio->bi_end_io; 934 *save = bio->bi_end_io;
935 bio->bi_end_io = fn; 935 bio->bi_end_io = fn;
936 } 936 }
937 937
938 static int ensure_next_mapping(struct pool *pool) 938 static int ensure_next_mapping(struct pool *pool)
939 { 939 {
940 if (pool->next_mapping) 940 if (pool->next_mapping)
941 return 0; 941 return 0;
942 942
943 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 943 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
944 944
945 return pool->next_mapping ? 0 : -ENOMEM; 945 return pool->next_mapping ? 0 : -ENOMEM;
946 } 946 }
947 947
948 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 948 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
949 { 949 {
950 struct dm_thin_new_mapping *m = pool->next_mapping; 950 struct dm_thin_new_mapping *m = pool->next_mapping;
951 951
952 BUG_ON(!pool->next_mapping); 952 BUG_ON(!pool->next_mapping);
953 953
954 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 954 memset(m, 0, sizeof(struct dm_thin_new_mapping));
955 INIT_LIST_HEAD(&m->list); 955 INIT_LIST_HEAD(&m->list);
956 m->bio = NULL; 956 m->bio = NULL;
957 957
958 pool->next_mapping = NULL; 958 pool->next_mapping = NULL;
959 959
960 return m; 960 return m;
961 } 961 }
962 962
963 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 963 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
964 sector_t begin, sector_t end) 964 sector_t begin, sector_t end)
965 { 965 {
966 int r; 966 int r;
967 struct dm_io_region to; 967 struct dm_io_region to;
968 968
969 to.bdev = tc->pool_dev->bdev; 969 to.bdev = tc->pool_dev->bdev;
970 to.sector = begin; 970 to.sector = begin;
971 to.count = end - begin; 971 to.count = end - begin;
972 972
973 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 973 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
974 if (r < 0) { 974 if (r < 0) {
975 DMERR_LIMIT("dm_kcopyd_zero() failed"); 975 DMERR_LIMIT("dm_kcopyd_zero() failed");
976 copy_complete(1, 1, m); 976 copy_complete(1, 1, m);
977 } 977 }
978 } 978 }
979 979
980 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 980 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
981 dm_block_t data_block, 981 dm_block_t data_block,
982 struct dm_thin_new_mapping *m) 982 struct dm_thin_new_mapping *m)
983 { 983 {
984 struct pool *pool = tc->pool; 984 struct pool *pool = tc->pool;
985 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 985 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
986 986
987 h->overwrite_mapping = m; 987 h->overwrite_mapping = m;
988 m->bio = bio; 988 m->bio = bio;
989 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 989 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
990 inc_all_io_entry(pool, bio); 990 inc_all_io_entry(pool, bio);
991 remap_and_issue(tc, bio, data_block); 991 remap_and_issue(tc, bio, data_block);
992 } 992 }
993 993
994 /* 994 /*
995 * A partial copy also needs to zero the uncopied region. 995 * A partial copy also needs to zero the uncopied region.
996 */ 996 */
997 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 997 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
998 struct dm_dev *origin, dm_block_t data_origin, 998 struct dm_dev *origin, dm_block_t data_origin,
999 dm_block_t data_dest, 999 dm_block_t data_dest,
1000 struct dm_bio_prison_cell *cell, struct bio *bio, 1000 struct dm_bio_prison_cell *cell, struct bio *bio,
1001 sector_t len) 1001 sector_t len)
1002 { 1002 {
1003 int r; 1003 int r;
1004 struct pool *pool = tc->pool; 1004 struct pool *pool = tc->pool;
1005 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1005 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1006 1006
1007 m->tc = tc; 1007 m->tc = tc;
1008 m->virt_block = virt_block; 1008 m->virt_block = virt_block;
1009 m->data_block = data_dest; 1009 m->data_block = data_dest;
1010 m->cell = cell; 1010 m->cell = cell;
1011 1011
1012 /* 1012 /*
1013 * quiesce action + copy action + an extra reference held for the 1013 * quiesce action + copy action + an extra reference held for the
1014 * duration of this function (we may need to inc later for a 1014 * duration of this function (we may need to inc later for a
1015 * partial zero). 1015 * partial zero).
1016 */ 1016 */
1017 atomic_set(&m->prepare_actions, 3); 1017 atomic_set(&m->prepare_actions, 3);
1018 1018
1019 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1019 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1020 complete_mapping_preparation(m); /* already quiesced */ 1020 complete_mapping_preparation(m); /* already quiesced */
1021 1021
1022 /* 1022 /*
1023 * IO to pool_dev remaps to the pool target's data_dev. 1023 * IO to pool_dev remaps to the pool target's data_dev.
1024 * 1024 *
1025 * If the whole block of data is being overwritten, we can issue the 1025 * If the whole block of data is being overwritten, we can issue the
1026 * bio immediately. Otherwise we use kcopyd to clone the data first. 1026 * bio immediately. Otherwise we use kcopyd to clone the data first.
1027 */ 1027 */
1028 if (io_overwrites_block(pool, bio)) 1028 if (io_overwrites_block(pool, bio))
1029 remap_and_issue_overwrite(tc, bio, data_dest, m); 1029 remap_and_issue_overwrite(tc, bio, data_dest, m);
1030 else { 1030 else {
1031 struct dm_io_region from, to; 1031 struct dm_io_region from, to;
1032 1032
1033 from.bdev = origin->bdev; 1033 from.bdev = origin->bdev;
1034 from.sector = data_origin * pool->sectors_per_block; 1034 from.sector = data_origin * pool->sectors_per_block;
1035 from.count = len; 1035 from.count = len;
1036 1036
1037 to.bdev = tc->pool_dev->bdev; 1037 to.bdev = tc->pool_dev->bdev;
1038 to.sector = data_dest * pool->sectors_per_block; 1038 to.sector = data_dest * pool->sectors_per_block;
1039 to.count = len; 1039 to.count = len;
1040 1040
1041 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 1041 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1042 0, copy_complete, m); 1042 0, copy_complete, m);
1043 if (r < 0) { 1043 if (r < 0) {
1044 DMERR_LIMIT("dm_kcopyd_copy() failed"); 1044 DMERR_LIMIT("dm_kcopyd_copy() failed");
1045 copy_complete(1, 1, m); 1045 copy_complete(1, 1, m);
1046 1046
1047 /* 1047 /*
1048 * We allow the zero to be issued, to simplify the 1048 * We allow the zero to be issued, to simplify the
1049 * error path. Otherwise we'd need to start 1049 * error path. Otherwise we'd need to start
1050 * worrying about decrementing the prepare_actions 1050 * worrying about decrementing the prepare_actions
1051 * counter. 1051 * counter.
1052 */ 1052 */
1053 } 1053 }
1054 1054
1055 /* 1055 /*
1056 * Do we need to zero a tail region? 1056 * Do we need to zero a tail region?
1057 */ 1057 */
1058 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1058 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1059 atomic_inc(&m->prepare_actions); 1059 atomic_inc(&m->prepare_actions);
1060 ll_zero(tc, m, 1060 ll_zero(tc, m,
1061 data_dest * pool->sectors_per_block + len, 1061 data_dest * pool->sectors_per_block + len,
1062 (data_dest + 1) * pool->sectors_per_block); 1062 (data_dest + 1) * pool->sectors_per_block);
1063 } 1063 }
1064 } 1064 }
1065 1065
1066 complete_mapping_preparation(m); /* drop our ref */ 1066 complete_mapping_preparation(m); /* drop our ref */
1067 } 1067 }
1068 1068
1069 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1069 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1070 dm_block_t data_origin, dm_block_t data_dest, 1070 dm_block_t data_origin, dm_block_t data_dest,
1071 struct dm_bio_prison_cell *cell, struct bio *bio) 1071 struct dm_bio_prison_cell *cell, struct bio *bio)
1072 { 1072 {
1073 schedule_copy(tc, virt_block, tc->pool_dev, 1073 schedule_copy(tc, virt_block, tc->pool_dev,
1074 data_origin, data_dest, cell, bio, 1074 data_origin, data_dest, cell, bio,
1075 tc->pool->sectors_per_block); 1075 tc->pool->sectors_per_block);
1076 } 1076 }
1077 1077
1078 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1078 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1079 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1079 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1080 struct bio *bio) 1080 struct bio *bio)
1081 { 1081 {
1082 struct pool *pool = tc->pool; 1082 struct pool *pool = tc->pool;
1083 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1083 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1084 1084
1085 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1085 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1086 m->tc = tc; 1086 m->tc = tc;
1087 m->virt_block = virt_block; 1087 m->virt_block = virt_block;
1088 m->data_block = data_block; 1088 m->data_block = data_block;
1089 m->cell = cell; 1089 m->cell = cell;
1090 1090
1091 /* 1091 /*
1092 * If the whole block of data is being overwritten or we are not 1092 * If the whole block of data is being overwritten or we are not
1093 * zeroing pre-existing data, we can issue the bio immediately. 1093 * zeroing pre-existing data, we can issue the bio immediately.
1094 * Otherwise we use kcopyd to zero the data first. 1094 * Otherwise we use kcopyd to zero the data first.
1095 */ 1095 */
1096 if (!pool->pf.zero_new_blocks) 1096 if (!pool->pf.zero_new_blocks)
1097 process_prepared_mapping(m); 1097 process_prepared_mapping(m);
1098 1098
1099 else if (io_overwrites_block(pool, bio)) 1099 else if (io_overwrites_block(pool, bio))
1100 remap_and_issue_overwrite(tc, bio, data_block, m); 1100 remap_and_issue_overwrite(tc, bio, data_block, m);
1101 1101
1102 else 1102 else
1103 ll_zero(tc, m, 1103 ll_zero(tc, m,
1104 data_block * pool->sectors_per_block, 1104 data_block * pool->sectors_per_block,
1105 (data_block + 1) * pool->sectors_per_block); 1105 (data_block + 1) * pool->sectors_per_block);
1106 } 1106 }
1107 1107
1108 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1108 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1109 dm_block_t data_dest, 1109 dm_block_t data_dest,
1110 struct dm_bio_prison_cell *cell, struct bio *bio) 1110 struct dm_bio_prison_cell *cell, struct bio *bio)
1111 { 1111 {
1112 struct pool *pool = tc->pool; 1112 struct pool *pool = tc->pool;
1113 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1113 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1114 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1114 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1115 1115
1116 if (virt_block_end <= tc->origin_size) 1116 if (virt_block_end <= tc->origin_size)
1117 schedule_copy(tc, virt_block, tc->origin_dev, 1117 schedule_copy(tc, virt_block, tc->origin_dev,
1118 virt_block, data_dest, cell, bio, 1118 virt_block, data_dest, cell, bio,
1119 pool->sectors_per_block); 1119 pool->sectors_per_block);
1120 1120
1121 else if (virt_block_begin < tc->origin_size) 1121 else if (virt_block_begin < tc->origin_size)
1122 schedule_copy(tc, virt_block, tc->origin_dev, 1122 schedule_copy(tc, virt_block, tc->origin_dev,
1123 virt_block, data_dest, cell, bio, 1123 virt_block, data_dest, cell, bio,
1124 tc->origin_size - virt_block_begin); 1124 tc->origin_size - virt_block_begin);
1125 1125
1126 else 1126 else
1127 schedule_zero(tc, virt_block, data_dest, cell, bio); 1127 schedule_zero(tc, virt_block, data_dest, cell, bio);
1128 } 1128 }
1129 1129
1130 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1130 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1131 1131
1132 static void check_for_space(struct pool *pool) 1132 static void check_for_space(struct pool *pool)
1133 { 1133 {
1134 int r; 1134 int r;
1135 dm_block_t nr_free; 1135 dm_block_t nr_free;
1136 1136
1137 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1137 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1138 return; 1138 return;
1139 1139
1140 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1140 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1141 if (r) 1141 if (r)
1142 return; 1142 return;
1143 1143
1144 if (nr_free) 1144 if (nr_free)
1145 set_pool_mode(pool, PM_WRITE); 1145 set_pool_mode(pool, PM_WRITE);
1146 } 1146 }
1147 1147
1148 /* 1148 /*
1149 * A non-zero return indicates read_only or fail_io mode. 1149 * A non-zero return indicates read_only or fail_io mode.
1150 * Many callers don't care about the return value. 1150 * Many callers don't care about the return value.
1151 */ 1151 */
1152 static int commit(struct pool *pool) 1152 static int commit(struct pool *pool)
1153 { 1153 {
1154 int r; 1154 int r;
1155 1155
1156 if (get_pool_mode(pool) >= PM_READ_ONLY) 1156 if (get_pool_mode(pool) >= PM_READ_ONLY)
1157 return -EINVAL; 1157 return -EINVAL;
1158 1158
1159 r = dm_pool_commit_metadata(pool->pmd); 1159 r = dm_pool_commit_metadata(pool->pmd);
1160 if (r) 1160 if (r)
1161 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1161 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1162 else 1162 else
1163 check_for_space(pool); 1163 check_for_space(pool);
1164 1164
1165 return r; 1165 return r;
1166 } 1166 }
1167 1167
1168 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1168 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1169 { 1169 {
1170 unsigned long flags; 1170 unsigned long flags;
1171 1171
1172 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1172 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1173 DMWARN("%s: reached low water mark for data device: sending event.", 1173 DMWARN("%s: reached low water mark for data device: sending event.",
1174 dm_device_name(pool->pool_md)); 1174 dm_device_name(pool->pool_md));
1175 spin_lock_irqsave(&pool->lock, flags); 1175 spin_lock_irqsave(&pool->lock, flags);
1176 pool->low_water_triggered = true; 1176 pool->low_water_triggered = true;
1177 spin_unlock_irqrestore(&pool->lock, flags); 1177 spin_unlock_irqrestore(&pool->lock, flags);
1178 dm_table_event(pool->ti->table); 1178 dm_table_event(pool->ti->table);
1179 } 1179 }
1180 } 1180 }
1181 1181
1182 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1182 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1183 { 1183 {
1184 int r; 1184 int r;
1185 dm_block_t free_blocks; 1185 dm_block_t free_blocks;
1186 struct pool *pool = tc->pool; 1186 struct pool *pool = tc->pool;
1187 1187
1188 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1188 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1189 return -EINVAL; 1189 return -EINVAL;
1190 1190
1191 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1191 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1192 if (r) { 1192 if (r) {
1193 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1193 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1194 return r; 1194 return r;
1195 } 1195 }
1196 1196
1197 check_low_water_mark(pool, free_blocks); 1197 check_low_water_mark(pool, free_blocks);
1198 1198
1199 if (!free_blocks) { 1199 if (!free_blocks) {
1200 /* 1200 /*
1201 * Try to commit to see if that will free up some 1201 * Try to commit to see if that will free up some
1202 * more space. 1202 * more space.
1203 */ 1203 */
1204 r = commit(pool); 1204 r = commit(pool);
1205 if (r) 1205 if (r)
1206 return r; 1206 return r;
1207 1207
1208 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1208 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1209 if (r) { 1209 if (r) {
1210 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1210 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1211 return r; 1211 return r;
1212 } 1212 }
1213 1213
1214 if (!free_blocks) { 1214 if (!free_blocks) {
1215 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1215 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1216 return -ENOSPC; 1216 return -ENOSPC;
1217 } 1217 }
1218 } 1218 }
1219 1219
1220 r = dm_pool_alloc_data_block(pool->pmd, result); 1220 r = dm_pool_alloc_data_block(pool->pmd, result);
1221 if (r) { 1221 if (r) {
1222 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1222 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1223 return r; 1223 return r;
1224 } 1224 }
1225 1225
1226 return 0; 1226 return 0;
1227 } 1227 }
1228 1228
1229 /* 1229 /*
1230 * If we have run out of space, queue bios until the device is 1230 * If we have run out of space, queue bios until the device is
1231 * resumed, presumably after having been reloaded with more space. 1231 * resumed, presumably after having been reloaded with more space.
1232 */ 1232 */
1233 static void retry_on_resume(struct bio *bio) 1233 static void retry_on_resume(struct bio *bio)
1234 { 1234 {
1235 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1235 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1236 struct thin_c *tc = h->tc; 1236 struct thin_c *tc = h->tc;
1237 unsigned long flags; 1237 unsigned long flags;
1238 1238
1239 spin_lock_irqsave(&tc->lock, flags); 1239 spin_lock_irqsave(&tc->lock, flags);
1240 bio_list_add(&tc->retry_on_resume_list, bio); 1240 bio_list_add(&tc->retry_on_resume_list, bio);
1241 spin_unlock_irqrestore(&tc->lock, flags); 1241 spin_unlock_irqrestore(&tc->lock, flags);
1242 } 1242 }
1243 1243
1244 static int should_error_unserviceable_bio(struct pool *pool) 1244 static int should_error_unserviceable_bio(struct pool *pool)
1245 { 1245 {
1246 enum pool_mode m = get_pool_mode(pool); 1246 enum pool_mode m = get_pool_mode(pool);
1247 1247
1248 switch (m) { 1248 switch (m) {
1249 case PM_WRITE: 1249 case PM_WRITE:
1250 /* Shouldn't get here */ 1250 /* Shouldn't get here */
1251 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1251 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1252 return -EIO; 1252 return -EIO;
1253 1253
1254 case PM_OUT_OF_DATA_SPACE: 1254 case PM_OUT_OF_DATA_SPACE:
1255 return pool->pf.error_if_no_space ? -ENOSPC : 0; 1255 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1256 1256
1257 case PM_READ_ONLY: 1257 case PM_READ_ONLY:
1258 case PM_FAIL: 1258 case PM_FAIL:
1259 return -EIO; 1259 return -EIO;
1260 default: 1260 default:
1261 /* Shouldn't get here */ 1261 /* Shouldn't get here */
1262 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1262 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1263 return -EIO; 1263 return -EIO;
1264 } 1264 }
1265 } 1265 }
1266 1266
1267 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1267 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1268 { 1268 {
1269 int error = should_error_unserviceable_bio(pool); 1269 int error = should_error_unserviceable_bio(pool);
1270 1270
1271 if (error) 1271 if (error)
1272 bio_endio(bio, error); 1272 bio_endio(bio, error);
1273 else 1273 else
1274 retry_on_resume(bio); 1274 retry_on_resume(bio);
1275 } 1275 }
1276 1276
1277 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1277 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1278 { 1278 {
1279 struct bio *bio; 1279 struct bio *bio;
1280 struct bio_list bios; 1280 struct bio_list bios;
1281 int error; 1281 int error;
1282 1282
1283 error = should_error_unserviceable_bio(pool); 1283 error = should_error_unserviceable_bio(pool);
1284 if (error) { 1284 if (error) {
1285 cell_error_with_code(pool, cell, error); 1285 cell_error_with_code(pool, cell, error);
1286 return; 1286 return;
1287 } 1287 }
1288 1288
1289 bio_list_init(&bios); 1289 bio_list_init(&bios);
1290 cell_release(pool, cell, &bios); 1290 cell_release(pool, cell, &bios);
1291 1291
1292 while ((bio = bio_list_pop(&bios))) 1292 while ((bio = bio_list_pop(&bios)))
1293 retry_on_resume(bio); 1293 retry_on_resume(bio);
1294 } 1294 }
1295 1295
1296 static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1296 static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1297 { 1297 {
1298 int r; 1298 int r;
1299 struct bio *bio = cell->holder; 1299 struct bio *bio = cell->holder;
1300 struct pool *pool = tc->pool; 1300 struct pool *pool = tc->pool;
1301 struct dm_bio_prison_cell *cell2; 1301 struct dm_bio_prison_cell *cell2;
1302 struct dm_cell_key key2; 1302 struct dm_cell_key key2;
1303 dm_block_t block = get_bio_block(tc, bio); 1303 dm_block_t block = get_bio_block(tc, bio);
1304 struct dm_thin_lookup_result lookup_result; 1304 struct dm_thin_lookup_result lookup_result;
1305 struct dm_thin_new_mapping *m; 1305 struct dm_thin_new_mapping *m;
1306 1306
1307 if (tc->requeue_mode) { 1307 if (tc->requeue_mode) {
1308 cell_requeue(pool, cell); 1308 cell_requeue(pool, cell);
1309 return; 1309 return;
1310 } 1310 }
1311 1311
1312 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1312 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1313 switch (r) { 1313 switch (r) {
1314 case 0: 1314 case 0:
1315 /* 1315 /*
1316 * Check nobody is fiddling with this pool block. This can 1316 * Check nobody is fiddling with this pool block. This can
1317 * happen if someone's in the process of breaking sharing 1317 * happen if someone's in the process of breaking sharing
1318 * on this block. 1318 * on this block.
1319 */ 1319 */
1320 build_data_key(tc->td, lookup_result.block, &key2); 1320 build_data_key(tc->td, lookup_result.block, &key2);
1321 if (bio_detain(tc->pool, &key2, bio, &cell2)) { 1321 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1322 cell_defer_no_holder(tc, cell); 1322 cell_defer_no_holder(tc, cell);
1323 break; 1323 break;
1324 } 1324 }
1325 1325
1326 if (io_overlaps_block(pool, bio)) { 1326 if (io_overlaps_block(pool, bio)) {
1327 /* 1327 /*
1328 * IO may still be going to the destination block. We must 1328 * IO may still be going to the destination block. We must
1329 * quiesce before we can do the removal. 1329 * quiesce before we can do the removal.
1330 */ 1330 */
1331 m = get_next_mapping(pool); 1331 m = get_next_mapping(pool);
1332 m->tc = tc; 1332 m->tc = tc;
1333 m->pass_discard = pool->pf.discard_passdown; 1333 m->pass_discard = pool->pf.discard_passdown;
1334 m->definitely_not_shared = !lookup_result.shared; 1334 m->definitely_not_shared = !lookup_result.shared;
1335 m->virt_block = block; 1335 m->virt_block = block;
1336 m->data_block = lookup_result.block; 1336 m->data_block = lookup_result.block;
1337 m->cell = cell; 1337 m->cell = cell;
1338 m->cell2 = cell2; 1338 m->cell2 = cell2;
1339 m->bio = bio; 1339 m->bio = bio;
1340 1340
1341 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1341 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1342 pool->process_prepared_discard(m); 1342 pool->process_prepared_discard(m);
1343 1343
1344 } else { 1344 } else {
1345 inc_all_io_entry(pool, bio); 1345 inc_all_io_entry(pool, bio);
1346 cell_defer_no_holder(tc, cell); 1346 cell_defer_no_holder(tc, cell);
1347 cell_defer_no_holder(tc, cell2); 1347 cell_defer_no_holder(tc, cell2);
1348 1348
1349 /* 1349 /*
1350 * The DM core makes sure that the discard doesn't span 1350 * The DM core makes sure that the discard doesn't span
1351 * a block boundary. So we submit the discard of a 1351 * a block boundary. So we submit the discard of a
1352 * partial block appropriately. 1352 * partial block appropriately.
