Commit 598af051a79d05b751fe793f1fe09fcf74763e02

Authored by Roland McGrath
Committed by Linus Torvalds
1 parent 54a0151041

asmlinkage_protect sys_io_getevents

Use asmlinkage_protect in sys_io_getevents, because GCC for i386 with
CONFIG_FRAME_POINTER=n can decide to clobber an argument word on the
stack, i.e. the user struct pt_regs.  Here the problem is not a tail
call, but just the compiler's use of the stack when it inlines and
optimizes the body of the called function.  This seems to avoid it.

Signed-off-by: Roland McGrath <roland@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

Showing 1 changed file with 1 additions and 0 deletions Inline Diff

1 /* 1 /*
2 * An async IO implementation for Linux 2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org> 3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 * 4 *
5 * Implements an efficient asynchronous io interface. 5 * Implements an efficient asynchronous io interface.
6 * 6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * 8 *
9 * See ../COPYING for licensing terms. 9 * See ../COPYING for licensing terms.
10 */ 10 */
11 #include <linux/kernel.h> 11 #include <linux/kernel.h>
12 #include <linux/init.h> 12 #include <linux/init.h>
13 #include <linux/errno.h> 13 #include <linux/errno.h>
14 #include <linux/time.h> 14 #include <linux/time.h>
15 #include <linux/aio_abi.h> 15 #include <linux/aio_abi.h>
16 #include <linux/module.h> 16 #include <linux/module.h>
17 #include <linux/syscalls.h> 17 #include <linux/syscalls.h>
18 #include <linux/uio.h> 18 #include <linux/uio.h>
19 19
20 #define DEBUG 0 20 #define DEBUG 0
21 21
22 #include <linux/sched.h> 22 #include <linux/sched.h>
23 #include <linux/fs.h> 23 #include <linux/fs.h>
24 #include <linux/file.h> 24 #include <linux/file.h>
25 #include <linux/mm.h> 25 #include <linux/mm.h>
26 #include <linux/mman.h> 26 #include <linux/mman.h>
27 #include <linux/slab.h> 27 #include <linux/slab.h>
28 #include <linux/timer.h> 28 #include <linux/timer.h>
29 #include <linux/aio.h> 29 #include <linux/aio.h>
30 #include <linux/highmem.h> 30 #include <linux/highmem.h>
31 #include <linux/workqueue.h> 31 #include <linux/workqueue.h>
32 #include <linux/security.h> 32 #include <linux/security.h>
33 #include <linux/eventfd.h> 33 #include <linux/eventfd.h>
34 34
35 #include <asm/kmap_types.h> 35 #include <asm/kmap_types.h>
36 #include <asm/uaccess.h> 36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h> 37 #include <asm/mmu_context.h>
38 38
39 #if DEBUG > 1 39 #if DEBUG > 1
40 #define dprintk printk 40 #define dprintk printk
41 #else 41 #else
42 #define dprintk(x...) do { ; } while (0) 42 #define dprintk(x...) do { ; } while (0)
43 #endif 43 #endif
44 44
45 /*------ sysctl variables----*/ 45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock); 46 static DEFINE_SPINLOCK(aio_nr_lock);
47 unsigned long aio_nr; /* current system wide number of aio requests */ 47 unsigned long aio_nr; /* current system wide number of aio requests */
48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/ 49 /*----end sysctl variables---*/
50 50
51 static struct kmem_cache *kiocb_cachep; 51 static struct kmem_cache *kiocb_cachep;
52 static struct kmem_cache *kioctx_cachep; 52 static struct kmem_cache *kioctx_cachep;
53 53
54 static struct workqueue_struct *aio_wq; 54 static struct workqueue_struct *aio_wq;
55 55
56 /* Used for rare fput completion. */ 56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct *); 57 static void aio_fput_routine(struct work_struct *);
58 static DECLARE_WORK(fput_work, aio_fput_routine); 58 static DECLARE_WORK(fput_work, aio_fput_routine);
59 59
60 static DEFINE_SPINLOCK(fput_lock); 60 static DEFINE_SPINLOCK(fput_lock);
61 static LIST_HEAD(fput_head); 61 static LIST_HEAD(fput_head);
62 62
63 static void aio_kick_handler(struct work_struct *); 63 static void aio_kick_handler(struct work_struct *);
64 static void aio_queue_work(struct kioctx *); 64 static void aio_queue_work(struct kioctx *);
65 65
66 /* aio_setup 66 /* aio_setup
67 * Creates the slab caches used by the aio routines, panic on 67 * Creates the slab caches used by the aio routines, panic on
68 * failure as this is done early during the boot sequence. 68 * failure as this is done early during the boot sequence.
69 */ 69 */
70 static int __init aio_setup(void) 70 static int __init aio_setup(void)
71 { 71 {
72 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 72 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
73 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 73 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
74 74
75 aio_wq = create_workqueue("aio"); 75 aio_wq = create_workqueue("aio");
76 76
77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); 77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
78 78
79 return 0; 79 return 0;
80 } 80 }
81 81
82 static void aio_free_ring(struct kioctx *ctx) 82 static void aio_free_ring(struct kioctx *ctx)
83 { 83 {
84 struct aio_ring_info *info = &ctx->ring_info; 84 struct aio_ring_info *info = &ctx->ring_info;
85 long i; 85 long i;
86 86
87 for (i=0; i<info->nr_pages; i++) 87 for (i=0; i<info->nr_pages; i++)
88 put_page(info->ring_pages[i]); 88 put_page(info->ring_pages[i]);
89 89
90 if (info->mmap_size) { 90 if (info->mmap_size) {
91 down_write(&ctx->mm->mmap_sem); 91 down_write(&ctx->mm->mmap_sem);
92 do_munmap(ctx->mm, info->mmap_base, info->mmap_size); 92 do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93 up_write(&ctx->mm->mmap_sem); 93 up_write(&ctx->mm->mmap_sem);
94 } 94 }
95 95
96 if (info->ring_pages && info->ring_pages != info->internal_pages) 96 if (info->ring_pages && info->ring_pages != info->internal_pages)
97 kfree(info->ring_pages); 97 kfree(info->ring_pages);
98 info->ring_pages = NULL; 98 info->ring_pages = NULL;
99 info->nr = 0; 99 info->nr = 0;
100 } 100 }
101 101
102 static int aio_setup_ring(struct kioctx *ctx) 102 static int aio_setup_ring(struct kioctx *ctx)
103 { 103 {
104 struct aio_ring *ring; 104 struct aio_ring *ring;
105 struct aio_ring_info *info = &ctx->ring_info; 105 struct aio_ring_info *info = &ctx->ring_info;
106 unsigned nr_events = ctx->max_reqs; 106 unsigned nr_events = ctx->max_reqs;
107 unsigned long size; 107 unsigned long size;
108 int nr_pages; 108 int nr_pages;
109 109
110 /* Compensate for the ring buffer's head/tail overlap entry */ 110 /* Compensate for the ring buffer's head/tail overlap entry */
111 nr_events += 2; /* 1 is required, 2 for good luck */ 111 nr_events += 2; /* 1 is required, 2 for good luck */
112 112
113 size = sizeof(struct aio_ring); 113 size = sizeof(struct aio_ring);
114 size += sizeof(struct io_event) * nr_events; 114 size += sizeof(struct io_event) * nr_events;
115 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 115 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
116 116
117 if (nr_pages < 0) 117 if (nr_pages < 0)
118 return -EINVAL; 118 return -EINVAL;
119 119
120 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 120 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
121 121
122 info->nr = 0; 122 info->nr = 0;
123 info->ring_pages = info->internal_pages; 123 info->ring_pages = info->internal_pages;
124 if (nr_pages > AIO_RING_PAGES) { 124 if (nr_pages > AIO_RING_PAGES) {
125 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 125 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
126 if (!info->ring_pages) 126 if (!info->ring_pages)
127 return -ENOMEM; 127 return -ENOMEM;
128 } 128 }
129 129
130 info->mmap_size = nr_pages * PAGE_SIZE; 130 info->mmap_size = nr_pages * PAGE_SIZE;
131 dprintk("attempting mmap of %lu bytes\n", info->mmap_size); 131 dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
132 down_write(&ctx->mm->mmap_sem); 132 down_write(&ctx->mm->mmap_sem);
133 info->mmap_base = do_mmap(NULL, 0, info->mmap_size, 133 info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
134 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, 134 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
135 0); 135 0);
136 if (IS_ERR((void *)info->mmap_base)) { 136 if (IS_ERR((void *)info->mmap_base)) {
137 up_write(&ctx->mm->mmap_sem); 137 up_write(&ctx->mm->mmap_sem);
138 info->mmap_size = 0; 138 info->mmap_size = 0;
139 aio_free_ring(ctx); 139 aio_free_ring(ctx);
140 return -EAGAIN; 140 return -EAGAIN;
141 } 141 }
142 142
143 dprintk("mmap address: 0x%08lx\n", info->mmap_base); 143 dprintk("mmap address: 0x%08lx\n", info->mmap_base);
144 info->nr_pages = get_user_pages(current, ctx->mm, 144 info->nr_pages = get_user_pages(current, ctx->mm,
145 info->mmap_base, nr_pages, 145 info->mmap_base, nr_pages,
146 1, 0, info->ring_pages, NULL); 146 1, 0, info->ring_pages, NULL);
147 up_write(&ctx->mm->mmap_sem); 147 up_write(&ctx->mm->mmap_sem);
148 148
149 if (unlikely(info->nr_pages != nr_pages)) { 149 if (unlikely(info->nr_pages != nr_pages)) {
150 aio_free_ring(ctx); 150 aio_free_ring(ctx);
151 return -EAGAIN; 151 return -EAGAIN;
152 } 152 }
153 153
154 ctx->user_id = info->mmap_base; 154 ctx->user_id = info->mmap_base;
155 155
156 info->nr = nr_events; /* trusted copy */ 156 info->nr = nr_events; /* trusted copy */
157 157
158 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 158 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
159 ring->nr = nr_events; /* user copy */ 159 ring->nr = nr_events; /* user copy */
160 ring->id = ctx->user_id; 160 ring->id = ctx->user_id;
161 ring->head = ring->tail = 0; 161 ring->head = ring->tail = 0;
162 ring->magic = AIO_RING_MAGIC; 162 ring->magic = AIO_RING_MAGIC;
163 ring->compat_features = AIO_RING_COMPAT_FEATURES; 163 ring->compat_features = AIO_RING_COMPAT_FEATURES;
164 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 164 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
165 ring->header_length = sizeof(struct aio_ring); 165 ring->header_length = sizeof(struct aio_ring);
166 kunmap_atomic(ring, KM_USER0); 166 kunmap_atomic(ring, KM_USER0);
167 167
168 return 0; 168 return 0;
169 } 169 }
170 170
171 171
172 /* aio_ring_event: returns a pointer to the event at the given index from 172 /* aio_ring_event: returns a pointer to the event at the given index from
173 * kmap_atomic(, km). Release the pointer with put_aio_ring_event(); 173 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
174 */ 174 */
175 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 175 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 176 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 177 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
178 178
179 #define aio_ring_event(info, nr, km) ({ \ 179 #define aio_ring_event(info, nr, km) ({ \
180 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ 180 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
181 struct io_event *__event; \ 181 struct io_event *__event; \
182 __event = kmap_atomic( \ 182 __event = kmap_atomic( \
183 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ 183 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 __event += pos % AIO_EVENTS_PER_PAGE; \ 184 __event += pos % AIO_EVENTS_PER_PAGE; \
185 __event; \ 185 __event; \
186 }) 186 })
187 187
188 #define put_aio_ring_event(event, km) do { \ 188 #define put_aio_ring_event(event, km) do { \
189 struct io_event *__event = (event); \ 189 struct io_event *__event = (event); \
190 (void)__event; \ 190 (void)__event; \
191 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ 191 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
192 } while(0) 192 } while(0)
193 193
194 /* ioctx_alloc 194 /* ioctx_alloc
195 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 195 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
196 */ 196 */
197 static struct kioctx *ioctx_alloc(unsigned nr_events) 197 static struct kioctx *ioctx_alloc(unsigned nr_events)
198 { 198 {
199 struct mm_struct *mm; 199 struct mm_struct *mm;
200 struct kioctx *ctx; 200 struct kioctx *ctx;
201 201
202 /* Prevent overflows */ 202 /* Prevent overflows */
203 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 203 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
204 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 204 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
205 pr_debug("ENOMEM: nr_events too high\n"); 205 pr_debug("ENOMEM: nr_events too high\n");
206 return ERR_PTR(-EINVAL); 206 return ERR_PTR(-EINVAL);
207 } 207 }
208 208
209 if ((unsigned long)nr_events > aio_max_nr) 209 if ((unsigned long)nr_events > aio_max_nr)
210 return ERR_PTR(-EAGAIN); 210 return ERR_PTR(-EAGAIN);
211 211
212 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 212 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
213 if (!ctx) 213 if (!ctx)
214 return ERR_PTR(-ENOMEM); 214 return ERR_PTR(-ENOMEM);
215 215
216 ctx->max_reqs = nr_events; 216 ctx->max_reqs = nr_events;
217 mm = ctx->mm = current->mm; 217 mm = ctx->mm = current->mm;
218 atomic_inc(&mm->mm_count); 218 atomic_inc(&mm->mm_count);
219 219
220 atomic_set(&ctx->users, 1); 220 atomic_set(&ctx->users, 1);
221 spin_lock_init(&ctx->ctx_lock); 221 spin_lock_init(&ctx->ctx_lock);
222 spin_lock_init(&ctx->ring_info.ring_lock); 222 spin_lock_init(&ctx->ring_info.ring_lock);
223 init_waitqueue_head(&ctx->wait); 223 init_waitqueue_head(&ctx->wait);
224 224
225 INIT_LIST_HEAD(&ctx->active_reqs); 225 INIT_LIST_HEAD(&ctx->active_reqs);
226 INIT_LIST_HEAD(&ctx->run_list); 226 INIT_LIST_HEAD(&ctx->run_list);
227 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler); 227 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
228 228
229 if (aio_setup_ring(ctx) < 0) 229 if (aio_setup_ring(ctx) < 0)
230 goto out_freectx; 230 goto out_freectx;
231 231
232 /* limit the number of system wide aios */ 232 /* limit the number of system wide aios */
233 spin_lock(&aio_nr_lock); 233 spin_lock(&aio_nr_lock);
234 if (aio_nr + ctx->max_reqs > aio_max_nr || 234 if (aio_nr + ctx->max_reqs > aio_max_nr ||
235 aio_nr + ctx->max_reqs < aio_nr) 235 aio_nr + ctx->max_reqs < aio_nr)
236 ctx->max_reqs = 0; 236 ctx->max_reqs = 0;
237 else 237 else
238 aio_nr += ctx->max_reqs; 238 aio_nr += ctx->max_reqs;
239 spin_unlock(&aio_nr_lock); 239 spin_unlock(&aio_nr_lock);
240 if (ctx->max_reqs == 0) 240 if (ctx->max_reqs == 0)
241 goto out_cleanup; 241 goto out_cleanup;
242 242
243 /* now link into global list. kludge. FIXME */ 243 /* now link into global list. kludge. FIXME */
244 write_lock(&mm->ioctx_list_lock); 244 write_lock(&mm->ioctx_list_lock);
245 ctx->next = mm->ioctx_list; 245 ctx->next = mm->ioctx_list;
246 mm->ioctx_list = ctx; 246 mm->ioctx_list = ctx;
247 write_unlock(&mm->ioctx_list_lock); 247 write_unlock(&mm->ioctx_list_lock);
248 248
249 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 249 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
250 ctx, ctx->user_id, current->mm, ctx->ring_info.nr); 250 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
251 return ctx; 251 return ctx;
252 252
253 out_cleanup: 253 out_cleanup:
254 __put_ioctx(ctx); 254 __put_ioctx(ctx);
255 return ERR_PTR(-EAGAIN); 255 return ERR_PTR(-EAGAIN);
256 256
257 out_freectx: 257 out_freectx:
258 mmdrop(mm); 258 mmdrop(mm);
259 kmem_cache_free(kioctx_cachep, ctx); 259 kmem_cache_free(kioctx_cachep, ctx);
260 ctx = ERR_PTR(-ENOMEM); 260 ctx = ERR_PTR(-ENOMEM);
261 261
262 dprintk("aio: error allocating ioctx %p\n", ctx); 262 dprintk("aio: error allocating ioctx %p\n", ctx);
263 return ctx; 263 return ctx;
264 } 264 }
265 265
266 /* aio_cancel_all 266 /* aio_cancel_all
267 * Cancels all outstanding aio requests on an aio context. Used 267 * Cancels all outstanding aio requests on an aio context. Used
268 * when the processes owning a context have all exited to encourage 268 * when the processes owning a context have all exited to encourage
269 * the rapid destruction of the kioctx. 269 * the rapid destruction of the kioctx.