1353 */ 1353 */
1354 if ((!lookup_result.shared) && pool->pf.discard_passdown) 1354 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1355 remap_and_issue(tc, bio, lookup_result.block); 1355 remap_and_issue(tc, bio, lookup_result.block);
1356 else 1356 else
1357 bio_endio(bio, 0); 1357 bio_endio(bio, 0);
1358 } 1358 }
1359 break; 1359 break;
1360 1360
1361 case -ENODATA: 1361 case -ENODATA:
1362 /* 1362 /*
1363 * It isn't provisioned, just forget it. 1363 * It isn't provisioned, just forget it.
1364 */ 1364 */
1365 cell_defer_no_holder(tc, cell); 1365 cell_defer_no_holder(tc, cell);
1366 bio_endio(bio, 0); 1366 bio_endio(bio, 0);
1367 break; 1367 break;
1368 1368
1369 default: 1369 default:
1370 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1370 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1371 __func__, r); 1371 __func__, r);
1372 cell_defer_no_holder(tc, cell); 1372 cell_defer_no_holder(tc, cell);
1373 bio_io_error(bio); 1373 bio_io_error(bio);
1374 break; 1374 break;
1375 } 1375 }
1376 } 1376 }
1377 1377
1378 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1378 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1379 { 1379 {
1380 struct dm_bio_prison_cell *cell; 1380 struct dm_bio_prison_cell *cell;
1381 struct dm_cell_key key; 1381 struct dm_cell_key key;
1382 dm_block_t block = get_bio_block(tc, bio); 1382 dm_block_t block = get_bio_block(tc, bio);
1383 1383
1384 build_virtual_key(tc->td, block, &key); 1384 build_virtual_key(tc->td, block, &key);
1385 if (bio_detain(tc->pool, &key, bio, &cell)) 1385 if (bio_detain(tc->pool, &key, bio, &cell))
1386 return; 1386 return;
1387 1387
1388 process_discard_cell(tc, cell); 1388 process_discard_cell(tc, cell);
1389 } 1389 }
1390 1390
1391 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1391 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1392 struct dm_cell_key *key, 1392 struct dm_cell_key *key,
1393 struct dm_thin_lookup_result *lookup_result, 1393 struct dm_thin_lookup_result *lookup_result,
1394 struct dm_bio_prison_cell *cell) 1394 struct dm_bio_prison_cell *cell)
1395 { 1395 {
1396 int r; 1396 int r;
1397 dm_block_t data_block; 1397 dm_block_t data_block;
1398 struct pool *pool = tc->pool; 1398 struct pool *pool = tc->pool;
1399 1399
1400 r = alloc_data_block(tc, &data_block); 1400 r = alloc_data_block(tc, &data_block);
1401 switch (r) { 1401 switch (r) {
1402 case 0: 1402 case 0:
1403 schedule_internal_copy(tc, block, lookup_result->block, 1403 schedule_internal_copy(tc, block, lookup_result->block,
1404 data_block, cell, bio); 1404 data_block, cell, bio);
1405 break; 1405 break;
1406 1406
1407 case -ENOSPC: 1407 case -ENOSPC:
1408 retry_bios_on_resume(pool, cell); 1408 retry_bios_on_resume(pool, cell);
1409 break; 1409 break;
1410 1410
1411 default: 1411 default:
1412 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1412 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1413 __func__, r); 1413 __func__, r);
1414 cell_error(pool, cell); 1414 cell_error(pool, cell);
1415 break; 1415 break;
1416 } 1416 }
1417 } 1417 }
1418 1418
1419 static void __remap_and_issue_shared_cell(void *context, 1419 static void __remap_and_issue_shared_cell(void *context,
1420 struct dm_bio_prison_cell *cell) 1420 struct dm_bio_prison_cell *cell)
1421 { 1421 {
1422 struct remap_info *info = context; 1422 struct remap_info *info = context;
1423 struct bio *bio; 1423 struct bio *bio;
1424 1424
1425 while ((bio = bio_list_pop(&cell->bios))) { 1425 while ((bio = bio_list_pop(&cell->bios))) {
1426 if ((bio_data_dir(bio) == WRITE) || 1426 if ((bio_data_dir(bio) == WRITE) ||
1427 (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))) 1427 (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1428 bio_list_add(&info->defer_bios, bio); 1428 bio_list_add(&info->defer_bios, bio);
1429 else { 1429 else {
1430 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));; 1430 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1431 1431
1432 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1432 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1433 inc_all_io_entry(info->tc->pool, bio); 1433 inc_all_io_entry(info->tc->pool, bio);
1434 bio_list_add(&info->issue_bios, bio); 1434 bio_list_add(&info->issue_bios, bio);
1435 } 1435 }
1436 } 1436 }
1437 } 1437 }
1438 1438
1439 static void remap_and_issue_shared_cell(struct thin_c *tc, 1439 static void remap_and_issue_shared_cell(struct thin_c *tc,
1440 struct dm_bio_prison_cell *cell, 1440 struct dm_bio_prison_cell *cell,
1441 dm_block_t block) 1441 dm_block_t block)
1442 { 1442 {
1443 struct bio *bio; 1443 struct bio *bio;
1444 struct remap_info info; 1444 struct remap_info info;
1445 1445
1446 info.tc = tc; 1446 info.tc = tc;
1447 bio_list_init(&info.defer_bios); 1447 bio_list_init(&info.defer_bios);
1448 bio_list_init(&info.issue_bios); 1448 bio_list_init(&info.issue_bios);
1449 1449
1450 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1450 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1451 &info, cell); 1451 &info, cell);
1452 1452
1453 while ((bio = bio_list_pop(&info.defer_bios))) 1453 while ((bio = bio_list_pop(&info.defer_bios)))
1454 thin_defer_bio(tc, bio); 1454 thin_defer_bio(tc, bio);
1455 1455
1456 while ((bio = bio_list_pop(&info.issue_bios))) 1456 while ((bio = bio_list_pop(&info.issue_bios)))
1457 remap_and_issue(tc, bio, block); 1457 remap_and_issue(tc, bio, block);
1458 } 1458 }
1459 1459
1460 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1460 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1461 dm_block_t block, 1461 dm_block_t block,
1462 struct dm_thin_lookup_result *lookup_result, 1462 struct dm_thin_lookup_result *lookup_result,
1463 struct dm_bio_prison_cell *virt_cell) 1463 struct dm_bio_prison_cell *virt_cell)
1464 { 1464 {
1465 struct dm_bio_prison_cell *data_cell; 1465 struct dm_bio_prison_cell *data_cell;
1466 struct pool *pool = tc->pool; 1466 struct pool *pool = tc->pool;
1467 struct dm_cell_key key; 1467 struct dm_cell_key key;
1468 1468
1469 /* 1469 /*
1470 * If cell is already occupied, then sharing is already in the process 1470 * If cell is already occupied, then sharing is already in the process
1471 * of being broken so we have nothing further to do here. 1471 * of being broken so we have nothing further to do here.
1472 */ 1472 */
1473 build_data_key(tc->td, lookup_result->block, &key); 1473 build_data_key(tc->td, lookup_result->block, &key);
1474 if (bio_detain(pool, &key, bio, &data_cell)) { 1474 if (bio_detain(pool, &key, bio, &data_cell)) {
1475 cell_defer_no_holder(tc, virt_cell); 1475 cell_defer_no_holder(tc, virt_cell);
1476 return; 1476 return;
1477 } 1477 }
1478 1478
1479 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1479 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1480 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1480 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1481 cell_defer_no_holder(tc, virt_cell); 1481 cell_defer_no_holder(tc, virt_cell);
1482 } else { 1482 } else {
1483 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1483 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1484 1484
1485 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1485 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1486 inc_all_io_entry(pool, bio); 1486 inc_all_io_entry(pool, bio);
1487 remap_and_issue(tc, bio, lookup_result->block); 1487 remap_and_issue(tc, bio, lookup_result->block);
1488 1488
1489 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1489 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1490 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1490 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1491 } 1491 }
1492 } 1492 }
1493 1493
1494 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1494 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1495 struct dm_bio_prison_cell *cell) 1495 struct dm_bio_prison_cell *cell)
1496 { 1496 {
1497 int r; 1497 int r;
1498 dm_block_t data_block; 1498 dm_block_t data_block;
1499 struct pool *pool = tc->pool; 1499 struct pool *pool = tc->pool;
1500 1500
1501 /* 1501 /*
1502 * Remap empty bios (flushes) immediately, without provisioning. 1502 * Remap empty bios (flushes) immediately, without provisioning.
1503 */ 1503 */
1504 if (!bio->bi_iter.bi_size) { 1504 if (!bio->bi_iter.bi_size) {
1505 inc_all_io_entry(pool, bio); 1505 inc_all_io_entry(pool, bio);
1506 cell_defer_no_holder(tc, cell); 1506 cell_defer_no_holder(tc, cell);
1507 1507
1508 remap_and_issue(tc, bio, 0); 1508 remap_and_issue(tc, bio, 0);
1509 return; 1509 return;
1510 } 1510 }
1511 1511
1512 /* 1512 /*
1513 * Fill read bios with zeroes and complete them immediately. 1513 * Fill read bios with zeroes and complete them immediately.
1514 */ 1514 */
1515 if (bio_data_dir(bio) == READ) { 1515 if (bio_data_dir(bio) == READ) {
1516 zero_fill_bio(bio); 1516 zero_fill_bio(bio);
1517 cell_defer_no_holder(tc, cell); 1517 cell_defer_no_holder(tc, cell);
1518 bio_endio(bio, 0); 1518 bio_endio(bio, 0);
1519 return; 1519 return;
1520 } 1520 }
1521 1521
1522 r = alloc_data_block(tc, &data_block); 1522 r = alloc_data_block(tc, &data_block);
1523 switch (r) { 1523 switch (r) {
1524 case 0: 1524 case 0:
1525 if (tc->origin_dev) 1525 if (tc->origin_dev)
1526 schedule_external_copy(tc, block, data_block, cell, bio); 1526 schedule_external_copy(tc, block, data_block, cell, bio);
1527 else 1527 else
1528 schedule_zero(tc, block, data_block, cell, bio); 1528 schedule_zero(tc, block, data_block, cell, bio);
1529 break; 1529 break;
1530 1530
1531 case -ENOSPC: 1531 case -ENOSPC:
1532 retry_bios_on_resume(pool, cell); 1532 retry_bios_on_resume(pool, cell);
1533 break; 1533 break;
1534 1534
1535 default: 1535 default:
1536 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1536 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1537 __func__, r); 1537 __func__, r);
1538 cell_error(pool, cell); 1538 cell_error(pool, cell);
1539 break; 1539 break;
1540 } 1540 }
1541 } 1541 }
1542 1542
1543 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1543 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1544 { 1544 {
1545 int r; 1545 int r;
1546 struct pool *pool = tc->pool; 1546 struct pool *pool = tc->pool;
1547 struct bio *bio = cell->holder; 1547 struct bio *bio = cell->holder;
1548 dm_block_t block = get_bio_block(tc, bio); 1548 dm_block_t block = get_bio_block(tc, bio);
1549 struct dm_thin_lookup_result lookup_result; 1549 struct dm_thin_lookup_result lookup_result;
1550 1550
1551 if (tc->requeue_mode) { 1551 if (tc->requeue_mode) {
1552 cell_requeue(pool, cell); 1552 cell_requeue(pool, cell);
1553 return; 1553 return;
1554 } 1554 }
1555 1555
1556 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1556 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1557 switch (r) { 1557 switch (r) {
1558 case 0: 1558 case 0:
1559 if (lookup_result.shared) 1559 if (lookup_result.shared)
1560 process_shared_bio(tc, bio, block, &lookup_result, cell); 1560 process_shared_bio(tc, bio, block, &lookup_result, cell);
1561 else { 1561 else {
1562 inc_all_io_entry(pool, bio); 1562 inc_all_io_entry(pool, bio);
1563 remap_and_issue(tc, bio, lookup_result.block); 1563 remap_and_issue(tc, bio, lookup_result.block);
1564 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1564 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1565 } 1565 }
1566 break; 1566 break;
1567 1567
1568 case -ENODATA: 1568 case -ENODATA:
1569 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1569 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1570 inc_all_io_entry(pool, bio); 1570 inc_all_io_entry(pool, bio);
1571 cell_defer_no_holder(tc, cell); 1571 cell_defer_no_holder(tc, cell);
1572 1572
1573 if (bio_end_sector(bio) <= tc->origin_size) 1573 if (bio_end_sector(bio) <= tc->origin_size)
1574 remap_to_origin_and_issue(tc, bio); 1574 remap_to_origin_and_issue(tc, bio);
1575 1575
1576 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1576 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1577 zero_fill_bio(bio); 1577 zero_fill_bio(bio);
1578 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1578 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1579 remap_to_origin_and_issue(tc, bio); 1579 remap_to_origin_and_issue(tc, bio);
1580 1580
1581 } else { 1581 } else {
1582 zero_fill_bio(bio); 1582 zero_fill_bio(bio);
1583 bio_endio(bio, 0); 1583 bio_endio(bio, 0);
1584 } 1584 }
1585 } else 1585 } else
1586 provision_block(tc, bio, block, cell); 1586 provision_block(tc, bio, block, cell);
1587 break; 1587 break;
1588 1588
1589 default: 1589 default:
1590 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1590 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1591 __func__, r); 1591 __func__, r);
1592 cell_defer_no_holder(tc, cell); 1592 cell_defer_no_holder(tc, cell);
1593 bio_io_error(bio); 1593 bio_io_error(bio);
1594 break; 1594 break;
1595 } 1595 }
1596 } 1596 }
1597 1597
1598 static void process_bio(struct thin_c *tc, struct bio *bio) 1598 static void process_bio(struct thin_c *tc, struct bio *bio)
1599 { 1599 {
1600 struct pool *pool = tc->pool; 1600 struct pool *pool = tc->pool;
1601 dm_block_t block = get_bio_block(tc, bio); 1601 dm_block_t block = get_bio_block(tc, bio);
1602 struct dm_bio_prison_cell *cell; 1602 struct dm_bio_prison_cell *cell;
1603 struct dm_cell_key key; 1603 struct dm_cell_key key;
1604 1604
1605 /* 1605 /*
1606 * If cell is already occupied, then the block is already 1606 * If cell is already occupied, then the block is already
1607 * being provisioned so we have nothing further to do here. 1607 * being provisioned so we have nothing further to do here.
1608 */ 1608 */
1609 build_virtual_key(tc->td, block, &key); 1609 build_virtual_key(tc->td, block, &key);
1610 if (bio_detain(pool, &key, bio, &cell)) 1610 if (bio_detain(pool, &key, bio, &cell))
1611 return; 1611 return;
1612 1612
1613 process_cell(tc, cell); 1613 process_cell(tc, cell);
1614 } 1614 }
1615 1615
1616 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 1616 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1617 struct dm_bio_prison_cell *cell) 1617 struct dm_bio_prison_cell *cell)
1618 { 1618 {
1619 int r; 1619 int r;
1620 int rw = bio_data_dir(bio); 1620 int rw = bio_data_dir(bio);
1621 dm_block_t block = get_bio_block(tc, bio); 1621 dm_block_t block = get_bio_block(tc, bio);
1622 struct dm_thin_lookup_result lookup_result; 1622 struct dm_thin_lookup_result lookup_result;
1623 1623
1624 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1624 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1625 switch (r) { 1625 switch (r) {
1626 case 0: 1626 case 0:
1627 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 1627 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1628 handle_unserviceable_bio(tc->pool, bio); 1628 handle_unserviceable_bio(tc->pool, bio);
1629 if (cell) 1629 if (cell)
1630 cell_defer_no_holder(tc, cell); 1630 cell_defer_no_holder(tc, cell);
1631 } else { 1631 } else {
1632 inc_all_io_entry(tc->pool, bio); 1632 inc_all_io_entry(tc->pool, bio);
1633 remap_and_issue(tc, bio, lookup_result.block); 1633 remap_and_issue(tc, bio, lookup_result.block);
1634 if (cell) 1634 if (cell)
1635 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1635 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1636 } 1636 }
1637 break; 1637 break;
1638 1638
1639 case -ENODATA: 1639 case -ENODATA:
1640 if (cell) 1640 if (cell)
1641 cell_defer_no_holder(tc, cell); 1641 cell_defer_no_holder(tc, cell);
1642 if (rw != READ) { 1642 if (rw != READ) {
1643 handle_unserviceable_bio(tc->pool, bio); 1643 handle_unserviceable_bio(tc->pool, bio);
1644 break; 1644 break;
1645 } 1645 }
1646 1646
1647 if (tc->origin_dev) { 1647 if (tc->origin_dev) {
1648 inc_all_io_entry(tc->pool, bio); 1648 inc_all_io_entry(tc->pool, bio);
1649 remap_to_origin_and_issue(tc, bio); 1649 remap_to_origin_and_issue(tc, bio);
1650 break; 1650 break;
1651 } 1651 }
1652 1652
1653 zero_fill_bio(bio); 1653 zero_fill_bio(bio);
1654 bio_endio(bio, 0); 1654 bio_endio(bio, 0);
1655 break; 1655 break;
1656 1656
1657 default: 1657 default:
1658 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1658 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1659 __func__, r); 1659 __func__, r);
1660 if (cell) 1660 if (cell)
1661 cell_defer_no_holder(tc, cell); 1661 cell_defer_no_holder(tc, cell);
1662 bio_io_error(bio); 1662 bio_io_error(bio);
1663 break; 1663 break;
1664 } 1664 }
1665 } 1665 }
1666 1666
1667 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1667 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1668 { 1668 {
1669 __process_bio_read_only(tc, bio, NULL); 1669 __process_bio_read_only(tc, bio, NULL);
1670 } 1670 }
1671 1671
1672 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1672 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1673 { 1673 {
1674 __process_bio_read_only(tc, cell->holder, cell); 1674 __process_bio_read_only(tc, cell->holder, cell);
1675 } 1675 }
1676 1676
1677 static void process_bio_success(struct thin_c *tc, struct bio *bio) 1677 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1678 { 1678 {
1679 bio_endio(bio, 0); 1679 bio_endio(bio, 0);
1680 } 1680 }
1681 1681
1682 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1682 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1683 { 1683 {
1684 bio_io_error(bio); 1684 bio_io_error(bio);
1685 } 1685 }
1686 1686
1687 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1687 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1688 { 1688 {
1689 cell_success(tc->pool, cell); 1689 cell_success(tc->pool, cell);
1690 } 1690 }
1691 1691
1692 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1692 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1693 { 1693 {
1694 cell_error(tc->pool, cell); 1694 cell_error(tc->pool, cell);
1695 } 1695 }
1696 1696
1697 /* 1697 /*
1698 * FIXME: should we also commit due to size of transaction, measured in 1698 * FIXME: should we also commit due to size of transaction, measured in
1699 * metadata blocks? 1699 * metadata blocks?
1700 */ 1700 */
1701 static int need_commit_due_to_time(struct pool *pool) 1701 static int need_commit_due_to_time(struct pool *pool)
1702 { 1702 {
1703 return jiffies < pool->last_commit_jiffies || 1703 return jiffies < pool->last_commit_jiffies ||
1704 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD; 1704 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1705 } 1705 }
1706 1706
1707 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 1707 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1708 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 1708 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1709 1709
1710 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 1710 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1711 { 1711 {
1712 struct rb_node **rbp, *parent; 1712 struct rb_node **rbp, *parent;
1713 struct dm_thin_endio_hook *pbd; 1713 struct dm_thin_endio_hook *pbd;
1714 sector_t bi_sector = bio->bi_iter.bi_sector; 1714 sector_t bi_sector = bio->bi_iter.bi_sector;
1715 1715
1716 rbp = &tc->sort_bio_list.rb_node; 1716 rbp = &tc->sort_bio_list.rb_node;
1717 parent = NULL; 1717 parent = NULL;
1718 while (*rbp) { 1718 while (*rbp) {
1719 parent = *rbp; 1719 parent = *rbp;
1720 pbd = thin_pbd(parent); 1720 pbd = thin_pbd(parent);
1721 1721
1722 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 1722 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1723 rbp = &(*rbp)->rb_left; 1723 rbp = &(*rbp)->rb_left;
1724 else 1724 else
1725 rbp = &(*rbp)->rb_right; 1725 rbp = &(*rbp)->rb_right;
1726 } 1726 }
1727 1727
1728 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1728 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1729 rb_link_node(&pbd->rb_node, parent, rbp); 1729 rb_link_node(&pbd->rb_node, parent, rbp);
1730 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 1730 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1731 } 1731 }
1732 1732
1733 static void __extract_sorted_bios(struct thin_c *tc) 1733 static void __extract_sorted_bios(struct thin_c *tc)
1734 { 1734 {
1735 struct rb_node *node; 1735 struct rb_node *node;
1736 struct dm_thin_endio_hook *pbd; 1736 struct dm_thin_endio_hook *pbd;
1737 struct bio *bio; 1737 struct bio *bio;
1738 1738
1739 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 1739 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1740 pbd = thin_pbd(node); 1740 pbd = thin_pbd(node);
1741 bio = thin_bio(pbd); 1741 bio = thin_bio(pbd);
1742 1742
1743 bio_list_add(&tc->deferred_bio_list, bio); 1743 bio_list_add(&tc->deferred_bio_list, bio);
1744 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 1744 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1745 } 1745 }
1746 1746
1747 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 1747 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1748 } 1748 }
1749 1749
1750 static void __sort_thin_deferred_bios(struct thin_c *tc) 1750 static void __sort_thin_deferred_bios(struct thin_c *tc)
1751 { 1751 {
1752 struct bio *bio; 1752 struct bio *bio;
1753 struct bio_list bios; 1753 struct bio_list bios;
1754 1754
1755 bio_list_init(&bios); 1755 bio_list_init(&bios);
1756 bio_list_merge(&bios, &tc->deferred_bio_list); 1756 bio_list_merge(&bios, &tc->deferred_bio_list);
1757 bio_list_init(&tc->deferred_bio_list); 1757 bio_list_init(&tc->deferred_bio_list);
1758 1758
1759 /* Sort deferred_bio_list using rb-tree */ 1759 /* Sort deferred_bio_list using rb-tree */
1760 while ((bio = bio_list_pop(&bios))) 1760 while ((bio = bio_list_pop(&bios)))
1761 __thin_bio_rb_add(tc, bio); 1761 __thin_bio_rb_add(tc, bio);
1762 1762
1763 /* 1763 /*
1764 * Transfer the sorted bios in sort_bio_list back to 1764 * Transfer the sorted bios in sort_bio_list back to
1765 * deferred_bio_list to allow lockless submission of 1765 * deferred_bio_list to allow lockless submission of
1766 * all bios. 1766 * all bios.
1767 */ 1767 */
1768 __extract_sorted_bios(tc); 1768 __extract_sorted_bios(tc);
1769 } 1769 }
1770 1770
1771 static void process_thin_deferred_bios(struct thin_c *tc) 1771 static void process_thin_deferred_bios(struct thin_c *tc)
1772 { 1772 {
1773 struct pool *pool = tc->pool; 1773 struct pool *pool = tc->pool;
1774 unsigned long flags; 1774 unsigned long flags;
1775 struct bio *bio; 1775 struct bio *bio;
1776 struct bio_list bios; 1776 struct bio_list bios;
1777 struct blk_plug plug; 1777 struct blk_plug plug;
1778 unsigned count = 0; 1778 unsigned count = 0;
1779 1779
1780 if (tc->requeue_mode) { 1780 if (tc->requeue_mode) {
1781 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE); 1781 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
1782 return; 1782 return;
1783 } 1783 }
1784 1784
1785 bio_list_init(&bios); 1785 bio_list_init(&bios);
1786 1786
1787 spin_lock_irqsave(&tc->lock, flags); 1787 spin_lock_irqsave(&tc->lock, flags);
1788 1788
1789 if (bio_list_empty(&tc->deferred_bio_list)) { 1789 if (bio_list_empty(&tc->deferred_bio_list)) {
1790 spin_unlock_irqrestore(&tc->lock, flags); 1790 spin_unlock_irqrestore(&tc->lock, flags);
1791 return; 1791 return;
1792 } 1792 }
1793 1793
1794 __sort_thin_deferred_bios(tc); 1794 __sort_thin_deferred_bios(tc);
1795 1795
1796 bio_list_merge(&bios, &tc->deferred_bio_list); 1796 bio_list_merge(&bios, &tc->deferred_bio_list);
1797 bio_list_init(&tc->deferred_bio_list); 1797 bio_list_init(&tc->deferred_bio_list);
1798 1798
1799 spin_unlock_irqrestore(&tc->lock, flags); 1799 spin_unlock_irqrestore(&tc->lock, flags);
1800 1800
1801 blk_start_plug(&plug); 1801 blk_start_plug(&plug);
1802 while ((bio = bio_list_pop(&bios))) { 1802 while ((bio = bio_list_pop(&bios))) {
1803 /* 1803 /*
1804 * If we've got no free new_mapping structs, and processing 1804 * If we've got no free new_mapping structs, and processing
1805 * this bio might require one, we pause until there are some 1805 * this bio might require one, we pause until there are some
1806 * prepared mappings to process. 1806 * prepared mappings to process.
1807 */ 1807 */
1808 if (ensure_next_mapping(pool)) { 1808 if (ensure_next_mapping(pool)) {
1809 spin_lock_irqsave(&tc->lock, flags); 1809 spin_lock_irqsave(&tc->lock, flags);
1810 bio_list_add(&tc->deferred_bio_list, bio); 1810 bio_list_add(&tc->deferred_bio_list, bio);
1811 bio_list_merge(&tc->deferred_bio_list, &bios); 1811 bio_list_merge(&tc->deferred_bio_list, &bios);
1812 spin_unlock_irqrestore(&tc->lock, flags); 1812 spin_unlock_irqrestore(&tc->lock, flags);
1813 break; 1813 break;
1814 } 1814 }
1815 1815
1816 if (bio->bi_rw & REQ_DISCARD) 1816 if (bio->bi_rw & REQ_DISCARD)
1817 pool->process_discard(tc, bio); 1817 pool->process_discard(tc, bio);
1818 else 1818 else
1819 pool->process_bio(tc, bio); 1819 pool->process_bio(tc, bio);
1820 1820
1821 if ((count++ & 127) == 0) { 1821 if ((count++ & 127) == 0) {
1822 throttle_work_update(&pool->throttle); 1822 throttle_work_update(&pool->throttle);
1823 dm_pool_issue_prefetches(pool->pmd); 1823 dm_pool_issue_prefetches(pool->pmd);
1824 } 1824 }
1825 } 1825 }
1826 blk_finish_plug(&plug); 1826 blk_finish_plug(&plug);
1827 } 1827 }
1828 1828
1829 static int cmp_cells(const void *lhs, const void *rhs) 1829 static int cmp_cells(const void *lhs, const void *rhs)
1830 { 1830 {
1831 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 1831 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
1832 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 1832 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
1833 1833
1834 BUG_ON(!lhs_cell->holder); 1834 BUG_ON(!lhs_cell->holder);
1835 BUG_ON(!rhs_cell->holder); 1835 BUG_ON(!rhs_cell->holder);
1836 1836
1837 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 1837 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
1838 return -1; 1838 return -1;
1839 1839
1840 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 1840 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
1841 return 1; 1841 return 1;
1842 1842
1843 return 0; 1843 return 0;
1844 } 1844 }
1845 1845
1846 static unsigned sort_cells(struct pool *pool, struct list_head *cells) 1846 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
1847 { 1847 {
1848 unsigned count = 0; 1848 unsigned count = 0;
1849 struct dm_bio_prison_cell *cell, *tmp; 1849 struct dm_bio_prison_cell *cell, *tmp;
1850 1850
1851 list_for_each_entry_safe(cell, tmp, cells, user_list) { 1851 list_for_each_entry_safe(cell, tmp, cells, user_list) {
1852 if (count >= CELL_SORT_ARRAY_SIZE) 1852 if (count >= CELL_SORT_ARRAY_SIZE)
1853 break; 1853 break;
1854 1854
1855 pool->cell_sort_array[count++] = cell; 1855 pool->cell_sort_array[count++] = cell;
1856 list_del(&cell->user_list); 1856 list_del(&cell->user_list);
1857 } 1857 }
1858 1858
1859 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 1859 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
1860 1860
1861 return count; 1861 return count;
1862 } 1862 }
1863 1863
1864 static void process_thin_deferred_cells(struct thin_c *tc) 1864 static void process_thin_deferred_cells(struct thin_c *tc)
1865 { 1865 {
1866 struct pool *pool = tc->pool; 1866 struct pool *pool = tc->pool;
1867 unsigned long flags; 1867 unsigned long flags;
1868 struct list_head cells; 1868 struct list_head cells;
1869 struct dm_bio_prison_cell *cell; 1869 struct dm_bio_prison_cell *cell;
1870 unsigned i, j, count; 1870 unsigned i, j, count;
1871 1871
1872 INIT_LIST_HEAD(&cells); 1872 INIT_LIST_HEAD(&cells);
1873 1873
1874 spin_lock_irqsave(&tc->lock, flags); 1874 spin_lock_irqsave(&tc->lock, flags);
1875 list_splice_init(&tc->deferred_cells, &cells); 1875 list_splice_init(&tc->deferred_cells, &cells);
1876 spin_unlock_irqrestore(&tc->lock, flags); 1876 spin_unlock_irqrestore(&tc->lock, flags);
1877 1877
1878 if (list_empty(&cells)) 1878 if (list_empty(&cells))
1879 return; 1879 return;
1880 1880
1881 do { 1881 do {
1882 count = sort_cells(tc->pool, &cells); 1882 count = sort_cells(tc->pool, &cells);
1883 1883
1884 for (i = 0; i < count; i++) { 1884 for (i = 0; i < count; i++) {
1885 cell = pool->cell_sort_array[i]; 1885 cell = pool->cell_sort_array[i];
1886 BUG_ON(!cell->holder); 1886 BUG_ON(!cell->holder);
1887 1887
1888 /* 1888 /*
1889 * If we've got no free new_mapping structs, and processing 1889 * If we've got no free new_mapping structs, and processing
1890 * this bio might require one, we pause until there are some 1890 * this bio might require one, we pause until there are some
1891 * prepared mappings to process. 1891 * prepared mappings to process.
1892 */ 1892 */
1893 if (ensure_next_mapping(pool)) { 1893 if (ensure_next_mapping(pool)) {
1894 for (j = i; j < count; j++) 1894 for (j = i; j < count; j++)
1895 list_add(&pool->cell_sort_array[j]->user_list, &cells); 1895 list_add(&pool->cell_sort_array[j]->user_list, &cells);
1896 1896
1897 spin_lock_irqsave(&tc->lock, flags); 1897 spin_lock_irqsave(&tc->lock, flags);
1898 list_splice(&cells, &tc->deferred_cells); 1898 list_splice(&cells, &tc->deferred_cells);
1899 spin_unlock_irqrestore(&tc->lock, flags); 1899 spin_unlock_irqrestore(&tc->lock, flags);
1900 return; 1900 return;
1901 } 1901 }
1902 1902
1903 if (cell->holder->bi_rw & REQ_DISCARD) 1903 if (cell->holder->bi_rw & REQ_DISCARD)
1904 pool->process_discard_cell(tc, cell); 1904 pool->process_discard_cell(tc, cell);
1905 else 1905 else
1906 pool->process_cell(tc, cell); 1906 pool->process_cell(tc, cell);
1907 } 1907 }
1908 } while (!list_empty(&cells)); 1908 } while (!list_empty(&cells));
1909 } 1909 }
1910 1910
1911 static void thin_get(struct thin_c *tc); 1911 static void thin_get(struct thin_c *tc);
1912 static void thin_put(struct thin_c *tc); 1912 static void thin_put(struct thin_c *tc);
1913 1913
1914 /* 1914 /*
1915 * We can't hold rcu_read_lock() around code that can block. So we 1915 * We can't hold rcu_read_lock() around code that can block. So we
1916 * find a thin with the rcu lock held; bump a refcount; then drop 1916 * find a thin with the rcu lock held; bump a refcount; then drop
1917 * the lock. 1917 * the lock.
1918 */ 1918 */
1919 static struct thin_c *get_first_thin(struct pool *pool) 1919 static struct thin_c *get_first_thin(struct pool *pool)
1920 { 1920 {
1921 struct thin_c *tc = NULL; 1921 struct thin_c *tc = NULL;
1922 1922
1923 rcu_read_lock(); 1923 rcu_read_lock();
1924 if (!list_empty(&pool->active_thins)) { 1924 if (!list_empty(&pool->active_thins)) {
1925 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 1925 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1926 thin_get(tc); 1926 thin_get(tc);
1927 } 1927 }
1928 rcu_read_unlock(); 1928 rcu_read_unlock();
1929 1929
1930 return tc; 1930 return tc;
1931 } 1931 }
1932 1932
1933 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 1933 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1934 { 1934 {
1935 struct thin_c *old_tc = tc; 1935 struct thin_c *old_tc = tc;
1936 1936
1937 rcu_read_lock(); 1937 rcu_read_lock();
1938 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 1938 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1939 thin_get(tc); 1939 thin_get(tc);
1940 thin_put(old_tc); 1940 thin_put(old_tc);
1941 rcu_read_unlock(); 1941 rcu_read_unlock();
1942 return tc; 1942 return tc;
1943 } 1943 }
1944 thin_put(old_tc); 1944 thin_put(old_tc);
1945 rcu_read_unlock(); 1945 rcu_read_unlock();
1946 1946
1947 return NULL; 1947 return NULL;
1948 } 1948 }
1949 1949
1950 static void process_deferred_bios(struct pool *pool) 1950 static void process_deferred_bios(struct pool *pool)
1951 { 1951 {
1952 unsigned long flags; 1952 unsigned long flags;
1953 struct bio *bio; 1953 struct bio *bio;
1954 struct bio_list bios; 1954 struct bio_list bios;
1955 struct thin_c *tc; 1955 struct thin_c *tc;
1956 1956
1957 tc = get_first_thin(pool); 1957 tc = get_first_thin(pool);
1958 while (tc) { 1958 while (tc) {
1959 process_thin_deferred_cells(tc); 1959 process_thin_deferred_cells(tc);
1960 process_thin_deferred_bios(tc); 1960 process_thin_deferred_bios(tc);
1961 tc = get_next_thin(pool, tc); 1961 tc = get_next_thin(pool, tc);
1962 } 1962 }
1963 1963
1964 /* 1964 /*
1965 * If there are any deferred flush bios, we must commit 1965 * If there are any deferred flush bios, we must commit
1966 * the metadata before issuing them. 1966 * the metadata before issuing them.
1967 */ 1967 */
1968 bio_list_init(&bios); 1968 bio_list_init(&bios);
1969 spin_lock_irqsave(&pool->lock, flags); 1969 spin_lock_irqsave(&pool->lock, flags);
1970 bio_list_merge(&bios, &pool->deferred_flush_bios); 1970 bio_list_merge(&bios, &pool->deferred_flush_bios);
1971 bio_list_init(&pool->deferred_flush_bios); 1971 bio_list_init(&pool->deferred_flush_bios);
1972 spin_unlock_irqrestore(&pool->lock, flags); 1972 spin_unlock_irqrestore(&pool->lock, flags);
1973 1973
1974 if (bio_list_empty(&bios) && 1974 if (bio_list_empty(&bios) &&
1975 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 1975 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1976 return; 1976 return;
1977 1977
1978 if (commit(pool)) { 1978 if (commit(pool)) {
1979 while ((bio = bio_list_pop(&bios))) 1979 while ((bio = bio_list_pop(&bios)))
1980 bio_io_error(bio); 1980 bio_io_error(bio);
1981 return; 1981 return;
1982 } 1982 }
1983 pool->last_commit_jiffies = jiffies; 1983 pool->last_commit_jiffies = jiffies;
1984 1984
1985 while ((bio = bio_list_pop(&bios))) 1985 while ((bio = bio_list_pop(&bios)))
1986 generic_make_request(bio); 1986 generic_make_request(bio);
1987 } 1987 }
1988 1988
1989 static void do_worker(struct work_struct *ws) 1989 static void do_worker(struct work_struct *ws)
1990 { 1990 {
1991 struct pool *pool = container_of(ws, struct pool, worker); 1991 struct pool *pool = container_of(ws, struct pool, worker);
1992 1992
1993 throttle_work_start(&pool->throttle); 1993 throttle_work_start(&pool->throttle);
1994 dm_pool_issue_prefetches(pool->pmd); 1994 dm_pool_issue_prefetches(pool->pmd);
1995 throttle_work_update(&pool->throttle); 1995 throttle_work_update(&pool->throttle);
1996 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 1996 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1997 throttle_work_update(&pool->throttle); 1997 throttle_work_update(&pool->throttle);
1998 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 1998 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1999 throttle_work_update(&pool->throttle); 1999 throttle_work_update(&pool->throttle);
2000 process_deferred_bios(pool); 2000 process_deferred_bios(pool);
2001 throttle_work_complete(&pool->throttle); 2001 throttle_work_complete(&pool->throttle);
2002 } 2002 }
2003 2003
2004 /* 2004 /*
2005 * We want to commit periodically so that not too much 2005 * We want to commit periodically so that not too much
2006 * unwritten data builds up. 2006 * unwritten data builds up.
2007 */ 2007 */
2008 static void do_waker(struct work_struct *ws) 2008 static void do_waker(struct work_struct *ws)
2009 { 2009 {
2010 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2010 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2011 wake_worker(pool); 2011 wake_worker(pool);
2012 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2012 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2013 } 2013 }
2014 2014
2015 /* 2015 /*
2016 * We're holding onto IO to allow userland time to react. After the 2016 * We're holding onto IO to allow userland time to react. After the
2017 * timeout either the pool will have been resized (and thus back in 2017 * timeout either the pool will have been resized (and thus back in
2018 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO. 2018 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
2019 */ 2019 */
2020 static void do_no_space_timeout(struct work_struct *ws) 2020 static void do_no_space_timeout(struct work_struct *ws)
2021 { 2021 {
2022 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2022 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2023 no_space_timeout); 2023 no_space_timeout);
2024 2024
2025 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) 2025 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
2026 set_pool_mode(pool, PM_READ_ONLY); 2026 set_pool_mode(pool, PM_READ_ONLY);
2027 } 2027 }
2028 2028
2029 /*----------------------------------------------------------------*/ 2029 /*----------------------------------------------------------------*/
2030 2030
2031 struct pool_work { 2031 struct pool_work {
2032 struct work_struct worker; 2032 struct work_struct worker;
2033 struct completion complete; 2033 struct completion complete;
2034 }; 2034 };
2035 2035
2036 static struct pool_work *to_pool_work(struct work_struct *ws) 2036 static struct pool_work *to_pool_work(struct work_struct *ws)
2037 { 2037 {
2038 return container_of(ws, struct pool_work, worker); 2038 return container_of(ws, struct pool_work, worker);
2039 } 2039 }
2040 2040
2041 static void pool_work_complete(struct pool_work *pw) 2041 static void pool_work_complete(struct pool_work *pw)
2042 { 2042 {
2043 complete(&pw->complete); 2043 complete(&pw->complete);
2044 } 2044 }
2045 2045
2046 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2046 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2047 void (*fn)(struct work_struct *)) 2047 void (*fn)(struct work_struct *))
2048 { 2048 {
2049 INIT_WORK_ONSTACK(&pw->worker, fn); 2049 INIT_WORK_ONSTACK(&pw->worker, fn);
2050 init_completion(&pw->complete); 2050 init_completion(&pw->complete);
2051 queue_work(pool->wq, &pw->worker); 2051 queue_work(pool->wq, &pw->worker);
2052 wait_for_completion(&pw->complete); 2052 wait_for_completion(&pw->complete);
2053 } 2053 }
2054 2054
2055 /*----------------------------------------------------------------*/ 2055 /*----------------------------------------------------------------*/
2056 2056
2057 struct noflush_work { 2057 struct noflush_work {
2058 struct pool_work pw; 2058 struct pool_work pw;
2059 struct thin_c *tc; 2059 struct thin_c *tc;
2060 }; 2060 };
2061 2061
2062 static struct noflush_work *to_noflush(struct work_struct *ws) 2062 static struct noflush_work *to_noflush(struct work_struct *ws)
2063 { 2063 {
2064 return container_of(to_pool_work(ws), struct noflush_work, pw); 2064 return container_of(to_pool_work(ws), struct noflush_work, pw);
2065 } 2065 }
2066 2066
2067 static void do_noflush_start(struct work_struct *ws) 2067 static void do_noflush_start(struct work_struct *ws)
2068 { 2068 {
2069 struct noflush_work *w = to_noflush(ws); 2069 struct noflush_work *w = to_noflush(ws);
2070 w->tc->requeue_mode = true; 2070 w->tc->requeue_mode = true;
2071 requeue_io(w->tc); 2071 requeue_io(w->tc);
2072 pool_work_complete(&w->pw); 2072 pool_work_complete(&w->pw);
2073 } 2073 }
2074 2074
2075 static void do_noflush_stop(struct work_struct *ws) 2075 static void do_noflush_stop(struct work_struct *ws)
2076 { 2076 {
2077 struct noflush_work *w = to_noflush(ws); 2077 struct noflush_work *w = to_noflush(ws);
2078 w->tc->requeue_mode = false; 2078 w->tc->requeue_mode = false;
2079 pool_work_complete(&w->pw); 2079 pool_work_complete(&w->pw);
2080 } 2080 }
2081 2081
2082 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2082 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2083 { 2083 {
2084 struct noflush_work w; 2084 struct noflush_work w;
2085 2085
2086 w.tc = tc; 2086 w.tc = tc;
2087 pool_work_wait(&w.pw, tc->pool, fn); 2087 pool_work_wait(&w.pw, tc->pool, fn);
2088 } 2088 }
2089 2089
2090 /*----------------------------------------------------------------*/ 2090 /*----------------------------------------------------------------*/
2091 2091
2092 static enum pool_mode get_pool_mode(struct pool *pool) 2092 static enum pool_mode get_pool_mode(struct pool *pool)
2093 { 2093 {
2094 return pool->pf.mode; 2094 return pool->pf.mode;
2095 } 2095 }
2096 2096
2097 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode) 2097 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2098 { 2098 {
2099 dm_table_event(pool->ti->table); 2099 dm_table_event(pool->ti->table);
2100 DMINFO("%s: switching pool to %s mode", 2100 DMINFO("%s: switching pool to %s mode",
2101 dm_device_name(pool->pool_md), new_mode); 2101 dm_device_name(pool->pool_md), new_mode);
2102 } 2102 }
2103 2103
2104 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2104 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2105 { 2105 {
2106 struct pool_c *pt = pool->ti->private; 2106 struct pool_c *pt = pool->ti->private;
2107 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2107 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2108 enum pool_mode old_mode = get_pool_mode(pool); 2108 enum pool_mode old_mode = get_pool_mode(pool);
2109 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ; 2109 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2110 2110
2111 /* 2111 /*
2112 * Never allow the pool to transition to PM_WRITE mode if user 2112 * Never allow the pool to transition to PM_WRITE mode if user
2113 * intervention is required to verify metadata and data consistency. 2113 * intervention is required to verify metadata and data consistency.
2114 */ 2114 */
2115 if (new_mode == PM_WRITE && needs_check) { 2115 if (new_mode == PM_WRITE && needs_check) {
2116 DMERR("%s: unable to switch pool to write mode until repaired.", 2116 DMERR("%s: unable to switch pool to write mode until repaired.",
2117 dm_device_name(pool->pool_md)); 2117 dm_device_name(pool->pool_md));
2118 if (old_mode != new_mode) 2118 if (old_mode != new_mode)
2119 new_mode = old_mode; 2119 new_mode = old_mode;
2120 else 2120 else
2121 new_mode = PM_READ_ONLY; 2121 new_mode = PM_READ_ONLY;
2122 } 2122 }
2123 /* 2123 /*
2124 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2124 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2125 * not going to recover without a thin_repair. So we never let the 2125 * not going to recover without a thin_repair. So we never let the
2126 * pool move out of the old mode. 2126 * pool move out of the old mode.
2127 */ 2127 */
2128 if (old_mode == PM_FAIL) 2128 if (old_mode == PM_FAIL)
2129 new_mode = old_mode; 2129 new_mode = old_mode;
2130 2130
2131 switch (new_mode) { 2131 switch (new_mode) {
2132 case PM_FAIL: 2132 case PM_FAIL:
2133 if (old_mode != new_mode) 2133 if (old_mode != new_mode)
2134 notify_of_pool_mode_change(pool, "failure"); 2134 notify_of_pool_mode_change(pool, "failure");
2135 dm_pool_metadata_read_only(pool->pmd); 2135 dm_pool_metadata_read_only(pool->pmd);
2136 pool->process_bio = process_bio_fail; 2136 pool->process_bio = process_bio_fail;
2137 pool->process_discard = process_bio_fail; 2137 pool->process_discard = process_bio_fail;
2138 pool->process_cell = process_cell_fail; 2138 pool->process_cell = process_cell_fail;
2139 pool->process_discard_cell = process_cell_fail; 2139 pool->process_discard_cell = process_cell_fail;
2140 pool->process_prepared_mapping = process_prepared_mapping_fail; 2140 pool->process_prepared_mapping = process_prepared_mapping_fail;
2141 pool->process_prepared_discard = process_prepared_discard_fail; 2141 pool->process_prepared_discard = process_prepared_discard_fail;
2142 2142
2143 error_retry_list(pool); 2143 error_retry_list(pool);
2144 break; 2144 break;
2145 2145
2146 case PM_READ_ONLY: 2146 case PM_READ_ONLY:
2147 if (old_mode != new_mode) 2147 if (old_mode != new_mode)
2148 notify_of_pool_mode_change(pool, "read-only"); 2148 notify_of_pool_mode_change(pool, "read-only");
2149 dm_pool_metadata_read_only(pool->pmd); 2149 dm_pool_metadata_read_only(pool->pmd);
2150 pool->process_bio = process_bio_read_only; 2150 pool->process_bio = process_bio_read_only;
2151 pool->process_discard = process_bio_success; 2151 pool->process_discard = process_bio_success;
2152 pool->process_cell = process_cell_read_only; 2152 pool->process_cell = process_cell_read_only;
2153 pool->process_discard_cell = process_cell_success; 2153 pool->process_discard_cell = process_cell_success;
2154 pool->process_prepared_mapping = process_prepared_mapping_fail; 2154 pool->process_prepared_mapping = process_prepared_mapping_fail;
2155 pool->process_prepared_discard = process_prepared_discard_passdown; 2155 pool->process_prepared_discard = process_prepared_discard_passdown;
2156 2156
2157 error_retry_list(pool); 2157 error_retry_list(pool);
2158 break; 2158 break;
2159 2159
2160 case PM_OUT_OF_DATA_SPACE: 2160 case PM_OUT_OF_DATA_SPACE:
2161 /* 2161 /*
2162 * Ideally we'd never hit this state; the low water mark 2162 * Ideally we'd never hit this state; the low water mark
2163 * would trigger userland to extend the pool before we 2163 * would trigger userland to extend the pool before we
2164 * completely run out of data space. However, many small 2164 * completely run out of data space. However, many small
2165 * IOs to unprovisioned space can consume data space at an 2165 * IOs to unprovisioned space can consume data space at an
2166 * alarming rate. Adjust your low water mark if you're 2166 * alarming rate. Adjust your low water mark if you're
2167 * frequently seeing this mode. 2167 * frequently seeing this mode.