270 */ 270 */
271 static void aio_cancel_all(struct kioctx *ctx) 271 static void aio_cancel_all(struct kioctx *ctx)
272 { 272 {
273 int (*cancel)(struct kiocb *, struct io_event *); 273 int (*cancel)(struct kiocb *, struct io_event *);
274 struct io_event res; 274 struct io_event res;
275 spin_lock_irq(&ctx->ctx_lock); 275 spin_lock_irq(&ctx->ctx_lock);
276 ctx->dead = 1; 276 ctx->dead = 1;
277 while (!list_empty(&ctx->active_reqs)) { 277 while (!list_empty(&ctx->active_reqs)) {
278 struct list_head *pos = ctx->active_reqs.next; 278 struct list_head *pos = ctx->active_reqs.next;
279 struct kiocb *iocb = list_kiocb(pos); 279 struct kiocb *iocb = list_kiocb(pos);
280 list_del_init(&iocb->ki_list); 280 list_del_init(&iocb->ki_list);
281 cancel = iocb->ki_cancel; 281 cancel = iocb->ki_cancel;
282 kiocbSetCancelled(iocb); 282 kiocbSetCancelled(iocb);
283 if (cancel) { 283 if (cancel) {
284 iocb->ki_users++; 284 iocb->ki_users++;
285 spin_unlock_irq(&ctx->ctx_lock); 285 spin_unlock_irq(&ctx->ctx_lock);
286 cancel(iocb, &res); 286 cancel(iocb, &res);
287 spin_lock_irq(&ctx->ctx_lock); 287 spin_lock_irq(&ctx->ctx_lock);
288 } 288 }
289 } 289 }
290 spin_unlock_irq(&ctx->ctx_lock); 290 spin_unlock_irq(&ctx->ctx_lock);
291 } 291 }
292 292
293 static void wait_for_all_aios(struct kioctx *ctx) 293 static void wait_for_all_aios(struct kioctx *ctx)
294 { 294 {
295 struct task_struct *tsk = current; 295 struct task_struct *tsk = current;
296 DECLARE_WAITQUEUE(wait, tsk); 296 DECLARE_WAITQUEUE(wait, tsk);
297 297
298 spin_lock_irq(&ctx->ctx_lock); 298 spin_lock_irq(&ctx->ctx_lock);
299 if (!ctx->reqs_active) 299 if (!ctx->reqs_active)
300 goto out; 300 goto out;
301 301
302 add_wait_queue(&ctx->wait, &wait); 302 add_wait_queue(&ctx->wait, &wait);
303 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 303 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
304 while (ctx->reqs_active) { 304 while (ctx->reqs_active) {
305 spin_unlock_irq(&ctx->ctx_lock); 305 spin_unlock_irq(&ctx->ctx_lock);
306 io_schedule(); 306 io_schedule();
307 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 307 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
308 spin_lock_irq(&ctx->ctx_lock); 308 spin_lock_irq(&ctx->ctx_lock);
309 } 309 }
310 __set_task_state(tsk, TASK_RUNNING); 310 __set_task_state(tsk, TASK_RUNNING);
311 remove_wait_queue(&ctx->wait, &wait); 311 remove_wait_queue(&ctx->wait, &wait);
312 312
313 out: 313 out:
314 spin_unlock_irq(&ctx->ctx_lock); 314 spin_unlock_irq(&ctx->ctx_lock);
315 } 315 }
316 316
317 /* wait_on_sync_kiocb: 317 /* wait_on_sync_kiocb:
318 * Waits on the given sync kiocb to complete. 318 * Waits on the given sync kiocb to complete.
319 */ 319 */
320 ssize_t wait_on_sync_kiocb(struct kiocb *iocb) 320 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
321 { 321 {
322 while (iocb->ki_users) { 322 while (iocb->ki_users) {
323 set_current_state(TASK_UNINTERRUPTIBLE); 323 set_current_state(TASK_UNINTERRUPTIBLE);
324 if (!iocb->ki_users) 324 if (!iocb->ki_users)
325 break; 325 break;
326 io_schedule(); 326 io_schedule();
327 } 327 }
328 __set_current_state(TASK_RUNNING); 328 __set_current_state(TASK_RUNNING);
329 return iocb->ki_user_data; 329 return iocb->ki_user_data;
330 } 330 }
331 331
332 /* exit_aio: called when the last user of mm goes away. At this point, 332 /* exit_aio: called when the last user of mm goes away. At this point,
333 * there is no way for any new requests to be submited or any of the 333 * there is no way for any new requests to be submited or any of the
334 * io_* syscalls to be called on the context. However, there may be 334 * io_* syscalls to be called on the context. However, there may be
335 * outstanding requests which hold references to the context; as they 335 * outstanding requests which hold references to the context; as they
336 * go away, they will call put_ioctx and release any pinned memory 336 * go away, they will call put_ioctx and release any pinned memory
337 * associated with the request (held via struct page * references). 337 * associated with the request (held via struct page * references).
338 */ 338 */
339 void exit_aio(struct mm_struct *mm) 339 void exit_aio(struct mm_struct *mm)
340 { 340 {
341 struct kioctx *ctx = mm->ioctx_list; 341 struct kioctx *ctx = mm->ioctx_list;
342 mm->ioctx_list = NULL; 342 mm->ioctx_list = NULL;
343 while (ctx) { 343 while (ctx) {
344 struct kioctx *next = ctx->next; 344 struct kioctx *next = ctx->next;
345 ctx->next = NULL; 345 ctx->next = NULL;
346 aio_cancel_all(ctx); 346 aio_cancel_all(ctx);
347 347
348 wait_for_all_aios(ctx); 348 wait_for_all_aios(ctx);
349 /* 349 /*
350 * Ensure we don't leave the ctx on the aio_wq 350 * Ensure we don't leave the ctx on the aio_wq
351 */ 351 */
352 cancel_work_sync(&ctx->wq.work); 352 cancel_work_sync(&ctx->wq.work);
353 353
354 if (1 != atomic_read(&ctx->users)) 354 if (1 != atomic_read(&ctx->users))
355 printk(KERN_DEBUG 355 printk(KERN_DEBUG
356 "exit_aio:ioctx still alive: %d %d %d\n", 356 "exit_aio:ioctx still alive: %d %d %d\n",
357 atomic_read(&ctx->users), ctx->dead, 357 atomic_read(&ctx->users), ctx->dead,
358 ctx->reqs_active); 358 ctx->reqs_active);
359 put_ioctx(ctx); 359 put_ioctx(ctx);
360 ctx = next; 360 ctx = next;
361 } 361 }
362 } 362 }
363 363
364 /* __put_ioctx 364 /* __put_ioctx
365 * Called when the last user of an aio context has gone away, 365 * Called when the last user of an aio context has gone away,
366 * and the struct needs to be freed. 366 * and the struct needs to be freed.
367 */ 367 */
368 void __put_ioctx(struct kioctx *ctx) 368 void __put_ioctx(struct kioctx *ctx)
369 { 369 {
370 unsigned nr_events = ctx->max_reqs; 370 unsigned nr_events = ctx->max_reqs;
371 371
372 BUG_ON(ctx->reqs_active); 372 BUG_ON(ctx->reqs_active);
373 373
374 cancel_delayed_work(&ctx->wq); 374 cancel_delayed_work(&ctx->wq);
375 cancel_work_sync(&ctx->wq.work); 375 cancel_work_sync(&ctx->wq.work);
376 aio_free_ring(ctx); 376 aio_free_ring(ctx);
377 mmdrop(ctx->mm); 377 mmdrop(ctx->mm);
378 ctx->mm = NULL; 378 ctx->mm = NULL;
379 pr_debug("__put_ioctx: freeing %p\n", ctx); 379 pr_debug("__put_ioctx: freeing %p\n", ctx);
380 kmem_cache_free(kioctx_cachep, ctx); 380 kmem_cache_free(kioctx_cachep, ctx);
381 381
382 if (nr_events) { 382 if (nr_events) {
383 spin_lock(&aio_nr_lock); 383 spin_lock(&aio_nr_lock);
384 BUG_ON(aio_nr - nr_events > aio_nr); 384 BUG_ON(aio_nr - nr_events > aio_nr);
385 aio_nr -= nr_events; 385 aio_nr -= nr_events;
386 spin_unlock(&aio_nr_lock); 386 spin_unlock(&aio_nr_lock);
387 } 387 }
388 } 388 }
389 389
390 /* aio_get_req 390 /* aio_get_req
391 * Allocate a slot for an aio request. Increments the users count 391 * Allocate a slot for an aio request. Increments the users count
392 * of the kioctx so that the kioctx stays around until all requests are 392 * of the kioctx so that the kioctx stays around until all requests are
393 * complete. Returns NULL if no requests are free. 393 * complete. Returns NULL if no requests are free.
394 * 394 *
395 * Returns with kiocb->users set to 2. The io submit code path holds 395 * Returns with kiocb->users set to 2. The io submit code path holds
396 * an extra reference while submitting the i/o. 396 * an extra reference while submitting the i/o.
397 * This prevents races between the aio code path referencing the 397 * This prevents races between the aio code path referencing the
398 * req (after submitting it) and aio_complete() freeing the req. 398 * req (after submitting it) and aio_complete() freeing the req.
399 */ 399 */
400 static struct kiocb *__aio_get_req(struct kioctx *ctx) 400 static struct kiocb *__aio_get_req(struct kioctx *ctx)
401 { 401 {
402 struct kiocb *req = NULL; 402 struct kiocb *req = NULL;
403 struct aio_ring *ring; 403 struct aio_ring *ring;
404 int okay = 0; 404 int okay = 0;
405 405
406 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 406 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
407 if (unlikely(!req)) 407 if (unlikely(!req))
408 return NULL; 408 return NULL;
409 409
410 req->ki_flags = 0; 410 req->ki_flags = 0;
411 req->ki_users = 2; 411 req->ki_users = 2;
412 req->ki_key = 0; 412 req->ki_key = 0;
413 req->ki_ctx = ctx; 413 req->ki_ctx = ctx;
414 req->ki_cancel = NULL; 414 req->ki_cancel = NULL;
415 req->ki_retry = NULL; 415 req->ki_retry = NULL;
416 req->ki_dtor = NULL; 416 req->ki_dtor = NULL;
417 req->private = NULL; 417 req->private = NULL;
418 req->ki_iovec = NULL; 418 req->ki_iovec = NULL;
419 INIT_LIST_HEAD(&req->ki_run_list); 419 INIT_LIST_HEAD(&req->ki_run_list);
420 req->ki_eventfd = ERR_PTR(-EINVAL); 420 req->ki_eventfd = ERR_PTR(-EINVAL);
421 421
422 /* Check if the completion queue has enough free space to 422 /* Check if the completion queue has enough free space to
423 * accept an event from this io. 423 * accept an event from this io.
424 */ 424 */
425 spin_lock_irq(&ctx->ctx_lock); 425 spin_lock_irq(&ctx->ctx_lock);
426 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0); 426 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
427 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) { 427 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
428 list_add(&req->ki_list, &ctx->active_reqs); 428 list_add(&req->ki_list, &ctx->active_reqs);
429 ctx->reqs_active++; 429 ctx->reqs_active++;
430 okay = 1; 430 okay = 1;
431 } 431 }
432 kunmap_atomic(ring, KM_USER0); 432 kunmap_atomic(ring, KM_USER0);
433 spin_unlock_irq(&ctx->ctx_lock); 433 spin_unlock_irq(&ctx->ctx_lock);
434 434
435 if (!okay) { 435 if (!okay) {
436 kmem_cache_free(kiocb_cachep, req); 436 kmem_cache_free(kiocb_cachep, req);
437 req = NULL; 437 req = NULL;
438 } 438 }
439 439
440 return req; 440 return req;
441 } 441 }
442 442
443 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 443 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
444 { 444 {
445 struct kiocb *req; 445 struct kiocb *req;
446 /* Handle a potential starvation case -- should be exceedingly rare as 446 /* Handle a potential starvation case -- should be exceedingly rare as
447 * requests will be stuck on fput_head only if the aio_fput_routine is 447 * requests will be stuck on fput_head only if the aio_fput_routine is
448 * delayed and the requests were the last user of the struct file. 448 * delayed and the requests were the last user of the struct file.
449 */ 449 */
450 req = __aio_get_req(ctx); 450 req = __aio_get_req(ctx);
451 if (unlikely(NULL == req)) { 451 if (unlikely(NULL == req)) {
452 aio_fput_routine(NULL); 452 aio_fput_routine(NULL);
453 req = __aio_get_req(ctx); 453 req = __aio_get_req(ctx);
454 } 454 }
455 return req; 455 return req;
456 } 456 }
457 457
458 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) 458 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
459 { 459 {
460 assert_spin_locked(&ctx->ctx_lock); 460 assert_spin_locked(&ctx->ctx_lock);
461 461
462 if (!IS_ERR(req->ki_eventfd)) 462 if (!IS_ERR(req->ki_eventfd))
463 fput(req->ki_eventfd); 463 fput(req->ki_eventfd);
464 if (req->ki_dtor) 464 if (req->ki_dtor)
465 req->ki_dtor(req); 465 req->ki_dtor(req);
466 if (req->ki_iovec != &req->ki_inline_vec) 466 if (req->ki_iovec != &req->ki_inline_vec)
467 kfree(req->ki_iovec); 467 kfree(req->ki_iovec);
468 kmem_cache_free(kiocb_cachep, req); 468 kmem_cache_free(kiocb_cachep, req);
469 ctx->reqs_active--; 469 ctx->reqs_active--;
470 470
471 if (unlikely(!ctx->reqs_active && ctx->dead)) 471 if (unlikely(!ctx->reqs_active && ctx->dead))
472 wake_up(&ctx->wait); 472 wake_up(&ctx->wait);
473 } 473 }
474 474
475 static void aio_fput_routine(struct work_struct *data) 475 static void aio_fput_routine(struct work_struct *data)
476 { 476 {
477 spin_lock_irq(&fput_lock); 477 spin_lock_irq(&fput_lock);
478 while (likely(!list_empty(&fput_head))) { 478 while (likely(!list_empty(&fput_head))) {
479 struct kiocb *req = list_kiocb(fput_head.next); 479 struct kiocb *req = list_kiocb(fput_head.next);
480 struct kioctx *ctx = req->ki_ctx; 480 struct kioctx *ctx = req->ki_ctx;
481 481
482 list_del(&req->ki_list); 482 list_del(&req->ki_list);
483 spin_unlock_irq(&fput_lock); 483 spin_unlock_irq(&fput_lock);
484 484
485 /* Complete the fput */ 485 /* Complete the fput */
486 __fput(req->ki_filp); 486 __fput(req->ki_filp);
487 487
488 /* Link the iocb into the context's free list */ 488 /* Link the iocb into the context's free list */
489 spin_lock_irq(&ctx->ctx_lock); 489 spin_lock_irq(&ctx->ctx_lock);
490 really_put_req(ctx, req); 490 really_put_req(ctx, req);
491 spin_unlock_irq(&ctx->ctx_lock); 491 spin_unlock_irq(&ctx->ctx_lock);
492 492
493 put_ioctx(ctx); 493 put_ioctx(ctx);
494 spin_lock_irq(&fput_lock); 494 spin_lock_irq(&fput_lock);
495 } 495 }
496 spin_unlock_irq(&fput_lock); 496 spin_unlock_irq(&fput_lock);
497 } 497 }
498 498
499 /* __aio_put_req 499 /* __aio_put_req
500 * Returns true if this put was the last user of the request. 500 * Returns true if this put was the last user of the request.
501 */ 501 */
502 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) 502 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
503 { 503 {
504 dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n", 504 dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
505 req, atomic_read(&req->ki_filp->f_count)); 505 req, atomic_read(&req->ki_filp->f_count));
506 506
507 assert_spin_locked(&ctx->ctx_lock); 507 assert_spin_locked(&ctx->ctx_lock);
508 508
509 req->ki_users --; 509 req->ki_users --;
510 BUG_ON(req->ki_users < 0); 510 BUG_ON(req->ki_users < 0);
511 if (likely(req->ki_users)) 511 if (likely(req->ki_users))
512 return 0; 512 return 0;
513 list_del(&req->ki_list); /* remove from active_reqs */ 513 list_del(&req->ki_list); /* remove from active_reqs */
514 req->ki_cancel = NULL; 514 req->ki_cancel = NULL;
515 req->ki_retry = NULL; 515 req->ki_retry = NULL;
516 516
517 /* Must be done under the lock to serialise against cancellation. 517 /* Must be done under the lock to serialise against cancellation.
518 * Call this aio_fput as it duplicates fput via the fput_work. 518 * Call this aio_fput as it duplicates fput via the fput_work.
519 */ 519 */
520 if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) { 520 if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
521 get_ioctx(ctx); 521 get_ioctx(ctx);
522 spin_lock(&fput_lock); 522 spin_lock(&fput_lock);
523 list_add(&req->ki_list, &fput_head); 523 list_add(&req->ki_list, &fput_head);
524 spin_unlock(&fput_lock); 524 spin_unlock(&fput_lock);
525 queue_work(aio_wq, &fput_work); 525 queue_work(aio_wq, &fput_work);
526 } else 526 } else
527 really_put_req(ctx, req); 527 really_put_req(ctx, req);
528 return 1; 528 return 1;
529 } 529 }
530 530
531 /* aio_put_req 531 /* aio_put_req
532 * Returns true if this put was the last user of the kiocb, 532 * Returns true if this put was the last user of the kiocb,
533 * false if the request is still in use. 533 * false if the request is still in use.
534 */ 534 */
535 int aio_put_req(struct kiocb *req) 535 int aio_put_req(struct kiocb *req)
536 { 536 {
537 struct kioctx *ctx = req->ki_ctx; 537 struct kioctx *ctx = req->ki_ctx;
538 int ret; 538 int ret;
539 spin_lock_irq(&ctx->ctx_lock); 539 spin_lock_irq(&ctx->ctx_lock);
540 ret = __aio_put_req(ctx, req); 540 ret = __aio_put_req(ctx, req);
541 spin_unlock_irq(&ctx->ctx_lock); 541 spin_unlock_irq(&ctx->ctx_lock);
542 return ret; 542 return ret;
543 } 543 }
544 544
545 /* Lookup an ioctx id. ioctx_list is lockless for reads. 545 /* Lookup an ioctx id. ioctx_list is lockless for reads.
546 * FIXME: this is O(n) and is only suitable for development. 546 * FIXME: this is O(n) and is only suitable for development.
547 */ 547 */
548 struct kioctx *lookup_ioctx(unsigned long ctx_id) 548 struct kioctx *lookup_ioctx(unsigned long ctx_id)
549 { 549 {
550 struct kioctx *ioctx; 550 struct kioctx *ioctx;
551 struct mm_struct *mm; 551 struct mm_struct *mm;
552 552
553 mm = current->mm; 553 mm = current->mm;
554 read_lock(&mm->ioctx_list_lock); 554 read_lock(&mm->ioctx_list_lock);
555 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next) 555 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
556 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) { 556 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
557 get_ioctx(ioctx); 557 get_ioctx(ioctx);
558 break; 558 break;
559 } 559 }
560 read_unlock(&mm->ioctx_list_lock); 560 read_unlock(&mm->ioctx_list_lock);
561 561
562 return ioctx; 562 return ioctx;
563 } 563 }
564 564
565 /* 565 /*
566 * use_mm 566 * use_mm
567 * Makes the calling kernel thread take on the specified 567 * Makes the calling kernel thread take on the specified
568 * mm context. 568 * mm context.
569 * Called by the retry thread execute retries within the 569 * Called by the retry thread execute retries within the
570 * iocb issuer's mm context, so that copy_from/to_user 570 * iocb issuer's mm context, so that copy_from/to_user
571 * operations work seamlessly for aio. 571 * operations work seamlessly for aio.
572 * (Note: this routine is intended to be called only 572 * (Note: this routine is intended to be called only
573 * from a kernel thread context) 573 * from a kernel thread context)
574 */ 574 */
575 static void use_mm(struct mm_struct *mm) 575 static void use_mm(struct mm_struct *mm)
576 { 576 {
577 struct mm_struct *active_mm; 577 struct mm_struct *active_mm;
578 struct task_struct *tsk = current; 578 struct task_struct *tsk = current;
579 579
580 task_lock(tsk); 580 task_lock(tsk);
581 tsk->flags |= PF_BORROWED_MM; 581 tsk->flags |= PF_BORROWED_MM;
582 active_mm = tsk->active_mm; 582 active_mm = tsk->active_mm;
583 atomic_inc(&mm->mm_count); 583 atomic_inc(&mm->mm_count);
584 tsk->mm = mm; 584 tsk->mm = mm;
585 tsk->active_mm = mm; 585 tsk->active_mm = mm;
586 /* 586 /*
587 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise 587 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
588 * it won't work. Update it accordingly if you change it here 588 * it won't work. Update it accordingly if you change it here
589 */ 589 */
590 switch_mm(active_mm, mm, tsk); 590 switch_mm(active_mm, mm, tsk);
591 task_unlock(tsk); 591 task_unlock(tsk);
592 592
593 mmdrop(active_mm); 593 mmdrop(active_mm);
594 } 594 }
595 595
596 /* 596 /*
597 * unuse_mm 597 * unuse_mm
598 * Reverses the effect of use_mm, i.e. releases the 598 * Reverses the effect of use_mm, i.e. releases the
599 * specified mm context which was earlier taken on 599 * specified mm context which was earlier taken on
600 * by the calling kernel thread 600 * by the calling kernel thread
601 * (Note: this routine is intended to be called only 601 * (Note: this routine is intended to be called only
602 * from a kernel thread context) 602 * from a kernel thread context)
603 */ 603 */
604 static void unuse_mm(struct mm_struct *mm) 604 static void unuse_mm(struct mm_struct *mm)
605 { 605 {
606 struct task_struct *tsk = current; 606 struct task_struct *tsk = current;
607 607
608 task_lock(tsk); 608 task_lock(tsk);
609 tsk->flags &= ~PF_BORROWED_MM; 609 tsk->flags &= ~PF_BORROWED_MM;
610 tsk->mm = NULL; 610 tsk->mm = NULL;
611 /* active_mm is still 'mm' */ 611 /* active_mm is still 'mm' */
612 enter_lazy_tlb(mm, tsk); 612 enter_lazy_tlb(mm, tsk);
613 task_unlock(tsk); 613 task_unlock(tsk);
614 } 614 }
615 615
616 /* 616 /*
617 * Queue up a kiocb to be retried. Assumes that the kiocb 617 * Queue up a kiocb to be retried. Assumes that the kiocb
618 * has already been marked as kicked, and places it on 618 * has already been marked as kicked, and places it on
619 * the retry run list for the corresponding ioctx, if it 619 * the retry run list for the corresponding ioctx, if it
620 * isn't already queued. Returns 1 if it actually queued 620 * isn't already queued. Returns 1 if it actually queued
621 * the kiocb (to tell the caller to activate the work 621 * the kiocb (to tell the caller to activate the work
622 * queue to process it), or 0, if it found that it was 622 * queue to process it), or 0, if it found that it was
623 * already queued. 623 * already queued.
624 */ 624 */
625 static inline int __queue_kicked_iocb(struct kiocb *iocb) 625 static inline int __queue_kicked_iocb(struct kiocb *iocb)
626 { 626 {
627 struct kioctx *ctx = iocb->ki_ctx; 627 struct kioctx *ctx = iocb->ki_ctx;
628 628
629 assert_spin_locked(&ctx->ctx_lock); 629 assert_spin_locked(&ctx->ctx_lock);
630 630
631 if (list_empty(&iocb->ki_run_list)) { 631 if (list_empty(&iocb->ki_run_list)) {
632 list_add_tail(&iocb->ki_run_list, 632 list_add_tail(&iocb->ki_run_list,
633 &ctx->run_list); 633 &ctx->run_list);
634 return 1; 634 return 1;
635 } 635 }
636 return 0; 636 return 0;
637 } 637 }
638 638
639 /* aio_run_iocb 639 /* aio_run_iocb
640 * This is the core aio execution routine. It is 640 * This is the core aio execution routine. It is
641 * invoked both for initial i/o submission and 641 * invoked both for initial i/o submission and
642 * subsequent retries via the aio_kick_handler. 642 * subsequent retries via the aio_kick_handler.
643 * Expects to be invoked with iocb->ki_ctx->lock 643 * Expects to be invoked with iocb->ki_ctx->lock
644 * already held. The lock is released and reacquired 644 * already held. The lock is released and reacquired
645 * as needed during processing. 645 * as needed during processing.
646 * 646 *
647 * Calls the iocb retry method (already setup for the 647 * Calls the iocb retry method (already setup for the
648 * iocb on initial submission) for operation specific 648 * iocb on initial submission) for operation specific
649 * handling, but takes care of most of common retry 649 * handling, but takes care of most of common retry
650 * execution details for a given iocb. The retry method 650 * execution details for a given iocb. The retry method
651 * needs to be non-blocking as far as possible, to avoid 651 * needs to be non-blocking as far as possible, to avoid
652 * holding up other iocbs waiting to be serviced by the 652 * holding up other iocbs waiting to be serviced by the
653 * retry kernel thread. 653 * retry kernel thread.
654 * 654 *
655 * The trickier parts in this code have to do with 655 * The trickier parts in this code have to do with
656 * ensuring that only one retry instance is in progress 656 * ensuring that only one retry instance is in progress
657 * for a given iocb at any time. Providing that guarantee 657 * for a given iocb at any time. Providing that guarantee
658 * simplifies the coding of individual aio operations as 658 * simplifies the coding of individual aio operations as
659 * it avoids various potential races. 659 * it avoids various potential races.