2168 */ 2168 */
2169 if (old_mode != new_mode) 2169 if (old_mode != new_mode)
2170 notify_of_pool_mode_change(pool, "out-of-data-space"); 2170 notify_of_pool_mode_change(pool, "out-of-data-space");
2171 pool->process_bio = process_bio_read_only; 2171 pool->process_bio = process_bio_read_only;
2172 pool->process_discard = process_discard_bio; 2172 pool->process_discard = process_discard_bio;
2173 pool->process_cell = process_cell_read_only; 2173 pool->process_cell = process_cell_read_only;
2174 pool->process_discard_cell = process_discard_cell; 2174 pool->process_discard_cell = process_discard_cell;
2175 pool->process_prepared_mapping = process_prepared_mapping; 2175 pool->process_prepared_mapping = process_prepared_mapping;
2176 pool->process_prepared_discard = process_prepared_discard; 2176 pool->process_prepared_discard = process_prepared_discard;
2177 2177
2178 if (!pool->pf.error_if_no_space && no_space_timeout) 2178 if (!pool->pf.error_if_no_space && no_space_timeout)
2179 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2179 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2180 break; 2180 break;
2181 2181
2182 case PM_WRITE: 2182 case PM_WRITE:
2183 if (old_mode != new_mode) 2183 if (old_mode != new_mode)
2184 notify_of_pool_mode_change(pool, "write"); 2184 notify_of_pool_mode_change(pool, "write");
2185 dm_pool_metadata_read_write(pool->pmd); 2185 dm_pool_metadata_read_write(pool->pmd);
2186 pool->process_bio = process_bio; 2186 pool->process_bio = process_bio;
2187 pool->process_discard = process_discard_bio; 2187 pool->process_discard = process_discard_bio;
2188 pool->process_cell = process_cell; 2188 pool->process_cell = process_cell;
2189 pool->process_discard_cell = process_discard_cell; 2189 pool->process_discard_cell = process_discard_cell;
2190 pool->process_prepared_mapping = process_prepared_mapping; 2190 pool->process_prepared_mapping = process_prepared_mapping;
2191 pool->process_prepared_discard = process_prepared_discard; 2191 pool->process_prepared_discard = process_prepared_discard;
2192 break; 2192 break;
2193 } 2193 }
2194 2194
2195 pool->pf.mode = new_mode; 2195 pool->pf.mode = new_mode;
2196 /* 2196 /*
2197 * The pool mode may have changed, sync it so bind_control_target() 2197 * The pool mode may have changed, sync it so bind_control_target()
2198 * doesn't cause an unexpected mode transition on resume. 2198 * doesn't cause an unexpected mode transition on resume.
2199 */ 2199 */
2200 pt->adjusted_pf.mode = new_mode; 2200 pt->adjusted_pf.mode = new_mode;
2201 } 2201 }
2202 2202
2203 static void abort_transaction(struct pool *pool) 2203 static void abort_transaction(struct pool *pool)
2204 { 2204 {
2205 const char *dev_name = dm_device_name(pool->pool_md); 2205 const char *dev_name = dm_device_name(pool->pool_md);
2206 2206
2207 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2207 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2208 if (dm_pool_abort_metadata(pool->pmd)) { 2208 if (dm_pool_abort_metadata(pool->pmd)) {
2209 DMERR("%s: failed to abort metadata transaction", dev_name); 2209 DMERR("%s: failed to abort metadata transaction", dev_name);
2210 set_pool_mode(pool, PM_FAIL); 2210 set_pool_mode(pool, PM_FAIL);
2211 } 2211 }
2212 2212
2213 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2213 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2214 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2214 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2215 set_pool_mode(pool, PM_FAIL); 2215 set_pool_mode(pool, PM_FAIL);
2216 } 2216 }
2217 } 2217 }
2218 2218
2219 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2219 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2220 { 2220 {
2221 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2221 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2222 dm_device_name(pool->pool_md), op, r); 2222 dm_device_name(pool->pool_md), op, r);
2223 2223
2224 abort_transaction(pool); 2224 abort_transaction(pool);
2225 set_pool_mode(pool, PM_READ_ONLY); 2225 set_pool_mode(pool, PM_READ_ONLY);
2226 } 2226 }
2227 2227
2228 /*----------------------------------------------------------------*/ 2228 /*----------------------------------------------------------------*/
2229 2229
2230 /* 2230 /*
2231 * Mapping functions. 2231 * Mapping functions.
2232 */ 2232 */
2233 2233
2234 /* 2234 /*
2235 * Called only while mapping a thin bio to hand it over to the workqueue. 2235 * Called only while mapping a thin bio to hand it over to the workqueue.
2236 */ 2236 */
2237 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2237 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2238 { 2238 {
2239 unsigned long flags; 2239 unsigned long flags;
2240 struct pool *pool = tc->pool; 2240 struct pool *pool = tc->pool;
2241 2241
2242 spin_lock_irqsave(&tc->lock, flags); 2242 spin_lock_irqsave(&tc->lock, flags);
2243 bio_list_add(&tc->deferred_bio_list, bio); 2243 bio_list_add(&tc->deferred_bio_list, bio);
2244 spin_unlock_irqrestore(&tc->lock, flags); 2244 spin_unlock_irqrestore(&tc->lock, flags);
2245 2245
2246 wake_worker(pool); 2246 wake_worker(pool);
2247 } 2247 }
2248 2248
2249 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2249 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2250 { 2250 {
2251 struct pool *pool = tc->pool; 2251 struct pool *pool = tc->pool;
2252 2252
2253 throttle_lock(&pool->throttle); 2253 throttle_lock(&pool->throttle);
2254 thin_defer_bio(tc, bio); 2254 thin_defer_bio(tc, bio);
2255 throttle_unlock(&pool->throttle); 2255 throttle_unlock(&pool->throttle);
2256 } 2256 }
2257 2257
2258 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2258 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2259 { 2259 {
2260 unsigned long flags; 2260 unsigned long flags;
2261 struct pool *pool = tc->pool; 2261 struct pool *pool = tc->pool;
2262 2262
2263 throttle_lock(&pool->throttle); 2263 throttle_lock(&pool->throttle);
2264 spin_lock_irqsave(&tc->lock, flags); 2264 spin_lock_irqsave(&tc->lock, flags);
2265 list_add_tail(&cell->user_list, &tc->deferred_cells); 2265 list_add_tail(&cell->user_list, &tc->deferred_cells);
2266 spin_unlock_irqrestore(&tc->lock, flags); 2266 spin_unlock_irqrestore(&tc->lock, flags);
2267 throttle_unlock(&pool->throttle); 2267 throttle_unlock(&pool->throttle);
2268 2268
2269 wake_worker(pool); 2269 wake_worker(pool);
2270 } 2270 }
2271 2271
2272 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2272 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2273 { 2273 {
2274 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2274 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2275 2275
2276 h->tc = tc; 2276 h->tc = tc;
2277 h->shared_read_entry = NULL; 2277 h->shared_read_entry = NULL;
2278 h->all_io_entry = NULL; 2278 h->all_io_entry = NULL;
2279 h->overwrite_mapping = NULL; 2279 h->overwrite_mapping = NULL;
2280 } 2280 }
2281 2281
2282 /* 2282 /*
2283 * Non-blocking function called from the thin target's map function. 2283 * Non-blocking function called from the thin target's map function.
2284 */ 2284 */
2285 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2285 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2286 { 2286 {
2287 int r; 2287 int r;
2288 struct thin_c *tc = ti->private; 2288 struct thin_c *tc = ti->private;
2289 dm_block_t block = get_bio_block(tc, bio); 2289 dm_block_t block = get_bio_block(tc, bio);
2290 struct dm_thin_device *td = tc->td; 2290 struct dm_thin_device *td = tc->td;
2291 struct dm_thin_lookup_result result; 2291 struct dm_thin_lookup_result result;
2292 struct dm_bio_prison_cell *virt_cell, *data_cell; 2292 struct dm_bio_prison_cell *virt_cell, *data_cell;
2293 struct dm_cell_key key; 2293 struct dm_cell_key key;
2294 2294
2295 thin_hook_bio(tc, bio); 2295 thin_hook_bio(tc, bio);
2296 2296
2297 if (tc->requeue_mode) { 2297 if (tc->requeue_mode) {
2298 bio_endio(bio, DM_ENDIO_REQUEUE); 2298 bio_endio(bio, DM_ENDIO_REQUEUE);
2299 return DM_MAPIO_SUBMITTED; 2299 return DM_MAPIO_SUBMITTED;
2300 } 2300 }
2301 2301
2302 if (get_pool_mode(tc->pool) == PM_FAIL) { 2302 if (get_pool_mode(tc->pool) == PM_FAIL) {
2303 bio_io_error(bio); 2303 bio_io_error(bio);
2304 return DM_MAPIO_SUBMITTED; 2304 return DM_MAPIO_SUBMITTED;
2305 } 2305 }
2306 2306
2307 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) { 2307 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2308 thin_defer_bio_with_throttle(tc, bio); 2308 thin_defer_bio_with_throttle(tc, bio);
2309 return DM_MAPIO_SUBMITTED; 2309 return DM_MAPIO_SUBMITTED;
2310 } 2310 }
2311 2311
2312 /* 2312 /*
2313 * We must hold the virtual cell before doing the lookup, otherwise 2313 * We must hold the virtual cell before doing the lookup, otherwise
2314 * there's a race with discard. 2314 * there's a race with discard.
2315 */ 2315 */
2316 build_virtual_key(tc->td, block, &key); 2316 build_virtual_key(tc->td, block, &key);
2317 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2317 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2318 return DM_MAPIO_SUBMITTED; 2318 return DM_MAPIO_SUBMITTED;
2319 2319
2320 r = dm_thin_find_block(td, block, 0, &result); 2320 r = dm_thin_find_block(td, block, 0, &result);
2321 2321
2322 /* 2322 /*
2323 * Note that we defer readahead too. 2323 * Note that we defer readahead too.
2324 */ 2324 */
2325 switch (r) { 2325 switch (r) {
2326 case 0: 2326 case 0:
2327 if (unlikely(result.shared)) { 2327 if (unlikely(result.shared)) {
2328 /* 2328 /*
2329 * We have a race condition here between the 2329 * We have a race condition here between the
2330 * result.shared value returned by the lookup and 2330 * result.shared value returned by the lookup and
2331 * snapshot creation, which may cause new 2331 * snapshot creation, which may cause new
2332 * sharing. 2332 * sharing.
2333 * 2333 *
2334 * To avoid this always quiesce the origin before 2334 * To avoid this always quiesce the origin before
2335 * taking the snap. You want to do this anyway to 2335 * taking the snap. You want to do this anyway to
2336 * ensure a consistent application view 2336 * ensure a consistent application view
2337 * (i.e. lockfs). 2337 * (i.e. lockfs).
2338 * 2338 *
2339 * More distant ancestors are irrelevant. The 2339 * More distant ancestors are irrelevant. The
2340 * shared flag will be set in their case. 2340 * shared flag will be set in their case.
2341 */ 2341 */
2342 thin_defer_cell(tc, virt_cell); 2342 thin_defer_cell(tc, virt_cell);
2343 return DM_MAPIO_SUBMITTED; 2343 return DM_MAPIO_SUBMITTED;
2344 } 2344 }
2345 2345
2346 build_data_key(tc->td, result.block, &key); 2346 build_data_key(tc->td, result.block, &key);
2347 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2347 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2348 cell_defer_no_holder(tc, virt_cell); 2348 cell_defer_no_holder(tc, virt_cell);
2349 return DM_MAPIO_SUBMITTED; 2349 return DM_MAPIO_SUBMITTED;
2350 } 2350 }
2351 2351
2352 inc_all_io_entry(tc->pool, bio); 2352 inc_all_io_entry(tc->pool, bio);
2353 cell_defer_no_holder(tc, data_cell); 2353 cell_defer_no_holder(tc, data_cell);
2354 cell_defer_no_holder(tc, virt_cell); 2354 cell_defer_no_holder(tc, virt_cell);
2355 2355
2356 remap(tc, bio, result.block); 2356 remap(tc, bio, result.block);
2357 return DM_MAPIO_REMAPPED; 2357 return DM_MAPIO_REMAPPED;
2358 2358
2359 case -ENODATA: 2359 case -ENODATA:
2360 if (get_pool_mode(tc->pool) == PM_READ_ONLY) { 2360 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
2361 /* 2361 /*
2362 * This block isn't provisioned, and we have no way 2362 * This block isn't provisioned, and we have no way
2363 * of doing so. 2363 * of doing so.
2364 */ 2364 */
2365 handle_unserviceable_bio(tc->pool, bio); 2365 handle_unserviceable_bio(tc->pool, bio);
2366 cell_defer_no_holder(tc, virt_cell); 2366 cell_defer_no_holder(tc, virt_cell);
2367 return DM_MAPIO_SUBMITTED; 2367 return DM_MAPIO_SUBMITTED;
2368 } 2368 }
2369 /* fall through */ 2369 /* fall through */
2370 2370
2371 case -EWOULDBLOCK: 2371 case -EWOULDBLOCK:
2372 thin_defer_cell(tc, virt_cell); 2372 thin_defer_cell(tc, virt_cell);
2373 return DM_MAPIO_SUBMITTED; 2373 return DM_MAPIO_SUBMITTED;
2374 2374
2375 default: 2375 default:
2376 /* 2376 /*
2377 * Must always call bio_io_error on failure. 2377 * Must always call bio_io_error on failure.
2378 * dm_thin_find_block can fail with -EINVAL if the 2378 * dm_thin_find_block can fail with -EINVAL if the
2379 * pool is switched to fail-io mode. 2379 * pool is switched to fail-io mode.
2380 */ 2380 */
2381 bio_io_error(bio); 2381 bio_io_error(bio);
2382 cell_defer_no_holder(tc, virt_cell); 2382 cell_defer_no_holder(tc, virt_cell);
2383 return DM_MAPIO_SUBMITTED; 2383 return DM_MAPIO_SUBMITTED;
2384 } 2384 }
2385 } 2385 }
2386 2386
2387 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 2387 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2388 { 2388 {
2389 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 2389 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2390 struct request_queue *q; 2390 struct request_queue *q;
2391 2391
2392 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 2392 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2393 return 1; 2393 return 1;
2394 2394
2395 q = bdev_get_queue(pt->data_dev->bdev); 2395 q = bdev_get_queue(pt->data_dev->bdev);
2396 return bdi_congested(&q->backing_dev_info, bdi_bits); 2396 return bdi_congested(&q->backing_dev_info, bdi_bits);
2397 } 2397 }
2398 2398
2399 static void requeue_bios(struct pool *pool) 2399 static void requeue_bios(struct pool *pool)
2400 { 2400 {
2401 unsigned long flags; 2401 unsigned long flags;
2402 struct thin_c *tc; 2402 struct thin_c *tc;
2403 2403
2404 rcu_read_lock(); 2404 rcu_read_lock();
2405 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2405 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2406 spin_lock_irqsave(&tc->lock, flags); 2406 spin_lock_irqsave(&tc->lock, flags);
2407 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2407 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2408 bio_list_init(&tc->retry_on_resume_list); 2408 bio_list_init(&tc->retry_on_resume_list);
2409 spin_unlock_irqrestore(&tc->lock, flags); 2409 spin_unlock_irqrestore(&tc->lock, flags);
2410 } 2410 }
2411 rcu_read_unlock(); 2411 rcu_read_unlock();
2412 } 2412 }
2413 2413
2414 /*---------------------------------------------------------------- 2414 /*----------------------------------------------------------------
2415 * Binding of control targets to a pool object 2415 * Binding of control targets to a pool object
2416 *--------------------------------------------------------------*/ 2416 *--------------------------------------------------------------*/
2417 static bool data_dev_supports_discard(struct pool_c *pt) 2417 static bool data_dev_supports_discard(struct pool_c *pt)
2418 { 2418 {
2419 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2419 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2420 2420
2421 return q && blk_queue_discard(q); 2421 return q && blk_queue_discard(q);
2422 } 2422 }
2423 2423
2424 static bool is_factor(sector_t block_size, uint32_t n) 2424 static bool is_factor(sector_t block_size, uint32_t n)
2425 { 2425 {
2426 return !sector_div(block_size, n); 2426 return !sector_div(block_size, n);
2427 } 2427 }
2428 2428
2429 /* 2429 /*
2430 * If discard_passdown was enabled verify that the data device 2430 * If discard_passdown was enabled verify that the data device
2431 * supports discards. Disable discard_passdown if not. 2431 * supports discards. Disable discard_passdown if not.
2432 */ 2432 */
2433 static void disable_passdown_if_not_supported(struct pool_c *pt) 2433 static void disable_passdown_if_not_supported(struct pool_c *pt)
2434 { 2434 {
2435 struct pool *pool = pt->pool; 2435 struct pool *pool = pt->pool;
2436 struct block_device *data_bdev = pt->data_dev->bdev; 2436 struct block_device *data_bdev = pt->data_dev->bdev;
2437 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2437 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2438 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT; 2438 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2439 const char *reason = NULL; 2439 const char *reason = NULL;
2440 char buf[BDEVNAME_SIZE]; 2440 char buf[BDEVNAME_SIZE];
2441 2441
2442 if (!pt->adjusted_pf.discard_passdown) 2442 if (!pt->adjusted_pf.discard_passdown)
2443 return; 2443 return;
2444 2444
2445 if (!data_dev_supports_discard(pt)) 2445 if (!data_dev_supports_discard(pt))
2446 reason = "discard unsupported"; 2446 reason = "discard unsupported";
2447 2447
2448 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2448 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2449 reason = "max discard sectors smaller than a block"; 2449 reason = "max discard sectors smaller than a block";
2450 2450
2451 else if (data_limits->discard_granularity > block_size) 2451 else if (data_limits->discard_granularity > block_size)
2452 reason = "discard granularity larger than a block"; 2452 reason = "discard granularity larger than a block";
2453 2453
2454 else if (!is_factor(block_size, data_limits->discard_granularity)) 2454 else if (!is_factor(block_size, data_limits->discard_granularity))
2455 reason = "discard granularity not a factor of block size"; 2455 reason = "discard granularity not a factor of block size";
2456 2456
2457 if (reason) { 2457 if (reason) {
2458 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2458 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2459 pt->adjusted_pf.discard_passdown = false; 2459 pt->adjusted_pf.discard_passdown = false;
2460 } 2460 }
2461 } 2461 }
2462 2462
2463 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2463 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2464 { 2464 {
2465 struct pool_c *pt = ti->private; 2465 struct pool_c *pt = ti->private;
2466 2466
2467 /* 2467 /*
2468 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2468 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2469 */ 2469 */
2470 enum pool_mode old_mode = get_pool_mode(pool); 2470 enum pool_mode old_mode = get_pool_mode(pool);
2471 enum pool_mode new_mode = pt->adjusted_pf.mode; 2471 enum pool_mode new_mode = pt->adjusted_pf.mode;
2472 2472
2473 /* 2473 /*
2474 * Don't change the pool's mode until set_pool_mode() below. 2474 * Don't change the pool's mode until set_pool_mode() below.
2475 * Otherwise the pool's process_* function pointers may 2475 * Otherwise the pool's process_* function pointers may
2476 * not match the desired pool mode. 2476 * not match the desired pool mode.