660 */ 660 */
661 static ssize_t aio_run_iocb(struct kiocb *iocb) 661 static ssize_t aio_run_iocb(struct kiocb *iocb)
662 { 662 {
663 struct kioctx *ctx = iocb->ki_ctx; 663 struct kioctx *ctx = iocb->ki_ctx;
664 ssize_t (*retry)(struct kiocb *); 664 ssize_t (*retry)(struct kiocb *);
665 ssize_t ret; 665 ssize_t ret;
666 666
667 if (!(retry = iocb->ki_retry)) { 667 if (!(retry = iocb->ki_retry)) {
668 printk("aio_run_iocb: iocb->ki_retry = NULL\n"); 668 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
669 return 0; 669 return 0;
670 } 670 }
671 671
672 /* 672 /*
673 * We don't want the next retry iteration for this 673 * We don't want the next retry iteration for this
674 * operation to start until this one has returned and 674 * operation to start until this one has returned and
675 * updated the iocb state. However, wait_queue functions 675 * updated the iocb state. However, wait_queue functions
676 * can trigger a kick_iocb from interrupt context in the 676 * can trigger a kick_iocb from interrupt context in the
677 * meantime, indicating that data is available for the next 677 * meantime, indicating that data is available for the next
678 * iteration. We want to remember that and enable the 678 * iteration. We want to remember that and enable the
679 * next retry iteration _after_ we are through with 679 * next retry iteration _after_ we are through with
680 * this one. 680 * this one.
681 * 681 *
682 * So, in order to be able to register a "kick", but 682 * So, in order to be able to register a "kick", but
683 * prevent it from being queued now, we clear the kick 683 * prevent it from being queued now, we clear the kick
684 * flag, but make the kick code *think* that the iocb is 684 * flag, but make the kick code *think* that the iocb is
685 * still on the run list until we are actually done. 685 * still on the run list until we are actually done.
686 * When we are done with this iteration, we check if 686 * When we are done with this iteration, we check if
687 * the iocb was kicked in the meantime and if so, queue 687 * the iocb was kicked in the meantime and if so, queue
688 * it up afresh. 688 * it up afresh.
689 */ 689 */
690 690
691 kiocbClearKicked(iocb); 691 kiocbClearKicked(iocb);
692 692
693 /* 693 /*
694 * This is so that aio_complete knows it doesn't need to 694 * This is so that aio_complete knows it doesn't need to
695 * pull the iocb off the run list (We can't just call 695 * pull the iocb off the run list (We can't just call
696 * INIT_LIST_HEAD because we don't want a kick_iocb to 696 * INIT_LIST_HEAD because we don't want a kick_iocb to
697 * queue this on the run list yet) 697 * queue this on the run list yet)
698 */ 698 */
699 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; 699 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
700 spin_unlock_irq(&ctx->ctx_lock); 700 spin_unlock_irq(&ctx->ctx_lock);
701 701
702 /* Quit retrying if the i/o has been cancelled */ 702 /* Quit retrying if the i/o has been cancelled */
703 if (kiocbIsCancelled(iocb)) { 703 if (kiocbIsCancelled(iocb)) {
704 ret = -EINTR; 704 ret = -EINTR;
705 aio_complete(iocb, ret, 0); 705 aio_complete(iocb, ret, 0);
706 /* must not access the iocb after this */ 706 /* must not access the iocb after this */
707 goto out; 707 goto out;
708 } 708 }
709 709
710 /* 710 /*
711 * Now we are all set to call the retry method in async 711 * Now we are all set to call the retry method in async
712 * context. 712 * context.
713 */ 713 */
714 ret = retry(iocb); 714 ret = retry(iocb);
715 715
716 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) { 716 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
717 BUG_ON(!list_empty(&iocb->ki_wait.task_list)); 717 BUG_ON(!list_empty(&iocb->ki_wait.task_list));
718 aio_complete(iocb, ret, 0); 718 aio_complete(iocb, ret, 0);
719 } 719 }
720 out: 720 out:
721 spin_lock_irq(&ctx->ctx_lock); 721 spin_lock_irq(&ctx->ctx_lock);
722 722
723 if (-EIOCBRETRY == ret) { 723 if (-EIOCBRETRY == ret) {
724 /* 724 /*
725 * OK, now that we are done with this iteration 725 * OK, now that we are done with this iteration
726 * and know that there is more left to go, 726 * and know that there is more left to go,
727 * this is where we let go so that a subsequent 727 * this is where we let go so that a subsequent
728 * "kick" can start the next iteration 728 * "kick" can start the next iteration
729 */ 729 */
730 730
731 /* will make __queue_kicked_iocb succeed from here on */ 731 /* will make __queue_kicked_iocb succeed from here on */
732 INIT_LIST_HEAD(&iocb->ki_run_list); 732 INIT_LIST_HEAD(&iocb->ki_run_list);
733 /* we must queue the next iteration ourselves, if it 733 /* we must queue the next iteration ourselves, if it
734 * has already been kicked */ 734 * has already been kicked */
735 if (kiocbIsKicked(iocb)) { 735 if (kiocbIsKicked(iocb)) {
736 __queue_kicked_iocb(iocb); 736 __queue_kicked_iocb(iocb);
737 737
738 /* 738 /*
739 * __queue_kicked_iocb will always return 1 here, because 739 * __queue_kicked_iocb will always return 1 here, because
740 * iocb->ki_run_list is empty at this point so it should 740 * iocb->ki_run_list is empty at this point so it should
741 * be safe to unconditionally queue the context into the 741 * be safe to unconditionally queue the context into the
742 * work queue. 742 * work queue.
743 */ 743 */
744 aio_queue_work(ctx); 744 aio_queue_work(ctx);
745 } 745 }
746 } 746 }
747 return ret; 747 return ret;
748 } 748 }
749 749
750 /* 750 /*
751 * __aio_run_iocbs: 751 * __aio_run_iocbs:
752 * Process all pending retries queued on the ioctx 752 * Process all pending retries queued on the ioctx
753 * run list. 753 * run list.
754 * Assumes it is operating within the aio issuer's mm 754 * Assumes it is operating within the aio issuer's mm
755 * context. 755 * context.
756 */ 756 */
757 static int __aio_run_iocbs(struct kioctx *ctx) 757 static int __aio_run_iocbs(struct kioctx *ctx)
758 { 758 {
759 struct kiocb *iocb; 759 struct kiocb *iocb;
760 struct list_head run_list; 760 struct list_head run_list;
761 761
762 assert_spin_locked(&ctx->ctx_lock); 762 assert_spin_locked(&ctx->ctx_lock);
763 763
764 list_replace_init(&ctx->run_list, &run_list); 764 list_replace_init(&ctx->run_list, &run_list);
765 while (!list_empty(&run_list)) { 765 while (!list_empty(&run_list)) {
766 iocb = list_entry(run_list.next, struct kiocb, 766 iocb = list_entry(run_list.next, struct kiocb,
767 ki_run_list); 767 ki_run_list);
768 list_del(&iocb->ki_run_list); 768 list_del(&iocb->ki_run_list);
769 /* 769 /*
770 * Hold an extra reference while retrying i/o. 770 * Hold an extra reference while retrying i/o.
771 */ 771 */
772 iocb->ki_users++; /* grab extra reference */ 772 iocb->ki_users++; /* grab extra reference */
773 aio_run_iocb(iocb); 773 aio_run_iocb(iocb);
774 __aio_put_req(ctx, iocb); 774 __aio_put_req(ctx, iocb);
775 } 775 }
776 if (!list_empty(&ctx->run_list)) 776 if (!list_empty(&ctx->run_list))
777 return 1; 777 return 1;
778 return 0; 778 return 0;
779 } 779 }
780 780
781 static void aio_queue_work(struct kioctx * ctx) 781 static void aio_queue_work(struct kioctx * ctx)
782 { 782 {
783 unsigned long timeout; 783 unsigned long timeout;
784 /* 784 /*
785 * if someone is waiting, get the work started right 785 * if someone is waiting, get the work started right
786 * away, otherwise, use a longer delay 786 * away, otherwise, use a longer delay
787 */ 787 */
788 smp_mb(); 788 smp_mb();
789 if (waitqueue_active(&ctx->wait)) 789 if (waitqueue_active(&ctx->wait))
790 timeout = 1; 790 timeout = 1;
791 else 791 else
792 timeout = HZ/10; 792 timeout = HZ/10;
793 queue_delayed_work(aio_wq, &ctx->wq, timeout); 793 queue_delayed_work(aio_wq, &ctx->wq, timeout);
794 } 794 }
795 795
796 796
797 /* 797 /*
798 * aio_run_iocbs: 798 * aio_run_iocbs:
799 * Process all pending retries queued on the ioctx 799 * Process all pending retries queued on the ioctx
800 * run list. 800 * run list.
801 * Assumes it is operating within the aio issuer's mm 801 * Assumes it is operating within the aio issuer's mm
802 * context. 802 * context.
803 */ 803 */
804 static inline void aio_run_iocbs(struct kioctx *ctx) 804 static inline void aio_run_iocbs(struct kioctx *ctx)
805 { 805 {
806 int requeue; 806 int requeue;
807 807
808 spin_lock_irq(&ctx->ctx_lock); 808 spin_lock_irq(&ctx->ctx_lock);
809 809
810 requeue = __aio_run_iocbs(ctx); 810 requeue = __aio_run_iocbs(ctx);
811 spin_unlock_irq(&ctx->ctx_lock); 811 spin_unlock_irq(&ctx->ctx_lock);
812 if (requeue) 812 if (requeue)
813 aio_queue_work(ctx); 813 aio_queue_work(ctx);
814 } 814 }
815 815
816 /* 816 /*
817 * just like aio_run_iocbs, but keeps running them until 817 * just like aio_run_iocbs, but keeps running them until
818 * the list stays empty 818 * the list stays empty
819 */ 819 */
820 static inline void aio_run_all_iocbs(struct kioctx *ctx) 820 static inline void aio_run_all_iocbs(struct kioctx *ctx)
821 { 821 {
822 spin_lock_irq(&ctx->ctx_lock); 822 spin_lock_irq(&ctx->ctx_lock);
823 while (__aio_run_iocbs(ctx)) 823 while (__aio_run_iocbs(ctx))
824 ; 824 ;
825 spin_unlock_irq(&ctx->ctx_lock); 825 spin_unlock_irq(&ctx->ctx_lock);
826 } 826 }
827 827
828 /* 828 /*
829 * aio_kick_handler: 829 * aio_kick_handler:
830 * Work queue handler triggered to process pending 830 * Work queue handler triggered to process pending
831 * retries on an ioctx. Takes on the aio issuer's 831 * retries on an ioctx. Takes on the aio issuer's
832 * mm context before running the iocbs, so that 832 * mm context before running the iocbs, so that
833 * copy_xxx_user operates on the issuer's address 833 * copy_xxx_user operates on the issuer's address
834 * space. 834 * space.
835 * Run on aiod's context. 835 * Run on aiod's context.
836 */ 836 */
837 static void aio_kick_handler(struct work_struct *work) 837 static void aio_kick_handler(struct work_struct *work)
838 { 838 {
839 struct kioctx *ctx = container_of(work, struct kioctx, wq.work); 839 struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
840 mm_segment_t oldfs = get_fs(); 840 mm_segment_t oldfs = get_fs();
841 struct mm_struct *mm; 841 struct mm_struct *mm;
842 int requeue; 842 int requeue;
843 843
844 set_fs(USER_DS); 844 set_fs(USER_DS);
845 use_mm(ctx->mm); 845 use_mm(ctx->mm);
846 spin_lock_irq(&ctx->ctx_lock); 846 spin_lock_irq(&ctx->ctx_lock);
847 requeue =__aio_run_iocbs(ctx); 847 requeue =__aio_run_iocbs(ctx);
848 mm = ctx->mm; 848 mm = ctx->mm;
849 spin_unlock_irq(&ctx->ctx_lock); 849 spin_unlock_irq(&ctx->ctx_lock);
850 unuse_mm(mm); 850 unuse_mm(mm);
851 set_fs(oldfs); 851 set_fs(oldfs);
852 /* 852 /*
853 * we're in a worker thread already, don't use queue_delayed_work, 853 * we're in a worker thread already, don't use queue_delayed_work,
854 */ 854 */
855 if (requeue) 855 if (requeue)
856 queue_delayed_work(aio_wq, &ctx->wq, 0); 856 queue_delayed_work(aio_wq, &ctx->wq, 0);
857 } 857 }
858 858
859 859
860 /* 860 /*
861 * Called by kick_iocb to queue the kiocb for retry 861 * Called by kick_iocb to queue the kiocb for retry
862 * and if required activate the aio work queue to process 862 * and if required activate the aio work queue to process
863 * it 863 * it
864 */ 864 */
865 static void try_queue_kicked_iocb(struct kiocb *iocb) 865 static void try_queue_kicked_iocb(struct kiocb *iocb)
866 { 866 {
867 struct kioctx *ctx = iocb->ki_ctx; 867 struct kioctx *ctx = iocb->ki_ctx;
868 unsigned long flags; 868 unsigned long flags;
869 int run = 0; 869 int run = 0;
870 870
871 /* We're supposed to be the only path putting the iocb back on the run 871 /* We're supposed to be the only path putting the iocb back on the run
872 * list. If we find that the iocb is *back* on a wait queue already 872 * list. If we find that the iocb is *back* on a wait queue already
873 * than retry has happened before we could queue the iocb. This also 873 * than retry has happened before we could queue the iocb. This also
874 * means that the retry could have completed and freed our iocb, no 874 * means that the retry could have completed and freed our iocb, no
875 * good. */ 875 * good. */
876 BUG_ON((!list_empty(&iocb->ki_wait.task_list))); 876 BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
877 877
878 spin_lock_irqsave(&ctx->ctx_lock, flags); 878 spin_lock_irqsave(&ctx->ctx_lock, flags);
879 /* set this inside the lock so that we can't race with aio_run_iocb() 879 /* set this inside the lock so that we can't race with aio_run_iocb()
880 * testing it and putting the iocb on the run list under the lock */ 880 * testing it and putting the iocb on the run list under the lock */
881 if (!kiocbTryKick(iocb)) 881 if (!kiocbTryKick(iocb))
882 run = __queue_kicked_iocb(iocb); 882 run = __queue_kicked_iocb(iocb);
883 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 883 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
884 if (run) 884 if (run)
885 aio_queue_work(ctx); 885 aio_queue_work(ctx);
886 } 886 }
887 887
888 /* 888 /*
889 * kick_iocb: 889 * kick_iocb:
890 * Called typically from a wait queue callback context 890 * Called typically from a wait queue callback context
891 * (aio_wake_function) to trigger a retry of the iocb. 891 * (aio_wake_function) to trigger a retry of the iocb.
892 * The retry is usually executed by aio workqueue 892 * The retry is usually executed by aio workqueue
893 * threads (See aio_kick_handler). 893 * threads (See aio_kick_handler).