2477 */ 2477 */
2478 pt->adjusted_pf.mode = old_mode; 2478 pt->adjusted_pf.mode = old_mode;
2479 2479
2480 pool->ti = ti; 2480 pool->ti = ti;
2481 pool->pf = pt->adjusted_pf; 2481 pool->pf = pt->adjusted_pf;
2482 pool->low_water_blocks = pt->low_water_blocks; 2482 pool->low_water_blocks = pt->low_water_blocks;
2483 2483
2484 set_pool_mode(pool, new_mode); 2484 set_pool_mode(pool, new_mode);
2485 2485
2486 return 0; 2486 return 0;
2487 } 2487 }
2488 2488
2489 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2489 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2490 { 2490 {
2491 if (pool->ti == ti) 2491 if (pool->ti == ti)
2492 pool->ti = NULL; 2492 pool->ti = NULL;
2493 } 2493 }
2494 2494
2495 /*---------------------------------------------------------------- 2495 /*----------------------------------------------------------------
2496 * Pool creation 2496 * Pool creation
2497 *--------------------------------------------------------------*/ 2497 *--------------------------------------------------------------*/
2498 /* Initialize pool features. */ 2498 /* Initialize pool features. */
2499 static void pool_features_init(struct pool_features *pf) 2499 static void pool_features_init(struct pool_features *pf)
2500 { 2500 {
2501 pf->mode = PM_WRITE; 2501 pf->mode = PM_WRITE;
2502 pf->zero_new_blocks = true; 2502 pf->zero_new_blocks = true;
2503 pf->discard_enabled = true; 2503 pf->discard_enabled = true;
2504 pf->discard_passdown = true; 2504 pf->discard_passdown = true;
2505 pf->error_if_no_space = false; 2505 pf->error_if_no_space = false;
2506 } 2506 }
2507 2507
2508 static void __pool_destroy(struct pool *pool) 2508 static void __pool_destroy(struct pool *pool)
2509 { 2509 {
2510 __pool_table_remove(pool); 2510 __pool_table_remove(pool);
2511 2511
2512 if (dm_pool_metadata_close(pool->pmd) < 0) 2512 if (dm_pool_metadata_close(pool->pmd) < 0)
2513 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2513 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2514 2514
2515 dm_bio_prison_destroy(pool->prison); 2515 dm_bio_prison_destroy(pool->prison);
2516 dm_kcopyd_client_destroy(pool->copier); 2516 dm_kcopyd_client_destroy(pool->copier);
2517 2517
2518 if (pool->wq) 2518 if (pool->wq)
2519 destroy_workqueue(pool->wq); 2519 destroy_workqueue(pool->wq);
2520 2520
2521 if (pool->next_mapping) 2521 if (pool->next_mapping)
2522 mempool_free(pool->next_mapping, pool->mapping_pool); 2522 mempool_free(pool->next_mapping, pool->mapping_pool);
2523 mempool_destroy(pool->mapping_pool); 2523 mempool_destroy(pool->mapping_pool);
2524 dm_deferred_set_destroy(pool->shared_read_ds); 2524 dm_deferred_set_destroy(pool->shared_read_ds);
2525 dm_deferred_set_destroy(pool->all_io_ds); 2525 dm_deferred_set_destroy(pool->all_io_ds);
2526 kfree(pool); 2526 kfree(pool);
2527 } 2527 }
2528 2528
2529 static struct kmem_cache *_new_mapping_cache; 2529 static struct kmem_cache *_new_mapping_cache;
2530 2530
2531 static struct pool *pool_create(struct mapped_device *pool_md, 2531 static struct pool *pool_create(struct mapped_device *pool_md,
2532 struct block_device *metadata_dev, 2532 struct block_device *metadata_dev,
2533 unsigned long block_size, 2533 unsigned long block_size,
2534 int read_only, char **error) 2534 int read_only, char **error)
2535 { 2535 {
2536 int r; 2536 int r;
2537 void *err_p; 2537 void *err_p;
2538 struct pool *pool; 2538 struct pool *pool;
2539 struct dm_pool_metadata *pmd; 2539 struct dm_pool_metadata *pmd;
2540 bool format_device = read_only ? false : true; 2540 bool format_device = read_only ? false : true;
2541 2541
2542 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2542 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2543 if (IS_ERR(pmd)) { 2543 if (IS_ERR(pmd)) {
2544 *error = "Error creating metadata object"; 2544 *error = "Error creating metadata object";
2545 return (struct pool *)pmd; 2545 return (struct pool *)pmd;
2546 } 2546 }
2547 2547
2548 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 2548 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2549 if (!pool) { 2549 if (!pool) {
2550 *error = "Error allocating memory for pool"; 2550 *error = "Error allocating memory for pool";
2551 err_p = ERR_PTR(-ENOMEM); 2551 err_p = ERR_PTR(-ENOMEM);
2552 goto bad_pool; 2552 goto bad_pool;
2553 } 2553 }
2554 2554
2555 pool->pmd = pmd; 2555 pool->pmd = pmd;
2556 pool->sectors_per_block = block_size; 2556 pool->sectors_per_block = block_size;
2557 if (block_size & (block_size - 1)) 2557 if (block_size & (block_size - 1))
2558 pool->sectors_per_block_shift = -1; 2558 pool->sectors_per_block_shift = -1;
2559 else 2559 else
2560 pool->sectors_per_block_shift = __ffs(block_size); 2560 pool->sectors_per_block_shift = __ffs(block_size);
2561 pool->low_water_blocks = 0; 2561 pool->low_water_blocks = 0;
2562 pool_features_init(&pool->pf); 2562 pool_features_init(&pool->pf);
2563 pool->prison = dm_bio_prison_create(); 2563 pool->prison = dm_bio_prison_create();
2564 if (!pool->prison) { 2564 if (!pool->prison) {
2565 *error = "Error creating pool's bio prison"; 2565 *error = "Error creating pool's bio prison";
2566 err_p = ERR_PTR(-ENOMEM); 2566 err_p = ERR_PTR(-ENOMEM);
2567 goto bad_prison; 2567 goto bad_prison;
2568 } 2568 }
2569 2569
2570 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2570 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2571 if (IS_ERR(pool->copier)) { 2571 if (IS_ERR(pool->copier)) {
2572 r = PTR_ERR(pool->copier); 2572 r = PTR_ERR(pool->copier);
2573 *error = "Error creating pool's kcopyd client"; 2573 *error = "Error creating pool's kcopyd client";
2574 err_p = ERR_PTR(r); 2574 err_p = ERR_PTR(r);
2575 goto bad_kcopyd_client; 2575 goto bad_kcopyd_client;
2576 } 2576 }
2577 2577
2578 /* 2578 /*
2579 * Create singlethreaded workqueue that will service all devices 2579 * Create singlethreaded workqueue that will service all devices
2580 * that use this metadata. 2580 * that use this metadata.
2581 */ 2581 */
2582 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2582 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2583 if (!pool->wq) { 2583 if (!pool->wq) {
2584 *error = "Error creating pool's workqueue"; 2584 *error = "Error creating pool's workqueue";
2585 err_p = ERR_PTR(-ENOMEM); 2585 err_p = ERR_PTR(-ENOMEM);
2586 goto bad_wq; 2586 goto bad_wq;
2587 } 2587 }
2588 2588
2589 throttle_init(&pool->throttle); 2589 throttle_init(&pool->throttle);
2590 INIT_WORK(&pool->worker, do_worker); 2590 INIT_WORK(&pool->worker, do_worker);
2591 INIT_DELAYED_WORK(&pool->waker, do_waker); 2591 INIT_DELAYED_WORK(&pool->waker, do_waker);
2592 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2592 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2593 spin_lock_init(&pool->lock); 2593 spin_lock_init(&pool->lock);
2594 bio_list_init(&pool->deferred_flush_bios); 2594 bio_list_init(&pool->deferred_flush_bios);
2595 INIT_LIST_HEAD(&pool->prepared_mappings); 2595 INIT_LIST_HEAD(&pool->prepared_mappings);
2596 INIT_LIST_HEAD(&pool->prepared_discards); 2596 INIT_LIST_HEAD(&pool->prepared_discards);
2597 INIT_LIST_HEAD(&pool->active_thins); 2597 INIT_LIST_HEAD(&pool->active_thins);
2598 pool->low_water_triggered = false; 2598 pool->low_water_triggered = false;
2599 pool->suspended = true; 2599 pool->suspended = true;
2600 2600
2601 pool->shared_read_ds = dm_deferred_set_create(); 2601 pool->shared_read_ds = dm_deferred_set_create();
2602 if (!pool->shared_read_ds) { 2602 if (!pool->shared_read_ds) {
2603 *error = "Error creating pool's shared read deferred set"; 2603 *error = "Error creating pool's shared read deferred set";
2604 err_p = ERR_PTR(-ENOMEM); 2604 err_p = ERR_PTR(-ENOMEM);
2605 goto bad_shared_read_ds; 2605 goto bad_shared_read_ds;
2606 } 2606 }
2607 2607
2608 pool->all_io_ds = dm_deferred_set_create(); 2608 pool->all_io_ds = dm_deferred_set_create();
2609 if (!pool->all_io_ds) { 2609 if (!pool->all_io_ds) {
2610 *error = "Error creating pool's all io deferred set"; 2610 *error = "Error creating pool's all io deferred set";
2611 err_p = ERR_PTR(-ENOMEM); 2611 err_p = ERR_PTR(-ENOMEM);
2612 goto bad_all_io_ds; 2612 goto bad_all_io_ds;
2613 } 2613 }
2614 2614
2615 pool->next_mapping = NULL; 2615 pool->next_mapping = NULL;
2616 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 2616 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2617 _new_mapping_cache); 2617 _new_mapping_cache);
2618 if (!pool->mapping_pool) { 2618 if (!pool->mapping_pool) {
2619 *error = "Error creating pool's mapping mempool"; 2619 *error = "Error creating pool's mapping mempool";
2620 err_p = ERR_PTR(-ENOMEM); 2620 err_p = ERR_PTR(-ENOMEM);
2621 goto bad_mapping_pool; 2621 goto bad_mapping_pool;
2622 } 2622 }
2623 2623
2624 pool->ref_count = 1; 2624 pool->ref_count = 1;
2625 pool->last_commit_jiffies = jiffies; 2625 pool->last_commit_jiffies = jiffies;
2626 pool->pool_md = pool_md; 2626 pool->pool_md = pool_md;
2627 pool->md_dev = metadata_dev; 2627 pool->md_dev = metadata_dev;
2628 __pool_table_insert(pool); 2628 __pool_table_insert(pool);
2629 2629
2630 return pool; 2630 return pool;
2631 2631
2632 bad_mapping_pool: 2632 bad_mapping_pool:
2633 dm_deferred_set_destroy(pool->all_io_ds); 2633 dm_deferred_set_destroy(pool->all_io_ds);
2634 bad_all_io_ds: 2634 bad_all_io_ds:
2635 dm_deferred_set_destroy(pool->shared_read_ds); 2635 dm_deferred_set_destroy(pool->shared_read_ds);
2636 bad_shared_read_ds: 2636 bad_shared_read_ds:
2637 destroy_workqueue(pool->wq); 2637 destroy_workqueue(pool->wq);
2638 bad_wq: 2638 bad_wq:
2639 dm_kcopyd_client_destroy(pool->copier); 2639 dm_kcopyd_client_destroy(pool->copier);
2640 bad_kcopyd_client: 2640 bad_kcopyd_client:
2641 dm_bio_prison_destroy(pool->prison); 2641 dm_bio_prison_destroy(pool->prison);
2642 bad_prison: 2642 bad_prison:
2643 kfree(pool); 2643 kfree(pool);
2644 bad_pool: 2644 bad_pool:
2645 if (dm_pool_metadata_close(pmd)) 2645 if (dm_pool_metadata_close(pmd))
2646 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2646 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2647 2647
2648 return err_p; 2648 return err_p;
2649 } 2649 }
2650 2650
2651 static void __pool_inc(struct pool *pool) 2651 static void __pool_inc(struct pool *pool)
2652 { 2652 {
2653 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2653 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2654 pool->ref_count++; 2654 pool->ref_count++;
2655 } 2655 }
2656 2656
2657 static void __pool_dec(struct pool *pool) 2657 static void __pool_dec(struct pool *pool)
2658 { 2658 {
2659 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2659 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2660 BUG_ON(!pool->ref_count); 2660 BUG_ON(!pool->ref_count);
2661 if (!--pool->ref_count) 2661 if (!--pool->ref_count)
2662 __pool_destroy(pool); 2662 __pool_destroy(pool);
2663 } 2663 }
2664 2664
2665 static struct pool *__pool_find(struct mapped_device *pool_md, 2665 static struct pool *__pool_find(struct mapped_device *pool_md,
2666 struct block_device *metadata_dev, 2666 struct block_device *metadata_dev,
2667 unsigned long block_size, int read_only, 2667 unsigned long block_size, int read_only,
2668 char **error, int *created) 2668 char **error, int *created)
2669 { 2669 {
2670 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 2670 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2671 2671
2672 if (pool) { 2672 if (pool) {
2673 if (pool->pool_md != pool_md) { 2673 if (pool->pool_md != pool_md) {
2674 *error = "metadata device already in use by a pool"; 2674 *error = "metadata device already in use by a pool";
2675 return ERR_PTR(-EBUSY); 2675 return ERR_PTR(-EBUSY);
2676 } 2676 }
2677 __pool_inc(pool); 2677 __pool_inc(pool);
2678 2678
2679 } else { 2679 } else {
2680 pool = __pool_table_lookup(pool_md); 2680 pool = __pool_table_lookup(pool_md);
2681 if (pool) { 2681 if (pool) {
2682 if (pool->md_dev != metadata_dev) { 2682 if (pool->md_dev != metadata_dev) {
2683 *error = "different pool cannot replace a pool"; 2683 *error = "different pool cannot replace a pool";
2684 return ERR_PTR(-EINVAL); 2684 return ERR_PTR(-EINVAL);
2685 } 2685 }
2686 __pool_inc(pool); 2686 __pool_inc(pool);
2687 2687
2688 } else { 2688 } else {
2689 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 2689 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2690 *created = 1; 2690 *created = 1;
2691 } 2691 }
2692 } 2692 }
2693 2693
2694 return pool; 2694 return pool;
2695 } 2695 }
2696 2696
2697 /*---------------------------------------------------------------- 2697 /*----------------------------------------------------------------
2698 * Pool target methods 2698 * Pool target methods
2699 *--------------------------------------------------------------*/ 2699 *--------------------------------------------------------------*/
2700 static void pool_dtr(struct dm_target *ti) 2700 static void pool_dtr(struct dm_target *ti)
2701 { 2701 {
2702 struct pool_c *pt = ti->private; 2702 struct pool_c *pt = ti->private;
2703 2703
2704 mutex_lock(&dm_thin_pool_table.mutex); 2704 mutex_lock(&dm_thin_pool_table.mutex);
2705 2705
2706 unbind_control_target(pt->pool, ti); 2706 unbind_control_target(pt->pool, ti);
2707 __pool_dec(pt->pool); 2707 __pool_dec(pt->pool);
2708 dm_put_device(ti, pt->metadata_dev); 2708 dm_put_device(ti, pt->metadata_dev);
2709 dm_put_device(ti, pt->data_dev); 2709 dm_put_device(ti, pt->data_dev);
2710 kfree(pt); 2710 kfree(pt);
2711 2711
2712 mutex_unlock(&dm_thin_pool_table.mutex); 2712 mutex_unlock(&dm_thin_pool_table.mutex);
2713 } 2713 }
2714 2714
2715 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 2715 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2716 struct dm_target *ti) 2716 struct dm_target *ti)
2717 { 2717 {
2718 int r; 2718 int r;
2719 unsigned argc; 2719 unsigned argc;
2720 const char *arg_name; 2720 const char *arg_name;
2721 2721
2722 static struct dm_arg _args[] = { 2722 static struct dm_arg _args[] = {
2723 {0, 4, "Invalid number of pool feature arguments"}, 2723 {0, 4, "Invalid number of pool feature arguments"},
2724 }; 2724 };
2725 2725
2726 /* 2726 /*
2727 * No feature arguments supplied. 2727 * No feature arguments supplied.
2728 */ 2728 */
2729 if (!as->argc) 2729 if (!as->argc)
2730 return 0; 2730 return 0;
2731 2731
2732 r = dm_read_arg_group(_args, as, &argc, &ti->error); 2732 r = dm_read_arg_group(_args, as, &argc, &ti->error);
2733 if (r) 2733 if (r)
2734 return -EINVAL; 2734 return -EINVAL;
2735 2735
2736 while (argc && !r) { 2736 while (argc && !r) {
2737 arg_name = dm_shift_arg(as); 2737 arg_name = dm_shift_arg(as);
2738 argc--; 2738 argc--;
2739 2739
2740 if (!strcasecmp(arg_name, "skip_block_zeroing")) 2740 if (!strcasecmp(arg_name, "skip_block_zeroing"))
2741 pf->zero_new_blocks = false; 2741 pf->zero_new_blocks = false;
2742 2742
2743 else if (!strcasecmp(arg_name, "ignore_discard")) 2743 else if (!strcasecmp(arg_name, "ignore_discard"))
2744 pf->discard_enabled = false; 2744 pf->discard_enabled = false;
2745 2745
2746 else if (!strcasecmp(arg_name, "no_discard_passdown")) 2746 else if (!strcasecmp(arg_name, "no_discard_passdown"))
2747 pf->discard_passdown = false; 2747 pf->discard_passdown = false;
2748 2748
2749 else if (!strcasecmp(arg_name, "read_only")) 2749 else if (!strcasecmp(arg_name, "read_only"))
2750 pf->mode = PM_READ_ONLY; 2750 pf->mode = PM_READ_ONLY;
2751 2751
2752 else if (!strcasecmp(arg_name, "error_if_no_space")) 2752 else if (!strcasecmp(arg_name, "error_if_no_space"))
2753 pf->error_if_no_space = true; 2753 pf->error_if_no_space = true;
2754 2754
2755 else { 2755 else {
2756 ti->error = "Unrecognised pool feature requested"; 2756 ti->error = "Unrecognised pool feature requested";
2757 r = -EINVAL; 2757 r = -EINVAL;
2758 break; 2758 break;
2759 } 2759 }
2760 } 2760 }
2761 2761
2762 return r; 2762 return r;
2763 } 2763 }
2764 2764
2765 static void metadata_low_callback(void *context) 2765 static void metadata_low_callback(void *context)
2766 { 2766 {
2767 struct pool *pool = context; 2767 struct pool *pool = context;
2768 2768
2769 DMWARN("%s: reached low water mark for metadata device: sending event.", 2769 DMWARN("%s: reached low water mark for metadata device: sending event.",
2770 dm_device_name(pool->pool_md)); 2770 dm_device_name(pool->pool_md));
2771 2771
2772 dm_table_event(pool->ti->table); 2772 dm_table_event(pool->ti->table);
2773 } 2773 }
2774 2774
2775 static sector_t get_dev_size(struct block_device *bdev) 2775 static sector_t get_dev_size(struct block_device *bdev)
2776 { 2776 {
2777 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 2777 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2778 } 2778 }
2779 2779
2780 static void warn_if_metadata_device_too_big(struct block_device *bdev) 2780 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2781 { 2781 {
2782 sector_t metadata_dev_size = get_dev_size(bdev); 2782 sector_t metadata_dev_size = get_dev_size(bdev);
2783 char buffer[BDEVNAME_SIZE]; 2783 char buffer[BDEVNAME_SIZE];
2784 2784
2785 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 2785 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2786 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 2786 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2787 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 2787 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2788 } 2788 }
2789 2789
2790 static sector_t get_metadata_dev_size(struct block_device *bdev) 2790 static sector_t get_metadata_dev_size(struct block_device *bdev)
2791 { 2791 {
2792 sector_t metadata_dev_size = get_dev_size(bdev); 2792 sector_t metadata_dev_size = get_dev_size(bdev);
2793 2793
2794 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 2794 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2795 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 2795 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2796 2796
2797 return metadata_dev_size; 2797 return metadata_dev_size;
2798 } 2798 }
2799 2799
2800 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 2800 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2801 { 2801 {
2802 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 2802 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2803 2803
2804 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 2804 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2805 2805
2806 return metadata_dev_size; 2806 return metadata_dev_size;
2807 } 2807 }
2808 2808
2809 /* 2809 /*
2810 * When a metadata threshold is crossed a dm event is triggered, and 2810 * When a metadata threshold is crossed a dm event is triggered, and
2811 * userland should respond by growing the metadata device. We could let 2811 * userland should respond by growing the metadata device. We could let
2812 * userland set the threshold, like we do with the data threshold, but I'm 2812 * userland set the threshold, like we do with the data threshold, but I'm
2813 * not sure they know enough to do this well. 2813 * not sure they know enough to do this well.
2814 */ 2814 */
2815 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 2815 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2816 { 2816 {
2817 /* 2817 /*
2818 * 4M is ample for all ops with the possible exception of thin 2818 * 4M is ample for all ops with the possible exception of thin
2819 * device deletion which is harmless if it fails (just retry the 2819 * device deletion which is harmless if it fails (just retry the
2820 * delete after you've grown the device). 2820 * delete after you've grown the device).
2821 */ 2821 */
2822 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 2822 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2823 return min((dm_block_t)1024ULL /* 4M */, quarter); 2823 return min((dm_block_t)1024ULL /* 4M */, quarter);
2824 } 2824 }
2825 2825
2826 /* 2826 /*
2827 * thin-pool <metadata dev> <data dev> 2827 * thin-pool <metadata dev> <data dev>
2828 * <data block size (sectors)> 2828 * <data block size (sectors)>
2829 * <low water mark (blocks)> 2829 * <low water mark (blocks)>
2830 * [<#feature args> [<arg>]*] 2830 * [<#feature args> [<arg>]*]
2831 * 2831 *
2832 * Optional feature arguments are: 2832 * Optional feature arguments are:
2833 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 2833 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2834 * ignore_discard: disable discard 2834 * ignore_discard: disable discard
2835 * no_discard_passdown: don't pass discards down to the data device 2835 * no_discard_passdown: don't pass discards down to the data device
2836 * read_only: Don't allow any changes to be made to the pool metadata. 2836 * read_only: Don't allow any changes to be made to the pool metadata.
2837 * error_if_no_space: error IOs, instead of queueing, if no space. 2837 * error_if_no_space: error IOs, instead of queueing, if no space.
2838 */ 2838 */
2839 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 2839 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2840 { 2840 {
2841 int r, pool_created = 0; 2841 int r, pool_created = 0;
2842 struct pool_c *pt; 2842 struct pool_c *pt;
2843 struct pool *pool; 2843 struct pool *pool;
2844 struct pool_features pf; 2844 struct pool_features pf;
2845 struct dm_arg_set as; 2845 struct dm_arg_set as;
2846 struct dm_dev *data_dev; 2846 struct dm_dev *data_dev;
2847 unsigned long block_size; 2847 unsigned long block_size;
2848 dm_block_t low_water_blocks; 2848 dm_block_t low_water_blocks;
2849 struct dm_dev *metadata_dev; 2849 struct dm_dev *metadata_dev;
2850 fmode_t metadata_mode; 2850 fmode_t metadata_mode;
2851 2851
2852 /* 2852 /*
2853 * FIXME Remove validation from scope of lock. 2853 * FIXME Remove validation from scope of lock.
2854 */ 2854 */
2855 mutex_lock(&dm_thin_pool_table.mutex); 2855 mutex_lock(&dm_thin_pool_table.mutex);
2856 2856
2857 if (argc < 4) { 2857 if (argc < 4) {
2858 ti->error = "Invalid argument count"; 2858 ti->error = "Invalid argument count";
2859 r = -EINVAL; 2859 r = -EINVAL;
2860 goto out_unlock; 2860 goto out_unlock;
2861 } 2861 }
2862 2862
2863 as.argc = argc; 2863 as.argc = argc;
2864 as.argv = argv; 2864 as.argv = argv;
2865 2865
2866 /* 2866 /*
2867 * Set default pool features. 2867 * Set default pool features.
2868 */ 2868 */
2869 pool_features_init(&pf); 2869 pool_features_init(&pf);
2870 2870
2871 dm_consume_args(&as, 4); 2871 dm_consume_args(&as, 4);
2872 r = parse_pool_features(&as, &pf, ti); 2872 r = parse_pool_features(&as, &pf, ti);
2873 if (r) 2873 if (r)
2874 goto out_unlock; 2874 goto out_unlock;
2875 2875
2876 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 2876 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2877 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 2877 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2878 if (r) { 2878 if (r) {
2879 ti->error = "Error opening metadata block device"; 2879 ti->error = "Error opening metadata block device";
2880 goto out_unlock; 2880 goto out_unlock;
2881 } 2881 }
2882 warn_if_metadata_device_too_big(metadata_dev->bdev); 2882 warn_if_metadata_device_too_big(metadata_dev->bdev);
2883 2883
2884 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 2884 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2885 if (r) { 2885 if (r) {
2886 ti->error = "Error getting data device"; 2886 ti->error = "Error getting data device";
2887 goto out_metadata; 2887 goto out_metadata;
2888 } 2888 }
2889 2889
2890 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 2890 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2891 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 2891 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2892 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 2892 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2893 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 2893 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2894 ti->error = "Invalid block size"; 2894 ti->error = "Invalid block size";
2895 r = -EINVAL; 2895 r = -EINVAL;
2896 goto out; 2896 goto out;
2897 } 2897 }
2898 2898
2899 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 2899 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2900 ti->error = "Invalid low water mark"; 2900 ti->error = "Invalid low water mark";
2901 r = -EINVAL; 2901 r = -EINVAL;
2902 goto out; 2902 goto out;
2903 } 2903 }
2904 2904
2905 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 2905 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2906 if (!pt) { 2906 if (!pt) {
2907 r = -ENOMEM; 2907 r = -ENOMEM;
2908 goto out; 2908 goto out;
2909 } 2909 }
2910 2910
2911 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 2911 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2912 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 2912 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2913 if (IS_ERR(pool)) { 2913 if (IS_ERR(pool)) {
2914 r = PTR_ERR(pool); 2914 r = PTR_ERR(pool);
2915 goto out_free_pt; 2915 goto out_free_pt;
2916 } 2916 }
2917 2917
2918 /* 2918 /*
2919 * 'pool_created' reflects whether this is the first table load. 2919 * 'pool_created' reflects whether this is the first table load.