894 */ 894 */
895 void kick_iocb(struct kiocb *iocb) 895 void kick_iocb(struct kiocb *iocb)
896 { 896 {
897 /* sync iocbs are easy: they can only ever be executing from a 897 /* sync iocbs are easy: they can only ever be executing from a
898 * single context. */ 898 * single context. */
899 if (is_sync_kiocb(iocb)) { 899 if (is_sync_kiocb(iocb)) {
900 kiocbSetKicked(iocb); 900 kiocbSetKicked(iocb);
901 wake_up_process(iocb->ki_obj.tsk); 901 wake_up_process(iocb->ki_obj.tsk);
902 return; 902 return;
903 } 903 }
904 904
905 try_queue_kicked_iocb(iocb); 905 try_queue_kicked_iocb(iocb);
906 } 906 }
907 EXPORT_SYMBOL(kick_iocb); 907 EXPORT_SYMBOL(kick_iocb);
908 908
909 /* aio_complete 909 /* aio_complete
910 * Called when the io request on the given iocb is complete. 910 * Called when the io request on the given iocb is complete.
911 * Returns true if this is the last user of the request. The 911 * Returns true if this is the last user of the request. The
912 * only other user of the request can be the cancellation code. 912 * only other user of the request can be the cancellation code.
913 */ 913 */
914 int aio_complete(struct kiocb *iocb, long res, long res2) 914 int aio_complete(struct kiocb *iocb, long res, long res2)
915 { 915 {
916 struct kioctx *ctx = iocb->ki_ctx; 916 struct kioctx *ctx = iocb->ki_ctx;
917 struct aio_ring_info *info; 917 struct aio_ring_info *info;
918 struct aio_ring *ring; 918 struct aio_ring *ring;
919 struct io_event *event; 919 struct io_event *event;
920 unsigned long flags; 920 unsigned long flags;
921 unsigned long tail; 921 unsigned long tail;
922 int ret; 922 int ret;
923 923
924 /* 924 /*
925 * Special case handling for sync iocbs: 925 * Special case handling for sync iocbs:
926 * - events go directly into the iocb for fast handling 926 * - events go directly into the iocb for fast handling
927 * - the sync task with the iocb in its stack holds the single iocb 927 * - the sync task with the iocb in its stack holds the single iocb
928 * ref, no other paths have a way to get another ref 928 * ref, no other paths have a way to get another ref
929 * - the sync task helpfully left a reference to itself in the iocb 929 * - the sync task helpfully left a reference to itself in the iocb
930 */ 930 */
931 if (is_sync_kiocb(iocb)) { 931 if (is_sync_kiocb(iocb)) {
932 BUG_ON(iocb->ki_users != 1); 932 BUG_ON(iocb->ki_users != 1);
933 iocb->ki_user_data = res; 933 iocb->ki_user_data = res;
934 iocb->ki_users = 0; 934 iocb->ki_users = 0;
935 wake_up_process(iocb->ki_obj.tsk); 935 wake_up_process(iocb->ki_obj.tsk);
936 return 1; 936 return 1;
937 } 937 }
938 938
939 /* 939 /*
940 * Check if the user asked us to deliver the result through an 940 * Check if the user asked us to deliver the result through an
941 * eventfd. The eventfd_signal() function is safe to be called 941 * eventfd. The eventfd_signal() function is safe to be called
942 * from IRQ context. 942 * from IRQ context.
943 */ 943 */
944 if (!IS_ERR(iocb->ki_eventfd)) 944 if (!IS_ERR(iocb->ki_eventfd))
945 eventfd_signal(iocb->ki_eventfd, 1); 945 eventfd_signal(iocb->ki_eventfd, 1);
946 946
947 info = &ctx->ring_info; 947 info = &ctx->ring_info;
948 948
949 /* add a completion event to the ring buffer. 949 /* add a completion event to the ring buffer.
950 * must be done holding ctx->ctx_lock to prevent 950 * must be done holding ctx->ctx_lock to prevent
951 * other code from messing with the tail 951 * other code from messing with the tail
952 * pointer since we might be called from irq 952 * pointer since we might be called from irq
953 * context. 953 * context.
954 */ 954 */
955 spin_lock_irqsave(&ctx->ctx_lock, flags); 955 spin_lock_irqsave(&ctx->ctx_lock, flags);
956 956
957 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) 957 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
958 list_del_init(&iocb->ki_run_list); 958 list_del_init(&iocb->ki_run_list);
959 959
960 /* 960 /*
961 * cancelled requests don't get events, userland was given one 961 * cancelled requests don't get events, userland was given one
962 * when the event got cancelled. 962 * when the event got cancelled.
963 */ 963 */
964 if (kiocbIsCancelled(iocb)) 964 if (kiocbIsCancelled(iocb))
965 goto put_rq; 965 goto put_rq;
966 966
967 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); 967 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
968 968
969 tail = info->tail; 969 tail = info->tail;
970 event = aio_ring_event(info, tail, KM_IRQ0); 970 event = aio_ring_event(info, tail, KM_IRQ0);
971 if (++tail >= info->nr) 971 if (++tail >= info->nr)
972 tail = 0; 972 tail = 0;
973 973
974 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 974 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
975 event->data = iocb->ki_user_data; 975 event->data = iocb->ki_user_data;
976 event->res = res; 976 event->res = res;
977 event->res2 = res2; 977 event->res2 = res2;
978 978
979 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", 979 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
980 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 980 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
981 res, res2); 981 res, res2);
982 982
983 /* after flagging the request as done, we 983 /* after flagging the request as done, we
984 * must never even look at it again 984 * must never even look at it again
985 */ 985 */
986 smp_wmb(); /* make event visible before updating tail */ 986 smp_wmb(); /* make event visible before updating tail */
987 987
988 info->tail = tail; 988 info->tail = tail;
989 ring->tail = tail; 989 ring->tail = tail;
990 990
991 put_aio_ring_event(event, KM_IRQ0); 991 put_aio_ring_event(event, KM_IRQ0);
992 kunmap_atomic(ring, KM_IRQ1); 992 kunmap_atomic(ring, KM_IRQ1);
993 993
994 pr_debug("added to ring %p at [%lu]\n", iocb, tail); 994 pr_debug("added to ring %p at [%lu]\n", iocb, tail);
995 put_rq: 995 put_rq:
996 /* everything turned out well, dispose of the aiocb. */ 996 /* everything turned out well, dispose of the aiocb. */
997 ret = __aio_put_req(ctx, iocb); 997 ret = __aio_put_req(ctx, iocb);
998 998
999 /* 999 /*
1000 * We have to order our ring_info tail store above and test 1000 * We have to order our ring_info tail store above and test
1001 * of the wait list below outside the wait lock. This is 1001 * of the wait list below outside the wait lock. This is
1002 * like in wake_up_bit() where clearing a bit has to be 1002 * like in wake_up_bit() where clearing a bit has to be
1003 * ordered with the unlocked test. 1003 * ordered with the unlocked test.
1004 */ 1004 */
1005 smp_mb(); 1005 smp_mb();
1006 1006
1007 if (waitqueue_active(&ctx->wait)) 1007 if (waitqueue_active(&ctx->wait))
1008 wake_up(&ctx->wait); 1008 wake_up(&ctx->wait);
1009 1009
1010 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1010 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1011 return ret; 1011 return ret;
1012 } 1012 }
1013 1013
1014 /* aio_read_evt 1014 /* aio_read_evt
1015 * Pull an event off of the ioctx's event ring. Returns the number of 1015 * Pull an event off of the ioctx's event ring. Returns the number of
1016 * events fetched (0 or 1 ;-) 1016 * events fetched (0 or 1 ;-)
1017 * FIXME: make this use cmpxchg. 1017 * FIXME: make this use cmpxchg.
1018 * TODO: make the ringbuffer user mmap()able (requires FIXME). 1018 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1019 */ 1019 */
1020 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) 1020 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1021 { 1021 {
1022 struct aio_ring_info *info = &ioctx->ring_info; 1022 struct aio_ring_info *info = &ioctx->ring_info;
1023 struct aio_ring *ring; 1023 struct aio_ring *ring;
1024 unsigned long head; 1024 unsigned long head;
1025 int ret = 0; 1025 int ret = 0;
1026 1026
1027 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 1027 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1028 dprintk("in aio_read_evt h%lu t%lu m%lu\n", 1028 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1029 (unsigned long)ring->head, (unsigned long)ring->tail, 1029 (unsigned long)ring->head, (unsigned long)ring->tail,
1030 (unsigned long)ring->nr); 1030 (unsigned long)ring->nr);
1031 1031
1032 if (ring->head == ring->tail) 1032 if (ring->head == ring->tail)
1033 goto out; 1033 goto out;
1034 1034
1035 spin_lock(&info->ring_lock); 1035 spin_lock(&info->ring_lock);
1036 1036
1037 head = ring->head % info->nr; 1037 head = ring->head % info->nr;
1038 if (head != ring->tail) { 1038 if (head != ring->tail) {
1039 struct io_event *evp = aio_ring_event(info, head, KM_USER1); 1039 struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1040 *ent = *evp; 1040 *ent = *evp;
1041 head = (head + 1) % info->nr; 1041 head = (head + 1) % info->nr;
1042 smp_mb(); /* finish reading the event before updatng the head */ 1042 smp_mb(); /* finish reading the event before updatng the head */
1043 ring->head = head; 1043 ring->head = head;
1044 ret = 1; 1044 ret = 1;
1045 put_aio_ring_event(evp, KM_USER1); 1045 put_aio_ring_event(evp, KM_USER1);
1046 } 1046 }
1047 spin_unlock(&info->ring_lock); 1047 spin_unlock(&info->ring_lock);
1048 1048
1049 out: 1049 out:
1050 kunmap_atomic(ring, KM_USER0); 1050 kunmap_atomic(ring, KM_USER0);
1051 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, 1051 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1052 (unsigned long)ring->head, (unsigned long)ring->tail); 1052 (unsigned long)ring->head, (unsigned long)ring->tail);
1053 return ret; 1053 return ret;
1054 } 1054 }
1055 1055
1056 struct aio_timeout { 1056 struct aio_timeout {
1057 struct timer_list timer; 1057 struct timer_list timer;
1058 int timed_out; 1058 int timed_out;
1059 struct task_struct *p; 1059 struct task_struct *p;
1060 }; 1060 };
1061 1061
1062 static void timeout_func(unsigned long data) 1062 static void timeout_func(unsigned long data)
1063 { 1063 {
1064 struct aio_timeout *to = (struct aio_timeout *)data; 1064 struct aio_timeout *to = (struct aio_timeout *)data;
1065 1065
1066 to->timed_out = 1; 1066 to->timed_out = 1;
1067 wake_up_process(to->p); 1067 wake_up_process(to->p);
1068 } 1068 }
1069 1069
1070 static inline void init_timeout(struct aio_timeout *to) 1070 static inline void init_timeout(struct aio_timeout *to)
1071 { 1071 {
1072 init_timer(&to->timer); 1072 init_timer(&to->timer);
1073 to->timer.data = (unsigned long)to; 1073 to->timer.data = (unsigned long)to;
1074 to->timer.function = timeout_func; 1074 to->timer.function = timeout_func;
1075 to->timed_out = 0; 1075 to->timed_out = 0;
1076 to->p = current; 1076 to->p = current;
1077 } 1077 }
1078 1078
1079 static inline void set_timeout(long start_jiffies, struct aio_timeout *to, 1079 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1080 const struct timespec *ts) 1080 const struct timespec *ts)
1081 { 1081 {
1082 to->timer.expires = start_jiffies + timespec_to_jiffies(ts); 1082 to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1083 if (time_after(to->timer.expires, jiffies)) 1083 if (time_after(to->timer.expires, jiffies))
1084 add_timer(&to->timer); 1084 add_timer(&to->timer);
1085 else 1085 else
1086 to->timed_out = 1; 1086 to->timed_out = 1;
1087 } 1087 }
1088 1088
1089 static inline void clear_timeout(struct aio_timeout *to) 1089 static inline void clear_timeout(struct aio_timeout *to)
1090 { 1090 {
1091 del_singleshot_timer_sync(&to->timer); 1091 del_singleshot_timer_sync(&to->timer);
1092 } 1092 }
1093 1093
1094 static int read_events(struct kioctx *ctx, 1094 static int read_events(struct kioctx *ctx,
1095 long min_nr, long nr, 1095 long min_nr, long nr,
1096 struct io_event __user *event, 1096 struct io_event __user *event,
1097 struct timespec __user *timeout) 1097 struct timespec __user *timeout)
1098 { 1098 {
1099 long start_jiffies = jiffies; 1099 long start_jiffies = jiffies;
1100 struct task_struct *tsk = current; 1100 struct task_struct *tsk = current;
1101 DECLARE_WAITQUEUE(wait, tsk); 1101 DECLARE_WAITQUEUE(wait, tsk);
1102 int ret; 1102 int ret;
1103 int i = 0; 1103 int i = 0;
1104 struct io_event ent; 1104 struct io_event ent;
1105 struct aio_timeout to; 1105 struct aio_timeout to;
1106 int retry = 0; 1106 int retry = 0;
1107 1107
1108 /* needed to zero any padding within an entry (there shouldn't be 1108 /* needed to zero any padding within an entry (there shouldn't be
1109 * any, but C is fun! 1109 * any, but C is fun!