2920 * Top level discard support is not allowed to be changed after 2920 * Top level discard support is not allowed to be changed after
2921 * initial load. This would require a pool reload to trigger thin 2921 * initial load. This would require a pool reload to trigger thin
2922 * device changes. 2922 * device changes.
2923 */ 2923 */
2924 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 2924 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2925 ti->error = "Discard support cannot be disabled once enabled"; 2925 ti->error = "Discard support cannot be disabled once enabled";
2926 r = -EINVAL; 2926 r = -EINVAL;
2927 goto out_flags_changed; 2927 goto out_flags_changed;
2928 } 2928 }
2929 2929
2930 pt->pool = pool; 2930 pt->pool = pool;
2931 pt->ti = ti; 2931 pt->ti = ti;
2932 pt->metadata_dev = metadata_dev; 2932 pt->metadata_dev = metadata_dev;
2933 pt->data_dev = data_dev; 2933 pt->data_dev = data_dev;
2934 pt->low_water_blocks = low_water_blocks; 2934 pt->low_water_blocks = low_water_blocks;
2935 pt->adjusted_pf = pt->requested_pf = pf; 2935 pt->adjusted_pf = pt->requested_pf = pf;
2936 ti->num_flush_bios = 1; 2936 ti->num_flush_bios = 1;
2937 2937
2938 /* 2938 /*
2939 * Only need to enable discards if the pool should pass 2939 * Only need to enable discards if the pool should pass
2940 * them down to the data device. The thin device's discard 2940 * them down to the data device. The thin device's discard
2941 * processing will cause mappings to be removed from the btree. 2941 * processing will cause mappings to be removed from the btree.
2942 */ 2942 */
2943 ti->discard_zeroes_data_unsupported = true; 2943 ti->discard_zeroes_data_unsupported = true;
2944 if (pf.discard_enabled && pf.discard_passdown) { 2944 if (pf.discard_enabled && pf.discard_passdown) {
2945 ti->num_discard_bios = 1; 2945 ti->num_discard_bios = 1;
2946 2946
2947 /* 2947 /*
2948 * Setting 'discards_supported' circumvents the normal 2948 * Setting 'discards_supported' circumvents the normal
2949 * stacking of discard limits (this keeps the pool and 2949 * stacking of discard limits (this keeps the pool and
2950 * thin devices' discard limits consistent). 2950 * thin devices' discard limits consistent).
2951 */ 2951 */
2952 ti->discards_supported = true; 2952 ti->discards_supported = true;
2953 } 2953 }
2954 ti->private = pt; 2954 ti->private = pt;
2955 2955
2956 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 2956 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2957 calc_metadata_threshold(pt), 2957 calc_metadata_threshold(pt),
2958 metadata_low_callback, 2958 metadata_low_callback,
2959 pool); 2959 pool);
2960 if (r) 2960 if (r)
2961 goto out_free_pt; 2961 goto out_free_pt;
2962 2962
2963 pt->callbacks.congested_fn = pool_is_congested; 2963 pt->callbacks.congested_fn = pool_is_congested;
2964 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 2964 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2965 2965
2966 mutex_unlock(&dm_thin_pool_table.mutex); 2966 mutex_unlock(&dm_thin_pool_table.mutex);
2967 2967
2968 return 0; 2968 return 0;
2969 2969
2970 out_flags_changed: 2970 out_flags_changed:
2971 __pool_dec(pool); 2971 __pool_dec(pool);
2972 out_free_pt: 2972 out_free_pt:
2973 kfree(pt); 2973 kfree(pt);
2974 out: 2974 out:
2975 dm_put_device(ti, data_dev); 2975 dm_put_device(ti, data_dev);
2976 out_metadata: 2976 out_metadata:
2977 dm_put_device(ti, metadata_dev); 2977 dm_put_device(ti, metadata_dev);
2978 out_unlock: 2978 out_unlock:
2979 mutex_unlock(&dm_thin_pool_table.mutex); 2979 mutex_unlock(&dm_thin_pool_table.mutex);
2980 2980
2981 return r; 2981 return r;
2982 } 2982 }
2983 2983
2984 static int pool_map(struct dm_target *ti, struct bio *bio) 2984 static int pool_map(struct dm_target *ti, struct bio *bio)
2985 { 2985 {
2986 int r; 2986 int r;
2987 struct pool_c *pt = ti->private; 2987 struct pool_c *pt = ti->private;
2988 struct pool *pool = pt->pool; 2988 struct pool *pool = pt->pool;
2989 unsigned long flags; 2989 unsigned long flags;
2990 2990
2991 /* 2991 /*
2992 * As this is a singleton target, ti->begin is always zero. 2992 * As this is a singleton target, ti->begin is always zero.
2993 */ 2993 */
2994 spin_lock_irqsave(&pool->lock, flags); 2994 spin_lock_irqsave(&pool->lock, flags);
2995 bio->bi_bdev = pt->data_dev->bdev; 2995 bio->bi_bdev = pt->data_dev->bdev;
2996 r = DM_MAPIO_REMAPPED; 2996 r = DM_MAPIO_REMAPPED;
2997 spin_unlock_irqrestore(&pool->lock, flags); 2997 spin_unlock_irqrestore(&pool->lock, flags);
2998 2998
2999 return r; 2999 return r;
3000 } 3000 }
3001 3001
3002 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3002 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3003 { 3003 {
3004 int r; 3004 int r;
3005 struct pool_c *pt = ti->private; 3005 struct pool_c *pt = ti->private;
3006 struct pool *pool = pt->pool; 3006 struct pool *pool = pt->pool;
3007 sector_t data_size = ti->len; 3007 sector_t data_size = ti->len;
3008 dm_block_t sb_data_size; 3008 dm_block_t sb_data_size;
3009 3009
3010 *need_commit = false; 3010 *need_commit = false;
3011 3011
3012 (void) sector_div(data_size, pool->sectors_per_block); 3012 (void) sector_div(data_size, pool->sectors_per_block);
3013 3013
3014 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3014 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3015 if (r) { 3015 if (r) {
3016 DMERR("%s: failed to retrieve data device size", 3016 DMERR("%s: failed to retrieve data device size",
3017 dm_device_name(pool->pool_md)); 3017 dm_device_name(pool->pool_md));
3018 return r; 3018 return r;
3019 } 3019 }
3020 3020
3021 if (data_size < sb_data_size) { 3021 if (data_size < sb_data_size) {
3022 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3022 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3023 dm_device_name(pool->pool_md), 3023 dm_device_name(pool->pool_md),
3024 (unsigned long long)data_size, sb_data_size); 3024 (unsigned long long)data_size, sb_data_size);
3025 return -EINVAL; 3025 return -EINVAL;
3026 3026
3027 } else if (data_size > sb_data_size) { 3027 } else if (data_size > sb_data_size) {
3028 if (dm_pool_metadata_needs_check(pool->pmd)) { 3028 if (dm_pool_metadata_needs_check(pool->pmd)) {
3029 DMERR("%s: unable to grow the data device until repaired.", 3029 DMERR("%s: unable to grow the data device until repaired.",
3030 dm_device_name(pool->pool_md)); 3030 dm_device_name(pool->pool_md));
3031 return 0; 3031 return 0;
3032 } 3032 }
3033 3033
3034 if (sb_data_size) 3034 if (sb_data_size)
3035 DMINFO("%s: growing the data device from %llu to %llu blocks", 3035 DMINFO("%s: growing the data device from %llu to %llu blocks",
3036 dm_device_name(pool->pool_md), 3036 dm_device_name(pool->pool_md),
3037 sb_data_size, (unsigned long long)data_size); 3037 sb_data_size, (unsigned long long)data_size);
3038 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3038 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3039 if (r) { 3039 if (r) {
3040 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3040 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3041 return r; 3041 return r;
3042 } 3042 }
3043 3043
3044 *need_commit = true; 3044 *need_commit = true;
3045 } 3045 }
3046 3046
3047 return 0; 3047 return 0;
3048 } 3048 }
3049 3049
3050 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3050 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3051 { 3051 {
3052 int r; 3052 int r;
3053 struct pool_c *pt = ti->private; 3053 struct pool_c *pt = ti->private;
3054 struct pool *pool = pt->pool; 3054 struct pool *pool = pt->pool;
3055 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3055 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3056 3056
3057 *need_commit = false; 3057 *need_commit = false;
3058 3058
3059 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3059 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3060 3060
3061 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3061 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3062 if (r) { 3062 if (r) {
3063 DMERR("%s: failed to retrieve metadata device size", 3063 DMERR("%s: failed to retrieve metadata device size",
3064 dm_device_name(pool->pool_md)); 3064 dm_device_name(pool->pool_md));
3065 return r; 3065 return r;
3066 } 3066 }
3067 3067
3068 if (metadata_dev_size < sb_metadata_dev_size) { 3068 if (metadata_dev_size < sb_metadata_dev_size) {
3069 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3069 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3070 dm_device_name(pool->pool_md), 3070 dm_device_name(pool->pool_md),
3071 metadata_dev_size, sb_metadata_dev_size); 3071 metadata_dev_size, sb_metadata_dev_size);
3072 return -EINVAL; 3072 return -EINVAL;
3073 3073
3074 } else if (metadata_dev_size > sb_metadata_dev_size) { 3074 } else if (metadata_dev_size > sb_metadata_dev_size) {
3075 if (dm_pool_metadata_needs_check(pool->pmd)) { 3075 if (dm_pool_metadata_needs_check(pool->pmd)) {
3076 DMERR("%s: unable to grow the metadata device until repaired.", 3076 DMERR("%s: unable to grow the metadata device until repaired.",
3077 dm_device_name(pool->pool_md)); 3077 dm_device_name(pool->pool_md));
3078 return 0; 3078 return 0;
3079 } 3079 }
3080 3080
3081 warn_if_metadata_device_too_big(pool->md_dev); 3081 warn_if_metadata_device_too_big(pool->md_dev);
3082 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3082 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3083 dm_device_name(pool->pool_md), 3083 dm_device_name(pool->pool_md),
3084 sb_metadata_dev_size, metadata_dev_size); 3084 sb_metadata_dev_size, metadata_dev_size);
3085 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3085 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3086 if (r) { 3086 if (r) {
3087 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3087 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3088 return r; 3088 return r;
3089 } 3089 }
3090 3090
3091 *need_commit = true; 3091 *need_commit = true;
3092 } 3092 }
3093 3093
3094 return 0; 3094 return 0;
3095 } 3095 }
3096 3096
3097 /* 3097 /*
3098 * Retrieves the number of blocks of the data device from 3098 * Retrieves the number of blocks of the data device from
3099 * the superblock and compares it to the actual device size, 3099 * the superblock and compares it to the actual device size,
3100 * thus resizing the data device in case it has grown. 3100 * thus resizing the data device in case it has grown.
3101 * 3101 *
3102 * This both copes with opening preallocated data devices in the ctr 3102 * This both copes with opening preallocated data devices in the ctr
3103 * being followed by a resume 3103 * being followed by a resume
3104 * -and- 3104 * -and-
3105 * calling the resume method individually after userspace has 3105 * calling the resume method individually after userspace has
3106 * grown the data device in reaction to a table event. 3106 * grown the data device in reaction to a table event.
3107 */ 3107 */
3108 static int pool_preresume(struct dm_target *ti) 3108 static int pool_preresume(struct dm_target *ti)
3109 { 3109 {
3110 int r; 3110 int r;
3111 bool need_commit1, need_commit2; 3111 bool need_commit1, need_commit2;
3112 struct pool_c *pt = ti->private; 3112 struct pool_c *pt = ti->private;
3113 struct pool *pool = pt->pool; 3113 struct pool *pool = pt->pool;
3114 3114
3115 /* 3115 /*
3116 * Take control of the pool object. 3116 * Take control of the pool object.
3117 */ 3117 */
3118 r = bind_control_target(pool, ti); 3118 r = bind_control_target(pool, ti);
3119 if (r) 3119 if (r)
3120 return r; 3120 return r;
3121 3121
3122 r = maybe_resize_data_dev(ti, &need_commit1); 3122 r = maybe_resize_data_dev(ti, &need_commit1);
3123 if (r) 3123 if (r)
3124 return r; 3124 return r;
3125 3125
3126 r = maybe_resize_metadata_dev(ti, &need_commit2); 3126 r = maybe_resize_metadata_dev(ti, &need_commit2);
3127 if (r) 3127 if (r)
3128 return r; 3128 return r;
3129 3129
3130 if (need_commit1 || need_commit2) 3130 if (need_commit1 || need_commit2)
3131 (void) commit(pool); 3131 (void) commit(pool);
3132 3132
3133 return 0; 3133 return 0;
3134 } 3134 }
3135 3135
3136 static void pool_suspend_active_thins(struct pool *pool) 3136 static void pool_suspend_active_thins(struct pool *pool)
3137 { 3137 {
3138 struct thin_c *tc; 3138 struct thin_c *tc;
3139 3139
3140 /* Suspend all active thin devices */ 3140 /* Suspend all active thin devices */
3141 tc = get_first_thin(pool); 3141 tc = get_first_thin(pool);
3142 while (tc) { 3142 while (tc) {
3143 dm_internal_suspend_noflush(tc->thin_md); 3143 dm_internal_suspend_noflush(tc->thin_md);
3144 tc = get_next_thin(pool, tc); 3144 tc = get_next_thin(pool, tc);
3145 } 3145 }
3146 } 3146 }
3147 3147
3148 static void pool_resume_active_thins(struct pool *pool) 3148 static void pool_resume_active_thins(struct pool *pool)
3149 { 3149 {
3150 struct thin_c *tc; 3150 struct thin_c *tc;
3151 3151
3152 /* Resume all active thin devices */ 3152 /* Resume all active thin devices */
3153 tc = get_first_thin(pool); 3153 tc = get_first_thin(pool);
3154 while (tc) { 3154 while (tc) {
3155 dm_internal_resume(tc->thin_md); 3155 dm_internal_resume(tc->thin_md);
3156 tc = get_next_thin(pool, tc); 3156 tc = get_next_thin(pool, tc);
3157 } 3157 }
3158 } 3158 }
3159 3159
3160 static void pool_resume(struct dm_target *ti) 3160 static void pool_resume(struct dm_target *ti)
3161 { 3161 {
3162 struct pool_c *pt = ti->private; 3162 struct pool_c *pt = ti->private;
3163 struct pool *pool = pt->pool; 3163 struct pool *pool = pt->pool;
3164 unsigned long flags; 3164 unsigned long flags;
3165 3165
3166 /* 3166 /*
3167 * Must requeue active_thins' bios and then resume 3167 * Must requeue active_thins' bios and then resume
3168 * active_thins _before_ clearing 'suspend' flag. 3168 * active_thins _before_ clearing 'suspend' flag.
3169 */ 3169 */
3170 requeue_bios(pool); 3170 requeue_bios(pool);
3171 pool_resume_active_thins(pool); 3171 pool_resume_active_thins(pool);
3172 3172
3173 spin_lock_irqsave(&pool->lock, flags); 3173 spin_lock_irqsave(&pool->lock, flags);
3174 pool->low_water_triggered = false; 3174 pool->low_water_triggered = false;
3175 pool->suspended = false; 3175 pool->suspended = false;
3176 spin_unlock_irqrestore(&pool->lock, flags); 3176 spin_unlock_irqrestore(&pool->lock, flags);
3177 3177
3178 do_waker(&pool->waker.work); 3178 do_waker(&pool->waker.work);
3179 } 3179 }
3180 3180
3181 static void pool_presuspend(struct dm_target *ti) 3181 static void pool_presuspend(struct dm_target *ti)
3182 { 3182 {
3183 struct pool_c *pt = ti->private; 3183 struct pool_c *pt = ti->private;
3184 struct pool *pool = pt->pool; 3184 struct pool *pool = pt->pool;
3185 unsigned long flags; 3185 unsigned long flags;
3186 3186
3187 spin_lock_irqsave(&pool->lock, flags); 3187 spin_lock_irqsave(&pool->lock, flags);
3188 pool->suspended = true; 3188 pool->suspended = true;
3189 spin_unlock_irqrestore(&pool->lock, flags); 3189 spin_unlock_irqrestore(&pool->lock, flags);
3190 3190
3191 pool_suspend_active_thins(pool); 3191 pool_suspend_active_thins(pool);
3192 } 3192 }
3193 3193
3194 static void pool_presuspend_undo(struct dm_target *ti) 3194 static void pool_presuspend_undo(struct dm_target *ti)
3195 { 3195 {
3196 struct pool_c *pt = ti->private; 3196 struct pool_c *pt = ti->private;
3197 struct pool *pool = pt->pool; 3197 struct pool *pool = pt->pool;
3198 unsigned long flags; 3198 unsigned long flags;
3199 3199
3200 pool_resume_active_thins(pool); 3200 pool_resume_active_thins(pool);
3201 3201
3202 spin_lock_irqsave(&pool->lock, flags); 3202 spin_lock_irqsave(&pool->lock, flags);
3203 pool->suspended = false; 3203 pool->suspended = false;
3204 spin_unlock_irqrestore(&pool->lock, flags); 3204 spin_unlock_irqrestore(&pool->lock, flags);
3205 } 3205 }
3206 3206
3207 static void pool_postsuspend(struct dm_target *ti) 3207 static void pool_postsuspend(struct dm_target *ti)
3208 { 3208 {
3209 struct pool_c *pt = ti->private; 3209 struct pool_c *pt = ti->private;
3210 struct pool *pool = pt->pool; 3210 struct pool *pool = pt->pool;
3211 3211
3212 cancel_delayed_work(&pool->waker); 3212 cancel_delayed_work(&pool->waker);
3213 cancel_delayed_work(&pool->no_space_timeout); 3213 cancel_delayed_work(&pool->no_space_timeout);
3214 flush_workqueue(pool->wq); 3214 flush_workqueue(pool->wq);
3215 (void) commit(pool); 3215 (void) commit(pool);
3216 } 3216 }
3217 3217
3218 static int check_arg_count(unsigned argc, unsigned args_required) 3218 static int check_arg_count(unsigned argc, unsigned args_required)
3219 { 3219 {
3220 if (argc != args_required) { 3220 if (argc != args_required) {
3221 DMWARN("Message received with %u arguments instead of %u.", 3221 DMWARN("Message received with %u arguments instead of %u.",
3222 argc, args_required); 3222 argc, args_required);
3223 return -EINVAL; 3223 return -EINVAL;
3224 } 3224 }
3225 3225
3226 return 0; 3226 return 0;
3227 } 3227 }
3228 3228
3229 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3229 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3230 { 3230 {
3231 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3231 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3232 *dev_id <= MAX_DEV_ID) 3232 *dev_id <= MAX_DEV_ID)
3233 return 0; 3233 return 0;
3234 3234
3235 if (warning) 3235 if (warning)
3236 DMWARN("Message received with invalid device id: %s", arg); 3236 DMWARN("Message received with invalid device id: %s", arg);
3237 3237
3238 return -EINVAL; 3238 return -EINVAL;
3239 } 3239 }
3240 3240
3241 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3241 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3242 { 3242 {
3243 dm_thin_id dev_id; 3243 dm_thin_id dev_id;
3244 int r; 3244 int r;
3245 3245
3246 r = check_arg_count(argc, 2); 3246 r = check_arg_count(argc, 2);
3247 if (r) 3247 if (r)
3248 return r; 3248 return r;
3249 3249
3250 r = read_dev_id(argv[1], &dev_id, 1); 3250 r = read_dev_id(argv[1], &dev_id, 1);
3251 if (r) 3251 if (r)
3252 return r; 3252 return r;
3253 3253
3254 r = dm_pool_create_thin(pool->pmd, dev_id); 3254 r = dm_pool_create_thin(pool->pmd, dev_id);
3255 if (r) { 3255 if (r) {
3256 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3256 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3257 argv[1]); 3257 argv[1]);
3258 return r; 3258 return r;
3259 } 3259 }
3260 3260
3261 return 0; 3261 return 0;
3262 } 3262 }
3263 3263
3264 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3264 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3265 { 3265 {
3266 dm_thin_id dev_id; 3266 dm_thin_id dev_id;
3267 dm_thin_id origin_dev_id; 3267 dm_thin_id origin_dev_id;
3268 int r; 3268 int r;
3269 3269
3270 r = check_arg_count(argc, 3); 3270 r = check_arg_count(argc, 3);
3271 if (r) 3271 if (r)
3272 return r; 3272 return r;
3273 3273
3274 r = read_dev_id(argv[1], &dev_id, 1); 3274 r = read_dev_id(argv[1], &dev_id, 1);
3275 if (r) 3275 if (r)
3276 return r; 3276 return r;
3277 3277
3278 r = read_dev_id(argv[2], &origin_dev_id, 1); 3278 r = read_dev_id(argv[2], &origin_dev_id, 1);
3279 if (r) 3279 if (r)
3280 return r; 3280 return r;
3281 3281
3282 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3282 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3283 if (r) { 3283 if (r) {
3284 DMWARN("Creation of new snapshot %s of device %s failed.", 3284 DMWARN("Creation of new snapshot %s of device %s failed.",
3285 argv[1], argv[2]); 3285 argv[1], argv[2]);
3286 return r; 3286 return r;
3287 } 3287 }
3288 3288
3289 return 0; 3289 return 0;
3290 } 3290 }
3291 3291
3292 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3292 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3293 { 3293 {
3294 dm_thin_id dev_id; 3294 dm_thin_id dev_id;
3295 int r; 3295 int r;
3296 3296
3297 r = check_arg_count(argc, 2); 3297 r = check_arg_count(argc, 2);
3298 if (r) 3298 if (r)
3299 return r; 3299 return r;
3300 3300
3301 r = read_dev_id(argv[1], &dev_id, 1); 3301 r = read_dev_id(argv[1], &dev_id, 1);
3302 if (r) 3302 if (r)
3303 return r; 3303 return r;
3304 3304
3305 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3305 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3306 if (r) 3306 if (r)
3307 DMWARN("Deletion of thin device %s failed.", argv[1]); 3307 DMWARN("Deletion of thin device %s failed.", argv[1]);
3308 3308
3309 return r; 3309 return r;
3310 } 3310 }
3311 3311
3312 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3312 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3313 { 3313 {
3314 dm_thin_id old_id, new_id; 3314 dm_thin_id old_id, new_id;
3315 int r; 3315 int r;
3316 3316
3317 r = check_arg_count(argc, 3); 3317 r = check_arg_count(argc, 3);
3318 if (r) 3318 if (r)
3319 return r; 3319 return r;
3320 3320
3321 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3321 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3322 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3322 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3323 return -EINVAL; 3323 return -EINVAL;
3324 } 3324 }
3325 3325
3326 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3326 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3327 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3327 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3328 return -EINVAL; 3328 return -EINVAL;
3329 } 3329 }
3330 3330
3331 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3331 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3332 if (r) { 3332 if (r) {
3333 DMWARN("Failed to change transaction id from %s to %s.", 3333 DMWARN("Failed to change transaction id from %s to %s.",
3334 argv[1], argv[2]); 3334 argv[1], argv[2]);
3335 return r; 3335 return r;
3336 } 3336 }
3337 3337
3338 return 0; 3338 return 0;
3339 } 3339 }
3340 3340
3341 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3341 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3342 { 3342 {
3343 int r; 3343 int r;
3344 3344
3345 r = check_arg_count(argc, 1); 3345 r = check_arg_count(argc, 1);
3346 if (r) 3346 if (r)
3347 return r; 3347 return r;
3348 3348
3349 (void) commit(pool); 3349 (void) commit(pool);
3350 3350
3351 r = dm_pool_reserve_metadata_snap(pool->pmd); 3351 r = dm_pool_reserve_metadata_snap(pool->pmd);
3352 if (r) 3352 if (r)
3353 DMWARN("reserve_metadata_snap message failed."); 3353 DMWARN("reserve_metadata_snap message failed.");
3354 3354
3355 return r; 3355 return r;
3356 } 3356 }
3357 3357
3358 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3358 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3359 { 3359 {