1110 */ 1110 */
1111 memset(&ent, 0, sizeof(ent)); 1111 memset(&ent, 0, sizeof(ent));
1112 retry: 1112 retry:
1113 ret = 0; 1113 ret = 0;
1114 while (likely(i < nr)) { 1114 while (likely(i < nr)) {
1115 ret = aio_read_evt(ctx, &ent); 1115 ret = aio_read_evt(ctx, &ent);
1116 if (unlikely(ret <= 0)) 1116 if (unlikely(ret <= 0))
1117 break; 1117 break;
1118 1118
1119 dprintk("read event: %Lx %Lx %Lx %Lx\n", 1119 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1120 ent.data, ent.obj, ent.res, ent.res2); 1120 ent.data, ent.obj, ent.res, ent.res2);
1121 1121
1122 /* Could we split the check in two? */ 1122 /* Could we split the check in two? */
1123 ret = -EFAULT; 1123 ret = -EFAULT;
1124 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1124 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1125 dprintk("aio: lost an event due to EFAULT.\n"); 1125 dprintk("aio: lost an event due to EFAULT.\n");
1126 break; 1126 break;
1127 } 1127 }
1128 ret = 0; 1128 ret = 0;
1129 1129
1130 /* Good, event copied to userland, update counts. */ 1130 /* Good, event copied to userland, update counts. */
1131 event ++; 1131 event ++;
1132 i ++; 1132 i ++;
1133 } 1133 }
1134 1134
1135 if (min_nr <= i) 1135 if (min_nr <= i)
1136 return i; 1136 return i;
1137 if (ret) 1137 if (ret)
1138 return ret; 1138 return ret;
1139 1139
1140 /* End fast path */ 1140 /* End fast path */
1141 1141
1142 /* racey check, but it gets redone */ 1142 /* racey check, but it gets redone */
1143 if (!retry && unlikely(!list_empty(&ctx->run_list))) { 1143 if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1144 retry = 1; 1144 retry = 1;
1145 aio_run_all_iocbs(ctx); 1145 aio_run_all_iocbs(ctx);
1146 goto retry; 1146 goto retry;
1147 } 1147 }
1148 1148
1149 init_timeout(&to); 1149 init_timeout(&to);
1150 if (timeout) { 1150 if (timeout) {
1151 struct timespec ts; 1151 struct timespec ts;
1152 ret = -EFAULT; 1152 ret = -EFAULT;
1153 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1153 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1154 goto out; 1154 goto out;
1155 1155
1156 set_timeout(start_jiffies, &to, &ts); 1156 set_timeout(start_jiffies, &to, &ts);
1157 } 1157 }
1158 1158
1159 while (likely(i < nr)) { 1159 while (likely(i < nr)) {
1160 add_wait_queue_exclusive(&ctx->wait, &wait); 1160 add_wait_queue_exclusive(&ctx->wait, &wait);
1161 do { 1161 do {
1162 set_task_state(tsk, TASK_INTERRUPTIBLE); 1162 set_task_state(tsk, TASK_INTERRUPTIBLE);
1163 ret = aio_read_evt(ctx, &ent); 1163 ret = aio_read_evt(ctx, &ent);
1164 if (ret) 1164 if (ret)
1165 break; 1165 break;
1166 if (min_nr <= i) 1166 if (min_nr <= i)
1167 break; 1167 break;
1168 ret = 0; 1168 ret = 0;
1169 if (to.timed_out) /* Only check after read evt */ 1169 if (to.timed_out) /* Only check after read evt */
1170 break; 1170 break;
1171 /* Try to only show up in io wait if there are ops 1171 /* Try to only show up in io wait if there are ops
1172 * in flight */ 1172 * in flight */
1173 if (ctx->reqs_active) 1173 if (ctx->reqs_active)
1174 io_schedule(); 1174 io_schedule();
1175 else 1175 else
1176 schedule(); 1176 schedule();
1177 if (signal_pending(tsk)) { 1177 if (signal_pending(tsk)) {
1178 ret = -EINTR; 1178 ret = -EINTR;
1179 break; 1179 break;
1180 } 1180 }
1181 /*ret = aio_read_evt(ctx, &ent);*/ 1181 /*ret = aio_read_evt(ctx, &ent);*/
1182 } while (1) ; 1182 } while (1) ;
1183 1183
1184 set_task_state(tsk, TASK_RUNNING); 1184 set_task_state(tsk, TASK_RUNNING);
1185 remove_wait_queue(&ctx->wait, &wait); 1185 remove_wait_queue(&ctx->wait, &wait);
1186 1186
1187 if (unlikely(ret <= 0)) 1187 if (unlikely(ret <= 0))
1188 break; 1188 break;
1189 1189
1190 ret = -EFAULT; 1190 ret = -EFAULT;
1191 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1191 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1192 dprintk("aio: lost an event due to EFAULT.\n"); 1192 dprintk("aio: lost an event due to EFAULT.\n");
1193 break; 1193 break;
1194 } 1194 }
1195 1195
1196 /* Good, event copied to userland, update counts. */ 1196 /* Good, event copied to userland, update counts. */
1197 event ++; 1197 event ++;
1198 i ++; 1198 i ++;
1199 } 1199 }
1200 1200
1201 if (timeout) 1201 if (timeout)
1202 clear_timeout(&to); 1202 clear_timeout(&to);
1203 out: 1203 out:
1204 return i ? i : ret; 1204 return i ? i : ret;
1205 } 1205 }
1206 1206
1207 /* Take an ioctx and remove it from the list of ioctx's. Protects 1207 /* Take an ioctx and remove it from the list of ioctx's. Protects
1208 * against races with itself via ->dead. 1208 * against races with itself via ->dead.
1209 */ 1209 */
1210 static void io_destroy(struct kioctx *ioctx) 1210 static void io_destroy(struct kioctx *ioctx)
1211 { 1211 {
1212 struct mm_struct *mm = current->mm; 1212 struct mm_struct *mm = current->mm;
1213 struct kioctx **tmp; 1213 struct kioctx **tmp;
1214 int was_dead; 1214 int was_dead;
1215 1215
1216 /* delete the entry from the list is someone else hasn't already */ 1216 /* delete the entry from the list is someone else hasn't already */
1217 write_lock(&mm->ioctx_list_lock); 1217 write_lock(&mm->ioctx_list_lock);
1218 was_dead = ioctx->dead; 1218 was_dead = ioctx->dead;
1219 ioctx->dead = 1; 1219 ioctx->dead = 1;
1220 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx; 1220 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1221 tmp = &(*tmp)->next) 1221 tmp = &(*tmp)->next)
1222 ; 1222 ;
1223 if (*tmp) 1223 if (*tmp)
1224 *tmp = ioctx->next; 1224 *tmp = ioctx->next;
1225 write_unlock(&mm->ioctx_list_lock); 1225 write_unlock(&mm->ioctx_list_lock);
1226 1226
1227 dprintk("aio_release(%p)\n", ioctx); 1227 dprintk("aio_release(%p)\n", ioctx);
1228 if (likely(!was_dead)) 1228 if (likely(!was_dead))
1229 put_ioctx(ioctx); /* twice for the list */ 1229 put_ioctx(ioctx); /* twice for the list */
1230 1230
1231 aio_cancel_all(ioctx); 1231 aio_cancel_all(ioctx);
1232 wait_for_all_aios(ioctx); 1232 wait_for_all_aios(ioctx);
1233 put_ioctx(ioctx); /* once for the lookup */ 1233 put_ioctx(ioctx); /* once for the lookup */
1234 } 1234 }
1235 1235
1236 /* sys_io_setup: 1236 /* sys_io_setup:
1237 * Create an aio_context capable of receiving at least nr_events. 1237 * Create an aio_context capable of receiving at least nr_events.
1238 * ctxp must not point to an aio_context that already exists, and 1238 * ctxp must not point to an aio_context that already exists, and
1239 * must be initialized to 0 prior to the call. On successful 1239 * must be initialized to 0 prior to the call. On successful
1240 * creation of the aio_context, *ctxp is filled in with the resulting 1240 * creation of the aio_context, *ctxp is filled in with the resulting
1241 * handle. May fail with -EINVAL if *ctxp is not initialized, 1241 * handle. May fail with -EINVAL if *ctxp is not initialized,
1242 * if the specified nr_events exceeds internal limits. May fail 1242 * if the specified nr_events exceeds internal limits. May fail
1243 * with -EAGAIN if the specified nr_events exceeds the user's limit 1243 * with -EAGAIN if the specified nr_events exceeds the user's limit
1244 * of available events. May fail with -ENOMEM if insufficient kernel 1244 * of available events. May fail with -ENOMEM if insufficient kernel
1245 * resources are available. May fail with -EFAULT if an invalid 1245 * resources are available. May fail with -EFAULT if an invalid
1246 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1246 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1247 * implemented. 1247 * implemented.
1248 */ 1248 */
1249 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp) 1249 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1250 { 1250 {
1251 struct kioctx *ioctx = NULL; 1251 struct kioctx *ioctx = NULL;
1252 unsigned long ctx; 1252 unsigned long ctx;
1253 long ret; 1253 long ret;
1254 1254
1255 ret = get_user(ctx, ctxp); 1255 ret = get_user(ctx, ctxp);
1256 if (unlikely(ret)) 1256 if (unlikely(ret))
1257 goto out; 1257 goto out;
1258 1258
1259 ret = -EINVAL; 1259 ret = -EINVAL;
1260 if (unlikely(ctx || nr_events == 0)) { 1260 if (unlikely(ctx || nr_events == 0)) {
1261 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1261 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1262 ctx, nr_events); 1262 ctx, nr_events);
1263 goto out; 1263 goto out;
1264 } 1264 }
1265 1265
1266 ioctx = ioctx_alloc(nr_events); 1266 ioctx = ioctx_alloc(nr_events);
1267 ret = PTR_ERR(ioctx); 1267 ret = PTR_ERR(ioctx);
1268 if (!IS_ERR(ioctx)) { 1268 if (!IS_ERR(ioctx)) {
1269 ret = put_user(ioctx->user_id, ctxp); 1269 ret = put_user(ioctx->user_id, ctxp);
1270 if (!ret) 1270 if (!ret)
1271 return 0; 1271 return 0;
1272 1272
1273 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */ 1273 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1274 io_destroy(ioctx); 1274 io_destroy(ioctx);
1275 } 1275 }
1276 1276
1277 out: 1277 out:
1278 return ret; 1278 return ret;
1279 } 1279 }
1280 1280
1281 /* sys_io_destroy: 1281 /* sys_io_destroy:
1282 * Destroy the aio_context specified. May cancel any outstanding 1282 * Destroy the aio_context specified. May cancel any outstanding
1283 * AIOs and block on completion. Will fail with -ENOSYS if not 1283 * AIOs and block on completion. Will fail with -ENOSYS if not
1284 * implemented. May fail with -EFAULT if the context pointed to 1284 * implemented. May fail with -EFAULT if the context pointed to
1285 * is invalid. 1285 * is invalid.
1286 */ 1286 */
1287 asmlinkage long sys_io_destroy(aio_context_t ctx) 1287 asmlinkage long sys_io_destroy(aio_context_t ctx)
1288 { 1288 {
1289 struct kioctx *ioctx = lookup_ioctx(ctx); 1289 struct kioctx *ioctx = lookup_ioctx(ctx);
1290 if (likely(NULL != ioctx)) { 1290 if (likely(NULL != ioctx)) {
1291 io_destroy(ioctx); 1291 io_destroy(ioctx);
1292 return 0; 1292 return 0;
1293 } 1293 }
1294 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1294 pr_debug("EINVAL: io_destroy: invalid context id\n");
1295 return -EINVAL; 1295 return -EINVAL;
1296 } 1296 }
1297 1297
1298 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) 1298 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1299 { 1299 {
1300 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; 1300 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1301 1301
1302 BUG_ON(ret <= 0); 1302 BUG_ON(ret <= 0);
1303 1303
1304 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { 1304 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1305 ssize_t this = min((ssize_t)iov->iov_len, ret); 1305 ssize_t this = min((ssize_t)iov->iov_len, ret);
1306 iov->iov_base += this; 1306 iov->iov_base += this;
1307 iov->iov_len -= this; 1307 iov->iov_len -= this;
1308 iocb->ki_left -= this; 1308 iocb->ki_left -= this;
1309 ret -= this; 1309 ret -= this;
1310 if (iov->iov_len == 0) { 1310 if (iov->iov_len == 0) {
1311 iocb->ki_cur_seg++; 1311 iocb->ki_cur_seg++;
1312 iov++; 1312 iov++;
1313 } 1313 }
1314 } 1314 }
1315 1315
1316 /* the caller should not have done more io than what fit in 1316 /* the caller should not have done more io than what fit in
1317 * the remaining iovecs */ 1317 * the remaining iovecs */
1318 BUG_ON(ret > 0 && iocb->ki_left == 0); 1318 BUG_ON(ret > 0 && iocb->ki_left == 0);
1319 } 1319 }
1320 1320
1321 static ssize_t aio_rw_vect_retry(struct kiocb *iocb) 1321 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1322 { 1322 {
1323 struct file *file = iocb->ki_filp; 1323 struct file *file = iocb->ki_filp;
1324 struct address_space *mapping = file->f_mapping; 1324 struct address_space *mapping = file->f_mapping;
1325 struct inode *inode = mapping->host; 1325 struct inode *inode = mapping->host;
1326 ssize_t (*rw_op)(struct kiocb *, const struct iovec *, 1326 ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1327 unsigned long, loff_t); 1327 unsigned long, loff_t);
1328 ssize_t ret = 0; 1328 ssize_t ret = 0;
1329 unsigned short opcode; 1329 unsigned short opcode;
1330 1330
1331 if ((iocb->ki_opcode == IOCB_CMD_PREADV) || 1331 if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1332 (iocb->ki_opcode == IOCB_CMD_PREAD)) { 1332 (iocb->ki_opcode == IOCB_CMD_PREAD)) {
1333 rw_op = file->f_op->aio_read; 1333 rw_op = file->f_op->aio_read;
1334 opcode = IOCB_CMD_PREADV; 1334 opcode = IOCB_CMD_PREADV;
1335 } else { 1335 } else {
1336 rw_op = file->f_op->aio_write; 1336 rw_op = file->f_op->aio_write;
1337 opcode = IOCB_CMD_PWRITEV; 1337 opcode = IOCB_CMD_PWRITEV;
1338 } 1338 }
1339 1339
1340 /* This matches the pread()/pwrite() logic */ 1340 /* This matches the pread()/pwrite() logic */
1341 if (iocb->ki_pos < 0) 1341 if (iocb->ki_pos < 0)
1342 return -EINVAL; 1342 return -EINVAL;
1343 1343
1344 do { 1344 do {
1345 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], 1345 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1346 iocb->ki_nr_segs - iocb->ki_cur_seg, 1346 iocb->ki_nr_segs - iocb->ki_cur_seg,
1347 iocb->ki_pos); 1347 iocb->ki_pos);
1348 if (ret > 0) 1348 if (ret > 0)
1349 aio_advance_iovec(iocb, ret); 1349 aio_advance_iovec(iocb, ret);
1350 1350