3360 int r; 3360 int r;
3361 3361
3362 r = check_arg_count(argc, 1); 3362 r = check_arg_count(argc, 1);
3363 if (r) 3363 if (r)
3364 return r; 3364 return r;
3365 3365
3366 r = dm_pool_release_metadata_snap(pool->pmd); 3366 r = dm_pool_release_metadata_snap(pool->pmd);
3367 if (r) 3367 if (r)
3368 DMWARN("release_metadata_snap message failed."); 3368 DMWARN("release_metadata_snap message failed.");
3369 3369
3370 return r; 3370 return r;
3371 } 3371 }
3372 3372
3373 /* 3373 /*
3374 * Messages supported: 3374 * Messages supported:
3375 * create_thin <dev_id> 3375 * create_thin <dev_id>
3376 * create_snap <dev_id> <origin_id> 3376 * create_snap <dev_id> <origin_id>
3377 * delete <dev_id> 3377 * delete <dev_id>
3378 * set_transaction_id <current_trans_id> <new_trans_id> 3378 * set_transaction_id <current_trans_id> <new_trans_id>
3379 * reserve_metadata_snap 3379 * reserve_metadata_snap
3380 * release_metadata_snap 3380 * release_metadata_snap
3381 */ 3381 */
3382 static int pool_message(struct dm_target *ti, unsigned argc, char **argv) 3382 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3383 { 3383 {
3384 int r = -EINVAL; 3384 int r = -EINVAL;
3385 struct pool_c *pt = ti->private; 3385 struct pool_c *pt = ti->private;
3386 struct pool *pool = pt->pool; 3386 struct pool *pool = pt->pool;
3387 3387
3388 if (get_pool_mode(pool) >= PM_READ_ONLY) {
3389 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3390 dm_device_name(pool->pool_md));
3391 return -EINVAL;
3392 }
3393
3388 if (!strcasecmp(argv[0], "create_thin")) 3394 if (!strcasecmp(argv[0], "create_thin"))
3389 r = process_create_thin_mesg(argc, argv, pool); 3395 r = process_create_thin_mesg(argc, argv, pool);
3390 3396
3391 else if (!strcasecmp(argv[0], "create_snap")) 3397 else if (!strcasecmp(argv[0], "create_snap"))
3392 r = process_create_snap_mesg(argc, argv, pool); 3398 r = process_create_snap_mesg(argc, argv, pool);
3393 3399
3394 else if (!strcasecmp(argv[0], "delete")) 3400 else if (!strcasecmp(argv[0], "delete"))
3395 r = process_delete_mesg(argc, argv, pool); 3401 r = process_delete_mesg(argc, argv, pool);
3396 3402
3397 else if (!strcasecmp(argv[0], "set_transaction_id")) 3403 else if (!strcasecmp(argv[0], "set_transaction_id"))
3398 r = process_set_transaction_id_mesg(argc, argv, pool); 3404 r = process_set_transaction_id_mesg(argc, argv, pool);
3399 3405
3400 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3406 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3401 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3407 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3402 3408
3403 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3409 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3404 r = process_release_metadata_snap_mesg(argc, argv, pool); 3410 r = process_release_metadata_snap_mesg(argc, argv, pool);
3405 3411
3406 else 3412 else
3407 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3413 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3408 3414
3409 if (!r) 3415 if (!r)
3410 (void) commit(pool); 3416 (void) commit(pool);
3411 3417
3412 return r; 3418 return r;
3413 } 3419 }
3414 3420
3415 static void emit_flags(struct pool_features *pf, char *result, 3421 static void emit_flags(struct pool_features *pf, char *result,
3416 unsigned sz, unsigned maxlen) 3422 unsigned sz, unsigned maxlen)
3417 { 3423 {
3418 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3424 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3419 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3425 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3420 pf->error_if_no_space; 3426 pf->error_if_no_space;
3421 DMEMIT("%u ", count); 3427 DMEMIT("%u ", count);
3422 3428
3423 if (!pf->zero_new_blocks) 3429 if (!pf->zero_new_blocks)
3424 DMEMIT("skip_block_zeroing "); 3430 DMEMIT("skip_block_zeroing ");
3425 3431
3426 if (!pf->discard_enabled) 3432 if (!pf->discard_enabled)
3427 DMEMIT("ignore_discard "); 3433 DMEMIT("ignore_discard ");
3428 3434
3429 if (!pf->discard_passdown) 3435 if (!pf->discard_passdown)
3430 DMEMIT("no_discard_passdown "); 3436 DMEMIT("no_discard_passdown ");
3431 3437
3432 if (pf->mode == PM_READ_ONLY) 3438 if (pf->mode == PM_READ_ONLY)
3433 DMEMIT("read_only "); 3439 DMEMIT("read_only ");
3434 3440
3435 if (pf->error_if_no_space) 3441 if (pf->error_if_no_space)
3436 DMEMIT("error_if_no_space "); 3442 DMEMIT("error_if_no_space ");
3437 } 3443 }
3438 3444
3439 /* 3445 /*
3440 * Status line is: 3446 * Status line is:
3441 * <transaction id> <used metadata sectors>/<total metadata sectors> 3447 * <transaction id> <used metadata sectors>/<total metadata sectors>
3442 * <used data sectors>/<total data sectors> <held metadata root> 3448 * <used data sectors>/<total data sectors> <held metadata root>
3443 */ 3449 */
3444 static void pool_status(struct dm_target *ti, status_type_t type, 3450 static void pool_status(struct dm_target *ti, status_type_t type,
3445 unsigned status_flags, char *result, unsigned maxlen) 3451 unsigned status_flags, char *result, unsigned maxlen)
3446 { 3452 {
3447 int r; 3453 int r;
3448 unsigned sz = 0; 3454 unsigned sz = 0;
3449 uint64_t transaction_id; 3455 uint64_t transaction_id;
3450 dm_block_t nr_free_blocks_data; 3456 dm_block_t nr_free_blocks_data;
3451 dm_block_t nr_free_blocks_metadata; 3457 dm_block_t nr_free_blocks_metadata;
3452 dm_block_t nr_blocks_data; 3458 dm_block_t nr_blocks_data;
3453 dm_block_t nr_blocks_metadata; 3459 dm_block_t nr_blocks_metadata;
3454 dm_block_t held_root; 3460 dm_block_t held_root;
3455 char buf[BDEVNAME_SIZE]; 3461 char buf[BDEVNAME_SIZE];
3456 char buf2[BDEVNAME_SIZE]; 3462 char buf2[BDEVNAME_SIZE];
3457 struct pool_c *pt = ti->private; 3463 struct pool_c *pt = ti->private;
3458 struct pool *pool = pt->pool; 3464 struct pool *pool = pt->pool;
3459 3465
3460 switch (type) { 3466 switch (type) {
3461 case STATUSTYPE_INFO: 3467 case STATUSTYPE_INFO:
3462 if (get_pool_mode(pool) == PM_FAIL) { 3468 if (get_pool_mode(pool) == PM_FAIL) {
3463 DMEMIT("Fail"); 3469 DMEMIT("Fail");
3464 break; 3470 break;
3465 } 3471 }
3466 3472
3467 /* Commit to ensure statistics aren't out-of-date */ 3473 /* Commit to ensure statistics aren't out-of-date */
3468 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3474 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3469 (void) commit(pool); 3475 (void) commit(pool);
3470 3476
3471 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3477 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3472 if (r) { 3478 if (r) {
3473 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3479 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3474 dm_device_name(pool->pool_md), r); 3480 dm_device_name(pool->pool_md), r);
3475 goto err; 3481 goto err;
3476 } 3482 }
3477 3483
3478 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3484 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3479 if (r) { 3485 if (r) {
3480 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3486 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3481 dm_device_name(pool->pool_md), r); 3487 dm_device_name(pool->pool_md), r);
3482 goto err; 3488 goto err;
3483 } 3489 }
3484 3490
3485 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3491 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3486 if (r) { 3492 if (r) {
3487 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3493 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3488 dm_device_name(pool->pool_md), r); 3494 dm_device_name(pool->pool_md), r);
3489 goto err; 3495 goto err;
3490 } 3496 }
3491 3497
3492 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3498 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3493 if (r) { 3499 if (r) {
3494 DMERR("%s: dm_pool_get_free_block_count returned %d", 3500 DMERR("%s: dm_pool_get_free_block_count returned %d",
3495 dm_device_name(pool->pool_md), r); 3501 dm_device_name(pool->pool_md), r);
3496 goto err; 3502 goto err;
3497 } 3503 }
3498 3504
3499 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3505 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3500 if (r) { 3506 if (r) {
3501 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3507 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3502 dm_device_name(pool->pool_md), r); 3508 dm_device_name(pool->pool_md), r);
3503 goto err; 3509 goto err;
3504 } 3510 }
3505 3511
3506 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3512 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3507 if (r) { 3513 if (r) {
3508 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3514 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3509 dm_device_name(pool->pool_md), r); 3515 dm_device_name(pool->pool_md), r);
3510 goto err; 3516 goto err;
3511 } 3517 }
3512 3518
3513 DMEMIT("%llu %llu/%llu %llu/%llu ", 3519 DMEMIT("%llu %llu/%llu %llu/%llu ",
3514 (unsigned long long)transaction_id, 3520 (unsigned long long)transaction_id,
3515 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3521 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3516 (unsigned long long)nr_blocks_metadata, 3522 (unsigned long long)nr_blocks_metadata,
3517 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3523 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3518 (unsigned long long)nr_blocks_data); 3524 (unsigned long long)nr_blocks_data);
3519 3525
3520 if (held_root) 3526 if (held_root)
3521 DMEMIT("%llu ", held_root); 3527 DMEMIT("%llu ", held_root);
3522 else 3528 else
3523 DMEMIT("- "); 3529 DMEMIT("- ");
3524 3530
3525 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE) 3531 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3526 DMEMIT("out_of_data_space "); 3532 DMEMIT("out_of_data_space ");
3527 else if (pool->pf.mode == PM_READ_ONLY) 3533 else if (pool->pf.mode == PM_READ_ONLY)
3528 DMEMIT("ro "); 3534 DMEMIT("ro ");
3529 else 3535 else
3530 DMEMIT("rw "); 3536 DMEMIT("rw ");
3531 3537
3532 if (!pool->pf.discard_enabled) 3538 if (!pool->pf.discard_enabled)
3533 DMEMIT("ignore_discard "); 3539 DMEMIT("ignore_discard ");
3534 else if (pool->pf.discard_passdown) 3540 else if (pool->pf.discard_passdown)
3535 DMEMIT("discard_passdown "); 3541 DMEMIT("discard_passdown ");
3536 else 3542 else
3537 DMEMIT("no_discard_passdown "); 3543 DMEMIT("no_discard_passdown ");
3538 3544
3539 if (pool->pf.error_if_no_space) 3545 if (pool->pf.error_if_no_space)
3540 DMEMIT("error_if_no_space "); 3546 DMEMIT("error_if_no_space ");
3541 else 3547 else
3542 DMEMIT("queue_if_no_space "); 3548 DMEMIT("queue_if_no_space ");
3543 3549
3544 break; 3550 break;
3545 3551
3546 case STATUSTYPE_TABLE: 3552 case STATUSTYPE_TABLE:
3547 DMEMIT("%s %s %lu %llu ", 3553 DMEMIT("%s %s %lu %llu ",
3548 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 3554 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3549 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 3555 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3550 (unsigned long)pool->sectors_per_block, 3556 (unsigned long)pool->sectors_per_block,
3551 (unsigned long long)pt->low_water_blocks); 3557 (unsigned long long)pt->low_water_blocks);
3552 emit_flags(&pt->requested_pf, result, sz, maxlen); 3558 emit_flags(&pt->requested_pf, result, sz, maxlen);
3553 break; 3559 break;
3554 } 3560 }
3555 return; 3561 return;
3556 3562
3557 err: 3563 err:
3558 DMEMIT("Error"); 3564 DMEMIT("Error");
3559 } 3565 }
3560 3566
3561 static int pool_iterate_devices(struct dm_target *ti, 3567 static int pool_iterate_devices(struct dm_target *ti,
3562 iterate_devices_callout_fn fn, void *data) 3568 iterate_devices_callout_fn fn, void *data)
3563 { 3569 {
3564 struct pool_c *pt = ti->private; 3570 struct pool_c *pt = ti->private;
3565 3571
3566 return fn(ti, pt->data_dev, 0, ti->len, data); 3572 return fn(ti, pt->data_dev, 0, ti->len, data);
3567 } 3573 }
3568 3574
3569 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 3575 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3570 struct bio_vec *biovec, int max_size) 3576 struct bio_vec *biovec, int max_size)
3571 { 3577 {
3572 struct pool_c *pt = ti->private; 3578 struct pool_c *pt = ti->private;
3573 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 3579 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3574 3580
3575 if (!q->merge_bvec_fn) 3581 if (!q->merge_bvec_fn)
3576 return max_size; 3582 return max_size;
3577 3583
3578 bvm->bi_bdev = pt->data_dev->bdev; 3584 bvm->bi_bdev = pt->data_dev->bdev;
3579 3585
3580 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 3586 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3581 } 3587 }
3582 3588
3583 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits) 3589 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3584 { 3590 {
3585 struct pool *pool = pt->pool; 3591 struct pool *pool = pt->pool;
3586 struct queue_limits *data_limits; 3592 struct queue_limits *data_limits;
3587 3593
3588 limits->max_discard_sectors = pool->sectors_per_block; 3594 limits->max_discard_sectors = pool->sectors_per_block;
3589 3595
3590 /* 3596 /*
3591 * discard_granularity is just a hint, and not enforced. 3597 * discard_granularity is just a hint, and not enforced.
3592 */ 3598 */
3593 if (pt->adjusted_pf.discard_passdown) { 3599 if (pt->adjusted_pf.discard_passdown) {
3594 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits; 3600 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3595 limits->discard_granularity = max(data_limits->discard_granularity, 3601 limits->discard_granularity = max(data_limits->discard_granularity,
3596 pool->sectors_per_block << SECTOR_SHIFT); 3602 pool->sectors_per_block << SECTOR_SHIFT);
3597 } else 3603 } else
3598 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 3604 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3599 } 3605 }
3600 3606
3601 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 3607 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3602 { 3608 {
3603 struct pool_c *pt = ti->private; 3609 struct pool_c *pt = ti->private;
3604 struct pool *pool = pt->pool; 3610 struct pool *pool = pt->pool;
3605 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3611 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3606 3612
3607 /* 3613 /*
3608 * If max_sectors is smaller than pool->sectors_per_block adjust it 3614 * If max_sectors is smaller than pool->sectors_per_block adjust it
3609 * to the highest possible power-of-2 factor of pool->sectors_per_block. 3615 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3610 * This is especially beneficial when the pool's data device is a RAID 3616 * This is especially beneficial when the pool's data device is a RAID
3611 * device that has a full stripe width that matches pool->sectors_per_block 3617 * device that has a full stripe width that matches pool->sectors_per_block
3612 * -- because even though partial RAID stripe-sized IOs will be issued to a 3618 * -- because even though partial RAID stripe-sized IOs will be issued to a
3613 * single RAID stripe; when aggregated they will end on a full RAID stripe 3619 * single RAID stripe; when aggregated they will end on a full RAID stripe
3614 * boundary.. which avoids additional partial RAID stripe writes cascading 3620 * boundary.. which avoids additional partial RAID stripe writes cascading
3615 */ 3621 */
3616 if (limits->max_sectors < pool->sectors_per_block) { 3622 if (limits->max_sectors < pool->sectors_per_block) {
3617 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 3623 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3618 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 3624 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3619 limits->max_sectors--; 3625 limits->max_sectors--;
3620 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 3626 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3621 } 3627 }
3622 } 3628 }
3623 3629
3624 /* 3630 /*
3625 * If the system-determined stacked limits are compatible with the 3631 * If the system-determined stacked limits are compatible with the
3626 * pool's blocksize (io_opt is a factor) do not override them. 3632 * pool's blocksize (io_opt is a factor) do not override them.
3627 */ 3633 */
3628 if (io_opt_sectors < pool->sectors_per_block || 3634 if (io_opt_sectors < pool->sectors_per_block ||
3629 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 3635 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3630 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 3636 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3631 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 3637 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3632 else 3638 else
3633 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 3639 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3634 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 3640 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3635 } 3641 }
3636 3642
3637 /* 3643 /*
3638 * pt->adjusted_pf is a staging area for the actual features to use. 3644 * pt->adjusted_pf is a staging area for the actual features to use.
3639 * They get transferred to the live pool in bind_control_target() 3645 * They get transferred to the live pool in bind_control_target()
3640 * called from pool_preresume(). 3646 * called from pool_preresume().
3641 */ 3647 */
3642 if (!pt->adjusted_pf.discard_enabled) { 3648 if (!pt->adjusted_pf.discard_enabled) {
3643 /* 3649 /*
3644 * Must explicitly disallow stacking discard limits otherwise the 3650 * Must explicitly disallow stacking discard limits otherwise the
3645 * block layer will stack them if pool's data device has support. 3651 * block layer will stack them if pool's data device has support.
3646 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 3652 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3647 * user to see that, so make sure to set all discard limits to 0. 3653 * user to see that, so make sure to set all discard limits to 0.
3648 */ 3654 */
3649 limits->discard_granularity = 0; 3655 limits->discard_granularity = 0;
3650 return; 3656 return;
3651 } 3657 }
3652 3658
3653 disable_passdown_if_not_supported(pt); 3659 disable_passdown_if_not_supported(pt);
3654 3660
3655 set_discard_limits(pt, limits); 3661 set_discard_limits(pt, limits);
3656 } 3662 }
3657 3663
3658 static struct target_type pool_target = { 3664 static struct target_type pool_target = {
3659 .name = "thin-pool", 3665 .name = "thin-pool",
3660 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 3666 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3661 DM_TARGET_IMMUTABLE, 3667 DM_TARGET_IMMUTABLE,
3662 .version = {1, 14, 0}, 3668 .version = {1, 14, 0},
3663 .module = THIS_MODULE, 3669 .module = THIS_MODULE,
3664 .ctr = pool_ctr, 3670 .ctr = pool_ctr,
3665 .dtr = pool_dtr, 3671 .dtr = pool_dtr,
3666 .map = pool_map, 3672 .map = pool_map,
3667 .presuspend = pool_presuspend, 3673 .presuspend = pool_presuspend,
3668 .presuspend_undo = pool_presuspend_undo, 3674 .presuspend_undo = pool_presuspend_undo,
3669 .postsuspend = pool_postsuspend, 3675 .postsuspend = pool_postsuspend,
3670 .preresume = pool_preresume, 3676 .preresume = pool_preresume,
3671 .resume = pool_resume, 3677 .resume = pool_resume,
3672 .message = pool_message, 3678 .message = pool_message,
3673 .status = pool_status, 3679 .status = pool_status,
3674 .merge = pool_merge, 3680 .merge = pool_merge,
3675 .iterate_devices = pool_iterate_devices, 3681 .iterate_devices = pool_iterate_devices,
3676 .io_hints = pool_io_hints, 3682 .io_hints = pool_io_hints,
3677 }; 3683 };
3678 3684
3679 /*---------------------------------------------------------------- 3685 /*----------------------------------------------------------------
3680 * Thin target methods 3686 * Thin target methods
3681 *--------------------------------------------------------------*/ 3687 *--------------------------------------------------------------*/
3682 static void thin_get(struct thin_c *tc) 3688 static void thin_get(struct thin_c *tc)
3683 { 3689 {
3684 atomic_inc(&tc->refcount); 3690 atomic_inc(&tc->refcount);
3685 } 3691 }
3686 3692
3687 static void thin_put(struct thin_c *tc) 3693 static void thin_put(struct thin_c *tc)
3688 { 3694 {
3689 if (atomic_dec_and_test(&tc->refcount)) 3695 if (atomic_dec_and_test(&tc->refcount))
3690 complete(&tc->can_destroy); 3696 complete(&tc->can_destroy);
3691 } 3697 }
3692 3698
3693 static void thin_dtr(struct dm_target *ti) 3699 static void thin_dtr(struct dm_target *ti)
3694 { 3700 {
3695 struct thin_c *tc = ti->private; 3701 struct thin_c *tc = ti->private;
3696 unsigned long flags; 3702 unsigned long flags;
3697 3703
3698 spin_lock_irqsave(&tc->pool->lock, flags); 3704 spin_lock_irqsave(&tc->pool->lock, flags);
3699 list_del_rcu(&tc->list); 3705 list_del_rcu(&tc->list);
3700 spin_unlock_irqrestore(&tc->pool->lock, flags); 3706 spin_unlock_irqrestore(&tc->pool->lock, flags);
3701 synchronize_rcu(); 3707 synchronize_rcu();
3702 3708
3703 thin_put(tc); 3709 thin_put(tc);
3704 wait_for_completion(&tc->can_destroy); 3710 wait_for_completion(&tc->can_destroy);
3705 3711
3706 mutex_lock(&dm_thin_pool_table.mutex); 3712 mutex_lock(&dm_thin_pool_table.mutex);
3707 3713
3708 __pool_dec(tc->pool); 3714 __pool_dec(tc->pool);
3709 dm_pool_close_thin_device(tc->td); 3715 dm_pool_close_thin_device(tc->td);
3710 dm_put_device(ti, tc->pool_dev); 3716 dm_put_device(ti, tc->pool_dev);
3711 if (tc->origin_dev) 3717 if (tc->origin_dev)
3712 dm_put_device(ti, tc->origin_dev); 3718 dm_put_device(ti, tc->origin_dev);
3713 kfree(tc); 3719 kfree(tc);
3714 3720
3715 mutex_unlock(&dm_thin_pool_table.mutex); 3721 mutex_unlock(&dm_thin_pool_table.mutex);
3716 } 3722 }
3717 3723
3718 /* 3724 /*
3719 * Thin target parameters: 3725 * Thin target parameters:
3720 * 3726 *
3721 * <pool_dev> <dev_id> [origin_dev] 3727 * <pool_dev> <dev_id> [origin_dev]
3722 * 3728 *
3723 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 3729 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3724 * dev_id: the internal device identifier 3730 * dev_id: the internal device identifier
3725 * origin_dev: a device external to the pool that should act as the origin 3731 * origin_dev: a device external to the pool that should act as the origin
3726 * 3732 *
3727 * If the pool device has discards disabled, they get disabled for the thin 3733 * If the pool device has discards disabled, they get disabled for the thin
3728 * device as well. 3734 * device as well.
3729 */ 3735 */
3730 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 3736 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3731 { 3737 {
3732 int r; 3738 int r;
3733 struct thin_c *tc; 3739 struct thin_c *tc;
3734 struct dm_dev *pool_dev, *origin_dev; 3740 struct dm_dev *pool_dev, *origin_dev;
3735 struct mapped_device *pool_md; 3741 struct mapped_device *pool_md;
3736 unsigned long flags; 3742 unsigned long flags;
3737 3743
3738 mutex_lock(&dm_thin_pool_table.mutex); 3744 mutex_lock(&dm_thin_pool_table.mutex);
3739 3745
3740 if (argc != 2 && argc != 3) { 3746 if (argc != 2 && argc != 3) {
3741 ti->error = "Invalid argument count"; 3747 ti->error = "Invalid argument count";
3742 r = -EINVAL; 3748 r = -EINVAL;
3743 goto out_unlock; 3749 goto out_unlock;
3744 } 3750 }
3745 3751
3746 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 3752 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3747 if (!tc) { 3753 if (!tc) {
3748 ti->error = "Out of memory"; 3754 ti->error = "Out of memory";
3749 r = -ENOMEM; 3755 r = -ENOMEM;
3750 goto out_unlock; 3756 goto out_unlock;
3751 } 3757 }
3752 tc->thin_md = dm_table_get_md(ti->table); 3758 tc->thin_md = dm_table_get_md(ti->table);
3753 spin_lock_init(&tc->lock); 3759 spin_lock_init(&tc->lock);
3754 INIT_LIST_HEAD(&tc->deferred_cells); 3760 INIT_LIST_HEAD(&tc->deferred_cells);
3755 bio_list_init(&tc->deferred_bio_list); 3761 bio_list_init(&tc->deferred_bio_list);
3756 bio_list_init(&tc->retry_on_resume_list); 3762 bio_list_init(&tc->retry_on_resume_list);
3757 tc->sort_bio_list = RB_ROOT; 3763 tc->sort_bio_list = RB_ROOT;
3758 3764
3759 if (argc == 3) { 3765 if (argc == 3) {
3760 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 3766 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3761 if (r) { 3767 if (r) {
3762 ti->error = "Error opening origin device"; 3768 ti->error = "Error opening origin device";
3763 goto bad_origin_dev; 3769 goto bad_origin_dev;
3764 } 3770 }
3765 tc->origin_dev = origin_dev; 3771 tc->origin_dev = origin_dev;
3766 } 3772 }
3767 3773
3768 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 3774 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3769 if (r) { 3775 if (r) {
3770 ti->error = "Error opening pool device"; 3776 ti->error = "Error opening pool device";
3771 goto bad_pool_dev; 3777 goto bad_pool_dev;
3772 } 3778 }
3773 tc->pool_dev = pool_dev; 3779 tc->pool_dev = pool_dev;
3774 3780
3775 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 3781 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3776 ti->error = "Invalid device id"; 3782 ti->error = "Invalid device id";
3777 r = -EINVAL; 3783 r = -EINVAL;
3778 goto bad_common; 3784 goto bad_common;
3779 } 3785 }
3780 3786
3781 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 3787 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3782 if (!pool_md) { 3788 if (!pool_md) {
3783 ti->error = "Couldn't get pool mapped device"; 3789 ti->error = "Couldn't get pool mapped device";
3784 r = -EINVAL; 3790 r = -EINVAL;
3785 goto bad_common; 3791 goto bad_common;
3786 } 3792 }
3787 3793
3788 tc->pool = __pool_table_lookup(pool_md); 3794 tc->pool = __pool_table_lookup(pool_md);
3789 if (!tc->pool) { 3795 if (!tc->pool) {
3790 ti->error = "Couldn't find pool object"; 3796 ti->error = "Couldn't find pool object";
3791 r = -EINVAL; 3797 r = -EINVAL;
3792 goto bad_pool_lookup; 3798 goto bad_pool_lookup;
3793 } 3799 }
3794 __pool_inc(tc->pool); 3800 __pool_inc(tc->pool);
3795 3801
3796 if (get_pool_mode(tc->pool) == PM_FAIL) { 3802 if (get_pool_mode(tc->pool) == PM_FAIL) {
3797 ti->error = "Couldn't open thin device, Pool is in fail mode"; 3803 ti->error = "Couldn't open thin device, Pool is in fail mode";
3798 r = -EINVAL; 3804 r = -EINVAL;
3799 goto bad_pool; 3805 goto bad_pool;
3800 } 3806 }
3801 3807
3802 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 3808 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3803 if (r) { 3809 if (r) {
3804 ti->error = "Couldn't open thin internal device"; 3810 ti->error = "Couldn't open thin internal device";
3805 goto bad_pool; 3811 goto bad_pool;
3806 } 3812 }
3807 3813
3808 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 3814 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3809 if (r) 3815 if (r)
3810 goto bad; 3816 goto bad;
3811 3817
3812 ti->num_flush_bios = 1; 3818 ti->num_flush_bios = 1;
3813 ti->flush_supported = true; 3819 ti->flush_supported = true;
3814 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook); 3820 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3815 3821
3816 /* In case the pool supports discards, pass them on. */ 3822 /* In case the pool supports discards, pass them on. */
3817 ti->discard_zeroes_data_unsupported = true; 3823 ti->discard_zeroes_data_unsupported = true;
3818 if (tc->pool->pf.discard_enabled) { 3824 if (tc->pool->pf.discard_enabled) {
3819 ti->discards_supported = true; 3825 ti->discards_supported = true;
3820 ti->num_discard_bios = 1; 3826 ti->num_discard_bios = 1;
3821 /* Discard bios must be split on a block boundary */ 3827 /* Discard bios must be split on a block boundary */
3822 ti->split_discard_bios = true; 3828 ti->split_discard_bios = true;
3823 } 3829 }
3824 3830
3825 mutex_unlock(&dm_thin_pool_table.mutex); 3831 mutex_unlock(&dm_thin_pool_table.mutex);
3826 3832
3827 spin_lock_irqsave(&tc->pool->lock, flags); 3833 spin_lock_irqsave(&tc->pool->lock, flags);
3828 if (tc->pool->suspended) { 3834 if (tc->pool->suspended) {
3829 spin_unlock_irqrestore(&tc->pool->lock, flags); 3835 spin_unlock_irqrestore(&tc->pool->lock, flags);
3830 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 3836 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
3831 ti->error = "Unable to activate thin device while pool is suspended"; 3837 ti->error = "Unable to activate thin device while pool is suspended";
3832 r = -EINVAL; 3838 r = -EINVAL;
3833 goto bad; 3839 goto bad;
3834 } 3840 }
3835 atomic_set(&tc->refcount, 1); 3841 atomic_set(&tc->refcount, 1);
3836 init_completion(&tc->can_destroy); 3842 init_completion(&tc->can_destroy);
3837 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 3843 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3838 spin_unlock_irqrestore(&tc->pool->lock, flags); 3844 spin_unlock_irqrestore(&tc->pool->lock, flags);
3839 /* 3845 /*
3840 * This synchronize_rcu() call is needed here otherwise we risk a 3846 * This synchronize_rcu() call is needed here otherwise we risk a
3841 * wake_worker() call finding no bios to process (because the newly 3847 * wake_worker() call finding no bios to process (because the newly
3842 * added tc isn't yet visible). So this reduces latency since we 3848 * added tc isn't yet visible). So this reduces latency since we
3843 * aren't then dependent on the periodic commit to wake_worker(). 3849 * aren't then dependent on the periodic commit to wake_worker().
3844 */ 3850 */
3845 synchronize_rcu(); 3851 synchronize_rcu();
3846 3852
3847 dm_put(pool_md); 3853 dm_put(pool_md);
3848 3854
3849 return 0; 3855 return 0;
3850 3856
3851 bad: 3857 bad:
3852 dm_pool_close_thin_device(tc->td); 3858 dm_pool_close_thin_device(tc->td);
3853 bad_pool: 3859 bad_pool:
3854 __pool_dec(tc->pool); 3860 __pool_dec(tc->pool);
3855 bad_pool_lookup: 3861 bad_pool_lookup:
3856 dm_put(pool_md); 3862 dm_put(pool_md);
3857 bad_common: 3863 bad_common:
3858 dm_put_device(ti, tc->pool_dev); 3864 dm_put_device(ti, tc->pool_dev);
3859 bad_pool_dev: 3865 bad_pool_dev:
3860 if (tc->origin_dev) 3866 if (tc->origin_dev)
3861 dm_put_device(ti, tc->origin_dev); 3867 dm_put_device(ti, tc->origin_dev);
3862 bad_origin_dev: 3868 bad_origin_dev:
3863 kfree(tc); 3869 kfree(tc);
3864 out_unlock: 3870 out_unlock:
3865 mutex_unlock(&dm_thin_pool_table.mutex); 3871 mutex_unlock(&dm_thin_pool_table.mutex);
3866 3872
3867 return r; 3873 return r;
3868 } 3874 }
3869 3875
3870 static int thin_map(struct dm_target *ti, struct bio *bio) 3876 static int thin_map(struct dm_target *ti, struct bio *bio)
3871 { 3877 {
3872 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 3878 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3873 3879
3874 return thin_bio_map(ti, bio); 3880 return thin_bio_map(ti, bio);
3875 } 3881 }
3876 3882
3877 static int thin_endio(struct dm_target *ti, struct bio *bio, int err) 3883 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3878 { 3884 {
3879 unsigned long flags; 3885 unsigned long flags;
3880 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 3886 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3881 struct list_head work; 3887 struct list_head work;
3882 struct dm_thin_new_mapping *m, *tmp; 3888 struct dm_thin_new_mapping *m, *tmp;
3883 struct pool *pool = h->tc->pool; 3889 struct pool *pool = h->tc->pool;
3884 3890
3885 if (h->shared_read_entry) { 3891 if (h->shared_read_entry) {
3886 INIT_LIST_HEAD(&work); 3892 INIT_LIST_HEAD(&work);
3887 dm_deferred_entry_dec(h->shared_read_entry, &work); 3893 dm_deferred_entry_dec(h->shared_read_entry, &work);
3888 3894
3889 spin_lock_irqsave(&pool->lock, flags); 3895 spin_lock_irqsave(&pool->lock, flags);
3890 list_for_each_entry_safe(m, tmp, &work, list) { 3896 list_for_each_entry_safe(m, tmp, &work, list) {
3891 list_del(&m->list); 3897 list_del(&m->list);
3892 __complete_mapping_preparation(m); 3898 __complete_mapping_preparation(m);
3893 } 3899 }
3894 spin_unlock_irqrestore(&pool->lock, flags); 3900 spin_unlock_irqrestore(&pool->lock, flags);
3895 } 3901 }
3896 3902
3897 if (h->all_io_entry) { 3903 if (h->all_io_entry) {
3898 INIT_LIST_HEAD(&work); 3904 INIT_LIST_HEAD(&work);
3899 dm_deferred_entry_dec(h->all_io_entry, &work); 3905 dm_deferred_entry_dec(h->all_io_entry, &work);
3900 if (!list_empty(&work)) { 3906 if (!list_empty(&work)) {
3901 spin_lock_irqsave(&pool->lock, flags); 3907 spin_lock_irqsave(&pool->lock, flags);
3902 list_for_each_entry_safe(m, tmp, &work, list) 3908 list_for_each_entry_safe(m, tmp, &work, list)
3903 list_add_tail(&m->list, &pool->prepared_discards); 3909 list_add_tail(&m->list, &pool->prepared_discards);
3904 spin_unlock_irqrestore(&pool->lock, flags); 3910 spin_unlock_irqrestore(&pool->lock, flags);
3905 wake_worker(pool); 3911 wake_worker(pool);
3906 } 3912 }
3907 } 3913 }
3908 3914
3909 return 0; 3915 return 0;
3910 } 3916 }
3911 3917
3912 static void thin_presuspend(struct dm_target *ti) 3918 static void thin_presuspend(struct dm_target *ti)
3913 { 3919 {
3914 struct thin_c *tc = ti->private; 3920 struct thin_c *tc = ti->private;
3915 3921
3916 if (dm_noflush_suspending(ti)) 3922 if (dm_noflush_suspending(ti))
3917 noflush_work(tc, do_noflush_start); 3923 noflush_work(tc, do_noflush_start);
3918 } 3924 }
3919 3925
3920 static void thin_postsuspend(struct dm_target *ti) 3926 static void thin_postsuspend(struct dm_target *ti)
3921 { 3927 {
3922 struct thin_c *tc = ti->private; 3928 struct thin_c *tc = ti->private;
3923 3929
3924 /* 3930 /*
3925 * The dm_noflush_suspending flag has been cleared by now, so 3931 * The dm_noflush_suspending flag has been cleared by now, so
3926 * unfortunately we must always run this. 3932 * unfortunately we must always run this.
3927 */ 3933 */
3928 noflush_work(tc, do_noflush_stop); 3934 noflush_work(tc, do_noflush_stop);
3929 } 3935 }
3930 3936
3931 static int thin_preresume(struct dm_target *ti) 3937 static int thin_preresume(struct dm_target *ti)
3932 { 3938 {
3933 struct thin_c *tc = ti->private; 3939 struct thin_c *tc = ti->private;
3934 3940
3935 if (tc->origin_dev) 3941 if (tc->origin_dev)
3936 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 3942 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3937 3943
3938 return 0; 3944 return 0;
3939 } 3945 }
3940 3946
3941 /* 3947 /*
3942 * <nr mapped sectors> <highest mapped sector> 3948 * <nr mapped sectors> <highest mapped sector>
3943 */ 3949 */
3944 static void thin_status(struct dm_target *ti, status_type_t type, 3950 static void thin_status(struct dm_target *ti, status_type_t type,
3945 unsigned status_flags, char *result, unsigned maxlen) 3951 unsigned status_flags, char *result, unsigned maxlen)
3946 { 3952 {
3947 int r; 3953 int r;
3948 ssize_t sz = 0; 3954 ssize_t sz = 0;
3949 dm_block_t mapped, highest; 3955 dm_block_t mapped, highest;
3950 char buf[BDEVNAME_SIZE]; 3956 char buf[BDEVNAME_SIZE];
3951 struct thin_c *tc = ti->private; 3957 struct thin_c *tc = ti->private;
3952 3958
3953 if (get_pool_mode(tc->pool) == PM_FAIL) { 3959 if (get_pool_mode(tc->pool) == PM_FAIL) {
3954 DMEMIT("Fail"); 3960 DMEMIT("Fail");
3955 return; 3961 return;
3956 } 3962 }
3957 3963
3958 if (!tc->td) 3964 if (!tc->td)
3959 DMEMIT("-"); 3965 DMEMIT("-");
3960 else { 3966 else {
3961 switch (type) { 3967 switch (type) {
3962 case STATUSTYPE_INFO: 3968 case STATUSTYPE_INFO:
3963 r = dm_thin_get_mapped_count(tc->td, &mapped); 3969 r = dm_thin_get_mapped_count(tc->td, &mapped);
3964 if (r) { 3970 if (r) {
3965 DMERR("dm_thin_get_mapped_count returned %d", r); 3971 DMERR("dm_thin_get_mapped_count returned %d", r);
3966 goto err; 3972 goto err;
3967 } 3973 }
3968 3974
3969 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 3975 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3970 if (r < 0) { 3976 if (r < 0) {
3971 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 3977 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3972 goto err; 3978 goto err;
3973 } 3979 }
3974 3980
3975 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 3981 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3976 if (r) 3982 if (r)
3977 DMEMIT("%llu", ((highest + 1) * 3983 DMEMIT("%llu", ((highest + 1) *
3978 tc->pool->sectors_per_block) - 1); 3984 tc->pool->sectors_per_block) - 1);
3979 else 3985 else
3980 DMEMIT("-"); 3986 DMEMIT("-");
3981 break; 3987 break;
3982 3988
3983 case STATUSTYPE_TABLE: 3989 case STATUSTYPE_TABLE:
3984 DMEMIT("%s %lu", 3990 DMEMIT("%s %lu",
3985 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 3991 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3986 (unsigned long) tc->dev_id); 3992 (unsigned long) tc->dev_id);
3987 if (tc->origin_dev) 3993 if (tc->origin_dev)
3988 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 3994 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3989 break; 3995 break;
3990 } 3996 }
3991 } 3997 }
3992 3998
3993 return; 3999 return;
3994 4000
3995 err: 4001 err:
3996 DMEMIT("Error"); 4002 DMEMIT("Error");
3997 } 4003 }
3998 4004
3999 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 4005 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
4000 struct bio_vec *biovec, int max_size) 4006 struct bio_vec *biovec, int max_size)
4001 { 4007 {
4002 struct thin_c *tc = ti->private; 4008 struct thin_c *tc = ti->private;
4003 struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev); 4009 struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
4004 4010
4005 if (!q->merge_bvec_fn) 4011 if (!q->merge_bvec_fn)
4006 return max_size; 4012 return max_size;
4007 4013
4008 bvm->bi_bdev = tc->pool_dev->bdev; 4014 bvm->bi_bdev = tc->pool_dev->bdev;
4009 bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector); 4015 bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
4010 4016
4011 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 4017 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
4012 } 4018 }
4013 4019
4014 static int thin_iterate_devices(struct dm_target *ti, 4020 static int thin_iterate_devices(struct dm_target *ti,
4015 iterate_devices_callout_fn fn, void *data) 4021 iterate_devices_callout_fn fn, void *data)
4016 { 4022 {
4017 sector_t blocks; 4023 sector_t blocks;
4018 struct thin_c *tc = ti->private; 4024 struct thin_c *tc = ti->private;
4019 struct pool *pool = tc->pool; 4025 struct pool *pool = tc->pool;
4020 4026
4021 /* 4027 /*
4022 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4028 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4023 * we follow a more convoluted path through to the pool's target. 4029 * we follow a more convoluted path through to the pool's target.
4024 */ 4030 */
4025 if (!pool->ti) 4031 if (!pool->ti)
4026 return 0; /* nothing is bound */ 4032 return 0; /* nothing is bound */
4027 4033
4028 blocks = pool->ti->len; 4034 blocks = pool->ti->len;
4029 (void) sector_div(blocks, pool->sectors_per_block); 4035 (void) sector_div(blocks, pool->sectors_per_block);
4030 if (blocks) 4036 if (blocks)
4031 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4037 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4032 4038
4033 return 0; 4039 return 0;
4034 } 4040 }
4035 4041
4036 static struct target_type thin_target = { 4042 static struct target_type thin_target = {
4037 .name = "thin", 4043 .name = "thin",
4038 .version = {1, 14, 0}, 4044 .version = {1, 14, 0},
4039 .module = THIS_MODULE, 4045 .module = THIS_MODULE,
4040 .ctr = thin_ctr, 4046 .ctr = thin_ctr,
4041 .dtr = thin_dtr, 4047 .dtr = thin_dtr,
4042 .map = thin_map, 4048 .map = thin_map,
4043 .end_io = thin_endio, 4049 .end_io = thin_endio,
4044 .preresume = thin_preresume, 4050 .preresume = thin_preresume,
4045 .presuspend = thin_presuspend, 4051 .presuspend = thin_presuspend,
4046 .postsuspend = thin_postsuspend, 4052 .postsuspend = thin_postsuspend,
4047 .status = thin_status, 4053 .status = thin_status,
4048 .merge = thin_merge, 4054 .merge = thin_merge,
4049 .iterate_devices = thin_iterate_devices, 4055 .iterate_devices = thin_iterate_devices,
4050 }; 4056 };
4051 4057
4052 /*----------------------------------------------------------------*/ 4058 /*----------------------------------------------------------------*/
4053 4059
4054 static int __init dm_thin_init(void) 4060 static int __init dm_thin_init(void)
4055 { 4061 {
4056 int r; 4062 int r;
4057 4063
4058 pool_table_init(); 4064 pool_table_init();
4059 4065
4060 r = dm_register_target(&thin_target); 4066 r = dm_register_target(&thin_target);
4061 if (r) 4067 if (r)
4062 return r; 4068 return r;
4063 4069
4064 r = dm_register_target(&pool_target); 4070 r = dm_register_target(&pool_target);
4065 if (r) 4071 if (r)
4066 goto bad_pool_target; 4072 goto bad_pool_target;
4067 4073
4068 r = -ENOMEM; 4074 r = -ENOMEM;
4069 4075
4070 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4076 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4071 if (!_new_mapping_cache) 4077 if (!_new_mapping_cache)
4072 goto bad_new_mapping_cache; 4078 goto bad_new_mapping_cache;
4073 4079
4074 return 0; 4080 return 0;
4075 4081
4076 bad_new_mapping_cache: 4082 bad_new_mapping_cache:
4077 dm_unregister_target(&pool_target); 4083 dm_unregister_target(&pool_target);
4078 bad_pool_target: 4084 bad_pool_target:
4079 dm_unregister_target(&thin_target); 4085 dm_unregister_target(&thin_target);
4080 4086
4081 return r; 4087 return r;
4082 } 4088 }
4083 4089
4084 static void dm_thin_exit(void) 4090 static void dm_thin_exit(void)
4085 { 4091 {
4086 dm_unregister_target(&thin_target); 4092 dm_unregister_target(&thin_target);
4087 dm_unregister_target(&pool_target); 4093 dm_unregister_target(&pool_target);
4088 4094
4089 kmem_cache_destroy(_new_mapping_cache); 4095 kmem_cache_destroy(_new_mapping_cache);
4090 } 4096 }
4091 4097
4092 module_init(dm_thin_init); 4098 module_init(dm_thin_init);
4093 module_exit(dm_thin_exit); 4099 module_exit(dm_thin_exit);
4094 4100
4095 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4101 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4096 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4102 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4097 4103
4098 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4104 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4099 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4105 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4100 MODULE_LICENSE("GPL"); 4106 MODULE_LICENSE("GPL");
4101 4107