1351 /* retry all partial writes. retry partial reads as long as its a 1351 /* retry all partial writes. retry partial reads as long as its a
1352 * regular file. */ 1352 * regular file. */
1353 } while (ret > 0 && iocb->ki_left > 0 && 1353 } while (ret > 0 && iocb->ki_left > 0 &&
1354 (opcode == IOCB_CMD_PWRITEV || 1354 (opcode == IOCB_CMD_PWRITEV ||
1355 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); 1355 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1356 1356
1357 /* This means we must have transferred all that we could */ 1357 /* This means we must have transferred all that we could */
1358 /* No need to retry anymore */ 1358 /* No need to retry anymore */
1359 if ((ret == 0) || (iocb->ki_left == 0)) 1359 if ((ret == 0) || (iocb->ki_left == 0))
1360 ret = iocb->ki_nbytes - iocb->ki_left; 1360 ret = iocb->ki_nbytes - iocb->ki_left;
1361 1361
1362 /* If we managed to write some out we return that, rather than 1362 /* If we managed to write some out we return that, rather than
1363 * the eventual error. */ 1363 * the eventual error. */
1364 if (opcode == IOCB_CMD_PWRITEV 1364 if (opcode == IOCB_CMD_PWRITEV
1365 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY 1365 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1366 && iocb->ki_nbytes - iocb->ki_left) 1366 && iocb->ki_nbytes - iocb->ki_left)
1367 ret = iocb->ki_nbytes - iocb->ki_left; 1367 ret = iocb->ki_nbytes - iocb->ki_left;
1368 1368
1369 return ret; 1369 return ret;
1370 } 1370 }
1371 1371
1372 static ssize_t aio_fdsync(struct kiocb *iocb) 1372 static ssize_t aio_fdsync(struct kiocb *iocb)
1373 { 1373 {
1374 struct file *file = iocb->ki_filp; 1374 struct file *file = iocb->ki_filp;
1375 ssize_t ret = -EINVAL; 1375 ssize_t ret = -EINVAL;
1376 1376
1377 if (file->f_op->aio_fsync) 1377 if (file->f_op->aio_fsync)
1378 ret = file->f_op->aio_fsync(iocb, 1); 1378 ret = file->f_op->aio_fsync(iocb, 1);
1379 return ret; 1379 return ret;
1380 } 1380 }
1381 1381
1382 static ssize_t aio_fsync(struct kiocb *iocb) 1382 static ssize_t aio_fsync(struct kiocb *iocb)
1383 { 1383 {
1384 struct file *file = iocb->ki_filp; 1384 struct file *file = iocb->ki_filp;
1385 ssize_t ret = -EINVAL; 1385 ssize_t ret = -EINVAL;
1386 1386
1387 if (file->f_op->aio_fsync) 1387 if (file->f_op->aio_fsync)
1388 ret = file->f_op->aio_fsync(iocb, 0); 1388 ret = file->f_op->aio_fsync(iocb, 0);
1389 return ret; 1389 return ret;
1390 } 1390 }
1391 1391
1392 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb) 1392 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1393 { 1393 {
1394 ssize_t ret; 1394 ssize_t ret;
1395 1395
1396 ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf, 1396 ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1397 kiocb->ki_nbytes, 1, 1397 kiocb->ki_nbytes, 1,
1398 &kiocb->ki_inline_vec, &kiocb->ki_iovec); 1398 &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1399 if (ret < 0) 1399 if (ret < 0)
1400 goto out; 1400 goto out;
1401 1401
1402 kiocb->ki_nr_segs = kiocb->ki_nbytes; 1402 kiocb->ki_nr_segs = kiocb->ki_nbytes;
1403 kiocb->ki_cur_seg = 0; 1403 kiocb->ki_cur_seg = 0;
1404 /* ki_nbytes/left now reflect bytes instead of segs */ 1404 /* ki_nbytes/left now reflect bytes instead of segs */
1405 kiocb->ki_nbytes = ret; 1405 kiocb->ki_nbytes = ret;
1406 kiocb->ki_left = ret; 1406 kiocb->ki_left = ret;
1407 1407
1408 ret = 0; 1408 ret = 0;
1409 out: 1409 out:
1410 return ret; 1410 return ret;
1411 } 1411 }
1412 1412
1413 static ssize_t aio_setup_single_vector(struct kiocb *kiocb) 1413 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1414 { 1414 {
1415 kiocb->ki_iovec = &kiocb->ki_inline_vec; 1415 kiocb->ki_iovec = &kiocb->ki_inline_vec;
1416 kiocb->ki_iovec->iov_base = kiocb->ki_buf; 1416 kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1417 kiocb->ki_iovec->iov_len = kiocb->ki_left; 1417 kiocb->ki_iovec->iov_len = kiocb->ki_left;
1418 kiocb->ki_nr_segs = 1; 1418 kiocb->ki_nr_segs = 1;
1419 kiocb->ki_cur_seg = 0; 1419 kiocb->ki_cur_seg = 0;
1420 return 0; 1420 return 0;
1421 } 1421 }
1422 1422
1423 /* 1423 /*
1424 * aio_setup_iocb: 1424 * aio_setup_iocb:
1425 * Performs the initial checks and aio retry method 1425 * Performs the initial checks and aio retry method
1426 * setup for the kiocb at the time of io submission. 1426 * setup for the kiocb at the time of io submission.
1427 */ 1427 */
1428 static ssize_t aio_setup_iocb(struct kiocb *kiocb) 1428 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1429 { 1429 {
1430 struct file *file = kiocb->ki_filp; 1430 struct file *file = kiocb->ki_filp;
1431 ssize_t ret = 0; 1431 ssize_t ret = 0;
1432 1432
1433 switch (kiocb->ki_opcode) { 1433 switch (kiocb->ki_opcode) {
1434 case IOCB_CMD_PREAD: 1434 case IOCB_CMD_PREAD:
1435 ret = -EBADF; 1435 ret = -EBADF;
1436 if (unlikely(!(file->f_mode & FMODE_READ))) 1436 if (unlikely(!(file->f_mode & FMODE_READ)))
1437 break; 1437 break;
1438 ret = -EFAULT; 1438 ret = -EFAULT;
1439 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, 1439 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1440 kiocb->ki_left))) 1440 kiocb->ki_left)))
1441 break; 1441 break;
1442 ret = security_file_permission(file, MAY_READ); 1442 ret = security_file_permission(file, MAY_READ);
1443 if (unlikely(ret)) 1443 if (unlikely(ret))
1444 break; 1444 break;
1445 ret = aio_setup_single_vector(kiocb); 1445 ret = aio_setup_single_vector(kiocb);
1446 if (ret) 1446 if (ret)
1447 break; 1447 break;
1448 ret = -EINVAL; 1448 ret = -EINVAL;
1449 if (file->f_op->aio_read) 1449 if (file->f_op->aio_read)
1450 kiocb->ki_retry = aio_rw_vect_retry; 1450 kiocb->ki_retry = aio_rw_vect_retry;
1451 break; 1451 break;
1452 case IOCB_CMD_PWRITE: 1452 case IOCB_CMD_PWRITE:
1453 ret = -EBADF; 1453 ret = -EBADF;
1454 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1454 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1455 break; 1455 break;
1456 ret = -EFAULT; 1456 ret = -EFAULT;
1457 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, 1457 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1458 kiocb->ki_left))) 1458 kiocb->ki_left)))
1459 break; 1459 break;
1460 ret = security_file_permission(file, MAY_WRITE); 1460 ret = security_file_permission(file, MAY_WRITE);
1461 if (unlikely(ret)) 1461 if (unlikely(ret))
1462 break; 1462 break;
1463 ret = aio_setup_single_vector(kiocb); 1463 ret = aio_setup_single_vector(kiocb);
1464 if (ret) 1464 if (ret)
1465 break; 1465 break;
1466 ret = -EINVAL; 1466 ret = -EINVAL;
1467 if (file->f_op->aio_write) 1467 if (file->f_op->aio_write)
1468 kiocb->ki_retry = aio_rw_vect_retry; 1468 kiocb->ki_retry = aio_rw_vect_retry;
1469 break; 1469 break;
1470 case IOCB_CMD_PREADV: 1470 case IOCB_CMD_PREADV:
1471 ret = -EBADF; 1471 ret = -EBADF;
1472 if (unlikely(!(file->f_mode & FMODE_READ))) 1472 if (unlikely(!(file->f_mode & FMODE_READ)))
1473 break; 1473 break;
1474 ret = security_file_permission(file, MAY_READ); 1474 ret = security_file_permission(file, MAY_READ);
1475 if (unlikely(ret)) 1475 if (unlikely(ret))
1476 break; 1476 break;
1477 ret = aio_setup_vectored_rw(READ, kiocb); 1477 ret = aio_setup_vectored_rw(READ, kiocb);
1478 if (ret) 1478 if (ret)
1479 break; 1479 break;
1480 ret = -EINVAL; 1480 ret = -EINVAL;
1481 if (file->f_op->aio_read) 1481 if (file->f_op->aio_read)
1482 kiocb->ki_retry = aio_rw_vect_retry; 1482 kiocb->ki_retry = aio_rw_vect_retry;
1483 break; 1483 break;
1484 case IOCB_CMD_PWRITEV: 1484 case IOCB_CMD_PWRITEV:
1485 ret = -EBADF; 1485 ret = -EBADF;
1486 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1486 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1487 break; 1487 break;
1488 ret = security_file_permission(file, MAY_WRITE); 1488 ret = security_file_permission(file, MAY_WRITE);
1489 if (unlikely(ret)) 1489 if (unlikely(ret))
1490 break; 1490 break;
1491 ret = aio_setup_vectored_rw(WRITE, kiocb); 1491 ret = aio_setup_vectored_rw(WRITE, kiocb);
1492 if (ret) 1492 if (ret)
1493 break; 1493 break;
1494 ret = -EINVAL; 1494 ret = -EINVAL;
1495 if (file->f_op->aio_write) 1495 if (file->f_op->aio_write)
1496 kiocb->ki_retry = aio_rw_vect_retry; 1496 kiocb->ki_retry = aio_rw_vect_retry;
1497 break; 1497 break;
1498 case IOCB_CMD_FDSYNC: 1498 case IOCB_CMD_FDSYNC:
1499 ret = -EINVAL; 1499 ret = -EINVAL;
1500 if (file->f_op->aio_fsync) 1500 if (file->f_op->aio_fsync)
1501 kiocb->ki_retry = aio_fdsync; 1501 kiocb->ki_retry = aio_fdsync;
1502 break; 1502 break;
1503 case IOCB_CMD_FSYNC: 1503 case IOCB_CMD_FSYNC:
1504 ret = -EINVAL; 1504 ret = -EINVAL;
1505 if (file->f_op->aio_fsync) 1505 if (file->f_op->aio_fsync)
1506 kiocb->ki_retry = aio_fsync; 1506 kiocb->ki_retry = aio_fsync;
1507 break; 1507 break;
1508 default: 1508 default:
1509 dprintk("EINVAL: io_submit: no operation provided\n"); 1509 dprintk("EINVAL: io_submit: no operation provided\n");
1510 ret = -EINVAL; 1510 ret = -EINVAL;
1511 } 1511 }
1512 1512
1513 if (!kiocb->ki_retry) 1513 if (!kiocb->ki_retry)
1514 return ret; 1514 return ret;
1515 1515
1516 return 0; 1516 return 0;
1517 } 1517 }
1518 1518
1519 /* 1519 /*
1520 * aio_wake_function: 1520 * aio_wake_function:
1521 * wait queue callback function for aio notification, 1521 * wait queue callback function for aio notification,
1522 * Simply triggers a retry of the operation via kick_iocb. 1522 * Simply triggers a retry of the operation via kick_iocb.
1523 * 1523 *
1524 * This callback is specified in the wait queue entry in 1524 * This callback is specified in the wait queue entry in
1525 * a kiocb. 1525 * a kiocb.
1526 * 1526 *
1527 * Note: 1527 * Note:
1528 * This routine is executed with the wait queue lock held. 1528 * This routine is executed with the wait queue lock held.
1529 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests 1529 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1530 * the ioctx lock inside the wait queue lock. This is safe 1530 * the ioctx lock inside the wait queue lock. This is safe
1531 * because this callback isn't used for wait queues which 1531 * because this callback isn't used for wait queues which
1532 * are nested inside ioctx lock (i.e. ctx->wait) 1532 * are nested inside ioctx lock (i.e. ctx->wait)
1533 */ 1533 */
1534 static int aio_wake_function(wait_queue_t *wait, unsigned mode, 1534 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1535 int sync, void *key) 1535 int sync, void *key)
1536 { 1536 {
1537 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait); 1537 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1538 1538
1539 list_del_init(&wait->task_list); 1539 list_del_init(&wait->task_list);
1540 kick_iocb(iocb); 1540 kick_iocb(iocb);
1541 return 1; 1541 return 1;
1542 } 1542 }
1543 1543
1544 int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1544 int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1545 struct iocb *iocb) 1545 struct iocb *iocb)
1546 { 1546 {
1547 struct kiocb *req; 1547 struct kiocb *req;
1548 struct file *file; 1548 struct file *file;
1549 ssize_t ret; 1549 ssize_t ret;
1550 1550
1551 /* enforce forwards compatibility on users */ 1551 /* enforce forwards compatibility on users */
1552 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1552 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1553 pr_debug("EINVAL: io_submit: reserve field set\n"); 1553 pr_debug("EINVAL: io_submit: reserve field set\n");
1554 return -EINVAL; 1554 return -EINVAL;
1555 } 1555 }
1556 1556
1557 /* prevent overflows */ 1557 /* prevent overflows */
1558 if (unlikely( 1558 if (unlikely(
1559 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1559 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1560 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1560 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1561 ((ssize_t)iocb->aio_nbytes < 0) 1561 ((ssize_t)iocb->aio_nbytes < 0)
1562 )) { 1562 )) {
1563 pr_debug("EINVAL: io_submit: overflow check\n"); 1563 pr_debug("EINVAL: io_submit: overflow check\n");
1564 return -EINVAL; 1564 return -EINVAL;
1565 } 1565 }
1566 1566
1567 file = fget(iocb->aio_fildes); 1567 file = fget(iocb->aio_fildes);
1568 if (unlikely(!file)) 1568 if (unlikely(!file))
1569 return -EBADF; 1569 return -EBADF;
1570 1570
1571 req = aio_get_req(ctx); /* returns with 2 references to req */ 1571 req = aio_get_req(ctx); /* returns with 2 references to req */
1572 if (unlikely(!req)) { 1572 if (unlikely(!req)) {
1573 fput(file); 1573 fput(file);
1574 return -EAGAIN; 1574 return -EAGAIN;
1575 } 1575 }
1576 req->ki_filp = file; 1576 req->ki_filp = file;
1577 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1577 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1578 /* 1578 /*
1579 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1579 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1580 * instance of the file* now. The file descriptor must be 1580 * instance of the file* now. The file descriptor must be
1581 * an eventfd() fd, and will be signaled for each completed 1581 * an eventfd() fd, and will be signaled for each completed
1582 * event using the eventfd_signal() function. 1582 * event using the eventfd_signal() function.
1583 */ 1583 */
1584 req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd); 1584 req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd);
1585 if (unlikely(IS_ERR(req->ki_eventfd))) { 1585 if (unlikely(IS_ERR(req->ki_eventfd))) {
1586 ret = PTR_ERR(req->ki_eventfd); 1586 ret = PTR_ERR(req->ki_eventfd);
1587 goto out_put_req; 1587 goto out_put_req;
1588 } 1588 }
1589 } 1589 }
1590 1590
1591 ret = put_user(req->ki_key, &user_iocb->aio_key); 1591 ret = put_user(req->ki_key, &user_iocb->aio_key);
1592 if (unlikely(ret)) { 1592 if (unlikely(ret)) {
1593 dprintk("EFAULT: aio_key\n"); 1593 dprintk("EFAULT: aio_key\n");
1594 goto out_put_req; 1594 goto out_put_req;
1595 } 1595 }
1596 1596
1597 req->ki_obj.user = user_iocb; 1597 req->ki_obj.user = user_iocb;
1598 req->ki_user_data = iocb->aio_data; 1598 req->ki_user_data = iocb->aio_data;
1599 req->ki_pos = iocb->aio_offset; 1599 req->ki_pos = iocb->aio_offset;
1600 1600
1601 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1601 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1602 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1602 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1603 req->ki_opcode = iocb->aio_lio_opcode; 1603 req->ki_opcode = iocb->aio_lio_opcode;
1604 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function); 1604 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1605 INIT_LIST_HEAD(&req->ki_wait.task_list); 1605 INIT_LIST_HEAD(&req->ki_wait.task_list);
1606 1606
1607 ret = aio_setup_iocb(req); 1607 ret = aio_setup_iocb(req);
1608 1608
1609 if (ret) 1609 if (ret)
1610 goto out_put_req; 1610 goto out_put_req;
1611 1611
1612 spin_lock_irq(&ctx->ctx_lock); 1612 spin_lock_irq(&ctx->ctx_lock);
1613 aio_run_iocb(req); 1613 aio_run_iocb(req);
1614 if (!list_empty(&ctx->run_list)) { 1614 if (!list_empty(&ctx->run_list)) {
1615 /* drain the run list */ 1615 /* drain the run list */
1616 while (__aio_run_iocbs(ctx)) 1616 while (__aio_run_iocbs(ctx))
1617 ; 1617 ;
1618 } 1618 }
1619 spin_unlock_irq(&ctx->ctx_lock); 1619 spin_unlock_irq(&ctx->ctx_lock);
1620 aio_put_req(req); /* drop extra ref to req */ 1620 aio_put_req(req); /* drop extra ref to req */
1621 return 0; 1621 return 0;
1622 1622
1623 out_put_req: 1623 out_put_req:
1624 aio_put_req(req); /* drop extra ref to req */ 1624 aio_put_req(req); /* drop extra ref to req */
1625 aio_put_req(req); /* drop i/o ref to req */ 1625 aio_put_req(req); /* drop i/o ref to req */
1626 return ret; 1626 return ret;
1627 } 1627 }
1628 1628
1629 /* sys_io_submit: 1629 /* sys_io_submit:
1630 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1630 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1631 * the number of iocbs queued. May return -EINVAL if the aio_context 1631 * the number of iocbs queued. May return -EINVAL if the aio_context
1632 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1632 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1633 * *iocbpp[0] is not properly initialized, if the operation specified 1633 * *iocbpp[0] is not properly initialized, if the operation specified
1634 * is invalid for the file descriptor in the iocb. May fail with 1634 * is invalid for the file descriptor in the iocb. May fail with
1635 * -EFAULT if any of the data structures point to invalid data. May 1635 * -EFAULT if any of the data structures point to invalid data. May
1636 * fail with -EBADF if the file descriptor specified in the first 1636 * fail with -EBADF if the file descriptor specified in the first
1637 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1637 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1638 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1638 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1639 * fail with -ENOSYS if not implemented. 1639 * fail with -ENOSYS if not implemented.
1640 */ 1640 */
1641 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr, 1641 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1642 struct iocb __user * __user *iocbpp) 1642 struct iocb __user * __user *iocbpp)
1643 { 1643 {
1644 struct kioctx *ctx; 1644 struct kioctx *ctx;
1645 long ret = 0; 1645 long ret = 0;
1646 int i; 1646 int i;
1647 1647
1648 if (unlikely(nr < 0)) 1648 if (unlikely(nr < 0))
1649 return -EINVAL; 1649 return -EINVAL;
1650 1650
1651 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1651 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1652 return -EFAULT; 1652 return -EFAULT;
1653 1653
1654 ctx = lookup_ioctx(ctx_id); 1654 ctx = lookup_ioctx(ctx_id);
1655 if (unlikely(!ctx)) { 1655 if (unlikely(!ctx)) {
1656 pr_debug("EINVAL: io_submit: invalid context id\n"); 1656 pr_debug("EINVAL: io_submit: invalid context id\n");
1657 return -EINVAL; 1657 return -EINVAL;
1658 } 1658 }
1659 1659
1660 /* 1660 /*
1661 * AKPM: should this return a partial result if some of the IOs were 1661 * AKPM: should this return a partial result if some of the IOs were
1662 * successfully submitted? 1662 * successfully submitted?
1663 */ 1663 */
1664 for (i=0; i<nr; i++) { 1664 for (i=0; i<nr; i++) {
1665 struct iocb __user *user_iocb; 1665 struct iocb __user *user_iocb;
1666 struct iocb tmp; 1666 struct iocb tmp;
1667 1667
1668 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1668 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1669 ret = -EFAULT; 1669 ret = -EFAULT;
1670 break; 1670 break;
1671 } 1671 }
1672 1672
1673 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1673 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1674 ret = -EFAULT; 1674 ret = -EFAULT;
1675 break; 1675 break;
1676 } 1676 }
1677 1677
1678 ret = io_submit_one(ctx, user_iocb, &tmp); 1678 ret = io_submit_one(ctx, user_iocb, &tmp);
1679 if (ret) 1679 if (ret)
1680 break; 1680 break;
1681 } 1681 }
1682 1682
1683 put_ioctx(ctx); 1683 put_ioctx(ctx);
1684 return i ? i : ret; 1684 return i ? i : ret;
1685 } 1685 }
1686 1686
1687 /* lookup_kiocb 1687 /* lookup_kiocb
1688 * Finds a given iocb for cancellation. 1688 * Finds a given iocb for cancellation.
1689 */ 1689 */
1690 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1690 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1691 u32 key) 1691 u32 key)
1692 { 1692 {
1693 struct list_head *pos; 1693 struct list_head *pos;
1694 1694
1695 assert_spin_locked(&ctx->ctx_lock); 1695 assert_spin_locked(&ctx->ctx_lock);
1696 1696
1697 /* TODO: use a hash or array, this sucks. */ 1697 /* TODO: use a hash or array, this sucks. */
1698 list_for_each(pos, &ctx->active_reqs) { 1698 list_for_each(pos, &ctx->active_reqs) {
1699 struct kiocb *kiocb = list_kiocb(pos); 1699 struct kiocb *kiocb = list_kiocb(pos);
1700 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) 1700 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1701 return kiocb; 1701 return kiocb;
1702 } 1702 }
1703 return NULL; 1703 return NULL;
1704 } 1704 }
1705 1705
1706 /* sys_io_cancel: 1706 /* sys_io_cancel:
1707 * Attempts to cancel an iocb previously passed to io_submit. If 1707 * Attempts to cancel an iocb previously passed to io_submit. If
1708 * the operation is successfully cancelled, the resulting event is 1708 * the operation is successfully cancelled, the resulting event is
1709 * copied into the memory pointed to by result without being placed 1709 * copied into the memory pointed to by result without being placed
1710 * into the completion queue and 0 is returned. May fail with 1710 * into the completion queue and 0 is returned. May fail with
1711 * -EFAULT if any of the data structures pointed to are invalid. 1711 * -EFAULT if any of the data structures pointed to are invalid.
1712 * May fail with -EINVAL if aio_context specified by ctx_id is 1712 * May fail with -EINVAL if aio_context specified by ctx_id is
1713 * invalid. May fail with -EAGAIN if the iocb specified was not 1713 * invalid. May fail with -EAGAIN if the iocb specified was not
1714 * cancelled. Will fail with -ENOSYS if not implemented. 1714 * cancelled. Will fail with -ENOSYS if not implemented.
1715 */ 1715 */
1716 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb, 1716 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1717 struct io_event __user *result) 1717 struct io_event __user *result)
1718 { 1718 {
1719 int (*cancel)(struct kiocb *iocb, struct io_event *res); 1719 int (*cancel)(struct kiocb *iocb, struct io_event *res);
1720 struct kioctx *ctx; 1720 struct kioctx *ctx;
1721 struct kiocb *kiocb; 1721 struct kiocb *kiocb;
1722 u32 key; 1722 u32 key;
1723 int ret; 1723 int ret;
1724 1724
1725 ret = get_user(key, &iocb->aio_key); 1725 ret = get_user(key, &iocb->aio_key);
1726 if (unlikely(ret)) 1726 if (unlikely(ret))
1727 return -EFAULT; 1727 return -EFAULT;
1728 1728
1729 ctx = lookup_ioctx(ctx_id); 1729 ctx = lookup_ioctx(ctx_id);
1730 if (unlikely(!ctx)) 1730 if (unlikely(!ctx))
1731 return -EINVAL; 1731 return -EINVAL;
1732 1732
1733 spin_lock_irq(&ctx->ctx_lock); 1733 spin_lock_irq(&ctx->ctx_lock);
1734 ret = -EAGAIN; 1734 ret = -EAGAIN;
1735 kiocb = lookup_kiocb(ctx, iocb, key); 1735 kiocb = lookup_kiocb(ctx, iocb, key);
1736 if (kiocb && kiocb->ki_cancel) { 1736 if (kiocb && kiocb->ki_cancel) {
1737 cancel = kiocb->ki_cancel; 1737 cancel = kiocb->ki_cancel;
1738 kiocb->ki_users ++; 1738 kiocb->ki_users ++;
1739 kiocbSetCancelled(kiocb); 1739 kiocbSetCancelled(kiocb);
1740 } else 1740 } else
1741 cancel = NULL; 1741 cancel = NULL;
1742 spin_unlock_irq(&ctx->ctx_lock); 1742 spin_unlock_irq(&ctx->ctx_lock);
1743 1743
1744 if (NULL != cancel) { 1744 if (NULL != cancel) {
1745 struct io_event tmp; 1745 struct io_event tmp;
1746 pr_debug("calling cancel\n"); 1746 pr_debug("calling cancel\n");
1747 memset(&tmp, 0, sizeof(tmp)); 1747 memset(&tmp, 0, sizeof(tmp));
1748 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; 1748 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1749 tmp.data = kiocb->ki_user_data; 1749 tmp.data = kiocb->ki_user_data;
1750 ret = cancel(kiocb, &tmp); 1750 ret = cancel(kiocb, &tmp);
1751 if (!ret) { 1751 if (!ret) {
1752 /* Cancellation succeeded -- copy the result 1752 /* Cancellation succeeded -- copy the result
1753 * into the user's buffer. 1753 * into the user's buffer.
1754 */ 1754 */
1755 if (copy_to_user(result, &tmp, sizeof(tmp))) 1755 if (copy_to_user(result, &tmp, sizeof(tmp)))
1756 ret = -EFAULT; 1756 ret = -EFAULT;
1757 } 1757 }
1758 } else 1758 } else
1759 ret = -EINVAL; 1759 ret = -EINVAL;
1760 1760
1761 put_ioctx(ctx); 1761 put_ioctx(ctx);
1762 1762
1763 return ret; 1763 return ret;
1764 } 1764 }
1765 1765
1766 /* io_getevents: 1766 /* io_getevents:
1767 * Attempts to read at least min_nr events and up to nr events from 1767 * Attempts to read at least min_nr events and up to nr events from
1768 * the completion queue for the aio_context specified by ctx_id. May 1768 * the completion queue for the aio_context specified by ctx_id. May
1769 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range, 1769 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1770 * if nr is out of range, if when is out of range. May fail with 1770 * if nr is out of range, if when is out of range. May fail with
1771 * -EFAULT if any of the memory specified to is invalid. May return 1771 * -EFAULT if any of the memory specified to is invalid. May return
1772 * 0 or < min_nr if no events are available and the timeout specified 1772 * 0 or < min_nr if no events are available and the timeout specified
1773 * by when has elapsed, where when == NULL specifies an infinite 1773 * by when has elapsed, where when == NULL specifies an infinite
1774 * timeout. Note that the timeout pointed to by when is relative and 1774 * timeout. Note that the timeout pointed to by when is relative and
1775 * will be updated if not NULL and the operation blocks. Will fail 1775 * will be updated if not NULL and the operation blocks. Will fail
1776 * with -ENOSYS if not implemented. 1776 * with -ENOSYS if not implemented.
1777 */ 1777 */
1778 asmlinkage long sys_io_getevents(aio_context_t ctx_id, 1778 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1779 long min_nr, 1779 long min_nr,
1780 long nr, 1780 long nr,
1781 struct io_event __user *events, 1781 struct io_event __user *events,
1782 struct timespec __user *timeout) 1782 struct timespec __user *timeout)
1783 { 1783 {
1784 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1784 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1785 long ret = -EINVAL; 1785 long ret = -EINVAL;
1786 1786
1787 if (likely(ioctx)) { 1787 if (likely(ioctx)) {
1788 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0)) 1788 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1789 ret = read_events(ioctx, min_nr, nr, events, timeout); 1789 ret = read_events(ioctx, min_nr, nr, events, timeout);
1790 put_ioctx(ioctx); 1790 put_ioctx(ioctx);
1791 } 1791 }
1792 1792
1793 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1793 return ret; 1794 return ret;
1794 } 1795 }
1795 1796
1796 __initcall(aio_setup); 1797 __initcall(aio_setup);
1797 1798
1798 EXPORT_SYMBOL(aio_complete); 1799 EXPORT_SYMBOL(aio_complete);
1799 EXPORT_SYMBOL(aio_put_req); 1800 EXPORT_SYMBOL(aio_put_req);
1800 EXPORT_SYMBOL(wait_on_sync_kiocb); 1801 EXPORT_SYMBOL(wait_on_sync_kiocb);
1801 1802